1
|
Bannazadeh Baghi H, Bayat M, Mehrasa P, Alavi SMA, Lotfalizadeh MH, Memar MY, Taghavi SP, Zarepour F, Hamblin MR, Sadri Nahand J, Hashemian SMR, Mirzaei H. Regulatory role of microRNAs in virus-mediated inflammation. J Inflamm (Lond) 2024; 21:43. [PMID: 39497125 PMCID: PMC11536602 DOI: 10.1186/s12950-024-00417-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 10/21/2024] [Indexed: 11/06/2024] Open
Abstract
Viral infections in humans often cause excessive inflammation. In some viral infections, inflammation can be serious and even fatal, while in other infections it can promote viral clearance. Viruses can escape from the host immune system via regulating inflammatory pathways, thus worsening the illness. MicroRNAs (miRNAs) are tiny non-coding RNA molecules expressed within diverse tissues as well as cells and are engaged in different normal pathological and physiological pathways. Emerging proof suggests that miRNAs can impact innate and adaptive immunity, inflammatory responses, cell invasion, and the progression of viral infections. We discuss some intriguing new findings in the current work, focusing on the impacts of different miRNAs on host inflammatory responses and virus-mediated inflammation. A better understanding of dysregulated miRNAs in viral infections could improve the identification, prevention, and treatment of several serious diseases.
Collapse
Affiliation(s)
- Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mobina Bayat
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Parisa Mehrasa
- Department of Pathology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Pouya Taghavi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Zarepour
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Seyed Mohammad Reza Hashemian
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
2
|
Mankovich N, Kehoe E, Peterson A, Kirby M. Pathway expression analysis. Sci Rep 2022; 12:21839. [PMID: 36528702 PMCID: PMC9759056 DOI: 10.1038/s41598-022-26381-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
This paper introduces a pathway expression framework as an approach for constructing derived biomarkers. The pathway expression framework incorporates the biological connections of genes leading to a biologically relevant model. Using this framework, we distinguish between shedding subjects post-infection and all subjects pre-infection in human blood transcriptomic samples challenged with various respiratory viruses: H1N1, H3N2, HRV (Human Rhinoviruses), and RSV (Respiratory Syncytial Virus). Additionally, pathway expression data is used for selecting discriminatory pathways from these experiments. The classification results and selected pathways are benchmarked against standard gene expression based classification and pathway ranking methodologies. We find that using the pathway expression data along with selected pathways, which have minimal overlap with high ranking pathways found by traditional methods, improves classification rates across experiments.
Collapse
Affiliation(s)
- Nathan Mankovich
- grid.47894.360000 0004 1936 8083Colorado State University, Mathematics, Fort Collins, 80523 USA
| | - Eric Kehoe
- grid.47894.360000 0004 1936 8083Colorado State University, Mathematics, Fort Collins, 80523 USA
| | - Amy Peterson
- grid.47894.360000 0004 1936 8083Colorado State University, Mathematics, Fort Collins, 80523 USA
| | - Michael Kirby
- grid.47894.360000 0004 1936 8083Colorado State University, Mathematics, Fort Collins, 80523 USA
| |
Collapse
|
3
|
Zheng X, Wang K, Pan L, Hao W, Xue Y, Bacsi A, Vlahopoulos SA, Radak Z, Hazra TK, Brasier AR, Tanner L, Ba X, Boldogh I. Innate Immune Responses to RSV Infection Facilitated by OGG1, an Enzyme Repairing Oxidatively Modified DNA Base Lesions. J Innate Immun 2022; 14:593-614. [PMID: 35512649 PMCID: PMC9801259 DOI: 10.1159/000524186] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/12/2022] [Indexed: 01/04/2023] Open
Abstract
The primary cause of morbidity and mortality from infection with respiratory syncytial virus (RSV) is the excessive innate immune response(s) (IIR) in which reactive oxygen species (ROS) play key role(s). However, the mechanisms for these processes are not fully understood. We hypothesized that expressions of IIR genes are controlled by the ROS-generated epigenetic-like mark 7,8-dihydro-8-oxo(d)guanine (8-oxo(d)Gua) and 8-oxoguanine DNA glycosylase1 (OGG1). Here, we report that ROS not only generates intrahelical 8-oxo(d)Gua, but also enzymatically disables OGG1 in RSV-infected human airway epithelial cells and mouse lungs. OGG1 bound to 8-oxo(d)Gua in gene regulatory sequences promotes expression of IIR genes, and consequently exacerbates lung inflammation, histological changes, and body weight loss of experimental animals. Pharmacological inhibition of OGG1 substrate binding decreased expression of RSV-induced chemokine and cytokines and significantly lessened clinical symptoms. Results of mechanistic studies show that OGG1 binding at 8-oxo(d)Gua promoter regions modulated loading of transcription factors via transient cooperative interactions in RSV-infected lungs and airway epithelial cells. Other base specific DNA repair proteins had no effects. Collectively, this study identifies unprecedented roles of ROS-generated DNA base lesion(s) and cognate repair protein as a determinant of RSV-induced exuberant inflammation. Pharmaceutical inhibition of OGG1 interaction with its DNA substrate may represent a novel strategy in prevention/intervention of respiratory viral infections.
Collapse
Affiliation(s)
- Xu Zheng
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Ke Wang
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Lang Pan
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Wenjing Hao
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Yaoyao Xue
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Attila Bacsi
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Spiros A. Vlahopoulos
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Zsolt Radak
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Tapas K. Hazra
- Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Allan R. Brasier
- Institute for Clinical and Translational Research, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Lloyd Tanner
- Department of Clinical Sciences Lund, Respiratory Medicine & Allergology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Xueqing Ba
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| |
Collapse
|
4
|
Martín-Vicente M, Resino S, Martínez I. Early innate immune response triggered by the human respiratory syncytial virus and its regulation by ubiquitination/deubiquitination processes. J Biomed Sci 2022; 29:11. [PMID: 35152905 PMCID: PMC8841119 DOI: 10.1186/s12929-022-00793-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/28/2022] [Indexed: 12/25/2022] Open
Abstract
The human respiratory syncytial virus (HRSV) causes severe lower respiratory tract infections in infants and the elderly. An exuberant inadequate immune response is behind most of the pathology caused by the HRSV. The main targets of HRSV infection are the epithelial cells of the respiratory tract, where the immune response against the virus begins. This early innate immune response consists of the expression of hundreds of pro-inflammatory and anti-viral genes that stimulates subsequent innate and adaptive immunity. The early innate response in infected cells is mediated by intracellular signaling pathways composed of pattern recognition receptors (PRRs), adapters, kinases, and transcriptions factors. These pathways are tightly regulated by complex networks of post-translational modifications, including ubiquitination. Numerous ubiquitinases and deubiquitinases make these modifications reversible and highly dynamic. The intricate nature of the signaling pathways and their regulation offers the opportunity for fine-tuning the innate immune response against HRSV to control virus replication and immunopathology.
Collapse
Affiliation(s)
- María Martín-Vicente
- Unidad de Infección Viral E Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda-Pozuelo, Km 2.2, 28220 Majadahonda, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Salvador Resino
- Unidad de Infección Viral E Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda-Pozuelo, Km 2.2, 28220 Majadahonda, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Isidoro Martínez
- Unidad de Infección Viral E Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda-Pozuelo, Km 2.2, 28220 Majadahonda, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
5
|
Ozuru R, Wakao S, Tsuji T, Ohara N, Matsuba T, Amuran MY, Isobe J, Iino M, Nishida N, Matsumoto S, Iwadate K, Konishi N, Yasuda K, Tashiro K, Hida M, Yadoiwa A, Kato S, Yamashita E, Matsumoto S, Kurozawa Y, Dezawa M, Fujii J. Rescue from Stx2-Producing E. coli-Associated Encephalopathy by Intravenous Injection of Muse Cells in NOD-SCID Mice. Mol Ther 2020; 28:100-118. [PMID: 31607541 PMCID: PMC6953779 DOI: 10.1016/j.ymthe.2019.09.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/11/2019] [Accepted: 09/26/2019] [Indexed: 12/17/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) causes hemorrhagic colitis, hemolytic uremic syndrome, and acute encephalopathies that may lead to sudden death or severe neurologic sequelae. Current treatments, including immunoglobulin G (IgG) immunoadsorption, plasma exchange, steroid pulse therapy, and the monoclonal antibody eculizumab, have limited effects against the severe neurologic sequelae. Multilineage-differentiating stress-enduring (Muse) cells are endogenous reparative non-tumorigenic stem cells that naturally reside in the body and are currently under clinical trials for regenerative medicine. When administered intravenously, Musecells accumulate to the damaged tissue, where they exert anti-inflammatory, anti-apoptotic, anti-fibrotic, and immunomodulatory effects, and replace damaged cells by differentiating into tissue-constituent cells. Here, severely immunocompromised non-obese diabetic/severe combined immunodeficiency (NOD-SCID) mice orally inoculated with 9 × 109 colony-forming units of STEC O111 and treated 48 h later with intravenous injection of 5 × 104 Muse cells exhibited 100% survival and no severe after-effects of infection. Suppression of granulocyte-colony-stimulating factor (G-CSF) by RNAi abolished the beneficial effects of Muse cells, leading to a 40% death and significant body weight loss, suggesting the involvement of G-CSF in the beneficial effects of Muse cells in STEC-infected mice. Thus, intravenous administration of Muse cells could be a candidate therapeutic approach for preventing fatal encephalopathy after STEC infection.
Collapse
Affiliation(s)
- Ryo Ozuru
- Division of Bacteriology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Shohei Wakao
- Department of Stem Cell Biology and Histology, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Takahiro Tsuji
- Division of Bacteriology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Naoya Ohara
- Department of Oral Microbiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8525, Japan
| | - Takashi Matsuba
- Division of Bacteriology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Muhammad Yunus Amuran
- Department of Neurology, Hasanuddin University Faculty of Medicine, Makassar 90245, Indonesia
| | - Junko Isobe
- Department of Bacteriology, Toyama Institute of Health, Imizu, Toyama 939-0363, Japan
| | - Morio Iino
- Division of Legal Medicine, Department of Social Medicine, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Naoki Nishida
- Department of Legal Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Sari Matsumoto
- Department of Forensic Medicine, The Jikei University School of Medicine, Nishi-shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Kimiharu Iwadate
- Department of Forensic Medicine, The Jikei University School of Medicine, Nishi-shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Noriko Konishi
- Department of Food Microbiology, Tokyo Metropolitan Institute of Public, Tokyo 169-0073, Japan
| | - Kaori Yasuda
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Kosuke Tashiro
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Misato Hida
- Division of Bacteriology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Arisato Yadoiwa
- Division of Bacteriology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Shinsuke Kato
- Division of Neuropathology, Department of Brain and Neuroscience, Faculty of Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| | - Eijiro Yamashita
- Division of Clinical Radiology, Tottori University Hospital, Yonago 683-8504, Japan
| | - Sohkichi Matsumoto
- Department of Bacteriology, Niigata University School of Medicine, Niigata 951-8510, Japan
| | - Yoichi Kurozawa
- Division of Health Administration and Promotion, Department of Social Medicine, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Mari Dezawa
- Department of Stem Cell Biology and Histology, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Jun Fujii
- Division of Bacteriology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan.
| |
Collapse
|
6
|
Richard CA, Rincheval V, Lassoued S, Fix J, Cardone C, Esneau C, Nekhai S, Galloux M, Rameix-Welti MA, Sizun C, Eléouët JF. RSV hijacks cellular protein phosphatase 1 to regulate M2-1 phosphorylation and viral transcription. PLoS Pathog 2018; 14:e1006920. [PMID: 29489893 PMCID: PMC5847313 DOI: 10.1371/journal.ppat.1006920] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 03/12/2018] [Accepted: 02/04/2018] [Indexed: 12/31/2022] Open
Abstract
Respiratory syncytial virus (RSV) RNA synthesis occurs in cytoplasmic inclusion bodies (IBs) in which all the components of the viral RNA polymerase are concentrated. In this work, we show that RSV P protein recruits the essential RSV transcription factor M2-1 to IBs independently of the phosphorylation state of M2-1. We also show that M2-1 dephosphorylation is achieved by a complex formed between P and the cellular phosphatase PP1. We identified the PP1 binding site of P, which is an RVxF-like motif located nearby and upstream of the M2-1 binding region. NMR confirmed both P-M2-1 and P-PP1 interaction regions in P. When the P-PP1 interaction was disrupted, M2-1 remained phosphorylated and viral transcription was impaired, showing that M2-1 dephosphorylation is required, in a cyclic manner, for efficient viral transcription. IBs contain substructures called inclusion bodies associated granules (IBAGs), where M2-1 and neo-synthesized viral mRNAs concentrate. Disruption of the P-PP1 interaction was correlated with M2-1 exclusion from IBAGs, indicating that only dephosphorylated M2-1 is competent for viral mRNA binding and hence for a previously proposed post-transcriptional function.
Collapse
Affiliation(s)
- Charles-Adrien Richard
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Vincent Rincheval
- UMR1173, INSERM, Université de Versailles St. Quentin, Montigny le Bretonneux, France
| | - Safa Lassoued
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris-Saclay, Avenue de la Terrasse, Gif-sur-Yvette, France
| | - Jenna Fix
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Christophe Cardone
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris-Saclay, Avenue de la Terrasse, Gif-sur-Yvette, France
| | - Camille Esneau
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Sergei Nekhai
- Center for Sickle Cell Disease and Department of Medicine, Howard University, Washington, D. C., United States of America
| | - Marie Galloux
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Marie-Anne Rameix-Welti
- UMR1173, INSERM, Université de Versailles St. Quentin, Montigny le Bretonneux, France
- AP-HP, Laboratoire de Microbiologie, Hôpital Ambroise Paré, Boulogne-Billancourt, France
| | - Christina Sizun
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris-Saclay, Avenue de la Terrasse, Gif-sur-Yvette, France
| | - Jean-François Eléouët
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
7
|
Takano K, Kojima T, Sawada N, Himi T. Role of tight junctions in signal transduction: an update. EXCLI JOURNAL 2014; 13:1145-62. [PMID: 26417329 PMCID: PMC4464418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 08/14/2014] [Indexed: 11/18/2022]
Abstract
Tight junctions (TJs), which are the most apically located of the intercellular junctional complexes, have a barrier function and a fence function. Recent studies show that they also participate in signal transduction mechanisms. TJs are modulated by intracellular signaling pathways including protein kinase C, mitogen-activated protein kinase, and NF-ϰB, to affect the epithelial barrier function in response to diverse stimuli. TJs are also regulated by various cytokines, growth factors, and hormones via signaling pathways. To investigate the regulation of TJ molecules via signaling pathways in human epithelial cells under normal and pathological conditions, we established a novel model of human telomerase reverse transcriptase-transfected human epithelial cells. In this review, we describe the recent progress in our understanding of the role of TJs for signal transduction under normal conditions in upper airway epithelium, pancreatic duct epithelial cells, hepatocytes, and endometrial epithelial cells, and in pathological conditions including cancer and infection.
Collapse
Affiliation(s)
- Kenichi Takano
- Department of Otolaryngology,*To whom correspondence should be addressed: Kenichi Takano, Department of Otolaryngology, Sapporo Medical University School of Medicine, S1W16, Chuo-ku, Sapporo 060-8543, Japan, Phone +81-11-688-9655, Fax +81-11-615-5405, E-mail:
| | | | - Norimasa Sawada
- Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | |
Collapse
|
8
|
Hirakawa S, Kojima T, Obata K, Okabayashi T, Yokota SI, Nomura K, Obonai T, Fuchimoto J, Himi T, Tsutsumi H, Sawada N. Marked induction of matrix metalloproteinase-10 by respiratory syncytial virus infection in human nasal epithelial cells. J Med Virol 2013; 85:2141-50. [PMID: 24009192 DOI: 10.1002/jmv.23718] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2013] [Indexed: 11/10/2022]
Abstract
Respiratory syncytial virus (RSV) is an important pathogen of bronchiolitis, asthma, and severe lower respiratory tract disease in infants and young children. Matrix metalloproteinases (MMPs) play key roles in viral infection, inflammation and remodeling of the airway. However, the roles and regulation of MMPs in human nasal epithelial cells (HNECs) after RSV infection remain unclear. To investigate the regulation of MMP induced after RSV infection in HNECs, an RSV-infected model of HNECs in vitro was used. It was found that mRNA of MMP-10 was markedly increased in HNECs after RSV infection, together with induction of mRNAs of MMP-1, -7, -9, and -19. The amount of MMP-10 released from HNECs was also increased in a time-dependent manner after RSV infection as was that of chemokine RANTES. The upregulation of MMP-10 in HNECs after RSV infection was prevented by inhibitors of NF-κB and pan-PKC with inhibition of RSV replication, whereas it was prevented by inhibitors of JAK/STAT, MAPK, and EGF receptors without inhibition of RSV replication. In lung tissue of an infant with severe RSV infection in which a few RSV antibody-positive macrophages were observed, MMP-10 was expressed at the apical side of the bronchial epithelial cells and alveolar epithelial cells. In conclusion, MMP-10 induced by RSV infection in HNECs is regulated via distinct signal transduction pathways with or without relation to RSV replication. MMP-10 may play an important role in the pathogenesis of RSV diseases and it has the potential to be a novel marker and therapeutic target for RSV infection.
Collapse
Affiliation(s)
- Satoshi Hirakawa
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo, Japan; Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Fuchimoto J, Kojima T, Okabayashi T, Masaki T, Ogasawara N, Obata K, Nomura K, Hirakawa S, Kobayashi N, Shigyo T, Yokota SI, Fujii N, Tsutsumi H, Himi T, Sawada N. Humulone suppresses replication of respiratory syncytial virus and release of IL-8 and RANTES in normal human nasal epithelial cells. Med Mol Morphol 2013; 46:203-9. [PMID: 23381605 DOI: 10.1007/s00795-013-0024-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 10/19/2012] [Indexed: 10/27/2022]
Abstract
Respiratory syncytial virus (RSV) is the major infectious agent causing serious respiratory tract inflammation in infants and young children. However, an effective vaccine and anti-viral therapy for RSV infection have not yet been developed. Hop-derived bitter acids have potent pharmacological effects on inflammation. Therefore, we investigated the effects of humulone, which is the main constituent of hop bitter acids, on the replication of RSV and release of the proinflammatory cytokine IL-8 and chemokine RANTES in RSV-infected human nasal epithelial cells (HNECs). We found that humulone prevented the expression of RSV/G-protein, formation of virus filaments and release of IL-8 and RANTES in a dose-dependent manner in RSV-infected HNECs. These findings suggest that humulone has protective effects against the replication of RSV, the virus assembly and the inflammatory responses in HNECs and that it is a useful biological product for the prevention and therapy for RSV infection.
Collapse
Affiliation(s)
- Jun Fuchimoto
- Frontier Laboratories of Value Creation, Sapporo Breweries Ltd, Shizuoka, 425-0013, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Regulation of tight junctions in upper airway epithelium. BIOMED RESEARCH INTERNATIONAL 2012; 2013:947072. [PMID: 23509817 PMCID: PMC3591135 DOI: 10.1155/2013/947072] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Accepted: 08/29/2012] [Indexed: 12/14/2022]
Abstract
The mucosal barrier of the upper respiratory tract including the nasal cavity, which is the first site of exposure to inhaled antigens, plays an important role in host defense in terms of innate immunity and is regulated in large part by tight junctions of epithelial cells. Tight junction molecules are expressed in both M cells and dendritic cells as well as epithelial cells of upper airway. Various antigens are sampled, transported, and released to lymphocytes through the cells in nasal mucosa while they maintain the integrity of the barrier. Expression of tight junction molecules and the barrier function in normal human nasal epithelial cells (HNECs) are affected by various stimuli including growth factor, TLR ligand, and cytokine. In addition, epithelial-derived thymic stromal lymphopoietin (TSLP), which is a master switch for allergic inflammatory diseases including allergic rhinitis, enhances the barrier function together with an increase of tight junction molecules in HNECs. Furthermore, respiratory syncytial virus infection in HNECs in vitro induces expression of tight junction molecules and the barrier function together with proinflammatory cytokine release. This paper summarizes the recent progress in our understanding of the regulation of tight junctions in the upper airway epithelium under normal, allergic, and RSV-infected conditions.
Collapse
|
11
|
Pathological changes in tight junctions and potential applications into therapies. Drug Discov Today 2012; 17:727-32. [DOI: 10.1016/j.drudis.2012.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/15/2012] [Accepted: 02/27/2012] [Indexed: 12/30/2022]
|
12
|
Plasticity and virus specificity of the airway epithelial cell immune response during respiratory virus infection. J Virol 2012; 86:5422-36. [PMID: 22398282 DOI: 10.1128/jvi.06757-11] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Airway epithelial cells (AECs) provide the first line of defense in the respiratory tract and are the main target of respiratory viruses. Here, using oligonucleotide and protein arrays, we analyze the infection of primary polarized human AEC cultures with influenza virus and respiratory syncytial virus (RSV), and we show that the immune response of AECs is quantitatively and qualitatively virus specific. Differentially expressed genes (DEGs) specifically induced by influenza virus and not by RSV included those encoding interferon B1 (IFN-B1), type III interferons (interleukin 28A [IL-28A], IL-28B, and IL-29), interleukins (IL-6, IL-1A, IL-1B, IL-23A, IL-17C, and IL-32), and chemokines (CCL2, CCL8, and CXCL5). Lack of type I interferon or STAT1 signaling decreased the expression and secretion of cytokines and chemokines by the airway epithelium. We also observed strong basolateral polarization of the secretion of cytokines and chemokines by human and murine AECs during infection. Importantly, the antiviral response of human AECs to influenza virus or to RSV correlated with the infection signature obtained from peripheral blood mononuclear cells (PBMCs) isolated from patients with acute influenza or RSV bronchiolitis, respectively. IFI27 (also known as ISG12) was identified as a biomarker of respiratory virus infection in both AECs and PBMCs. In addition, the extent of the transcriptional perturbation in PBMCs correlated with the clinical disease severity. Our results demonstrate that the human airway epithelium mounts virus-specific immune responses that are likely to determine the subsequent systemic immune responses and suggest that the absence of epithelial immune mediators after RSV infection may contribute to explaining the inadequacy of systemic immunity to the virus.
Collapse
|
13
|
Different NF-κB activation characteristics of human respiratory syncytial virus subgroups A and B. Microb Pathog 2012; 52:184-91. [DOI: 10.1016/j.micpath.2011.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 12/22/2011] [Accepted: 12/24/2011] [Indexed: 11/21/2022]
|
14
|
Masaki T, Kojima T, Okabayashi T, Ogasawara N, Ohkuni T, Obata K, Takasawa A, Murata M, Tanaka S, Hirakawa S, Fuchimoto J, Ninomiya T, Fujii N, Tsutsumi H, Himi T, Sawada N. A nuclear factor-κB signaling pathway via protein kinase C δ regulates replication of respiratory syncytial virus in polarized normal human nasal epithelial cells. Mol Biol Cell 2011; 22:2144-56. [PMID: 21562222 PMCID: PMC3128518 DOI: 10.1091/mbc.e10-11-0875] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We established a respiratory syncytial virus (RSV)-infected model in polarized normal human nasal epithelial cells and found that the replication of RSV and the epithelial cell responses including induction of tight junctions were regulated via a protein kinase C δ/hypoxia-inducible factor-1α/nuclear factor-κβ pathway. The control of this pathway may be useful in therapy for RSV-induced respiratory pathogenesis. Respiratory syncytial virus (RSV) is the major cause of bronchitis, asthma, and severe lower respiratory tract disease in infants and young children. The airway epithelium, which has a well-developed barrier regulated by tight junctions, is the first line of defense during respiratory virus infection. In upper airway human nasal epithelial cells (HNECs), however, the primary site of RSV infection, the mechanisms of replication and budding of RSV, and the epithelial cell responses, including the tight junctional barrier, remain unknown. To investigate the detailed mechanisms of replication and budding of RSV in HNECs and the epithelial cell responses, we established an RSV-infected model using human telomerase reverse transcriptase–-transfected HNECs. We first found that the expression and barrier function of tight junction molecules claudin-4 and occludin were markedly induced together with production of proinflammatory cytokines interleukin 8 and tumor necrosis factor-α in HNECs after RSV infection, and the induction of tight junction molecules possibly contributed to budding of RSV. Furthermore, the replication and budding of RSV and the epithelial cell responses in HNECs were regulated via a protein kinase C δ/hypoxia-inducible factor-1α/nuclear factor-κB pathway. The control of this pathway in HNECs may be useful not only for prevention of replication and budding of RSV, but also in therapy for RSV-induced respiratory pathogenesis.
Collapse
Affiliation(s)
- Tomoyuki Masaki
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Hinzey A, Alexander J, Corry J, Adams KM, Claggett AM, Traylor ZP, Davis IC, Webster Marketon JI. Respiratory syncytial virus represses glucocorticoid receptor-mediated gene activation. Endocrinology 2011; 152:483-94. [PMID: 21190962 PMCID: PMC3037158 DOI: 10.1210/en.2010-0774] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Respiratory syncytial virus (RSV) is a common cause of bronchiolitis in infants. Although antiinflammatory in nature, glucocorticoids have been shown to be ineffective in the treatment of RSV-induced bronchiolitis and wheezing. In addition, the effectiveness of glucocorticoids at inhibiting RSV-induced proinflammatory cytokine production in cell culture has been questioned. In this study, we have investigated the effect of RSV infection on glucocorticoid-induced gene activation in lung epithelium-derived cells. We show that RSV infection inhibits dexamethasone induction of three glucocorticoid receptor (GR)-regulated genes (glucocorticoid-inducible leucine zipper, FK506 binding protein, and MAPK phosphatase 1) in A549, BEAS-2B cells, and primary small airway epithelial cells. UV irradiation of the virus prevents this repression, suggesting that viral replication is required. RSV is known to activate the nuclear factor κB (NFκB) pathway, which is mutually antagonistic towards the GR pathway. However, specific inhibition of NFκB had no effect on the repression of GR-induced genes by RSV infection, indicating that RSV repression of GR is independent of NFκB. RSV infection of A549 cells does not alter GR protein levels or GR nuclear translocation but does reduce GR binding to the promoters of the glucocorticoid responsive genes analyzed in this study. Repression of GR by RSV infection may account for the apparent clinical ineffectiveness of glucocorticoids in RSV bronchiolitis therapy. In addition, this data adds to our previously published data suggesting that GR may be a general target for infectious agents. Identifying the mechanisms through which this suppression occurs may lead to the development of novel therapeutics.
Collapse
Affiliation(s)
- Adam Hinzey
- Division of Pulmonary, Department of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Yoboua F, Martel A, Duval A, Mukawera E, Grandvaux N. Respiratory syncytial virus-mediated NF-kappa B p65 phosphorylation at serine 536 is dependent on RIG-I, TRAF6, and IKK beta. J Virol 2010; 84:7267-77. [PMID: 20410276 PMCID: PMC2898247 DOI: 10.1128/jvi.00142-10] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 04/13/2010] [Indexed: 12/13/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the etiological agent of acute respiratory diseases, such as bronchiolitis and pneumonia. The exacerbated production of proinflammatory cytokines and chemokines in the airways in response to RSV is an important pillar in the development of these pathologies. As such, a keen understanding of the mechanisms that modulate the inflammatory response during RSV infection is of pivotal importance to developing effective treatment. The NF-kappaB transcription factor is a major regulator of proinflammatory cytokine and chemokine genes. However, RSV-mediated activation of NF-kappaB is far from characterized. We recently demonstrated that aside from the well-characterized IkappaBalpha phosphorylation and degradation, the phosphorylation of p65 at Ser536 is an essential event regulating the RSV-mediated NF-kappaB-dependent promoter transactivation. In the present study, using small interfering RNA and pharmacological inhibitors, we now demonstrate that RSV sensing by the RIG-I cytoplasmic receptor triggers a signaling cascade involving the MAVS and TRAF6 adaptors that ultimately leads to p65ser536 phosphorylation by the IKKbeta kinase. In a previous study, we highlighted a critical role of the NOX2-containing NADPH oxidase enzyme as an upstream regulator of both the IkappaBalphaSer32 and p65Ser536 in human airway epithelial cells. Here, we demonstrate that inhibition of NOX2 significantly decreases IKKbeta activation. Taken together, our data identify a new RIG-I/MAVS/TRAF6/IKKbeta/p65Ser536 pathway placed under the control of NOX2, thus characterizing a novel regulatory pathway involved in NF-kappaB-driven proinflammatory response in the context of RSV infection.
Collapse
Affiliation(s)
- Fabrice Yoboua
- CRCHUM-Centre Hospitalier de l'Université de Montréal, Montréal, Quebec H2X 1P1, Canada, Department of Biochemistry, Faculty of Medicine, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | - Alexis Martel
- CRCHUM-Centre Hospitalier de l'Université de Montréal, Montréal, Quebec H2X 1P1, Canada, Department of Biochemistry, Faculty of Medicine, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | - Annick Duval
- CRCHUM-Centre Hospitalier de l'Université de Montréal, Montréal, Quebec H2X 1P1, Canada, Department of Biochemistry, Faculty of Medicine, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | - Espérance Mukawera
- CRCHUM-Centre Hospitalier de l'Université de Montréal, Montréal, Quebec H2X 1P1, Canada, Department of Biochemistry, Faculty of Medicine, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | - Nathalie Grandvaux
- CRCHUM-Centre Hospitalier de l'Université de Montréal, Montréal, Quebec H2X 1P1, Canada, Department of Biochemistry, Faculty of Medicine, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| |
Collapse
|
17
|
Mohapatra SS, Boyapalle S. Epidemiologic, experimental, and clinical links between respiratory syncytial virus infection and asthma. Clin Microbiol Rev 2008; 21:495-504. [PMID: 18625684 PMCID: PMC2493089 DOI: 10.1128/cmr.00054-07] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Virtually all children experience respiratory syncytial virus (RSV) infection at least once during the first 2 years of life, but only a few develop bronchiolitis and more severe disease requiring hospitalization, usually in the first 6 months of life. Children who recover from RSV-induced bronchiolitis are at increased risk for the development of recurrent wheeze and asthma in later childhood. Recent studies suggest that there is an association between RSV-induced bronchiolitis and asthma within the first decade of life but that this association is not significant after age 13. Despite the considerable progress made in our understanding of several aspects of respiratory viral infections, further work needs to be done to clarify the molecular mechanisms of early interactions between virus and host cell and the role of host gene products in the infection process. This review provides a critical appraisal of the literature in epidemiology and experimental research which links RSV infection to asthma. Studies to date demonstrate that there is a significant association between RSV infection and childhood asthma and that preventing severe primary RSV infections can decrease the risk of childhood asthma.
Collapse
Affiliation(s)
- Shyam S Mohapatra
- Department of Internal Medicine, Division of Allergy and Immunology, University of South Florida College of Medicine, James A Haley Veterans Hospital, 12901 Bruce B Downs Blvd, Tampa, Florida 33612, USA.
| | | |
Collapse
|
18
|
Fink K, Duval A, Martel A, Soucy-Faulkner A, Grandvaux N. Dual role of NOX2 in respiratory syncytial virus- and sendai virus-induced activation of NF-kappaB in airway epithelial cells. THE JOURNAL OF IMMUNOLOGY 2008; 180:6911-22. [PMID: 18453612 DOI: 10.4049/jimmunol.180.10.6911] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Human respiratory syncytial virus (RSV), a member of the Paramyxoviridae family, is the most important viral agent of pediatric respiratory tract disease worldwide. Human airway epithelial cells (AEC) are the primary targets of RSV. AEC are responsible for the secretion of a wide spectrum of cytokines and chemokines that are important mediators of the exacerbated airway inflammation triggered by the host in response to RSV infection. NF-kappaB is a key transcription factor responsible for the regulation of cytokine and chemokine gene expression and thus represents a potential therapeutic target. In the present study, we sought to delineate the role of RSV-induced reactive oxygen species in the regulation of the signaling pathways leading to NF-kappaB activation. First, we demonstrate that besides the well-characterized IkappaBalpha-dependent pathway, phosphorylation of p65 at Ser(536) is an essential event regulating NF-kappaB activation in response to RSV in A549. Using antioxidant and RNA-interference strategies, we show that a NADPH oxidase 2 (NOX2)-containing NADPH oxidase is an essential regulator of RSV-induced NF-kappaB activation. Molecular analyses revealed that NOX2 acts upstream of both the phosphorylation of IkappaBalpha at Ser(32) and of p65 at Ser(536) in A549 and normal human bronchial epithelial cells. Similar results were obtained in the context of infection by Sendai virus, thus demonstrating that the newly identified NOX2-dependent NF-kappaB activation pathway is not restricted to RSV among the Paramyxoviridae. These results illustrate a previously unrecognized dual role of NOX2 in the regulation of NF-kappaB in response to RSV and Sendai virus in human AEC.
Collapse
Affiliation(s)
- Karin Fink
- Centre Hospitalier de l'Université de Montréal Research Center- St-Luc Hospital and Institut National de la Santé et de la Recherche Médicale Unité 743, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
19
|
Shiga toxin 2 causes apoptosis in human brain microvascular endothelial cells via C/EBP homologous protein. Infect Immun 2008; 76:3679-89. [PMID: 18541659 DOI: 10.1128/iai.01581-07] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Shiga toxin 1 (Stx1) and Stx2 produced by Escherichia coli O157 are known to be cytotoxic to Vero and HeLa cells by inhibiting protein synthesis and by inducing apoptosis. In the present study, we have demonstrated that 10 ng/ml Stx2 induced DNA fragmentation in human brain microvascular endothelial cells (HBMEC), with cleavage activation of caspase-3, -6, -8, and -9. A microarray approach used to search for apoptotic potential signals in response to Stx2 revealed that Stx2 treatment induced a marked upregulation of C/EBP homologous protein (CHOP)/growth arrest and DNA damage-inducible protein 153 (GADD153). Increased CHOP expression was dependent on enzymatically active Stx1. Knockdown of CHOP mRNA reduced the activation of caspase-3 and prevented apoptotic cell death. These results suggest that Stx2-induced apoptosis is mediated by CHOP in HBMEC and involves activation of both the intrinsic and extrinsic pathways of apoptosis.
Collapse
|
20
|
García-Román R, Pérez-Carreón JI, Márquez-Quiñones A, Salcido-Neyoy ME, Villa-Treviño S. Persistent activation of NF-kappaB related to IkappaB's degradation profiles during early chemical hepatocarcinogenesis. J Carcinog 2007; 6:5. [PMID: 17445259 PMCID: PMC1865534 DOI: 10.1186/1477-3163-6-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2006] [Accepted: 04/19/2007] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND To define the NF-kappaB activation in early stages of hepatocarcinogenesis and its IkappaB's degradation profiles in comparison to sole liver regeneration. METHODS Western-blot and EMSA analyses were performed for the NF-kappaB activation. The transcriptional activity of NF-kappaB was determined by RT-PCR of the IkappaB-alpha mRNA. The IkappaB's degradation proteins were determined by Western-blot assay. RESULTS We demonstrated the persistent activation of NF-kappaB during early stages of hepatocarcinogenesis, which reached maximal level 30 min after partial hepatectomy. The DNA binding and transcriptional activity of NF-kappaB, were sustained during early steps of hepatocarcinogenesis in comparison to only partial hepatectomy, which displayed a transitory NF-kappaB activation. In early stages of hepatocarcinogenesis, the IkappaB-alpha degradation turned out to be acute and transitory, but the low levels of IkappaB-beta persisted even 15 days after partial hepatectomy. Interestingly, IkappaB-beta degradation is not induced after sole partial hepatectomy. CONCLUSION We propose that during liver regeneration, the transitory stimulation of the transcription factor response, assures blockade of NF-kappaB until recovery of the total mass of the liver and the persistent NF-kappaB activation in early hepatocarcinogenesis may be due to IkappaB-beta and IkappaB-alpha degradation, mainly IkappaB-beta degradation, which contributes to gene transcription related to proliferation required for neoplastic progression.
Collapse
Affiliation(s)
- Rebeca García-Román
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, México D.F., México
| | - Julio Isael Pérez-Carreón
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, México D.F., México
| | - Adriana Márquez-Quiñones
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, México D.F., México
| | - Martha Estela Salcido-Neyoy
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, México D.F., México
| | - Saúl Villa-Treviño
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, México D.F., México
| |
Collapse
|
21
|
Davis IC, Xu A, Gao Z, Hickman-Davis JM, Factor P, Sullender WM, Matalon S. Respiratory syncytial virus induces insensitivity to beta-adrenergic agonists in mouse lung epithelium in vivo. Am J Physiol Lung Cell Mol Physiol 2007; 293:L281-9. [PMID: 17435077 PMCID: PMC2084466 DOI: 10.1152/ajplung.00458.2006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Respiratory syncytial virus (RSV) is the most common cause of bronchiolitis in infants and children worldwide. We wished to determine whether intratracheal administration of beta-agonists improved alveolar fluid clearance (AFC) across the distal respiratory epithelium of RSV-infected mice. Following intranasal infection with RSV strain A2, AFC was measured in anesthetized, ventilated BALB/c mice by instillation of 5% BSA into the dependent lung. We found that direct activation of protein kinase A by forskolin or 8-bromo-cAMP increased AFC at day 2 after infection with RSV. In contrast, short- and long-acting beta-agonists had no effect at either day 2 or day 4. Insensitivity to beta-agonists was not a result of elevated plasma catecholamines or lung epithelial cell beta-adrenergic receptor degradation. Instead, RSV-infected mice had significantly higher levels of phosphorylated PKCzeta in the membrane fractions of their lung epithelial cells. In addition, insensitivity to beta-agonists was mediated in a paracrine fashion by KC (the murine homolog of CXCL8) and reversed by inhibition of either PKCzeta or G protein-coupled receptor kinase 2 (GRK2). These results indicate that insufficient response to beta-agonists in RSV may be caused, at least in part, by impaired beta-adrenergic receptor signaling, as a consequence of GRK2-mediated uncoupling of beta-adrenergic receptors from adenylyl cyclase.
Collapse
Affiliation(s)
- Ian C. Davis
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Anna Xu
- Department of Pulmonary Medicine, Columbia University Medical Center, New York, NY, USA
| | - Zhiqian Gao
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Judy M. Hickman-Davis
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Phillip Factor
- Department of Pulmonary Medicine, Columbia University Medical Center, New York, NY, USA
| | - Wayne M. Sullender
- Department of Pediatrics & Microbiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Sadis Matalon
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Department of Physiology & Biophysics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
22
|
Ennaciri J, Ahmad R, Menezes J. Interaction of monocytic cells with respiratory syncytial virus results in activation of NF-kappaB and PKC-alpha/beta leading to up-regulation of IL-15 gene expression. J Leukoc Biol 2006; 81:625-31. [PMID: 17158609 DOI: 10.1189/jlb.0806507] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a major human respiratory pathogen, particularly for infants. RSV is also a powerful inducer of cytokines, one of which is IL-15, an important immunoregulatory cytokine. IL-15 plays a key role in NK and T cell development and differentiation and also regulates NK cell/macrophage interaction, as well as monocyte/macrophage and granulocyte function. We have shown previously that different viruses up-regulate IL-15 gene expression in human PBMCs. Recently, we found that RSV induces the expression of IL-15 mRNA in the monocytic line THP-1. The signaling pathway involved in such virus-induced up-regulation of IL-15 has not yet been identified. We report here a study describing this mechanism. Because of the involvement of the protein kinase C (PKC) and the transcription factor NF-kappaB in the regulation of others cytokines by RSV as well as the involvement of NF-kappaB in the transactivation of IL-15, our hypothesis was that RSV induced the expression of IL-15 in THP-1 cells through the PKC and NF-kappaB activation. We demonstrate here that RSV-induced up-regulation of IL-15 expression in THP-1 cells involves the phosphorylation of PKC-alpha/beta. Further, inhibition of PKC by different specific inhibitors blocks this up-regulation. Using the electromobility shift assay, we show that the activated form of NF-kappaB binds to the IL-15 promoter sequence. We further confirm, using an ELISA assay, the involvement of p65 in the transcription of IL-15. This study, demonstrating the ability of RSV to induce IL-15 expression, might explain, at least in part, the exacerbated, inflammatory response triggered by RSV infection.
Collapse
Affiliation(s)
- Jamila Ennaciri
- Laboratory of Immunovirology, Sainte-Justine Hospital Research Center, Montreal, QC, Canada
| | | | | |
Collapse
|
23
|
Bitko V, Shulyayeva O, Mazumder B, Musiyenko A, Ramaswamy M, Look DC, Barik S. Nonstructural proteins of respiratory syncytial virus suppress premature apoptosis by an NF-kappaB-dependent, interferon-independent mechanism and facilitate virus growth. J Virol 2006; 81:1786-95. [PMID: 17151097 PMCID: PMC1797585 DOI: 10.1128/jvi.01420-06] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The two nonstructural (NS) proteins NS1 and NS2 of respiratory syncytial virus (RSV) are abundantly expressed in the infected cell but are not packaged in mature progeny virions. We found that both proteins were expressed early in infection, whereas the infected cells underwent apoptosis much later. Coincident with NS protein expression, a number of cellular antiapoptotic factors were expressed or activated at early stages, which included NF-kappaB and phosphorylated forms of protein kinases AKT, phosphoinositide-dependent protein kinase, and glycogen synthase kinase. Using specific short interfering RNAs (siRNAs), we achieved significant knockdown of one or both NS proteins in the infected cell, which resulted in abrogation of the antiapoptotic functions and led to early apoptosis. NS-dependent suppression of apoptosis was observed in Vero cells that are naturally devoid of type I interferons (IFN). The siRNA-based results were confirmed by the use of NS-deleted RSV mutants. Early activation of epidermal growth factor receptor (EGFR) in the RSV-infected cell did not require NS proteins. Premature apoptosis triggered by the loss of NS or by apoptosis-promoting drugs caused a severe reduction of RSV growth. Finally, recombinantly expressed NS1 and NS2, individually and together, reduced apoptosis by tumor necrosis factor alpha, suggesting an intrinsic antiapoptotic property of both. We conclude that the early-expressed nonstructural proteins of RSV boost viral replication by delaying the apoptosis of the infected cell via a novel IFN- and EGFR-independent pathway.
Collapse
Affiliation(s)
- Vira Bitko
- Department of Biochemistry and Molecular Biology, University of South Alabama, College of Medicine, 307 University Blvd., Mobile, AL 36688-0002, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Urnowey S, Ansai T, Bitko V, Nakayama K, Takehara T, Barik S. Temporal activation of anti- and pro-apoptotic factors in human gingival fibroblasts infected with the periodontal pathogen, Porphyromonas gingivalis: potential role of bacterial proteases in host signalling. BMC Microbiol 2006; 6:26. [PMID: 16524480 PMCID: PMC1431544 DOI: 10.1186/1471-2180-6-26] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Accepted: 03/08/2006] [Indexed: 01/07/2023] Open
Abstract
Background Porphyromonas gingivalis is the foremost oral pathogen of adult periodontitis in humans. However, the mechanisms of bacterial invasion and the resultant destruction of the gingival tissue remain largely undefined. Results We report host-P. gingivalis interactions in primary human gingival fibroblast (HGF) cells. Quantitative immunostaining revealed the need for a high multiplicity of infection for optimal infection. Early in infection (2–12 h), P. gingivalis activated the proinflammatory transcription factor NF-kappa B, partly via the PI3 kinase/AKT pathway. This was accompanied by the induction of cellular anti-apoptotic genes, including Bfl-1, Boo, Bcl-XL, Bcl2, Mcl-1, Bcl-w and Survivin. Late in infection (24–36 h) the anti-apoptotic genes largely shut down and the pro-apoptotic genes, including Nip3, Hrk, Bak, Bik, Bok, Bax, Bad, Bim and Moap-1, were activated. Apoptosis was characterized by nuclear DNA degradation and activation of caspases-3, -6, -7 and -9 via the intrinsic mitochondrial pathway. Use of inhibitors revealed an anti-apoptotic function of NF-kappa B and PI3 kinase in P. gingivalis-infected HGF cells. Use of a triple protease mutant P. gingivalis lacking three major gingipains (rgpA rgpB kgp) suggested a role of some or all these proteases in myriad aspects of bacteria-gingival interaction. Conclusion The pathology of the gingival fibroblast in P. gingivalis infection is affected by a temporal shift from cellular survival response to apoptosis, regulated by a number of anti- and pro-apoptotic molecules. The gingipain group of proteases affects bacteria-host interactions and may directly promote apoptosis by intracellular proteolytic activation of caspase-3.
Collapse
Affiliation(s)
- Sonya Urnowey
- Department of Biochemistry and Molecular Biology, University of South Alabama, College of Medicine, 307 University Blvd., Mobile, Alabama 36688-0002, USA
| | - Toshihiro Ansai
- Department of Preventive Dentistry, Kyushu Dental College, Kitakyushu 803-8580, Japan
| | - Vira Bitko
- Department of Biochemistry and Molecular Biology, University of South Alabama, College of Medicine, 307 University Blvd., Mobile, Alabama 36688-0002, USA
| | - Koji Nakayama
- Division of Microbiology and Oral Infection, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto 1-7-1, Nagasaki 852-8588, Japan
| | - Tadamichi Takehara
- Department of Preventive Dentistry, Kyushu Dental College, Kitakyushu 803-8580, Japan
| | - Sailen Barik
- Department of Biochemistry and Molecular Biology, University of South Alabama, College of Medicine, 307 University Blvd., Mobile, Alabama 36688-0002, USA
| |
Collapse
|
25
|
Carneiro BA, Fujii J, Brito GAC, Alcantara C, Oriá RB, Lima AAM, Obrig T, Guerrant RL. Caspase and bid involvement in Clostridium difficile toxin A-induced apoptosis and modulation of toxin A effects by glutamine and alanyl-glutamine in vivo and in vitro. Infect Immun 2006; 74:81-7. [PMID: 16368960 PMCID: PMC1346681 DOI: 10.1128/iai.74.1.81-87.2006] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Clostridium difficile is the leading cause of nosocomial bacterial diarrhea. Glutamine and its stable and highly soluble derivative alanyl-glutamine, have been beneficial in models of intestinal injury. In this study, we extend our work on the mechanisms of Clostridium difficile toxin A (TxA)-induced apoptosis in human intestinal epithelial T84 cells and evaluate the effects of glutamine and alanyl-glutamine on TxA-induced apoptosis in vitro and disruption of ileal mucosa in vivo. T84 cells were incubated with TxA (100 ng/ml) in medium with or without glutamine or alanyl-glutamine (3 to 100 mM). Apoptosis was evaluated by DNA fragmentation in vitro and the terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end-labeling method in vivo. Caspase and Bid involvement were investigated by Western blotting. Ligated rabbit ileal loops were used for the evaluation of intestinal secretion, mucosal disruption, and apoptosis. TxA induced caspases 6, 8, and 9 prior to caspase 3 activation in T84 cells and induced Bid cleavage by a caspase-independent mechanism. Glutamine or alanyl-glutamine significantly reduced TxA-induced apoptosis of T84 cells by 47% and inhibited activation of caspase 8. Both glutamine and alanyl-glutamine reduced TxA-induced ileal mucosal disruption and secretion. Altogether, we further delineated the apoptosis-signaling cascade induced by TxA in T84 cells and demonstrated the protective effects of glutamine and alanyl-glutamine. Glutamine and alanyl-glutamine inhibited the apoptosis of T84 cells by preventing caspase 8 activation and reduced TxA-induced intestinal secretion and disruption.
Collapse
Affiliation(s)
- Benedito A Carneiro
- Center for Global Health, Division of Infectious Diseases and International Health, University of Virginia, MR4, Lane Road, Room 3148, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Rajala MS, Rajala RVS, Astley RA, Butt AL, Chodosh J. Corneal cell survival in adenovirus type 19 infection requires phosphoinositide 3-kinase/Akt activation. J Virol 2005; 79:12332-41. [PMID: 16160160 PMCID: PMC1211526 DOI: 10.1128/jvi.79.19.12332-12341.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2005] [Accepted: 07/13/2005] [Indexed: 02/04/2023] Open
Abstract
Adenovirus type 19 is a major cause of epidemic keratoconjunctivitis, the only ocular adenoviral infection associated with prolonged corneal inflammation. In this study, we investigated the role of phosphoinositide 3-kinase (PI3K) and Akt and their downstream targets in adenovirus infection, and here we report the novel finding that adenovirus type 19 utilizes the PI3K/Akt pathway to maintain corneal fibroblast viability in acute infection. We demonstrate phosphorylation of GSK-3beta and nuclear translocation of the p65 subunit of NF-kappaB, both downstream targets of the PI3K/Akt pathway, in adenovirus-infected corneal fibroblasts in a PI3K-dependent manner. Inhibition of PI3K had no effect on early viral gene expression, suggesting normal viral internalization, but pretreatment with the PI3K inhibitor LY294002 or overexpression of dominant negative Akt induced early cytopathic effect and caspase-mediated cell death in adenovirus-infected cells. Early cell death could be circumvented despite LY294002 by overexpression of constitutively active Akt. Furthermore, we show an interaction between cSrc and the p85 regulatory subunit of PI3K in infected cells through a phosphorylation-dependent mechanism. The results presented in this paper provide the first direct evidence that PI3K-mediated Akt activation in adenovirus-infected corneal cells may contribute to viral pathogenesis by the prolongation of cell viability.
Collapse
Affiliation(s)
- Maitreyi S Rajala
- Molecular Pathogenesis of Eye Infection Research Center, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | | | |
Collapse
|
27
|
Spann KM, Tran KC, Collins PL. Effects of nonstructural proteins NS1 and NS2 of human respiratory syncytial virus on interferon regulatory factor 3, NF-kappaB, and proinflammatory cytokines. J Virol 2005; 79:5353-62. [PMID: 15827150 PMCID: PMC1082743 DOI: 10.1128/jvi.79.9.5353-5362.2005] [Citation(s) in RCA: 222] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Human respiratory syncytial virus (HRSV) is the leading cause of serious pediatric acute respiratory tract infections, and a better understanding is needed of the host response to HRSV and its attenuated vaccine derivatives. It has been shown previously that HRSV nonstructural proteins 1 and 2 (NS1 and NS2) inhibit the induction of alpha/beta interferon (IFN-alpha/beta) in A549 cells and human macrophages. Two principal transcription factors for the early IFN-beta and -alpha1 response are interferon regulatory factor 3 (IRF-3) and nuclear factor kappaB (NF-kappaB). At early times postinfection, wild-type HRSV and the NS1/NS2 deletion mutants were very similar in the ability to activate IRF-3. However, once NS1 and NS2 were expressed significantly, they acted cooperatively to suppress activation and nuclear translocation of IRF-3. Since these viruses differed greatly in the induction of IFN-alpha/beta, NF-kappaB activation was evaluated in Vero cells, which lack the structural genes for IFN-alpha/beta and would preclude confounding effects of IFN-alpha/beta. This showed that deletion of the NS2 gene sharply reduced the ability of HRSV to induce activation of NF-kappaB. Since recombinant HRSVs from which the NS1 or NS2 genes have been deleted are being developed as vaccine candidates, we investigated whether the changes in activation of host transcription factors and increased IFN-alpha/beta production had an effect on the epithelial production of proinflammatory factors. Viruses lacking NS1 and/or NS2 stimulated modestly lower production of RANTES (Regulated on Activation Normal T-cell Expressed and Secreted), interleukin 8, and tumor necrosis factor alpha compared to wild-type recombinant RSV, supporting their use as attenuated vaccine candidates.
Collapse
Affiliation(s)
- Kirsten M Spann
- Laboratory of Infectious Diseases, NIAID, Building 50, Room 6503, 50 South Dr., MSC 8007, Bethesda, MD 20892-8007, USA
| | | | | |
Collapse
|
28
|
Asenjo A, Rodríguez L, Villanueva N. Determination of phosphorylated residues from human respiratory syncytial virus P protein that are dynamically dephosphorylated by cellular phosphatases: a possible role for serine 54. J Gen Virol 2005; 86:1109-1120. [PMID: 15784905 DOI: 10.1099/vir.0.80692-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The 241 aa human respiratory synctyial virus (HRSV) Long strain P protein is phosphorylated at serines 116, 117 and/or 119, and 232. Phosphates added to these residues have slow turnover and can be detected in the absence of protein phosphatase inhibition. Inhibition of phosphatases PP1 and PP2A increases the level of phosphorylation at serines 116, 117 and/or 119, suggesting a more rapid turnover for phosphates added to these residues compared to that of S232. High-turnover phosphorylation is detected in the P-protein NH2-terminal region, mainly at S54 and, to a lesser extent, at S39, in the Long strain. When the P protein bears the T46I substitution (in the remaining HRSV strains), phosphates are added to S30, S39, S45 and S54. Phosphatase PP1 removes phosphate at residues in the central part of the P-protein molecule, whereas those in the NH2-terminal region are removed by phosphatase PP2A. The significance of the phosphorylation of the NH2-terminal region residues for some P-protein functions was studied. The results indicated that this modification is not essential for P-protein oligomerization or for its role in viral RNA synthesis. Nonetheless, dephosphorylation at S54 could facilitate P-M protein interactions that probably occur during the egress of viral particles.
Collapse
Affiliation(s)
- Ana Asenjo
- Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III (ISCIII), Carretera Majadahonda-Pozuelo Km 2, Majadahonda, E-28220 Madrid, Spain
| | - Lorena Rodríguez
- Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III (ISCIII), Carretera Majadahonda-Pozuelo Km 2, Majadahonda, E-28220 Madrid, Spain
| | - Nieves Villanueva
- Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III (ISCIII), Carretera Majadahonda-Pozuelo Km 2, Majadahonda, E-28220 Madrid, Spain
| |
Collapse
|
29
|
Neznanov N, Chumakov KM, Neznanova L, Almasan A, Banerjee AK, Gudkov AV. Proteolytic cleavage of the p65-RelA subunit of NF-kappaB during poliovirus infection. J Biol Chem 2005; 280:24153-8. [PMID: 15845545 DOI: 10.1074/jbc.m502303200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Activation of NF-kappaB during viral infection is one of the critical elements in innate immune response. Several virus-specific factors, such as double-stranded RNA, can trigger host defense mechanisms by inducing NF-kappaB-mediated expression of cytokines and interferons. Early stages of poliovirus infection are also associated with degradation of IkappaB alpha and translocation of NF-kappaB into the nucleus. However, at later stages of poliovirus replication the p65-RelA component of the NF-kappaB complex undergoes a specific cleavage that coincides with the onset of intensive poliovirus protein synthesis and the appearance of the activity of poliovirus protease 3C. Indeed, the p65-RelA amino acid sequence contains the recognition site for 3C, and recombinant protein 3C was shown to be capable of proteolytic cleavage of p65-RelA, generating truncated product similar to that observed during poliovirus infection. Cleavage of p65-RelA occurs during replication of ECHO-1 and rhinovirus 14, suggesting that inactivation of NF-kappaB function by proteolytic cleavage of p65-RelA is the common mechanism by which picornaviruses suppress the innate immune response.
Collapse
Affiliation(s)
- Nickolay Neznanov
- Department of Molecular Genetics, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Reimers K, Buchholz K, Werchau H. Respiratory syncytial virus M2-1 protein induces the activation of nuclear factor kappa B. Virology 2005; 331:260-8. [PMID: 15629770 DOI: 10.1016/j.virol.2004.10.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Revised: 08/04/2004] [Accepted: 10/08/2004] [Indexed: 11/21/2022]
Abstract
Respiratory syncytial virus (RSV) induces the production of a number of cytokines and chemokines by activation of nuclear factor kappa B (NF-kappaB). The activation of NF-kappaB has been shown to depend on viral replication in the infected cells. In this study, we demonstrate that expression of RSV M2-1 protein, a transcriptional processivity and anti-termination factor, is sufficient to activate NF-kappaB in A549 cells. Electromobility shift assays show increased NF-kappaB complexes in the nuclei of M2-1-expressing cells. M2-1 protein is found in nuclei of M2-1-expressing cells and in RSV-infected cells. Co-immunoprecipitations of nuclear extracts of M2-1-expressing cells and of RSV-infected cells revealed an association of M2-1 with Rel A protein. Furthermore, the activation of NF-kappaB depends on the C-terminus of the RSV M2-1 protein, as shown by NF-kappaB-induced gene expression of a reporter gene construct.
Collapse
Affiliation(s)
- Kerstin Reimers
- Klinik für Plastische, Hand-und Wiederherstellungschirurgie, Podbielskistrasse 380, D-30659 Hannover, Germany.
| | | | | |
Collapse
|
31
|
San-Juan-Vergara H, Peeples ME, Lockey RF, Mohapatra SS. Protein kinase C-alpha activity is required for respiratory syncytial virus fusion to human bronchial epithelial cells. J Virol 2004; 78:13717-26. [PMID: 15564481 PMCID: PMC533893 DOI: 10.1128/jvi.78.24.13717-13726.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Respiratory syncytial virus (RSV) infection activates protein kinase C (PKC), but the precise PKC isoform(s) involved and its role(s) remain to be elucidated. On the basis of the activation kinetics of different signaling pathways and the effect of various PKC inhibitors, it was reasoned that PKC activation is important in the early stages of RSV infection, especially RSV fusion and/or replication. Herein, the role of PKC-alpha during the early stages of RSV infection in normal human bronchial epithelial cells is determined. The results show that the blocking of PKC-alpha activation by classical inhibitors, pseudosubstrate peptides, or the overexpression of dominant-negative mutants of PKC-alpha in these cells leads to significantly decreased RSV infection. RSV induces phosphorylation, activation, and cytoplasm-to-membrane translocation of PKC-alpha. Also, PKC-alpha colocalizes with virus particles and is required for RSV fusion to the cell membrane. Thus, PKC-alpha could provide a new pharmacological target for controlling RSV infection.
Collapse
Affiliation(s)
- Homero San-Juan-Vergara
- The Joy McCann Culverhouse Airways Disease Research Center, Division of Allergy and Immunology, Department of Internal Medicine, College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | | | | | | |
Collapse
|
32
|
Abstract
Our laboratory provided the first proof-of-concept that double-stranded short interfering RNA (ds-siRNA) can act as potent and specific antiviral agents. Designed against specific mRNAs of nonsegmented negative-stranded RNA (NNR) viruses, siRNAs abrogated expression of the corresponding viral proteins, and generated the predicted viral phenotypes. Knockdown was demonstrated across different genera: respiratory syncytial virus (RSV), a pneumovirus; vesicular stomatitis virus (VSV), a rhabdovirus; and human parainfluenza virus (HPIV), a paramyxovirus. The targeted genes could have a wide range of functions, thus documenting the versatility of the technique. Interestingly, antisense single-stranded siRNA (ss-siRNA) was also effective, albeit at a higher concentration. NNR viral genomic and antigenomic RNA, which are encapsidated by nucleocapsid protein and serve as templates for viral RNA-dependent RNA polymerase, were resistant to siRNA. Together, siRNAs offer complementary advantages over traditional mutational analyses that are difficult to perform in NNR viruses, and are also an important new tool to dissect host-virus interactive pathways.
Collapse
Affiliation(s)
- Sailen Barik
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, 307 University Blvd., Mobile, AL 36688, USA.
| |
Collapse
|
33
|
Bitko V, Garmon NE, Cao T, Estrada B, Oakes JE, Lausch RN, Barik S. Activation of cytokines and NF-kappa B in corneal epithelial cells infected by respiratory syncytial virus: potential relevance in ocular inflammation and respiratory infection. BMC Microbiol 2004; 4:28. [PMID: 15256003 PMCID: PMC481065 DOI: 10.1186/1471-2180-4-28] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2004] [Accepted: 07/15/2004] [Indexed: 01/04/2023] Open
Abstract
Background Respiratory syncytial virus (RSV) is a major cause of lower respiratory tract infection, claiming millions of lives annually. The virus infects various cells of the respiratory tract as well as resident inflammatory cells such as macrophages. Infection activates a variety of cellular factors such as cytokines and the pro-inflammatory transcription factor, NF-kappa B, all of which are important players in the respiratory disease. However, the exact natural route of RSV infection and its etiology remain relatively unknown. In this paper, we test the hypothesis that human corneal epithelial cells, which constitute the outermost layer of the cornea, can be infected with RSV, and that the infection leads to the activation of proinflammatory macromolecules. Results Corneal swabs obtained from pediatric patients with acute respiratory disease were found to contain RSV at a high frequency (43 positive out of 72 samples, i.e., 60%). Primary corneal epithelial cells in tissue culture supported robust infection and productive growth of RSV. Infection resulted in the activation of TNF-α, IL-6 and sixteen chemokines as well as NF-κB. Three proinflammatory CXC chemokines (MIG, I-TAC, IP-10) underwent the greatest activation. Conclusions The ocular epithelium is readily infected by RSV. The pro-inflammatory cytokines are likely to play critical roles in the etiology of inflammation and conjunctivitis commonly seen in pediatric patients with respiratory infections. RSV-eye interactions have important implications in RSV transmission, immunopathology of RSV disease, and in the management of conjunctivitis.
Collapse
Affiliation(s)
- Vira Bitko
- Department of Biochemistry and Molecular Biology, University of South Alabama, College of Medicine, 307 University Blvd., Mobile, Alabama 36688-0002, USA
| | - Nicolle E Garmon
- Department of Biochemistry and Molecular Biology, University of South Alabama, College of Medicine, 307 University Blvd., Mobile, Alabama 36688-0002, USA
| | - Tin Cao
- Department of Microbiology and Immunology, University of South Alabama, College of Medicine, Mobile, AL, USA
- Biopolymer Laboratory, University of South Alabama, Mobile, AL, USA
| | - Benjamin Estrada
- Pediatrics and Adolescent Medicine, University of South Alabama, College of Medicine, Mobile, AL, USA
| | - John E Oakes
- Department of Microbiology and Immunology, University of South Alabama, College of Medicine, Mobile, AL, USA
| | - Robert N Lausch
- Department of Microbiology and Immunology, University of South Alabama, College of Medicine, Mobile, AL, USA
| | - Sailen Barik
- Department of Biochemistry and Molecular Biology, University of South Alabama, College of Medicine, 307 University Blvd., Mobile, Alabama 36688-0002, USA
- Department of Microbiology and Immunology, University of South Alabama, College of Medicine, Mobile, AL, USA
| |
Collapse
|
34
|
Chen Y, Vallee S, Wu J, Vu D, Sondek J, Ghosh G. Inhibition of NF-kappaB activity by IkappaBbeta in association with kappaB-Ras. Mol Cell Biol 2004; 24:3048-56. [PMID: 15024091 PMCID: PMC371134 DOI: 10.1128/mcb.24.7.3048-3056.2004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
IkappaBbeta, one of the major IkappaB proteins, is only partially degraded in response to most extracellular signals. However, the molecular mechanism of this event is unknown. We show here that IkappaBbeta exists in at least two different forms: one that is bound to the NF-kappaB dimer and the other bound to both NF-kappaB and kappaB-Ras, a Ras-like small G protein. Removal of cellular kappaB-Ras enhances whereas excess kappaB-Ras blocks induced IkappaBbeta degradation. Remarkably, kappaB-Ras functions in both GDP- and GTP-bound states, and mutations of the conserved guanine-binding residues of kappaB-Ras abrogate its ability to block degradation of IkappaBbeta. kappaB-Ras also directly blocks the in vitro phosphorylation of IkappaBbeta by IKKbeta. These observations suggest that IkappaBbeta in the ternary complex is resistant to degradation by most signals. We suggest that specific signals, in addition to those that activate only IKK, are essential for the complete degradation of IkappaBbeta.
Collapse
Affiliation(s)
- Yi Chen
- Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | |
Collapse
|
35
|
Kong X, San Juan H, Behera A, Peeples ME, Wu J, Lockey RF, Mohapatra SS. ERK-1/2 activity is required for efficient RSV infection. FEBS Lett 2004; 559:33-8. [PMID: 14960303 DOI: 10.1016/s0014-5793(04)00002-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2003] [Revised: 11/26/2003] [Accepted: 12/03/2003] [Indexed: 10/26/2022]
Abstract
Respiratory syncytial virus (RSV) infection up-regulates the expression of genes encoding proinflammatory mediators in bronchial epithelial cells. However, the specific signaling events immediately following RSV exposure are poorly understood. Herein, we report that RSV attachment to A549 cells activates both ERK-1 and ERK-2 pathways within 5 min. Inhibition of ERK pathways significantly decreases RSV infection of these cells compared to controls. These results demonstrate that the activation of the ERK-1/2 is required in RSV-induced early gene expression.
Collapse
Affiliation(s)
- Xiaoyuan Kong
- The Joy McCann Culverhouse Airways Disease Research Center, Division of Allergy and Immunology, Department of Internal Medicine, MDC-19, 12901 Bruce B. Downs Blvd, Tampa, FL 33612, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Bose S, Banerjee AK. Innate immune response against nonsegmented negative strand RNA viruses. J Interferon Cytokine Res 2004; 23:401-12. [PMID: 13678428 DOI: 10.1089/107999003322277810] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Innate immune response represents the hallmark of host defense against foreign pathogens, including viruses. Not only does this response combat viruses during initial stages of infection, but it shapes the adaptive immune response as well. This review focuses on this critical host defense mechanism, the innate immune response, in the context of infection by nonsegmented negative strand RNA viruses of the Paramyxoviridae family. We specifically focus on the two critical transcription factors, nuclear factor-kappaB (NF-kappaB) and interferon (IFN) regulatory factor-3 (IRF-3), that play an important role in establishing an innate antiviral state. The antiviral cytokine IFN-alpha/beta (IFN type I) produced following viral infection as a result of activation of NF-kappaB or IRF-3 or both exerts an antiviral state by inducing the Janus kinases/signal transducer and activator (Jak-Stat) pathway. In that context, our review discusses various strategies adopted by these viruses to counteract and evade the antiviral action of IFN I for replicative advantages, especially after modulation of the Jak-Stat antiviral pathway. Understanding this interplay between the innate immune response and viral replication is fundamental to probing into the molecular basis of host-virus interaction.
Collapse
Affiliation(s)
- Santanu Bose
- Department of Virology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | |
Collapse
|
37
|
Harris J, Werling D. Binding and entry of respiratory syncytial virus into host cells and initiation of the innate immune response. Cell Microbiol 2003; 5:671-80. [PMID: 12969373 DOI: 10.1046/j.1462-5822.2003.00313.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Respiratory syncytial virus (RSV) is the most common cause of severe lower respiratory tract infection in infants and the elderly. There is currently no effective antiviral treatment for the infection, but advances in our understanding of RSV uptake, especially the role of surfactant proteins, the attachment protein G and the fusion protein F, as well as the post-binding events, have revealed potential targets for new therapies and vaccine development. RSV infection triggers an intense inflammatory response, mediated initially by the infected airway epithelial cells and antigen-presenting cells. Humoral and cell-mediated immune responses are important in controlling the extent of infection and promoting viral clearance. The initial innate immune response may play a critical role by influencing the subsequent adaptive response generated. This review summarizes our current understanding of RSV binding and uptake in mammalian cells and how these initial interactions influence the subsequent innate immune response generated.
Collapse
Affiliation(s)
- James Harris
- Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK.
| | | |
Collapse
|
38
|
Wu C, Ghosh S. Differential phosphorylation of the signal-responsive domain of I kappa B alpha and I kappa B beta by I kappa B kinases. J Biol Chem 2003; 278:31980-7. [PMID: 12791687 DOI: 10.1074/jbc.m304278200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NF-kappa B activity is regulated by its association with the inhibitory I kappa B proteins, among which I kappa B alpha and I kappa B beta are the most abundant. I kappa B proteins are widely expressed in different cells and tissues and bind to similar combinations of NF-kappa B proteins. The degradation of I kappa B proteins allows nuclear translocation of NF-kappa B and hence plays a critical role in NF-kappa B activation. Previous studies have demonstrated that, although both I kappa B proteins are phosphorylated by the same I kappa B kinase (IKK) complex, and their ubiquitination and degradation following phosphorylation are carried out by the same ubiquitination/degradation machinery, their kinetics of degradation are quite different. To better understand the underlying mechanism of the differences in degradation kinetics, we have carried out a systematic, comparative analysis of the ability of the IKK catalytic subunits to phosphorylate I kappa B alpha and I kappa B beta. We found that, whereas IKK alpha is a weak kinase for the N-terminal serines of both I kappa B isoforms, IKK beta is an efficient kinase for those residues in I kappa B alpha. However, IKK beta phosphorylates the N-terminal serines of I kappa B beta far less efficiently, thereby providing an explanation for the slower rate of degradation observed for I kappa B beta. Mutational analysis indicated that the regions around the two N-terminal serines collectively influence the relative phosphorylation efficiency, and no individual residue is critical. These findings provide the first systematic analysis of the ability of I kappa B alpha and I kappa B beta to serve as substrates for IKKs and help provide a possible explanation for the differential degradation kinetics of I kappa B alpha and I kappa B beta.
Collapse
Affiliation(s)
- Chun Wu
- Section of Immunobiology and the Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
39
|
Kong X, San Juan H, Kumar M, Behera AK, Mohapatra A, Hellermann GR, Mane S, Lockey RF, Mohapatra SS. Respiratory syncytial virus infection activates STAT signaling in human epithelial cells. Biochem Biophys Res Commun 2003; 306:616-22. [PMID: 12804610 DOI: 10.1016/s0006-291x(03)01008-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Acute respiratory syncytial virus (RSV) infection causes airway inflammation and exacerbates asthma, but the mechanism of inflammation is poorly understood. The role of the STAT-signaling pathway in RSV infection in epithelial cells was examined in this study. DNA microarray analyses of RSV-infected human alveolar type II (A549) epithelial cells identified several genes whose expression was altered from -5.5 to +56.4-fold. Four of the highly expressed genes contained STAT-binding elements. In A549 and normal human bronchial epithelial cells (NHBE), RSV induced phosphorylation and nuclear translocation of STAT-1alpha that was abrogated when RSV attachment was blocked. Treatment with a JAK-2 inhibitor or transfection with dominant-negative STAT-1alpha blocked STAT-1alpha activation and RSV infection. RSV also activated STAT-3 and IL-6 specific antibodies blocked this activation. Thus, activation of the STAT-1alpha and STAT-3 pathways play a role in RSV infection.
Collapse
Affiliation(s)
- Xiaoyuan Kong
- Division of Allergy and Immunology, The Joy McCann Culverhouse Airway Disease Center, Department of Internal Medicine, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Chen Y, Wu J, Ghosh G. KappaB-Ras binds to the unique insert within the ankyrin repeat domain of IkappaBbeta and regulates cytoplasmic retention of IkappaBbeta x NF-kappaB complexes. J Biol Chem 2003; 278:23101-6. [PMID: 12672800 DOI: 10.1074/jbc.m301021200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The IkappaBalpha and IkappaBbeta proteins inhibit the transcriptional potential of active NF-kappaB dimers through stable complex formation. It has been shown that inactive IkappaBalpha x NF-kappaB complexes shuttle in and out of the nucleus, whereas IkappaBbeta x NF-kappaB complexes are retained exclusively in the cytoplasm of resting cells. The biochemical mechanism underlying this functional difference and its consequences are unknown. Although the two IkappaB proteins are significantly homologous, IkappaBbeta contains a unique 47-amino acid insertion of unknown function within its ankyrin repeat domain. In this study, we assess the role of the IkappaBbeta insert in regulating cytoplasmic retention of IkappaBbeta.NF-kappaB complexes. Deletion of the IkappaBbeta insert renders IkappaBbeta x NF-kappaB complexes capable of shuttling between the nucleus and cytoplasm, similar to IkappaBalpha x NF-kappaB complexes. A small Ras-like G-protein, kappaB-Ras, participates with the IkappaBbeta insert to effectively mask the NF-kappaB nuclear localization potential. Similarly, a complex between NF-kappaB and a mutant IkappaBbeta protein containing four serine to alanine mutations within its C-terminal proline, glutamic acid, serine, and threonine-rich sequence exhibits nucleocytoplasmic shuttling. This suggests a phosphorylation state-dependent role for the C-terminal proline, glutamic acid, serine, and threonine-rich sequence of IkappaBbeta in proper localization of IkappaBbeta x NF-kappaB complexes. These results are consistent with structural studies, which predicted that binary IkappaBbeta x NF-kappaB complexes should be capable of nuclear translocation, and with previous observations that hypophosphorylated IkappaBbeta.NF-kappaB complexes can reside in the nucleus.
Collapse
Affiliation(s)
- Yi Chen
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0359, USA
| | | | | |
Collapse
|
41
|
Bitko V, Oldenburg A, Garmon NE, Barik S. Profilin is required for viral morphogenesis, syncytium formation, and cell-specific stress fiber induction by respiratory syncytial virus. BMC Microbiol 2003; 3:9. [PMID: 12740026 PMCID: PMC156654 DOI: 10.1186/1471-2180-3-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2003] [Accepted: 05/09/2003] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Actin is required for the gene expression and morphogenesis of respiratory syncytial virus (RSV), a clinically important Pneumovirus of the Paramyxoviridae family. In HEp-2 cells, RSV infection also induces actin stress fibers, which may be important in the immunopathology of the RSV disease. Profilin, a major regulator of actin polymerization, stimulates viral transcription in vitro. Thus, we tested the role of profilin in RSV growth and RSV-actin interactions in cultured cells (ex vivo). RESULTS We tested three cell lines: HEp-2 (human), A549 (human), and L2 (rat). In all three, RSV grew well and produced fused cells (syncytium), and two RSV proteins, namely, the phosphoprotein P and the nucleocapsid protein N, associated with profilin. In contrast, induction of actin stress fibers by RSV occurred in HEp-2 and L2 cells, but not in A549. Knockdown of profilin by RNA interference had a small effect on viral macromolecule synthesis but strongly inhibited maturation of progeny virions, cell fusion, and induction of stress fibers. CONCLUSIONS Profilin plays a cardinal role in RSV-mediated cell fusion and viral maturation. In contrast, interaction of profilin with the viral transcriptional proteins P and N may only nominally activate viral RNA-dependent RNA polymerase. Stress fiber formation is a cell-specific response to infection, requiring profilin and perhaps other signaling molecules that are absent in certain cell lines. Stress fibers per se play no role in RSV replication in cell culture. Clearly, the cellular architecture controls multiple steps of host-RSV interaction, some of which are regulated by profilin.
Collapse
Affiliation(s)
- Vira Bitko
- Department of Biochemistry and Molecular Biology, University of South Alabama, College of Medicine, 307 University Blvd., Mobile, Alabama, USA 36688-0002
| | - Anja Oldenburg
- Department of Biochemistry and Molecular Biology, University of South Alabama, College of Medicine, 307 University Blvd., Mobile, Alabama, USA 36688-0002
| | - Nicolle E Garmon
- Department of Biochemistry and Molecular Biology, University of South Alabama, College of Medicine, 307 University Blvd., Mobile, Alabama, USA 36688-0002
| | - Sailen Barik
- Department of Biochemistry and Molecular Biology, University of South Alabama, College of Medicine, 307 University Blvd., Mobile, Alabama, USA 36688-0002
| |
Collapse
|
42
|
Fujii J, Matsui T, Heatherly DP, Schlegel KH, Lobo PI, Yutsudo T, Ciraolo GM, Morris RE, Obrig T. Rapid apoptosis induced by Shiga toxin in HeLa cells. Infect Immun 2003; 71:2724-35. [PMID: 12704147 PMCID: PMC153243 DOI: 10.1128/iai.71.5.2724-2735.2003] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Apoptosis was induced rapidly in HeLa cells after exposure to bacterial Shiga toxin (Stx1 and Stx2; 10 ng/ml). Approximately 60% of HeLa cells became apoptotic within 4 h as detected by DNA fragmentation, terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) assay, and electron microscopy. Stx1-induced apoptosis required enzymatic activity of the Stx1A subunit, and apoptosis was not induced by the Stx2B subunit alone or by the anti-globotriaosylceramide antibody. This activity was also inhibited by brefeldin A, indicating the need for toxin processing through the Golgi apparatus. The intracellular pathway leading to apoptosis was further defined. Exposure of HeLa cells to Stx1 activated caspases 3, 6, 8, and 9, as measured both by an enzymatic assay with synthetic substrates and by detection of proteolytically activated forms of these caspases by Western immunoblotting. Preincubation of HeLa cells with substrate inhibitors of caspases 3, 6, and 8 protected the cells against Stx1-dependent apoptosis. These results led to a more detailed examination of the mitochondrial pathway of apoptosis. Apoptosis induced by Stx1 was accompanied by damage to mitochondrial membranes, measured as a reduced mitochondrial membrane potential, and increased release of cytochrome c from mitochondria at 3 to 4 h. Bid, an endogenous protein known to permeabilize mitochondrial membranes, was activated in a Stx1-dependent manner. Caspase-8 is known to activate Bid, and a specific inhibitor of caspase-8 prevented the mitochondrial damage. Although these data suggested that caspase-8-mediated cleavage of Bid with release of cytochrome c from mitochondria and activation of caspase-9 were responsible for the apoptosis, preincubation of HeLa cells with a specific inhibitor of caspase-9 did not protect against apoptosis. These results were explained by the discovery of a simultaneous Stx1-dependent increase in endogenous XIAP, a direct inhibitor of caspase-9. We conclude that the primary pathway of Stx1-induced apoptosis and DNA fragmentation in HeLa cells is unique and includes caspases 8, 6, and 3 but is independent of events in the mitochondrial pathway.
Collapse
Affiliation(s)
- Jun Fujii
- Department of Internal Medicine/Nephrology, University of Virginia, Charlottesville, Virginia 22908, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Budde LM, Wu C, Tilman C, Douglas I, Ghosh S. Regulation of IkappaBbeta expression in testis. Mol Biol Cell 2002; 13:4179-94. [PMID: 12475944 PMCID: PMC138625 DOI: 10.1091/mbc.01-07-0373] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
IkappaBalpha and IkappaBbeta are regulators of the nuclear factor-kappaB (NF-kappaB) transcription factor family. Both IkappaBs bind to the same NF-kappaB dimers and are widely expressed in different cells and tissues. To better understand how these two IkappaB isoforms differ biologically, we have characterized the expression of IkappaBbeta in testis, a tissue in which IkappaBalpha is only minimally expressed. We have found that IkappaBbeta expression is localized within the haploid spermatid stages of spermatogenesis and follows the expression of nuclear NF-kappaB. IkappaBbeta expression in haploid spermatids is likely regulated by Sox family proteins, members of which are also expressed within spermatids. We have shown that both SRY and Sox-5 can bind to multiple Sox binding sites found within the IkappaBbeta promoter and can enhance transcription of a reporter gene in transient transfection assays. We also demonstrate that IkappaBbeta mRNA is strongly expressed in developing male gonads. These results therefore suggest that IkappaBbeta may be a novel target for transcription factors of the HMG-box SRY/Sox family and imply a potential role for NF-kappaB/IkappaBbeta in spermatogenesis.
Collapse
Affiliation(s)
- Lucy M Budde
- Section of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | |
Collapse
|
44
|
Carpenter LR, Moy JN, Roebuck KA. Respiratory syncytial virus and TNF alpha induction of chemokine gene expression involves differential activation of Rel A and NF-kappa B1. BMC Infect Dis 2002; 2:5. [PMID: 11922866 PMCID: PMC102322 DOI: 10.1186/1471-2334-2-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2001] [Accepted: 03/28/2002] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Respiratory syncytial virus (RSV) infection of airway epithelial cells stimulates the expression and secretion of a variety of cytokines including the chemotactic cytokines interleukin-8 (IL-8), monocyte chemoattractant protein-1 (MCP-1), and RANTES (regulated upon activation, normal T cell expressed and secreted). Chemokines are important chemoattractants for the recruitment of distinct sets of leukocytes to airway sites of inflammation. RESULTS We have shown previously that chemokine expression is regulated in airway epithelial cells (A549) in a stimulus-specific manner in part through the redox-responsive transcription factors AP-1 and NF-kappaB. In this study, we examined the NF-kappaB-mediated effects of RSV and the proinflammatory cytokine TNFalpha on the induction of IL-8, MCP-1 and RANTES chemokine gene expression in A549 epithelial cells. The results demonstrate that RSV induces chemokine expression with distinct kinetics that is associated with a specific pattern of NF-kappaB binding activity. This distinction was further demonstrated by the differential effects of the NF-kappaB inhibitors dexamethasone (DEX) and N-acetyl-L-cysteine (NAC). NAC preferentially inhibited RSV induced chemokine expression, whereas DEX preferentially inhibited TNFalpha induced chemokine expression. DNA binding studies using NF-kappaB subunit specific binding ELISA demonstrated that RSV and TNFalpha induced different NF-kappaB binding complexes containing Rel A (p65) and NF-kappaB1 (p50). Both TNFalpha and RSV strongly induced Rel A the activation subunit of NF-kappaB, whereas only TNFalpha was able to substantially induce the p50 subunit. Consistent with the expression studies, RSV but not TNFalpha induction of Rel A and p50 were markedly inhibited by NAC, providing a mechanism by which TNFalpha and RSV can differentially activate chemokine gene expression via NF-kappaB. CONCLUSIONS These data suggest that RSV induction of chemokine gene expression, in contrast to TNFalpha, involves redox-sensitive NF-kappaB complexes containing predominantly Rel A.
Collapse
Affiliation(s)
- Laura R Carpenter
- Department of Immunology/Microbiology, Rush-Presbyterian-St. Luke's Medical Center Chicago, IL 60612
| | - James N Moy
- Department of Immunology/Microbiology, Rush-Presbyterian-St. Luke's Medical Center Chicago, IL 60612
| | - Kenneth A Roebuck
- Department of Immunology/Microbiology, Rush-Presbyterian-St. Luke's Medical Center Chicago, IL 60612
| |
Collapse
|
45
|
Thomas KW, Monick MM, Staber JM, Yarovinsky T, Carter AB, Hunninghake GW. Respiratory syncytial virus inhibits apoptosis and induces NF-kappa B activity through a phosphatidylinositol 3-kinase-dependent pathway. J Biol Chem 2002; 277:492-501. [PMID: 11687577 DOI: 10.1074/jbc.m108107200] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Respiratory syncytial virus (RSV) infects airway epithelial cells, resulting in cell death and severe inflammation through the induction of NF-kappaB activity and inflammatory cytokine synthesis. Both NF-kappaB activity and apoptosis regulation have been linked to phosphatidylinositol 3-kinase (PI 3-K) and its downstream effector enzymes, AKT and GSK-3. This study evaluates the role of PI 3-K and its downstream mediators in apoptosis and inflammatory gene induction during RSV infection of airway epithelial cells. Whereas RSV infection alone did not produce significant cytotoxicity until 24-48 h following infection, simultaneous RSV infection and exposure to LY294002, a blocker of PI 3-K activity, resulted in cytotoxicity within 12 h. Furthermore, we found that RSV infection during PI 3-K blockade resulted in apoptosis by examining DNA fragmentation, DNA labeling by terminal dUTP nick-end labeling assay, and poly(ADP-ribose) polymerase cleavage by Western blotting. RSV infection produced an increase in the phosphorylation state of AKT, GSK-3, and the p85 regulatory subunit of PI 3-K. The activation of PI 3-K by RSV and its inhibition by LY294002 was confirmed in direct PI 3-K activity assays. Further evidence for the central role of a pathway involving PI 3-K and AKT in preserving cell viability during RSV infection was established by the observation that constitutively active AKT transfected into A549 cells prevented the cytotoxicity and apoptosis of combined RSV and LY294002 treatment. Finally, both PI 3-K inhibition by LY294002 and AKT inhibition by transfection of a dominant negative enzyme blocked RSV-induced NF-kappaB transcriptional activity. These data demonstrate that anti-apoptotic signaling and NF-kappaB activation by RSV are mediated through activation of PI 3-K-dependent pathways. Blockade of PI 3-K activation resulted in rapid, premature apoptosis and inhibition of RSV-stimulated NF-kappaB-dependent gene transcription.
Collapse
Affiliation(s)
- Karl W Thomas
- Department of Internal Medicine, University of Iowa College of Medicine and Veterans Administration Medical Center, Iowa City, Iowa 52242, USA.
| | | | | | | | | | | |
Collapse
|
46
|
|
47
|
Bitko V, Barik S. An endoplasmic reticulum-specific stress-activated caspase (caspase-12) is implicated in the apoptosis of A549 epithelial cells by respiratory syncytial virus. J Cell Biochem 2001; 80:441-54. [PMID: 11135374 DOI: 10.1002/1097-4644(20010301)80:3<441::aid-jcb170>3.0.co;2-c] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Respiratory syncytial virus (RSV) infection induced programmed cell death or apoptosis in the cultured lung epithelial cell line, A549. The apoptotic cells underwent multiple changes, including fragmentation and degradation of genomic DNA, consistent with the activation of the DNA fragmentation factor or caspase-activated DNase (DFF or CAD). The infection led to activation of FasL; however, a transdominant mutant of FAS-downstream death domain protein, FADD, did not inhibit apoptosis. Similarly, modest activation of cytoplasmic apoptotic caspases, caspase-3 and -8, were observed; however, only a specific inhibitor of caspases-3 inhibited apoptosis, while an inhibitor of caspase-8 had little effect. No activation of caspase-9 and -10, indicators of the mitochondrial apoptotic pathway, was observed. In contrast, RSV infection strongly activated caspase-12, an endoplasmic reticulum (ER) stress response caspase. Activation of the ER stress response was further evidenced by upregulation of ER chaperones BiP and calnexin. Antisense-mediated inhibition of caspase-12 inhibited apoptosis. Inhibitors of NF-kappa B had no effect on apoptosis. Thus, RSV-induced apoptosis appears to occur through an ER stress response that activates caspase-12, and is uncoupled from NF-kappa B activation.
Collapse
Affiliation(s)
- V Bitko
- Department of Biochemistry and Molecular Biology, MSB 2370, University of South Alabama, College of Medicine, Mobile, AL 36688-0002, USA
| | | |
Collapse
|
48
|
Monick M, Staber J, Thomas K, Hunninghake G. Respiratory syncytial virus infection results in activation of multiple protein kinase C isoforms leading to activation of mitogen-activated protein kinase. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:2681-7. [PMID: 11160332 DOI: 10.4049/jimmunol.166.4.2681] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Respiratory syncytial virus (RSV) is an important respiratory pathogen that preferentially infects epithelial cells in the airway and causes a local inflammatory response. Very little is known about the second messenger pathways involved in this response. To characterize some of the acute response pathways involved in RSV infection, we used cultured human epithelial cells (A549) and optimal tissue culture-infective doses (TCID(50)) of RSV. We have previously shown that RSV-induced IL-8 release is linked to activation of the extracellular signal-related kinase (ERK) mitogen-activated protein kinase pathway. In this study, we evaluated the upstream events involved in ERK activation by RSV. RSV activated ERK at two time points, an early time point consistent with viral binding and a later sustained activation consistent with viral replication. We next evaluated the role of protein kinase C (PKC) isoforms in RSV-induced ERK kinase activity. We found that A549 cells contain the Ca(2+)-dependent isoforms alpha and beta1, and the Ca(2+)-independent isoforms delta, epsilon, eta, mu, theta, and zeta. Western analysis showed that RSV caused no change in the amounts of these isoforms. However, kinase activity assays demonstrated activation of isoform zeta within 10 min of infection, followed by a sustained activation of isoforms beta1, delta, epsilon, and mu 24-48 h postinfection. A cell-permeable peptide inhibitor specific for the zeta isoform decreased early ERK kinase activation by RSV. Down-regulation of the other PKC isoforms with PMA blocked the late sustained activation of ERK by RSV. These studies suggest that RSV activates multiple PKC isoforms with subsequent downstream activation of ERK kinase.
Collapse
Affiliation(s)
- M Monick
- Department of Medicine, University of Iowa College of Medicine and Veterans Administration Medical Center, Iowa City, IA 52242, USA.
| | | | | | | |
Collapse
|
49
|
Mann KK, Doerre S, Schlezinger JJ, Sherr DH, Quadri S. The role of NF-kappaB as a survival factor in environmental chemical-induced pre-B cell apoptosis. Mol Pharmacol 2001; 59:302-9. [PMID: 11160867 DOI: 10.1124/mol.59.2.302] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAH) are ubiquitous environmental chemicals that suppress the immune system at multiple levels, including at the level of B cell development in the bone marrow microenvironment. Specifically, PAH induce preB cell apoptosis in primary bone marrow cultures and in cocultures of an early preB cell line (BU-11) and a bone marrow stromal cell line (BMS2). Previous studies focused on the molecular mechanisms through which PAH induce stromal cells to deliver an apoptosis signal to adjacent preB cells. Apoptosis signaling within the preB cell itself was not investigated. Here, the role of NF-kappaB, a lymphocyte survival factor, in PAH-induced preB cell apoptosis was assessed. Analysis of DNA-binding proteins extracted from the nuclei of untreated BU-11 cells indicated DNA-binding complexes comprising NF-kappaB subunits p50, c-Rel, and/or Rel A. NF-kappaB down-regulation with previously described inhibitors induced BU-11 cell apoptosis, demonstrating that the default apoptosis pathway blocked by NF-kappaB is functional at this early stage in B cell development. Similarly, exposure of BU-11/BMS2 cocultures to 7,12-dimethylbenz[a]anthracene (DMBA), a prototypic PAH, down-regulated nuclear Rel A and c-Rel before overt apoptosis. Finally, ectopic expression of Rel A or c-Rel rescued BU-11 cells from DMBA-induced apoptosis. These results extend previous observations by demonstrating that 1) NF-kappaB is a survival factor at an earlier stage of B cell development than previously appreciated and 2) NF-kappaB down-regulation is likely to be part of the molecular mechanism resulting in PAH-induced preB cell apoptosis. These results suggest nonclonally restricted, PAH-mediated suppression of B lymphopoiesis.
Collapse
Affiliation(s)
- K K Mann
- Boston University Schools of Public Health and Medicine, Department of Environmental Health, Boston, Massachusetts 02118, USA
| | | | | | | | | |
Collapse
|
50
|
Venkatakrishnan A, Stecenko AA, King G, Blackwell TR, Brigham KL, Christman JW, Blackwell TS. Exaggerated activation of nuclear factor-kappaB and altered IkappaB-beta processing in cystic fibrosis bronchial epithelial cells. Am J Respir Cell Mol Biol 2000; 23:396-403. [PMID: 10970832 DOI: 10.1165/ajrcmb.23.3.3949] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In cystic fibrosis (CF), inflammatory mediator production by airway epithelial cells is a critical determinant of chronic airway inflammation. To determine whether altered signal transduction through the nuclear factor (NF)-kappaB pathway occurs in CF epithelial cells and results in excessive generation of inflammatory cytokines, we evaluated tumor necrosis factor (TNF)-alpha-induced production of the NF-kappaB-dependent cytokine interleukin (IL)-8 and activation of NF-kappaB in three different human bronchial epithelial cell lines: (1) BEAS cells that express wild-type CF transmembrane conductance regulator (CFTR), (2) IB3 cells with mutant CFTR, and (3) C38 cells, which are "corrected" IB3 cells complemented with wild-type CFTR. Treatment of cells with TNF-alpha (30 ng/ml) resulted in markedly elevated NF-kappaB activation and production of IL-8 by IB3 cells compared with BEAS and C38 cells. Despite the differences in NF- kappaB activation, no differences in basal levels of IkappaB-alpha or TNF-alpha- induced IkappaB-alpha processing and degradation were detected among the cell lines. In contrast, the basal level of IkappaB-beta was increased in the IB3 cells. Treatment with TNF-alpha resulted in increased formation of hypophosphorylated IkappaB-beta and increased nuclear localization of IkappaB-beta in IB3 cells compared with the other cell types. These findings provide additional evidence of a dysregulated inflammatory response in CF.
Collapse
Affiliation(s)
- A Venkatakrishnan
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, and Department of Veterans Affairs Medical Center, Nashville, Tennessee, USA
| | | | | | | | | | | | | |
Collapse
|