1
|
Tedeschi V, Paldino G, Paladini F, Mattorre B, Tuosto L, Sorrentino R, Fiorillo MT. The Impact of the 'Mis-Peptidome' on HLA Class I-Mediated Diseases: Contribution of ERAP1 and ERAP2 and Effects on the Immune Response. Int J Mol Sci 2020; 21:ijms21249608. [PMID: 33348540 PMCID: PMC7765998 DOI: 10.3390/ijms21249608] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 01/08/2023] Open
Abstract
The strong association with the Major Histocompatibility Complex (MHC) class I genes represents a shared trait for a group of autoimmune/autoinflammatory disorders having in common immunopathogenetic basis as well as clinical features. Accordingly, the main risk factors for Ankylosing Spondylitis (AS), prototype of the Spondyloarthropathies (SpA), the Behçet's disease (BD), the Psoriasis (Ps) and the Birdshot Chorioretinopathy (BSCR) are HLA-B*27, HLA-B*51, HLA-C*06:02 and HLA-A*29:02, respectively. Despite the strength of the association, the HLA pathogenetic role in these diseases is far from being thoroughly understood. Furthermore, Genome-Wide Association Studies (GWAS) have highlighted other important susceptibility factors such as Endoplasmic Reticulum Aminopeptidase (ERAP) 1 and, less frequently, ERAP2 that refine the peptidome presented by HLA class I molecules to CD8+ T cells. Mass spectrometry analysis provided considerable knowledge of HLA-B*27, HLA-B*51, HLA-C*06:02 and HLA-A*29:02 immunopeptidome. However, the combined effect of several ERAP1 and ERAP2 allelic variants could generate an altered pool of peptides accounting for the "mis-immunopeptidome" that ranges from suboptimal to pathogenetic/harmful peptides able to induce non-canonical or autoreactive CD8+ T responses, activation of NK cells and/or garbling the classical functions of the HLA class I molecules. This review will focus on this class of epitopes as possible elicitors of atypical/harmful immune responses which can contribute to the pathogenesis of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Valentina Tedeschi
- Department of Biology and Biotechnology ‘Charles Darwin’, Sapienza University, 00185 Rome, Italy; (G.P.); (F.P.); (B.M.); (L.T.); (R.S.); (M.T.F.)
- Correspondence:
| | - Giorgia Paldino
- Department of Biology and Biotechnology ‘Charles Darwin’, Sapienza University, 00185 Rome, Italy; (G.P.); (F.P.); (B.M.); (L.T.); (R.S.); (M.T.F.)
| | - Fabiana Paladini
- Department of Biology and Biotechnology ‘Charles Darwin’, Sapienza University, 00185 Rome, Italy; (G.P.); (F.P.); (B.M.); (L.T.); (R.S.); (M.T.F.)
| | - Benedetta Mattorre
- Department of Biology and Biotechnology ‘Charles Darwin’, Sapienza University, 00185 Rome, Italy; (G.P.); (F.P.); (B.M.); (L.T.); (R.S.); (M.T.F.)
| | - Loretta Tuosto
- Department of Biology and Biotechnology ‘Charles Darwin’, Sapienza University, 00185 Rome, Italy; (G.P.); (F.P.); (B.M.); (L.T.); (R.S.); (M.T.F.)
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, 00185 Rome, Italy
| | - Rosa Sorrentino
- Department of Biology and Biotechnology ‘Charles Darwin’, Sapienza University, 00185 Rome, Italy; (G.P.); (F.P.); (B.M.); (L.T.); (R.S.); (M.T.F.)
| | - Maria Teresa Fiorillo
- Department of Biology and Biotechnology ‘Charles Darwin’, Sapienza University, 00185 Rome, Italy; (G.P.); (F.P.); (B.M.); (L.T.); (R.S.); (M.T.F.)
| |
Collapse
|
2
|
Identification of Immunodominant HIV-1 Epitopes Presented by HLA-C*12:02, a Protective Allele, Using an Immunopeptidomics Approach. J Virol 2019; 93:JVI.00634-19. [PMID: 31217245 PMCID: PMC6694829 DOI: 10.1128/jvi.00634-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 06/11/2019] [Indexed: 01/16/2023] Open
Abstract
Despite the fact that the cell surface expression level of HLA-C on both uninfected and HIV-infected cells is lower than those of HLA-A and -B, increasing evidence suggests an important role for HLA-C and HLA-C-restricted CD8+ T cell responses in determining the efficiency of viral control in HIV-1-infected individuals. Nonetheless, HLA-C-restricted T cell responses are much less well studied than HLA-A/B-restricted ones, and relatively few optimal HIV-1 CD8+ T cell epitopes restricted by HLA-C alleles have been defined. Recent improvements in the sensitivity of mass spectrometry (MS)-based approaches for profiling the immunopeptidome present an opportunity for epitope discovery on a large scale. Here, we employed an MS-based immunopeptidomic strategy to characterize HIV-1 peptides presented by a protective allele, HLA-C*12:02. We identified a total of 10,799 unique 8- to 12-mer peptides, including 15 HIV-1 peptides. The latter included 2 previously reported immunodominant HIV-1 epitopes, and analysis of T cell responses to the other HIV-1 peptides detected revealed an additional immunodominant epitope. These findings illustrate the utility of MS-based approaches for epitope definition and emphasize the capacity of HLA-C to present immunodominant T cell epitopes in HIV-infected individuals, indicating the importance of further evaluation of HLA-C-restricted responses to identify novel targets for HIV-1 prophylactic and therapeutic strategies.IMPORTANCE Mass spectrometry (MS)-based approaches are increasingly being employed for large-scale identification of HLA-bound peptides derived from pathogens, but only very limited profiling of the HIV-1 immunopeptidome has been conducted to date. Notably, a growing body of evidence has recently begun to indicate a protective role for HLA-C in HIV-1 infection, which may suggest that despite the fact that levels of HLA-C expression on both uninfected and HIV-1-infected cells are lower than those of HLA-A/B, HLA-C still presents epitopes to CD8+ T cells effectively. To explore this, we analyzed HLA-C*12:02-restricted HIV-1 peptides presented on HIV-1-infected cells expressing only HLA-C*12:02 (a protective allele) using liquid chromatography-tandem MS (LC-MS/MS). We identified a number of novel HLA-C*12:02-bound HIV-1 peptides and showed that although the majority of them did not elicit T cell responses during natural infection in a Japanese cohort, they included three immunodominant epitopes, emphasizing the contribution of HLA-C to epitope presentation on HIV-infected cells.
Collapse
|
3
|
Ramírez de Arellano E, Díez-Fuertes F, Aguilar F, de la Torre Tarazona HE, Sánchez-Lara S, Lao Y, Vicario JL, García F, González-Garcia J, Pulido F, Gutierrez-Rodero F, Moreno S, Iribarren JA, Viciana P, Vilches C, Ramos M, Capa L, Alcamí J, Del Val M. Novel association of five HLA alleles with HIV-1 progression in Spanish long-term non progressor patients. PLoS One 2019; 14:e0220459. [PMID: 31393887 PMCID: PMC6687284 DOI: 10.1371/journal.pone.0220459] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 07/16/2019] [Indexed: 12/12/2022] Open
Abstract
Certain host genetic variants, especially in the human leucocyte antigen (HLA) region, are associated with different progression of HIV-1-induced diseases and AIDS. Long term non progressors (LTNP) represent only the 2% of infected patients but are especially relevant because of their efficient HIV control. In this work we present a global analysis of genetic data in the large national multicenter cohort of Spanish LTNP, which is compared with seronegative individuals and HIV-positive patients. We have analyzed whether several single-nucleotide polymorphisms (SNPs) including in key genes and certain HLA-A and B alleles could be associated with a specific HIV phenotype. A total of 846 individuals, 398 HIV-1-positive patients (213 typical progressors, 55 AIDS patients, and 130 LTNPs) and 448 HIV-negative controls, were genotyped for 15 polymorphisms and HLA-A and B alleles. Significant differences in the allele frequencies among the studied populations identified 16 LTNP-associated genetic factors, 5 of which were defined for the first time as related to LTNP phenotype: the protective effect of HLA-B39, and the detrimental impact of HLA-B18, -A24, -B08 and –A29. The remaining eleven polymorphisms confirmed previous publications, including the protective alleles HLA-B57, rs2395029 (HCP5), HLA bw4 homozygosity, HLA-B52, HLA-B27, CCR2 V64I, rs9264942 (HLA-C) and HLA-A03; and the risk allele HLA bw6 homozygosity. Notably, individual Spanish HIV-negative individuals had an average of 0.12 protective HLA alleles and SNPs, compared with an average of 1.43 protective alleles per LTNP patient, strongly suggesting positive selection of LTNP. Finally, stratification of LTNP according to viral load showed a proportional relationship between the frequency of protective alleles with control of viral load. Interestingly, no differences in the frequency of protection/risk polymorphisms were found between elite controllers and LTNPs maintaining viral loads <2.000 copies/mL throughout the follow-up.
Collapse
Affiliation(s)
- Eva Ramírez de Arellano
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- * E-mail:
| | - Francisco Díez-Fuertes
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Infectious Diseases Unit, IBIDAPS, HIVACAT, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Francisco Aguilar
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | | | - Susana Sánchez-Lara
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Viral Immunology, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Yolanda Lao
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - José Luis Vicario
- Departamento de Histocompatibilidad, Centro de Transfusión de Madrid, Madrid, Spain
| | - Felipe García
- Infectious Diseases Unit, IBIDAPS, HIVACAT, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | | | - Federico Pulido
- HIV Unit, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Félix Gutierrez-Rodero
- Servicio de Medicina Interna, Unidad de Enfermedades Infecciosas, Hospital General Universitario de Elche, Alicante, Spain
| | | | | | - Pompeyo Viciana
- Laboratory of Immunovirology, Biomedicine Institute of Sevilla, Virgen del Rocío University Hospital, Clinic Unit of Infectious Diseases, Microbiology and Preventive Medicine, IBIS/CSIC/SAS/University of Sevilla, Sevilla, Spain
| | - Carlos Vilches
- Inmunogenética e Histocompatibilidad, Instituto de Investigación Sanitaria Puerta de Hierro, Majadahonda, Madrid, Spain
| | - Manuel Ramos
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Viral Immunology, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Laura Capa
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - José Alcamí
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Infectious Diseases Unit, IBIDAPS, HIVACAT, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Margarita Del Val
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Viral Immunology, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| |
Collapse
|
4
|
Kuiper J, Rothova A, de Boer J, Radstake T. The immunopathogenesis of birdshot chorioretinopathy; a bird of many feathers. Prog Retin Eye Res 2015; 44:99-110. [DOI: 10.1016/j.preteyeres.2014.11.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/22/2014] [Accepted: 11/18/2014] [Indexed: 01/01/2023]
|
5
|
Makadzange AT, Gillespie G, Dong T, Kiama P, Bwayo J, Kimani J, Plummer F, Easterbrook P, Rowland-Jones SL. Characterization of an HLA-C-restricted CTL response in chronic HIV infection. Eur J Immunol 2010; 40:1036-41. [PMID: 20104487 DOI: 10.1002/eji.200939634] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
HIV-specific CTL play an important role in the host control of HIV infection. HIV-nef may facilitate escape of HIV-infected cells from CTL recognition by selectively downregulating the expression of HLA-A and HLA-B molecules, while surface expression of HLA-C is unaffected. The HLA-C-restricted CTL responses have previously been largely ignored and poorly characterized. We examined the frequency, function, and phenotype of HLA-C-restricted CTL in ten antiretroviral therapy-naïve Caucasian and African individuals with chronic HIV-1 infection (for at least 8 years; CD4 cell counts in the range of 50-350) who carried the HLA-Cw04 allele. HLA-Cw04-restricted CTL that recognize a conserved epitope within HIV-1 envelope (aa 375-383 SF9) were analyzed using IFN-gamma ELISPOT assays and phenotypic analysis was carried out by flow cytometry. HLA-C-restricted CTL play an important role in the HIV-specific response, and can account for as much as 54% of the total response. HLA-C-restricted CTL are functionally and phenotypically identical to HLA-A- and HLA-B-restricted CTL. HLA-C-restricted CTL in chronic HIV infection are memory cells of an intermediate phenotype, characterized by high CD27 and low CD28 expression and lack of perforin production.
Collapse
Affiliation(s)
- Azure T Makadzange
- Medical Research Council, Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Mealey RH, Leib SR, Littke MH, Wagner B, Horohov DW, McGuire TC. Viral load and clinical disease enhancement associated with a lentivirus cytotoxic T lymphocyte vaccine regimen. Vaccine 2009; 27:2453-68. [PMID: 19368787 DOI: 10.1016/j.vaccine.2009.02.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 02/04/2009] [Accepted: 02/18/2009] [Indexed: 10/21/2022]
Abstract
Effective DNA-based vaccines against lentiviruses will likely induce CTL against conserved viral proteins. Equine infectious anemia virus (EIAV) infects horses worldwide, and serves as a useful model for lentiviral immune control. Although attenuated live EIAV vaccines have induced protective immune responses, DNA-based vaccines have not. In particular, DNA-based vaccines have had limited success in inducing CTL responses against intracellular pathogens in the horse. We hypothesized that priming with a codon-optimized plasmid encoding EIAV Gag p15/p26 with co-administration of a plasmid encoding an equine IL-2/IgG fusion protein as a molecular adjuvant, followed by boosting with a vaccinia vector expressing Gag p15/p26, would induce protective Gag-specific CTL responses. Although the regimen induced Gag-specific CTL in four of seven vaccinated horses, CTL were not detected until after the vaccinia boost, and protective effects were not observed in EIAV challenged vaccinates. Unexpectedly, vaccinates had significantly higher viral loads and more severe clinical disease, associated with the presence of vaccine-induced CTL. It was concluded that (1) further optimization of the timing and route of DNA immunization was needed for efficient CTL priming in vivo, (2) co-administration of the IL-2/IgG plasmid did not enhance CTL priming by the Gag p15/p26 plasmid, (3) vaccinia vectors are useful for lentivirus-specific CTL induction in the horse, (4) Gag-specific CTL alone are either insufficient or a more robust Gag-specific CTL response is needed to limit EIAV viremia and clinical disease, and (5) CTL-inducing vaccines lacking envelope immunogens can result in lentiviral disease enhancement. Although the mechanisms for enhancement associated with this vaccine regimen remain to be elucidated, these results have important implications for development of lentivirus T cell vaccines.
Collapse
Affiliation(s)
- Robert H Mealey
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, 99164-7040, United States.
| | | | | | | | | | | |
Collapse
|
7
|
Associations of human leukocyte antigen DRB with resistance or susceptibility to HIV-1 infection in the Pumwani Sex Worker Cohort. AIDS 2008; 22:1029-38. [PMID: 18520346 DOI: 10.1097/qad.0b013e3282ffb3db] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE A group of commercial sex workers in the Pumwani Sex Worker Cohort, established in 1985 in Nairobi, Kenya, remain HIV-1 uninfected despite heavy exposure to HIV-1 through active sex work. Previous studies showed that this resistance is associated with a strong CD4+ T-cell response, which suggested that human leukocyte antigen class II antigens are important in resistance/susceptibility to HIV-1 infection. DRB1 is the most polymorphic locus among class II genes and forms haplotypes with DRB3, DRB4 and DRB5. The aim of this study is to investigate the role of DRB alleles/haplotypes on resistance/susceptibility to HIV-1 infection. DESIGN In total, 1090 women enrolled in the Pumwani cohort were genotyped for DRB1, DRB3, DRB4 and DRB5 using a high-resolution sequence-based method. Allele/haplotype frequencies were compared between HIV-positive women and women who have remained HIV negative for more than 3 years despite frequent exposure. METHODS Human leukocyte antigen DRB genes were amplified, sequenced and genotyped using a two-step sequence-based method. Allele/haplotype frequencies were determined using PyPop32-0.6.0. Statistical analysis was conducted using SPSS 11.0 for Windows. RESULTS Three DRB1 alleles were associated with resistance: DRB1*010101 (P = 0.016; odd ratio (OR): 2.55; 95% confidence interval (CI): 1.16-5.61), DRB1*010201 (P = 0.019; OR: 1.86; 95% CI: 1.10-3.15), and DRB1*1102 (P = 0.025; OR: 1.72; 95% CI: 1.07-2.78). DRB1*030201 (P = 0.038; OR: 0.48; 95% CI: 0.23-0.98), DRB1*070101 (P = 0.035; OR: 0.54; 95% CI: 0.30-0.97), DRB1*1503 (P = 0.0004; OR: 0.34; 95% CI: 0.19-0.64), and DRB5*010101 (P = 0.001; OR: 0.37; 95% CI: 0.20-0.67) were associated with susceptibility. The haplotype DRB1*1102-DRB3*020201 was associated with HIV-1 resistance (P = 0.041; OR: 1.68; 95% CI: 1.02-2.78), whereas the haplotypes DRB1*070101-DRB4*01010101 (P = 0.041; OR: 0.52; 95% CI: 0.28-0.98) and DRB1*1503-DRB5*01010101 (P = 0.0002; OR: 0.30; 95% CI: 0.15-0.58) were associated with susceptibility. These associations with resistance/susceptibility to HIV-1 were independent of previously reported alleles HLA-DRB1*01 and HLA-A*2301. CONCLUSION Our findings indicate that human leukocyte antigen DRB-specific CD4+ T-cell responses are an important factor in resistance/susceptibility to HIV-1 infection.
Collapse
|
8
|
Iannello A, Debbeche O, Samarani S, Ahmad A. Antiviral NK cell responses in HIV infection: I. NK cell receptor genes as determinants of HIV resistance and progression to AIDS. J Leukoc Biol 2008; 84:1-26. [PMID: 18388298 DOI: 10.1189/jlb.0907650] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
NK cells play an important role in controlling viral infections. They can kill virus-infected cells directly as well as indirectly via antibody-dependent, cell-mediated cytotoxicity. They need no prior sensitization and expansion for this killing. NK cells are also considered as important regulators of antiviral immune responses. They do so by secreting a multitude of soluble mediators and by directly interacting with other immune cells, e.g., dendritic cells. NK cells do not possess a single well-defined receptor to recognize antigens on target cells. Instead, they express an array of inhibitory and activating receptors and coreceptors, which bind to their cognate ligands expressed on the surface of target cells. These ligands include classical and nonclassical MHC class I antigens, MHC-like proteins, and a variety of other self- and virus-derived molecules. They may be expressed constitutively and/or de novo on the surface of virus-infected cells. NK cell receptors (NKRs) of the killer-cell Ig-like receptor (KIR) family, like their MHC class I ligands, are highly polymorphic. Several recent studies suggest that epistatic interactions between certain KIR and MHC class I genes may determine innate resistance of the host to viral infections, including HIV. In the first part of this review article, we provide an overview of the current state of knowledge of NK cell immunobiology and describe how NKR genes, alone and in combination with HLA genes, may determine genetic resistance/susceptibilty to HIV infection and the development of AIDS in humans.
Collapse
Affiliation(s)
- Alexandre Iannello
- Laboratory of Innate Immunity, Center of Research Ste Justine Hospital, 3175 Côte Ste-Catherine, Montreal, Qc, H3T 1C5, Canada
| | | | | | | |
Collapse
|
9
|
Iannello A, Debbeche O, Samarani S, Ahmad A. Antiviral NK cell responses in HIV infection: II. viral strategies for evasion and lessons for immunotherapy and vaccination. J Leukoc Biol 2008; 84:27-49. [PMID: 18388299 DOI: 10.1189/jlb.0907649] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
As is the case in other viral infections, humans respond to HIV infection by activating their NK cells. However, the virus uses several strategies to neutralize and evade the host's NK cell responses. Consequently, it is not surprising that NK cell functions become compromised in HIV-infected individuals in early stages of the infection. The compromised NK cell functions also adversely affect several aspects of the host's antiviral adaptive immune responses. Researchers have made significant progress in understanding how HIV counters NK cell responses of the host. This knowledge has opened new avenues for immunotherapy and vaccination against this infection. In the first part of this review article, we gave an overview of our current knowledge of NK cell biology and discussed how the genes encoding NK cell receptors and their ligands determine innate genetic resistance/susceptibilty of humans against HIV infections and AIDS. In this second part, we discuss NK cell responses, viral strategies to counter these responses, and finally, their implications for anti-HIV immunotherapy and vaccination.
Collapse
Affiliation(s)
- Alexandre Iannello
- Laboratory of Innate Immunity, Center of Research Ste Justine Hospital, 3175 Côte Ste-Catherine, Montreal, Qc, H3T 1C5, Canada
| | | | | | | |
Collapse
|
10
|
Kantakamalakul W, de Souza M, Bejrachandra S, Ampol S, Cox J, Sutthent R. Identification of a novel HIV type 1 CRF01_AE cytotoxic T lymphocyte (CTL) epitope restricted by an HLA-Cw0602 allele and a novel HLA-A0206/peptide restriction. AIDS Res Hum Retroviruses 2006; 22:1271-82. [PMID: 17209771 DOI: 10.1089/aid.2006.22.1271] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This report describes specific T cell responses to HIV-1 CRF01_AE Env and A Gag peptides in 20 HIV-1 CRF01_AE-infected Thai individuals using an interferon-gamma (IFN-gamma) enzyme-linked immunospot (ELISpot) assay. Twenty-six potentially novel HLA class I-restricted CD8+ T cell epitopes were identified in 14/20 subjects. Fine mapping analysis using the chromium release cytotoxic T lymphocyte (CTL) assay revealed a novel HLA-Cw0602 restricted epitope of HIV-1 CRF01_AE Env (NAKTIIVHL) and a previously identified HIV-1 A Gag epitope (ATLEEMMTA) with a novel HLA-A0206 restriction.
Collapse
Affiliation(s)
- Wannee Kantakamalakul
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| | | | | | | | | | | |
Collapse
|
11
|
Honeyborne I, Rathod A, Buchli R, Ramduth D, Moodley E, Rathnavalu P, Chetty S, Day C, Brander C, Hildebrand W, Walker BD, Kiepiela P, Goulder PJR. Motif inference reveals optimal CTL epitopes presented by HLA class I alleles highly prevalent in southern Africa. THE JOURNAL OF IMMUNOLOGY 2006; 176:4699-705. [PMID: 16585563 DOI: 10.4049/jimmunol.176.8.4699] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
HIV-specific CTL play a central role in immune control of HIV. The basis for understanding the success or failure of this immune response requires identification of the specific epitopes targeted by CTL. However, in populations most severely affected by the global epidemic, this fundamental knowledge is hindered by the lack of characterization of many of the HLA class I alleles highly prevalent in such populations. Overall, the peptide-binding motif has been determined for a small minority (9%) of HLA class I alleles, with a strong bias toward those alleles prevalent in Caucasoid populations. These studies therefore set out to define, in a South African Zulu/Xhosa population at the epicenter of the epidemic, the epitopes presented by alleles highly prevalent, but for which the peptide-binding motif had not been characterized. Using a method of motif inference, epitopes presented by four such alleles prevalent in the Zulu/Xhosa population of Durban, South Africa, namely, B*3910, B*4201, B*8101, and Cw*1801, are described. Importantly, this approach may additionally facilitate optimization of epitopes in certain instances where conflicting reports in the literature exist regarding the peptide-binding motif, such as for HLA-A*2902, also highly prevalent in southern African populations. These data indicate that the previously anomalous position of HLA-A*2902 among HLA-A alleles, outside any recognized HLA-A supertype, is artifactual, and the true position of the A*2902 motif overlaps those of the A1 and A24 supertypes.
Collapse
Affiliation(s)
- Isobella Honeyborne
- Department of Paediatrics, Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, Oxford, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Emu B, Sinclair E, Favre D, Moretto WJ, Hsue P, Hoh R, Martin JN, Nixon DF, McCune JM, Deeks SG. Phenotypic, functional, and kinetic parameters associated with apparent T-cell control of human immunodeficiency virus replication in individuals with and without antiretroviral treatment. J Virol 2006; 79:14169-78. [PMID: 16254352 PMCID: PMC1280210 DOI: 10.1128/jvi.79.22.14169-14178.2005] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human immunodeficiency virus (HIV)-mediated immune response may be beneficial or harmful, depending on the balance between expansion of HIV-specific T cells and the level of generalized immune activation. The current study utilizes multicolor cytokine flow cytometry to study HIV-specific T cells and T-cell activation in 179 chronically infected individuals at various stages of HIV disease, including those with low-level viremia in the absence of therapy ("controllers"), low-level drug-resistant viremia in the presence of therapy (partial controllers on antiretroviral therapy [PCAT]), and high-level viremia ("noncontrollers"). Compared to noncontrollers, controllers exhibited higher frequencies of HIV-specific interleukin-2-positive gamma interferon-positive (IL-2(+) IFN-gamma(+)) CD4(+) T cells. The presence of HIV-specific CD4(+) IL-2(+) T cells was associated with low levels of proliferating T cells within the less-differentiated T-cell subpopulations (defined by CD45RA, CCR7, CD27, and CD28). Despite prior history of progressive disease, PCAT patients exhibited many immunologic characteristics seen in controllers, including high frequencies of IL-2(+) IFN-gamma(+) CD4(+) T cells. Measures of immune activation were lower in all CD8(+) T-cell subsets in controllers and PCAT compared to noncontrollers. Thus, control of HIV replication is associated with high levels of HIV-specific IL-2(+) and IFN-gamma(+) CD4(+) T cells and low levels of T-cell activation. This immunologic state is one where the host responds to HIV by expanding but not exhausting HIV-specific T cells while maintaining a relatively quiescent immune system. Despite a history of advanced HIV disease, a subset of individuals with multidrug-resistant HIV exhibit an immunologic profile comparable to that of controllers, suggesting that functional immunity can be reconstituted with partially suppressive highly active antiretroviral therapy.
Collapse
Affiliation(s)
- Brinda Emu
- Department of Medicine, San Francisco General Hospital, University of California, 94110, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Koibuchi T, Allen TM, Lichterfeld M, Mui SK, O'Sullivan KM, Trocha A, Kalams SA, Johnson RP, Walker BD. Limited sequence evolution within persistently targeted CD8 epitopes in chronic human immunodeficiency virus type 1 infection. J Virol 2005; 79:8171-81. [PMID: 15956562 PMCID: PMC1143727 DOI: 10.1128/jvi.79.13.8171-8181.2005] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Studies in acute human immunodeficiency virus type 1 (HIV-1) infection indicate viral evolution under CD8 T-cell immune selection pressure, but the effects of ongoing immune pressure on epitope evolution during chronic infection are not well described. In this study, we performed a detailed longitudinal analysis of viral sequence variation within persistently targeted cytotoxic T-lymphocyte (CTL) epitopes in two HIV-1-infected persons during 6 years of persistent viremia. Responses were quantitated using freshly isolated peripheral blood lymphocytes in direct lytic assays as well as by gamma interferon (IFN-gamma) Elispot assays on cryopreserved cells. Seven targeted epitopes were identified in each person. In the majority of cases, the dominant epitope sequence did not change over time, even in the presence of responses of sufficient magnitude that they were detectable using fresh peripheral blood mononuclear cells in direct lytic assays. Only 4 of the 14 autologous epitopes tested represented potential CTL escape variants; however, in most cases strong responses to these epitopes persisted for the 6 years of study. Although persistent IFN-gamma responses were detected to all epitopes, direct lytic assays demonstrated declining responses to some epitopes despite the persistence of the targeted sequence in vivo. These data indicate limited viral evolution within persistently targeted CD8 T-cell epitopes during the chronic phase of infection and suggest that these regions of the virus are either refractory to sequence change or that persistently activated CD8 T-cell responses in chronic infection exert little functional selection pressure.
Collapse
Affiliation(s)
- Tomohiko Koibuchi
- Partners AIDS Research Center, Massachusetts General Hospital, and Division of AIDS, Harvard Medical School, Boston, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Chung C, Mealey RH, McGuire TC. CTL from EIAV carrier horses with diverse MHC class I alleles recognize epitope clusters in Gag matrix and capsid proteins. Virology 2004; 327:144-54. [PMID: 15327905 PMCID: PMC3342308 DOI: 10.1016/j.virol.2004.06.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Revised: 06/11/2004] [Accepted: 06/23/2004] [Indexed: 11/29/2022]
Abstract
Cytotoxic T lymphocytes (CTL) are important for controlling equine infectious anemia virus (EIAV). Because Gag matrix (MA) and capsid (CA) are the most frequently recognized proteins, the hypothesis that CTL from EIAV-infected horses with diverse MHC class I alleles recognize epitope clusters (EC) in these proteins was tested. Four EC were identified by CTL from 15 horses and 8 of these horses had diverse MHC class I alleles. Two of the eight had CTL to EC1, six to EC2, five to EC3, and four to EC4. Because EC2-4 were recognized by CTL from >50% of horses with diverse alleles, the hypothesis was accepted. EC1 and EC3 were the most conserved EC and these more conserved broadly recognized EC may be most useful for CTL induction, helping overcome MHC class I polymorphism and antigenic variation.
Collapse
Affiliation(s)
| | | | - Travis C. McGuire
- Corresponding author. Department of Veterinary Microbiology and Pathology, Washington State University, PO Box 647040, Pullman, WA 99165-7040. Fax: +1 509 335 8529. (T.C. McGuire)
| |
Collapse
|
15
|
Geels MJ, Cornelissen M, Schuitemaker H, Anderson K, Kwa D, Maas J, Dekker JT, Baan E, Zorgdrager F, van den Burg R, van Beelen M, Lukashov VV, Fu TM, Paxton WA, van der Hoek L, Dubey SA, Shiver JW, Goudsmit J. Identification of sequential viral escape mutants associated with altered T-cell responses in a human immunodeficiency virus type 1-infected individual. J Virol 2004; 77:12430-40. [PMID: 14610167 PMCID: PMC262568 DOI: 10.1128/jvi.77.23.12430-12440.2003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Control of viremia in natural human immunodeficiency virus type 1 (HIV-1) infection in humans is associated with a virus-specific T-cell response. However, still much is unknown with regard to the extent of CD8(+) cytotoxic T-lymphocyte (CTL) responses required to successfully control HIV-1 infection and to what extent CTL epitope escape can account for rises in viral load and ultimate progression to disease. In this study, we chose to monitor through full-length genome sequence of replication-competent biological clones the modifications that occurred within predicted CTL epitopes and to identify whether the alterations resulted in epitope escape from CTL recognition. From an extensive analysis of 59 biological HIV-1 clones generated over a period of 4 years from a single individual in whom the viral load was observed to rise, we identified the locations in the genome of five CD8(+) CTL epitopes. Fixed mutations were identified within the p17, gp120, gp41, Nef, and reverse transcriptase genes. Using a gamma interferon ELIspot assay, we identified for four of the five epitopes with fixed mutations a complete loss of T-cell reactivity against the wild-type epitope and a partial loss of reactivity against the mutant epitope. These results demonstrate the sequential accumulation of CTL escape in a patient during disease progression, indicating that multiple combinations of T-cell epitopes are required to control viremia.
Collapse
Affiliation(s)
- Mark J Geels
- Department of Human Retrovirology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Currier JR, Dowling WE, Wasunna KM, Alam U, Mason CJ, Robb ML, Carr JK, McCutchan FE, Birx DL, Cox JH. Detection of high frequencies of HIV-1 cross-subtype reactive CD8 T lymphocytes in the peripheral blood of HIV-1-infected Kenyans. AIDS 2003; 17:2149-57. [PMID: 14523271 DOI: 10.1097/00002030-200310170-00002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To quantitate rapidly the frequency of HIV-1 subtype-specific and broadly HIV-1 cross-subtype-reactive CD8 T cells in the peripheral blood of HIV-1-infected individuals from a geographical region of multiple subtype endemicity. METHODS Autologous B-lymphoblastoid cell lines infected with recombinant vaccinia-viruses expressing gag, env and nef gene products from HIV-1 subtypes A-H were used as antigen-presenting cells to stimulate CD8 T cells from cryopreserved peripheral blood mononuclear cells. Cross-subtype and subtype-specific CD8 cell responses were assessed by flow cytometry for the upregulation of IFN-gamma gene expression in specifically activated CD8 T cells. RESULTS Strikingly high frequencies of circulating CD8 T cells (up to 11.3% of peripheral CD8 T cells) with specificity for HIV-1 were detectable using this methodology. Both subtype-specific and broadly cross-subtype-reactive CD8 T cells were detected as assessed by IFN-gamma production after stimulation. The pattern of cross-subtype reactivity appeared to be random when the results were assessed as a population, but analysis of the full-length sequence of the infecting virus for each individual showed some skewing of the CD8 cell response towards the infecting subtype. CONCLUSION High frequencies of HIV-1 cross-subtype-reactive peripheral CD8 T cells can be detected in individuals from a multiple subtype endemic region, providing an incentive for vaccine advancement in such locations. The future assessment of the subtype specificity of cellular immune responses requires full-length sequencing of the infecting virus in conjunction with a comprehensive analysis of phenotypic and functional parameters.
Collapse
Affiliation(s)
- Jeffrey R Currier
- US Military HIV Research Program, Suite 200, 13 Taft Court, Rockville, MD 20850, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Wang JH, Layden TJ, Eckels DD. Modulation of the peripheral T-Cell response by CD4 mutants of hepatitis C virus: transition from a Th1 to a Th2 response. Hum Immunol 2003; 64:662-73. [PMID: 12826368 DOI: 10.1016/s0198-8859(03)00070-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A disturbing feature of hepatitis C virus (HCV) is its long-term persistence in roughly 85% of those infected. Escape mutants may play a major role in HCV persistence. Our previous studies have identified a human leukocyte antigen DRB1*15 (HLA-DRB1*15) restricted Th1 epitope in the HCV NS3 protein, NS3(358-375), and escape variants of this epitope that may emerge under immune selection. Such variants attenuate or fail to stimulate T-cell proliferation. Here we provide data from peripheral blood mononuclear cells derived from four HLA-DRB1*15 patients chronically infected with HCV, and report that naturally occurring single amino acid substitutions in the Th1 epitope NS3(358-375) fail to stimulate proliferation, which is accompanied by a shift in cytokine secretion patterns from one characteristic of a Th1 antiviral responses to a Th2 form. Further, in one patient, we demonstrate that HCV variant peptides can effectively inhibit host polyclonal peripheral T-cell proliferation. We speculate that this phenomenon may be a factor in chronic HCV infection.
Collapse
Affiliation(s)
- Jane H Wang
- Section of Liver Diseases, University of Illinois at Chicago, Chicago, IL, USA
| | | | | |
Collapse
|
18
|
Karlsson AC, Deeks SG, Barbour JD, Heiken BD, Younger SR, Hoh R, Lane M, Sällberg M, Ortiz GM, Demarest JF, Liegler T, Grant RM, Martin JN, Nixon DF. Dual pressure from antiretroviral therapy and cell-mediated immune response on the human immunodeficiency virus type 1 protease gene. J Virol 2003; 77:6743-52. [PMID: 12767994 PMCID: PMC156163 DOI: 10.1128/jvi.77.12.6743-6752.2003] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus (HIV)-specific CD8(+) T-lymphocyte pressure can lead to the development of viral escape mutants, with consequent loss of immune control. Antiretroviral drugs also exert selection pressures on HIV, leading to the emergence of drug resistance mutations and increased levels of viral replication. We have determined a minimal epitope of HIV protease, amino acids 76 to 84, towards which a CD8(+) T-lymphocyte response is directed. This epitope, which is HLA-A2 restricted, includes two amino acids that commonly mutate (V82A and I84V) in the face of protease inhibitor therapy. Among 29 HIV-infected patients who were treated with protease inhibitors and who had developed resistance to these drugs, we show that the wild-type PR82V(76-84) epitope is commonly recognized by cytotoxic T lymphocytes (CTL) in HLA-A2-positive patients and that the CTL directed to this epitope are of high avidity. In contrast, the mutant PR82A(76-84) epitope is generally not recognized by wild-type-specific CTL, or when recognized it is of low to moderate avidity, suggesting that the protease inhibitor-selected V82A mutation acts both as a CTL and protease inhibitor escape mutant. Paradoxically, the absence of a mutation at position 82 was associated with the presence of a high-avidity CD8(+) T-cell response to the wild-type virus sequence. Our results indicate that both HIV type 1-specific CD8(+) T cells and antiretroviral drugs provide complex pressures on the same amino acid sequence of the HIV protease gene and, thus, can influence viral sequence evolution.
Collapse
Affiliation(s)
- Annika C Karlsson
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, California 94141, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Yu XG, Addo MM, Rosenberg ES, Rodriguez WR, Lee PK, Fitzpatrick CA, Johnston MN, Strick D, Goulder PJR, Walker BD, Altfeld M. Consistent patterns in the development and immunodominance of human immunodeficiency virus type 1 (HIV-1)-specific CD8+ T-cell responses following acute HIV-1 infection. J Virol 2002; 76:8690-701. [PMID: 12163589 PMCID: PMC136975 DOI: 10.1128/jvi.76.17.8690-8701.2002] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1)-specific CD8+ T-cell responses generated during acute infection play a critical role in the initial control of viremia. However, little is known about the viral T-cell epitopes targeted during acute infection or about their hierarchy in appearance and relative immunodominance over time. In this study, HIV-1-specific CD8+ T-cell responses in 18 acutely infected individuals expressing HLA-A3 and/or -B7 were characterized. Detailed analysis of CD8 responses in one such person who underwent treatment of acute infection followed by reexposure to HIV-1 through supervised treatment interruptions (STI) revealed recognition of only two cytotoxic T-lymphocyte (CTL) epitopes during symptomatic acute infection. HIV-1-specific CD8+ T-cell responses broadened significantly during subsequent exposure to the virus, ultimately targeting 27 distinct CTL epitopes, including 15 different CTL epitopes restricted by a single HLA class I allele (HLA-A3). The same few peptides were consistently targeted in an additional 17 persons expressing HLA-A3 and/or -B7 during acute infection. These studies demonstrate a consistent pattern in the development of epitope-specific responses restricted by a single HLA allele during acute HIV-1 infection, as well as persistence of the initial pattern of immunodominance during subsequent STI. In addition, they demonstrate that HIV-1-specific CD8+ T-cell responses can ultimately target a previously unexpected and unprecedented number of epitopes in a single infected individual, even though these are not detectable during the initial exposure to virus. These studies have important implications for vaccine design and evaluation.
Collapse
Affiliation(s)
- Xu G Yu
- Partners AIDS Research Center and Infectious Disease Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Currier JR, deSouza M, Chanbancherd P, Bernstein W, Birx DL, Cox JH. Comprehensive screening for human immunodeficiency virus type 1 subtype-specific CD8 cytotoxic T lymphocytes and definition of degenerate epitopes restricted by HLA-A0207 and -C(W)0304 alleles. J Virol 2002; 76:4971-86. [PMID: 11967314 PMCID: PMC136178 DOI: 10.1128/jvi.76.10.4971-4986.2002] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
For this report, the rapid identification and characterization of human immunodeficiency virus type 1 (HIV-1)-derived broadly cross-subtype-reactive CD8 cytotoxic T lymphocyte (CTL) epitopes were performed. Using a gamma interferon (IFN-gamma) Elispot assay-based approach and a panel of recombinant vaccinia viruses expressing gag, env, pol, and nef genes representing the seven most predominant subtypes and one circulating recombinant form of HIV-1, the subtype specificity and cross-subtype reactivity of a CD8 response were directly measured from circulating peripheral blood mononuclear cells (PBMC). Enhanced sensitivity of detection of CD8 responses from cryopreserved PBMC was achieved using autologous vaccinia virus-infected B-lymphoblastoid cell lines as supplemental antigen-presenting cells. Of eleven subjects studied, six exhibited broadly cross-subtype-reactive CD8-mediated IFN-gamma production (at least seven of eight subtypes recognized) to at least one major gene product from HIV-1. Screening of subjects showing broadly cross-subtype-specific responses in the vaccinia virus-based enzyme-linked immunospot (Elispot) assay using a panel of overlapping peptides resulted in the identification of cross-subtype responses down to the 20-mer peptide level in less than 3 days. Three subjects showed broad cross-subtype reactivity in both the IFN-gamma Elispot assay and the standard chromium release cytotoxicity assay. Fine mapping and HLA restriction analysis of the response from three subjects demonstrated that this technique can be used to define epitopes restricted by HLA-A, -B, and -C alleles. In addition, the ability of all three epitopes to be processed from multiple subtypes of their parent proteins and presented in the context of HLA class I molecules following de novo synthesis is shown. While all three minimal epitopes mapped here had previously been defined as HIV-1 epitopes, two are shown to have novel HLA restriction alleles and therefore exhibit degenerate HLA binding capacity. These findings provide biological validation of HLA supertypes in HIV-1 CTL recognition and support earlier studies of cross-subtype CTL responses during HIV-1 infection.
Collapse
|
21
|
Kaur A, Alexander L, Staprans SI, Denekamp L, Hale CL, McClure HM, Feinberg MB, Desrosiers RC, Johnson RP. Emergence of cytotoxic T lymphocyte escape mutations in nonpathogenic simian immunodeficiency virus infection. Eur J Immunol 2001; 31:3207-17. [PMID: 11745337 DOI: 10.1002/1521-4141(200111)31:11<3207::aid-immu3207>3.0.co;2-h] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although CTL escape has been well documented in pathogenic simian immunodeficiency virus (SIV) infection, there is no information on CTL escape in nonpathogenic SIV infection in nonhuman primate hosts like the sooty mangabeys. CTL responses and sequence variation in the SIV nef gene were evaluated in one sooty mangabey and one rhesus macaque inoculated together with the same stock of cloned SIVmac239. Each animal developed an immunodominant response to a distinct CTL epitope in Nef, aa 157-167 in the macaque and aa 20-28 in the mangabey. Nonsynonymous mutations in their respective epitopes were observed in both animals and resulted in loss of CTL recognition. These mutations were present in the majority of proviral DNA sequences at 16 weeks post infection in the macaque and >2 years post infection in the mangabey. These results document the occurrence of CTL escape in a host that does not develop AIDS, and adds to the growing body of evidence that CTL exert significant selective pressure in SIV infection.
Collapse
Affiliation(s)
- A Kaur
- Division of Immunology, New England Regional Primate Research Center, Harvard Medical School, Southborough, MA 01772, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Little AM, Scott I, Pesoa S, Marsh SG, Argüello R, Cox ST, Ramon D, Vullo C, Madrigal JA. HLA class I diversity in Kolla Amerindians. Hum Immunol 2001; 62:170-9. [PMID: 11182228 DOI: 10.1016/s0198-8859(00)00248-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Human leukocyte antigen (HLA) class I polymorphism was studied within a population of 70 unrelated Kolla Amerindians from the far northwest of Argentina close to the Bolivian border. The results indicate that the HLA-A, -B, and -C alleles typical of other Amerindian populations also predominate in the Kolla. These alleles belong to the following allele groups: HLA-A*02, *68, *31, *24, HLA-B*35, *15, *51, *39, *40, *48, and Cw*01, *03, *04, *07, *08, and *15. For the HLA-A locus, heterogeneity was seen for HLA-A*02 with A*0201, *0211, and *0222; and for A*68 with *68012 and *6817, the latter being a novel allele identified in this population. Analysis of HLA-B identified heterogeneity for all Amerindian allele groups except HLA-B*48, including the identification of the novel B*5113 allele. For HLA-C heterogeneity was identified within the Cw*07, *04, and *08 groups with Cw*0701/06, *0702, *04011, *0404, *0803, and *0809 identified. The most frequent "probable" haplotype found in this population was B*3505-Cw*04011. This study supports previous studies, which demonstrate increased diversity at HLA-B compared with HLA-A and -C. The polymorphism identified within the Kolla HLA-A, -B, and -C alleles supports the hypothesis that HLA evolution is subject to positive selection for diversity within the peptide binding site.
Collapse
Affiliation(s)
- A M Little
- Anthony Nolan Research Institute, The Royal Free Hospital, London, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kumar A, Buch S, Foresman L, Bischofberger N, Lifson JD, Narayan O. Development of virus-specific immune responses in SHIV(KU)-infected macaques treated with PMPA. Virology 2001; 279:97-108. [PMID: 11145893 DOI: 10.1006/viro.2000.0710] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Therapeutic intervention with highly active antiretroviral therapy (HAART) can lead to the suppression of HIV viremia below the threshold of detection for several years. However, impact of HAART on reconstitution of virus-specific immune responses remains poorly understood. In this study, four macaques were infected with pathogenic SHIV(KU). One week postinoculation two of the four animals were treated with PMPA [9-R-(2-phosphophomethoxypropyl)adenine] daily for 83 days. Two other macaques, that did not receive treatment, exhibited explosive virus replication accompanied by a near total loss of CD4(+) T cells and succumbed to AIDS-related complications within 6 months of infection. These animals did not develop any virus-specific immune responses. On the contrary, the animals that received PMPA showed transient loss of CD4(+) T cells that recovered during the treatment period. The virus burden declined below the level of detection that rebounded soon after cessation of PMPA therapy. The virus replicated productively for several weeks before both animals controlled the productive replication of virus. This control of virus replication was found to be associated with the development of virus-specific neutralizing antibodies, T-helper cells, and CTLs. Although PMPA did not eliminate virus from the animals, it provided them with enough time to mount virus-specific immune responses that eventually controlled the virus replication in the blood. Our results suggest that antiretroviral therapy, if initiated early during infection, would help the host in mounting virus-specific immune responses that might control productive replication of the virus.
Collapse
Affiliation(s)
- A Kumar
- Marion Merrell Dow Laboratory of Viral Pathogenesis, University of Kansas Medical Center, Kansas City, Kansas, 66160, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Ferrari G, Kostyu DD, Cox J, Dawson DV, Flores J, Weinhold KJ, Osmanov S. Identification of highly conserved and broadly cross-reactive HIV type 1 cytotoxic T lymphocyte epitopes as candidate immunogens for inclusion in Mycobacterium bovis BCG-vectored HIV vaccines. AIDS Res Hum Retroviruses 2000; 16:1433-43. [PMID: 11018863 DOI: 10.1089/08892220050140982] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
One of the fundamental goals of current strategies to develop an efficacious vaccine for AIDS is the elicitation of cytotoxic T lymphocyte (CTL) reactivities capable of recognizing cells infected with different subtypes of the human immunodeficiency virus type 1 (HIV-1). In efforts to explore new vaccine candidates by the UNAIDS/WHO Vaccine Committee, we review the most recent data concerning CTL epitopes that are conserved among the different HIV-1 subtypes. Moreover, we examine HLA allelic frequencies in several different populations, to determine those that could contribute to the goal of a cumulative phenotype frequency (CP) of at least 80%. By analyzing conserved epitopes in the context of HLA restricting alleles, we define a set of HIV-1 gene regions that may have the greatest potential to induce cross-clade reactive CTLs. The absence of well-defined correlates of immune protection that link CTL epitopes to delayed disease progression and/or prevention of infection does not permit an assignment of rank order of the most relevant component of a candidate vaccine. Thus far, most of the studies conducted in clade B-infected patients to define conserved and immunodominant epitopes indicate gag and pol gene products to be the most conserved among the HIV-1 subtypes. Moreover, anti-Pol and -Gag CTL responses appear to correlate inversely with disease progression, suggesting that they should be among the first choice of antigens to be included in a candidate vaccine construct aimed at induction of broad CTL responses. The impact of a clade B-based vaccine as a worldwide candidate capable of inducing protective immune responses can be determined only after "in vivo" studies. Meanwhile, extensive parallel studies in populations infected with non-clade B HIV-1 subtypes should define the patterns of immunodominant epitopes and HLA for comparison with the data already collected in clade B-infected subjects.
Collapse
Affiliation(s)
- G Ferrari
- Department of Surgery, Duke University Medical Center, Durham, North Carolina 2770, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Mollet L, Li TS, Samri A, Tournay C, Tubiana R, Calvez V, Debré P, Katlama C, Autran B. Dynamics of HIV-specific CD8+ T lymphocytes with changes in viral load.The RESTIM and COMET Study Groups. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:1692-704. [PMID: 10903781 DOI: 10.4049/jimmunol.165.3.1692] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The influence of HIV burden variations on the frequencies of Ag-specific CD8+ T cell responses was evaluated before and during highly active antiretroviral therapy by analyzing the number, diversity, and function of these cells. The frequencies of HLA-A2-restricted CD8+ PBL binding HLA-A2/HIV-epitope tetramers or producing IFN-gamma were below 1%. A panel of 16 CTL epitopes covering 15 HLA class I molecules in 14 patients allowed us to test 3.8 epitopes/patient and to detect 2.2 +/- 1.8 HIV epitope-specific CD8+ subsets per patient with a median frequency of 0.24% (0.11-4. 79%). During the first month of treatment, viral load rapidly decreased and frequencies of HIV-specific CD8 PBL tripled, eight new HIV specificities appeared of 11 undetectable at entry, while CMV-specific CD8+ PBL also appeared. With efficient HIV load control, all HIV specificities decayed involving a reduction of the CD8+CD27+CD11ahigh HIV-specific effector subset. Virus rebounds triggered by scheduled drug interruptions or transient therapeutic failures induced four patterns of epitope-specific CD8+ lymphocyte dynamics, i.e., peaks or disappearance of preexisting specificities, emergence of new specificities, or lack of changes. The HIV load rebounds mobilized both effector/memory HIV- and CMV-specific CD8+ lymphocytes. Therefore, frequencies of virus-specific CD8 T cells appear to be positively correlated to HIV production in most cases during highly active antiretroviral therapy, but an inverse correlation can also be observed with rapid virus changes that might involve redistribution, sequestration, or expansion of these Ag-specific CD8 T cells. Future strategies of therapeutic interruptions should take into account these various HIV-specific cell dynamics during HIV rebounds.
Collapse
Affiliation(s)
- L Mollet
- Laboratoire d'Immunologie Cellulaire et Tissulaire, Bâtiment Centre d'Etudes et de Recherches en Virologie et Immunologie, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7627, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Andersen MH, Søndergaard I, Zeuthen J, Elliott T, Haurum JS. An assay for peptide binding to HLA-Cw*0102. TISSUE ANTIGENS 1999; 54:185-90. [PMID: 10488746 DOI: 10.1034/j.1399-0039.1999.540210.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The assembly assay for peptide binding to class I major histocompatibility complex (MHC) molecules is based on the ability of peptides to stabilize MHC class I molecules synthesized by transporter associated with antigen processing (TAP)-deficient cell. The TAP-deficient cell line T2 has previously been used in the assembly assay to analyze peptide binding to HLA-A*0201 and -B*5101. In this study, we have extended this technique to assay for peptides binding to endogenous HLA-Cw*0102 molecules. We have analyzed the peptide binding of 20 peptides with primary anchor motifs for HLA-Cw*0102. One-third of the peptides analyzed bound with high affinity, half of the peptides examined did not bind, whereas the remaining peptides displayed intermediate binding activity. Interest in HLA-C molecules has increased significantly in recent years, since it has been shown that HLA-C molecules both can present peptides to cytotoxic T lymphocytes (CTL) and in addition are able to inhibit natural killer (NK)-mediated lysis.
Collapse
Affiliation(s)
- M H Andersen
- Department of Tumor Cell Biology, Danish Cancer Society, Copenhagen.
| | | | | | | | | |
Collapse
|
27
|
Hendel H, Caillat-Zucman S, Lebuanec H, Carrington M, O’Brien S, Andrieu JM, Schächter F, Zagury D, Rappaport J, Winkler C, Nelson GW, Zagury JF. New Class I and II HLA Alleles Strongly Associated with Opposite Patterns of Progression to AIDS. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.11.6942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
The genetics of resistance to infection by HIV-1 cohort consists of 200 slow and 75 rapid progressors to AIDS corresponding to the extremes of HIV disease outcome of 20,000 Caucasians of European descent. A comprehensive analysis of HLA class I and class II genes in this highly informative cohort has identified HLA alleles associated with fast or slow progression, including several not described previously. A quantitative analysis shows an overall HLA influence independent of and equal in magnitude (for the protective effect) to the effect of the CCR5-Δ32 mutation. Among HLA class I genes, A29 (p = 0.001) and B22 (p < 0.0001) are significantly associated with rapid progression, whereas B14 (p = 0.001) and C8 (p = 0.004) are significantly associated with nonprogression. The class I alleles B27, B57, C14 (protective), and C16, as well as B35 (susceptible), are also influential, but their effects are less robust. Influence of class II alleles was only observed for DR11. These results confirm the influence of the immune system on disease progression and may have implications on peptide-based vaccine development.
Collapse
Affiliation(s)
- Houria Hendel
- *Laboratoire de Physiologie Cellulaire, Université Pierre et Marie Curie, Paris, France
| | | | - Hélène Lebuanec
- *Laboratoire de Physiologie Cellulaire, Université Pierre et Marie Curie, Paris, France
| | - Mary Carrington
- ‡Intramural Research Support Program, SAIC-Frederick, National Cancer Institute-Frederick Cancer Research and Development Center, Frederick, MD 21702
| | - Steve O’Brien
- §Laboratory of Genomic Diversity, National Cancer Institute, Frederick MD 21702
| | | | - François Schächter
- *Laboratoire de Physiologie Cellulaire, Université Pierre et Marie Curie, Paris, France
| | - Daniel Zagury
- *Laboratoire de Physiologie Cellulaire, Université Pierre et Marie Curie, Paris, France
| | - Jay Rappaport
- ∥Center for Neurovirology and Neurooncology, MCP Hahnemann University of Health Sciences, Philadelphia, PA 19102
| | - Cheryl Winkler
- ‡Intramural Research Support Program, SAIC-Frederick, National Cancer Institute-Frederick Cancer Research and Development Center, Frederick, MD 21702
| | - George W. Nelson
- ‡Intramural Research Support Program, SAIC-Frederick, National Cancer Institute-Frederick Cancer Research and Development Center, Frederick, MD 21702
| | - Jean-François Zagury
- *Laboratoire de Physiologie Cellulaire, Université Pierre et Marie Curie, Paris, France
| |
Collapse
|
28
|
Buesa J, Raga JV, Colomina J, de Souza CO, Muñoz C, Gil MT. Rotavirus-specific cytotoxic T lymphocytes recognize overlapping epitopes in the amino-terminal region of the VP7 glycoprotein. Virology 1999; 257:424-37. [PMID: 10329553 DOI: 10.1006/viro.1999.9646] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rotavirus-specific cytotoxic T lymphocytes (CTL) play an important role in the resolution of rotavirus infection. The outer capsid glycoprotein, VP7, elicits a class I MHC-restricted CTL response. Vaccinia virus recombinants expressing the VP7 genes from simian rotavirus SA11 (serotype G3) and from the RF strain of bovine rotavirus (serotype G6) were used to analyze the CTL activity to this antigen in BALB/c (H-2(d)) and C57BL/6 (H-2(b)) mice neonatally infected with homologous and heterologous rotaviruses. A vaccinia virus recombinant expressing the first amino-terminal 88 amino acids of VP7 was constructed and used to search for cross-reactive CTL against this region of the protein. By using synthetic Kb, Db, and Kd motif-fitting peptides two overlapping CTL epitopes have been identified located in the first hydrophobic domain (H1) of VP7. Splenocytes obtained from rotavirus SA11-infected C57BL/6 mice induced the strongest CTL response against target cells sensitized with a peptide containing a Kb-restricted CTL epitope (amino acids 8-16). A second Kd-restricted epitope (residues 5-13) was recognized by splenocytes derived from rotavirus-infected BALB/c mice. These findings reveal the existence of CTL epitopes in the H1 signal sequence of the VP7 glycoprotein that coexist with a CTL epitope (residues 31-40) previously described within the H2 region.
Collapse
Affiliation(s)
- J Buesa
- Hospital Clinico Universitario and School of Medicine, University of Valencia, Valencia, Spain.
| | | | | | | | | | | |
Collapse
|
29
|
Wilson CC, Brown RC, Korber BT, Wilkes BM, Ruhl DJ, Sakamoto D, Kunstman K, Luzuriaga K, Hanson IC, Widmayer SM, Wiznia A, Clapp S, Ammann AJ, Koup RA, Wolinsky SM, Walker BD. Frequent detection of escape from cytotoxic T-lymphocyte recognition in perinatal human immunodeficiency virus (HIV) type 1 transmission: the ariel project for the prevention of transmission of HIV from mother to infant. J Virol 1999; 73:3975-85. [PMID: 10196293 PMCID: PMC104176 DOI: 10.1128/jvi.73.5.3975-3985.1999] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Host immunologic factors, including human immunodeficiency virus (HIV)-specific cytotoxic T lymphocytes (CTL), are thought to contribute to the control of HIV type 1 (HIV-1) replication and thus delay disease progression in infected individuals. Host immunologic factors are also likely to influence perinatal transmission of HIV-1 from infected mother to infant. In this study, the potential role of CTL in modulating HIV-1 transmission from mother to infant was examined in 11 HIV-1-infected mothers, 3 of whom transmitted virus to their offspring. Frequencies of HIV-1-specific human leukocyte antigen class I-restricted CTL responses and viral epitope amino acid sequence variation were determined in the mothers and their infected infants. Maternal HIV-1-specific CTL clones were derived from each of the HIV-1-infected pregnant women. Amino acid substitutions within the targeted CTL epitopes were more frequently identified in transmitting mothers than in nontransmitting mothers, and immune escape from CTL recognition was detected in all three transmitting mothers but in only one of eight nontransmitting mothers. The majority of viral sequences obtained from the HIV-1-infected infant blood samples were susceptible to maternal CTL. These findings demonstrate that epitope amino acid sequence variation and escape from CTL recognition occur more frequently in mothers that transmit HIV-1 to their infants than in those who do not. However, the transmitted virus can be a CTL susceptible form, suggesting inadequate in vivo immune control.
Collapse
Affiliation(s)
- C C Wilson
- AIDS Research Center and Infectious Disease Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Despite a strong cytotoxic T-lymphocyte (CTL) response directed against viral antigens, untreated individuals infected with the human immunodeficiency virus (HIV-1) develop AIDS. We have found that primary T cells infected with HIV-1 downregulate surface MHC class I antigens and are resistant to lysis by HLA-A2-restricted CTL clones. In contrast, cells infected with an HIV-1 in which the nef gene is disrupted are sensitive to CTLs in an MHC and peptide-specific manner. In primary T cells HLA-A2 antigens are downmodulated more dramatically than total MHC class I antigens, suggesting that nef selectively downmodulates certain MHC class I antigens. In support of this, studies on cells expressing individual MHC class I alleles have revealed that nef does not downmodulate HLA-C and HLA-E antigens. This selective downmodulation allows infected cells to maintain resistance to certain natural killer cells that lyse infected cells expressing low levels of MHC class I antigens. Downmodulation of MHC class I HLA-A2 antigens occurs not only in primary T cells, but also in B and astrocytoma cell lines. No effect of other HIV-1 accessory proteins such as vpu and vpr was observed. Thus Nef is a protein that may promote escape of HIV-1 from immune surveillance.
Collapse
Affiliation(s)
- K L Collins
- Department of Medicine, University of Michigan, Ann Arbor, USA
| | | |
Collapse
|
31
|
Deml L, Schirmbeck R, Reimann J, Wolf H, Wagner R. Immunostimulatory CpG motifs trigger a T helper-1 immune response to human immunodeficiency virus type-1 (HIV-1) gp 160 envelope proteins. Clin Chem Lab Med 1999; 37:199-204. [PMID: 10353461 DOI: 10.1515/cclm.1999.037] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Bacterial DNA sequences containing unmethylated CpG motifs have recently been proposed to exhibit immunostimulatory effects on B-, T- and NK cells, leading to the induction of humoral and cell-mediated immune responses. In the present study we investigated the immunomodulatory effects of a CpG-containing oligodeoxynucleotide (CpG ODN) to the HIV-1 gp 160 envelope (Env) protein in the BALB/c mouse model. Priming and boosting of mice with gp 160 adsorbed to aluminium hydroxide (Alum) induced a typical T helper-2 (Th2)-dominated immune response with high titers of gp 160-specific immunoglobulin (Ig)G1 isotypes but a weak IgG2a response. Specifically re-stimulated splenocytes from these mice predominantly secreted interleukin (IL)-5 but only minute amounts of interferon-gamma (IFN-gamma) upon specific re-stimulation. In contrast, a boost immunisation of gp 160/Alum primed mice with a gp 160/Alum/CpG combination resulted in a seven times higher production of IgG2a antibodies, without affecting the titers of IgG1 isotypes. Furthermore, approximately 10-fold increased levels of IFN-gamma, but significantly reduced amounts of IL-5, were secreted from gp 160-restimulated splenic cells. A further greater than 30-fold increase in the levels of specific IgG2a responses and a substantially elevated secretion of IFN-gamma were observed when the mice received gp160/Alum/CpG combinations for priming and boost injections. Thus, CpG ODNs are useful as an adjuvant to induce a typical Th0/Th1 response to HIV gp 160 proteins. However, despite the induction of a more Th1-like immune response, gp 16O/Alum/CpG combinations were not sufficient to prime an Env-specific cytotoxic T-cell (CTL) response.
Collapse
Affiliation(s)
- L Deml
- Institute of Medical Microbiology, University of Regensburg, Germany
| | | | | | | | | |
Collapse
|
32
|
Harrer T, Harrer E, Barbosa P, Kaufmann F, Wagner R, Brüggemann S, Kalden JR, Feinberg M, Johnson RP, Buchbinder S, Walker BD. Recognition of Two Overlapping CTL Epitopes in HIV-1 p17 by CTL from a Long-Term Nonprogressing HIV-1-Infected Individual. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.9.4875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
HIV-1 infection has been shown to elicit strong CTL responses in some infected persons, but few data are available regarding the relationship between targeted epitopes and in vivo viral quasispecies. In this study, we examined the CTL response in a person infected for 15 yr with a CD4 count persistently >500 cells/μl. The dominant in vivo activated CTL response was directed against two overlapping Gag CTL epitopes in an area of p17 known to be essential for viral replication. The 9-mer SLYNTVATL (amino acids 77–85) was recognized in conjunction with HLA-A2, whereas the overlapping 8-mer TLYCVHQR (amino acids 83–91) was recognized by HLA-A11-restricted CTL. Analysis of in vivo virus sequences both in PBMC and plasma revealed the existence of sequence variation in this region, which did not affect viral replication in vitro, but decreased recognition by the A11-restricted CTL response, with maintenance of the A2-restricted response. These results indicate that an essential region of the p17 protein can be simultaneously targeted by CTL through two different HLA molecules, and that immune escape from CTL recognition can occur without impairing viral replication. In addition, they demonstrate that Ag processing can allow for presentation of overlapping epitopes in the same infected cell, which can be affected quite differently by sequence variation.
Collapse
Affiliation(s)
- Thomas Harrer
- *Department of Medicine III with Institute of Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
- †Partners AIDS Research Center and Infectious Disease Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129
| | - Ellen Harrer
- *Department of Medicine III with Institute of Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
- †Partners AIDS Research Center and Infectious Disease Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129
| | | | - Friedemann Kaufmann
- ¶Institute of Medical Microbiology, University of Regensburg, Regensburg, Germany; and
| | - Ralf Wagner
- ¶Institute of Medical Microbiology, University of Regensburg, Regensburg, Germany; and
| | - Susanne Brüggemann
- *Department of Medicine III with Institute of Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Joachim R. Kalden
- *Department of Medicine III with Institute of Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Mark Feinberg
- ‡Gladstone Institute, San Francisco, CA 94141
- §Center of AIDS Research, San Francisco, CA 94141
| | - R. Paul Johnson
- †Partners AIDS Research Center and Infectious Disease Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129
| | - Susan Buchbinder
- ∥AIDS Office, Department of Public Health, San Francisco, CA 94140
| | - Bruce D. Walker
- †Partners AIDS Research Center and Infectious Disease Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129
| |
Collapse
|
33
|
Markham RB, Wang WC, Weisstein AE, Wang Z, Munoz A, Templeton A, Margolick J, Vlahov D, Quinn T, Farzadegan H, Yu XF. Patterns of HIV-1 evolution in individuals with differing rates of CD4 T cell decline. Proc Natl Acad Sci U S A 1998; 95:12568-73. [PMID: 9770526 PMCID: PMC22871 DOI: 10.1073/pnas.95.21.12568] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Evolution of HIV-1 env sequences was studied in 15 seroconverting injection drug users selected for differences in the extent of CD4 T cell decline. The rates of increase of either sequence diversity at a given visit or divergence from the first seropositive visit were both higher in progressors than in nonprogressors. Viral evolution in individuals with rapid or moderate disease progression showed selection favoring nonsynonymous mutations, while nonprogressors with low viral loads selected against the nonsynonymous mutations that might have resulted in viruses with higher levels of replication. For 10 of the 15 subjects no single variant predominated over time. Evolution away from a dominant variant was followed frequently at a later time point by return to dominance of strains closely related to that variant. The observed evolutionary pattern is consistent with either selection against only the predominant virus or independent evolution occurring in different environments within the host. Differences in the level to which CD4 T cells fall in a given time period reflect not only quantitative differences in accumulation of mutations, but differences in the types of mutations that provide the best adaptation to the host environment.
Collapse
Affiliation(s)
- R B Markham
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Hygiene and Public Health, Baltimore, MD 21205, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Wilson SE, Pedersen SL, Kunich JC, Wilkins VL, Mann DL, Mazzara GP, Tartaglia J, Celum CL, Sheppard HW. Cross-clade envelope glycoprotein 160-specific CD8+ cytotoxic T lymphocyte responses in early HIV type 1 clade B infection. AIDS Res Hum Retroviruses 1998; 14:925-37. [PMID: 9686639 DOI: 10.1089/aid.1998.14.925] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A major objective of current HIV-1 vaccination strategies is the induction of HIV-1-specific CD8+ MHC class I-restricted CTL responses, which are suggested to play a pivotal role in viral clearance and protection against HIV-1 disease progression. However, the marked genetic diversity of HIV-1 and existence of distinct viral subtypes or clades could potentially hinder the development of a universally efficacious HIV-1 vaccine. In this study we examined HIV-1 intraclade (B(LAI) versus B(MN)) Env gp160-specific CTL reactivity in recently HIV-1 clade B-infected individuals. We further evaluated the extent of interclade CTL cross-recognition of the divergent A and C Env gp160 subtypes, that are highly prevalent in the global pandemic. Freshly isolated PBMCs were stimulated in vitro with autologous PBMCs infected with recombinant vaccinia vectors expressing HIV-1 env, gag, pol, and nef genes derived from HIV-1 clade B. All 13 of the 19 HIV-1-seropositive subjects who elicited significant clade B Env gp160LAI CD8+ CTL responses also demonstrated comparable levels of CTL cross-reactivity against clade C92BR025 Env gp160. Nine of these individuals also showed extensive interclade CTL cross-recognition of clade A92UG037 Env gp160. Two HLA class I B7 donors had nondetectable intraclade CTL response against B Env gp160MN, while generating significant intraclade B(LAI) and interclade (A and C) Env gp160 CTL cross-reactivity. These observations serve to underscore the central importance of the HLA background of individuals in determining the pattern of immune reactivity to natural HIV-1 infection and presumably vaccines. Five donors studied also demonstrated broad CTL cross-reactivity against clade A92UG037 Gag p55, Pol, and/or Nef antigens. In conclusion, this present study indicates that there is a considerable degree of CD8+ CTL cross-recognition of the highly divergent HIV-1 Env gp160 subtypes during early phases of HIV-1 infection. Such findings suggest that HIV-1 vaccines based on a single clade that can induce extensive cross-clade immunity may demonstrate utility in diverse geographical regions.
Collapse
Affiliation(s)
- S E Wilson
- Division of Communicable Disease Control, California Department of Health Services, Berkeley 94704, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Durali D, Morvan J, Letourneur F, Schmitt D, Guegan N, Dalod M, Saragosti S, Sicard D, Levy JP, Gomard E. Cross-reactions between the cytotoxic T-lymphocyte responses of human immunodeficiency virus-infected African and European patients. J Virol 1998; 72:3547-53. [PMID: 9557634 PMCID: PMC109574 DOI: 10.1128/jvi.72.5.3547-3553.1998] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The great variability of protein sequences from human immunodeficiency virus (HIV) type 1 (HIV-1) isolates represents a major obstacle to the development of an effective vaccine against this virus. The surface protein (Env), which is the predominant target of neutralizing antibodies, is particularly variable. Here we examine the impact of variability among different HIV-1 subtypes (clades) on cytotoxic T-lymphocyte (CTL) activities, the other major component of the antiviral immune response. CTLs are produced not only against Env but also against other structural proteins, as well as some regulatory proteins. The genetic subtypes of HIV-1 were determined for Env and Gag from several patients infected either in France or in Africa. The cross-reactivities of the CTLs were tested with target cells expressing selected proteins from HIV-1 isolates of clade A or B or from HIV type 2 isolates. All African patients were infected with viruses belonging to clade A for Env and for Gag, except for one patient who was infected with a clade A Env-clade G Gag recombinant virus. All patients infected in France were infected with clade B viruses. The CTL responses obtained from all the African and all the French individuals tested showed frequent cross-reactions with proteins of the heterologous clade. Epitopes conserved between the viruses of clades A and B appeared especially frequent in Gag p24, Gag p18, integrase, and the central region of Nef. Cross-reactivity also existed among Gag epitopes of clades A, B, and G, as shown by the results for the patient infected with the clade A Env-clade G Gag recombinant virus. These results show that CTLs raised against viral antigens from different clades are able to cross-react, emphasizing the possibility of obtaining cross-immunizations for this part of the immune response in vaccinated individuals.
Collapse
Affiliation(s)
- D Durali
- Laboratoire d'Immunologie des Pathologies Infectieuses et Tumorales, Unité INSERM 445, Université René Descartes, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Bertoletti A, Cham F, McAdam S, Rostron T, Rowland-Jones S, Sabally S, Corrah T, Ariyoshi K, Whittle H. Cytotoxic T cells from human immunodeficiency virus type 2-infected patients frequently cross-react with different human immunodeficiency virus type 1 clades. J Virol 1998; 72:2439-48. [PMID: 9499105 PMCID: PMC109544 DOI: 10.1128/jvi.72.3.2439-2448.1998] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Knowledge of immune mechanisms responsible for the cross-protection between highly divergent viruses such as human immunodeficiency virus type 1 (HIV-1) and HIV-2 may contribute to an understanding of whether virus variability may be overcome in the design of vaccine candidates which are broadly protective across the HIV subtypes. We demonstrate that despite the significant difference in virus amino acid sequence, the majority of HIV-2-infected individuals with different HLA molecules possess a dominant cytotoxic T-cell response which is able to recognize HIV-1 Gag protein. Furthermore, HLA-B5801-positive subjects show broad cross-recognition of HIV-1 subtypes since they mounted a T-cell response that tolerated extensive amino acid substitutions within HLA-B5801-restricted HIV-1 and HIV-2 epitopes. These results suggests that HLA-B5801-positive HIV-2-infected individuals have an enhanced ability to react with HIV-1 that could play a role in cross-protection.
Collapse
Affiliation(s)
- A Bertoletti
- Medical Research Council Laboratories, Fajara, The Gambia, West Africa.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Tüting T, Wilson CC, Martin DM, Kasamon YL, Rowles J, Ma DI, Slingluff CL, Wagner SN, van der Bruggen P, Baar J, Lotze MT, Storkus WJ. Autologous Human Monocyte-Derived Dendritic Cells Genetically Modified to Express Melanoma Antigens Elicit Primary Cytotoxic T Cell Responses In Vitro: Enhancement by Cotransfection of Genes Encoding the Th1-Biasing Cytokines IL-12 and IFN-α. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.3.1139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
DNA-based immunization strategies designed to elicit cellular antitumor immunity offer an attractive alternative to protein- or peptide-based approaches. In the present study we have evaluated the feasibility of DNA vaccination for the induction of CTL reactivity to five different melanoma Ags in vitro. Cultured, monocyte-derived dendritic cells (DC) were transiently transfected with plasmid DNA encoding human MART-1/Melan-A, pMel-17/gp100, tyrosinase, MAGE-1, or MAGE-3 by particle bombardment and used to stimulate autologous PBMC responder T cells. CTL reactivity to these previously identified melanoma Ags was reproducibly generated after two or three stimulations with genetically modified DC. Co-ordinate transfection of two melanoma Ag cDNAs into DC promoted CTL responders capable of recognizing epitopes from both gene products. Coinsertion of genes encoding the Th1-biasing cytokines IL-12 or IFN-α consistently enhanced the magnitude of the resulting Ag-specific CTL reactivity. Importantly, DC transfected with a single melanoma Ag cDNA were capable of stimulating Ag-specific CTL reactivity restricted by multiple host MHC alleles, some of which had not been previously identified. These results support the inherent strengths of gene-based vaccine approaches that do not require prior knowledge of responder MHC haplotypes or of relevant MHC-restricted peptide epitopes. Given previous observations of in situ tumor HLA allele-loss variants, DC gene vaccine strategies may elicit a greater diversity of host therapeutic immunity, thereby enhancing the clinical utility and success of such approaches.
Collapse
Affiliation(s)
| | - Cara C. Wilson
- §Internal Medicine, University of Pittsburgh School of Medicine, and University of Pittsburgh Cancer Institute, Pittsburgh, PA 15261
| | | | | | | | | | - Craig L. Slingluff
- ¶Department of Surgery, University of Virginia, Charlottesville, VA 22908
| | - Stephan N. Wagner
- ∥Department of Dermatology, University of Essen School of Medicine, Essen, Germany; and
| | | | | | | | | |
Collapse
|
39
|
Yang OO, Walker BD. CD8+ cells in human immunodeficiency virus type I pathogenesis: cytolytic and noncytolytic inhibition of viral replication. Adv Immunol 1997; 66:273-311. [PMID: 9328644 DOI: 10.1016/s0065-2776(08)60600-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- O O Yang
- AIDS Research Center, Massachusetts General Hospital, Boston 02114, USA
| | | |
Collapse
|
40
|
Betts MR, Krowka J, Santamaria C, Balsamo K, Gao F, Mulundu G, Luo C, N'Gandu N, Sheppard H, Hahn BH, Allen S, Frelinger JA. Cross-clade human immunodeficiency virus (HIV)-specific cytotoxic T-lymphocyte responses in HIV-infected Zambians. J Virol 1997; 71:8908-11. [PMID: 9343257 PMCID: PMC192363 DOI: 10.1128/jvi.71.11.8908-8911.1997] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have examined cross-clade HIV-specific cytotoxic T-lymphocyte (CTL) activity in peripheral blood of eight Zambian individuals infected with non-B-clade human immunodeficiency virus type 1 (HIV-1). Heteroduplex mobility assay and partial sequence analysis of env and gag genes strongly suggests that all the HIV-infected subjects were infected with clade C HIV-1. Six of eight C-clade HIV-infected individuals elicited CTL activity specific for recombinant vaccinia virus-infected autologous targets expressing HIV gag-pol-env derived from B-clade HIV-1 (IIIB). Recognition of individual recombinant HIV-1 B-clade vaccinia virus-infected targets expressing gag, pol, or env was variable among the patients tested, indicating that cross-clade CTL activity is not limited to a single HIV protein. These data demonstrate that HIV clade C-infected individuals can mount vigorous HIV clade B-reactive CTL responses.
Collapse
Affiliation(s)
- M R Betts
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, 27599-7290, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Host factors play an important role in determining rates of disease progression in human immunodeficiency virus (HIV)-infected individuals. HIV is able to subvert the host immune system by infecting CD4+ T cells that normally orchestrate immune responses and by inducing the secretion of proinflammatory cytokines that the virus can utilize to its own replicative advantage. The recognition that certain chemokine receptors serve as necessary co-factors for HIV entry into its target cells as well as the fact that ligands for these receptors can modulate the efficiency of HIV infection has expanded the number and scope of host factors that may impact the pathogenesis of HIV disease. This area of investigation will no doubt yield novel therapeutic strategies for intervention in HIV disease; however, caution is warranted in light of the enormous complexity of the pleiotropic cytokine and chemokine networks and the uncertainty inherent in manipulating these systems. HIV-infected long-term non-progressors represent an excellent model to study potential host factors involved in HIV disease pathogenesis. Genetic factors certainly have a major impact on the immune responses mounted by the host. In this regard, a polymorphism in the gene for the HIV co-receptor CC chemokine receptor 5 (CCR5), which serves as a co-receptor for macrophage (M)-tropic strains of HIV, affords a high degree of protection against HIV infection in individuals homozygous for the genetic defect and some degree of protection against disease progression in HIV-infected heterozygotes. HIV-specific immune responses, including cytotoxic T-lymphocyte (CTL) responses and neutralizing antibody responses, also appear to play salutary roles in protecting against disease progression.
Collapse
Affiliation(s)
- O J Cohen
- National Institute of Allergy and Infectious Diseases, Laboratory of Immunoregulation, Bethesda, Maryland, USA.
| | | | | |
Collapse
|
42
|
Hudrisier D, Oldstone MB, Gairin JE. The signal sequence of lymphocytic choriomeningitis virus contains an immunodominant cytotoxic T cell epitope that is restricted by both H-2D(b) and H-2K(b) molecules. Virology 1997; 234:62-73. [PMID: 9234947 DOI: 10.1006/viro.1997.8627] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Infection of H-2b mice with lymphocytic choriomeningitis virus (LCMV) generates three well-characterized H-2D(b)-restricted immunodominant epitopes delineated in the NP, GP1, and GP2 proteins. Here we report that the H-2D(b)-restricted GP1 epitope GP33-41/43 (KAVYNFATC/GI) located in the signal sequence of LCMV is also the immunodominant epitope recognized by CTL at the surface of the same infected cells in the context of H-2K(b) restriction. The GP1 epitope bound to H-2D(b) and H-2K(b) molecules with comparable affinities. The respective binding processes involved different sets of peptide anchoring residues and required dramatically different conformations of the peptide backbone as well as rearrangement of residue side chains. The 10-mer peptide GP34-43 (AVYNFATCGI) was the optimal H-2K(b)-binding sequence and the 8-mer peptide GP34-41 (AVYNFATC) the minimal sequence for optimal H-2K(b)-restricted CTL recognition. Comparison of lytic activities of primary splenic anti-LCMV CTL from C57BL/6 (D(b+)/K(b+)), B10A.[5R] (D(b-)/K(b+)), and B10A.[2R] (D(b+)/K(b-)) mice against LCMV-infected or peptide-coated target cells expressing either one or the two MHC alleles revealed that the H-2K(b)-restricted component of the anti-GP1 CTL response was mounted independently of but as efficiently as its H-2D(b) counterpart. Analysis of the immune response against a GP1 variant that escapes CTL recognition showed that the GP1 epitope: (i) was likely the only immunodominant LCMV epitope in the context of H-2K(b), and (ii) could efficiently evade H-2D(b) and H-2K(b)-restricted CTL mediated lysis.
Collapse
Affiliation(s)
- D Hudrisier
- Institut de Pharmacologie et de Biologie Structurale, UPR 9062 CNRS, Toulouse, France
| | | | | |
Collapse
|
43
|
|