1
|
Pozzetti L, Asquith CRM. Pentathiepins are an understudied molecular prism of biological activities. Arch Pharm (Weinheim) 2024; 357:e2400646. [PMID: 39382224 PMCID: PMC11610675 DOI: 10.1002/ardp.202400646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024]
Abstract
The pentathiepin core was first synthesized in 1971, and while synthetic techniques have progressed over subsequent decades, the biological applications of this heterocycle have received less attention and are only now becoming more apparent. The first natural product, varacin, was identified in 1991, showing cytotoxicity toward a human colon cancer cell line. More recently, the pentathiepin has acted as a surrogate to replace elemental sulfur, that was discovered as a hit in neurodegenerative animal models. A variety of other medicinal chemistry applications have recently been disclosed. Here, we summarize these indications and highlight the main synthetic pathways to access the pentathiepin core. We offer a concise summary and future perspective of this unique sulfur isosteric replacement.
Collapse
Affiliation(s)
- Luca Pozzetti
- School of Pharmacy, Faculty of Health SciencesUniversity of Eastern FinlandKuopioFinland
| | | |
Collapse
|
2
|
Laitinen T, Meili T, Koyioni M, Koutentis PA, Poso A, Hofmann-Lehmann R, Asquith CRM. Synthesis and evaluation of 1,2,3-dithiazole inhibitors of the nucleocapsid protein of feline immunodeficiency virus (FIV) as a model for HIV infection. Bioorg Med Chem 2022; 68:116834. [PMID: 35653871 DOI: 10.1016/j.bmc.2022.116834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 11/17/2022]
Abstract
We disclose a series of potent anti-viral 1,2,3-dithiazoles, accessed through a succinct synthetic approach from 4,5-dichloro-1,2,3-dithiazolium chloride (Appel's salt). A series of small libraries of compounds were screened against feline immunodeficiency virus (FIV) infected cells as a model for HIV. This approach highlighted new structure activity relationship understanding and led to the development of sub-micro molar anti-viral compounds with reduced toxicity. In addition, insight into the mechanistic progress of this system is provided via advanced QM-MM modelling. The 1,2,3-dithiazole represents a versatile scaffold with potential for further development to treat both FIV and HIV.
Collapse
Affiliation(s)
- Tuomo Laitinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Theres Meili
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich 8057, Switzerland
| | - Maria Koyioni
- Department of Chemistry, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | | | - Antti Poso
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland; Department of Internal Medicine VIII, University Hospital Tübingen, Otfried-Müller-Strasse 14, 72076 Tübingen, Germany
| | - Regina Hofmann-Lehmann
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Christopher R M Asquith
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland; Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, NC 27599, USA.
| |
Collapse
|
3
|
Asquith CRM, Sil BC, Laitinen T, Tizzard GJ, Coles SJ, Poso A, Hofmann-Lehmann R, Hilton ST. Novel epidithiodiketopiperazines as anti-viral zinc ejectors of the Feline Immunodeficiency Virus (FIV) nucleocapsid protein as a model for HIV infection. Bioorg Med Chem 2019; 27:4174-4184. [PMID: 31395510 DOI: 10.1016/j.bmc.2019.07.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/22/2019] [Accepted: 07/28/2019] [Indexed: 01/02/2023]
Abstract
Focused libraries of multi-substituted epidithiodiketopiperazines (ETP) were prepared and evaluated for efficacy of inhibiting the nucleocapsid protein function of the Feline Immunodeficiency Virus (FIV) as a model for HIV. This activity was compared and contrasted to observed toxicity utilising an in-vitro cell culture approach. This resulted in the identification of several promising lead compounds with nanomolar potency in cells with low toxicity and a favorable therapeutic index.
Collapse
Affiliation(s)
- Christopher R M Asquith
- School of Pharmacy, Faculty of Life Sciences, University College London, London WC1N 1AX, United Kingdom; Clinical Laboratory & Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland; Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Bruno C Sil
- School of Pharmacy, Faculty of Life Sciences, University College London, London WC1N 1AX, United Kingdom; School of Human Sciences, London Metropolitan University, 166-220 Holloway Road, London N7 8DB, United Kingdom
| | - Tuomo Laitinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Graham J Tizzard
- UK National Crystallography Service, School of Chemistry, University of Southampton, Highfield Campus, Southampton SO17 1BJ, United Kingdom
| | - Simon J Coles
- UK National Crystallography Service, School of Chemistry, University of Southampton, Highfield Campus, Southampton SO17 1BJ, United Kingdom
| | - Antti Poso
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Regina Hofmann-Lehmann
- Clinical Laboratory & Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Stephen T Hilton
- School of Pharmacy, Faculty of Life Sciences, University College London, London WC1N 1AX, United Kingdom.
| |
Collapse
|
4
|
Asquith CRM, Meili T, Laitinen T, Baranovsky IV, Konstantinova LS, Poso A, Rakitin OA, Hofmann-Lehmann R. Synthesis and comparison of substituted 1,2,3-dithiazole and 1,2,3-thiaselenazole as inhibitors of the feline immunodeficiency virus (FIV) nucleocapsid protein as a model for HIV infection. Bioorg Med Chem Lett 2019; 29:1765-1768. [PMID: 31101470 DOI: 10.1016/j.bmcl.2019.05.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/08/2019] [Indexed: 01/30/2023]
Abstract
We report the first biological evaluation the 1,2,3-thiaselenazole class of compound and utilising a concise synthetic approach of sulfur extrusion, selenium insertion of the 1,2,3-dithiazoles. We created a small diverse library of compounds to contrast the two ring systems. This approach has highlighted new structure activity relationship insights and lead to the development of sub-micro molar anti-viral compounds with reduced toxicity. The 1,2,3-thiaselenazole represents a new class of potential compounds for the treatment of FIV and HIV.
Collapse
Affiliation(s)
- Christopher R M Asquith
- Department of Pharmacology, School of Medicine University of North Carolina at Chapel Hill, NC 27599, USA.
| | - Theres Meili
- Clinical Laboratory and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich 8057, Switzerland
| | - Tuomo Laitinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Ilia V Baranovsky
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russian Federation
| | - Lidia S Konstantinova
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russian Federation; Nanotechnology Education and Research Center, South Ural State University, Lenina Ave. 76, Chelyabinsk 454080, Russian Federation
| | - Antti Poso
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russian Federation
| | - Oleg A Rakitin
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russian Federation; Nanotechnology Education and Research Center, South Ural State University, Lenina Ave. 76, Chelyabinsk 454080, Russian Federation
| | - Regina Hofmann-Lehmann
- Clinical Laboratory and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich 8057, Switzerland
| |
Collapse
|
5
|
Asquith CRM, Laitinen T, Konstantinova LS, Tizzard G, Poso A, Rakitin OA, Hofmann-Lehmann R, Hilton ST. Investigation of the Pentathiepin Functionality as an Inhibitor of Feline Immunodeficiency Virus (FIV) via a Potential Zinc Ejection Mechanism, as a Model for HIV Infection. ChemMedChem 2019; 14:454-461. [PMID: 30609219 DOI: 10.1002/cmdc.201800718] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/24/2018] [Indexed: 11/10/2022]
Abstract
A small diverse library of pentathiepin derivatives were prepared to evaluate their efficacy against the nucleocapsid protein function of the feline immunodeficiency virus (FIV) as a model for HIV, using an in vitro cell culture approach. This study led to the development of nanomolar active compounds with low toxicity.
Collapse
Affiliation(s)
- Christopher R M Asquith
- School of Pharmacy, Faculty of Life Sciences, University College London, London, WC1N 1AX, UK.,Clinical Laboratory & Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, 8057, Zurich, Switzerland.,Current address: Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Genetic Medicine Building, Chapel Hill, NC, 27599, USA
| | - Tuomo Laitinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, 70211, Finland
| | - Lidia S Konstantinova
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russian Federation.,Nanotechnology Education and Research Center, South Ural State University, Lenina Ave. 76, Chelyabinsk, Russian Federation
| | - Graham Tizzard
- UK National Crystallography Service, School of Chemistry, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Antti Poso
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, 70211, Finland
| | - Oleg A Rakitin
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russian Federation.,Nanotechnology Education and Research Center, South Ural State University, Lenina Ave. 76, Chelyabinsk, Russian Federation
| | - Regina Hofmann-Lehmann
- Clinical Laboratory & Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, 8057, Zurich, Switzerland
| | - Stephen T Hilton
- School of Pharmacy, Faculty of Life Sciences, University College London, London, WC1N 1AX, UK
| |
Collapse
|
6
|
Asquith CRM, Konstantinova LS, Laitinen T, Meli ML, Poso A, Rakitin OA, Hofmann-Lehmann R, Hilton ST. Evaluation of Substituted 1,2,3-Dithiazoles as Inhibitors of the Feline Immunodeficiency Virus (FIV) Nucleocapsid Protein via a Proposed Zinc Ejection Mechanism. ChemMedChem 2016; 11:2119-2126. [DOI: 10.1002/cmdc.201600260] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/21/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Christopher R. M. Asquith
- School of Pharmacy; Faculty of Life Sciences; University College London; London WC1N 1AX UK
- Clinical Laboratory & Center for Clinical Studies; Vetsuisse Faculty; University of Zurich; 8057 Zurich Switzerland
| | - Lidia S. Konstantinova
- Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Moscow 119991 Russian Federation
- Nanotechnology Education and Research Center; South Ural State, University; Lenina Ave. 76 Chelyabinsk 454080 Russian Federation
| | - Tuomo Laitinen
- School of Pharmacy; Faculty of Health Sciences; University of Eastern, Finland; Kuopio 70211 Finland
| | - Marina L. Meli
- Clinical Laboratory & Center for Clinical Studies; Vetsuisse Faculty; University of Zurich; 8057 Zurich Switzerland
| | - Antti Poso
- School of Pharmacy; Faculty of Health Sciences; University of Eastern, Finland; Kuopio 70211 Finland
| | - Oleg A. Rakitin
- Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Moscow 119991 Russian Federation
- Nanotechnology Education and Research Center; South Ural State, University; Lenina Ave. 76 Chelyabinsk 454080 Russian Federation
| | - Regina Hofmann-Lehmann
- Clinical Laboratory & Center for Clinical Studies; Vetsuisse Faculty; University of Zurich; 8057 Zurich Switzerland
| | - Stephen T. Hilton
- School of Pharmacy; Faculty of Life Sciences; University College London; London WC1N 1AX UK
| |
Collapse
|
7
|
Asquith CRM, Meli ML, Konstantinova LS, Laitinen T, Poso A, Rakitin OA, Hofmann-Lehmann R, Allenspach K, Hilton ST. Novel fused tetrathiocines as antivirals that target the nucleocapsid zinc finger containing protein of the feline immunodeficiency virus (FIV) as a model of HIV infection. Bioorg Med Chem Lett 2014; 25:1352-5. [PMID: 25702849 DOI: 10.1016/j.bmcl.2014.12.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 12/12/2014] [Accepted: 12/13/2014] [Indexed: 01/06/2023]
Abstract
A novel series of fused tetrathiocines were prepared for evaluation of activity against the nucleocapsid protein of the feline immunodeficiency virus (FIV) in an in vitro cell culture approach. The results demonstrated that the compounds display potent nanomolar activity and low toxicity against this key model of HIV infection.
Collapse
Affiliation(s)
- Christopher R M Asquith
- UCL School of Pharmacy, Faculty of Life Sciences, University College London, London WC1N 1AX, United Kingdom
| | - Marina L Meli
- Clinical Laboratory and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich 8057, Switzerland
| | - Lidia S Konstantinova
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russian Federation
| | - Tuomo Laitinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Antti Poso
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Oleg A Rakitin
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russian Federation
| | - Regina Hofmann-Lehmann
- Clinical Laboratory and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich 8057, Switzerland
| | - Karin Allenspach
- Veterinary Clinical Sciences, Royal Veterinary College, Hatfield AL9 7TA, United Kingdom
| | - Stephen T Hilton
- UCL School of Pharmacy, Faculty of Life Sciences, University College London, London WC1N 1AX, United Kingdom.
| |
Collapse
|
8
|
Beerens N, Jepsen MD, Nechyporuk-Zloy V, Krüger AC, Darlix JL, Kjems J, Birkedal V. Role of the primer activation signal in tRNA annealing onto the HIV-1 genome studied by single-molecule FRET microscopy. RNA (NEW YORK, N.Y.) 2013; 19:517-526. [PMID: 23404895 PMCID: PMC3677262 DOI: 10.1261/rna.035733.112] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 12/13/2012] [Indexed: 06/01/2023]
Abstract
HIV-1 reverse transcription is primed by a cellular tRNAlys3 molecule that binds to the primer binding site (PBS) in the genomic RNA. An additional interaction between the tRNA molecule and the primer activation signal (PAS) is thought to regulate the initiation of reverse transcription. The mechanism of tRNA annealing onto the HIV-1 genome was examined using ensemble and single-molecule Förster Resonance Energy Transfer (FRET) assays, in which fluorescent donor and acceptor molecules were covalently attached to an RNA template mimicking the PBS region. The role of the viral nucleocapsid (NC) protein in tRNA annealing was studied. Both heat annealing and NC-mediated annealing of tRNAlys3 were found to change the FRET efficiency, and thus the conformation of the HIV-1 RNA template. The results are consistent with a model for tRNA annealing that involves an interaction between the tRNAlys3 molecule and the PAS sequence in the HIV-1 genome. The NC protein may stimulate the interaction of the tRNA molecule with the PAS, thereby regulating the initiation of reverse transcription.
Collapse
Affiliation(s)
- Nancy Beerens
- Department of Molecular Biology, Aarhus University, Aarhus 8000, Denmark
| | - Mette D.E. Jepsen
- Department of Molecular Biology, Aarhus University, Aarhus 8000, Denmark
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus 8000, Denmark
| | | | - Asger C. Krüger
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus 8000, Denmark
| | - Jean-Luc Darlix
- UMR 7213 CNRS, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Illkirch 67401, France
| | - Jørgen Kjems
- Department of Molecular Biology, Aarhus University, Aarhus 8000, Denmark
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus 8000, Denmark
| | - Victoria Birkedal
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus 8000, Denmark
| |
Collapse
|
9
|
Involvement of human topoisomerase II isoforms in HIV-1 reverse transcription. Arch Biochem Biophys 2013; 532:91-102. [PMID: 23399433 DOI: 10.1016/j.abb.2013.01.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 01/28/2013] [Accepted: 01/30/2013] [Indexed: 11/20/2022]
Abstract
HIV-1 reverse transcription (RTn) involves synthesis of double strand DNA (dsDNA) from viral genomic RNA. Topoisomerase II (Topo II) alpha and beta maintains topological reorganization of dsDNA regions and catalytic inhibition of these isoforms repressed viral replicative cycle. Present study is aimed to understand the role of Topo II isoforms in HIV-1 early replication. Topo IIα and β showed differential expression in SupT1 cells and PBMCs during early hours of HIV-1 infection where Topo IIα expression increased after 4h, while Topo IIβ showed relatively higher expression at 1 and 4h. In Topo IIα and/or β down regulated cells, transcription of viral genes gag, pol and env as well as proviral DNA synthesis was abolished. In Topo IIα and/or β down regulated cells, strong stop DNA synthesis was unaffected while other downstream events of reverse transcription such as first strand transfer, full length minus strand synthesis, and second strand transfer were completely inhibited, which affects HIV-1 replication. Further, co-localization of Topo II isoforms with HIV-1 reverse transcriptase was observed in SupT1 cells and PBMCs by immunofluorescence. These results collectively suggest a role of Topo II isoforms during HIV-1 RTn probably by promoting the alignment of viral RNA-DNA hybrids.
Collapse
|
10
|
Shen W, Gorelick RJ, Bambara RA. HIV-1 nucleocapsid protein increases strand transfer recombination by promoting dimeric G-quartet formation. J Biol Chem 2011; 286:29838-47. [PMID: 21737842 PMCID: PMC3191025 DOI: 10.1074/jbc.m111.262352] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 07/07/2011] [Indexed: 11/06/2022] Open
Abstract
A preferred site for HIV-1 recombination was identified in vivo and in vitro surrounding the beginning of the HIV-1 gag gene. This G-rich gag hotspot for recombination contains three evenly spaced G-runs that stalled reverse transcriptase. Disruption of the G-runs suppressed both the associated pausing and strand transfer in vitro. Significantly, this same gag sequence was able to fold into a G-quartet monomer, dimer, and tetramer, depending on the cations employed. The pause band at the G-run (nucleotide (nt) 405-409), which was predicted to be involved in forming a G-quartet monomer, diminished with increased HIV-1 nucleocapsid (NC) protein. More NC induced stronger pauses at other G-runs (nt 363-367 and nt 382-384), a region that forms a G-quartet dimer, adhering the two RNA templates. We hypothesized that NC induces the unfolding of the monomeric G-quartet but stabilizes the dimeric interaction. We tested this by inserting a known G-quartet formation sequence, 5'-(UGGGGU)(4)-3', into a relatively structure-free template from the HIV-1 pol gene. Strand transfer assays were performed with cations that either encourage (K(+)) or discourage (Li(+)) G-quartet formation with or without NC. Strikingly, a G-quartet monomer was observed without NC, whereas a G-quartet dimer was observed with NC, both only in the presence of K(+). Moreover, the transfer efficiency of the dimerized template (with K(+) and NC) reached about 90%, approximately 2.5-fold of that of the non-dimerized template. Evidently, template dimerization induced by NC creates a proximity effect, leading to the unique high peak of transfer at the gag recombination hotspot.
Collapse
Affiliation(s)
- Wen Shen
- From the Department of Biochemistry and Biophysics and the Center for RNA Biology, University of Rochester Medical Center, Rochester, New York 14642 and
| | - Robert J. Gorelick
- the AIDS and Cancer Virus Program, SAIC-Frederick, Inc. NCI-Frederick, Frederick, Maryland 21702-1201
| | - Robert A. Bambara
- From the Department of Biochemistry and Biophysics and the Center for RNA Biology, University of Rochester Medical Center, Rochester, New York 14642 and
| |
Collapse
|
11
|
The arginine clusters of the carboxy-terminal domain of the core protein of hepatitis B virus make pleiotropic contributions to genome replication. J Virol 2010; 85:1298-309. [PMID: 21084467 DOI: 10.1128/jvi.01957-10] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The carboxy-terminal domain (CTD) of the core protein of hepatitis B virus is not necessary for capsid assembly. However, the CTD does contribute to encapsidation of pregenomic RNA (pgRNA). The contribution of the CTD to DNA synthesis is less clear. This is the case because some mutations within the CTD increase the proportion of spliced RNA to pgRNA that are encapsidated and reverse transcribed. The CTD contains four clusters of consecutive arginine residues. The contributions of the individual arginine clusters to genome replication are unknown. We analyzed core protein variants in which the individual arginine clusters were substituted with either alanine or lysine residues. We developed assays to analyze these variants at specific steps throughout genome replication. We used a replication template that was not spliced in order to study the replication of only pgRNA. We found that alanine substitutions caused defects at both early and late steps in genome replication. Lysine substitutions also caused defects, but primarily during later steps. These findings demonstrate that the CTD contributes to DNA synthesis pleiotropically and that preserving the charge within the CTD is not sufficient to preserve function.
Collapse
|
12
|
Wu T, Datta SA, Mitra M, Gorelick RJ, Rein A, Levin JG. Fundamental differences between the nucleic acid chaperone activities of HIV-1 nucleocapsid protein and Gag or Gag-derived proteins: biological implications. Virology 2010; 405:556-67. [PMID: 20655566 PMCID: PMC2963451 DOI: 10.1016/j.virol.2010.06.042] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 05/16/2010] [Accepted: 06/23/2010] [Indexed: 01/31/2023]
Abstract
The HIV-1 Gag polyprotein precursor has multiple domains including nucleocapsid (NC). Although mature NC and NC embedded in Gag are nucleic acid chaperones (proteins that remodel nucleic acid structure), few studies include detailed analysis of the chaperone activity of partially processed Gag proteins and comparison with NC and Gag. Here we address this issue by using a reconstituted minus-strand transfer system. NC and NC-containing Gag proteins exhibited annealing and duplex destabilizing activities required for strand transfer. Surprisingly, unlike NC, with increasing concentrations, Gag proteins drastically inhibited the DNA elongation step. This result is consistent with "nucleic acid-driven multimerization" of Gag and the reported slow dissociation of Gag from bound nucleic acid, which prevent reverse transcriptase from traversing the template ("roadblock" mechanism). Our findings illustrate one reason why NC (and not Gag) has evolved as a critical cofactor in reverse transcription, a paradigm that might also extend to other retrovirus systems.
Collapse
Affiliation(s)
- Tiyun Wu
- Laboratory of Molecular Genetics, Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Building 6B, Room 216, 6 Center Drive, Bethesda, MD 20892-2780, USA
| | - Siddhartha A.K. Datta
- HIV Drug Resistance Program, National Cancer Institute-Frederick, Frederick, MD 21702-1201, USA
| | - Mithun Mitra
- Laboratory of Molecular Genetics, Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Building 6B, Room 216, 6 Center Drive, Bethesda, MD 20892-2780, USA
| | - Robert J. Gorelick
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick, MD 21702-1201, USA
| | - Alan Rein
- HIV Drug Resistance Program, National Cancer Institute-Frederick, Frederick, MD 21702-1201, USA
| | - Judith G. Levin
- Laboratory of Molecular Genetics, Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Building 6B, Room 216, 6 Center Drive, Bethesda, MD 20892-2780, USA
| |
Collapse
|
13
|
Didierlaurent L, Houzet L, Morichaud Z, Darlix JL, Mougel M. The conserved N-terminal basic residues and zinc-finger motifs of HIV-1 nucleocapsid restrict the viral cDNA synthesis during virus formation and maturation. Nucleic Acids Res 2008; 36:4745-53. [PMID: 18641038 PMCID: PMC2504319 DOI: 10.1093/nar/gkn474] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Reverse transcription of the genomic RNA by reverse transcriptase occurs soon after HIV-1 infection of target cells. The viral nucleocapsid (NC) protein chaperones this process via its nucleic acid annealing activities and its interactions with the reverse transcriptase enzyme. To function, NC needs its two conserved zinc fingers and flanking basic residues. We recently reported a new role for NC, whereby it negatively controls reverse transcription in the course of virus formation. Indeed, deleting its zinc fingers causes reverse transcription activation in virus producer cells. To investigate this new NC function, we used viruses with subtle mutations in the conserved zinc fingers and its flanking domains. We monitored by quantitative PCR the HIV-1 DNA content in producer cells and in produced virions. Results showed that the two intact zinc-finger structures are required for the temporal control of reverse transcription by NC throughout the virus replication cycle. The N-terminal basic residues also contributed to this new role of NC, while Pro-31 residue between the zinc fingers and Lys-59 in the C-terminal region did not. These findings further highlight the importance of NC as a major target for anti-HIV-1 drugs.
Collapse
|
14
|
Jacob DT, DeStefano JJ. A new role for HIV nucleocapsid protein in modulating the specificity of plus strand priming. Virology 2008; 378:385-96. [PMID: 18632127 DOI: 10.1016/j.virol.2008.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 05/26/2008] [Accepted: 06/05/2008] [Indexed: 11/28/2022]
Abstract
The current study indicates a new role for HIV nucleocapsid protein (NC) in modulating the specificity of plus strand priming. RNase H cleavage by reverse transcriptase (RT) during minus strand synthesis gives rise to RNA fragments that could potentially be used as primers for synthesis of the plus strand, leading to the initiation of priming from multiple points as has been observed for other retroviruses. For HIV, the central and 3' polypurine tracts (PPTs) are the major sites of plus strand initiation. Using reconstituted in vitro assays, results showed that NC greatly reduced the efficiency of extension of non-PPT RNA primers, but not PPT. Experiments mimicking HIV replication showed that RT generated and used both PPT and non-PPT RNAs to initiate "plus strand" synthesis, but non-PPT usage was strongly inhibited by NC. The results support a role for NC in specifying primer usage during plus strand synthesis.
Collapse
Affiliation(s)
- Deena T Jacob
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA
| | | |
Collapse
|
15
|
Morcock DR, Thomas JA, Sowder RC, Henderson LE, Crise BJ, Gorelick RJ. HIV-1 inactivation by 4-vinylpyridine is enhanced by dissociating Zn(2+) from nucleocapsid protein. Virology 2008; 375:148-58. [PMID: 18304600 DOI: 10.1016/j.virol.2008.01.045] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Revised: 12/06/2007] [Accepted: 01/30/2008] [Indexed: 11/29/2022]
Abstract
Selective inactivation of critical cysteine residues in human immunodeficiency virus type one (HIV-1) was observed after treatment with 4-vinylpyridine (4-VP), with and without the membrane-permeable metal chelator N,N,N',N'-tetrakis(2-pyridylmethyl)-ethylenediamine (TPEN). Chromatographic analysis showed that cysteines contained within nucleocapsid zinc fingers, in the context of whole virus or purified protein, were essentially unreactive, but became reactive when a chelator was included. Virus treated with 4-VP showed only a modest decrease in infectivity; after TPEN addition, nearly complete inactivation of HIV-1 occurred. Similarly, quantitation of viral DNA products from 4-VP-treated virus infections showed no significant effects on reverse transcription, but did show a 14-fold reduction in proviruses; when TPEN was added, a 10(5)-fold decrease in late reverse transcription products was observed and no proviruses were detected. Since 4-VP effectiveness was greatly enhanced by TPEN, this strongly suggests that modification of nucleocapsid zinc fingers is necessary and sufficient for HIV-1 inactivation by sulfhydryl reagents.
Collapse
Affiliation(s)
- David R Morcock
- AIDS Vaccine Program, Basic Research Program, SAIC-Frederick, Inc., NCI-Frederick, Building 535, 4th floor, P.O. Box B, Frederick, Maryland 21702-1201, USA
| | | | | | | | | | | |
Collapse
|
16
|
Narayanan N, Gorelick RJ, DeStefano JJ. Structure/function mapping of amino acids in the N-terminal zinc finger of the human immunodeficiency virus type 1 nucleocapsid protein: residues responsible for nucleic acid helix destabilizing activity. Biochemistry 2006; 45:12617-28. [PMID: 17029416 PMCID: PMC4829079 DOI: 10.1021/bi060925c] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The nucleocapsid protein (NC) of HIV-1 is 55 amino acids in length and possesses two CCHC-type zinc fingers. Finger one (N-terminal) contributes significantly more to helix destabilizing activity than finger two (C-terminal). Five amino acids differ between the two zinc fingers. To determine at the amino acid level the reason for the apparent distinction between the fingers, each different residue in finger one was incrementally replaced by the one at the corresponding location in finger two. Mutants were analyzed in annealing assays with unstructured and structured substrates. Three groupings emerged: (1) those similar to wild-type levels (N17K, A25M), (2) those with diminished activity (I24Q, N27D), and (3) mutant F16W, which had substantially greater helix destabilizing activity than that of the wild type. Unlike I24Q and the other mutants, N27D was defective in DNA binding. Only I24Q and N27D showed reduced strand transfer in in vitro assays. Double and triple mutants F16W/I24Q, F16W/N27D, and F16W/I24Q/N27D all showed defects in DNA binding, strand transfer, and helix destabilization, suggesting that the I24Q and N27D mutations have a dominant negative effect and abolish the positive influence of F16W. Results show that amino acid differences at positions 24 and 27 contribute significantly to finger one's helix destabilizing activity.
Collapse
Affiliation(s)
- Nirupama Narayanan
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD
| | - Robert J. Gorelick
- AIDS Vaccine Program, SAIC-Frederick, Inc., NCI at Frederick, Frederick, MD
| | - Jeffrey J. DeStefano
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD
| |
Collapse
|
17
|
Anthony RM, DeStefano JJ. In vitro synthesis of long DNA products in reactions with HIV-RT and nucleocapsid protein. J Mol Biol 2006; 365:310-24. [PMID: 17070544 PMCID: PMC2493291 DOI: 10.1016/j.jmb.2006.10.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 09/29/2006] [Accepted: 10/02/2006] [Indexed: 10/24/2022]
Abstract
In vitro reaction conditions using HIV reverse transcriptase (RT) and nucleocapsid protein (NC) that allowed efficient synthesis of single-stranded DNA products over a thousand nucleotides in length from genomic HIV RNA were characterized. Consistent with previous reports, the reactions required high concentrations of NC and RT. Long products were produced as a result of frequent strand transfer between RNA templates, averaging at least one transfer per 300 nucleotides synthesized. No change in RT processivity was observed in the reactions in the presence versus absence of NC. Synthesis of long products required formation of a high molecular mass aggregate between NC and nucleic acids. The aggregate formed rapidly and pelleted with low speed centrifugation. The aggregate was accessible to RT as pre-formed aggregates synthesized long products when RT was added. NC finger mutants lacking either finger one or two or with the finger positions switched were all effective in promoting long products. This suggests that the aggregation/condensation but not helix-destabilizing activity of NC was required. We propose that these high molecular mass aggregates promote synthesis of long reverse transcription products in vitro by concentrating nucleic acids, RT enzyme and NC to close proximity, thereby mimicking the role of the capsid environment within the host cell.
Collapse
|
18
|
Thomas JA, Gagliardi TD, Alvord WG, Lubomirski M, Bosche WJ, Gorelick RJ. Human immunodeficiency virus type 1 nucleocapsid zinc-finger mutations cause defects in reverse transcription and integration. Virology 2006; 353:41-51. [PMID: 16784767 DOI: 10.1016/j.virol.2006.05.014] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Revised: 03/14/2006] [Accepted: 05/11/2006] [Indexed: 12/24/2022]
Abstract
The nucleocapsid (NC) protein from HIV-1 contains two zinc-fingers, both of which are necessary for virus replication. This is the first in-depth study that presents the effects of nucleocapsid zinc-finger substitutions on the kinetics of reverse transcription and integration. Over a 72-h time-course of infection, the quantities of viral DNA (vDNA) observed with viruses containing either the nucleocapsid His23Cys or His44Cys mutations were significantly lower than those observed in infections with virus containing wild-type NC. In addition, the kinetics of vDNA formation and loss were significantly different from wild-type. The kinetic profiles observed indicated reduced vDNA stability, as well as defects in reverse transcription and integration. Overall, the defect in integration was much more pronounced than the reverse transcription defects. This suggests that the principal reason for the replication defectiveness of these mutant viruses is impairment of integration, and thus demonstrates the critical importance of NC in HIV-1 infection.
Collapse
Affiliation(s)
- James A Thomas
- AIDS Vaccine Program, Basic Research Program, SAIC-Frederick, Inc., NCI-Frederick, PO Box B, Bldg. 535, Room 410, Frederick, MD 21702-1201, USA
| | | | | | | | | | | |
Collapse
|
19
|
Levin JG, Guo J, Rouzina I, Musier-Forsyth K. Nucleic acid chaperone activity of HIV-1 nucleocapsid protein: critical role in reverse transcription and molecular mechanism. ACTA ACUST UNITED AC 2006; 80:217-86. [PMID: 16164976 DOI: 10.1016/s0079-6603(05)80006-6] [Citation(s) in RCA: 286] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Judith G Levin
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
20
|
Wilhelm FX, Wilhelm M, Gabriel A. Reverse transcriptase and integrase of the Saccharomyces cerevisiae Ty1 element. Cytogenet Genome Res 2005; 110:269-87. [PMID: 16093680 DOI: 10.1159/000084960] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2003] [Accepted: 02/02/2004] [Indexed: 11/19/2022] Open
Abstract
Integrase (IN) and reverse transcriptase (RT) play a central role in transposition of retroelements. The mechanism of integration by IN and the steps of the replication process mediated by RT are briefly described here. Recently, active recombinant forms of Ty1 IN and RT have been obtained. This has allowed a more detailed understanding of their biochemical and structural properties and has made possible combined in vitro and in vivo analyses of their functions. A focus of this review is to discuss some of the results obtained thus far with these two recombinant proteins and to propose future directions.
Collapse
Affiliation(s)
- F-X Wilhelm
- Institut de Biologie Moleculaire et Cellulaire, Strasbourg, France.
| | | | | |
Collapse
|
21
|
Luo K, Liu B, Xiao Z, Yu Y, Yu X, Gorelick R, Yu XF. Amino-terminal region of the human immunodeficiency virus type 1 nucleocapsid is required for human APOBEC3G packaging. J Virol 2004; 78:11841-52. [PMID: 15479826 PMCID: PMC523292 DOI: 10.1128/jvi.78.21.11841-11852.2004] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
APOBEC3G exerts its antiviral activity by targeting to retroviral particles and inducing viral DNA hypermutations in the absence of Vif. However, the mechanism by which APOBEC3G is packaged into virions remains unclear. We now report that viral genomic RNA enhances but is not essential for human APOBEC3G packaging into human immunodeficiency virus type 1 (HIV-1) virions. Packaging of APOBEC3G was also detected in HIV-1 Gag virus-like particles (VLP) that lacked all the viral genomic RNA packaging signals. Human APOBEC3G could be packaged efficiently into a divergent subtype HIV-1, as well as simian immunodeficiency virus, strain mac, and murine leukemia virus Gag VLP. Cosedimentation of human APOBEC3G and intracellular Gag complexes was detected by equilibrium density and velocity sucrose gradient analysis. Interaction between human APOBEC3G and HIV-1 Gag was also detected by coimmunoprecipitation experiments. This interaction did not require p6, p1, or the C-terminal region of NCp7. However, the N-terminal region, especially the first 11 amino acids, of HIV-1 NCp7 was critical for HIV-1 Gag and APOBEC3G interaction and virion packaging. The linker region flanked by the two active sites of human APOBEC3G was also important for efficient packaging into HIV-1 Gag VLP. Association of human APOBEC3G with RNA-containing intracellular complexes was observed. These results suggest that the N-terminal region of HIV-1 NC, which is critical for binding to RNA and mediating Gag-Gag oligomerization, plays an important role in APOBEC3G binding and virion packaging.
Collapse
Affiliation(s)
- Kun Luo
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD 21205, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Heilman-Miller SL, Wu T, Levin JG. Alteration of nucleic acid structure and stability modulates the efficiency of minus-strand transfer mediated by the HIV-1 nucleocapsid protein. J Biol Chem 2004; 279:44154-65. [PMID: 15271979 DOI: 10.1074/jbc.m401646200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During human immunodeficiency virus type 1 minus-strand transfer, the nucleocapsid protein (NC) facilitates annealing of the complementary repeat regions at the 3'-ends of acceptor RNA and minus-strand strong-stop DNA ((-) SSDNA). In addition, NC destabilizes the highly structured complementary trans-activation response element (TAR) stem-loop (TAR DNA) at the 3'-end of (-) SSDNA and inhibits TAR-induced self-priming, a dead-end reaction that competes with minus-strand transfer. To investigate the relationship between nucleic acid secondary structure and NC function, a series of truncated (-) SSDNA and acceptor RNA constructs were used to assay minus-strand transfer and self-priming in vitro. The results were correlated with extensive enzymatic probing and mFold analysis. As the length of (-) SSDNA was decreased, self-priming increased and was highest when the DNA contained little more than TAR DNA, even if NC and acceptor were both present; in contrast, truncations within TAR DNA led to a striking reduction or elimination of self-priming. However, destabilization of TAR DNA was not sufficient for successful strand transfer: the stability of acceptor RNA was also crucial, and little or no strand transfer occurred if the RNA was highly stable. Significantly, NC may not be required for in vitro strand transfer if (-) SSDNA and acceptor RNA are small, relatively unstructured molecules with low thermodynamic stabilities. Collectively, these findings demonstrate that for efficient NC-mediated minus-strand transfer, a delicate thermodynamic balance between the RNA and DNA reactants must be maintained.
Collapse
Affiliation(s)
- Susan L Heilman-Miller
- Laboratory of Molecular Genetics, NICHD, National Institutes of Health, Bethesda, Maryland 20892-2780, USA
| | | | | |
Collapse
|
23
|
Paillart JC, Shehu-Xhilaga M, Marquet R, Mak J. Dimerization of retroviral RNA genomes: an inseparable pair. Nat Rev Microbiol 2004; 2:461-72. [PMID: 15152202 DOI: 10.1038/nrmicro903] [Citation(s) in RCA: 232] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Jean-Christophe Paillart
- UPR 9002 du CNRS affiliée à l'Université Louis Pasteur, Institut de Biologie Moléculaire et Cellulaire, 67084 Strasbourg Cedex, France
| | | | | | | |
Collapse
|
24
|
Tisné C, Roques BP, Dardel F. The annealing mechanism of HIV-1 reverse transcription primer onto the viral genome. J Biol Chem 2003; 279:3588-95. [PMID: 14602716 DOI: 10.1074/jbc.m310368200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Reverse transcription of human immunodeficiency virus-1 viral RNA uses human tRNA(3)(Lys) as a primer. The first step of viral replication is, thus, the annealing of the primer tRNA onto the primer binding site located in the 5' leader region of the viral RNA. This involves large rearrangements of both RNA structures and requires the chaperone activity of the viral nucleocapsid protein. We have developed a novel approach to analyze dynamically such RNA refolding events using heteronuclear NMR spectroscopy of mixtures of (15)N-labeled and unlabeled large RNA fragments (up to 50 kDa). We have thus been able to characterize the detailed mechanisms of both heat- and nucleocapsid-mediated annealing and to identify previously unknown key steps. The role played by the nucleocapsid is 2-fold; it facilitates strand exchange at the level of the tRNA acceptor stem, presumably via its basic N- and C-terminal extensions, and it unlocks the highly stable tertiary interactions at the level of the T Psi C loop, most likely by specific interactions involving its two zinc knuckles.
Collapse
Affiliation(s)
- Carine Tisné
- Laboratoire de Cristallographie et Résonance Magnétique Nucléaire Biologiques, UMR 8015 CNRS, 4 avenue de l'Observatoire, 75006 Paris, France
| | | | | |
Collapse
|
25
|
Heath MJ, Derebail SS, Gorelick RJ, DeStefano JJ. Differing roles of the N- and C-terminal zinc fingers in human immunodeficiency virus nucleocapsid protein-enhanced nucleic acid annealing. J Biol Chem 2003; 278:30755-63. [PMID: 12783894 DOI: 10.1074/jbc.m303819200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The replication process of human immunodeficiency virus requires a number of nucleic acid annealing steps facilitated by the hybridization and helix-destabilizing activities of human immunodeficiency virus nucleocapsid (NC) protein. NC contains two CCHC zinc finger motifs numbered 1 and 2 from the N terminus. The amino acids surrounding the CCHC residues differ between the two zinc fingers. Assays were preformed to investigate the activities of the fingers by determining the effect of mutant and wild-type proteins on annealing of 42-nucleotide RNA and DNA complements. The mutants 1.1 NC and 2.2 NC had duplications of the N- and C-terminal zinc fingers in positions 1 and 2. The mutant 2.1 NC had the native zinc fingers with their positions switched. Annealing assays were completed with unstructured and highly structured oligonucleotide complements. 2.2 NC had a near wild-type level of annealing of unstructured nucleic acids, whereas it was completely unable to stimulate annealing of highly structured nucleic acids. In contrast, 1.1 NC was able to stimulate annealing of both unstructured and structured substrates, but to a lesser degree than the wild-type protein. Results suggest that finger 1 has a greater role in unfolding of strong secondary structures, whereas finger 2 serves an accessory role that leads to a further increase in the rate of annealing.
Collapse
Affiliation(s)
- Megan J Heath
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, Maryland 20742, USA
| | | | | | | |
Collapse
|
26
|
Wei X, Liang C, Götte M, Wainberg MA. Negative effect of the M184V mutation in HIV-1 reverse transcriptase on initiation of viral DNA synthesis. Virology 2003; 311:202-12. [PMID: 12832217 DOI: 10.1016/s0042-6822(03)00173-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The M184V mutation in HIV reverse transcriptase (RT) is associated with high-level resistance against the nucleoside inhibitor lamivudine as well as diminished viral replication capacity. We have previously demonstrated that HIV variants containing the M184V mutation were relatively unable to successfully undergo compensatory mutagenesis following deletion of an A-rich loop located upstream of the primer binding site (PBS). To understand the mechanisms involved, we synthesized viral RNA templates containing different compensatory mutations that were emergent during the long-term culture of the A-rich loop-deleted viruses. These templates were then used in cell-free reverse transcription initiation assays and in tRNA primer placement assays performed with either recombinant wild-type RT or recombinant RT containing the M184V substitution. The results showed that the RNA template that contained the A-rich loop deletion was impaired in ability to initiate reverse transcription and that the presence of the M184V substitution in RT amplified this effect. Clearance from pausing at position +3 during synthesis of viral DNA was identified as a sensitive step in this reaction that could not be efficiently bypassed with the M184V mutant enzyme. Increased efficiency of initiation was seen with the deleted RNA templates that also contained mutations identified in the revertant viruses, provided that these mutations facilitated formation of a competent binary tRNA/RNA complex. These findings provide biochemical evidence that initiation of tRNA(Lys3)-primed DNA synthesis is an important rate-limiting step in reverse transcription that correlates with viral replication fitness.
Collapse
Affiliation(s)
- Xin Wei
- McGill University AIDS Centre, Lady Davis Institute-Jewish General Hospital, H3T 1E2, Montréal, Québec, Canada
| | | | | | | |
Collapse
|
27
|
Iwatani Y, Rosen AE, Guo J, Musier-Forsyth K, Levin JG. Efficient initiation of HIV-1 reverse transcription in vitro. Requirement for RNA sequences downstream of the primer binding site abrogated by nucleocapsid protein-dependent primer-template interactions. J Biol Chem 2003; 278:14185-95. [PMID: 12560327 DOI: 10.1074/jbc.m211618200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Synthesis of HIV-1 (-) strong-stop DNA is initiated following annealing of the 3' 18 nucleotides (nt) of tRNA(3)(Lys) to the primer binding site (PBS) near the 5' terminus of viral RNA. Here, we have investigated whether sequences downstream of the PBS play a role in promoting efficient (-) strong-stop DNA synthesis. Our findings demonstrate a template requirement for at least 24 bases downstream of the PBS when tRNA(3)(Lys) or an 18-nt RNA complementary to the PBS (R18), but not an 18-nt DNA primer, are used. Additional assays using 18-nt DNA-RNA chimeric primers, as well as melting studies and circular dichroism spectra of 18-nt primer:PBS duplexes, suggest that priming efficiency is correlated with duplex conformation and stability. Interestingly, in the presence of nucleocapsid protein (NC), the 24 downstream bases are dispensable for synthesis primed by tRNA(3)(Lys) but not by R18. We present data supporting the conclusion that NC promotes extended interactions between the anticodon stem and variable loop of tRNA(3)(Lys) and a sequence upstream of the A-rich loop in the template. Taken together, this study leads to new insights into the initiation of HIV-1 reverse transcription and the functional role of NC-facilitated tRNA-template interactions in this process.
Collapse
Affiliation(s)
- Yasumasa Iwatani
- Laboratory of Molecular Genetics, National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
28
|
Buckman JS, Bosche WJ, Gorelick RJ. Human immunodeficiency virus type 1 nucleocapsid zn(2+) fingers are required for efficient reverse transcription, initial integration processes, and protection of newly synthesized viral DNA. J Virol 2003; 77:1469-80. [PMID: 12502862 PMCID: PMC140799 DOI: 10.1128/jvi.77.2.1469-1480.2003] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) containing mutations in the nucleocapsid (NC) Zn(2+) finger domains have greatly reduced infectivity, even though genome packaging is largely unaffected in certain cases. To examine replication defects, viral DNA (vDNA) was isolated from cells infected with viruses containing His-to-Cys changes in their Zn(2+) fingers (NC(H23C) and NC(H44C)), an integrase mutant (IN(D116N)), a double mutant (NC(H23C)/IN(D116N)), or wild-type HIV-1. In vitro assays have established potential roles for NC in reverse transcription and integration. In vivo results for these processes were obtained by quantitative PCR, cloning of PCR products, and comparison of the quantity and composition of vDNA generated at discrete points during reverse transcription. Quantitative analysis of the reverse transcription intermediates for these species strongly suggests decreased stability of the DNA produced. Both Zn(2+) finger mutants appear to be defective in DNA synthesis, with the minus- and plus-strand transfer processes being affected while interior portions of the vDNA remain more intact. Sequences obtained from PCR amplification and cloning of 2-LTR circle junction fragments revealed that the NC mutants had a phenotype similar to the IN mutant; removal of the terminal CA dinucleotides necessary for integration of the vDNA is disabled by the NC mutations. Thus, the loss of infectivity in these NC mutants in vivo appears to result from defective reverse transcription and integration processes stemming from decreased protection of the full-length vDNA. Finally, these results indicate that the chaperone activity of NC extends from the management of viral RNA through to the full-length vDNA.
Collapse
Affiliation(s)
- James S Buckman
- AIDS Vaccine Program, SAIC Frederick, Inc., National Cancer Institute at Frederick, Maryland 21702-1201, USA
| | | | | |
Collapse
|
29
|
Guo J, Wu T, Kane BF, Johnson DG, Henderson LE, Gorelick RJ, Levin JG. Subtle alterations of the native zinc finger structures have dramatic effects on the nucleic acid chaperone activity of human immunodeficiency virus type 1 nucleocapsid protein. J Virol 2002; 76:4370-8. [PMID: 11932404 PMCID: PMC155087 DOI: 10.1128/jvi.76.9.4370-4378.2002] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nucleocapsid protein (NC) of human immunodeficiency virus type 1 has two zinc fingers, each containing the invariant CCHC zinc-binding motif; however, the surrounding amino acid context is not identical in the two fingers. Recently, we demonstrated that zinc coordination is required when NC unfolds complex secondary structures in RNA and DNA minus- and plus-strand transfer intermediates; this property of NC reflects its nucleic acid chaperone activity. Here we have analyzed the chaperone activities of mutants having substitutions of alternative zinc-coordinating residues, i.e., CCHH or CCCC, for the wild-type CCHC motif. We also investigated the activities of mutants that retain the CCHC motifs but have mutations that exchange or duplicate the zinc fingers (mutants 1-1, 2-1, and 2-2); these changes affect amino acid context. Our results indicate that in general, for optimal activity in an assay that measures stimulation of minus-strand transfer and inhibition of nonspecific self-priming, the CCHC motif in the zinc fingers cannot be replaced by CCHH or CCCC and the amino acid context of the fingers must be conserved. Context changes also reduce the ability of NC to facilitate primer removal in plus-strand transfer. In addition, we found that the first finger is a more crucial determinant of nucleic acid chaperone activity than the second finger. Interestingly, comparison of the in vitro results with earlier in vivo replication data raises the possibility that NC may adopt multiple conformations that are responsible for different NC functions during virus replication.
Collapse
Affiliation(s)
- Jianhui Guo
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Gao X, Rowley DJ, Gai X, Voytas DF. Ty5 gag mutations increase retrotransposition and suggest a role for hydrogen bonding in the function of the nucleocapsid zinc finger. J Virol 2002; 76:3240-7. [PMID: 11884548 PMCID: PMC136051 DOI: 10.1128/jvi.76.7.3240-3247.2002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Ty5 retrotransposon of Saccharomyces paradoxus transposes in Saccharomyces cerevisiae at frequencies 1,000-fold lower than do the native Ty1 elements. The low transposition activity of Ty5 could be due to differences in cellular environments between these yeast species or to naturally occurring mutations in Ty5. By screening of a Ty5 mutant library, two single mutants (D252N and Y68C) were each found to increase transposition approximately sixfold. When combined, transposition increased 36-fold, implying that the two mutations act independently. Neither mutation affected Ty5 protein synthesis, processing, cDNA recombination, or target site choice. However, cDNA levels in both single mutants and the double mutant were significantly higher than in the wild type. The D252N mutation resides in the zinc finger of nucleocapsid and increases the potential for hydrogen bonding with nucleic acids. We generated other mutations that increase the hydrogen bonding potential (i.e., D252R and D252K) and found that they similarly increased transposition. This suggests that hydrogen bonding within the zinc finger motif is important for cDNA production and builds upon previous studies implicating basic amino acids flanking the zinc finger as important for zinc finger function. Although NCp zinc fingers differ from the zinc finger motifs of cellular enzymes, the requirement for efficient hydrogen bonding is likely universal.
Collapse
Affiliation(s)
- Xiang Gao
- Department of Zoology and Genetics, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | |
Collapse
|
31
|
Brulé F, Marquet R, Rong L, Wainberg MA, Roques BP, Le Grice SFJ, Ehresmann B, Ehresmann C. Structural and functional properties of the HIV-1 RNA-tRNA(Lys)3 primer complex annealed by the nucleocapsid protein: comparison with the heat-annealed complex. RNA (NEW YORK, N.Y.) 2002; 8:8-15. [PMID: 11873759 PMCID: PMC1370235 DOI: 10.1017/s1355838202010981] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The conversion of the single-stranded RNA genome into double-stranded DNA by virus-coded reverse transcriptase (RT) is an essential step of the retrovirus life cycle. In human immunodeficiency virus type 1 (HIV-1), RT uses the cellular tRNA(Lys)3 to initiate the (-) strand DNA synthesis. Placement of the primer tRNA(Lys)3 involves binding of its 3'-terminal 18 nt to a complementary region of genomic RNA termed PBS. However, the PBS sequence is not the unique determinant of primer usage and additional contacts are important. This placement is believed to be achieved in vivo by the nucleocapsid domain of Gag or by the mature protein NCp. Up to now, structural information essentially arose from heat-annealed primer-template complexes (Isel et al., J Mol Biol, 1995, 247:236-250; Isel et al., EMBO J, 1999, 18:1038-1048). Here, we investigated the formation of the primer-template complex mediated by NCp and compared structural and functional properties of heat- and NCp-annealed complexes. We showed that both heat- and NCp-mediated procedures allow comparable high yields of annealing. Then, we investigated structural features of both kinds of complexes by enzymatic probing, and we compared their relative efficiency in (-) strong stop DNA synthesis. We did not find any significant differences between these complexes, suggesting that information derived from the heat-annealed complex can be transposed to the NCp-mediated complex and most likely to complexes formed in vivo.
Collapse
MESH Headings
- Base Pairing
- Base Sequence
- DNA/biosynthesis
- DNA Replication
- Electrophoretic Mobility Shift Assay
- HIV-1/genetics
- HIV-1/metabolism
- Hot Temperature
- Humans
- Molecular Sequence Data
- Nucleic Acid Conformation
- Nucleic Acid Hybridization
- Nucleic Acid Probes
- Nucleocapsid Proteins/metabolism
- RNA/chemistry
- RNA/genetics
- RNA/metabolism
- RNA, Transfer, Lys/chemistry
- RNA, Transfer, Lys/genetics
- RNA, Transfer, Lys/metabolism
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Templates, Genetic
- Transcription, Genetic
Collapse
Affiliation(s)
- Fabienne Brulé
- Unité Propre de Recherche 9002, Centre Nationale de la Recherche Scientifique, Institut de Biologie Moleculaire et Cellulaire, Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Rong L, Liang C, Hsu M, Guo X, Roques BP, Wainberg MA. HIV-1 nucleocapsid protein and the secondary structure of the binary complex formed between tRNA(Lys.3) and viral RNA template play different roles during initiation of (-) strand DNA reverse transcription. J Biol Chem 2001; 276:47725-32. [PMID: 11602578 DOI: 10.1074/jbc.m105124200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In human immunodeficiency virus type 1 (HIV-1), the tRNA(Lys.3) primer and viral RNA template can form a specific complex that is characterized by extensive inter- and intramolecular interactions. Initiation of reverse transcription from this complex has been shown to be distinguished from subsequent elongation by early pausing events, such as at the +1 and +3 nucleotide positions. One major concern regarding the biological relevance of these results is that most kinetic studies of HIV-1 reverse transcription have been performed using tRNA(Lys.3)-viral (v) RNA complexes that were formed by heat annealing. In contrast, tRNA(Lys.3) in viruses is placed onto the primer binding site by nucleocapsid (NC) sequences of the Gag protein. In this study, we have further characterized the initiation features of reverse transcription in the presence of HIV-1 NC protein. In contrast to results obtained with a heat-annealed tRNA(Lys.3).vRNA complex, we found that polymerization reactions catalyzed by HIV-1 reverse transcriptase did not commonly pause at the +1 nucleotide position when a NC-annealed RNA complex was used, and that this was true regardless whether NC was actually still present during reverse transcription. This activity of NC required both zinc finger motifs, as demonstrated by experiments that employed zinc finger-mutated forms of NC protein (H23C NC and ddNC), supporting the involvement of the zinc fingers in the RNA chaperone activity of NC. However, NC was not able to help reverse transcriptase to escape the +3 pausing event. Mutagenesis of a stem structure within the tRNA(Lys.3). vRNA complex led to disappearance of the +3 pausing event as well as to significantly reduced rates of reverse transcription. Thus, this stem structure is essential for optimal reverse transcription, despite its role in promotion of the +3 pausing event.
Collapse
MESH Headings
- Amino Acid Motifs
- Animals
- Base Sequence
- Blotting, Western
- COS Cells
- DNA Primers/pharmacology
- DNA, Viral/chemistry
- DNA, Viral/metabolism
- HIV-1/genetics
- HIV-1/metabolism
- Mutagenesis, Site-Directed
- Mutation
- Nucleic Acid Conformation
- Nucleocapsid Proteins/chemistry
- Plasmids/metabolism
- Protein Binding
- Protein Structure, Secondary
- Protein Structure, Tertiary
- RNA/metabolism
- RNA, Transfer, Lys/chemistry
- RNA, Viral/chemistry
- RNA, Viral/metabolism
- RNA-Directed DNA Polymerase/metabolism
- Transcription, Genetic
- Zinc Fingers
Collapse
Affiliation(s)
- L Rong
- McGill AIDS Centre, Lady Davis Institute-Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| | | | | | | | | | | |
Collapse
|
33
|
Takahashi K, Baba S, Koyanagi Y, Yamamoto N, Takaku H, Kawai G. Two basic regions of NCp7 are sufficient for conformational conversion of HIV-1 dimerization initiation site from kissing-loop dimer to extended-duplex dimer. J Biol Chem 2001; 276:31274-8. [PMID: 11418609 DOI: 10.1074/jbc.m104577200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nucleocapsid (NC) protein possesses nucleotide-annealing activities, which are used in various processes in retroviral life cycle. As conserved characters, the NC proteins have one or two zinc fingers of CX(2)CX(4)HX(4)C motif surrounded by basic amino acid sequences. Requirement of the zinc fingers for the annealing activities of NC protein remains controversial. In this study, we focused the requirement in the process of maturation of dimeric viral RNA. Discrimination between immature and mature dimers of synthetic RNA corresponding to the dimerization initiation site of human immunodeficiency virus type 1 (HIV-1) genomic RNA was performed based on their Mg(2+)-dependent stability in gel electrophoreses and on their distinct signal pattern from NMR analysis of imino protons. Chaperoning activity of the HIV-1 NC protein, NCp7, and its fragments for maturation of dimeric RNA was investigated using these experimental systems. We found that the two basic regions flanking the N-terminal zinc finger of NCp7, which are connected by two glycine residues instead of the zinc finger, were sufficient, although about 10 times the amounts of peptide were needed in comparison with intact NCp7. Further, it was found that the amount of basic residues rather than the amino acid sequence itself is important for the activity. The zinc fingers may involve the binding affinity and/or such a possible specific binding of NCp7 to dimerization initiation site dimer that leads to the maturation reaction.
Collapse
Affiliation(s)
- K Takahashi
- Department of Industrial Chemistry, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino-shi, Chiba 275-8588, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Bombarda E, Morellet N, Cherradi H, Spiess B, Bouaziz S, Grell E, Roques BP, Mély Y. Determination of the pK(a) of the four Zn2+-coordinating residues of the distal finger motif of the HIV-1 nucleocapsid protein: consequences on the binding of Zn2+. J Mol Biol 2001; 310:659-72. [PMID: 11439030 DOI: 10.1006/jmbi.2001.4770] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The nucleocapsid protein NCp7 of human immunodeficiency virus type 1 is characterized by two highly conserved CCHC motifs that bind Zn2+ strongly. To elucidate the striking pH-dependence of the apparent Zn2+-binding constants of these motifs further, we investigated, using 1H NMR, potentiometry and fluorescence spectroscopy, the acid-base properties of the four Zn2+-coordinating residues of (35-50)NCp7, a peptide corresponding to the distal finger motif of NCp7. With the exception of the H(beta2) proton of Cys39, the pH-dependence of the H(beta) proton resonances of the three Cys residues and, the H(delta) and H(epsilon) resonances of His44 in the apopeptide could be fitted adequately with a single pK(a). This suggests that the protonating groups are non-interacting, a feature that was confirmed by a potentiometric titration. The pK(a) of His44, Cys36, Cys39, and Cys49 in the apopeptide were found to be 6.4, 8.0, 8.8 and 9.3, respectively. Accordingly, the deprotonation is almost sequential and may thus induce a sequential binding of Zn2+ to the four coordinating residues. The high pK(a) of Cys49 is probably related to the negative charge of the neighboring Asp48. Such a high pK(a) may be a general feature in nucleocapsid proteins (NCs), since an acidic residue generally occupies the (i-1) position of the C-terminal Cys residue of single-finger NCs and distal finger motifs in two-finger NCs. Molecular dynamics simulation suggested the formation of a hydrogen bonded network that weakly structured the Cys36-Cys39 segment in the apopeptide. This network depends on the protonation state of Cys36 and may thus explain the biphasic behavior of the pH-dependence of the Cys39 H(beta2) resonance. Finally, the pK(a) values were used to build up a model describing the coordination of Zn2+ to (35-50)NCp7 at equilibrium. It appears that each protonation step of the coordination complex decreases the Zn2+-binding constant by about four orders of magnitude and that a significant dissociation of Zn2+ from the holopeptide can be achieved in acidic cell compartments.
Collapse
Affiliation(s)
- E Bombarda
- Laboratoire de Pharmacologie et Physico-Chimie des Interactions Cellulaires et Moléculaires, UMR 7034 CNRS, Faculté de Pharmacie, Université Louis Pasteur, Strasbourg 1, 74, Route du Rhin, Illkirch Cedex, 67401, France
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Williams MC, Rouzina I, Wenner JR, Gorelick RJ, Musier-Forsyth K, Bloomfield VA. Mechanism for nucleic acid chaperone activity of HIV-1 nucleocapsid protein revealed by single molecule stretching. Proc Natl Acad Sci U S A 2001; 98:6121-6. [PMID: 11344257 PMCID: PMC33432 DOI: 10.1073/pnas.101033198] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The nucleocapsid protein (NC) of HIV type 1 is a nucleic acid chaperone that facilitates the rearrangement of nucleic acids into conformations containing the maximum number of complementary base pairs. We use an optical tweezers instrument to stretch single DNA molecules from the helix to coil state at room temperature in the presence of NC and a mutant form (SSHS NC) that lacks the two zinc finger structures present in NC. Although both NC and SSHS NC facilitate annealing of complementary strands through electrostatic attraction, only NC destabilizes the helical form of DNA and reduces the cooperativity of the helix-coil transition. In particular, we find that the helix-coil transition free energy at room temperature is significantly reduced in the presence of NC. Thus, upon NC binding, it is likely that thermodynamic fluctuations cause continuous melting and reannealing of base pairs so that DNA strands are able to rapidly sample configurations to find the lowest energy state. The reduced cooperativity allows these fluctuations to occur in the middle of complex double-stranded structures. The reduced stability and cooperativity, coupled with the electrostatic attraction generated by the high charge density of NC, is responsible for the nucleic acid chaperone activity of this protein.
Collapse
Affiliation(s)
- M C Williams
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 1479 Gortner Avenue, Saint Paul, MN 55108, USA
| | | | | | | | | | | |
Collapse
|
36
|
Hansen AC, Grunwald T, Lund AH, Schmitz A, Duch M, Uberla K, Pedersen FS. Transfer of primer binding site-mutated simian immunodeficiency virus vectors by genetically engineered artificial and hybrid tRNA-like primers. J Virol 2001; 75:4922-8. [PMID: 11312366 PMCID: PMC114249 DOI: 10.1128/jvi.75.10.4922-4928.2001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Simian immunodeficiency viruses (SIV) harbor primer binding sites (PBS) matching tRNA or tRNA. To study determinants of primer usage in SIV, a SIVmac239-based vector was impaired by mutating the PBS to a sequence (PBS-X2) with no match to any tRNA. By cotransfection of a synthetic gene encoding a tRNA(Pro)-like RNA with a match to PBS-X2, the activity of this vector could be restored to a transduction efficiency slightly lower than that of the wild-type vector. A vector with a PBS matching tRNA(Pro) was functional at a level slightly below that of the wild-type vector, but higher transduction efficiency could be obtained by cotransfection of a gene for an engineered tRNA(Pro)-tRNA hybrid with a match to PBS-Pro. The importance of tRNA backbone identity was further analyzed by complementing the PBS-X2 vector with a gene for a matching x2 primer with a tRNA backbone, which led to three- to fourfold-higher titers than those observed for the x2 primer with the tRNA(Pro) backbone. In summary, our results demonstrate flexibility in PBS and primer usage for SIVmac239, with PBS-primer complementarity being the major determinant, in analogy with previous findings for murine leukemia viruses and human immunodeficiency virus type 1.
Collapse
Affiliation(s)
- A C Hansen
- Department of Molecular and Structural Biology, Aarhus University, DK-8000 Aarhus, Denmark
| | | | | | | | | | | | | |
Collapse
|
37
|
Hooker CW, Lott WB, Harrich D. Inhibitors of human immunodeficiency virus type 1 reverse transcriptase target distinct phases of early reverse transcription. J Virol 2001; 75:3095-104. [PMID: 11238836 PMCID: PMC114103 DOI: 10.1128/jvi.75.7.3095-3104.2001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Early HIV-1 reverse transcription can be separated into initiation and elongation phases. Here we show, using PCR analysis of negative-strand strong-stop DNA [(-)ssDNA] synthesis in intact virus, that different reverse transcriptase (RT) inhibitors affect distinct phases of early natural endogenous reverse transcription (NERT). The effects of nevirapine on NERT were consistent with a mechanism of action including both specific and nonspecific binding events. The nonspecific component of this inhibition targeted the elongation reaction, whereas the specific effect seemed principally to be directed at very early events (initiation or the initiation-elongation switch). In contrast, foscarnet and the nucleoside analog ddATP inhibited both early and late (-)ssDNA synthesis in a similar manner. We also examined compounds that targeted other viral proteins and found that Ro24-7429 (a Tat antagonist) and rosmarinic acid (an integrase inhibitor) also directly inhibited RT. Our results indicate that NERT can be used to identify and evaluate compounds that directly target the reverse transcription complex.
Collapse
Affiliation(s)
- C W Hooker
- HIV-1 and Hepatitis C Units, Sir Albert Sakzewski Virus Research Centre, Royal Children's Hospital, Herston, St. Lucia, Queensland, Australia
| | | | | |
Collapse
|
38
|
Gonsky J, Bacharach E, Goff SP. Identification of residues of the Moloney murine leukemia virus nucleocapsid critical for viral DNA synthesis in vivo. J Virol 2001; 75:2616-26. [PMID: 11222684 PMCID: PMC115885 DOI: 10.1128/jvi.75.6.2616-2626.2001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nucleocapsid (NC) protein of retroviruses is a small nucleic acid-binding protein important in virion assembly and in the encapsidation of the viral RNA genome into the virion particle. Multiple single-amino-acid substitutions were introduced into the NC of Moloney murine leukemia virus to examine further its role in viral replication. Two residues were shown to play important roles in the early events of replication. Unlike viruses with previously characterized NC mutations, these viruses showed no impairment in the late events of replication. Viruses containing the substitutions L21A and K30A expressed the normal complement of properly processed viral Gag proteins. Analysis of the RNA content of mutant virions revealed normal levels of unspliced and spliced viral RNA, and the tRNA(Pro) primer was properly annealed to the primer binding site on the viral genome. The virions demonstrated no defect in initiation of reverse transcription using the endogenous tRNA primer or in the synthesis of long viral DNA products in vitro. Nonetheless, viruses possessing these NC mutations demonstrated significant defects in the synthesis and accumulation of viral DNA products in vivo.
Collapse
Affiliation(s)
- J Gonsky
- Integrated Program in Cellular, Molecular, and Biophysical Studies, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | |
Collapse
|
39
|
Laughrea M, Shen N, Jetté L, Darlix JL, Kleiman L, Wainberg MA. Role of distal zinc finger of nucleocapsid protein in genomic RNA dimerization of human immunodeficiency virus type 1; no role for the palindrome crowning the R-U5 hairpin. Virology 2001; 281:109-16. [PMID: 11222101 DOI: 10.1006/viro.2000.0778] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Genomic RNA isolated from HIV-1 variously mutated in nucleocapsid protein (NC) was characterized by nondenaturing gel electrophoresis. Mutations in the C-terminal, the N-terminal, and the linker regions had no effect on genomic RNA dimerization [they are R7R10K11S, P31L, R32G, S3(32-34), and K59L], while a C36S/C39S mutation in the distal zinc knuckle (Cys-His box or zinc finger) inhibited genome dimerization as much as disrupting the kissing-loop domain. The four mutations which inhibited tRNA(Lys3) genomic placement (i.e., the in vivo placement of tRNA(Lys3) on the primer binding site) had no effect on genome dimerization. Among five mutations which inhibited genome packaging, four had no effect on genome dimerization. Thus the N-terminal and linker regions of NC control genome packaging/tRNA(Lys3) placement (two processes which do not require mature NC) but have little influence on genome dimerization and 2-base extension of tRNA(Lys3) (two processes which are likely to require mature NC). It has been suggested, based on electron microscopy, that the AAGCUU82 palindrome crowning the R-U5 hairpin stimulates genomic RNA dimerization. To test this hypothesis, we deleted AGCU81 from wild-type viruses and from viruses bearing a disrupted kissing-loop hairpin or kissing-loop domain; in another mutant, we duplicated AGCU81. The loss of AGCU81 reduced dimerization by 2.5 +/- 4%; its duplication increased it by 3 +/- 6%. Dissociation temperature was left unchanged. We reach two conclusions. First, the palindrome crowning the R-U5 hairpin has no impact on HIV-1 genome dimerization. Second, genomic RNA dimerization is differentially influenced by NC sequence: it is Zn finger dependent but independent of the basic nature of the N-terminal and linker subdomains. We propose that the NC regions implicated in 2-base extension of tRNA(Lys3) are required for a second (maturation) step of tRNA placement. Genome dimerization and mature tRNA placement would then become two RNA-RNA interactions sharing similar NC sequence requirements.
Collapse
Affiliation(s)
- M Laughrea
- McGill AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, Quebec, H3T 1E2, Canada.
| | | | | | | | | | | |
Collapse
|
40
|
Jossinet F, Lodmell JS, Ehresmann C, Ehresmann B, Marquet R. Identification of the in vitro HIV-2/SIV RNA dimerization site reveals striking differences with HIV-1. J Biol Chem 2001; 276:5598-604. [PMID: 11092889 DOI: 10.1074/jbc.m008642200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Although their genomes cannot be aligned at the nucleotide level, the HIV-1/SIVcpz and the HIV-2/SIVsm viruses are closely related lentiviruses that contain homologous functional and structural RNA elements in their 5'-untranslated regions. In both groups, the domains containing the trans-activating region, the 5'-copy of the polyadenylation signal, and the primer binding site (PBS) are followed by a short stem-loop (SL1) containing a six-nucleotide self-complementary sequence in the loop, flanked by unpaired purines. In HIV-1, SL1 is involved in the dimerization of the viral RNA, in vitro and in vivo. Here, we tested whether SL1 has the same function in HIV-2 and SIVsm RNA. Surprisingly, we found that SL1 is neither required nor involved in the dimerization of HIV-2 and SIV RNA. We identified the NarI sequence located in the PBS as the main site of HIV-2 RNA dimerization. cis and trans complementation of point mutations indicated that this self-complementary sequence forms symmetrical intermolecular interactions in the RNA dimer and suggested that HIV-2 and SIV RNA dimerization proceeds through a kissing loop mechanism, as previously shown for HIV-1. Furthermore, annealing of tRNA(3)(Lys) to the PBS strongly inhibited in vitro RNA dimerization, indicating that, in vivo, the intermolecular interaction involving the NarI sequence must be dissociated to allow annealing of the primer tRNA.
Collapse
Affiliation(s)
- F Jossinet
- Institut de Biologie Moléculaire et Cellulaire, UPR 9002 du CNRS, 15 rue René Descartes, 67084 Strasbourg, France
| | | | | | | | | |
Collapse
|
41
|
Cheslock SR, Anderson JA, Hwang CK, Pathak VK, Hu WS. Utilization of nonviral sequences for minus-strand DNA transfer and gene reconstitution during retroviral replication. J Virol 2000; 74:9571-9. [PMID: 11000228 PMCID: PMC112388 DOI: 10.1128/jvi.74.20.9571-9579.2000] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Minus-strand DNA transfer, an essential step in retroviral reverse transcription, is mediated by the two repeat (R) regions in the viral genome. It is unclear whether R simply serves as a homologous sequence to mediate the strand transfer or contains specific sequences to promote strand transfer. To test the hypothesis that the molecular mechanism by which R mediates strand transfer is based on homology rather than specific sequences, we examined whether nonviral sequences can be used to facilitate minus-strand DNA transfer. The green fluorescent protein (GFP) gene was divided into GF and FP fragments, containing the 5' and 3' portions of GFP, respectively, with an overlapping F fragment (85 bp). FP and GF were inserted into the 5' and 3' long terminal repeats, respectively, of a murine leukemia virus-based vector. Utilization of the F fragment to mediate minus-strand DNA transfer should reconstitute GFP during reverse transcription. Flow cytometry analyses demonstrated that GFP was expressed in 73 to 92% of the infected cells, depending on the structure of the viral construct. This indicated that GFP was reconstituted at a high frequency; molecular characterization further confirmed the accurate reconstitution of GFP. These data indicated that nonviral sequences could be used to efficiently mediate minus-strand DNA transfer. Therefore, placement and homology, not specific sequence context, are the important elements in R for minus-strand DNA transfer. In addition, these experiments demonstrate that minus-strand DNA transfer can be used to efficiently reconstitute genes for gene therapy applications.
Collapse
Affiliation(s)
- S R Cheslock
- Department of Microbiology and Immunology, West Virginia University, Morgantown, West Virginia, 26506, USA
| | | | | | | | | |
Collapse
|
42
|
Guo J, Wu T, Anderson J, Kane BF, Johnson DG, Gorelick RJ, Henderson LE, Levin JG. Zinc finger structures in the human immunodeficiency virus type 1 nucleocapsid protein facilitate efficient minus- and plus-strand transfer. J Virol 2000; 74:8980-8. [PMID: 10982342 PMCID: PMC102094 DOI: 10.1128/jvi.74.19.8980-8988.2000] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nucleocapsid protein (NC) of human immunodeficiency virus type 1 (HIV-1) has two zinc fingers, each containing the invariant metal ion binding residues CCHC. Recent reports indicate that mutations in the CCHC motifs are deleterious for reverse transcription in vivo. To identify reverse transcriptase (RT) reactions affected by such changes, we have probed zinc finger functions in NC-dependent RT-catalyzed HIV-1 minus- and plus-strand transfer model systems. Our approach was to examine the activities of wild-type NC and a mutant in which all six cysteine residues were replaced by serine (SSHS NC); this mutation severely disrupts zinc coordination. We find that the zinc fingers contribute to the role of NC in complete tRNA primer removal from minus-strand DNA during plus-strand transfer. Annealing of the primer binding site sequences in plus-strand strong-stop DNA [(+) SSDNA] to its complement in minus-strand acceptor DNA is not dependent on NC zinc fingers. In contrast, the rate of annealing of the complementary R regions in (-) SSDNA and 3' viral RNA during minus-strand transfer is approximately eightfold lower when SSHS NC is used in place of wild-type NC. Moreover, unlike wild-type NC, SSHS NC has only a small stimulatory effect on minus-strand transfer and is essentially unable to block TAR-induced self-priming from (-) SSDNA. Our results strongly suggest that NC zinc finger structures are needed to unfold highly structured RNA and DNA strand transfer intermediates. Thus, it appears that in these cases, zinc finger interactions are important components of NC nucleic acid chaperone activity.
Collapse
Affiliation(s)
- J Guo
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Cristofari G, Ficheux D, Darlix JL. The GAG-like protein of the yeast Ty1 retrotransposon contains a nucleic acid chaperone domain analogous to retroviral nucleocapsid proteins. J Biol Chem 2000; 275:19210-7. [PMID: 10766747 DOI: 10.1074/jbc.m001371200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The reverse transcription process for retroviruses and retrotransposons takes place in a nucleocore structure in the virus or virus-like particle. In retroviruses the major protein of the nucleocore is the nucleocapsid protein (NC protein), which derives from the C-terminal region of GAG. Retroviral NC proteins are formed of either one or two CCHC zinc finger(s) flanked by basic residues and have nucleic acid chaperone and match-maker properties essential for virus replication. Interestingly, the GAG protein of a number of retroelements including Spumaviruses does not possess the hallmarks of retroviral GAGs and in particular lacks a canonical NC protein. In an attempt to search for a nucleic acid chaperone activity in this class of retroelements we used the yeast Ty1 retrotransposon as a model system. Results shows that the C-terminal region of Ty1 GAG contains a nucleic acid chaperone domain capable of promoting the annealing of primer tRNA(i)(Met) to the multipartite primer binding site, Ty1 RNA dimerization and initiation of reverse transcription. Moreover Ty1 RNA dimerization, in a manner similar to Ty3 but unlike retroviral RNAs, appears to be mediated by tRNA(i)(Met). These findings suggest that nucleic acid chaperone proteins probably are general co-factors for reverse transcriptases.
Collapse
Affiliation(s)
- G Cristofari
- LaboRetro, Unité de Virologie Humaine, INSERM (412), France
| | | | | |
Collapse
|
44
|
Hsu M, Rong L, de Rocquigny H, Roques BP, Wainberg MA. The effect of mutations in the HIV-1 nucleocapsid protein on strand transfer in cell-free reverse transcription reactions. Nucleic Acids Res 2000; 28:1724-9. [PMID: 10734191 PMCID: PMC102828 DOI: 10.1093/nar/28.8.1724] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Interactions between the nucleocapsid protein (NC) and reverse transcriptase of HIV-1 have been shown to promote the initiation of reverse transcription. We assayed the effect of NC on later events, using a strand transfer system with donor and acceptor HIV RNA templates and found that the presence of NC resulted in increased synthesis of full-length strand-transferred (FLST) DNA. This effect also occurred with mutated forms of NC that lacked both zinc fingers, or that contained a point mutation (histidine-->cysteine) at amino acid 23. In contrast, NC-derived proteins containing only the proximal or distal zinc fingers, or lacking the N- and C-termini, were all unable to catalyze the synthesis of FLST DNA. Band-shift assays using both the mutated and wild-type forms of these proteins revealed that all the NC proteins promoted strand association between (-) strong-stop DNA [(-)ssDNA] and acceptor RNA. The zinc finger motifs were dispensable for full-length processive reverse transcription, and the N- and C-termini were required; however, all NC domains were dispensable for association of (-)ssDNA and acceptor RNA. This suggests that annealing is a less stringent reaction than DNA polymerization.
Collapse
Affiliation(s)
- M Hsu
- McGill University AIDS Centre, Jewish General Hospital, Montréal, Canada
| | | | | | | | | |
Collapse
|
45
|
Abstract
Since the Human Immunodeficiency Virus Type 1 (HIV-1) was identified as the etiologic agent of the Acquired Immune Deficiency Syndrome (AIDS), the HIV-1 reverse transcriptase (RT) has been the subject of intensive study. The reverse transcription entails the transition of the single-stranded viral RNA into double-stranded proviral DNA, which is then integrated into the host chromosome. Therefore, the HIV-1 reverse transcriptase plays a pivotal role in the life cycle of the virus and is consequently an interesting target for anti-HIV drug therapy. In the first section, we describe the complex process of reverse transcription and the different activities involved in this process. We then highlight the structure-function relationship of the HIV-1 reverse transcriptase, which is of great importance for a better understanding of resistance development, a major problem in anti-AIDS therapies. Finally, we summarize the mechanisms of HIV resistance toward various RT inhibitors and the implications thereof for the current anti-HIV drug therapies.
Collapse
Affiliation(s)
- H Jonckheere
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | | | | |
Collapse
|
46
|
Buchschacher GL, Yu L, Murai F, Friedmann T, Miyanohara A. Association of murine leukemia virus pol with virions, independent of Gag-Pol expression. J Virol 1999; 73:9632-7. [PMID: 10516075 PMCID: PMC113001 DOI: 10.1128/jvi.73.11.9632-9637.1999] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During the replication cycle of murine leukemia virus (MLV), Pol is normally synthesized as part of a Gag-Pol fusion protein. In this study, the ability of free MLV Pol to be incorporated into virions was examined. When MLV Gag and MLV Pol were coexpressed from separate plasmids in cells, reverse transcriptase (RT) activity associated with Gag core particles at a slightly lower level than did RT activity generated from wild-type Gag-Pol expression. Particles produced in this manner were somewhat less infectious than those produced with wild-type Gag-Pol. A smaller amount of MLV Pol also associated with heterologous human immunodeficiency virus type 1 Gag cores.
Collapse
Affiliation(s)
- G L Buchschacher
- Division of Hematology, Department of Medicine, Center for Molecular Genetics, University of California-San Diego, La Jolla, California 92093-0634, USA
| | | | | | | | | |
Collapse
|
47
|
Götte M, Li X, Wainberg MA. HIV-1 reverse transcription: a brief overview focused on structure-function relationships among molecules involved in initiation of the reaction. Arch Biochem Biophys 1999; 365:199-210. [PMID: 10328813 DOI: 10.1006/abbi.1999.1209] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An early step in the life cycle of the human immunodeficiency virus type 1 (HIV-1) is reverse transcription of viral RNA into proviral DNA, which can then be integrated into the host cell genome. Reverse transcription is a discontinuous process carried out by the viral encoded reverse transcriptase that displays DNA polymerase activities on RNA and DNA templates as well as an RNase H activity that degrades transcribed RNA. DNA synthesis is initiated by cellular tRNALys3 that binds at its 3'-terminus to the complementary primer binding site of the genomic RNA. The initiation of reverse transcription is itself a complex reaction that requires tRNA placement onto viral RNA and the formation of a specific primer/template complex that is recognized by reverse transcriptase. After initiation takes place, the enzyme translocates from the initially bound RNA/RNA duplex into chimeric replication intermediates and finally accommodates newly synthesized DNA/RNA hybrids. This review focuses on structure-function relationships among these various molecules that are involved in the initiation of HIV-1 reverse transcription.
Collapse
Affiliation(s)
- M Götte
- McGill AIDS Centre, Lady Davis Institute-Jewish General Hospital, Montréal, Québec, H3T 1E2, Canada
| | | | | |
Collapse
|