1
|
Hogan VA, Harmon J, Cid-Rosas M, Hall LR, Johnson WE. Conserved residues of the immunosuppressive domain of MLV are essential for regulating the fusion-critical SU-TM disulfide bond. J Virol 2024:e0098924. [PMID: 39470209 DOI: 10.1128/jvi.00989-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/26/2024] [Indexed: 10/30/2024] Open
Abstract
The Env protein of murine leukemia virus (MLV) is the prototype of a large clade of retroviral fusogens, collectively known as gamma-type Envs. Gamma-type Envs are found in retroviruses and endogenous retroviruses (ERVs) representing a broad range of vertebrate hosts. All gamma-type Envs contain a highly conserved stretch of 26-residues in the transmembrane subunit (TM) comprising two motifs, a putative immunosuppressive domain (ISD) and a CX6CC motif. Extraordinary conservation of the ISD and its invariant association with the CX6CC suggests a fundamental contribution to Env function. To investigate ISD function, we characterized several mutants with single amino acid substitutions at conserved positions in the MLV ISD. A majority abolished infectivity, although we did not observe a corresponding loss in intrinsic ability to mediate membrane fusion. Ratios of the surface subunit (SU) to capsid protein (CA) in virions were diminished for a majority of the ISD mutants, while TM:CA ratios were similar to wild type. Specific loss of SU reflected premature isomerization of the labile disulfide bond that links SU and TM prior to fusion. Indeed, all non-infectious mutants displayed significantly lower disulfide stability than wild-type Env. These results reveal a role for ISD positions 2, 3, 4, 7, and 10 in regulating a late step in entry after fusion peptide insertion but prior to creation of the fusion pore. This implies that the ISD is part of a larger domain, comprising the ISD and CX6CC motifs, that is critical for the formation and regulation of the metastable, intersubunit disulfide bond.IMPORTANCEThe gamma-type Env is a prevalent viral fusogen, found within retroviruses and endogenous retroviruses across vertebrate species and in filoviruses such as Ebolavirus. The fusion mechanism of gamma-type Envs is unique from other Class I fusogens such as those of influenza A virus and HIV-1. Gamma-type Envs contain a hallmark feature known as the immunosuppressive domain (ISD) that has been the subject of some controversy in the literature surrounding its putative immunosuppressive effects. Despite the distinctive conservation of the ISD, little has been done to investigate the role of this region for the function of this widespread fusogen. Our work demonstrates the importance of the ISD for the function of gamma-type Envs in infection, particularly in regulating the intermediate steps of membrane fusion. Understanding the fusion mechanism of gamma-type Envs has broad implications for understanding the entry of extant viruses and aspects of host biology connected to co-opted endogenous gamma-type Envs.
Collapse
Affiliation(s)
- Victoria A Hogan
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, USA
| | - Julia Harmon
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, USA
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Miguel Cid-Rosas
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Laura R Hall
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, USA
| | - Welkin E Johnson
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, USA
| |
Collapse
|
2
|
Tomé-Poderti L, Olivero-Deibe N, Carrión F, Portela MM, Obal G, Cabrera G, Bianchi S, Lima A, Addiego A, Durán R, Moratorio G, Pritsch O. Characterization and application of recombinant Bovine Leukemia Virus Env protein. Sci Rep 2024; 14:12190. [PMID: 38806566 PMCID: PMC11133380 DOI: 10.1038/s41598-024-62811-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024] Open
Abstract
The Bovine Leukemia Virus (BLV) Envelope (Env) glycoprotein complex is instrumental in viral infectivity and shapes the host's immune response. This study presents the production and characterization of a soluble furin-mutated BLV Env ectodomain (sBLV-EnvFm) expressed in a stable S2 insect cell line. We purified a 63 kDa soluble protein, corresponding to the monomeric sBLV-EnvFm, which predominantly presented oligomannose and paucimannose N-glycans, with a high content of core fucose structures. Our results demonstrate that our recombinant protein can be recognized from specific antibodies in BLV infected cattle, suggesting its potential as a powerful diagnostic tool. Moreover, the robust humoral immune response it elicited in mice shows its potential contribution to the development of subunit-based vaccines against BLV.
Collapse
Affiliation(s)
- Lorena Tomé-Poderti
- Immunovirology Lab, Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay.
- Morphogenesis and Antigenicity of HIV and Hepatitis Viruses (MAVIVH), INSERM Unit 1259, Université de Tours and CHRU de Tours, Tours, France.
| | | | - Federico Carrión
- Immunovirology Lab, Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay
| | - María Magdalena Portela
- Analytical Biochemistry and Proteomics Unit, Instituto de Investigaciones Biológicas Clemente Estable/Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay
- Facultad de Ciencias, Universidad de la República, 11400, Montevideo, Uruguay
| | - Gonzalo Obal
- Immunovirology Lab, Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay
| | - Gleysin Cabrera
- Analytical Biochemistry and Proteomics Unit, Instituto de Investigaciones Biológicas Clemente Estable/Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay
| | - Sergio Bianchi
- Laboratory of Molecular Biomarkers, Department of Physiopathology, University Hospital, Universidad de la República, 11600, Montevideo, Uruguay
- Functional Genomics Unit, Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay
| | - Analia Lima
- Analytical Biochemistry and Proteomics Unit, Instituto de Investigaciones Biológicas Clemente Estable/Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay
| | - Andrés Addiego
- Immunovirology Lab, Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay
| | - Rosario Durán
- Analytical Biochemistry and Proteomics Unit, Instituto de Investigaciones Biológicas Clemente Estable/Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay
| | - Gonzalo Moratorio
- Experimental Evolution of Viruses, Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay
- Laboratorio de Virología Molecular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Otto Pritsch
- Immunovirology Lab, Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay
- Immunobiology Department School of Medicine, Universidad de la República, 11800, Montevideo, Uruguay
| |
Collapse
|
3
|
Govednik T, Lainšček D, Kuhar U, Lachish M, Janežič S, Štrbenc M, Krapež U, Jerala R, Atlas D, Manček-Keber M. TXM peptides inhibit SARS-CoV-2 infection, syncytia formation, and lower inflammatory consequences. Antiviral Res 2024; 222:105806. [PMID: 38211737 DOI: 10.1016/j.antiviral.2024.105806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/23/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
After three years of the SARS-CoV-2 pandemic, the search and availability of relatively low-cost benchtop therapeutics for people not at high risk for a severe disease are still ongoing. Although vaccines and new SARS-CoV-2 variants reduce the death toll, the long COVID-19 along with neurologic symptoms can develop and persist even after a mild initial infection. Reinfections, which further increase the risk of sequelae in multiple organ systems as well as the risk of death, continue to require caution. The spike protein of SARS-CoV-2 is an important target for both vaccines and therapeutics. The presence of disulfide bonds in the receptor binding domain (RBD) of the spike protein is essential for its binding to the human ACE2 receptor and cell entry. Here, we demonstrate that thiol-reducing peptides based on the active site of oxidoreductase thioredoxin 1, called thioredoxin mimetic (TXM) peptides, can prevent syncytia formation, SARS-CoV-2 entry into cells, and infection in a mouse model. We also show that TXM peptides inhibit the redox-sensitive HIV pseudotyped viral cell entry. These results support disulfide targeting as a common therapeutic strategy for treating infections caused by viruses using redox-sensitive fusion. Furthermore, TXM peptides exert anti-inflammatory properties by lowering the activation of NF-κB and IRF signaling pathways, mitogen-activated protein kinases (MAPKs) and lipopolysaccharide (LPS)-induced cytokines in mice. The antioxidant and anti-inflammatory effects of the TXM peptides, which also cross the blood-brain barrier, in combination with prevention of viral infections, may provide a beneficial clinical strategy to lower viral infections and mitigate severe consequences of COVID-19.
Collapse
Affiliation(s)
- Tea Govednik
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000, Ljubljana, Slovenia; Graduate School of Biomedicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Duško Lainšček
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000, Ljubljana, Slovenia; Centre of Excellence EN-FIST, 1000, Ljubljana, Slovenia
| | - Urška Kuhar
- Institute for Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Marva Lachish
- Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Sandra Janežič
- National Laboratory of Health, Environment and Food, 2000, Maribor, Slovenia
| | - Malan Štrbenc
- Institute for Preclinical Sciences, Veterinary Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Uroš Krapež
- Institute of Poultry, Birds, Small Mammals and Reptiles, Veterinary Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000, Ljubljana, Slovenia; Centre of Excellence EN-FIST, 1000, Ljubljana, Slovenia
| | - Daphne Atlas
- Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| | - Mateja Manček-Keber
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000, Ljubljana, Slovenia; Centre of Excellence EN-FIST, 1000, Ljubljana, Slovenia.
| |
Collapse
|
4
|
Granier C, Toesca J, Mialon C, Ritter M, Freitas N, Boson B, Pécheur EI, Cosset FL, Denolly S. Low-density hepatitis C virus infectious particles are protected from oxidation by secreted cellular proteins. mBio 2023; 14:e0154923. [PMID: 37671888 PMCID: PMC10653866 DOI: 10.1128/mbio.01549-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 07/04/2023] [Indexed: 09/07/2023] Open
Abstract
IMPORTANCE Assessments of viral stability on surfaces or in body fluids under different environmental conditions and/or temperatures are often performed, as they are key to understanding the routes and parameters of viral transmission and to providing clues on the epidemiology of infections. However, for most viruses, the mechanisms of inactivation vs stability of viral particles remain poorly defined. Although they are structurally diverse, with different compositions, sizes, and shapes, enveloped viruses are generally less stable than non-enveloped viruses, pointing out the role of envelopes themselves in virus lability. In this report, we investigated the properties of hepatitis C virus (HCV) particles with regards to their stability. We found that, compared to alternative enveloped viruses such as Dengue virus (DENV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), hepatitis delta virus (HDV), and Crimean-Congo hemorrhagic fever virus (CCHFV) that infect the liver, HCV particles are intrinsically labile. We determined the mechanisms that drastically alter their specific infectivity through oxidation of their lipids, and we highlighted that they are protected from lipid oxidation by secreted cellular proteins, which can protect their membrane fusion capacity and overall infectivity.
Collapse
Affiliation(s)
- Christelle Granier
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308 ENS de Lyon, Lyon, France
| | - Johan Toesca
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308 ENS de Lyon, Lyon, France
| | - Chloé Mialon
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308 ENS de Lyon, Lyon, France
| | - Maureen Ritter
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308 ENS de Lyon, Lyon, France
| | - Natalia Freitas
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308 ENS de Lyon, Lyon, France
| | - Bertrand Boson
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308 ENS de Lyon, Lyon, France
| | - Eve-Isabelle Pécheur
- Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, CNRS 5286, Inserm U1052, Université Claude Bernard Lyon 1, Lyon, France
| | - François-Loïc Cosset
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308 ENS de Lyon, Lyon, France
| | - Solène Denolly
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308 ENS de Lyon, Lyon, France
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
5
|
Hogan V, Johnson WE. Unique Structure and Distinctive Properties of the Ancient and Ubiquitous Gamma-Type Envelope Glycoprotein. Viruses 2023; 15:v15020274. [PMID: 36851488 PMCID: PMC9967133 DOI: 10.3390/v15020274] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023] Open
Abstract
After the onset of the AIDS pandemic, HIV-1 (genus Lentivirus) became the predominant model for studying retrovirus Env glycoproteins and their role in entry. However, HIV Env is an inadequate model for understanding entry of viruses in the Alpharetrovirus, Gammaretrovirus and Deltaretrovirus genera. For example, oncogenic model system viruses such as Rous sarcoma virus (RSV, Alpharetrovirus), murine leukemia virus (MLV, Gammaretrovirus) and human T-cell leukemia viruses (HTLV-I and HTLV-II, Deltaretrovirus) encode Envs that are structurally and functionally distinct from HIV Env. We refer to these as Gamma-type Envs. Gamma-type Envs are probably the most widespread retroviral Envs in nature. They are found in exogenous and endogenous retroviruses representing a broad spectrum of vertebrate hosts including amphibians, birds, reptiles, mammals and fish. In endogenous form, gamma-type Envs have been evolutionarily coopted numerous times, most notably as placental syncytins (e.g., human SYNC1 and SYNC2). Remarkably, gamma-type Envs are also found outside of the Retroviridae. Gp2 proteins of filoviruses (e.g., Ebolavirus) and snake arenaviruses in the genus Reptarenavirus are gamma-type Env homologs, products of ancient recombination events involving viruses of different Baltimore classes. Distinctive hallmarks of gamma-type Envs include a labile disulfide bond linking the surface and transmembrane subunits, a multi-stage attachment and fusion mechanism, a highly conserved (but poorly understood) "immunosuppressive domain", and activation by the viral protease during virion maturation. Here, we synthesize work from diverse retrovirus model systems to illustrate these distinctive properties and to highlight avenues for further exploration of gamma-type Env structure and function.
Collapse
|
6
|
Hötzel I. Deep-Time Structural Evolution of Retroviral and Filoviral Surface Envelope Proteins. J Virol 2022; 96:e0006322. [PMID: 35319227 PMCID: PMC9006886 DOI: 10.1128/jvi.00063-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/02/2022] [Indexed: 11/20/2022] Open
Abstract
The retroviral surface envelope protein subunit (SU) mediates receptor binding and triggers membrane fusion by the transmembrane (TM) subunit. SU evolves rapidly under strong selective conditions, resulting in seemingly unrelated SU structures in highly divergent retroviruses. Structural modeling of the SUs of several retroviruses and related endogenous retroviral elements with AlphaFold 2 identifies a TM-proximal SU β-sandwich structure that has been conserved in the orthoretroviruses for at least 110 million years. The SU of orthoretroviruses diversified by the differential expansion of the β-sandwich core to form domains involved in virus-host interactions. The β-sandwich domain is also conserved in the SU equivalent GP1 of Ebola virus although with a significantly different orientation in the trimeric envelope protein structure relative to the β-sandwich of human immunodeficiency virus type 1 gp120, with significant evidence for divergent rather than convergent evolution. The unified structural view of orthoretroviral SU and filoviral GP1 identifies an ancient, structurally conserved, and evolvable domain underlying the structural diversity of orthoretroviral SU and filoviral GP1. IMPORTANCE The structural relationships of SUs of retroviral groups are obscured by the high rate of sequence change of SU and the deep-time divergence of retroviral lineages. Previous data showed no structural or functional relationships between the SUs of type C gammaretroviruses and lentiviruses. A deeper understanding of structural relationships between the SUs of different retroviral lineages would allow the generalization of critical processes mediated by these proteins in host cell infection. Modeling of SUs with AlphaFold 2 reveals a conserved core domain underlying the structural diversity of orthoretroviral SUs. Definition of the conserved SU structural core allowed the identification of a homologue structure in the SU equivalent GP1 of filoviruses that most likely shares an origin, unifying the SU of orthoretroviruses and GP1 of filoviruses into a single protein family. These findings will allow an understanding of the structural basis for receptor-mediated membrane fusion mechanisms in a broad range of biomedically important retroviruses.
Collapse
Affiliation(s)
- Isidro Hötzel
- Department of Antibody Engineering, Genentech, South San Francisco, California, USA
| |
Collapse
|
7
|
Yedavalli VRK, Patil A, Parrish J, Kozak CA. A novel class III endogenous retrovirus with a class I envelope gene in African frogs with an intact genome and developmentally regulated transcripts in Xenopus tropicalis. Retrovirology 2021; 18:20. [PMID: 34261506 PMCID: PMC8278194 DOI: 10.1186/s12977-021-00564-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/29/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Retroviruses exist as exogenous infectious agents and as endogenous retroviruses (ERVs) integrated into host chromosomes. Such endogenous retroviruses (ERVs) are grouped into three classes roughly corresponding to the seven genera of infectious retroviruses: class I (gamma-, epsilonretroviruses), class II (alpha-, beta-, delta-, lentiretroviruses) and class III (spumaretroviruses). Some ERVs have counterparts among the known infectious retroviruses, while others represent paleovirological relics of extinct or undiscovered retroviruses. RESULTS Here we identify an intact ERV in the Anuran amphibian, Xenopus tropicalis. XtERV-S has open reading frames (ORFs) for gag, pol (polymerase) and env (envelope) genes, with a small additional ORF in pol and a serine tRNA primer binding site. It has unusual features and domain relationships to known retroviruses. Analyses based on phylogeny and functional motifs establish that XtERV-S gag and pol genes are related to the ancient env-less class III ERV-L family but the surface subunit of env is unrelated to known retroviruses while its transmembrane subunit is class I-like. LTR constructs show transcriptional activity, and XtERV-S transcripts are detected in embryos after the maternal to zygotic mid-blastula transition and before the late tailbud stage. Tagged Gag protein shows typical subcellular localization. The presence of ORFs in all three protein-coding regions along with identical 5' and 3' LTRs (long terminal repeats) indicate this is a very recent germline acquisition. There are older, full-length, nonorthologous, defective copies in Xenopus laevis and the distantly related African bullfrog, Pyxicephalus adspersus. Additional older, internally deleted copies in X. tropicalis carry a 300 bp LTR substitution. CONCLUSIONS XtERV-S represents a genera-spanning member of the largely env-less class III ERV that has ancient and modern copies in Anurans. This provirus has an env ORF with a surface subunit unrelated to known retroviruses and a transmembrane subunit related to class I gammaretroviruses in sequence and organization, and is expressed in early embryogenesis. Additional XtERV-S-related but defective copies are present in X. tropicalis and other African frog taxa. XtERV-S is an unusual class III ERV variant, and it may represent an important transitional retroviral form that has been spreading in African frogs for tens of millions of years.
Collapse
Affiliation(s)
- Venkat R K Yedavalli
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20892, USA
| | - Akash Patil
- Department of Biomedical Engineering, John Hopkins University, Baltimore, MD, 21205, USA
| | - Janay Parrish
- Internal Medicine, Northwell Health, Lenox Hill Hospital, New York, NY, 10075, USA
| | - Christine A Kozak
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20892, USA.
| |
Collapse
|
8
|
Laurent Q, Martinent R, Lim B, Pham AT, Kato T, López-Andarias J, Sakai N, Matile S. Thiol-Mediated Uptake. JACS AU 2021; 1:710-728. [PMID: 34467328 PMCID: PMC8395643 DOI: 10.1021/jacsau.1c00128] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Indexed: 05/19/2023]
Abstract
This Perspective focuses on thiol-mediated uptake, that is, the entry of substrates into cells enabled by oligochalcogenides or mimics, often disulfides, and inhibited by thiol-reactive agents. A short chronology from the initial observations in 1990 until today is followed by a summary of cell-penetrating poly(disulfide)s (CPDs) and cyclic oligochalcogenides (COCs) as privileged scaffolds in thiol-mediated uptake and inhibitors of thiol-mediated uptake as potential antivirals. In the spirit of a Perspective, the main part brings together topics that possibly could help to explain how thiol-mediated uptake really works. Extreme sulfur chemistry mostly related to COCs and their mimics, cyclic disulfides, thiosulfinates/-onates, diselenolanes, benzopolysulfanes, but also arsenics and Michael acceptors, is viewed in the context of acidity, ring tension, exchange cascades, adaptive networks, exchange affinity columns, molecular walkers, ring-opening polymerizations, and templated polymerizations. Micellar pores (or lipid ion channels) are considered, from cell-penetrating peptides and natural antibiotics to voltage sensors, and a concise gallery of membrane proteins, as possible targets of thiol-mediated uptake, is provided, including CLIC1, a thiol-reactive chloride channel; TMEM16F, a Ca-activated scramblase; EGFR, the epithelial growth factor receptor; and protein-disulfide isomerase, known from HIV entry or the transferrin receptor, a top hit in proteomics and recently identified in the cellular entry of SARS-CoV-2.
Collapse
Affiliation(s)
- Quentin Laurent
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Rémi Martinent
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Bumhee Lim
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Anh-Tuan Pham
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Takehiro Kato
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | | | - Naomi Sakai
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
9
|
Rosales Gerpe MC, van Lieshout LP, Domm JM, van Vloten JP, Datu J, Ingrao JC, Yu DL, de Jong J, Moraes TJ, Krell PJ, Bridle BW, Wootton SK. Optimized Pre-Clinical Grade Production of Two Novel Lentiviral Vector Pseudotypes for Lung Gene Delivery. Hum Gene Ther 2020; 31:459-471. [PMID: 32000531 DOI: 10.1089/hum.2019.211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Lung gene therapy requires efficient transduction of slow-replicating epithelia and stable expression of delivered transgenes in the respiratory tract. Lentiviral (LV) vectors have the ideal coding, expression, and transducing capacity required for gene therapy. A modified envelope glycoprotein from the Jaagsiekte Sheep Retrovirus, termed Jenv, is well suited for LV-mediated lung gene therapy due to its inherent lung tropism. Here, two novel Jenv-pseudotyped LVs that effectively transduce lung tissue and yield titers similar to the gold standard, vesicular stomatitis virus glycoprotein (VSVg)-pseudotyped LVs, were generated. As the concentration efficiency of LVs was found to depend on envelope pseudotype, a large-scale production method tailored for Jenv-pseudotyped LVs was developed and the most appropriate method of concentration was determined. In contrast to VSVg and Ebola virus glycoprotein-pseudotyped LVs, ultracentrifugation through a sucrose cushion drastically reduced the yield of Jenv LVs, whereas polyethylene glycol precipitation and tangential flow filtration (TFF) proved to be more suitable methods for concentrating Jenv LVs. Importantly, pressure during TFF was found to be crucial for increasing LV recovery. Finally, a unique mouse model was developed to test the suitability of these novel Jenv-pseudotyped LVs for use in lung gene therapy applications.
Collapse
Affiliation(s)
- María C Rosales Gerpe
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Laura P van Lieshout
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Jakob M Domm
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Jacob P van Vloten
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Jodre Datu
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Joelle C Ingrao
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Darrick L Yu
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Jondavid de Jong
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Theo J Moraes
- Division of Respiratory Medicine, Department of Pediatrics, Hospital for Sick Children, Toronto, Canada
| | - Peter J Krell
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | - Byram W Bridle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Sarah K Wootton
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| |
Collapse
|
10
|
Serroni A, Forti K, De Giuseppe A. Role of conserved cysteine residues in the CAIC motif of the SU glycoprotein in the maturation and fusion activity of bovine leukaemia virus. Arch Virol 2019; 164:2309-2314. [PMID: 31172288 DOI: 10.1007/s00705-019-04294-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/29/2019] [Indexed: 11/26/2022]
Abstract
The surface (SU) and transmembrane (TM) glycoproteins of many retroviruses are linked by disulphide bonds, and the interaction of SU with a cellular receptor results in disulphide bond isomerisation triggered by the CXXC motif in SU. This reaction leads to the fusion of viral and host cell membranes. In this work, we show that the cysteine at amino acid position 212 in the CAIC motif of the SU glycoprotein of bovine leukaemia virus has a free thiol group. A C-to-A mutation at position 212, either individually or in combination with a C-to-A mutation at position 215, was found to inhibit the maturation process, suggesting its involvement in the formation of the covalent bond with TM.
Collapse
Affiliation(s)
- Anna Serroni
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Perugia, Italy
| | - Katia Forti
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Perugia, Italy.
| | - Antonio De Giuseppe
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Perugia, Italy
| |
Collapse
|
11
|
Eksmond U, Jenkins B, Merkenschlager J, Mothes W, Stoye JP, Kassiotis G. Mutation of the Putative Immunosuppressive Domain of the Retroviral Envelope Glycoprotein Compromises Infectivity. J Virol 2017; 91:e01152-17. [PMID: 28814524 PMCID: PMC5640850 DOI: 10.1128/jvi.01152-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/13/2017] [Indexed: 01/30/2023] Open
Abstract
The envelope glycoprotein of diverse endogenous and exogenous retroviruses is considered inherently immunosuppressive. Extensive work mapped the immunosuppressive activity to a highly conserved domain, termed the immunosuppressive domain (ISD), in the transmembrane (TM) subunit of the envelope glycoprotein and identified two naturally polymorphic key residues that afford immunosuppressive activity to distinct envelope glycoproteins. Concurrent mutation of these two key residues (E14R and A20F) in the envelope glycoprotein of the Friend murine leukemia virus (F-MLV) ISD has been reported to abolish its immunosuppressive activity, without affecting its fusogenicity, and to weaken the ability of the virus to replicate specifically in immunocompetent hosts. Here, we show that mutation of these key residues did, in fact, result in a substantial loss of F-MLV infectivity, independently of host immunity, challenging whether associations exist between the two. Notably, a loss of infectivity incurred by the F-MLV mutant with the E14R and A20F double ISD mutation was conditional on expression of the ecotropic envelope receptor murine cationic amino acid transporter-1 (mCAT1) in the virus-producing cell. Indeed, the F-MLV mutant retained infectivity when it was produced by human cells, which naturally lack mCAT1 expression, but not by murine cells. Furthermore, mCAT1 overexpression in human cells impaired the infectivity of both the F-MLV double mutant and the wild-type F-MLV strain, suggesting a finely tuned relationship between the levels of mCAT1 in the producer cell and the infectivity of the virions produced. An adverse effect on this relationship, rather than disruption of the putative ISD, is therefore more likely to explain the loss of F-MLV infectivity incurred by mutations in key ISD residues E14 and A20.IMPORTANCE Retroviruses can interact with their hosts in ways that, although not entirely understood, can greatly influence their pathogenic potential. One such example is a putative immunosuppressive activity, which has been mapped to a conserved domain of the retroviral envelope glycoprotein of several exogenous as well as endogenous retroviruses. In this study, mutations naturally found in some envelope glycoproteins lacking immunosuppressive activity were shown to affect retrovirus infectivity only if the host cell that produced the retrovirus also expressed the cellular entry receptor. These findings shed light on a novel role for this conserved domain in providing the necessary stability to the envelope glycoprotein in order to withstand the interaction with the cellular receptor during virus formation. This function of the domain is critical for further elucidation of the mechanism of immunosuppression mediated by the retroviral envelope glycoprotein.
Collapse
Affiliation(s)
- Urszula Eksmond
- Retroviral Immunology, The Francis Crick Institute, London, United Kingdom
| | - Bryony Jenkins
- Retroviral Immunology, The Francis Crick Institute, London, United Kingdom
| | | | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jonathan P Stoye
- Retrovirus-Host Interactions, The Francis Crick Institute, London, United Kingdom
- Department of Medicine, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - George Kassiotis
- Retroviral Immunology, The Francis Crick Institute, London, United Kingdom
- Department of Medicine, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
12
|
Retroviral envelope proteins: Involvement in neuropathogenesis. J Neurol Sci 2017; 380:151-163. [DOI: 10.1016/j.jns.2017.07.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 06/23/2017] [Accepted: 07/18/2017] [Indexed: 02/07/2023]
|
13
|
Henzy JE, Gifford RJ, Kenaley CP, Johnson WE. An Intact Retroviral Gene Conserved in Spiny-Rayed Fishes for over 100 My. Mol Biol Evol 2017; 34:634-639. [PMID: 28039384 PMCID: PMC5939848 DOI: 10.1093/molbev/msw262] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We have identified a retroviral envelope gene with a complete, intact open reading frame (ORF) in 20 species of spiny-rayed fishes (Acanthomorpha). The taxonomic distribution of the gene, "percomORF", indicates insertion into the ancestral lineage >110 Ma, making it the oldest known conserved gene of viral origin in a vertebrate genome. Underscoring its ancient provenence, percomORF exists as an isolated ORF within the intron of a widely conserved host gene, with no discernible proviral sequence nearby. Despite its remarkable age, percomORF retains canonical features of a retroviral glycoprotein, and tests for selection strongly suggest cooption for a host function. Retroviral envelope genes have been coopted for a role in placentogenesis by numerous lineages of mammals, including eutherians and marsupials, representing a variety of placental structures. Therefore percomORF's presence within the group Percomorpha-unique among spiny-finned fishes in having evolved placentation and live birth-is especially intriguing.
Collapse
Affiliation(s)
| | - Robert J. Gifford
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | | | | |
Collapse
|
14
|
Sequential activation of the three protomers in the Moloney murine leukemia virus Env. Proc Natl Acad Sci U S A 2017; 114:2723-2728. [PMID: 28223490 DOI: 10.1073/pnas.1617264114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Viral membrane fusion proteins of class I are trimers in which the protomeric unit is a complex of a surface subunit (SU) and a fusion active transmembrane subunit (TM). Here we have studied how the protomeric units of Moloney murine leukemia virus envelope protein (Env) are activated in relation to each other, sequentially or simultaneously. We followed the isomerization of the SU-TM disulfide and subsequent SU release from Env with biochemical methods and found that this early activation step occurred sequentially in the three protomers, generating two asymmetric oligomer intermediates according to the scheme (SU-TM)3 → (SU-TM)2TM → (SU-TM)TM2 → TM3 This was the case both when activation was triggered in vitro by depleting stabilizing Ca2+ from solubilized Env and when viral Env was receptor triggered on rat XC cells. In the latter case, the activation reaction was too fast for direct observation of the intermediates, but they could be caught by alkylation of the isomerization active thiol.
Collapse
|
15
|
Single N-glycosylation site of bovine leukemia virus SU is involved in conformation and viral escape. Vet Microbiol 2016; 197:21-26. [PMID: 27938679 DOI: 10.1016/j.vetmic.2016.10.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/21/2016] [Accepted: 10/21/2016] [Indexed: 11/23/2022]
Abstract
The bovine leukaemia virus (BLV) envelope protein (Env) is synthesized as a polyprotein precursor (gp72) proteolytically cleaved into the mature surface (SU) and transmembrane (TM) glycoproteins. The amino-terminal region of SU contains conformational epitopes F, G and H, which require a glycosylated SU to be recognized by monoclonal antibodies (MAbs) and antibodies from BLV-infected cattle. The SU contains eight asparagine (N) residues that are putative N-glycosylation sites. The N129, N203, N230 and N251 appear involved in carbohydrate binding, play an essential role in the in vitro infection. To determine which sites were actually glycosylated, we generated mutated SU forms, where each N-glycosylation site was changed to alanine (A). Subsequently, these N to A mutations were inserted into the env gene to generate Env mutants. The increase of electrophoretic mobility of EnvA256 and EnvA271 derived SU showed that the asparagine residues N256 and N271 were also glycosylated. ELISA revealed that only the N129 oligosaccharide determined the antigenic conformation of SU. The syncytium formation induced by EnvA129 showed that fusogenic capacity was independent of amino-terminal SU glycan conformational structure. Finally, anti-BLV serum inhibited syncytia formation even with the EnvA129 mutant. The latter inhibition was higher than Env, suggesting that the oligosaccharides could be also involved in the glycan shield for viral escape.
Collapse
|
16
|
Riedel C, Vasishtan D, Siebert CA, Whittle C, Lehmann MJ, Mothes W, Grünewald K. Native structure of a retroviral envelope protein and its conformational change upon interaction with the target cell. J Struct Biol 2016; 197:172-180. [PMID: 27345930 PMCID: PMC5182179 DOI: 10.1016/j.jsb.2016.06.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 11/22/2022]
Abstract
Enveloped viruses enter their host cells by membrane fusion. The process of attachment and fusion in retroviruses is mediated by a single viral envelope glycoprotein (Env). Conformational changes of Env in the course of fusion are a focus of intense studies. Here we provide further insight into the changes occurring in retroviral Env during its initial interaction with the cell, employing murine leukemia virus (MLV) as model system. We first determined the structure of both natively membrane anchored MLV Env and MLV Env tagged with YFP in the proline rich region (PRR) by electron cryo tomography (cET) and sub-volume averaging. At a resolution of ∼20 Å, native MLV Env presents as a hollow trimer (height ∼85 Å, diameter ∼120 Å) composed of step-shaped protomers. The major difference to the YFP-tagged protein was in regions outside of the central trimer. Next, we focused on elucidating the changes in MLV Env upon interaction with a host cell. Virus interaction with the plasma membrane occurred over a large surface and Env clustering on the binding site was observed. Sub-volume averaging did yield a low-resolution structure of Env interacting with the cell, which had lost its threefold symmetry and was elongated by ∼35 Å in comparison to the unbound protein. This indicates a major rearrangement of Env upon host cell binding. At the site of virus interaction, the otherwise clearly defined bilayer structure of the host cell plasma membrane was much less evident, indicative of integral membrane protein accumulation and/or a change in membrane lipid composition.
Collapse
Affiliation(s)
- Christiane Riedel
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; Institute of Virology, University of Veterinary Medicine, Vienna, Austria
| | - Daven Vasishtan
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - C Alistair Siebert
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Cathy Whittle
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Maik J Lehmann
- Department of Life Sciences and Engineering, University of Applied Sciences Bingen, Germany
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Kay Grünewald
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK.
| |
Collapse
|
17
|
Bailey LD, Kalyana Sundaram RV, Li H, Duffy C, Aneja R, Rosemary Bastian A, Holmes AP, Kamanna K, Rashad AA, Chaiken I. Disulfide Sensitivity in the Env Protein Underlies Lytic Inactivation of HIV-1 by Peptide Triazole Thiols. ACS Chem Biol 2015; 10:2861-73. [PMID: 26458166 DOI: 10.1021/acschembio.5b00381] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We investigated the mode of action underlying lytic inactivation of HIV-1 virions by peptide triazole thiol (PTT), in particular the relationship between gp120 disulfides and the C-terminal cysteine-SH required for virolysis. Obligate PTT dimer obtained by PTT SH cross-linking and PTTs with serially truncated linkers between pharmacophore isoleucine-ferrocenyltriazole-proline-tryptophan and cysteine-SH were synthesized. PTT variants showed loss of lytic activity but not binding and infection inhibition upon SH blockade. A disproportionate loss of lysis activity vs binding and infection inhibition was observed upon linker truncation. Molecular docking of PTT onto gp120 argued that, with sufficient linker length, the peptide SH could approach and disrupt several alternative gp120 disulfides. Inhibition of lysis by gp120 mAb 2G12, which binds at the base of the V3 loop, as well as disulfide mutational effects, argued that PTT-induced disruption of the gp120 disulfide cluster at the base of the V3 loop is an important step in lytic inactivation of HIV-1. Further, PTT-induced lysis was enhanced after treating virus with reducing agents dithiothreitol and tris (2-carboxyethyl)phosphine. Overall, the results are consistent with the view that the binding of PTT positions the peptide SH group to interfere with conserved disulfides clustered proximal to the CD4 binding site in gp120, leading to disulfide exchange in gp120 and possibly gp41, rearrangement of the Env spike, and ultimately disruption of the viral membrane. The dependence of lysis activity on thiol-disulfide interaction may be related to intrinsic disulfide exchange susceptibility in gp120 that has been reported previously to play a role in HIV-1 cell infection.
Collapse
Affiliation(s)
- Lauren D. Bailey
- Department
of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Ramalingam Venkat Kalyana Sundaram
- Department
of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
- School
of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Huiyuan Li
- Department
of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Caitlin Duffy
- Department
of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Rachna Aneja
- Department
of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | | | - Andrew P. Holmes
- Department
of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Kantharaju Kamanna
- Department
of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Adel A. Rashad
- Department
of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Irwin Chaiken
- Department
of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| |
Collapse
|
18
|
Episodic Diversifying Selection Shaped the Genomes of Gibbon Ape Leukemia Virus and Related Gammaretroviruses. J Virol 2015; 90:1757-72. [PMID: 26637454 DOI: 10.1128/jvi.02745-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 11/24/2015] [Indexed: 01/06/2023] Open
Abstract
UNLABELLED Gibbon ape leukemia viruses (GALVs) are part of a larger group of pathogenic gammaretroviruses present across phylogenetically diverse host species of Australasian mammals. Despite the biomedical utility of GALVs as viral vectors and in cancer gene therapy, full genome sequences have not been determined for all of the five identified GALV strains, nor has a comprehensive evolutionary analysis been performed. We therefore generated complete genomic sequences for each GALV strain using hybridization capture and high-throughput sequencing. The four strains of GALV isolated from gibbons formed a monophyletic clade that was closely related to the woolly monkey virus (WMV), which is a GALV strain that likely originated in a gibbon host. The GALV-WMV clade in turn formed a sister group to the koala retroviruses (KoRVs). Genomic signatures of episodic diversifying selection were detected among the gammaretroviruses with concentration in the env gene across the GALV strains that were particularly oncogenic and KoRV strains that were potentially exogenous, likely reflecting their adaptation to the host immune system. In vitro studies involving vectors chimeric between GALV and KoRV-B established that variable regions A and B of the surface unit of the envelope determine which receptor is used by a viral strain to enter host cells. IMPORTANCE The gibbon ape leukemia viruses (GALVs) are among the most medically relevant retroviruses due to their use as viral vectors for gene transfer and in cancer gene therapy. Despite their importance, full genome sequences have not been determined for the majority of primate isolates, nor has comprehensive evolutionary analysis been performed, despite evidence that the viruses are facing complex selective pressures associated with cross-species transmission. Using hybridization capture and high-throughput sequencing, we report here the full genome sequences of all the GALV strains and demonstrate that diversifying selection is acting on them, particularly in the envelope gene in functionally important domains, suggesting that host immune pressure is shaping GALV evolution.
Collapse
|
19
|
Forti K, Rizzo G, Cagiola M, Ferrante G, Marini C, Feliziani F, Pezzotti G, De Giuseppe A. Identification of a novel overlapping sequential E epitope (E′) on the bovine leukaemia virus SU glycoprotein and analysis of immunological data. Vet Microbiol 2014; 172:157-67. [DOI: 10.1016/j.vetmic.2014.05.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 01/27/2014] [Accepted: 05/07/2014] [Indexed: 10/25/2022]
|
20
|
Furin cleavage of the Moloney murine leukemia virus Env precursor reorganizes the spike structure. Proc Natl Acad Sci U S A 2014; 111:6034-9. [PMID: 24711391 DOI: 10.1073/pnas.1317972111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The trimeric Moloney murine leukemia virus Env protein matures by two proteolytic cleavages. First, furin cleaves the Env precursor into the surface (SU) and transmembrane (TM) subunits in the cell and then the viral protease cleaves the R-peptide from TM in new virus. Here we analyzed the structure of the furin precursor, by cryoelectron microscopy. We transfected 293T cells with a furin cleavage site provirus mutant, R466G/K468G, and produced the virus in the presence of amprenavir to also inhibit the R-peptide cleavage. Although Env incorporation into particles was inhibited, enough precursor could be isolated and analyzed by cryoelectron microscopy to yield a 3D structure at 22 Å resolution. This showed an open cage-like structure like that of the R-peptide precursor and the mature Env described before. However, the middle protrusion of the protomeric unit, so prominently pointing out from the side of the more mature forms of the Env, was absent. Instead, there was extra density in the top protrusion. This suggested that the C-terminal SU domain was associated alongside the receptor binding N-terminal SU domain in the furin precursor. This was supported by mapping with a SU C-terminal domain-specific antigen binding fragment. We concluded that furin cleavage not only separates the subunits and liberates the fusion peptide at the end of TM but also allows the C-terminal domain to relocate into a peripheral position. This conformational change might explain how the C-terminal domain of SU gains the potential to undergo disulfide isomerization, an event that facilitates membrane fusion.
Collapse
|
21
|
A novel recombinant retrovirus in the genomes of modern birds combines features of avian and mammalian retroviruses. J Virol 2013; 88:2398-405. [PMID: 24352464 DOI: 10.1128/jvi.02863-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Endogenous retroviruses (ERVs) represent ancestral sequences of modern retroviruses or their extinct relatives. The majority of ERVs cluster alongside exogenous retroviruses into two main groups based on phylogenetic analyses of the reverse transcriptase (RT) enzyme. Class I includes gammaretroviruses, and class II includes lentiviruses and alpha-, beta-, and deltaretroviruses. However, analyses of the transmembrane subunit (TM) of the envelope glycoprotein (env) gene result in a different topology for some retroviruses, suggesting recombination events in which heterologous env sequences have been acquired. We previously demonstrated that the TM sequences of five of the six genera of orthoretroviruses can be divided into three types, each of which infects a distinct set of vertebrate classes. Moreover, these classes do not always overlap the host range of the associated RT classes. Thus, recombination resulting in acquisition of a heterologous env gene could in theory facilitate cross-species transmissions across vertebrate classes, for example, from mammals to reptiles. Here we characterized a family of class II avian ERVs, "TgERV-F," that acquired a mammalian gammaretroviral env sequence. Although TgERV-F clusters near a sister clade to alpharetroviruses, its genome also has some features of betaretroviruses. We offer evidence that this unusual recombinant has circulated among several avian orders and may still have infectious members. In addition to documenting the infection of a nongalliform avian species by a mammalian retrovirus, TgERV-F also underscores the importance of env sequences in reconstructing phylogenies and supports a possible role for env swapping in allowing cross-species transmissions across wide taxonomic distances. IMPORTANCE Retroviruses can sometimes acquire an envelope gene (env) from a distantly related retrovirus. Since env is a key determinant of host range, such an event affects the host range of the recombinant virus and can lead to the creation of novel retroviral lineages. Retroviruses insert viral DNA into the host DNA during infection, and therefore vertebrate genomes contain a "fossil record" of endogenous retroviral sequences thought to represent past infections of germ cells. We examined endogenous retroviral sequences in avian genomes for evidence of recombination events involving env. Although cross-species transmissions of retroviruses between vertebrate classes (from mammals to birds, for example) are thought to be rare, we here characterized a group of avian retroviruses that acquired an env sequence from a mammalian retrovirus. We offer evidence that this unusual recombinant circulated among songbirds 2 to 4 million years ago and has remained active into the recent past.
Collapse
|
22
|
Betaretroviral envelope subunits are noncovalently associated and restricted to the mammalian class. J Virol 2012; 87:1937-46. [PMID: 23221553 DOI: 10.1128/jvi.01442-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The structure of the transmembrane subunit (TM) of the retroviral envelope glycoprotein (Env) is highly conserved among most retrovirus genera and includes a pair of cysteines that forms an intramolecular disulfide loop within the ectodomain. Alpha-, gamma-, and deltaretroviruses have a third cysteine, adjacent to the loop, which forms a disulfide bond between TM and the surface subunit (SU) of Env, while lentiviruses, which have noncovalently associated subunits, lack this third cysteine. The Betaretrovirus genus includes Jaagsiekte sheep retrovirus (JSRV) and mouse mammary tumor virus (MMTV), as well as many endogenous retroviruses. Envelope subunit association had not been characterized in the betaretroviruses, but lack of a third cysteine in the TM ectodomain suggested noncovalently associated subunits. We tested the Env proteins of JSRV and MMTV, as well as human endogenous retrovirus K (HERV-K)108--a betaretrovirus-like human endogenous retrovirus--for intersubunit bonding and found that, as in the lentiviruses, the Env subunits lack an intersubunit disulfide bond. Since these results suggest that the number of cysteines in the TM loop region readily distinguishes between covalent and noncovalent structure, we surveyed endogenous retroviral TM sequences in the genomes of vertebrates represented in public databases and found that (i) retroviruses with noncovalently associated subunits have been present during all of anthropoid evolution and (ii) the noncovalent env motif is limited to mammals, while the covalent type is found among five vertebrate classes. We discuss implications of these findings for retroviral evolution, cross-species transmissions, and recombination events involving the env gene.
Collapse
|
23
|
Phylogenetic and biological analysis of a laboratory-generated gammaretrovirus xenotropic murine leukemia virus-related virus (XMRV). Virus Genes 2012; 45:218-24. [PMID: 22735937 DOI: 10.1007/s11262-012-0778-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 06/13/2012] [Indexed: 10/28/2022]
Abstract
A xenotropic murine leukemia virus-related virus (XMRV) has been reported to be an emerging pathogen associated with prostate cancer (PC) and chronic fatigue syndrome (CFS). However, recent studies have demonstrated that XMRV is a laboratory-derived virus resulting from genetic recombination between two mouse viral genomes during serial xenograft tissue transplantation. This study describes a phylogenetic analysis that compared XMRV with the ecotropic murine leukemia viruses (E-MLV), xenotropic MLV (X-MLV), and other retroviruses, including HTLV-1 and HIV-1. We found that sequences corresponding to three XMRV structural proteins (Env, Gag, and Pol) exhibited high degrees of homology with X-MLV (>91 %) and E-MLV (67-96 %), but not HTLV-1 (13-16 %) or HIV-1 (10-15 %), indicating that XMRV was derived from X-MLV and/or E-MLV. We then compared the infectivity of XMRV and E-MLV for human and murine lymphocytes, respectively. Results showed that human PBMCs were not susceptible to XMRV infection, suggesting that XMRV exhibits host cell tropism similar to E-MLV that only infects murine PBMCs. These data suggest that it is unlikely that this laboratory-generated retrovirus could cause disease in humans.
Collapse
|
24
|
Hoshino H. Cellular Factors Involved in HTLV-1 Entry and Pathogenicit. Front Microbiol 2012; 3:222. [PMID: 22737146 PMCID: PMC3380293 DOI: 10.3389/fmicb.2012.00222] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Accepted: 05/30/2012] [Indexed: 01/13/2023] Open
Abstract
Human T cell leukemia virus type 1 (HTLV-1) is the causative agent of adult T cell leukemia (ATL) and HTLV-1 – associated myelopathy and tropical spastic paraparesis (HAM/TSP). HTLV-1 has a preferential tropism for CD4 T cells in healthy carriers and ATL patients, while both CD4 and CD8 T cells serve as viral reservoirs in HAM/TSP patients. HTLV-1 has also been detected other cell types, including monocytes, endothelial cells, and dendritic cells. In contrast to the limited cell tropism of HTLV-1 in vivo, the HTLV receptor appears to be expressed in almost all human or animal cell lines. It remains to be examined whether this cell tropism is determined by host factors or by HTLV-1 heterogeneity. Unlike most retroviruses, cell-free virions of HTLV-1 are very poorly infectious. The lack of completely HTLV-1-resistant cells and the low infectivity of HTLV-1 have hampered research on the HTLV entry receptor. Entry of HTLV-1 into target cells is thought to involve interactions between the env (Env) glycoproteins, a surface glycoprotein (surface unit), and a transmembrane glycoprotein. Recent studies have shown that glucose transporter GLUT1, heparan sulfate proteoglycans (HSPGs), and neuropilin-1 (NRP-1) are the three proteins important for the entry of HTLV-1. Studies using adherent cell lines have shown that GLUT1 can function as a receptor for HTLV. HSPGs are required for efficient entry of HTLV-1 into primary CD4 T cells. NRP-1 is expressed in most established cell lines. Further studies have shown that these three molecules work together to promote HTLV-1 binding to cells and fusion of viral and cell membranes. The virus could first contact with HSPGs and then form complexes with NRP-1, followed by association with GLUT1. It remains to be determined whether these three molecules can explain HTLV-1 cell tropism. It also remains to be more definitively proven that these molecules are sufficient to permit HTLV-1 entry into completely HTLV-1-resistant cells.
Collapse
Affiliation(s)
- Hiroo Hoshino
- Advanced Scientific Research-Leaders Development Unit, Gunma University Graduate School of Medicine Maebashi, Gunma, Japan
| |
Collapse
|
25
|
Loret S, Lippé R. Biochemical analysis of infected cell polypeptide (ICP)0, ICP4, UL7 and UL23 incorporated into extracellular herpes simplex virus type 1 virions. J Gen Virol 2011; 93:624-634. [PMID: 22158881 DOI: 10.1099/vir.0.039776-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) capsids assemble in the nucleus but acquire their teguments from various cellular compartments. Unfortunately, little is known about their exact arrangement and when they coat the newly produced capsids. The complexity of the virions is further highlighted by our recent proteomics analysis that detected the presence of several novel or controversial components in extracellular HSV-1 virions. The present study probes the localization and linkage to the virus particles of some of these incorporated proteins. We confirm the recently reported tight association of infected cell polypeptide (ICP)0 with the capsid and show that this property extends to ICP4. We also confirm our proteomics data and show biochemically that UL7 and UL23 are indeed mature virion tegument components that, unlike ICP0 and ICP4, are salt-extractable. Interestingly, treatment with N-ethylmaleimide, which covalently modifies reduced cysteines, strongly prevented the release of UL7 and UL23 by salts, but did not perturb the interactions of ICP0 and ICP4 with the virus particles. This hitheir at distinct biochemical properties of the virion constituents and the selective implication of reduced cysteines in their organization and dynamics. Finally, the data revealed, by two independent means, the presence of ICP0 and ICP4 on intranuclear capsids, consistent with the possibility that they may at least partially be recruited to the virus particles early on. These findings add significantly to our understanding of HSV-1 virion assembly and to the debate about the incorporation of ICP0 and ICP4 in virus particles.
Collapse
Affiliation(s)
- Sandra Loret
- Department of Pathology and Cell Biology, University of Montreal, Montreal, QC H3C 3J7, Canada
| | - Roger Lippé
- Department of Pathology and Cell Biology, University of Montreal, Montreal, QC H3C 3J7, Canada
| |
Collapse
|
26
|
Shinagawa M, Jinno-Oue A, Shimizu N, Roy BB, Shimizu A, Hoque SA, Hoshino H. Human T-cell leukemia viruses are highly unstable over a wide range of temperatures. J Gen Virol 2011; 93:608-617. [PMID: 22113012 DOI: 10.1099/vir.0.037622-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The biological properties of human T-cell leukemia virus type I (HTLV-I) and HTLV type II (HTLV-II) are not well elucidated as cell-free viruses. We established new assay systems to detect the infectivity of cell-free HTLVs and examined the stability of cell-free HTLVs at different temperatures. HTLVs lost infectivity more rapidly than did bovine leukemia virus (BLV), which is genetically related to HTLVs. The half-lives of three HTLV-I strains (two cosmopolitan strains and one Melanesian strain) at 37 °C were approximately 0.6 h, whereas the half-life of a BLV strain was 8.5 h. HTLV-I rapidly lost infectivity unexpectedly at 0 and 4 °C. We examined the stability of vesicular stomatitis virus pseudotypes with HTLV-I, HTLV-II or BLV Env proteins, and the Env proteins of HTLVs were found to be more unstable at 4 and 25 °C than the Env proteins of the BLV. Over the course of the viral life cycle, heat treatment inhibited HTLV-I infection at the phase of attachment to the host cells, and inhibition was more marked upon entry into the cells. The HTLV-I Env surface (SU) protein (gp46) was easily released from virions during incubation at 37 °C. However, this release was inhibited by pre-treatment of the virions with N-ethylmaleimide, suggesting that the inter-subunit bond between gp46 SU and gp21 transmembrane (TM) proteins is rearranged by disulfide bond isomerization. HTLVs are highly unstable over a wide range of temperatures because the disulfide bonds between the SU and TM proteins are labile.
Collapse
Affiliation(s)
- Masahiko Shinagawa
- 21st Century COE Program, Gunma University Graduate School of Medicine, Showa-machi, Maebashi, Gunma 371-8511, Japan.,Department of Virology and Preventive Medicine, Gunma University Graduate School of Medicine, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Atsushi Jinno-Oue
- Department of Virology and Preventive Medicine, Gunma University Graduate School of Medicine, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Nobuaki Shimizu
- Department of Virology and Preventive Medicine, Gunma University Graduate School of Medicine, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Bibhuti Bhusan Roy
- Department of Virology and Preventive Medicine, Gunma University Graduate School of Medicine, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Akira Shimizu
- Department of Virology and Preventive Medicine, Gunma University Graduate School of Medicine, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Sk Ariful Hoque
- Department of Virology and Preventive Medicine, Gunma University Graduate School of Medicine, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Hiroo Hoshino
- 21st Century COE Program, Gunma University Graduate School of Medicine, Showa-machi, Maebashi, Gunma 371-8511, Japan.,Department of Virology and Preventive Medicine, Gunma University Graduate School of Medicine, Showa-machi, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
27
|
Murine leukemia viruses: objects and organisms. Adv Virol 2011; 2011:403419. [PMID: 22312342 PMCID: PMC3265304 DOI: 10.1155/2011/403419] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 07/25/2011] [Indexed: 01/12/2023] Open
Abstract
Murine leukemia viruses (MLVs) are among the simplest retroviruses. Prototypical gammaretroviruses encode only the three polyproteins that will be used in the assembly of progeny virus particles. These are the Gag polyprotein, which is the structural protein of a retrovirus particle, the Pol protein, comprising the three retroviral enzymes—protease, which catalyzes the maturation of the particle, reverse transcriptase, which copies the viral RNA into DNA upon infection of a new host cell, and integrase, which inserts the DNA into the chromosomal DNA of the host cell, and the Env polyprotein, which induces the fusion of the viral membrane with that of the new host cell, initiating infection. In general, a productive MLV infection has no obvious effect upon host cells. Although gammaretroviral structure and replication follow the same broad outlines as those of other retroviruses, we point out a number of significant differences between different retroviral genera.
Collapse
|
28
|
Naturally Occurring Polymorphisms of the Mouse Gammaretrovirus Receptors CAT-1 and XPR1 Alter Virus Tropism and Pathogenicity. Adv Virol 2011; 2011:975801. [PMID: 22312361 PMCID: PMC3265322 DOI: 10.1155/2011/975801] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 07/12/2011] [Indexed: 01/29/2023] Open
Abstract
Gammaretroviruses of several different host range subgroups have been isolated from laboratory mice. The ecotropic viruses infect mouse cells and rely on the host CAT-1 receptor. The xenotropic/polytropic viruses, and the related human-derived XMRV, can infect cells of other mammalian species and use the XPR1 receptor for entry. The coevolution of these viruses and their receptors in infected mouse populations provides a good example of how genetic conflicts can drive diversifying selection. Genetic and epigenetic variations in the virus envelope glycoproteins can result in altered host range and pathogenicity, and changes in the virus binding sites of the receptors are responsible for host restrictions that reduce virus entry or block it altogether. These battleground regions are marked by mutational changes that have produced 2 functionally distinct variants of the CAT-1 receptor and 5 variants of the XPR1 receptor in mice, as well as a diverse set of infectious viruses, and several endogenous retroviruses coopted by the host to interfere with entry.
Collapse
|
29
|
Côté M, Zheng YM, Albritton LM, Liu SL. Single residues in the surface subunits of oncogenic sheep retrovirus envelopes distinguish receptor-mediated triggering for fusion at low pH and infection. Virology 2011; 421:173-83. [PMID: 22018783 DOI: 10.1016/j.virol.2011.09.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Revised: 09/13/2011] [Accepted: 09/24/2011] [Indexed: 11/25/2022]
Abstract
Jaagsiekte sheep retrovirus (JSRV) and enzootic nasal tumor virus (ENTV) are two closely related oncogenic retroviruses that share the same cellular receptor yet exhibit distinct fusogenicity and infectivity. Here, we find that the low fusogenicity of ENTV envelope protein (Env) is not because of receptor binding, but lies in its intrinsic insensitivity to receptor-mediated triggering for fusion at low pH. Distinct from JSRV, shedding of ENTV surface (SU) subunit into culture medium was not enhanced by a soluble form of receptor, Hyal2 (sHyal2), and sHyal2 was unable to effectively inactivate the ENTV pseudovirions. Remarkably, replacing either of the two amino acid residues, N191 or S195, located in the ENTV SU with the corresponding JSRV residues, H191 or G195, markedly increased the Env-mediated membrane fusion activity and infection. Reciprocal amino acid substitutions also partly switched the sensitivities of ENTV and JSRV pseudovirions to sHyal2-mediated SU shedding and inactivation. While N191 is responsible for an extra N-linked glycosylation of ENTV SU relative to that of JSRV, S195 possibly forms a hydrogen bond with a surrounding amino acid residue. Molecular modeling of the pre-fusion structure of JSRV Env predicts that the segment of SU that contains H191 to G195 contacts the fusion peptide and suggests that the H191N and G195S changes seen in ENTV may stabilize its pre-fusion structure against receptor priming and therefore modulate fusion activation by Hyal2. In summary, our study reveals critical determinants in the SU subunits of JSRV and ENTV Env proteins that likely regulate their local structures and thereby differential receptor-mediated fusion activation at low pH, and these findings explain, at least in part, their distinct viral infectivity.
Collapse
Affiliation(s)
- Marceline Côté
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada H3A 2B4
| | | | | | | |
Collapse
|
30
|
Ashkenazi A, Viard M, Wexler-Cohen Y, Blumenthal R, Shai Y. Viral envelope protein folding and membrane hemifusion are enhanced by the conserved loop region of HIV-1 gp41. FASEB J 2011; 25:2156-66. [PMID: 21429941 PMCID: PMC3114521 DOI: 10.1096/fj.10-175752] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 03/10/2011] [Indexed: 11/11/2022]
Abstract
Fusion of human immunodeficiency virus (HIV-1) with target cells is mediated by the gp41 transmembrane envelope protein. The loop region within gp41 contains 2 crucial cysteines that play an unknown role in HIV-cell fusion. On the basis of cell-cell fusion assay, using human T-cell lines [Jurkat E6-1 and Jurkat HXBc2(4)], and virus-cell fusion assay, using fully infectious HIV-1 HXBc2 virus and TZM-bl human cell line, we provide evidence that the oxidation state of the disulfide bond within a loop domain peptide determines its activity. The oxidized (closed) form inhibits fusion, while the reduced (opened) form enhances hemifusion. These opposite activities reach 60% difference in viral fusion. Both forms of the loop domain interact with gp41: the opened form enhances gp41 folding into a bundle, whereas the closed form inhibits this folding. Therefore, the transformation of the cysteines from a reduced to an oxidized state enables the loop to convert from opened to closed conformations, which assists gp41 to fold and induces hemifusion. The significant conservation of the loop region within many envelope proteins suggests a general mechanism, which is exploited by viruses to enhance entry into their host cells.
Collapse
Affiliation(s)
- Avraham Ashkenazi
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Mathias Viard
- Nanobiology Program, Center of Cancer Research, National Cancer Institute, Frederick, Maryland, USA
- Basic Research Program, SAIC-Frederick, Inc., National Cancer Institute–Frederick, Frederick, Maryland, USA
| | - Yael Wexler-Cohen
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Robert Blumenthal
- Nanobiology Program, Center of Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Yechiel Shai
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
31
|
Jones KS, Lambert S, Bouttier M, Bénit L, Ruscetti FW, Hermine O, Pique C. Molecular aspects of HTLV-1 entry: functional domains of the HTLV-1 surface subunit (SU) and their relationships to the entry receptors. Viruses 2011; 3:794-810. [PMID: 21994754 PMCID: PMC3185769 DOI: 10.3390/v3060794] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 05/20/2011] [Accepted: 05/23/2011] [Indexed: 12/11/2022] Open
Abstract
The initial step in retroviral infection involves specific interactions between viral envelope proteins (Env) and specific receptors on the surface of target cells. For many years, little was known about the entry receptors for HTLV-1. During this time, however, functional domains of the HTLV-1 Env were identified by analyzing the effects of neutralizing antibodies and specific mutations in Env on HTLV-1 infectivity. More recent studies have revealed that HTLV-1 infectivity involves interactions with three different molecules: heparan sulfate proteoglycans (HSPG), the VEGF-165 receptor Neuropilin 1 (NRP-1) and glucose transporter type 1 (GLUT1). Here, we revisit previously published data on the functional domains of Env in regard to the recent knowledge acquired about this multi-receptor complex. We also discuss the similarities and differences between HTLV-1 and other deltaretroviruses in regards to receptor usage.
Collapse
Affiliation(s)
- Kathryn S. Jones
- Basic Science Program, SAIC-Frederick, Inc., NCI-Frederick, Maryland, MD 21702, USA; E-Mail:
| | - Sophie Lambert
- INSERM, U1016, Institut Cochin, 22 rue Mechain, 75014, Paris, France; E-Mails: (S.L.); (M.B.); (L.B.)
- CNRS, UMR8104, 75014, Paris, France
- Université Paris Descartes, 75006, Paris, France
| | - Manuella Bouttier
- INSERM, U1016, Institut Cochin, 22 rue Mechain, 75014, Paris, France; E-Mails: (S.L.); (M.B.); (L.B.)
- CNRS, UMR8104, 75014, Paris, France
- Université Paris Descartes, 75006, Paris, France
| | - Laurence Bénit
- INSERM, U1016, Institut Cochin, 22 rue Mechain, 75014, Paris, France; E-Mails: (S.L.); (M.B.); (L.B.)
- CNRS, UMR8104, 75014, Paris, France
- Université Paris Descartes, 75006, Paris, France
| | - Frank W. Ruscetti
- Cancer and Inflammation Program, NCI-Frederick, Frederick, Maryland, MD 21702, USA; E-Mail:
| | - Olivier Hermine
- Service d’Hématologie Adulte, Hôpital Necker, 75743, Paris CEDEX 15, France; E-Mail:
| | - Claudine Pique
- INSERM, U1016, Institut Cochin, 22 rue Mechain, 75014, Paris, France; E-Mails: (S.L.); (M.B.); (L.B.)
- CNRS, UMR8104, 75014, Paris, France
- Université Paris Descartes, 75006, Paris, France
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +33-1-40516486
| |
Collapse
|
32
|
Abstract
Enveloped viruses penetrate their cell targets following the merging of their membrane with that of the cell. This fusion process is catalyzed by one or several viral glycoproteins incorporated on the membrane of the virus. These envelope glycoproteins (EnvGP) evolved in order to combine two features. First, they acquired a domain to bind to a specific cellular protein, named "receptor." Second, they developed, with the help of cellular proteins, a function of finely controlled fusion to optimize the replication and preserve the integrity of the cell, specific to the genus of the virus. Following the activation of the EnvGP either by binding to their receptors and/or sometimes the acid pH of the endosomes, many changes of conformation permit ultimately the action of a specific hydrophobic domain, the fusion peptide, which destabilizes the cell membrane and leads to the opening of the lipidic membrane. The comprehension of these mechanisms is essential to develop medicines of the therapeutic class of entry inhibitor like enfuvirtide (Fuzeon) against human immunodeficiency virus (HIV). In this chapter, we will summarize the different envelope glycoprotein structures that viruses develop to achieve membrane fusion and the entry of the virus. We will describe the different entry pathways and cellular proteins that viruses have subverted to allow infection of the cell and the receptors that are used. Finally, we will illustrate more precisely the recent discoveries that have been made within the field of the entry process, with a focus on the use of pseudoparticles. These pseudoparticles are suitable for high-throughput screenings that help in the development of natural or artificial inhibitors as new therapeutics of the class of entry inhibitors.
Collapse
Affiliation(s)
- François-Loic Cosset
- Université de Lyon, UCB-Lyon1, IFR128, Lyon, France,INSERM, U758, Lyon, France,Ecole Normale Supérieure de Lyon, Lyon, France
| | - Dimitri Lavillette
- Université de Lyon, UCB-Lyon1, IFR128, Lyon, France,INSERM, U758, Lyon, France,Ecole Normale Supérieure de Lyon, Lyon, France
| |
Collapse
|
33
|
Effects of retroviral envelope-protein cleavage upon trafficking, incorporation, and membrane fusion. Virology 2010; 405:214-24. [PMID: 20591459 DOI: 10.1016/j.virol.2010.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 03/01/2010] [Accepted: 06/01/2010] [Indexed: 11/20/2022]
Abstract
Retroviral envelope glycoproteins undergo proteolytic processing by cellular subtilisin-like proprotein convertases at a polybasic amino-acid site in order to produce the two functional subunits, SU and TM. Most previous studies have indicated that envelope-protein cleavage is required for rendering the protein competent for promoting membrane fusion and for virus infectivity. We have investigated the role of proteolytic processing of the Moloney murine leukemia virus envelope-protein through site-directed mutagenesis of the residues near the SU-TM cleavage site and have established that uncleaved glycoprotein is unable either to be incorporated into virus particles efficiently or to induce membrane fusion. Additionally, the results suggest that cleavage of the envelope protein plays an important role in intracellular trafficking of protein via the cellular secretory pathway. Based on our results it was concluded that a positively charged residue located at either P2 or P4 along with the arginine at P1 is essential for cleavage.
Collapse
|
34
|
Studies of the "chain reversal regions" of the avian sarcoma/leukosis virus (ASLV) and ebolavirus fusion proteins: analogous residues are important, and a His residue unique to EnvA affects the pH dependence of ASLV entry. J Virol 2010; 84:5687-94. [PMID: 20335266 DOI: 10.1128/jvi.02583-09] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Most class I fusion proteins exist as trimers of dimers composed of a receptor binding and a fusion subunit. In their postfusion forms, the three fusion subunits form trimers of hairpins consisting of a central coiled coil (formed by the N-terminal helices), an intervening sequence, and a region containing the C helix (and flanking strands) that runs antiparallel to and packs in the grooves of the N-terminal coiled coil. For filoviruses and most retroviruses, the intervening sequence includes a "chain reversal region" consisting of a short stretch of hydrophobic residues, a Gly-Gly pair, a CX(6)CC motif, and a bulky hydrophobic residue. Maerz and coworkers (A. L. Maerz, R. J. Center, B. E. Kemp, B. Kobe, and P. Poumbourios, J. Virol. 74:6614-6621, 2000) proposed a model for this region of human T-cell leukemia virus type 1 (HTLV-1) Env in which expulsion of the final bulky hydrophobic residue is important for early conformational changes and specific residues in the chain reversal region are important for forming the final, stable trimer of hairpins. Here, we used mutagenesis and pseudovirus entry assays to test this model for the avian retrovirus avian sarcoma/leukosis virus (ASLV) and the filovirus ebolavirus Zaire. Our results are generally consistent with the model proposed for HTLV-1 Env. In addition, we show with ASLV EnvA that the bulky hydrophobic residue following the CX(6)CC motif is required for the step of prehairpin target membrane insertion, whereas other residues are required for the foldback step of fusion. We further found that a His residue that is unique to the chain reversal region of ASLV EnvA controls the pH at which ASLV entry occurs.
Collapse
|
35
|
[Entry process of enveloped viruses to host cells]. Uirusu 2010; 59:205-13. [PMID: 20218329 DOI: 10.2222/jsv.59.205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The fusion between viral and cellular membranes is the first critical step of the enveloped viral infection. This is promoted by the drastic conformational change of the viral fusion protein. The conformational change is driven by various cues that are different in each fusion protein. The divergent nature of the induction mechanism of fusion proteins tells us that the regulation of membrane fusion process is substantially important to viral infection. Historically, enveloped viruses were categorized into pH-dependent and pH-independent groups for their entry processes. It has been thought that the pH-independent viruses mainly fuse to cell membrane at the cell surface whereas pH-dependent viruses fuse to endosomal membrane. However, the recent studies suggest that some pH-independent viruses including Human Immunodeficiency Virus (HIV) also utilize the endocytosis pathway to achieve infection. In addition, it has been revealed that the host factors other than receptors play crucial roles in the entry of enveloped viruses. This review summarizes the entry process of enveloped viruses and focuses on the current topics of HIV entry.
Collapse
|
36
|
Yoshinobu K, Baudino L, Santiago-Raber ML, Morito N, Dunand-Sauthier I, Morley BJ, Evans LH, Izui S. Selective up-regulation of intact, but not defective env RNAs of endogenous modified polytropic retrovirus by the Sgp3 locus of lupus-prone mice. THE JOURNAL OF IMMUNOLOGY 2009; 182:8094-103. [PMID: 19494335 DOI: 10.4049/jimmunol.0900263] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Endogenous retroviruses are implicated in the pathogenesis of systemic lupus erythematosus (SLE). Because four different classes of endogenous retroviruses, i.e., ecotropic, xenotropic, polytropic, or modified polytropic (mPT), are expressed in mice, we investigated the possibility that a particular class of endogenous retroviruses is associated with the development of murine SLE. We observed >15-fold increased expression of mPT env (envelope) RNA in livers of all four lupus-prone mice, as compared with those of nine nonautoimmune strains of mice. This was not the case for the three other classes of retroviruses. Furthermore, we found that in addition to intact mPT transcripts, many strains of mice expressed two defective mPT env transcripts which carry a deletion in the env sequence of the 3' portion of the gp70 surface protein and the 5' portion of the p15E transmembrane protein, respectively. Remarkably, in contrast to nonautoimmune strains of mice, all four lupus-prone mice expressed abundant levels of intact mPT env transcripts, but only low or nondetectable levels of the mutant env transcripts. The Sgp3 (serum gp70 production 3) locus derived from lupus-prone mice was responsible for the selective up-regulation of the intact mPT env RNA. Finally, we observed that single-stranded RNA-specific TLR7 played a critical role in the production of anti-gp70 autoantibodies. These data suggest that lupus-prone mice may possess a unique genetic mechanism responsible for the expression of mPT retroviruses, which could act as a triggering factor through activating TLR7 for the development of autoimmune responses in mice predisposed to SLE.
Collapse
Affiliation(s)
- Kumiko Yoshinobu
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Laufer G, Mayer J, Mueller BF, Mueller-Lantzsch N, Ruprecht K. Analysis of transcribed human endogenous retrovirus W env loci clarifies the origin of multiple sclerosis-associated retrovirus env sequences. Retrovirology 2009; 6:37. [PMID: 19368703 PMCID: PMC2672075 DOI: 10.1186/1742-4690-6-37] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 04/15/2009] [Indexed: 12/19/2022] Open
Abstract
Background Multiple sclerosis-associated retrovirus (MSRV) RNA sequences have been detected in patients with multiple sclerosis (MS) and are related to the multi-copy human endogenous retrovirus family type W (HERV-W). Only one HERV-W locus (ERVWE1) codes for a complete HERV-W Env protein (Syncytin-1). Syncytin-1 and the putative MSRV Env protein have been involved in the pathogenesis of MS. The origin of MSRV and its precise relation to HERV-W were hitherto unknown. Results By mapping HERV-W env cDNA sequences (n = 332) from peripheral blood mononuclear cells of patients with MS and healthy controls onto individual genomic HERV-W env elements, we identified seven transcribed HERV-W env loci in these cells, including ERVWE1. Transcriptional activity of individual HERV-W env elements did not significantly differ between patients with MS and controls. Remarkably, almost 30% of HERV-W env cDNAs were recombined sequences that most likely arose in vitro between transcripts from different HERV-W env elements. Re-analysis of published MSRV env sequences revealed that all of them can be explained as originating from genomic HERV-W env loci or recombinations among them. In particular, a MSRV env clone previously used for the generation of monoclonal antibody 6A2B2, detecting an antigen in MS brain lesions, appears to be derived from a HERV-W env locus on chromosome Xq22.3. This locus harbors a long open reading frame for an N-terminally truncated HERV-W Env protein. Conclusion Our data clarify the origin of MSRV env sequences, have important implications for the status of MSRV, and open the possibility that a protein encoded by a HERV-W env element on chromosome Xq22.3 may be expressed in MS brain lesions.
Collapse
Affiliation(s)
- Georg Laufer
- Institute of Virology, Saarland University Hospital, Homburg, Germany.
| | | | | | | | | |
Collapse
|
38
|
Abstract
Newcastle disease virus (NDV) entry into host cells is mediated by the hemagglutinin-neuraminidase (HN) and fusion (F) glycoproteins. We previously showed that production of free thiols in F protein is required for membrane fusion directed by F protein (S. Jain et al., J. Virol. 81:2328-2339, 2007). In the present study we evaluated the oxidation state of F protein in virions and virus-like particles and its relationship to activation of F protein by HN protein, F protein conformational intermediates, and virus-cell fusion. F protein, in particles, does not have free thiols, but free thiols were produced upon binding of particles to target cells. Free thiols were produced at 16 degrees C in F protein in virions bound to the target cells. They also appeared in different fusion defective mutant F proteins. Free thiols were produced in the presence of mutant HN proteins that are defective in F protein activation but are attachment competent. These results suggest that free thiols appear prior to any of the proposed major conformational changes in F protein which accompany fusion activation. These results also indicate that HN protein binding to its receptor likely facilitates the interaction between F protein and host cell isomerases, leading to reduction of disulfide bonds in F protein. Taken together, these results show that free thiols are produced in F protein at a very early stage during the onset of fusion and that the production of free thiols is required for fusion in addition to activation by HN protein.
Collapse
|
39
|
Overexpression of thiol/disulfide isomerases enhances membrane fusion directed by the Newcastle disease virus fusion protein. J Virol 2008; 82:12039-48. [PMID: 18829746 DOI: 10.1128/jvi.01406-08] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Newcastle disease virus (NDV) fusion (F) protein directs membrane fusion, which is required for virus entry and cell-cell fusion. We have previously shown that free thiols are present in cell surface-expressed NDV F protein and that blocking the production of free thiols by thiol-disulfide exchange inhibitors inhibited the membrane fusion mediated by F protein (J Virol. 81:2328-2339, 2007). Extending these observations, we evaluated the role of the overexpression of two disulfide bond isomerases, protein disulfide isomerase (PDI) and ERdj5, in cell-cell fusion mediated by NDV glycoproteins. The overexpression of these isomerases resulted in significantly increased membrane fusion, as measured by syncytium formation and content mixing. The overexpression of these isomerases enhanced the production of free thiols in F protein when expressed without hemagglutination-neuraminidase (HN) protein but decreased free thiols in F protein expressed with HN protein. By evaluating the binding of conformation-sensitive antibodies, we found that the overexpression of these isomerases favored a postfusion conformation of surface-expressed F protein in the presence of HN protein. These results suggest that isomerases belonging to the PDI family catalyze the production of free thiols in F protein, and free thiols in F protein facilitate membrane fusion mediated by F protein.
Collapse
|
40
|
Kjeldbjerg AL, Villesen P, Aagaard L, Pedersen FS. Gene conversion and purifying selection of a placenta-specific ERV-V envelope gene during simian evolution. BMC Evol Biol 2008; 8:266. [PMID: 18826608 PMCID: PMC2567338 DOI: 10.1186/1471-2148-8-266] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Accepted: 09/30/2008] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Most human endogenous retroviruses (HERVs) invaded our genome at least 25 million years ago. The majority of the viral genes are degenerated, since no selection preserves them within the genome. However, a few intact and very old HERV genes exist, and likely are beneficial for the host. We here address evolutionary aspects of two HERV-V envelope genes, ENVV1 and ENVV2, located in tandem and containing a long open reading frame. RESULTS The ENVV2 gene is preserved with an intact reading frame during simian evolution, but none of the ENVV genes are found in the prosimian species tested. While we observe many transposon insertions in the gag and pol regions of the ERV-V2 provirus, the ENVV2 genes have escaped transposon crossfire in all species tested. Additional analysis of nucleotide substitutions provides further strong evidence of purifying selection on the ENVV2 gene during primate evolution. The other copy, ENVV1, seems to be involved in gene conversion of the major part of the envelope. Furthermore, ENVV1 and ENVV2 show placenta-specific expression in human and a baboon species. CONCLUSION Our analyses show that ERV-V entered our genome after the split between simian and prosimian primates. Subsequent purifying selection and gene conversion have preserved two copies of the ENVV envelope gene in most species. This is the first case of gene conversion involving long open reading frames in HERVs. Together with the placenta-specific expression of the human and baboon ENVV1 and ENVV2 envelope genes, these data provide strong evidence of a beneficial role for the host.
Collapse
Affiliation(s)
- Anders L Kjeldbjerg
- Department of Molecular Biology, University of Aarhus, DK-8000 Aarhus C, Denmark.
| | | | | | | |
Collapse
|
41
|
Turning of the receptor-binding domains opens up the murine leukaemia virus Env for membrane fusion. EMBO J 2008; 27:2799-808. [PMID: 18800055 PMCID: PMC2556092 DOI: 10.1038/emboj.2008.187] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 08/26/2008] [Indexed: 11/21/2022] Open
Abstract
The activity of the membrane fusion protein Env of Moloney mouse leukaemia virus is controlled by isomerization of the disulphide that couples its transmembrane (TM) and surface (SU) subunits. We have arrested Env activation at a stage prior to isomerization by alkylating the active thiol in SU and compared the structure of isomerization-arrested Env with that of native Env. Env trimers of respective form were isolated from solubilized particles by sedimentation and their structures were reconstructed from electron microscopic images of both vitrified and negatively stained samples. We found that the protomeric unit of both trimers formed three protrusions, a top, middle and a lower one. The atomic structure of the receptor-binding domain of SU fitted into the upper protrusion. This was formed similar to a bent finger. Significantly, in native Env the tips of the fingers were directed against each other enclosing a cavity below, whereas they had turned outward in isomerization-arrested Env transforming the cavity into an open well. This might subsequently guide the fusion peptides in extended TM subunits into the target membrane.
Collapse
|
42
|
Structural rearrangement within an enveloped virus upon binding to the host cell. J Virol 2008; 82:10429-35. [PMID: 18715922 DOI: 10.1128/jvi.01223-08] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We have made the surprising discovery that the interactions of herpes simplex virus with its initial cell attachment receptor induce a rapid and highly efficient structural change in the tegument, the region of the virion situated between the membrane and the capsid. It has been known for nearly a decade that viruses can trigger host signaling pathways when they bind to receptors on the cell surface; however, until now there has been no evidence that a signal can be sent in reverse--from the "outside in"--across a viral membrane. Evidence for this signaling event was found during studies of UL16, a tegument protein that is conserved among all the herpesviruses. Previous work has demonstrated that UL16 is bound to capsids isolated from the cytoplasm of infected cells, but this interaction is destabilized during subsequent egress steps, leading to release of the extracellular virion. Pretreatment with N-ethylmaleimide, a small, membrane-permeating compound that covalently modifies free cysteines, restabilizes the interaction, thereby permitting the capsid-UL16 complex to be isolated following disruption of virions with NP-40. In the experiments described here, we found that the natural signal for release of UL16 from capsids is sent when virions merely bind to cells at 4 degrees C. The internal change was also observed upon binding to immobilized heparin in a manner that requires viral glycoprotein C. This represents the first example of signaling across a viral envelope following receptor binding.
Collapse
|
43
|
White JM, Delos SE, Brecher M, Schornberg K. Structures and mechanisms of viral membrane fusion proteins: multiple variations on a common theme. Crit Rev Biochem Mol Biol 2008; 43:189-219. [PMID: 18568847 DOI: 10.1080/10409230802058320] [Citation(s) in RCA: 665] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent work has identified three distinct classes of viral membrane fusion proteins based on structural criteria. In addition, there are at least four distinct mechanisms by which viral fusion proteins can be triggered to undergo fusion-inducing conformational changes. Viral fusion proteins also contain different types of fusion peptides and vary in their reliance on accessory proteins. These differing features combine to yield a rich diversity of fusion proteins. Yet despite this staggering diversity, all characterized viral fusion proteins convert from a fusion-competent state (dimers or trimers, depending on the class) to a membrane-embedded homotrimeric prehairpin, and then to a trimer-of-hairpins that brings the fusion peptide, attached to the target membrane, and the transmembrane domain, attached to the viral membrane, into close proximity thereby facilitating the union of viral and target membranes. During these conformational conversions, the fusion proteins induce membranes to progress through stages of close apposition, hemifusion, and then the formation of small, and finally large, fusion pores. Clearly, highly divergent proteins have converged on the same overall strategy to mediate fusion, an essential step in the life cycle of every enveloped virus.
Collapse
Affiliation(s)
- Judith M White
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908-0732, USA.
| | | | | | | |
Collapse
|
44
|
Chen CP, Chen LF, Yang SR, Chen CY, Ko CC, Chang GD, Chen H. Functional characterization of the human placental fusogenic membrane protein syncytin 2. Biol Reprod 2008; 79:815-23. [PMID: 18650494 DOI: 10.1095/biolreprod.108.069765] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Fusion of cytotrophoblasts into the multinucleated syncytiotrophoblast layer is essential for the development of a functional placenta. The envelope protein of a human endogenous retrovirus W (HERV-W) family member, syncytin 1, has been shown to mediate placental cell fusion. Recently, the envelope protein of another HERV family member (HERV-FRD), syncytin 2, has been identified and shown to be highly expressed in the placenta. To better understand the biology of syncytin 2, in this study we first investigated syncytin 2 gene expression in normal and preeclamptic placentas and then characterized the functions of syncytin 2. The expression of syncytin 2 gene was decreased in preeclamptic placentas and could be stimulated by the cAMP stimulant forskolin. The endoprotease furin was found to be involved in the posttranslational cleavage of syncytin 1 and 2 polypeptides into surface and transmembrane subunits. In addition, proper association of the subunits of syncytins 1 and 2 is probably required for the functional integrity of each protein, because subunit swapping of syncytins 1 and 2 failed to generate fusogenic chimeras. Finally, we demonstrated that the disulfide bridge-forming CX(2)C and CX(7)C motifs found in syncytins 1 and 2 are essential for their fusogenic activities, because mutations in the CX(2)C motif not only abolished fusogenesis but also functioned as dominant-negative mutants. Our results suggest that syncytin 2 may function as a second fusogenic protein for placental cell fusion.
Collapse
Affiliation(s)
- Chie-Pein Chen
- Division of High Risk Pregnancy and Department of Medical Research, Mackay Memorial Hospital, Taipei 104, Taiwan
| | | | | | | | | | | | | |
Collapse
|
45
|
Ryu BY, Zavorotinskaya T, Trentin B, Albritton LM. The block to membrane fusion differs with the site of ligand insertion in modified retroviral envelope proteins. J Gen Virol 2008; 89:1049-1058. [PMID: 18343849 DOI: 10.1099/vir.0.83445-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Efforts to achieve cell type-specific transduction of retroviral vectors for gene therapy have centred on modification of the envelope protein (Env). Typically, addition of a ligand to Env gives binding to the new or target receptor, but little or no infection, and affects the subunit association of the modified Env. We previously discovered two point mutations that increase targeted infection by over 1000-fold when added to an Env modified by N-terminal insertion of the receptor-binding domain from amphotropic murine leukemia virus Env. Here, we asked whether these mutations would similarly increase transduction by Env modified with a clinically relevant ligand, human interleukin-13 (IL-13L). Addition of the point mutations stabilized the weak subunit association observed in some IL-13L-modified Env proteins, but infection via the target IL-13 receptor still did not occur. Fluorescence-based cell-cell fusion assays and studies with a membrane-curving agent revealed that defects in membrane fusion differed with the site of ligand insertion. When IL-13 was inserted into the N terminus of Env, membrane fusion was blocked prior to membrane-lipid mixing, regardless of whether flanking flexible linkers were added. Unexpectedly, insertion of IL-13 in the proline-rich region showed evidence of initiation of fusion and fusion-peptide exposure, but fusion was blocked at a subsequent step prior to fusion-pore formation. Thus, the site of ligand insertion influenced initiation of membrane fusion and its progression. These observations suggest that a novel site for ligand insertion must be identified before clinically useful targeted transduction will be achieved.
Collapse
Affiliation(s)
- Byoung Y Ryu
- Department of Molecular Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Tatiana Zavorotinskaya
- Department of Molecular Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Bernadette Trentin
- Department of Molecular Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Lorraine M Albritton
- Department of Molecular Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
46
|
Intersubunit disulfide isomerization controls membrane fusion of human T-cell leukemia virus Env. J Virol 2008; 82:7135-43. [PMID: 18480461 DOI: 10.1128/jvi.00448-08] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human T-cell leukemia virus (HTLV-1) Env carries a typical disulfide isomerization motif, C(225)XXC, in the C-terminal domain SU. Here we have tested whether this motif is used for isomerization of the intersubunit disulfide of Env and whether this rearrangement is required for membrane fusion. We introduced the C225A and C228A mutations into Env and found that the former but not the latter mutant matured into covalently linked SU-TM complexes in transfected cells. Next, we constructed a secreted Env ectodomain and showed that it underwent incubation-dependent intersubunit disulfide isomerization on target cells. However, the rearrangement was blocked by the C225A mutation, suggesting that C(225) carried the isomerization-active thiol. Still, it was possible to reduce the intersubunit disulfide of the native C225A ectodomain mutant with dithiothreitol (DTT). The importance of the CXXC-mediated disulfide isomerization for infection was studied using murine leukemia virus vectors pseudotyped with wild-type or C225A HTLV-1 Env. We found that the mutant Env blocked infection, but this could be rescued with DTT. The fusion activity was tested in a fusion-from-within assay using a coculture of rat XC target and transfected BHK-21 effector cells. We found that the mutation blocked polykaryon formation, but this could be reversed with DTT. Similar DTT-reversible inhibition of infection and fusion was observed when a membrane-impermeable alkylator was present during the infection/fusion incubation. We conclude that the fusion activity of HTLV-1 Env is controlled by an SU CXXC-mediated isomerization of the intersubunit disulfide. Thus, this extends the applicability of the isomerization model from gammaretroviruses to deltaretroviruses.
Collapse
|
47
|
Schneider WM, Zheng H, Coté ML, Roth MJ. The MuLV 4070A G541R Env mutation decreases the stability and alters the conformation of the TM ectodomain. Virology 2008; 371:165-74. [PMID: 17961622 DOI: 10.1016/j.virol.2007.09.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 07/30/2007] [Accepted: 09/22/2007] [Indexed: 01/20/2023]
Abstract
Virus-cell and cell-cell fusion events are affected by various properties of the fusogenic Env protein on the cell surface. The G541R mutation within the TM ectodomain of murine leukemia virus (MuLV) 4070A arose by positive selection in viral passage and results in a reduction of cell-cell fusion events while maintaining viral titer. Size exclusion chromatography shows that the multimerization properties are similar among expressed wild-type and mutant ectodomain peptides. Circular dichroism measurements reveal decreased thermal stability of the G541R mutant as compared to wild type. The G541R mutant also renders the peptide more susceptible to Lys-C protease cleavage. The 42-114 monoclonal antibody does not bind to the G541R mutant peptides, suggesting a structural difference from wild type. These altered physical properties result in productive viral infection of G541R bearing virus with decreased syncytia.
Collapse
Affiliation(s)
- William M Schneider
- UMDNJ-Robert Wood Johnson Medical School, Department of Biochemistry, 675 Hoes Lane Rm. 636, Piscataway, NJ 08854, USA.
| | | | | | | |
Collapse
|
48
|
Stabilization of TM trimer interactions during activation of moloney murine leukemia virus Env. J Virol 2007; 82:2358-66. [PMID: 18094169 DOI: 10.1128/jvi.01931-07] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transmembrane subunit (TM) of the trimeric retrovirus Env complex is thought to direct virus-cell membrane fusion by refolding into a cell membrane-interacting, extended form that subsequently folds back on itself into a very stable trimer of hairpin-like TM polypeptides. However, so far there is only limited evidence for the formation of a stable TM trimer during Env activation. Here we have studied the oligomer composition and stability of an intermediate and the fully activated form of Moloney murine leukemia virus (Mo-MLV) Env. Activation of Mo-MLV Env is controlled by isomerization of its intersubunit disulfide. This results in surface subunit (SU) dissociation and TM refolding. If activation is done in the presence of an alkylator, this will modify the isomerization-active thiol in the SU of Env and arrest Env at an intermediate stage, the isomerization-arrested state (IAS) of its activation pathway. We generated IAS and fully activated Envs in vitro and in vivo and studied their states of oligomerization by two-dimensional blue native polyacrylamide gel electrophoresis (PAGE) and nonreducing sodium dodecyl sulfate (SDS)-PAGE. The IAS Env was composed of trimers of SU-TM complexes, whereas the activated Env consisted of SU monomers and TM trimers. When the oligomers were subjected to mild SDS treatment the TM trimer was found to be 3.5 times more resistant than the IAS oligomer. Thus, this demonstrates that a structural conversion of TM takes place during activation, which results in the formation of a stable TM trimer.
Collapse
|
49
|
R-Peptide cleavage potentiates fusion-controlling isomerization of the intersubunit disulfide in Moloney murine leukemia virus Env. J Virol 2007; 82:2594-7. [PMID: 18094170 DOI: 10.1128/jvi.02039-07] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fusion of the membrane of the Moloney murine leukemia virus (Mo-MLV) Env protein is facilitated by cleavage of the R peptide from the cytoplasmic tail of its TM subunit, but the mechanism for this effect has remained obscure. The fusion is also controlled by the isomerization of the intersubunit disulfide of the Env SU-TM complex. In the present study, we used several R-peptide-cleavage-inhibited virus mutants to show that the R peptide suppresses the isomerization reaction in both in vitro and in vivo assays. Thus, the R peptide affects early steps in the activation pathway of murine leukemia virus Env.
Collapse
|
50
|
Fenouillet E, Barbouche R, Jones IM. Cell entry by enveloped viruses: redox considerations for HIV and SARS-coronavirus. Antioxid Redox Signal 2007; 9:1009-34. [PMID: 17567241 DOI: 10.1089/ars.2007.1639] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
For enveloped viruses, genome entry into the target cell involves two major steps: virion binding to the cell-surface receptor and fusion of the virion and cell membranes. Virus-cell membrane fusion is mediated by the virus envelope complex, and its fusogenicity is the result of an active virus-cell interaction process that induces conformation changes within the envelope. For some viruses, such as influenza, exposure to an acidic milieu within the cell during the early steps of infection triggers the necessary structural changes. However, for other pathogens which are not exposed to such environmental stress, activation of fusogenicity can result from precise thiol/disulfide rearrangements mediated by either an endogenous redox autocatalytic isomerase or a cell-associated oxidoreductase. Study of the activation of HIV envelope fusogenicity has revealed new knowledge about how redox changes within a viral envelope trigger fusion. We discuss these findings and their implication for anti-HIV therapy. In addition, to compare and contrast the situation outlined for HIV with an enveloped virus that can fuse with the cell plasma membrane independent of the redox status of its envelope protein, we review parallel data obtained on SARS coronavirus entry.
Collapse
Affiliation(s)
- Emmanuel Fenouillet
- CNRS FRE2738 and Université de la Méditerranée, Faculté de Médecine, Marseille, France.
| | | | | |
Collapse
|