1
|
|
2
|
Adams WC, Berenson RJ, Karlsson Hedestam GB, Lieber A, Koup RA, Loré K. Attenuation of CD4+ T-cell function by human adenovirus type 35 is mediated by the knob protein. J Gen Virol 2012; 93:1339-1344. [PMID: 22357750 DOI: 10.1099/vir.0.039222-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The complement-regulatory protein CD46 is the primary receptor for human adenovirus type 35 (HAdV-35) and can regulate human immune-cell activation. CD4(+) T-cells are critical for initiating and maintaining adaptive immunity elicited by infection or vaccination. It was reported previously that HAdV-35 can bind these cells and suppress their activation. The data reported here demonstrate that recombinant trimeric HAdV-35 knob proteins alone can induce CD46 receptor downregulation and inhibit interleukin-2 production and proliferation of human CD4(+) T-cells in vitro similarly to mAbs specific to the CD46 region bound by HAdV-35 knobs. A mutant knob protein with increased affinity for CD46 compared with the wild-type knob caused equivalent effects. In contrast, a CD46-binding-deficient mutant knob protein did not inhibit T-cell activation. Thus, the capacity of HAdV-35 to attenuate human CD4(+) T-cell activation depends predominantly on knob interactions with CD46 and can occur independently of infection.
Collapse
Affiliation(s)
- William C Adams
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | - André Lieber
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Richard A Koup
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Karin Loré
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
CD46 measles virus receptor polymorphisms influence receptor protein expression and primary measles vaccine responses in naive Australian children. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:704-10. [PMID: 22357652 DOI: 10.1128/cvi.05652-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Despite the availability of measles vaccines, infants continue to die from measles. Measles vaccine responses vary between individuals, and poor immunogenicity is likely to preclude protection against measles. CD46 is a ubiquitously expressed specific receptor for vaccine strains of measles virus. CD46 polymorphisms have not been functionally investigated but may affect CD46 protein expression, which in turn may mediate primary measles antibody responses in infants. In a cohort of children aged 12 to 14 months from Perth, Australia (n = 137), after their first dose of measles-mumps-rubella (MMR) vaccine, CD46 polymorphisms were genotyped, and postvaccination measles IgG and CD46 protein expression before and after measles lysate stimulation of cells were measured. Three CD46 variants (rs7144, rs11118580, and rs2724384) were significantly associated with measles virus-specific IgG levels (P = 0.008, P = 0.026, and P = 0.018, respectively). There were significant differences between CD46 rs7144 genotypes and CD46 protein expression on T cells, as well as the downregulation of CD46 and T-cell frequency after measles lysate stimulation. We show that CD46 polymorphisms were associated with primary measles antibody responses in naive infants. We also report the first association of a measles virus receptor polymorphism with functional effects on the receptor, suggesting a possible mechanism through which antibody responses are altered. Elucidating all of the interconnecting genetic factors that alter primary measles vaccine responses may be important for identifying children at risk of poor immunogenicity or vaccine failure and for the future design of vaccine strategies to help these children.
Collapse
|
4
|
Ni Choileain S, Astier AL. CD46 processing: a means of expression. Immunobiology 2011; 217:169-75. [PMID: 21742405 DOI: 10.1016/j.imbio.2011.06.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 06/06/2011] [Accepted: 06/13/2011] [Indexed: 12/15/2022]
Abstract
CD46 is a ubiquitously expressed type I transmembrane protein, first identified as a regulator of complement activation, and later as an entry receptor for a variety of pathogens. The last decade has also revealed the role of CD46 in regulating the adaptive immune response, acting as an additional costimulatory molecule for human T cells and inducing their differentiation into Tr1 cells, a subset of regulatory T cells. Interestingly, CD46 regulatory pathways are defective in T cells from patients with multiple sclerosis, asthma and rheumatoid arthritis, illustrating its importance in regulating T cell homeostasis. Indeed, CD46 expression at the cell surface is tightly regulated in many different cell types, highlighting its importance in several biological processes. Notably, CD46 is the target of enzymatic processing, being cleaved by metalloproteinases and by the presenilin/gamma secretase complex. This processing is required for its functions, at least in T cells. This review will summarize the latest updates on the regulation of CD46 expression and on its effects on T cell activation.
Collapse
Affiliation(s)
- Siobhan Ni Choileain
- MRC Centre for Inflammation Research, Centre for MS Research, University of Edinburgh, UK
| | | |
Collapse
|
5
|
Adenovirus type-35 vectors block human CD4+ T-cell activation via CD46 ligation. Proc Natl Acad Sci U S A 2011; 108:7499-504. [PMID: 21502499 DOI: 10.1073/pnas.1017146108] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recombinant adenoviruses (rAds) based on types 5 (rAd5) and 35 (rAd35) have emerged as important vaccine delivery vectors in clinical testing for a variety of pathogens. A major difference between these vectors is their binding to cellular receptors used for infection. Whereas rAd5 binds coxsackie-adenovirus receptor (CAR), rAd35 binds the complement regulatory protein CD46. Although rAd35 infected and phenotypically matured human blood dendritic cells (DCs) more efficiently than rAd5, we show here that rAd35 markedly suppressed DC-induced activation of naive CD4(+) T cells. rAd35 specifically blocked both DCs and anti-CD3/CD28 mAb-induced naive T-cell proliferation and IL-2 production. This effect was also observed in CD4(+) memory T cells but to a lesser extent. The suppression occurred by rAd35 binding to CD46 on T cells and was independent of infection. CD46 engagement with mAb mimicked the effects of rAd35 and also led to deficient NF-κB nuclear translocation. In contrast, rAd5 and rAd35 vectors with ablated CD46 binding did not inhibit T-cell activation. Our findings provide insights into the basic biology of adenoviruses and indicate that CD46 binding may have an impact on the generation of primary CD4(+) T-cell responses by Ad35.
Collapse
|
6
|
Ni Choileain S, Astier AL. CD46 plasticity and its inflammatory bias in multiple sclerosis. Arch Immunol Ther Exp (Warsz) 2011; 59:49-59. [PMID: 21267793 DOI: 10.1007/s00005-010-0109-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 09/16/2010] [Indexed: 01/13/2023]
Abstract
Known as a link to the adaptive immune system, a complement regulator, a "pathogen magnet" and more recently as an inducer of autophagy, CD46 is the human receptor that refuses to be put in a box. This review summarizes the current roles of CD46 during immune responses and highlights the role of CD46 as both a promoter and attenuator of the immune response. In patients with multiple sclerosis (MS), CD46 responses are overwhelmingly pro-inflammatory with notable defects in cytokine and chemokine production. Understanding the role of CD46 as an inflammatory regulator is a distant goal considering the darkness in which its regulatory mechanisms reside. Further research into the regulation of CD46 expression through its internalization and processing will undoubtedly extend our knowledge of how the balance is tipped in favor of inflammation in MS patients.
Collapse
Affiliation(s)
- Siobhan Ni Choileain
- Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
7
|
Abstract
Measles is an important cause of child mortality that has a seemingly paradoxical interaction with the immune system. In most individuals, the immune response is successful in eventually clearing measles virus (MV) infection and in establishing life-long immunity. However, infection is also associated with persistence of viral RNA and several weeks of immune suppression, including loss of delayed type hypersensitivity responses and increased susceptibility to secondary infections. The initial T-cell response includes CD8+ and T-helper 1 CD4+ T cells important for control of infectious virus. As viral RNA persists, there is a shift to a T-helper 2 CD4+ T-cell response that likely promotes B-cell maturation and durable antibody responses but may suppress macrophage activation and T-helper 1 responses to new infections. Suppression of mitogen-induced lymphocyte proliferation can be induced by lymphocyte infection with MV or by lymphocyte exposure to a complex of the hemagglutinin and fusion surface glycoproteins without infection. Dendritic cells (DCs) are susceptible to infection and can transmit infection to lymphocytes. MV-infected DCs are unable to stimulate a mixed lymphocyte reaction and can induce lymphocyte unresponsiveness through expression of MV glycoproteins. Thus, multiple factors may contribute both to measles-induced immune suppression and to the establishment of durable protective immunity.
Collapse
Affiliation(s)
- Diane E Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| |
Collapse
|
8
|
Abstract
CD46 is a complement regulatory molecule expressed on every cell type, except for erythrocytes. While initially described as a regulator of complement activity, it later became a 'magnet for pathogens', binding to several viruses and bacteria. More recently, an alternative role for such complement molecules has emerged: they do regulate T-cell immunity, affecting T-cell proliferation and differentiation. In particular, CD46 stimulation induces Tr1 cells, regulatory T cells characterized by massive production of interleukin-10 (IL-10), a potent anti-inflammatory cytokine. Hence, CD46 is likely to control inflammation. Indeed, data from CD46 transgenic mice highlight a role for CD46 in inflammation, with antagonist roles depending on the cytoplasmic tail being expressed. Furthermore, recent data have shown that CD46 is defective in multiple sclerosis, IL-10 production being severely impaired in these patients. This lack of IL-10 production probably participates in the inflammation observed in patients with multiple sclerosis. This review will summarize the data on CD46 and T cells, and how CD46 is likely involved in multiple sclerosis.
Collapse
Affiliation(s)
- Anne L Astier
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
9
|
Liszewski MK, Kemper C, Price JD, Atkinson JP. Emerging roles and new functions of CD46. ACTA ACUST UNITED AC 2005; 27:345-58. [PMID: 16200405 DOI: 10.1007/s00281-005-0002-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Accepted: 06/17/2005] [Indexed: 10/25/2022]
Abstract
In the past 20 years, our understanding of the workings of complement regulatory protein, CD46 (membrane cofactor protein), has grown as has the impressive list of pathogens interacting with this membrane-bound complement inhibitor. Referred to as a "pathogen magnet," CD46 serves as a receptor for seven human pathogens. Initially discovered as a widely expressed C3b- and C4b-binding protein, it was subsequently shown to be a cofactor for the serine protease factor I to inactivate by limited proteolysis these two opsonins and components of the convertases. The involvement of CD46 in reproductive processes continues to be an emerging story. It is a protector of placental tissue, but it may also play a more direct role in reproduction through its expression on the inner acrosomal membrane of spermatozoa. Cross-linking CD46 with antibodies or natural or pathogenic ligands induces rapid turnover and signaling events. In this regard, much attention is currently focused on generating human T lymphocyte regulatory cells by cross-linking CD46. Finally, highlighting its importance in protecting cells against excessive complement activation is the discovery that even a heterozygous deficiency of CD46 predisposes to hemolytic uremic syndrome.
Collapse
Affiliation(s)
- M Kathryn Liszewski
- Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8045, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
10
|
Abstract
As measles virus causes subacute sclerosing panencephalitis and measles inclusion body encephalitis due to its ability to establish human persistent infection, without symptoms for the time between the acute infection and the onset of clinical symptoms, it has been the paradigm for a long term persistent as opposed to chronic infection by an RNA virus. We have reviewed the mechanisms of persistence of the virus and discuss specific mutations associated with CNS infection affecting the matrix and fusion protein genes. These are placed in the context of our current understanding of the viral replication cycle. We also consider the proposed mechanisms of persistence of the virus in replicating cell cultures and conclude that no general mechanistic model can be derived from our current state of knowledge. Finally, we indicate how reverse genetics approaches and the use of mouse models with specific knock-out and knock-in modifications can further our understanding of measles virus persistence.
Collapse
Affiliation(s)
- Bertus K Rima
- School of Biology and Biochemistry and Centre for Cancer Research and Cell Biology, The Queen's University of Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| | | |
Collapse
|
11
|
Rezcallah MS, Hodges K, Gill DB, Atkinson JP, Wang B, Cleary PP. Engagement of CD46 and α5β1 integrin by group A streptococci is required for efficient invasion of epithelial cells. Cell Microbiol 2005; 7:645-53. [PMID: 15839894 DOI: 10.1111/j.1462-5822.2004.00497.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Membrane cofactor protein (MCP or CD46), a widely distributed complement regulatory human protein, is a cell surface receptor for many pathogens including group A streptococci (GAS). The surface M protein of GAS binds CD46 and mediates GAS adherence to keratinocytes. In the present study, we studied the role of CD46 in GAS invasion of human lung epithelial cells, A549. Anti-CD46 antibody which specifically blocks the domain to which M protein binds inhibited adherence to and invasion of A549 cells by GAS. Moreover, downregulation of CD46 expression on A549 by RNA interference resulted in reduced invasion of these cells by GAS. A mutant form of CD46 with a deletion in the cytoplasmic domain was overexpressed in A549 cells, which resulted in partial inhibition of invasion. This indicates that the cytoplasmic tail is required for CD46 to promote invasion by GAS. Invasion assays with Lactococcus lactis that express M protein demonstrated the dependence of CD46-promoted invasion on interaction with M protein. In addition, CD46-mediated invasion was also found to be dependent on the extracellular matrix protein fibronectin.
Collapse
Affiliation(s)
- Myrna S Rezcallah
- Department of Microbiology, University of Minnesota, Minneapolis, 55455, USA
| | | | | | | | | | | |
Collapse
|
12
|
Riley-Vargas RC, Gill DB, Kemper C, Liszewski MK, Atkinson JP. CD46: expanding beyond complement regulation. Trends Immunol 2004; 25:496-503. [PMID: 15324743 DOI: 10.1016/j.it.2004.07.004] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
During the 1980s CD46 was discovered in a search for C3b binding proteins of human peripheral blood cells. Its role as an inactivator of C3b and C4b deposited on self-tissue is highlighted by the observation that partial deficiency of CD46 is a predisposing factor to hemolytic uremic syndrome. This discovery has an impact on the treatment options for these patients. Other new findings have expanded the role of CD46 in immunity and disease. For example, signaling through CD46 on human T lymphocytes drives them to become regulatory cells, indicating a novel link between the complement system and cellular immunity. Also, CD46 interacts with at least seven human pathogens and participates in reproduction/fertilization, further suggesting that dissecting its multi-faceted activities will have important clinical implications.
Collapse
Affiliation(s)
- Rebecca C Riley-Vargas
- Washington University School of Medicine, Department of Medicine, Division of Rheumatology, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
13
|
Welstead GG, Hsu EC, Iorio C, Bolotin S, Richardson CD. Mechanism of CD150 (SLAM) down regulation from the host cell surface by measles virus hemagglutinin protein. J Virol 2004; 78:9666-74. [PMID: 15331699 PMCID: PMC515000 DOI: 10.1128/jvi.78.18.9666-9674.2004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2004] [Accepted: 05/10/2004] [Indexed: 11/20/2022] Open
Abstract
Measles virus has been reported to enter host cells via either of two cellular receptors, CD46 and CD150 (SLAM). CD46 is found on most cells of higher primates, while SLAM is expressed on activated B, T, and dendritic cells and is an important regulatory molecule of the immune system. Previous reports have shown that measles virus can down regulate expression of its two cellular receptors on the host cell surface during infection. In this study, the process of down regulation of SLAM by measles virus was investigated. We demonstrated that expression of the hemagglutinin (H) protein of measles virus was sufficient for down regulation. Our studies provided evidence that interactions between H and SLAM in the endoplasmic reticulum (ER) can promote the down regulation of SLAM but not CD46. In addition, we demonstrated that interactions between H and SLAM at the host cell surface can also contribute to SLAM down regulation. These results indicate that two mechanisms involving either intracellular interactions between H and SLAM in the ER or receptor-mediated binding to H at the surfaces of host cells can lead to the down regulation of SLAM during measles virus infection.
Collapse
|
14
|
Devaux P, Christiansen D, Plumet S, Gerlier D. Cell surface activation of the alternative complement pathway by the fusion protein of measles virus. J Gen Virol 2004; 85:1665-1673. [PMID: 15166451 DOI: 10.1099/vir.0.79880-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Measles virus (MV)-infected cells are activators of the alternative human complement pathway, resulting in high deposition of C3b on the cell surface. Activation was observed independent of whether CD46 was used as a cellular receptor and did not correlate with CD46 down-regulation. The virus itself was an activator of the alternative pathway and was covered by C3b/C3bi, resulting in some loss in infectivity without loss of virus binding to target cells. The cell surface expression of MV fusion (F), but not haemagglutinin, envelope protein resulted in complement activation of the Factor B-dependent alternative pathway in a dose-dependent manner and F-C3b complexes were formed. The underlying activation mechanism was not related to any decrease in cell surface expression of the complement regulators CD46 and CD55. The C3b/C3bi coating of MV-infected cells and virus should ensure enhanced targeting of MV antigens to the immune system, through binding to complement receptors.
Collapse
Affiliation(s)
- Patricia Devaux
- Immunité & Infections Virales, CNRS-UCBL UMR 5537, IFR 62 Laennec, Rue Paradin, 69372 Lyon Cedex 08, France
| | - Dale Christiansen
- Immunité & Infections Virales, CNRS-UCBL UMR 5537, IFR 62 Laennec, Rue Paradin, 69372 Lyon Cedex 08, France
| | - Sébastien Plumet
- Immunité & Infections Virales, CNRS-UCBL UMR 5537, IFR 62 Laennec, Rue Paradin, 69372 Lyon Cedex 08, France
| | - Denis Gerlier
- Immunité & Infections Virales, CNRS-UCBL UMR 5537, IFR 62 Laennec, Rue Paradin, 69372 Lyon Cedex 08, France
| |
Collapse
|
15
|
Gill DB, Koomey M, Cannon JG, Atkinson JP. Down-regulation of CD46 by piliated Neisseria gonorrhoeae. ACTA ACUST UNITED AC 2003; 198:1313-22. [PMID: 14597734 PMCID: PMC2194255 DOI: 10.1084/jem.20031159] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Human membrane cofactor protein (CD46) protects host cells against complement attack and may function as a receptor for pathogenic Neisseriae. We assessed CD46 expression in the human cervical cell line ME-180 after exposure to Neisseria gonorrhoeae. Piliated but not nonpiliated gonococci adhered to cells and produced up to an 80% reduction in CD46 surface expression by 6 h that persisted for at least 24 h. This response required a minimum multiplicity of infection of 10 and was not prevented by antibodies to CD46. CD46 down-regulation was not attributable to intracellular retention or a global or specific shutdown of mRNA or protein synthesis. Substantial quantities of CD46 were found in the supernatants, indicating a specific shedding of this protein. Adherent gonococci lacking the pilus retraction protein PilT did not down-regulate CD46 but de-repression of pilT expression restored CD46 down-regulation. After experimental infection of human volunteers with a gonococcal variant incapable of inducing CD46 down-regulation, variants of this strain were reisolated that exhibited CD46 down-regulation. Pilus-mediated interactions of gonococci with human epithelial cells results in a pathogen-induced manipulation of the host cell environment in which a membrane protein is removed from epithelial cells by liberation into the surrounding milieu.
Collapse
Affiliation(s)
- Darcy B Gill
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
16
|
Crimeen-Irwin B, Ellis S, Christiansen D, Ludford-Menting MJ, Milland J, Lanteri M, Loveland BE, Gerlier D, Russell SM. Ligand binding determines whether CD46 is internalized by clathrin-coated pits or macropinocytosis. J Biol Chem 2003; 278:46927-37. [PMID: 12958316 DOI: 10.1074/jbc.m308261200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CD46 is a ubiquitous human cell surface receptor for the complement components C3b and C4b and for various pathogens, including the measles virus and human herpes virus 6. Ligand binding to CD46 affects (i) protection of autologous cells from complement attack by breakdown of complement components, (ii) intracellular signals that affect the regulation of immune cell function, (iii) antigen presentation, and (iv) down-regulation of cell surface CD46. Recent evidence indicates that CD46 signaling can link innate and acquired immune function. The molecular mechanisms for these processes and the importance of intracellular trafficking of the receptor have not yet been elucidated. We demonstrate here that, in nonlymphoid cells, CD46 is constitutively internalized via clathrin-coated pits, traffics to multivesicular bodies, and is recycled to the cell surface. However, cross-linking of CD46 at the cell surface, by either multivalent antibody or by measles virus, induces pseudopodia that engulf the ligand in a process similar to macropinocytosis, and leads to the degradation of cell surface CD46. Thus, we have elucidated two pathways for CD46 internalization, which are regulated by the valence of cross-linking of CD46 and which utilize either clathrin-coated pits or pseudopodial extension. This has important implications for CD46 signaling, antigen presentation, CD46 down-regulation, and engulfment of pathogens.
Collapse
Affiliation(s)
- Blessing Crimeen-Irwin
- Peter MacCallum Cancer Centre, Trescowthick Research Laboratories, St. Andrew's Place, East Melbourne, Victoria 3002, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Lee SW, Bonnah RA, Higashi DL, Atkinson JP, Milgram SL, So M. CD46 is phosphorylated at tyrosine 354 upon infection of epithelial cells by Neisseria gonorrhoeae. J Cell Biol 2002; 156:951-7. [PMID: 11901164 PMCID: PMC2173477 DOI: 10.1083/jcb.200109005] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Neisseria type IV pilus promotes bacterial adhesion to host cells. The pilus binds CD46, a complement-regulatory glycoprotein present on nucleated human cells (Källström et al., 1997). CD46 mutants with truncated cytoplasmic tails fail to support bacterial adhesion (Källström et al., 2001), suggesting that this region of the molecule also plays an important role in infection. Here, we report that infection of human epithelial cells by piliated Neisseria gonorrhoeae (GC) leads to rapid tyrosine phosphorylation of CD46. Studies with wild-type and mutant tail fusion constructs demonstrate that Src kinase phosphorylates tyrosine 354 in the Cyt2 isoform of the CD46 cytoplasmic tail. Consistent with these findings, infection studies show that PP2, a specific Src family kinase inhibitor, but not PP3, an inactive variant of this drug, reduces the ability of epithelial cells to support bacterial adhesion. Several lines of evidence point to the role of c-Yes, a member of the Src family of nonreceptor tyrosine kinases, in CD46 phosphorylation. GC infection causes c-Yes to aggregate in the host cell cortex beneath adherent bacteria, increases binding of c-Yes to CD46, and stimulates c-Yes kinase activity. Finally, c-Yes immunoprecipitated from epithelial cells is able to phosphorylate the wild-type Cyt2 tail but not the mutant derivative in which tyrosine 354 has been substituted with alanine. We conclude that GC infection leads to rapid tyrosine phosphorylation of the CD46 Cyt2 tail and that the Src kinase c-Yes is involved in this reaction. Together, the findings reported here and elsewhere strongly suggest that pilus binding to CD46 is not a simple static process. Rather, they support a model in which pilus interaction with CD46 promotes signaling cascades important for Neisseria infectivity.
Collapse
Affiliation(s)
- Shaun W Lee
- Department of Molecular Microbiology and Immunology, L220, Oregon Health and Science University, Portland, OR 97201
| | | | | | | | | | | |
Collapse
|
18
|
Chaston TB, Lidbury BA. Genetic 'budget' of viruses and the cost to the infected host: a theory on the relationship between the genetic capacity of viruses, immune evasion, persistence and disease. Immunol Cell Biol 2001; 79:62-6. [PMID: 11168625 DOI: 10.1046/j.1440-1711.2001.00973.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The nature of the pathogen-host relationship is recognized as being a dynamic coevolutionary process where the immune system has required ongoing adaptation and improvement to combat infection. Under survival pressure from sophisticated immune responses, adaptive processes for microbes, including viruses, have manifested as immune evasion strategies. This paper proposes a theory that virus immune evasion can be broadly classified into 'acquisition' or 'erroneous replication' strategies. Acquisition strategies are characteristic of large genome dsDNA viruses, which (i) replicate in the cell nucleus; (ii) have acquired host genes that can be used to directly manipulate responses to infection; (iii) are often latent for the lifetime of the host; and (iv) have little or no serious impact on health. Alternatively, erroneous replication strategies are characteristic of small genome RNA viruses, which are recognized as being the cause of many serious diseases in humans. It is proposed that this propensity for disease is due to the cytoplasmic site of replication and truncated temporal relationship with the host, which has limited or removed the evolutionary opportunity for RNA viruses to have acquired host genes. This has resulted in RNA viruses relying on error-prone replication strategies which, while allowing survival and persistence, are more likely to lead to disease due to the lack of direct viral control over potentially host-deleterious inflammatory and immune responses to infection.
Collapse
Affiliation(s)
- T B Chaston
- Gadi Research Centre, Division of Science and Design, University of Canberra, Australian Capital Territory, Australia
| | | |
Collapse
|
19
|
Abstract
Interleukin 12 (IL-12) is central to the orchestration of cell-mediated immune responses in the innate as well as the adaptive immune system. Recent studies of the pathogenesis of diseases as disparate as measles and asthma have suggested that the complement system, itself at the interface of innate and adaptive immunity, is a biologically relevant regulator of IL-12 production. These data are reviewed here.
Collapse
Affiliation(s)
- C L Karp
- Molecular Immunology Section and Division of Immunobiology, Childrens Hospital Research Foundation, Department of Pediatrics, University of Cincinnati, TCHRF 1566, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA.
| | | |
Collapse
|
20
|
Vilà JM, Calvo J, Places L, Padilla O, Arman M, Gimferrer I, Aussel C, Vives J, Lozano F. Role of two conserved cytoplasmic threonine residues (T410 and T412) in CD5 signaling. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:396-402. [PMID: 11123317 DOI: 10.4049/jimmunol.166.1.396] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD5 is a transmembrane coreceptor that modulates activation and differentiation signals mediated by the Ag-specific receptor present on both T and B1a lymphocytes. CD5 lacks intrinsic catalytic activity, and its immunomodulatory properties result from intracellular interactions mediated by the CD5 cytoplasmic tail. The nature of these interactions is currently a matter of investigation. Here, we present a selective mutagenesis analysis of two conserved threonine residues (T410 and T412) located at the membrane-proximal cytoplasmic region of CD5. These residues are contained within consensus phosphorylation motifs for protein kinase C and are shown here to be critical for in vivo protein kinase C-mediated phosphorylation of CD5. Functional studies revealed that the integrity of T410 and T412 is also critical for CD5-mediated phosphatidylcholine-specific phospholipase C (PC-PLC) activation and phorbol ester-mediated inhibition of Ab-induced internalization of CD5. These results strongly argue in favor of a role for T410 and T412 in the signaling mediated by CD5.
Collapse
Affiliation(s)
- J M Vilà
- Servei d'Immunologia, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Hospital Clínic, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kurita-Taniguchi M, Fukui A, Hazeki K, Hirano A, Tsuji S, Matsumoto M, Watanabe M, Ueda S, Seya T. Functional modulation of human macrophages through CD46 (measles virus receptor): production of IL-12 p40 and nitric oxide in association with recruitment of protein-tyrosine phosphatase SHP-1 to CD46. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:5143-52. [PMID: 11046046 DOI: 10.4049/jimmunol.165.9.5143] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human CD46, formerly membrane cofactor protein, binds and inactivates complement C3b and serves as a receptor for measles virus (MV), thereby protecting cells from homologous complement and sustaining systemic measles infection. Suppression of cell-mediated immunity, including down-regulation of IL-12 production, has been reported on macrophages (Mphi) by cross-linking their CD46. The intracellular events responsible for these immune responses, however, remain unknown. In this study, we found that 6- to 8-day GM-CSF-treated peripheral blood monocytes acquired the capacity to recruit protein-tyrosine phosphatase SHP-1 to their CD46 and concomitantly were able to produce IL-12 p40 and NO. These responses were induced by stimulation with mAbs F(ab')(2) against CD46 that block MV binding or by a wild-type MV strain Kohno MV strain (KO; UV treated or untreated) that was reported to induce early phase CD46 down-regulation. Direct ligation of CD46 by these reagents, but not intracellular MV replication, was required for these cellular responses. Interestingly, the KO strain failed to replicate in the 6- to 8-day GM-CSF-cultured Mphi, while other MV strains replicated to form syncytia under the same conditions. When stimulated with the KO strain, rapid and transient dissociation of SHP-1 from CD46 was observed. These and previous results provide strong evidence that CD46 serves as a signal modulatory molecule and that the properties of ligands determine suppression or activation of an innate immune system at a specific maturation stage of human Mphi.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/metabolism
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, CD/physiology
- Binding Sites, Antibody
- Cell Line
- Cells, Cultured
- Coculture Techniques
- Cricetinae
- Giant Cells/immunology
- Giant Cells/virology
- Hemagglutinins, Viral/genetics
- Hemagglutinins, Viral/immunology
- Humans
- Interleukin-12/biosynthesis
- Intracellular Signaling Peptides and Proteins
- Kinetics
- Macrophages/enzymology
- Macrophages/immunology
- Macrophages/metabolism
- Macrophages/virology
- Measles virus/immunology
- Measles virus/physiology
- Membrane Cofactor Protein
- Membrane Glycoproteins/immunology
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/physiology
- Mice
- Nitric Oxide/biosynthesis
- Protein Tyrosine Phosphatase, Non-Receptor Type 11
- Protein Tyrosine Phosphatase, Non-Receptor Type 6
- Protein Tyrosine Phosphatases/metabolism
- Receptors, Virus/immunology
- SH2 Domain-Containing Protein Tyrosine Phosphatases
- Species Specificity
- Time Factors
- Transfection
- Virus Replication/immunology
- src Homology Domains/immunology
Collapse
Affiliation(s)
- M Kurita-Taniguchi
- Department of Immunology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Higashinari-ku, Osaka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Astier A, Trescol-Biémont MC, Azocar O, Lamouille B, Rabourdin-Combe C. Cutting edge: CD46, a new costimulatory molecule for T cells, that induces p120CBL and LAT phosphorylation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:6091-5. [PMID: 10843656 DOI: 10.4049/jimmunol.164.12.6091] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The widely expressed transmembrane molecule CD46 is the complement regulatory receptor for C3b as well as the receptor for several pathogens. Beside its binding functions, CD46 is also able to transduce signals. We showed that CD46 aggregation on human T cells induces p120CBL and linker for activation of T cells (LAT) phosphorylation. These two proteins are adaptor proteins known to regulate TCR signaling. p120CBL is a complex adaptor protein involved in negatively regulating signaling events, whereas LAT is a transmembrane adaptor protein found in glycolipid-enriched microdomains essential for T cell activation. Therefore, we investigated if a CD46/TCR costimulation would affect T cell activation. Indeed, CD46/CD3 costimulation strongly promotes T cell proliferation. Therefore, we propose that CD46 acts as a potent costimulatory molecule for human T cells.
Collapse
Affiliation(s)
- A Astier
- Institut National de la Santé et de la Recherche Médicale Unité 503, Ecole Normale Superieure de Lyon, France.
| | | | | | | | | |
Collapse
|
23
|
Christiansen D, Loveland B, Kyriakou P, Lanteri M, Escoffier C, Gerlier D. Interaction of CD46 with measles virus: accessory role of CD46 short consensus repeat IV. J Gen Virol 2000; 81:911-7. [PMID: 10725416 DOI: 10.1099/0022-1317-81-4-911] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To define further the accessory role(s) of the CD46 (membrane cofactor protein) short consensus repeat (SCR) III and IV domains in the interaction of CD46 with measles virus (MV), chimeric proteins were generated by substituting domains from the structurally related protein decay accelerating factor (DAF, CD55): x3DAF (exchange of CD46 SCR III) and x4DAF (exchange of SCR IV). Transfected CHO cell lines that stably expressed these chimeric proteins were compared for MV binding and infection. Compared with wild-type CD46 (I-II-III-IV), a significant decrease in MV binding was observed with x4DAF. Despite this limited binding, these cells were still capable of supporting virus entry. In a quantitative fusion assay, no significant differences in fusion were observed as a result of the exchange of either CD46 SCR III or IV. However, the down-regulation of cell surface CD46 typically observed following MV infection was abolished with x4DAF, as was the redistribution of CD46 on the cell surface. Thus, CD46 SCR IV appears to be required for optimal virus binding and receptor down-regulation, although importantly, in spite of these functional limitations, x4DAF can still be used for MV entry.
Collapse
Affiliation(s)
- D Christiansen
- Immunité et Infections Virales, IVMC, CNRS-UCBL UMR 5537, 69372 Lyon Cedex 08, France The Austin Research Institute, Heidelberg, Victoria 3084, Australia.
| | | | | | | | | | | |
Collapse
|
24
|
Wang G, Liszewski MK, Chan AC, Atkinson JP. Membrane cofactor protein (MCP; CD46): isoform-specific tyrosine phosphorylation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:1839-46. [PMID: 10657632 DOI: 10.4049/jimmunol.164.4.1839] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Membrane cofactor protein (MCP; CD46) is a widely expressed type 1 transmembrane glycoprotein that inhibits complement activation on host cells. It also is a receptor for several pathogens including measles virus, Streptococcus pyogenes, Neisseria gonorrhea, and Neisseria meningitidis. That MCP may have signaling capability was suggested by its microbial interactions. That is, binding of MCP on human monocytes by measles virus hemagglutinin or cross-linking by an anti-MCP Ab resulted in IL-12 down-regulation, while binding to MCP by Neisseria on epithelial cells produced a calcium flux. Through alternative splicing, MCP is expressed on most cells with two distinct cytoplasmic tails of 16 (CYT-1) or 23 (CYT-2) amino acids. These play pivotal roles in intracellular precursor processing and basolateral localization. We investigated the putative signal transduction pathway mediated by MCP and demonstrate that CYT-2, but not CYT-1, is phosphorylated on tyrosine. We examined MCP tail peptides and performed Ab cross-linking experiments on several human cell lines and MCP isoform transfectants. We found an MCP peptide of CYT-2 was phosphorylated by a src kinase system. Western blots of the cells lines demonstrated that cells bearing CYT-2 were also phosphorylated on tyrosine. Additionally, we provide genetic and biochemical evidence that the src family of kinases is responsible for the latter phosphorylation events. In particular, the src kinase, Lck, is required for phosphorylation of MCP in the Jurkat T cell line. Taken together, these studies suggest a src family-dependent pathway for signaling through MCP.
Collapse
Affiliation(s)
- G Wang
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
25
|
Firsching R, Buchholz CJ, Schneider U, Cattaneo R, ter Meulen V, Schneider-Schaulies J. Measles virus spread by cell-cell contacts: uncoupling of contact-mediated receptor (CD46) downregulation from virus uptake. J Virol 1999; 73:5265-73. [PMID: 10364272 PMCID: PMC112581 DOI: 10.1128/jvi.73.7.5265-5273.1999] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CD46, which serves as a receptor for measles virus (MV; strain Edmonston), is rapidly downregulated from the cell surface after contact with viral particles or infected cells. We show here that the same two CD46 complement control protein (CCP) domains responsible for primary MV attachment mediate its downregulation. Optimal downregulation efficiency was obtained with CD46 recombinants containing CCP domains 1 and 2, whereas CCP 1, alone and duplicated, induced a slight downregulation. Using persistently infected monocytic/promyelocytic U937 cells which release very small amounts of infectious virus, and uninfected HeLa cells as contact partners, we then showed that during contact the formation of CD46-containing patches and caps precedes CD46 internalization. Nevertheless, neither substances inhibiting capping nor the fusion-inhibiting peptide Z-D-Phe-L-Phe-Gly-OH (FIP) blocked CD46 downregulation. Thus, CD46 downregulation can be uncoupled from fusion and subsequent virus uptake. Interestingly, in that system cell-cell contacts lead to a remarkably efficient infection of the target cells which is only partially inhibited by FIP. The finding that the contact of an infected with uninfected cells results in transfer of infectious viral material without significant (complete) fusion of the donor with the recipient cell suggests that microfusion events and/or FIP-independent mechanisms may mediate the transfer of MV infectivity from cell to cell.
Collapse
Affiliation(s)
- R Firsching
- Institut für Virologie und Immunbiologie, D-97078 Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Hirano A, Yang Z, Katayama Y, Korte-Sarfaty J, Wong TC. Human CD46 enhances nitric oxide production in mouse macrophages in response to measles virus infection in the presence of gamma interferon: dependence on the CD46 cytoplasmic domains. J Virol 1999; 73:4776-85. [PMID: 10233938 PMCID: PMC112520 DOI: 10.1128/jvi.73.6.4776-4785.1999] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
CD46 is a transmembrane complement regulatory protein widely expressed on nucleated human cells. Laboratory-adapted strains of measles virus (MV) bind to the extracellular domains of CD46 to enter human cells. The cytoplasmic portion of CD46 consists of a common juxtamembrane region and different distal sequences called Cyt1 and Cyt2. The biological functions of these cytoplasmic sequences are unknown. In this study, we show that expression of human CD46 with the Cyt1 cytoplasmic domain in mouse macrophages enhances production of nitric oxide (NO) in response to MV infection in the presence of gamma interferon (IFN-gamma). Human CD46 does not increase the basal levels of NO production in mouse macrophages and does not augment NO production induced by double-stranded polyribonucleotides. Replacing the cytoplasmic domain of human CD46 with Cyt2 reduces MV and IFN-gamma-induced NO production in mouse macrophages. Deleting the entire cytoplasmic domains of human CD46 does not prevent MV infection but markedly attenuates NO production in response to MV and IFN-gamma. Mouse macrophages expressing a tailless human CD46 mutant are more susceptible to MV infection and produce 2 to 3 orders of magnitude more infectious virus than mouse macrophages expressing human CD46 with intact cytoplasmic domains. These results reveal a novel function of CD46 dependent on the cytoplasmic domains (especially Cyt1), which augments NO production in macrophages. These findings may have significant implications for roles of CD46 in innate immunity and MV pathogenesis.
Collapse
Affiliation(s)
- A Hirano
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | | | | | | | | |
Collapse
|
27
|
Korte-Sarfaty J, Pham VD, Yant S, Hirano A, Wong TC. Expression of human complement regulatory protein CD46 restricts measles virus replication in mouse macrophages. Biochem Biophys Res Commun 1998; 249:432-7. [PMID: 9712714 DOI: 10.1006/bbrc.1998.9173] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Measles virus (MV) can infect mouse macrophages to cause a prolonged non-cytopathic infection that produces low levels of infectious virus for days. We have generated RAW264.7 mouse macrophages expressing human CD46, a cell surface complement regulatory protein that serves as a receptor for laboratory-adapted strains of MV. Laboratory-adapted MV strains efficiently enter the CD46-positive mouse macrophages to cause a cytopathic infection with extensive multinucleated cells and pseudopodia-like extensions. However, MV infection of mouse macrophages through CD46 is self-limiting. Both viral protein synthesis and infectious virus production are abruptly terminated after the second day of infection. This novel virus-cell interaction is seen only in mouse macrophages but not in mouse or hamster fibroblasts expressing human CD46. The possible role of CD46 in macrophage antiviral response restricting MV replication is discussed.
Collapse
Affiliation(s)
- J Korte-Sarfaty
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, 98195, USA
| | | | | | | | | |
Collapse
|
28
|
Hara T, Suzuki Y, Nakazawa T, Nishimura H, Nagasawa S, Nishiguchi M, Matsumoto M, Hatanaka M, Kitamura M, Seya T. Post-translational modification and intracellular localization of a splice product of CD46 cloned from human testis: role of the intracellular domains in O-glycosylation. Immunology 1998; 93:546-55. [PMID: 9659228 PMCID: PMC1364134 DOI: 10.1046/j.1365-2567.1998.00455.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We obtained a unique CD46 cDNA, STc/CY4, from the human testis, the predicted amino acid sequence of which suggested the presence of a novel isoform of CD46. This message was present predominantly in the testis, and the predicted isoform possessed a short (11 amino acids) transmembrane section (TM) and an unidentified cytoplasmic tail (CY). When expressed in Chinese hamster ovary (CHO) cells, this CD46 isoform underwent no O-glycosylation and was mostly retained in the endoplasmic reticulum. This unusual behaviour of the new isoform was due in part to the short TM and the unusual sequences of the CY. The molecular mass of this isoform was 42,000, approximately 20,000 smaller than conventional CD46. These properties of the STc/CY4 isoform were similar to those of sperm CD46. The only difference between sperm CD46 and the STc/CY4 isoform expressed on CHO cells was that only the latter possessed N-linked sugars of high mannose types. Since the STc/CY4 isoform may behave like sperm CD46 in cellular localization and post-translational modification, studies of sperm-egg interassociation were performed using hamster eggs and CHO cell clones expressing various isoforms including the STc/CY4. Rosette formation was seen most effectively between hamster eggs and STc/CY4-expressing CHO cells. These results infer that O-glycosylation perturbs CD46-mediated sperm-binding to eggs and thus sperm CD46 lacking O-linked sugars can serve as an adhesion molecule. The possible role of CD46 in fertilization and the structural differences between sperm and conventional CD46 are discussed.
Collapse
Affiliation(s)
- T Hara
- Department of Immunology, Osaka Medical Centre for Cancer and Cardiovascular Diseases, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Doi Y, Kurita M, Matsumoto M, Kondo T, Noda T, Tsukita S, Tsukita S, Seya T. Moesin is not a receptor for measles virus entry into mouse embryonic stem cells. J Virol 1998; 72:1586-92. [PMID: 9445061 PMCID: PMC124639 DOI: 10.1128/jvi.72.2.1586-1592.1998] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/1997] [Accepted: 10/28/1997] [Indexed: 02/05/2023] Open
Abstract
The involvement of moesin in measles virus (MV) entry was investigated with moesin-positive and -negative mouse embryonic stem (ES) cells. MV infection of these cells was very ineffective and was independent of moesin expression. Furthermore, when these cells were transfected to express human CD46, a 100-fold increase in syncytium formation was observed with these cells and was independent of the expression of moesin. The only obvious difference between moesin-positive and -negative ES cells was the shape of the syncytia formed. Moesin-negative ES cells expressing or not expressing human CD46 formed separate pieces of fragmented syncytia which were torn apart during spreading, whereas ES cells expressing moesin exhibited typical syncytia. In addition, moesin was not detected on the surface of any murine cells or cell lines that we have tested by a flow cytometric assay with moesin-specific antibodies. These findings indicate that murine moesin is neither a receptor nor a CD46 coreceptor for MV entry into mouse ES cells. Moesin is involved in actin filament-plasma membrane interactions as a cross-linker, and it affects only the spreading and shape of MV-mediated syncytia.
Collapse
Affiliation(s)
- Y Doi
- Department of Cell Biology, Faculty of Medicine, Kyoto University, Yoshida-Konoe, Japan
| | | | | | | | | | | | | | | |
Collapse
|