1
|
Xie M, Zhang W, Shu MD, Xu A, Lenis DA, DiMaio D, Steitz JA. The host Integrator complex acts in transcription-independent maturation of herpesvirus microRNA 3' ends. Genes Dev 2015. [PMID: 26220997 PMCID: PMC4526738 DOI: 10.1101/gad.266973.115] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this study, Xie et al. identify a novel Integrator cleavage step in a noncanonical microRNA (miRNA) biogenesis pathway. They found that this cleavage step occurs at the 3′ ends of HVS pre-miRNAs, which is regulated by a specific 3′ end processing signal, the miRNA 3′ box. The findings here provide further insight into the structure and function of the Integrator complex. Herpesvirus saimiri (HVS) is an oncogenic γ-herpesvirus that produces microRNAs (miRNAs) by cotranscription of precursor miRNA (pre-miRNA) hairpins immediately downstream from viral small nuclear RNAs (snRNA). The host cell Integrator complex, which recognizes the snRNA 3′ end processing signal (3′ box), generates the 5′ ends of HVS pre-miRNA hairpins. Here, we identify a novel 3′ box-like sequence (miRNA 3′ box) downstream from HVS pre-miRNAs that is essential for miRNA biogenesis. In vivo knockdown and rescue experiments confirmed that the 3′ end processing of HVS pre-miRNAs also depends on Integrator activity. Interaction between Integrator and HVS primary miRNA (pri-miRNA) substrates that contain only the miRNA 3′ box was confirmed by coimmunoprecipitation and an in situ proximity ligation assay (PLA) that we developed to localize specific transient RNA–protein interactions inside cells. Surprisingly, in contrast to snRNA 3′ end processing, HVS pre-miRNA 3′ end processing by Integrator can be uncoupled from transcription, enabling new approaches to study Integrator enzymology.
Collapse
Affiliation(s)
- Mingyi Xie
- Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA; Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Wei Zhang
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Mei-Di Shu
- Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA; Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Acer Xu
- Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA; Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Diana A Lenis
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794, USA
| | - Daniel DiMaio
- Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA; Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Joan A Steitz
- Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA; Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| |
Collapse
|
2
|
A molecular model for the differential activation of STAT3 and STAT6 by the herpesviral oncoprotein tip. PLoS One 2012; 7:e34306. [PMID: 22509288 PMCID: PMC3320567 DOI: 10.1371/journal.pone.0034306] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 02/27/2012] [Indexed: 01/27/2023] Open
Abstract
Constitutive STAT signaling provides growth promoting signals in many forms of malignancy. We performed molecular modeling and molecular dynamics studies of the interaction between the regulatory Src homology 2 (SH2) domains of STAT3 and 6 with phosphorylated peptides of the herpesviral oncoprotein Tip, which facilitates Src kinase mediated STAT-activation and T cell proliferation. The studies give insight into the ligand binding specificity of the STAT SH2 domains and provide the first model for the differential activation of STAT3 or STAT6 by two distinct regions of the viral Tip protein. The biological relevance of the modeled interactions was then confirmed by activation studies using corresponding recombinant oncoproteins, and finally by respective recombinant viruses. The functional data give experimental validation of the molecular dynamics study, and provide evidence for the involvement of STAT6 in the herpesvirus induced T cell proliferation.
Collapse
|
3
|
Rosenwirth B, Kondova I, Niphuis H, Greenwood EJD, Schmidt F, Verschoor EJ, Wittmann S, Heeney JL, Bogers WMJM, Fickenscher H, Koopman G. Herpesvirus saimiri infection of rhesus macaques: a model for acute rhadinovirus-induced t-cell transformation and oncogenesis. J Med Virol 2011; 83:1938-50. [PMID: 21915869 DOI: 10.1002/jmv.22197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Herpesvirus saimiri (HVS) causes acute lymphoma and leukemia upon experimental infection of various monkey species. HVS strain C488 is also capable of transforming human T-lymphocytes to stable growth in culture. The most susceptible species for oncogenesis are New World primates, in particular the cottontop tamarin (Saguinus oedipus). However, Old World monkeys such as macaques are the most used animal model for the close-to-human situation. The limited data on HVS infection in Old World monkeys prompted us to investigate susceptibility to infection and disease induction by HVS in macaques. After having established that rhesus macaques can be infected productively, and that rhesus T-cells can be transformed in vivo by HVS, we observed induction of lymphoma in all inoculated animals. Pre-existing humoral immunity in part of the rhesus colony capable of blocking HVS infection could be overcome by preselecting rhesus macaques for lack of this immunity of unknown origin. HVS infection of rhesus macaques as compared to that of New World monkeys has the advantages that disease progression is more prolonged, and larger blood volumes can be collected, which allows more extended analyses. Also, rhesus monkeys are the best immunologically and immunogenetically characterized primate species next to humans. This model could be useful for the evaluation of candidate tumor vaccines and to test novel approaches for cancer immunotherapy. In addition, HVS infection of macaques could eventually be useful as a surrogate model to address certain questions in rhadinovirus-induced human cancer such as effusion lymphoma or Kaposi's sarcoma.
Collapse
|
4
|
Abstract
Viruses that establish lifelong latent infections must ensure that the viral genome is maintained within the latently infected cell throughout the life of the host, yet at the same time must also be capable of avoiding elimination by the immune surveillance system. Gammaherpesviruses, which include the human viruses Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus, establish latent infections in lymphocytes. Infection of this dynamic host-cell population requires that the viruses have appropriate strategies for enabling the viral genome to persist while these cells go through rounds of mitosis, but at the same time must avoid detection by host CD8(+) cytotoxic T lymphocytes (CTLs). The majority of gammaherpesviruses studied have been found to encode a specific protein that is critical for maintenance of the viral genome within latently infected cells. This protein is termed the genome maintenance protein (GMP). Due to its vital role in long-term latency, this offers the immune system a crucial target for detection and elimination of virus-infected cells. GMPs from different gammaherpesviruses have evolved related strategies that allow the protein to be present within latently infected cells, but to remain effectively hidden from circulating CD8(+) CTLs. In this review, I will summarize the role of the GMPs and highlight the available data describing the immune-evasion properties of these proteins.
Collapse
Affiliation(s)
- Neil Blake
- Division of Medical Microbiology, School of Infection and Host Defence, University of Liverpool, Liverpool L69 3GA, UK
| |
Collapse
|
5
|
Induction of protective immunity against murine gammaherpesvirus 68 infection in the absence of viral latency. J Virol 2009; 84:2453-65. [PMID: 20015983 DOI: 10.1128/jvi.01543-09] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Human gammaherpesviruses, Epstein-Barr virus, and human herpesvirus 8/Kaposi's sarcoma-associated herpesvirus are important pathogens associated with diseases, including lymphomas and other malignancies. Murine gammaherpesvirus 68 (MHV-68) is used as an experimental model system to study the host immune control of infection and explore novel vaccine strategies based on latency-deficient live viruses. We studied the properties and the potential of a recombinant MHV-68 (AC-RTA) in which the genes required for persistent infection were replaced by a constitutively expressed viral transcription activator, RTA, which dictates the virus to lytic replication. After intranasal infection of mice, replication of AC-RTA in the lung was attenuated, and no AC-RTA virus or viral DNA was detected in the isolated splenocytes, indicating a lack of latency in the spleen. Infection of the AC-RTA virus elicited both cellular immune responses and virus-specific IgG at a level comparable to that elicited by infection of the wild-type virus. Importantly, vaccination of AC-RTA was able to protect mice against subsequent challenge by the wild-type MHV-68. AC-RTA provides a vaccine strategy for preventing infection of human gammaherpesviruses. Furthermore, our results suggest that immunity to the major latent antigens is not required for protection.
Collapse
|
6
|
Lehner M, Grillhoesl C, Full F, Vogel B, Weller P, Müller-Fleckenstein I, Schmidt M, Fleckenstein B, Holter W, Ensser A. Transformation efficiency by Herpesvirus saimiri is not a limiting factor in clonal CD8pos T cell outgrowth. Virology 2009; 388:15-20. [PMID: 19375768 DOI: 10.1016/j.virol.2009.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 12/30/2008] [Accepted: 03/14/2009] [Indexed: 10/20/2022]
Abstract
The routine transformation of human CD8(pos) T cells by Herpesvirus saimiri has so far not been achieved in the case of pre-expanded antigen-specific CTLs. Here we transformed 73% of polyclonal EBV-specific CD8(pos) T cell cultures using an optimized culture medium supplemented with IL-2, IL-7, IL-12, and TGF-beta(1). Still, antigen-specific cytotoxicity was frequently lost and analysis of the TCR Vbeta-chain repertoire revealed a variable outgrowth of several initially subdominant populations. Limiting dilution cloning of cells in the presence of high titers of HVS did not result in clonal transformation but in the rapid loss of the viral genome in outgrowing clones. In summary, our data suggest that transformation of CD8(pos) T cells out of bulk cultures can be routinely achieved, while viral transformation itself remains an infrequent event on a per cell basis. The practical use of the improved immortalization of antigen-expanded CD8(pos) T cell lines, however, is limited by the arbitrary outgrowth of subdominant populations of unpredictable specificity.
Collapse
Affiliation(s)
- Manfred Lehner
- Labor für Zelltherapie, Abteilung Haematologie und Onkologie, Klinik für Kinder und Jugendliche, Universitätsklinikum, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Barcy S, De Rosa SC, Vieira J, Diem K, Ikoma M, Casper C, Corey L. Gamma delta+ T cells involvement in viral immune control of chronic human herpesvirus 8 infection. THE JOURNAL OF IMMUNOLOGY 2008; 180:3417-25. [PMID: 18292568 DOI: 10.4049/jimmunol.180.5.3417] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Little is known about what effector populations are associated with the control of human herpesvirus 8 (HHV-8) infection in vivo. We compared T lymphocyte subsets among HIV-HHV-8+ and HIV-HHV-8- infected human individuals. alphabeta+ T cells from HHV-8-infected individuals displayed a significantly higher percentage of differentiated effector cells among both CD4+ and CD8+ T cell subsets. HHV-8 infection was associated with significant expansion of gammadelta+ Vdelta1 T cells expressing a differentiated effector cell phenotype in peripheral blood. In vitro stimulation of PBMC from HHV-8-infected individuals with either infectious viral particles or different HHV-8 viral proteins resulted in gammadelta Vdelta1 T cell activation. In addition, gammadelta Vdelta1 T cells displayed a strong reactivity against HHV-8-infected cell lines and prevented the release of infectious viral particles following the induction of lyric replication. These data indicate that gammadelta T cells play a role in both innate and adaptive T cell responses against HHV-8 in immunocompetent individuals.
Collapse
Affiliation(s)
- Serge Barcy
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98109, USA.
| | | | | | | | | | | | | |
Collapse
|
8
|
Mitchell JL, Trible RP, Emert-Sedlak LA, Weis DD, Lerner EC, Applen JJ, Sefton BM, Smithgall TE, Engen JR. Functional characterization and conformational analysis of the Herpesvirus saimiri Tip-C484 protein. J Mol Biol 2006; 366:1282-93. [PMID: 17207813 PMCID: PMC2262936 DOI: 10.1016/j.jmb.2006.12.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Revised: 12/06/2006] [Accepted: 12/07/2006] [Indexed: 11/15/2022]
Abstract
Tyrosine kinase interacting protein (Tip) of Herpesvirus saimiri (HVS) activates the lymphoid-specific member of the Src family kinase Lck. The Tip:Lck interaction is essential for transformation and oncogenesis in HVS-infected cells. As there are no structural data for Tip, hydrogen-exchange mass spectrometry was used to investigate the conformation of a nearly full-length form (residues 1-187) of Tip from HVS strain C484. Disorder predictions suggested that Tip would be mostly unstructured, so great care was taken to ascertain whether recombinant Tip was functional. Circular dichroism and gel-filtration analysis indicated an extended, unstructured protein. In vitro and in vivo binding and kinase assays confirmed that purified, recombinant Tip interacted with Lck, was capable of activating Lck kinase activity strongly and was multiply phosphorylated by Lck. Hydrogen-exchange mass spectrometry of Tip then showed that the majority of backbone amide hydrogen atoms became deuterated after only 10 s of labeling. Such a result suggested that Tip was almost totally unstructured in solution. Digestion of deuterium-labeled Tip revealed some regions with minor protection from exchange. Overall, it was found that, although recombinant Tip is still functional and capable of binding and activating its target Lck, it is largely unstructured.
Collapse
Affiliation(s)
| | - Ronald P. Trible
- Molecular Genetics & Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Lori A. Emert-Sedlak
- Molecular Genetics & Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - David D. Weis
- Department of Chemistry, University of New Mexico, Albuquerque, NM 87131
| | - Edwina C. Lerner
- Molecular Genetics & Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Jeremy J. Applen
- Department of Chemistry, University of New Mexico, Albuquerque, NM 87131
| | | | - Thomas E. Smithgall
- Molecular Genetics & Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - John R. Engen
- Department of Chemistry, University of New Mexico, Albuquerque, NM 87131
- Chemistry & Chemical Biology and The Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA 02115
- *Address correspondence: John R. Engen, 341 Mugar Life Sciences, The Barnett Institute, Northeastern University, 360 Huntington Ave., Boston, MA 02115-5000,
| |
Collapse
|
9
|
Brinkmann MM, Schulz TF. Regulation of intracellular signalling by the terminal membrane proteins of members of the Gammaherpesvirinae. J Gen Virol 2006; 87:1047-1074. [PMID: 16603506 DOI: 10.1099/vir.0.81598-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The human gamma(1)-herpesvirus Epstein-Barr virus (EBV) and the gamma(2)-herpesviruses Kaposi's sarcoma-associated herpesvirus (KSHV), rhesus rhadinovirus (RRV), herpesvirus saimiri (HVS) and herpesvirus ateles (HVA) all contain genes located adjacent to the terminal-repeat region of their genomes, encoding membrane proteins involved in signal transduction. Designated 'terminal membrane proteins' (TMPs) because of their localization in the viral genome, they interact with a variety of cellular signalling molecules, such as non-receptor protein tyrosine kinases, tumour-necrosis factor receptor-associated factors, Ras and Janus kinase (JAK), thereby initiating further downstream signalling cascades, such as the MAPK, PI3K/Akt, NF-kappaB and JAK/STAT pathways. In the case of TMPs expressed during latent persistence of EBV and HVS (LMP1, LMP2A, Stp and Tip), their modulation of intracellular signalling pathways has been linked to the provision of survival signals to latently infected cells and, hence, a contribution to occasional cellular transformation. In contrast, activation of similar pathways by TMPs of KSHV (K1 and K15) and RRV (R1), expressed during lytic replication, may extend the lifespan of virus-producing cells, alter their migration and/or modulate antiviral immune responses. Whether R1 and K1 contribute to the oncogenic properties of KSHV and RRV has not been established satisfactorily, despite their transforming qualities in experimental settings.
Collapse
Affiliation(s)
- Melanie M Brinkmann
- Institut für Virologie, Medizinische Hochschule Hannover, Carl-Neuberg Str. 1, D-30625 Hannover, Germany
| | - Thomas F Schulz
- Institut für Virologie, Medizinische Hochschule Hannover, Carl-Neuberg Str. 1, D-30625 Hannover, Germany
| |
Collapse
|
10
|
Abstract
gamma2-Herpesviruses, also termed rhadinoviruses, have long been known as animal pathogens causing lymphoproliferative diseases such as malignant catarrhal fever in cattle or T-cell lymphoma in certain Neotropical primates. The rhadinovirus prototype is Herpesvirus saimiri (HVS), a T-lymphotropic agent of squirrel monkeys (Saimiri sciureus); Herpesvirus ateles (HVA) is closely related to HVS. The first human rhadinovirus, human herpesvirus type 8 (HHV-8), was discovered a decade ago in Kaposi's sarcoma (KS) biopsies. It was found to be strongly associated with all forms of KS, as well as with multicentric Castleman's disease and primary effusion lymphoma (PEL). Since DNA of this virus is regularly found in all KS forms, and specifically in the spindle cells of KS, it was also termed KS-associated herpesvirus (KSHV). Several simian rhadinoviruses related to KSHV have been discovered in various Old World primates, though they seem only loosely associated with pathogenicity or tumor induction. In contrast, HVS and HVA cause T-cell lymphoma in numerous non-natural primate hosts; HVS strains of the subgroup C are capable of transforming human and simian T-lymphocytes to continuous growth in cell culture and can provide useful tools for T-cell immunology or gene transfer. Here, we describe their natural history, genome structure, biology, and pathogenesis in T-cell transformation and oncogenesis.
Collapse
Affiliation(s)
- Armin Ensser
- Institut für Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | | |
Collapse
|
11
|
Heck E, Lengenfelder D, Schmidt M, Müller-Fleckenstein I, Fleckenstein B, Biesinger B, Ensser A. T-cell growth transformation by herpesvirus saimiri is independent of STAT3 activation. J Virol 2005; 79:5713-20. [PMID: 15827186 PMCID: PMC1082769 DOI: 10.1128/jvi.79.9.5713-5720.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpesvirus saimiri (saimirine herpesvirus 2) (HVS), a T-lymphotropic tumor virus, induces lymphoproliferative disease in several species of New World primates. In addition, strains of HVS subgroup C are able to transform T cells of Old World primates, including humans, to permanently growing T-cell lines. In concert with the Stp oncoprotein, the tyrosine kinase-interacting protein (Tip) of HVS C488 is required for T-cell transformation in vitro and lymphoma induction in vivo. Tip was previously shown to interact with the protein tyrosine kinase Lck. Constitutive activation of signal transducers and activators of transcription (STATs) has been associated with oncogenesis and has also been detected in HVS-transformed T-cell lines. Furthermore, Tip contains a putative consensus YXPQ binding motif for the SH2 (src homology 2) domains of STAT1 and STAT3. Tip tyrosine phosphorylation at this site was required for binding of STATs and induction of STAT-dependent transcription. Here we sought to address the relevance of STAT activation for transformation of human T cells by introducing a tyrosine-to-phenylalanine mutation in the YXPQ motif of Tip of HVS C488. Unexpectedly, the recombinant virus was still able to transform human T lymphocytes, but it had lost its capability to activate STAT3 as well as STAT1. This demonstrates that growth transformation by HVS is independent of STAT3 activation.
Collapse
Affiliation(s)
- Elke Heck
- Institut für Klinische und Molekulare Virologie, Friedrich-Alexander Universität Erlangen-Nürnberg, Schlossgarten 4, D-91054 Erlangen, Germany
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Herpesvirus saimiri (Saimiriine herpesvirus-2), a gamma2-herpesvirus (rhadinovirus) of non-human primates, causes T-lymphoproliferative diseases in susceptible organisms and transforms human and non-human T lymphocytes to continuous growth in vitro in the absence of stimulation. T cells transformed by H. saimiri retain many characteristics of intact T lymphocytes, such as the sensitivity to interleukin-2 and the ability to recognize the corresponding antigens. As a result, H. saimiri is widely used in immunobiology for immortalization of various difficult-to-obtain and/or -to-maintain T cells in order to obtain useful experimental models. In particular, H. saimiri-transformed human T cells are highly susceptible to infection with HIV-1 and -2. This makes them a convenient tool for propagation of poorly replicating strains of HIV, including primary clinical isolates. Therefore, the mechanisms mediating transformation of T cells by H. saimiri are of considerable interest. A single transformation-associated protein, StpA or StpB, mediates cell transformation by H. saimiri strains of group A or B, respectively. Strains of group C, which exhibit the highest oncogenic potential, have two proteins involved in transformation-StpC and Tip. Both proteins have been shown to dramatically affect signal transduction pathways leading to the activation of crucial transcription factors. This review is focused on the biological effects and molecular mechanisms of action of proteins involved in H. saimiri-dependent transformation.
Collapse
MESH Headings
- Animals
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Gene Expression Regulation, Viral/genetics
- HIV-1/genetics
- HIV-1/metabolism
- Herpesviridae Infections/genetics
- Herpesviridae Infections/metabolism
- Herpesvirus 2, Saimiriine/genetics
- Herpesvirus 2, Saimiriine/metabolism
- Humans
- Lymphoma, T-Cell/genetics
- Lymphoma, T-Cell/metabolism
- Models, Biological
- Oncogene Proteins, Viral/biosynthesis
- Oncogene Proteins, Viral/genetics
- Tumor Virus Infections/genetics
- Tumor Virus Infections/metabolism
Collapse
Affiliation(s)
- Alexander Y Tsygankov
- Department of Microbiology and Immunology, Temple University School of Medicine, 3400 N. Broad Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
13
|
Tamgüney G, Van Snick J, Fickenscher H. Autocrine stimulation of rhadinovirus-transformed T cells by the chemokine CCL1/I-309. Oncogene 2004; 23:8475-85. [PMID: 15378023 DOI: 10.1038/sj.onc.1207903] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The rhadinovirus herpesvirus saimiri transforms human T lymphocytes to stable growth in culture. Besides the viral oncogenes stpC and tip, little is understood about the transformation process at the cellular level. To identify cellular factors that might contribute to growth transformation, we compared cellular gene expression in pairs of herpesvirus saimiri-transformed and nontransformed human T-cell clones. Using cDNA arrays and suppressive subtractive hybridization, we were able to identify the chemokine CCL1/I-309 as one of the few cellular genes that are strongly overexpressed in T cells after growth transformation with herpesvirus saimiri. The transformed T cells expressed CCR8, the receptor for CCL1, which rapidly induced intracellular calcium ion levels. Neutralizing antibodies to CCL1 led to reduced secretion of interferon-gamma and tumor necrosis factor-alpha as well as to reduced proliferation rates in transformed T cells. Thus, we propose that growth transformation of human T cells with herpesvirus saimiri gives rise to an autocrine loop where the proliferation of transformed T cells is supported by the endogenous production of the chemokine CCL1.
Collapse
Affiliation(s)
- Gültekin Tamgüney
- Virology Department, Ruprecht Karls University Heidelberg, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany
| | | | | |
Collapse
|
14
|
Fleckenstein B, Ensser A. Herpesvirus saimiri transformation of human T lymphocytes. CURRENT PROTOCOLS IN IMMUNOLOGY 2004; Chapter 7:7.21.1-7.21.11. [PMID: 18432932 DOI: 10.1002/0471142735.im0721s63] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Viral transformation of T cells is an effective method for obtaining large numbers of T cells that are easily maintained in the laboratory. This unit describes a method for generating antigen-independent, virally-transformed T cells using a T-lymphotropic primate gamma-2 herpesvirus, Herpesvirus saimiri (HVS; strain C488). Support protocols for preparing and titrating HSV C488 stocks and testing the functional status of transformed T cells are also included.
Collapse
Affiliation(s)
- Bernhard Fleckenstein
- Institut für Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Armin Ensser
- Institut für Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
15
|
Hasham MG, Tsygankov AY. Tip, an Lck-interacting protein of Herpesvirus saimiri, causes Fas- and Lck-dependent apoptosis of T lymphocytes. Virology 2004; 320:313-29. [PMID: 15016553 DOI: 10.1016/j.virol.2003.11.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2003] [Revised: 11/19/2003] [Accepted: 11/24/2003] [Indexed: 11/21/2022]
Abstract
Saimiriine herpesvirus-2 (Herpesvirus saimiri) transforms T lymphocytes, including human, to continuous growth in vitro. H. saimiri-induced transformation is becoming an important tool of T-cell biology, including studies of HIV replication. Two proteins of H. saimiri subgroup C, Tip and StpC, are essential for T-cell transformation. In spite of the important role of these proteins, their biological functions and the molecular mechanisms of their action remain insufficiently understood. To further elucidate the effects of Tip on T cells, we transduced T lymphocytes, using an efficient lentiviral gene transfer system, to express Tip in the absence of other H. saimiri proteins. Our results indicate that Tip specifically inhibits IL-2 production by human T lymphocytes. Furthermore, Tip promotes T-cell apoptosis, which appears to be the reason for the observed decrease in IL-2 production. Finally, the apoptotic effect of Tip in T cells is mediated by Fas and requires the presence of active Lck in the cell.
Collapse
Affiliation(s)
- Muneer G Hasham
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | |
Collapse
|
16
|
Sorokina EM, Merlo JJ, Tsygankov AY. Molecular mechanisms of the effect of herpesvirus saimiri protein StpC on the signaling pathway leading to NF-kappaB activation. J Biol Chem 2004; 279:13469-77. [PMID: 14724292 DOI: 10.1074/jbc.m305250200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Herpesvirus saimiri (Saimiriine herpesvirus-2) causes lethal T lymphoproliferative diseases in the susceptible species and transforms T lymphocytes to continuous growth in vitro. H. saimiri-induced transformation of T cells is becoming an important experimental tool of biomedical research. Two proteins of H. saimiri subgroup C, Tip and StpC, are essential for T cell transformation by this virus. It has been shown previously that StpC transforms fibroblasts, activates NF-kappaB, and binds to tumor necrosis factor (TNF)-receptor-associated factor (TRAF) proteins, but the molecular mechanism of its action remains insufficiently understood. This study further characterized the effect of StpC on NF-kappaB. First, StpC activates NF-kappaB via the consensus pathway involving activation of I-kappaB kinase and subsequent phosphorylation and degradation of I-kappaB in both T lymphoid and epithelial cells. Second, triggering of this pathway by StpC in both T lymphoid and epithelial cells is dependent on the presence of functional NF-kappaB-inducing kinase (NIK). Third, StpC physically interacts with TRAF in epithelial cells, and the effect of StpC on NF-kappaB activity in these cells requires the presence of functional TRAF. Finally the effect of StpC is completely independent of TNF-alpha, a well described stimulus of NF-kappaB activity. Moreover it appears that StpC uncouples stimulation of NF-kappaB activity from TNF-alpha stimulation. Overall these results argue that the effect of StpC on NF-kappaB is similar to the effects of other viral proteins, "usurping" the TRAF/NIK/I-kappaB kinase pathway, and reinforce the notion that the role of StpC in cell transformation by H. saimiri may be mediated by signaling that results in NF-kappaB activation.
Collapse
Affiliation(s)
- Elena M Sorokina
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | |
Collapse
|
17
|
Ensser A, Thurau M, Wittmann S, Fickenscher H. The genome of herpesvirus saimiri C488 which is capable of transforming human T cells. Virology 2003; 314:471-87. [PMID: 14554077 DOI: 10.1016/s0042-6822(03)00449-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Herpesvirus saimiri (HVS), the rhadinovirus prototype, is apathogenic in the persistently infected natural host, the squirrel monkey, but causes acute T cell leukemia in other New World primate species. In contrast to subgroups A and B, only strains of HVS subgroup C such as C488 are capable of transforming primary human T cells to stable antigen-independent growth in culture. Here, we report the complete 155-kb genome sequence of the transformation-competent HVS strain C488. The A+T-rich unique L-DNA of 113,027 bp encodes at least 77 open reading frames and 5 URNAs. In addition to the viral oncogenes stp and tip, only a few genes including the transactivator orf50 and the glycoprotein orf51 are highly divergent. In a series of new primary HVS isolates, the subgroup-specific divergence of the orf50/orf51 alleles was studied. In these new isolates, the orf50/orf51 alleles of the respective subgroup segregate with the stp and/or tip oncogene alleles, which are essential for transformation.
Collapse
Affiliation(s)
- Armin Ensser
- Institut für Klinische und Molekulare Virologie, Universität Erlangen-Nürnberg, Schlossgarten 4, D-91054 Erlangen, Germany
| | | | | | | |
Collapse
|
18
|
Pon RA, Freedman MS. Study of Herpesvirus saimiri immortalization of gammadelta T cells derived from peripheral blood and CSF of multiple sclerosis patients. J Neuroimmunol 2003; 139:119-32. [PMID: 12799029 DOI: 10.1016/s0165-5728(03)00157-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Human gammadelta T cells are an integral part of the innate immune system and have been difficult to study owing primarily to their relatively low abundance and their fastidious culture properties associated with short in vitro lifespan. Their increased presence within multiple sclerosis (MS) white matter plaques compared to peripheral blood (PB) suggests a specific interaction with central nervous system (CNS) tissues. This fact, together with their innate ability to lyse human oligodendrocytes in culture implicate them possibly in the pathogenesis of MS. To further investigate their potential role in MS, we studied whether gammadelta T cells could be effectively immortalized using Herpesvirus saimiri (HVS), so that they could be studied in longer-term cultures. Effective culture conditions were established resulting in efficient HVS growth transformation of multiple PB and CSF gammadelta T cell lines and clones that could exist in IL-2-dependent culture for periods in excess of 2 years. Phenotypic and functional comparison studies with parental nontransformed gammadelta T cells were performed to characterize the changes that possibly induced by viral transformation. Using panels of transformed gammadelta T cell clones representing discrete gammadelta TcR subtypes, there was no apparent correlation between intracytoplasmic cytokine expression or tumor cell cytotoxicity with a specific TcR. All transformed gammadelta T cells analyzed, regardless of their compartment of origin, strongly expressed intracytoplasmic IFN-gamma and TNF-alpha, but little IL-2 or anti-inflammatory IL-4 or IL-10. These results indicate that HVS transformation of gammadelta T cells can be used to generate lines and clones from both the CSF and PB compartments for further study and elucidation of their potential role in MS pathogenesis.
Collapse
Affiliation(s)
- Robert A Pon
- Division of Neurology, Department of Medicine, University of Ottawa, Ottawa Hospital-General Campus, 501 Smyth Rd., K1H 8L6, Ottawa, Ont., Canada
| | | |
Collapse
|
19
|
Bieback K, Breer C, Nanan R, Meulen VT, Schneider-Schaulies S. Expansion of human gamma/delta T cells in vitro is differentially regulated by the measles virus glycoproteins. J Gen Virol 2003; 84:1179-1188. [PMID: 12692283 DOI: 10.1099/vir.0.19027-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Impaired proliferative response of lymphocytes after mitogenic stimulation ex vivo is a key feature of the generalized immunosuppression induced by measles virus (MV). Compelling evidence suggests that negative signalling by the MV glycoprotein (gp) complex and the surface of uninfected lymphocytes is essential for this effect. So far, the inhibitory activity of this complex applied to all lymphocyte subpopulations irrespective of the mode of stimulation and could not be overcome by external stimulation. This study shows that the isopentenyl pyrophosphate (IPP)/IL-2-stimulated expansion of human gamma/delta T cell receptor (TCR) T cells from peripheral blood mononuclear cells (PBMCs) is inhibited efficiently when the MV gp complex is expressed on the surface of persistently MV-infected T or monocytic cells. In contrast, persistently infected B cells or infected human dendritic cells (DCs) do not interfere with expansion of gamma/delta TCR T cells from PBMCs. These particular two cell populations, however, efficiently inhibit IPP/IL-2-stimulated expansion of gamma/delta TCR T cells from purified T cells and this is reverted by resubstitution with monocytes. As revealed by filter experiments, cocultivation with B cells and DCs empower monocytes, at least partially by soluble mediators, to provide membrane contact-dependent costimulatory signals that neutralize the inhibitory effect of the MV gp complex. Thus, gamma/delta TCR T cells are sensitive to MV gp-mediated inhibition; however, this is overcome efficiently by signals delivered from monocytes conditioned by B cells and DCs.
Collapse
Affiliation(s)
- Karen Bieback
- Institute for Virology and Immunobiology, University of Würzburg, Versbacher Str. 7, D-97078 Würzburg, Germany
| | - Claudia Breer
- Institute for Virology and Immunobiology, University of Würzburg, Versbacher Str. 7, D-97078 Würzburg, Germany
| | - Ralph Nanan
- Children's Hospital, University of Würzburg, Josef-Schneider-Str. 2, D-97078 Würzburg, Germany
| | - Volker Ter Meulen
- Institute for Virology and Immunobiology, University of Würzburg, Versbacher Str. 7, D-97078 Würzburg, Germany
| | - Sibylle Schneider-Schaulies
- Institute for Virology and Immunobiology, University of Würzburg, Versbacher Str. 7, D-97078 Würzburg, Germany
| |
Collapse
|
20
|
Schäfer A, Lengenfelder D, Grillhösl C, Wieser C, Fleckenstein B, Ensser A. The latency-associated nuclear antigen homolog of herpesvirus saimiri inhibits lytic virus replication. J Virol 2003; 77:5911-25. [PMID: 12719584 PMCID: PMC154051 DOI: 10.1128/jvi.77.10.5911-5925.2003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpesvirus saimiri (HVS), a T-lymphotropic tumor virus of neotropical primates, and the Kaposi's sarcoma-associated human herpesvirus 8 (KSHV) belong to the gamma-(2)-herpesvirus (Rhadinovirus) subfamily and share numerous features of genome structure and organization. The KSHV latency-associated nuclear antigen (LANA) protein appears to be relevant for viral persistence, latency, and transformation. It binds to DNA, colocalizes with viral episomal DNA, and presumably mediates efficient persistence of viral genomes. LANA further represses the transcriptional and proapoptotic activities of the p53 tumor suppressor protein. Here we report on the ORF73 gene of HVS strain C488, which is the positional and structural homolog of KSHV LANA. The ORF73 gene in OMK cells can encode a 62-kDa protein that localizes to the nucleus in a pattern similar to that of LANA. We show that the ORF73 gene product can regulate viral gene expression by acting as a transcriptional modulator of latent and lytic viral promoters. To define the HVS ORF73 function in the background of a replication-competent virus, we constructed a viral mutant that expresses ORF73 under the transcriptional control of a mifepristone (RU-486)-inducible promoter. The HVS ORF73 gene product efficiently suppresses lytic viral replication in permissive cells, indicating that it defines a critical control point between viral persistence and lytic replication.
Collapse
Affiliation(s)
- Alexandra Schäfer
- Institut für Klinische und Molekulare Virologie, Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Reiss C, Niedobitek G, Hör S, Lisner R, Friedrich U, Bodemer W, Biesinger B. Peripheral T-cell lymphoma in herpesvirus saimiri-infected tamarins: tumor cell lines reveal subgroup-specific differences. Virology 2002; 294:31-46. [PMID: 11886263 DOI: 10.1006/viro.2001.1304] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Efficiency of lymphoma induction by herpesvirus saimiri (HVS) isolates correlates with the genetically defined viral subgroups A, B, and C. To compare subgroup-specific effects, highly susceptible tamarins were infected with HVS strain A-11, B-SMHI, or C-488. All animals developed T-cell lymphomas indistinguishable with respect to clinical, pathological, and virological parameters. Ex vivo T-cell lines were established readily from the HVS C-488 animal, less efficiently in the presence of HVS A-11, and from only a single HVS B-SMHI sample. These cultivated cells revealed strain-specific biochemical characteristics. HVS A-11 strongly induced the expression of tyrosine kinase Lyn. HVS C-488 led to the activation of STAT3, which is most likely linked to the association of virus-encoded Tip with tyrosine kinase Lck. The lack of these activities in HVS B-SMHI-transformed cells may correlate with the reduced oncogenic phenotype of this virus in species other than tamarins.
Collapse
Affiliation(s)
- Christine Reiss
- Institut für Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | | | | | |
Collapse
|
22
|
Cabanillas JA, Cambronero R, Pacheco-Castro A, García-Rodríguez MC, Martín-Fernández JM, Fontán G, Regueiro JR. Characterization of Herpesvirus saimiri-transformed T lymphocytes from common variable immunodeficiency patients. Clin Exp Immunol 2002; 127:366-73. [PMID: 11876763 PMCID: PMC1906345 DOI: 10.1046/j.1365-2249.2002.01716.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2001] [Indexed: 11/20/2022] Open
Abstract
Common variable immunodeficiency (CVID) is a very frequent but heterogeneous syndrome of antibody formation. The primary defect remains unknown, but many reports describe peripheral blood T lymphocyte dysfunctions in a substantial proportion of CVID patients, which may impair T--B cell collaboration. In order to investigate whether such putative defects were intrinsic to T cells or, rather, secondary to quantitative differences in T cell subset distribution, or to other described disorders, we have used Herpesvirus saimiri (HVS) for the targeted transformation of CVID CD4+ and CD8+ T cells and subsequent functional evaluation by flow cytometry of their capacity to generate cell surface (CD154, CD69) or soluble (IL-2, TNF-alpha, IFN-gamma) help after CD3 engagement. Unexpectedly, the results showed that 40 different CVID blood samples exposed to HVS gave rise with a significantly increased frequency to transformed CD4+ T cell lines, compared to 40 age-matched controls (27% versus 3%, P < or = 0.00002) suggesting the existence of a CVID-specific signalling difference which affects CD4+ cell transformation efficiency. The functional analysis of 10 CD4+ and 15 CD8+ pure transformed T cell lines from CVID patients did not reveal any statistically significant difference as compared to controls. However, half of the CD4+ transformed cell lines showed CD154 (but not CD69) induction (mean value of 46.8%) under the lower limit of the normal controls (mean value of 82.4%, P < or = 0.0001). Exactly the same five cell lines showed, in addition, a significantly low induction of IL-2 (P < or = 0.04), but not of TNF-alpha or IFN-gamma. None of these differences were observed in the remaining CD4+ cell lines or in any of the transformed CD8+ cell lines. We conclude that certain CVID patients show selective and intrinsic impairments for the generation of cell surface and soluble help by CD4+ T cells, which may be relevant for B lymphocyte function. The transformed T cell lines will be useful to establish the biochemical mechanisms responsible for the described impairments.
Collapse
MESH Headings
- Adolescent
- Adult
- Antigens, CD/biosynthesis
- Antigens, CD/genetics
- Antigens, Differentiation, T-Lymphocyte/biosynthesis
- Antigens, Differentiation, T-Lymphocyte/genetics
- Brefeldin A/pharmacology
- CD3 Complex/immunology
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/virology
- CD40 Ligand/biosynthesis
- CD40 Ligand/genetics
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/virology
- Cell Line, Transformed/immunology
- Cell Transformation, Viral
- Child
- Common Variable Immunodeficiency/immunology
- Female
- Flow Cytometry
- Gene Expression Regulation, Viral
- Herpesvirus 2, Saimiriine/physiology
- Humans
- Immunophenotyping
- Interferon-gamma/biosynthesis
- Interferon-gamma/genetics
- Interleukin-2/biosynthesis
- Interleukin-2/genetics
- Ionomycin/pharmacology
- Lectins, C-Type
- Lymphocyte Activation/drug effects
- Male
- Middle Aged
- T-Lymphocyte Subsets/drug effects
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/virology
- Tetradecanoylphorbol Acetate/pharmacology
- Tumor Necrosis Factor-alpha/biosynthesis
- Tumor Necrosis Factor-alpha/genetics
Collapse
Affiliation(s)
- J A Cabanillas
- Deparment of Immunology, School of Medicine, Complutense University, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
23
|
Meinl E, Derfuss T, Pirzer R, Blank N, Lengenfelder D, Blancher A, Le Deist F, Fleckenstein B, Hivroz C. Herpesvirus saimiri replaces ZAP-70 for CD3- and CD2-mediated T cell activation. J Biol Chem 2001; 276:36902-8. [PMID: 11463783 DOI: 10.1074/jbc.m102668200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The protein tyrosine kinase ZAP-70 plays a pivotal role involved in signal transduction through the T cell receptor and CD2. Defects in ZAP-70 result in severe combined immunodeficiency. We report that Herpesvirus saimiri, which does not code for a ZAP-70 homologue, can replace this tyrosine kinase. H. saimiri is an oncogenic virus that transforms human T cells to stable growth based on mutual CD2-mediated activation. Although CD2-mediated proliferation of ZAP-70-deficient uninfected T cells was absent, we could establish H. saimiri-transformed T cell lines from two unrelated patients presenting with ZAP-70 deficiencies. In these cell lines, CD2 and CD3 activation were restored in terms of [Ca(2+)](i), MAPK activation, cytokine production, and proliferation. Activation-induced tyrosine phosphorylation of zeta remained defective. The transformed cells expressed very high levels of the ZAP-70-related kinase Syk. This increased expression was not observed in the primary T cells from the patients and was not due to the transformation by the virus because transformed cell lines established from control T cells did not present this particularity. In conclusion, wild type H. saimiri can restore CD2- and CD3-mediated activation in signaling-deficient human T cells. It extends our understanding of interactions between the oncogenic H. saimiri and the infected host cells.
Collapse
Affiliation(s)
- E Meinl
- Department of Neuroimmunology, Max-Planck-Institute of Neurobiology, D-82152 Martinsried, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Greve T, Tamgüney G, Fleischer B, Fickenscher H, Bröker BM. Downregulation of p56(lck) tyrosine kinase activity in T cells of squirrel monkeys (Saimiri sciureus) correlates with the nontransforming and apathogenic properties of herpesvirus saimiri in its natural host. J Virol 2001; 75:9252-61. [PMID: 11533187 PMCID: PMC114492 DOI: 10.1128/jvi.75.19.9252-9261.2001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpesvirus saimiri is capable of transforming T lymphocytes of various primate species to stable growth in culture. The interaction of the T-cellular tyrosine kinase p56(lck) with the transformation-associated viral protein Tip has been shown before to activate the kinase and provides one model for the T-cell-specific transformation by herpesvirus saimiri subgroup C strains. In contrast to other primate species, squirrel monkeys (Saimiri sciureus) are naturally infected with the virus without signs of lymphoma or other disease. Although the endogenous virus was regularly recovered from peripheral blood cells from squirrel monkeys, we observed that the T cells lost the virus genomes in culture. Superinfection with virus strain C488 did not induce growth transformation, in contrast to parallel experiments with T cells of other primate species. Surprisingly, p56(lck) was enzymatically inactive in primary T-cell lines derived from different squirrel monkeys, although the T cells reacted appropriately to stimulatory signals. The cDNA sequence revealed minor point mutations only, and transfections in COS-7 cells demonstrated that the S. sciureus lck gene codes for a functional enzyme. In S. sciureus, the tyrosine kinase p56(lck) was not activated after T-cell stimulation and enzymatic activity could not be induced by Tip of herpesvirus saimiri C488. However, the suppression of p56(lck) was partially released after administration of the phosphatase inhibitor pervanadate. This argues for unique species-specific conditions in T cells of S. sciureus which may interfere with the transforming activity and pathogenicity of herpesvirus saimiri subgroup C strains in their natural host.
Collapse
Affiliation(s)
- T Greve
- Bernhard-Nocht-Institut für Tropenmedizin, D-20359 Hamburg, Germany
| | | | | | | | | |
Collapse
|
25
|
Henning G, Kraft MS, Derfuss T, Pirzer R, de Saint-Basile G, Aversa G, Fleckenstein B, Meinl E. Signaling lymphocytic activation molecule (SLAM) regulates T cellular cytotoxicity. Eur J Immunol 2001; 31:2741-50. [PMID: 11536173 DOI: 10.1002/1521-4141(200109)31:9<2741::aid-immu2741>3.0.co;2-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Signaling lymphocytic activation molecule (SLAM) is a CD2-related surface receptor expressed by activated T cells and B cells. SLAM is a self ligand and enhances T cellular proliferation and IFN-gamma production. A defective SLAM associated protein (SAP) causes X-linked lymphoproliferative syndrome (XLP), a frequently lethal mononucleosis based on the inability to control EBV. We report that SLAM augments TCR-mediated cytotoxicity. In normal CD4(+) and CD8(+) T cells, SLAM enhanced TCR-mediated cytotoxicity. In CD4(+) and CD8(+) Herpesvirus saimiri (H.saimiri) infected T cells, SLAM engagement alone triggered cytotoxicity. Using H.saimiri-transformed T cells as a model system we found that SLAM-engagement promotes the release of lytic granules and a CD95-independent killing that requires extracellular Ca(2+), cytoskeletal rearrangements, and signaling mediated by mitogen-activated protein kinase kinases MEK1/2. SLAM-enhanced cytotoxicity implies an immunoregulatory function by facilitating the elimination of APC and a role in overcoming infections with pathogens requiring a cytotoxic immune response.
Collapse
MESH Headings
- Antigens, CD
- Calcium Signaling
- Carrier Proteins/biosynthesis
- Carrier Proteins/genetics
- Cell Line, Transformed
- Cell Transformation, Viral
- Cells, Cultured
- Cytotoxicity Tests, Immunologic
- Cytotoxicity, Immunologic
- Glycoproteins/genetics
- Glycoproteins/physiology
- Herpesvirus 2, Saimiriine/physiology
- Humans
- Immunoglobulins/genetics
- Immunoglobulins/physiology
- Intracellular Signaling Peptides and Proteins
- Lymphocyte Activation
- MAP Kinase Kinase 1
- MAP Kinase Kinase 2
- Mitogen-Activated Protein Kinase Kinases/physiology
- Protein Serine-Threonine Kinases/physiology
- Protein-Tyrosine Kinases/physiology
- RNA, Messenger/biosynthesis
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Cell Surface
- Secretory Vesicles/metabolism
- Signaling Lymphocytic Activation Molecule Associated Protein
- Signaling Lymphocytic Activation Molecule Family Member 1
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/virology
- fas Receptor/physiology
Collapse
Affiliation(s)
- G Henning
- Institute for Clinical and Molecular Virology, University Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Herpesvirus saimiri (saimiriine herpesvirus 2) is the classical prototype of the gamma(2)-herpesviruses or rhadinoviruses, which also contains a human member, the Kaposi's sarcoma-associated herpesvirus. The T-lymphotropic Herpesvirus saimiri establishes specific replicative and persistent conditions in different primate host species. Virtually all squirrel monkeys (Saimiri sciureus) are persistently infected with this virus. In its natural host, the virus does not cause disease, whereas it induces fatal acute T-cell lymphoma in other monkey species after experimental infection. The virus can be isolated by cocultivation of permissive epithelial cells with peripheral blood cells from naturally infected squirrel monkeys and from susceptible New World monkeys during the virus-induced disease. Tumour-derived and in vitro-transformed T-cell lines from New World monkeys release virus particles. Herpesvirus ateles is a closely related virus of spider monkeys (Ateles spp.) and has similar pathogenic properties to Herpesvirus saimiri in other New World primate species. Similar to other rhadinoviruses, the genome of Herpesvirus saimiri harbours a series of virus genes with pronounced homology to cellular counterparts including a D-type cyclin, a G-protein-coupled receptor, an interleukin-17, a superantigen homologue, and several inhibitors of the complement cascade and of different apoptosis pathways. Preserved function has been demonstrated for most of the homologues of cellular proteins. These viral functions are mostly dispensable for the transforming and pathogenic capability of the virus. However, they are considered relevant for the apathogenic persistence of Herpesvirus saimiri in its natural host. A terminal region of the non-repetitive coding part of the virus genome is essential for pathogenicity and T-cell transformation. Based on the pathogenic phenotypes and the different alleles of this variable region, the virus strains have been assigned to three subgroups, termed A, B and C. In the highly oncogenic subgroup C strains, the two virus genes stpC and tip are transcribed from one bicistronic mRNA and are essential for transformation and leukaemia induction. stpC fulfils the typical criteria of an oncogene; its product interacts with Ras and tumour necrosis factor-associated factors and induces mitogen-activated protein kinase and nuclear factor kappa B activation. Tip interacts with the RNA transport factor Tap, with signal transduction and activation of transcription factors, and with the T-cellular tyrosine kinase Lck, which is activated by this interaction and phosphorylates Tip as a substrate. It is of particular interest that certain subgroup C virus strains such as C488 are capable of transforming human T lymphocytes to stable growth in culture. The transformed human T cells harbour multiple copies of the viral genome in the form of stable, non-integrated episomes. The cells express only a few virus genes and do not produce virus particles. The transformed cells maintain the antigen specificity and many other essential functions of their parental T-cell clones. Based on the preserved functional phenotype of the transformed T cells, Herpesvirus saimiri provides useful tools for T-cell immunology, for gene transfer and possibly also for experimental adoptive immunotherapy.
Collapse
Affiliation(s)
- H Fickenscher
- Institut für Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schlossgarten 4, D-91054 Erlangen, Germany.
| | | |
Collapse
|
27
|
Ensser A, Glykofrydes D, Niphuis H, Kuhn EM, Rosenwirth B, Heeney JL, Niedobitek G, Müller-Fleckenstein I, Fleckenstein B. Independence of herpesvirus-induced T cell lymphoma from viral cyclin D homologue. J Exp Med 2001; 193:637-42. [PMID: 11238594 PMCID: PMC2193399 DOI: 10.1084/jem.193.5.637] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cyclin D family members are cellular protooncogenes, and their viral homologues in the Kaposi's sarcoma-associated herpesvirus (KSHV, human herpesvirus type 8 [HHV-8]) and the closely related Herpesvirus saimiri have been implicated as putative cofactors of viral transformation and pathogenesis. KSHV is regularly found in Kaposi's sarcoma and in the primary effusion B cell lymphoma and Castleman's disease associated with immunosuppression and AIDS. H. saimiri strain C488 transforms human and marmoset T cells in vitro and causes polyclonal T cell lymphoma in New World monkeys. The viral cyclins stimulate cell cycle progression of quiescent fibroblasts, and they form active cyclin-dependent kinase (CDK)6 complexes of broad substrate specificity that can resist and downregulate cellular CDK inhibitors. This study shows that the viral cyclin of H. saimiri strain C488 is not required for viral replication, T cell transformation, and pathogenicity in New World primates.
Collapse
MESH Headings
- Animals
- Aotidae
- Callithrix
- Cell Transformation, Viral/genetics
- Cells, Cultured
- Cyclin D
- Cyclins/genetics
- Cyclins/metabolism
- Gene Deletion
- Gene Targeting
- Herpesviridae Infections/metabolism
- Herpesviridae Infections/pathology
- Herpesvirus 2, Saimiriine/genetics
- Herpesvirus 2, Saimiriine/metabolism
- Herpesvirus 2, Saimiriine/pathogenicity
- Humans
- Kidney/cytology
- Kidney/metabolism
- Kidney/virology
- Lymphocytes/cytology
- Lymphocytes/metabolism
- Lymphocytes/virology
- Lymphoma, T-Cell/metabolism
- Lymphoma, T-Cell/pathology
- Lymphoma, T-Cell/virology
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Neoplasms, Experimental/virology
- Reverse Transcriptase Polymerase Chain Reaction
- Saguinus
- Tumor Virus Infections/metabolism
- Tumor Virus Infections/pathology
- Viral Proteins
Collapse
Affiliation(s)
- A Ensser
- Institut für Klinische und Molekulare Virologie der Universität Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Merlo JJ, Tsygankov AY. Herpesvirus saimiri oncoproteins Tip and StpC synergistically stimulate NF-kappaB activity and interleukin-2 gene expression. Virology 2001; 279:325-38. [PMID: 11145913 DOI: 10.1006/viro.2000.0714] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Saimiriine herpesvirus 2 (Herpesvirus saimiri) is capable of inducing lethal T-cell lymphoproliferative diseases in primates and of immortalizing human T lymphocytes in vitro. Two viral oncoproteins, Tip and StpC, are essential for T-cell transformation by Herpesvirus saimiri strains of the subgroup C, which exhibits a higher transformation potential than other subgroups of this virus. Despite the importance of these proteins, the molecular basis of their effects on T cells is poorly understood. It remains unclear how Tip and StpC affect gene expression and what is the molecular basis of their cooperation. To address these issues, we expressed Tip and StpC in T lymphoblastoid cells and assessed both their effects on and transcription factors involved in IL-2 gene expression. Our study shows that Tip and StpC cooperate to upregulate IL-2 gene expression, that their effect is mediated primarily by NF-kappaB and NF-AT, which is partially dependent on tyrosine phosphorylation.
Collapse
Affiliation(s)
- J J Merlo
- Department of Microbiology and Immunology, Temple University School of Medicine, 3400 N. Broad Street, Philadelphia, Pennsylvania, 19140, USA
| | | |
Collapse
|
29
|
Hiller C, Tamgüney G, Stolte N, Mätz-Rensing K, Lorenzen D, Hör S, Thurau M, Wittmann S, Slavin S, Fickenscher H. Herpesvirus saimiri pathogenicity enhanced by thymidine kinase of herpes simplex virus. Virology 2000; 278:445-55. [PMID: 11118367 DOI: 10.1006/viro.2000.0665] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Herpesvirus saimiri can be used as an efficient gene expression vector for human T lymphocytes and thus may allow applications in experimental leukemia therapy. We constructed recombinant viruses for the functional expression of the thymidine kinase (TK) of herpes simplex virus type 1 (HSV) as a suicide gene. These viruses reliably allowed the targeted elimination of transduced nonpermissive human T cells in vitro after the administration of ganciclovir. To test the reliability of this function under the most stringent permissive conditions, in this study we analyzed the influence of the prodrugs ganciclovir and acyclovir in common marmosets on the acute leukemogenesis induced by either wild-type herpesvirus saimiri C488 or by a recombinant derivative expressing TK of HSV. Antiviral drug treatment did not influence the rapid development of acute disease. In contrast, the presence of the HSV tk gene resulted in a faster disease progression. In addition, HSV TK-expressing viruses showed faster replication than wild-type virus in culture at low serum concentrations. Thus, HSV TK accelerates the replication of herpesvirus saimiri and enhances its pathogenicity. This should be generally considered when HSV TK is applied as a transgene in replication-competent DNA virus vectors for gene therapy.
Collapse
Affiliation(s)
- C Hiller
- Institut für Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schlossgarten 4, Erlangen, D-91054, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Hall KT, Giles MS, Goodwin DJ, Calderwood MA, Carr IM, Stevenson AJ, Markham AF, Whitehouse A. Analysis of gene expression in a human cell line stably transduced with herpesvirus saimiri. J Virol 2000; 74:7331-7. [PMID: 10906186 PMCID: PMC112253 DOI: 10.1128/jvi.74.16.7331-7337.2000] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpesvirus saimiri (HVS) is the prototype gamma-2 herpesvirus; it has significant homology to the human gammaherpesviruses Kaposi's sarcoma-associated virus and Epstein-Barr virus and the murine gammaherpesvirus murine herpesvirus 68. HVS causes a persistent asymptomatic infection in its natural host, the squirrel monkey. Both subgroups A and C possess the ability to immortalize common marmoset T lymphocytes to interleukin-2-independent proliferation. However, only subgroup C is capable of transforming human, rabbit, and rhesus monkey lymphocytes in vitro. In addition, HVS can stably transduce a variety of human cell lines where the virus persists as a nonintegrating circular episome. In this study, we have developed a system in which the HVS DNA is stably maintained as a nonintegrated circular episome in the human lung carcinoma cell line A549. Virus production can be reactivated using chemical inducing agents, including tetradecanoyl phorbol acetate and n-butyrate, suggesting that the infection in human A549 cells is latent. To analyze virus gene expression in these stably transduced cells, Northern blot analysis was performed using a series of probes produced from restriction fragments spanning the entire coding region of the HVS genome. This demonstrated that an adjacent set of genes containing open reading frames (ORFs) 71 to 73 are expressed in this stably transduced cell line. Moreover, these genes are transcribed as a polycistronic mRNA species produced from a common promoter upstream of ORF 73. This model may serve as a useful tool in the further analysis of the role of ORFs 71 to 73 in gamma-2 herpesvirus latency.
Collapse
Affiliation(s)
- K T Hall
- Molecular Medicine Unit, University of Leeds, St. James's University Hospital, Leeds LS9 7TF, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Isakov N, Biesinger B. Lck protein tyrosine kinase is a key regulator of T-cell activation and a target for signal intervention by Herpesvirus saimiri and other viral gene products. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:3413-21. [PMID: 10848956 DOI: 10.1046/j.1432-1327.2000.01412.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Protein tyrosine kinases (PTKs) are critically involved in signaling pathways that regulate cell growth, differentiation, activation, and transformation. It is not surprising, therefore, that viruses acquire effector molecules targeting these kinases to ensure their own replication and/or persistence. This review summarizes our current knowledge on Lck, a member of the Src family of PTK, and its viral interaction partners. Lck plays a key role in T lymphocyte activation and differentiation. It is associated with a variety of cell surface receptors and is critical for signal transduction from the T-cell antigen receptor (TCR). Consequently, Lck is targeted by regulatory proteins of T-lymphotropic viruses, especially by the Herpesvirus saimiri (HVS) tyrosine kinase interacting protein (Tip). This oncoprotein physically interacts with Lck in HVS transformed T cells and has an impact on its catalytic activity. However, while Tip inhibits Lck activity in stably expressing cell lines, opposite effects were observed in several in vitro systems. At least in part, this complex situation may be related to the bipartite nature of the interaction surface of the two proteins. Studies on the interrelationships between Lck and its viral partners contribute to the understanding of the mechanisms of T-cell growth regulation, in general, and of viral pathogenicity in particular. In addition, understanding the regulation of Lck activity by viral proteins may serve as a basis for the development of new drugs capable of modifying Lck activity in different pathological situations.
Collapse
Affiliation(s)
- N Isakov
- Department of Microbiology and Immunology, Faculty of Health Sciences, and the Cancer Research Center, Ben Gurion University of the Negev, Beer Sheva, Israel.
| | | |
Collapse
|
32
|
Knappe A, Hör S, Wittmann S, Fickenscher H. Induction of a novel cellular homolog of interleukin-10, AK155, by transformation of T lymphocytes with herpesvirus saimiri. J Virol 2000; 74:3881-7. [PMID: 10729163 PMCID: PMC111897 DOI: 10.1128/jvi.74.8.3881-3887.2000] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Although herpesvirus saimiri-transformed T lymphocytes retain multiple normal T-cell functions, only a few changes have been described. By subtractive hybridization, we have isolated a novel cellular gene, ak155, a sequence homolog of the interleukin-10 gene. Specifically herpesvirus saimiri-transformed T cells overexpress ak155 and secrete the protein into the supernatant. In other T-cell lines and in native peripheral blood cells, but not in B cells, ak155 is transcribed at low levels. AK155 forms homodimers similarly to interleukin-10. As a lymphokine, AK155 may contribute to the transformed phenotype of human T cells after infection by herpesvirus saimiri.
Collapse
Affiliation(s)
- A Knappe
- Institut für Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | | | | | | |
Collapse
|
33
|
Hiller C, Wittmann S, Slavin S, Fickenscher H. Functional long-term thymidine kinase suicide gene expression in human T cells using a herpesvirus saimiri vector. Gene Ther 2000; 7:664-74. [PMID: 10800089 DOI: 10.1038/sj.gt.3301158] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Herpesvirus saimiri transforms human T lymphocytes to stable growth and persists episomally without genomic integration and without virus production. The transformed T cells retain essential features of their parental cells including the MHC-restricted antigen specificity which may be useful for applications in adoptive immunotherapy. In order to improve the biological safety of such vectors, the prodrug activating gene thymidine kinase of herpes simplex virus was inserted into the genome of herpesvirus saimiri by homologous recombination. After infection with wild-type or cloned recombinant viruses, T cells from tamarin monkeys and from humans were transformed to stable growth. Thymidine kinase-expressing transformed T cells were efficiently eliminated in the presence of low concentrations of ganciclovir. This elimination mechanism remained fully functional over an observation period of 12 months. The potentially immunogenic neomycin resistance gene expression cassette was deleted from the genome of established mutant viruses by using the prokaryotic Cre/LoxP recombination system. At any time during the course of a therapeutic application, thymidine kinase-expressing transformed human T cells might be eliminated after administration of ganciclovir. In principle, this function could be useful for the T cell-dependent immunotherapy of resistant blood cancer while avoiding the risk of uncontrolled graft-versus-host disease.
Collapse
Affiliation(s)
- C Hiller
- Institut für Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | |
Collapse
|
34
|
Thurau M, Whitehouse A, Wittmann S, Meredith D, Fickenscher H. Distinct transcriptional and functional properties of the R transactivator gene orf50 of the transforming herpesvirus saimiri strain C488. Virology 2000; 268:167-77. [PMID: 10683339 DOI: 10.1006/viro.1999.0167] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The transformation-associated region of herpesvirus saimiri strains is variable, whereas other parts of the virus genome are highly conserved. However, we observed considerable interstrain sequence divergence of the early viral regulatory orf50 gene, which encodes the R transactivator, a homolog of Epstein-Barr virus BRLF1. The orf50 gene of strain C488 was transcribed at low abundance during lytic infection, whereas antisense transcripts were simultaneously expressed at high levels. A spliced variant, orf50a, was detectable by RT-PCR and RNase protection assays in stimulated C488-transformed, nonpermissive human T cells. In contrast to strain A11, the short, unspliced orf50b form of C488 displayed complete transactivation capability on the orf6 and orf57 promoters. In summary, there are unexpected structural and functional differences between the orf50 genes of herpesvirus saimiri strains, which differ in their capability to transform human T lymphocytes.
Collapse
Affiliation(s)
- M Thurau
- Institut für Klinische und Molekulare Virologie der Friedrich-Alexander-Universität Erlangen-Nürnberg, Schlossgarten 4, Erlangen, D-91054, Germany
| | | | | | | | | |
Collapse
|
35
|
Meinl E, Hohlfeld R. T cell transformation with Herpesvirus saimiri: a tool for neuroimmunological research. J Neuroimmunol 2000; 103:1-7. [PMID: 10674983 DOI: 10.1016/s0165-5728(99)00217-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The finite life span of human T lymphocytes and their requirement of regular restimulation frequently limit human T cell studies. Once infected with H. saimiri, however, human and monkey T cells are transformed to stable growth without the need for further restimulation. H. saimiri persists in human growth-transformed T cells episomally and only a few viral genes are expressed. The release of infectious virus from transformed human T cells has not been observed. H. saimiri-transformed T cells have the phenotype of mature activated CD4+ or CD8+ T cells. Transformed T cells retain a structurally and functionally intact T cell receptor and respond specifically to recognition of their antigen. They produce Th1-like cytokines, provide B cell help, can be triggered to become cytotoxic, and are sensitive to a variety of apoptosis-inducing treatments. While H. saimiri-transformed T cells resemble native T cells in numerous aspects, their reactivity to CD2 is strikingly different: Native T cells are activated via CD2 by certain pairs of mAbs, but not by the mere binding of CD2 to its ligand CD58. In contrast, H. saimiri-transformed T cells are activated by a single crosslinked anti-CD2 mAb and also by interaction with CD58-bearing cells.
Collapse
Affiliation(s)
- E Meinl
- Department of Neuroimmunology, Max-Planck Institute of Neurobiology, Martinsried, Germany.
| | | |
Collapse
|
36
|
Roberts CM, Tani PH, Bridges LC, Laszik Z, Bowditch RD. MDC-L, a novel metalloprotease disintegrin cysteine-rich protein family member expressed by human lymphocytes. J Biol Chem 1999; 274:29251-9. [PMID: 10506182 DOI: 10.1074/jbc.274.41.29251] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The metalloprotease disintegrin cysteine-rich (MDC) proteins are a recently identified family of transmembrane proteins that function in proteolytic processing of cell surface molecules and in cell adhesion. Since lymphocytes must interact with a constantly changing environment, we hypothesized that lymphocytes would express unique MDC proteins. To identify MDC proteins expressed in human lymph node, a polymerase chain reaction-based strategy combined with degenerate oligonucleotide primers was employed. We report here the identification of MDC-L (ADAM 23), a novel member of the MDC protein family. The results obtained from cDNA cloning and Northern blot analysis of mRNA isolated from various lymphoid tissues indicate that a 2.8-kilobase mRNA encoding a transmembrane form, MDC-Lm, and a 2.2-kilobase mRNA encoding a secreted form, MDC-Ls, are expressed in a tissue-specific manner. MDC-L mRNA was shown to be predominantly expressed in secondary lymphoid tissues, such as lymph node, spleen, small intestine, stomach, colon, appendix, and trachea. Furthermore, immunohistochemical staining with an anti-MDC-L antibody demonstrated that cells with typical lymphocyte morphology are responsible for expression of the MDC-L antigen in these lymphoid tissues. MDC-Lm was found to be expressed on the surface of human peripheral blood lymphocytes and transformed B- and T-lymphocyte cell lines as an 87-kDa protein. Thus, we have identified a novel lymphocyte-expressed MDC protein family member.
Collapse
Affiliation(s)
- C M Roberts
- Department of Biochemistry, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73190, USA
| | | | | | | | | |
Collapse
|
37
|
Jung JU, Choi JK, Ensser A, Biesinger B. Herpesvirus saimiri as a model for gammaherpesvirus oncogenesis. Semin Cancer Biol 1999; 9:231-9. [PMID: 10343074 DOI: 10.1006/scbi.1998.0115] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Herpesvirus saimiri (HVS) causes T-lymphoproliferative dis-$borders in several New World and Old World primate species and in certain rabbits.In vitro infection leads to permanent growth of primary T cells of primate and human origins. The transformation-relevant proteins of HVS interact with cellular proto-oncoproteins which results in cell growth transformation. In addition, virus-encoded cellular homologues may contribute to transformation or persistence of HVS by altering cellular signal transduction and deregulating cell growth control. Because of the presence of a permissive cell culture system and in vitro Land in vivo transformation assays, HVS provides a unique opportunity to investigate the mechanisms of cancer induction by oncogenic herpesviruses.
Collapse
Affiliation(s)
- J U Jung
- Department of Microbiology and Molecular Genetics, New England Regional Primate Research Center, Harvard Medical School, 1 Pine Hill Drive, Southborough, MA 01772-9102, USA
| | | | | | | |
Collapse
|
38
|
Schock A, Collins RA, Reid HW. Phenotype, growth regulation and cytokine transcription in Ovine Herpesvirus-2 (OHV-2)-infected bovine T-cell lines. Vet Immunol Immunopathol 1998; 66:67-81. [PMID: 9847021 DOI: 10.1016/s0165-2427(98)00187-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The causal agent of sheep-associated malignant catarrhal fever (MCF), Ovine Herpesvirus-2 (OHV-2), can be propagated in IL-2-dependent lymphoblastoid cell lines derived from diseased cattle and deer providing a useful model for the investigation of the pathogenesis of MCF. In this study, five interleukin-2 (IL-2)-dependent cell lines were established from affected cattle to examine their growth regulation and cytokine transcription. All cell lines expressed CD2, CD5 and CD25. Three of the cell lines were CD4+ and one CD8+, whereas one cell was of mixed CD4 and CD8 phenotye. The growth of these cell lines was reduced when cultured with antibody against CD25, the IL-2 receptor alpha subunit. All cell lines showed a lack of response to Con A and their cell growth was inhibited by Cyclosporin A which is known to inhibit cytokine promoters. It was decided therefore, to examine the cell lines for the presence of mRNA of different cytokines. The results showed that the cell lines transcribed message for IFNgamma, TNFalpha, IL-4 and IL-10 whereas no mRNA for IL-2 or IL-1beta was detected. In conclusion, the OHV-2-immortalised cell lines resemble anergic T-cells which may be activated giving rise to the characteristic lesions of MCF.
Collapse
Affiliation(s)
- A Schock
- Moredun Research Institute, Pentlands Science Park, Midlothian, Scotland, UK.
| | | | | |
Collapse
|
39
|
Kraft MS, Henning G, Fickenscher H, Lengenfelder D, Tschopp J, Fleckenstein B, Meinl E. Herpesvirus saimiri transforms human T-cell clones to stable growth without inducing resistance to apoptosis. J Virol 1998; 72:3138-45. [PMID: 9525639 PMCID: PMC109767 DOI: 10.1128/jvi.72.4.3138-3145.1998] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Herpesvirus saimiri (HVS) transforms human T cells to stable growth in vitro. Since HVS codes for two different antiapoptotic proteins, growth transformation by HVS might be expected to confer resistance to apoptosis. We found that the expression of both viral antiapoptotic genes was restricted to cultures with viral replication and absent in growth-transformed human T cells. A comparative examination of HVS-transformed T-cell clones and their native parental clones revealed that the expression of Bcl-2, Bcl-X(L), Bax, and members of the tumor necrosis factor receptor (TNF-R) superfamily with a death domain, namely, TNF-RI, CD95, and TRAMP, were not modulated by HVS. Expression of CD30 was induced in HVS-transformed T cells, and these cells also expressed the CD30 ligand. Uninfected and transformed T cells were sensitive to CD95 ligation but resistant to apoptosis mediated by TRAIL or soluble TNF-alpha. CD95 ligand was constitutively expressed on transformed but not uninfected parental T cells. Both cell types showed similar sensitivity to cell death induction or inhibition of T-cell activation mediated by irradiation, oxygen radicals, dexamethasone, cyclosporine, and prostaglandin E2. Altogether, this study strongly suggests that growth transformation by HVS is based not on resistance to apoptosis but, rather, on utilization of normal cellular activation pathways.
Collapse
Affiliation(s)
- M S Kraft
- Institut für Klinische und Molekulare Virologie, University of Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | | | | | |
Collapse
|
40
|
Knappe A, Thurau M, Niphuis H, Hiller C, Wittmann S, Kuhn EM, Rosenwirth B, Fleckenstein B, Heeney J, Fickenscher H. T-cell lymphoma caused by herpesvirus saimiri C488 independently of ie14/vsag, a viral gene with superantigen homology. J Virol 1998; 72:3469-71. [PMID: 9525684 PMCID: PMC109857 DOI: 10.1128/jvi.72.4.3469-3471.1998] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The immediate-early gene ie14/vsag of herpesvirus saimiri has homology with murine superantigens. We compared the pathogenesis of infection with either ie14/vsag deletion mutants or wild-type virus C488 in cottontop tamarin monkeys (Saguinus oedipus). Two weeks after infection, all animals developed acute T-cell lymphomas independently of the presence of the viral ie14/vsag gene.
Collapse
Affiliation(s)
- A Knappe
- Institut für Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
3 Growth Transformation of Human T Cells. METHODS IN MICROBIOLOGY 1998. [DOI: 10.1016/s0580-9517(08)70693-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
42
|
Knappe A, Hiller C, Thurau M, Wittmann S, Hofmann H, Fleckenstein B, Fickenscher H. The superantigen-homologous viral immediate-early gene ie14/vsag in herpesvirus saimiri-transformed human T cells. J Virol 1997; 71:9124-33. [PMID: 9371569 PMCID: PMC230213 DOI: 10.1128/jvi.71.12.9124-9133.1997] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Herpesvirus saimiri C488 transforms human T lymphocytes to stable growth in culture. The growth-transformed human T cells harbor the viral genome in a nonintegrated episomal form without production of virus particles. In these cells, virus gene expression was previously found to be confined to the transforming genes stpC and tip. In order to analyze virus gene expression in more detail, we applied a subtractive hybridization technique and compared stimulated virus-transformed cells with uninfected parental T cells of the same donor. A number of known T-cell activation genes were isolated. Viral stpC/tip cDNAs were enriched after subtraction. In addition, the viral immediate-early, superantigen-homologous gene ie14/vsag was represented by numerous cDNA clones that comprised the entire spliced transcript. Whereas a weak basal expression of ie14/vsag was detected by reverse transcription-PCR only, the phorbol ester-induced transcripts were readily shown by Northern blotting. ie14/vsag, which before had been classified as a major immediate-early gene of herpesvirus saimiri, is localized within a highly conserved region with extensive homologies to the cellular genome. Mutant viruses without the ie14/vsag gene are replication competent and fully capable of transforming human and marmoset T cells. Since ie14/vsag is transiently expressed after stimulation, it may increase T-cell proliferation in an activation-dependent and superantigen-like but apparently Vbeta-independent way.
Collapse
MESH Headings
- Animals
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Base Sequence
- Callithrix
- Cell Transformation, Viral
- DNA, Viral
- Gene Expression Regulation, Viral
- Genes, Immediate-Early
- Genes, Viral
- Genome, Viral
- Herpesvirus 2, Saimiriine/genetics
- Herpesvirus 2, Saimiriine/immunology
- Herpesvirus 2, Saimiriine/physiology
- Humans
- Molecular Sequence Data
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Superantigens/genetics
- Superantigens/immunology
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes/virology
- Transformation, Genetic
- Virus Replication
Collapse
Affiliation(s)
- A Knappe
- Institut für Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | | | | | |
Collapse
|
43
|
Bröker BM, Kraft MS, Klauenberg U, Le Deist F, de Villartay JP, Fleckenstein B, Fleischer B, Meinl E. Activation induces apoptosis in Herpesvirus saimiri-transformed T cells independent of CD95 (Fas, APO-1). Eur J Immunol 1997; 27:2774-80. [PMID: 9394798 DOI: 10.1002/eji.1830271105] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Signaling via the T cell receptor (TCR)/CD3 complex of pre-activated T cells induces apoptosis. Such an activation-induced cell death (AICD) is thought to play an important role in the regulation of cellular immune responses. In this study we analyzed pathways of AICD by using human T cells transformed by Herpesvirus saimiri. These growth-transformed T cells show the phenotype of activated mature T cells and continue to express a functionally intact TCR. We show that human H. saimiri-transformed T cell clones readily undergo cell death upon signaling via the TCR/CD3 complex or via phorbol 12-myristate 13-acetate (PMA) + ionomycin. The AICD in H. saimiri-transformed T cells was detectable a few hours after activation and it was not affected by the presence of interleukin (IL)-2 or by anti-CD4 cross-linking. However, AICD required tyrosine phosphorylation, since it could be blocked by herbimycin A. Cyclosporin A (CsA) did not block the development of AICD, but other consequences of activation in H. saimiri-transformed T cells like the production of interferon-gamma. Surprisingly, the development of AICD was not reduced by neutralizing antibodies to tumor necrosis factor (TNF)-alpha or blocking antibodies directed to CD95 (Fas, APO-1), although H. saimiri-transformed T cells were sensitive to CD95 ligation. To confirm that this form of AICD is really independent of CD95, we have established an H. saimiri-transformed T cell line from a patient with a homozygous deletion in the CD95 gene. This CD95-deficient T cell line was as sensitive to AICD as other CD95-expressing H. saimiri-transformed T cells. In conclusion, we describe here a type of AICD in H. saimiri-transformed T cells that is independent of CD95 and TNF-alpha, not sensitive to CsA, but requires tyrosine phosphorylation. This system should be useful for the investigation of CD95-independent forms of AICD.
Collapse
Affiliation(s)
- B M Bröker
- Bernhard-Nocht-Institut, Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|