1
|
Brunet J, Choucha Z, Gransagne M, Tabbal H, Ku MW, Buchrieser J, Fernandes P, Batalie D, Lopez J, Ma L, Dufour E, Simon E, Hardy D, Petres S, Guinet F, Strick-Marchand H, Monot M, Charneau P, Majlessi L, Duprex WP, Gerke C, Martin A, Escriou N. A measles-vectored vaccine candidate expressing prefusion-stabilized SARS-CoV-2 spike protein brought to phase I/II clinical trials: candidate selection in a preclinical murine model. J Virol 2024; 98:e0169323. [PMID: 38563763 PMCID: PMC11210269 DOI: 10.1128/jvi.01693-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/10/2024] [Indexed: 04/04/2024] Open
Abstract
In the early COVID-19 pandemic with urgent need for countermeasures, we aimed at developing a replicating viral vaccine using the highly efficacious measles vaccine as vector, a promising technology with prior clinical proof of concept. Building on our successful pre-clinical development of a measles virus (MV)-based vaccine candidate against the related SARS-CoV, we evaluated several recombinant MV expressing codon-optimized SARS-CoV-2 spike glycoprotein. Candidate V591 expressing a prefusion-stabilized spike through introduction of two proline residues in HR1 hinge loop, together with deleted S1/S2 furin cleavage site and additional inactivation of the endoplasmic reticulum retrieval signal, was the most potent in eliciting neutralizing antibodies in mice. After single immunization, V591 induced similar neutralization titers as observed in sera of convalescent patients. The cellular immune response was confirmed to be Th1 skewed. V591 conferred long-lasting protection against SARS-CoV-2 challenge in a murine model with marked decrease in viral RNA load, absence of detectable infectious virus loads, and reduced lesions in the lungs. V591 was furthermore efficacious in an established non-human primate model of disease (see companion article [S. Nambulli, N. Escriou, L. J. Rennick, M. J. Demers, N. L. Tilston-Lunel et al., J Virol 98:e01762-23, 2024, https://doi.org/10.1128/jvi.01762-23]). Thus, V591 was taken forward into phase I/II clinical trials in August 2020. Unexpected low immunogenicity in humans (O. Launay, C. Artaud, M. Lachâtre, M. Ait-Ahmed, J. Klein et al., eBioMedicine 75:103810, 2022, https://doi.org/10.1016/j.ebiom.2021.103810) revealed that the underlying mechanisms for resistance or sensitivity to pre-existing anti-measles immunity are not yet understood. Different hypotheses are discussed here, which will be important to investigate for further development of the measles-vectored vaccine platform.IMPORTANCESARS-CoV-2 emerged at the end of 2019 and rapidly spread worldwide causing the COVID-19 pandemic that urgently called for vaccines. We developed a vaccine candidate using the highly efficacious measles vaccine as vector, a technology which has proved highly promising in clinical trials for other pathogens. We report here and in the companion article by Nambulli et al. (J Virol 98:e01762-23, 2024, https://doi.org/10.1128/jvi.01762-23) the design, selection, and preclinical efficacy of the V591 vaccine candidate that was moved into clinical development in August 2020, 7 months after the identification of SARS-CoV-2 in Wuhan. These unique in-human trials of a measles vector-based COVID-19 vaccine revealed insufficient immunogenicity, which may be the consequence of previous exposure to the pediatric measles vaccine. The three studies together in mice, primates, and humans provide a unique insight into the measles-vectored vaccine platform, raising potential limitations of surrogate preclinical models and calling for further refinement of the platform.
Collapse
Affiliation(s)
- Jérémy Brunet
- Institut Pasteur, Université Paris Cité, Département de Santé Globale, Paris, France
| | - Zaineb Choucha
- Institut Pasteur, Université Paris Cité, Département de Santé Globale, Paris, France
| | - Marion Gransagne
- Institut Pasteur, Université Paris Cité, Département de Santé Globale, Paris, France
| | - Houda Tabbal
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Génétique Moléculaire des Virus à ARN, Paris, France
| | - Min-Wen Ku
- Institut Pasteur, Université Paris Cité, Pasteur-TheraVectys Joint Lab, Paris, France
| | - Julian Buchrieser
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Virus and Immunity Unit, Paris, France
| | - Priyanka Fernandes
- Institut Pasteur, Université Paris Cité, INSERM U1223, Innate Immunity Unit, Paris, France
| | - Damien Batalie
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Génétique Moléculaire des Virus à ARN, Paris, France
| | - Jodie Lopez
- Institut Pasteur, Université Paris Cité, Pasteur-TheraVectys Joint Lab, Paris, France
| | - Laurence Ma
- Institut Pasteur, Université Paris Cité, Biomics, C2RT, Paris, France
| | - Evelyne Dufour
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Production and Purification of Recombinant Proteins Technological Platform, Paris, France
| | - Emeline Simon
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Génétique Moléculaire des Virus à ARN, Paris, France
| | - David Hardy
- Institut Pasteur, Université Paris Cité, Histopathology Platform, Paris, France
| | - Stéphane Petres
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Production and Purification of Recombinant Proteins Technological Platform, Paris, France
| | - Françoise Guinet
- Institut Pasteur, Université Paris Cité, INSERM U1223, Lymphocytes and Immunity Unit, Paris, France
| | - Helene Strick-Marchand
- Institut Pasteur, Université Paris Cité, INSERM U1223, Innate Immunity Unit, Paris, France
| | - Marc Monot
- Institut Pasteur, Université Paris Cité, Biomics, C2RT, Paris, France
| | - Pierre Charneau
- Institut Pasteur, Université Paris Cité, Pasteur-TheraVectys Joint Lab, Paris, France
| | - Laleh Majlessi
- Institut Pasteur, Université Paris Cité, Pasteur-TheraVectys Joint Lab, Paris, France
| | - W. Paul Duprex
- Center for Vaccine Research, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Christiane Gerke
- Institut Pasteur, Université Paris Cité, Innovation Office, Vaccine Programs, Paris, France
| | - Annette Martin
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Génétique Moléculaire des Virus à ARN, Paris, France
| | - Nicolas Escriou
- Institut Pasteur, Université Paris Cité, Département de Santé Globale, Paris, France
| |
Collapse
|
2
|
Muñoz-Alía MÁ, Nace RA, Balakrishnan B, Zhang L, Packiriswamy N, Singh G, Warang P, Mena I, Narjari R, Vandergaast R, Peng KW, García-Sastre A, Schotsaert M, Russell SJ. Surface-modified measles vaccines encoding oligomeric, prefusion-stabilized SARS-CoV-2 spike glycoproteins boost neutralizing antibody responses to Omicron and historical variants, independent of measles seropositivity. mBio 2024; 15:e0292823. [PMID: 38193729 PMCID: PMC10865805 DOI: 10.1128/mbio.02928-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024] Open
Abstract
Serum titers of SARS-CoV-2-neutralizing antibodies (nAbs) correlate well with protection from symptomatic COVID-19 but decay rapidly in the months following vaccination or infection. In contrast, measles-protective nAb titers are lifelong after measles vaccination, possibly due to persistence of the live-attenuated virus in lymphoid tissues. We, therefore, sought to generate a live recombinant measles vaccine capable of driving high SARS-CoV-2 nAb responses. Since previous clinical testing of a live measles vaccine encoding a SARS-CoV-2 spike glycoprotein resulted in suboptimal anti-spike antibody titers, our new vectors were designed to encode prefusion-stabilized SARS-CoV-2 spike glycoproteins, trimerized via an inserted peptide domain, and displayed on a dodecahedral miniferritin scaffold. Additionally, to circumvent the blunting of vaccine efficacy by preformed anti-measles antibodies, we extensively modified the measles surface glycoproteins. Comprehensive in vivo mouse testing demonstrated the potent induction of high titer nAbs in measles-immune mice and confirmed the significant contributions to overall potency afforded by prefusion stabilization, trimerization, and miniferritin display of the SARS-CoV-2 spike glycoprotein. In animals primed and boosted with a measles virus (MeV) vaccine encoding the ancestral SARS-CoV-2 spike, high-titer nAb responses against ancestral virus strains were only weakly cross-reactive with the Omicron variant. However, in primed animals that were boosted with a MeV vaccine encoding the Omicron BA.1 spike, antibody titers to both ancestral and Omicron strains were robustly elevated, and the passive transfer of serum from these animals protected K18-ACE2 mice from infection and morbidity after exposure to BA.1 and WA1/2020 strains. Our results demonstrate that by engineering the antigen, we can develop potent measles-based vaccine candidates against SARS-CoV-2.IMPORTANCEAlthough the live-attenuated measles virus (MeV) is one of the safest and most efficacious human vaccines, a measles-vectored COVID-19 vaccine candidate expressing the SARS-CoV-2 spike failed to elicit neutralizing antibody (nAb) responses in a phase-1 clinical trial, especially in measles-immune individuals. Here, we constructed a comprehensive panel of MeV-based COVID-19 vaccine candidates using a MeV with extensive modifications on the envelope glycoproteins (MeV-MR). We show that artificial trimerization of the spike is critical for the induction of nAbs and that their magnitude can be significantly augmented when the spike protein is synchronously fused to a dodecahedral scaffold. Furthermore, preexisting measles immunity did not abolish heterologous immunity elicited by our vector. Our results highlight the importance of antigen optimization in the development of spike-based COVID-19 vaccines and therapies.
Collapse
Affiliation(s)
- Miguel Á. Muñoz-Alía
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Vyriad Inc, Rochester, Minnesota, USA
| | - Rebecca A. Nace
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Lianwen Zhang
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Prajakta Warang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ignacio Mena
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | - Kah-Whye Peng
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Vyriad Inc, Rochester, Minnesota, USA
- Imanis Life Sciences, Rochester, Minnesota, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Stephen J. Russell
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Vyriad Inc, Rochester, Minnesota, USA
- Imanis Life Sciences, Rochester, Minnesota, USA
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
3
|
Kaufman JW, Singh BK, Durnell LA, Sinn PL. Representative measles virus infection requires appropriate airway epithelia culture conditions. J Virol 2023; 97:e0105123. [PMID: 37732787 PMCID: PMC10617594 DOI: 10.1128/jvi.01051-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 07/23/2023] [Indexed: 09/22/2023] Open
Abstract
IMPORTANCE For many years, measles virus (MeV) was assumed to first enter the host via the apical surface of airway epithelial cells and subsequently spread systemically. We and others reported that MeV has an overwhelming preference for entry at the basolateral surface of airway epithelial cells, which led to a fundamental new understanding of how MeV enters a human host. This unexpected observation using well-differentiated primary cultures of airway epithelia from human donors contradicted previous studies using immortalized cultured cells. Here, we show that appropriate differentiation and cell morphology of primary human airway epithelial cells are critical to recapitulate MeV infection patterns and pathogenesis of the in vivo airways. By simply culturing primary cells in media containing serum or passaging primary cultures, erroneous results quickly emerge. These results have broad implications for data interpretation related to respiratory virus infection, spread, and release from human airway epithelial cells.
Collapse
Affiliation(s)
- Justin W. Kaufman
- Stead Family Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Brajesh K. Singh
- Stead Family Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Lorellin A. Durnell
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Patrick L. Sinn
- Stead Family Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
4
|
Wang X, Hetzel M, Zhang W, Ehrhardt A, Bayer W. Comparative analysis of the impact of 40 adenovirus types on dendritic cell activation and CD8 + T cell proliferation capacity for the identification of favorable immunization vector candidates. Front Immunol 2023; 14:1286622. [PMID: 37915567 PMCID: PMC10616870 DOI: 10.3389/fimmu.2023.1286622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/04/2023] [Indexed: 11/03/2023] Open
Abstract
For the development of new adenovirus (AdV)-based vectors, it is important to understand differences in immunogenicity. In a side-by-side in vitro analysis, we evaluated the effect of 40 AdV types covering human AdV (HAdV) species A through G on the expression of 11 activation markers and the secretion of 12 cytokines by AdV-transduced dendritic cells, and the effect on CD8+ T cell proliferation capacity. We found that the expression of activation markers and cytokines differed widely between the different HAdV types, and many types were able to significantly impair the proliferation capacity of CD8+ T cells. Univariate and multivariate regression analyses suggested an important role of type I interferons in mediating this suppression of CD8+ T cells, which we confirmed experimentally in a proliferation assay using a type I interferon receptor blocking antibody. Using Bayesian statistics, we calculated a prediction model that suggests HAdV types HAdV-C1, -D8, -B7, -F41, -D33, -C2, -A31, -B3 and -D65 as the most favorable candidates for vaccine vector development.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Mario Hetzel
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Wenli Zhang
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Anja Ehrhardt
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Wibke Bayer
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
5
|
Hörner C, Fiedler AH, Bodmer BS, Walz L, Scheuplein VA, Hutzler S, Matrosovich MN, von Messling V, Mühlebach MD. A protective measles virus-derived vaccine inducing long-lasting immune responses against influenza A virus H7N9. NPJ Vaccines 2023; 8:46. [PMID: 36964176 PMCID: PMC10037405 DOI: 10.1038/s41541-023-00643-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/09/2023] [Indexed: 03/26/2023] Open
Abstract
A novel Influenza A virus (subtype H7N9) emerged in spring 2013 and caused considerable mortality in zoonotically infected patients. To be prepared for potential pandemics, broadly effective and safe vaccines are crucial. Recombinant measles virus (MeV) encoding antigens of foreign pathogens constitutes a promising vector platform to generate novel vaccines. To characterize the efficacy of H7N9 antigens in a prototypic vaccine platform technology, we generated MeVs encoding either neuraminidase (N9) or hemagglutinin (H7). Moraten vaccine strain-derived vaccine candidates were rescued; they replicated with efficiency comparable to that of the measles vaccine, robustly expressed H7 and N9, and were genetically stable over 10 passages. Immunization of MeV-susceptible mice triggered the production of antibodies against H7 and N9, including hemagglutination-inhibiting and neutralizing antibodies induced by MVvac2-H7(P) and neuraminidase-inhibiting antibodies by MVvac2-N9(P). Vaccinated mice also developed long-lasting H7- and N9-specific T cells. Both MVvac2-H7(P) and MVvac2-N9(P)-vaccinated mice were protected from lethal H7N9 challenge.
Collapse
Affiliation(s)
- Cindy Hörner
- Section 4/3: Product Testing of IVMPs, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany
- German Center for Infection Research, Gießen-Marburg-Langen, Germany
| | - Anna H Fiedler
- Section 4/3: Product Testing of IVMPs, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany
- German Center for Infection Research, Gießen-Marburg-Langen, Germany
| | - Bianca S Bodmer
- Section 4/3: Product Testing of IVMPs, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493, Greifswald-Insel Riems, Germany
| | - Lisa Walz
- Section 4/0: Research in Veterinary Medicine, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany
| | - Vivian A Scheuplein
- Section 4/3: Product Testing of IVMPs, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany
| | - Stefan Hutzler
- Section 4/3: Product Testing of IVMPs, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany
| | - Mikhail N Matrosovich
- German Center for Infection Research, Gießen-Marburg-Langen, Germany
- Institute of Virology, Philipps University, Marburg, Germany
| | - Veronika von Messling
- German Center for Infection Research, Gießen-Marburg-Langen, Germany
- Section 4/0: Research in Veterinary Medicine, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany
| | - Michael D Mühlebach
- Section 4/3: Product Testing of IVMPs, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany.
- German Center for Infection Research, Gießen-Marburg-Langen, Germany.
| |
Collapse
|
6
|
Muñoz-Alía MÁ, Nace RA, Balakrishnan B, Zhang L, Packiriswamy N, Singh G, Warang P, Mena I, Narjari R, Vandergaast R, García-Sastre A, Schotsaert M, Russell SJ. Surface-modified measles vaccines encoding oligomeric, fusion-stabilized SARS-CoV-2 spike glycoproteins bypass measles seropositivity, boosting neutralizing antibody responses to omicron and historical variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.12.16.520799. [PMID: 36561187 PMCID: PMC9774211 DOI: 10.1101/2022.12.16.520799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Serum titers of SARS-CoV-2 neutralizing antibodies (nAb) correlate well with protection from symptomatic COVID-19, but decay rapidly in the months following vaccination or infection. In contrast, measles-protective nAb titers are life-long after measles vaccination, possibly due to persistence of the live-attenuated virus in lymphoid tissues. We therefore sought to generate a live recombinant measles vaccine capable of driving high SARS-CoV-2 nAb responses. Since previous clinical testing of a live measles vaccine encoding a SARS-CoV-2 spike glycoprotein resulted in suboptimal anti-spike antibody titers, our new vectors were designed to encode prefusion-stabilized SARS-CoV-2 spike glycoproteins, trimerized via an inserted peptide domain and displayed on a dodecahedral miniferritin scaffold. Additionally, to circumvent the blunting of vaccine efficacy by preformed anti-measles antibodies, we extensively modified the measles surface glycoproteins. Comprehensive in vivo mouse testing demonstrated potent induction of high titer nAb in measles-immune mice and confirmed the significant incremental contributions to overall potency afforded by prefusion stabilization, trimerization, and miniferritin-display of the SARS-CoV-2 spike glycoprotein, and vaccine resurfacing. In animals primed and boosted with a MeV vaccine encoding the ancestral SARS-CoV-2 spike, high titer nAb responses against ancestral virus strains were only weakly cross-reactive with the omicron variant. However, in primed animals that were boosted with a MeV vaccine encoding the omicron BA.1 spike, antibody titers to both ancestral and omicron strains were robustly elevated and the passive transfer of serum from these animals protected K18-ACE2 mice from infection and morbidity after exposure to BA.1 and WA1/2020 strains. Our results demonstrate that antigen engineering can enable the development of potent measles-based SARS-CoV-2 vaccine candidates.
Collapse
Affiliation(s)
- Miguel Á. Muñoz-Alía
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
- Vyriad Inc, Rochester, MN, USA
| | - Rebecca A. Nace
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Lianwen Zhang
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Prajakta Warang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ignacio Mena
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stephen J. Russell
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
- Vyriad Inc, Rochester, MN, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Imanis Life Sciences, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
7
|
Engeland CE. Safety study supports clinical development of immunotherapeutic oncolytic measles vaccine. Mol Ther Methods Clin Dev 2022; 27:90-92. [PMID: 36212907 PMCID: PMC9515431 DOI: 10.1016/j.omtm.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Lang R, Li H, Luo X, Liu C, Zhang Y, Guo S, Xu J, Bao C, Dong W, Yu Y. Expression and mechanisms of interferon-stimulated genes in viral infection of the central nervous system (CNS) and neurological diseases. Front Immunol 2022; 13:1008072. [PMID: 36325336 PMCID: PMC9618809 DOI: 10.3389/fimmu.2022.1008072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/28/2022] [Indexed: 09/16/2023] Open
Abstract
Interferons (IFNs) bind to cell surface receptors and activate the expression of interferon-stimulated genes (ISGs) through intracellular signaling cascades. ISGs and their expression products have various biological functions, such as antiviral and immunomodulatory effects, and are essential effector molecules for IFN function. ISGs limit the invasion and replication of the virus in a cell-specific and region-specific manner in the central nervous system (CNS). In addition to participating in natural immunity against viral infections, studies have shown that ISGs are essential in the pathogenesis of CNS disorders such as neuroinflammation and neurodegenerative diseases. The aim of this review is to present a macroscopic overview of the characteristics of ISGs that restrict viral neural invasion and the expression of the ISGs underlying viral infection of CNS cells. Furthermore, we elucidate the characteristics of ISGs expression in neurological inflammation, neuropsychiatric disorders such as depression as well as neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Finally, we summarize several ISGs (ISG15, IFIT2, IFITM3) that have been studied more in recent years for their antiviral infection in the CNS and their research progress in neurological diseases.
Collapse
Affiliation(s)
- Rui Lang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Huiting Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Xiaoqin Luo
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Cencen Liu
- Department of Pathology, People’s Hospital of Zhongjiang County, DeYang, China
| | - Yiwen Zhang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - ShunYu Guo
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jingyi Xu
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Changshun Bao
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Neurological diseases and brain function laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wei Dong
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yang Yu
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| |
Collapse
|
9
|
Viker KB, Steele MB, Iankov ID, Concilio SC, Ammayappan A, Bolon B, Jenks NJ, Goetz MP, Panagioti E, Federspiel MJ, Liu MC, Peng KW, Galanis E. Preclinical safety assessment of MV-s-NAP, a novel oncolytic measles virus strain armed with an H . pylori immunostimulatory bacterial transgene. Mol Ther Methods Clin Dev 2022; 26:532-546. [PMID: 36092362 PMCID: PMC9437807 DOI: 10.1016/j.omtm.2022.07.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/20/2022] [Indexed: 12/24/2022]
Abstract
Despite recent therapeutic advances, metastatic breast cancer (MBC) remains incurable. Engineered measles virus (MV) constructs based on the attenuated MV Edmonston vaccine platform have demonstrated significant oncolytic activity against solid tumors. The Helicobacter pylori neutrophil-activating protein (NAP) is responsible for the robust inflammatory reaction in gastroduodenal mucosa during bacterial infection. NAP attracts and activates immune cells at the site of infection, inducing expression of pro-inflammatory mediators. We engineered an MV strain to express the secretory form of NAP (MV-s-NAP) and showed that it exhibits anti-tumor and immunostimulatory activity in human breast cancer xenograft models. In this study, we utilized a measles-infection-permissive mouse model (transgenic IFNAR KO-CD46Ge) to evaluate the biodistribution and safety of MV-s-NAP. The primary objective was to identify potential toxic side effects and confirm the safety of the proposed clinical doses of MV-s-NAP prior to a phase I clinical trial of intratumoral administration of MV-s-NAP in patients with MBC. Both subcutaneous delivery (corresponding to the clinical trial intratumoral administration route) and intravenous (worst case scenario) delivery of MV-s-NAP were well tolerated: no significant clinical, laboratory or histologic toxicity was observed. This outcome supports the safety of MV-s-NAP for oncolytic virotherapy of MBC. The first-in-human clinical trial of MV-s-NAP in patients with MBC (ClinicalTrials.gov: NCT04521764) was subsequently activated.
Collapse
Affiliation(s)
- Kimberly B. Viker
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Michael B. Steele
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Ianko D. Iankov
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Arun Ammayappan
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Nathan J. Jenks
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Eleni Panagioti
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Minetta C. Liu
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kah Whye Peng
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
10
|
Peng KW, Carey T, Lech P, Vandergaast R, Muñoz-Alía MÁ, Packiriswamy N, Gnanadurai C, Krotova K, Tesfay M, Ziegler C, Haselton M, Sevola K, Lathrum C, Reiter S, Narjari R, Balakrishnan B, Suksanpaisan L, Sakuma T, Recker J, Zhang L, Waniger S, Russell L, Petro CD, Kyratsous CA, Baum A, Janecek JL, Lee RM, Ramachandran S, Graham ML, Russell SJ. Boosting of SARS-CoV-2 immunity in nonhuman primates using an oral rhabdoviral vaccine. Vaccine 2022; 40:2342-2351. [PMID: 35282925 PMCID: PMC8743387 DOI: 10.1016/j.vaccine.2021.12.063] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 01/29/2023]
Abstract
An orally active vaccine capable of boosting SARS-CoV-2 immune responses in previously infected or vaccinated individuals would help efforts to achieve and sustain herd immunity. Unlike mRNA-loaded lipid nanoparticles and recombinant replication-defective adenoviruses, replicating vesicular stomatitis viruses with SARS-CoV-2 spike glycoproteins (VSV-SARS2) were poorly immunogenic after intramuscular administration in clinical trials. Here, by G protein trans-complementation, we generated VSV-SARS2(+G) virions with expanded target cell tropism. Compared to parental VSV-SARS2, G-supplemented viruses were orally active in virus-naive and vaccine-primed cynomolgus macaques, powerfully boosting SARS-CoV-2 neutralizing antibody titers. Clinical testing of this oral VSV-SARS2(+G) vaccine is planned.
Collapse
Affiliation(s)
- Kah-Whye Peng
- Vyriad Inc, Rochester MN 55901, USA; Imanis Life Sciences, Rochester MN 55901, USA; Department of Molecular Medicine, Mayo Clinic, MN 55905, USA
| | | | | | | | | | | | | | | | - Mulu Tesfay
- Imanis Life Sciences, Rochester MN 55901, USA
| | | | | | - Kara Sevola
- Imanis Life Sciences, Rochester MN 55901, USA
| | | | | | | | | | | | | | | | - Lianwen Zhang
- Department of Molecular Medicine, Mayo Clinic, MN 55905, USA
| | | | | | | | | | - Alina Baum
- Regeneron Pharmaceuticals Inc, Tarrytown, NY 10591, USA
| | | | | | | | | | - Stephen J Russell
- Vyriad Inc, Rochester MN 55901, USA; Imanis Life Sciences, Rochester MN 55901, USA; Department of Molecular Medicine, Mayo Clinic, MN 55905, USA.
| |
Collapse
|
11
|
Safe and efficient in vivo hematopoietic stem cell transduction in nonhuman primates using HDAd5/35++ vectors. MOLECULAR THERAPY - METHODS & CLINICAL DEVELOPMENT 2022; 24:127-141. [PMID: 35036470 PMCID: PMC8741415 DOI: 10.1016/j.omtm.2021.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/04/2021] [Indexed: 12/11/2022]
Abstract
We tested a new in vivo hematopoietic stem cell (HSC) transduction/selection approach in rhesus macaques using HSC-tropic, integrating, helper-dependent adenovirus vectors (HDAd5/35++) designed for the expression of human γ-globin in red blood cells (RBCs) to treat hemoglobinopathies. We show that HDAd5/35++ vectors preferentially transduce HSCs in vivo after intravenous injection into granulocyte colony-stimulating factor (G-CSF)/AMD3100-mobilized animals and that transduced cells return to the bone marrow and spleen. The approach was well tolerated, and the activation of proinflammatory cytokines that are usually associated with intravenous adenovirus vector injection was successfully blunted by pre-treatment with dexamethasone in combination with interleukin (IL)-1 and IL-6 receptor blockers. Using our MGMTP140K-based in vivo selection approach, γ-globin+ RBCs increased in all animals with levels up to 90%. After selection, the percentage of γ-globin+ RBCs declined, most likely due to an immune response against human transgene products. Our biodistribution data indicate that γ-globin+ RBCs in the periphery were mostly derived from mobilized HSCs that homed to the spleen. Integration site analysis revealed a polyclonal pattern and no genotoxicity related to transgene integrations. This is the first proof-of-concept study in nonhuman primates to show that in vivo HSC gene therapy could be feasible in humans without the need for high-dose chemotherapy conditioning and HSC transplantation.
Collapse
|
12
|
Ex Vivo and In Vivo CD46 Receptor Utilization by Species D Human Adenovirus Serotype 26 (HAdV26). J Virol 2022; 96:e0082621. [PMID: 34787457 PMCID: PMC8826919 DOI: 10.1128/jvi.00826-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human adenovirus serotype 26 (Ad26) is used as a gene-based vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and HIV-1. However, its primary receptor portfolio remains controversial, potentially including sialic acid, coxsackie and adenovirus receptor (CAR), integrins, and CD46. We and others have shown that Ad26 can use CD46, but these observations were questioned on the basis of the inability to cocrystallize Ad26 fiber with CD46. Recent work demonstrated that Ad26 binds CD46 with its hexon protein rather than its fiber. We examined the functional consequences of Ad26 for infection in vitro and in vivo. Ectopic expression of human CD46 on Chinese hamster ovary cells increased Ad26 infection significantly. Deletion of the complement control protein domain CCP1 or CCP2 or the serine-threonine-proline (STP) region of CD46 reduced infection. Comparing wild-type and sialic acid-deficient CHO cells, we show that the usage of CD46 is independent of its sialylation status. Ad26 transduction was increased in CD46 transgenic mice after intramuscular (i.m.) injection but not after intranasal (i.n.) administration. Ad26 transduction was 10-fold lower than Ad5 transduction after intratumoral (i.t.) injection of CD46-expressing tumors. Ad26 transduction of liver was 1,000-fold lower than that ofAd5 after intravenous (i.v.) injection. These data demonstrate the use of CD46 by Ad26 in certain situations but also show that the receptor has little consequence by other routes of administration. Finally, i.v. injection of high doses of Ad26 into CD46 mice induced release of liver enzymes into the bloodstream and reduced white blood cell counts but did not induce thrombocytopenia. This suggests that Ad26 virions do not induce direct clotting side effects seen during coronavirus disease 2019 (COVID-19) vaccination with this serotype of adenovirus. IMPORTANCE The human species D Ad26 is being investigated as a low-seroprevalence vector for oncolytic virotherapy and gene-based vaccination against HIV-1 and SARS-CoV-2. However, there is debate in the literature about its tropism and receptor utilization, which directly influence its efficiency for certain applications. This work was aimed at determining which receptor(s) this virus uses for infection and its role in virus biology, vaccine efficacy, and, importantly, vaccine safety.
Collapse
|
13
|
Wang H, Li C, Obadan A, Frizzell H, Hsiang TY, Gil S, Germond A, Fountain C, Baldessari A, Roffler S, Kiem HP, Fuller D, Lieber A. In vivo HSC gene therapy for SARS-CoV2 infection using a decoy receptor. Hum Gene Ther 2022; 33:389-403. [PMID: 35057635 PMCID: PMC9063208 DOI: 10.1089/hum.2021.295] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
While SARS-CoV2 vaccines have shown an unprecedented success, the ongoing emergence of new variants and necessity to adjust vaccines justify the development of alternative prophylaxis and therapy approaches. Hematopoietic stem cell (HSC) gene therapy using a secreted CoV2 decoy receptor protein (sACE2-Ig) would involve a one-time intervention resulting in long-term protection against airway infection, viremia, and extrapulmonary symptoms. We recently developed a technically simple and portable in vivo hematopoietic HSC transduction approach that involves HSC mobilization from the bone marrow into the peripheral blood stream and the intravenous injection of an integrating, helper-dependent adenovirus (HDAd5/35++) vector system. Considering the abundance of erythrocytes, in this study, we directed sACE2-Ig expression to erythroid cells using strong β-globin transcriptional regulatory elements. We performed in vivo HSC transduction of CD46-transgenic mice with an HDAd-sACE2-Ig vector. Serum sACE2-Ig levels reached 500–1,300 ng/mL after in vivo selection. At 22 weeks, we used genetically modified HSCs from these mice to substitute the hematopoietic system in human ACE2-transgenic mice, thus creating a model that is susceptible to SARS-CoV2 infection. Upon challenge with a lethal dose of CoV2 (WA-1), sACE2-Ig expressed from erythroid cells of test mice diminishes infection sequelae. Treated mice lost significantly less weight, had less viremia, and displayed reduced cytokine production and lung pathology. The second objective of this study was to assess the safety of in vivo HSC transduction and long-term sACE2-Ig expression in a rhesus macaque. With appropriate cytokine prophylaxis, intravenous injection of HDAd-sACE2-Ig into the mobilized animal was well tolerated. In vivo transduced HSCs preferentially localized to and survived in the spleen. sACE2-Ig expressed from erythroid cells did not affect erythropoiesis and the function of erythrocytes. While these pilot studies are promising, the antiviral efficacy of the approach has to be improved, for example, by using of decoy receptors with enhanced neutralizing capacity and/or expression of multiple antiviral effector proteins.
Collapse
Affiliation(s)
- Hongjie Wang
- University of Washington, 7284, Seattle, Washington, United States
| | - chang Li
- University of Washington, 7284, Medicine, 1959 NE Pacific Street, HSB K-263, Box357720, Seattle, Washington, United States, 98195
| | - Adebimpe Obadan
- University of Washington, 7284, Department of Microbiology, Seattle, Washington, United States
| | - Hannah Frizzell
- University of Washington, 7284, Department of Microbiology, Seattle, Washington, United States
| | - Tien-Ying Hsiang
- University of Washington, 7284, Department of Immunology, Seattle, Washington, United States
| | - Sucheol Gil
- University of Washington, 7284, Department of Medicine, Seattle, Washington, United States
| | - Audrey Germond
- University of Washington, 7284, Washington National Primate Research Center , Seattle, Washington, United States
| | - Connie Fountain
- University of Washington, 7284, WaNPRC, Seattle, Washington, United States
| | - Audrey Baldessari
- University of Washington, 7284, WaNPRC, Seattle, Washington, United States
| | - Steve Roffler
- Academia Sinica Division Of Humanities and Social Sciences, 485001, Institute of Biomedical Sciences, Taipei, Taiwan,
| | - Hans-Peter Kiem
- Fred Hutchinson Cancer Research Center, 7286, Clinical Research Division, 1100 Fairview Avenue N, D1-100, Seattle, Washington, United States, 98109-1024
- University of Washington School of Medicine, 12353, Seattle, United States, 98195-6340
| | - Deborah Fuller
- University of Washington, 7284, Department of Microbiology, Seattle, Washington, United States
| | - Andre Lieber
- University of Washington, 7284, Department of Medicine, Box 357720, Seattle, Washington, United States, 98195
- University of Washington
| |
Collapse
|
14
|
Assadi I, Guesmi A, Baaloudj O, Zeghioud H, Elfalleh W, Benhammadi N, Khezami L, Assadi AA. Review on inactivation of airborne viruses using non-thermal plasma technologies: from MS2 to coronavirus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:4880-4892. [PMID: 34796437 PMCID: PMC8601095 DOI: 10.1007/s11356-021-17486-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/08/2021] [Indexed: 04/12/2023]
Abstract
Although several non-thermal plasmas (NTPs) technologies have been widely investigated in air treatment, very few studies have focused on the inactivation mechanism of viruses by NTPs. Due to its efficiency and environmental compatibility, non-thermal plasma could be considered a promising virus-inactivation technology. Plasma is a partly or fully ionized gas including some species (i.e., electrons, free radicals, ions, and neutral molecules) to oxidize pollutants or inactivate harmful organisms. Non-thermal plasmas are made using less energy and have an active electron at a much higher temperature than bulk gas molecules. This review describes NTPs for virus inactivation in indoor air. The different application processes of plasma for microorganism inactivation at both laboratory and pilot-scale was also reviewed This paper reports on recent advances in this exciting area of viral inactivation identifying applications and mechanisms of inactivation, and summarizing the results of the latest experiments in the literature. Moreover, special attention was paid to the mechanism of virus inactivation. Finally, the paper suggests research directions in the field of airborne virus inactivation using non-thermal plasma.
Collapse
Affiliation(s)
- Imen Assadi
- Laboratoire Energie, Eau, Environnement Et Procèdes, ENIG, Université de Gabès, LR18ES356072, Gabès, Tunisia
| | - Ahlem Guesmi
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 5701, 11432, Riyadh, Saudi Arabia
| | - Oussama Baaloudj
- Laboratory of Reaction Engineering, USTHB, BP 32, 16111, Algiers, Algeria
| | - Hichem Zeghioud
- Department of Process Engineering, Badji Mokhtar University, P.O. Box 12, 23000, Annaba, Algeria
| | - Walid Elfalleh
- Laboratoire Energie, Eau, Environnement Et Procèdes, ENIG, Université de Gabès, LR18ES356072, Gabès, Tunisia
| | - Naoufel Benhammadi
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 5701, 11432, Riyadh, Saudi Arabia
| | - Lotfi Khezami
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 5701, 11432, Riyadh, Saudi Arabia
| | | |
Collapse
|
15
|
Lal S, Raffel C. Protocols to Manufacture an Oncolytic Measles Virus-Sensitive Immunocompetent Mouse Model of Medulloblastoma. Methods Mol Biol 2022; 2423:165-177. [PMID: 34978698 DOI: 10.1007/978-1-0716-1952-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Oncolytic virotherapy translational research in the current era is heavily focused on the interaction of the immune system and tumor microenvironment with oncolytic viruses. Preclinical xenograft studies using human cells in immunodeficient mouse models does not serve this purpose. As a consequence, developing syngeneic immunocompetent murine cancer models sensitive to infection and growth of specific oncolytic viruses is required. The group 3 subtype of medulloblastoma, among the four molecular subgroups-WNT, SHH, Group 3, and Group 4, has the worst prognosis and the poorest outcome. Sadly, current treatments cause long-term toxicity and morbidity to survivors adversely affecting their quality of life. Alternate effective therapy with less side effects is urgently needed. We have shown that oncolytic measles virus (MV) is effective against localized as well as CSF-disseminated medulloblastoma in immunodeficient mouse models. To study the interaction of immune system with oncolytic measles virotherapy, we have developed a murine group 3 medulloblastoma cell line (CSCG) that is infectible by MV, is killed by MV, allows replication of MV, and is tumorigenic in the brain of syngeneic transgenic immune-competent mice. Intratumoral injection of MV results in significant prolongation of survival in mice bearing CSCG tumors in the brain. This model provides the first suitable platform to examine therapeutic regimens of MV therapy for MB tumors in the presence of intact immune system. Here, we describe our lab protocols to develop this cell line and the mouse model.
Collapse
Affiliation(s)
- Sangeet Lal
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.
| | - Corey Raffel
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
16
|
Iwasaki M. [Molecular basis for the multiplication of negative-strand RNA viruses: basic research and potential applications in vaccine development]. Uirusu 2022; 72:67-78. [PMID: 37899232 DOI: 10.2222/jsv.72.67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Viruses achieve their efficient reproduction by utilizing their limited components (nucleic acids, lipids, and proteins) and host cell machineries. A detailed understanding of virus-virus and virus-host interactions will lead to the elucidation of mechanisms underlying viral pathogenesis and the development of novel medical countermeasures. We elucidated the details of several such interactions and their roles in the multiplication of negative-strand RNA viruses, measles virus, and Lassa virus. These discoveries were harnessed to develop a novel genetic approach for the generation of live-attenuated vaccine candidates with a well-defined molecular mechanism of attenuation. This article describes our findings.
Collapse
Affiliation(s)
- Masaharu Iwasaki
- Laboratory of Emerging Viral Diseases, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
17
|
Panagioti E, Kurokawa C, Viker K, Ammayappan A, Anderson SK, Sotiriou S, Chatzopoulos K, Ayasoufi K, Johnson AJ, Iankov ID, Galanis E. Immunostimulatory bacterial antigen-armed oncolytic measles virotherapy significantly increases the potency of anti-PD1 checkpoint therapy. J Clin Invest 2021; 131:e141614. [PMID: 34196308 DOI: 10.1172/jci141614] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
Clinical immunotherapy approaches are lacking efficacy in the treatment of glioblastoma (GBM). In this study, we sought to reverse local and systemic GBM-induced immunosuppression using the Helicobacter pylori neutrophil-activating protein (NAP), a potent TLR2 agonist, as an immunostimulatory transgene expressed in an oncolytic measles virus (MV) platform, retargeted to allow viral entry through the urokinase-type plasminogen activator receptor (uPAR). While single-agent murine anti-PD1 treatment or repeat in situ immunization with MV-s-NAP-uPA provided modest survival benefit in MV-resistant syngeneic GBM models, the combination treatment led to synergy with a cure rate of 80% in mice bearing intracranial GL261 tumors and 72% in mice with CT-2A tumors. Combination NAP-immunovirotherapy induced massive influx of lymphoid cells in mouse brain, with CD8+ T cell predominance; therapeutic efficacy was CD8+ T cell dependent. Inhibition of the IFN response pathway using the JAK1/JAK2 inhibitor ruxolitinib decreased PD-L1 expression on myeloid-derived suppressor cells in the brain and further potentiated the therapeutic effect of MV-s-NAP-uPA and anti-PD1. Our findings support the notion that MV strains armed with bacterial immunostimulatory antigens represent an effective strategy to overcome the limited efficacy of immune checkpoint inhibitor-based therapies in GBM, creating a promising translational strategy for this lethal brain tumor.
Collapse
Affiliation(s)
- Eleni Panagioti
- Department of Molecular Medicine and.,Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA.,Harvey W. Cushing Neuro-oncology Laboratories (HCNL), Department of Neurosurgery, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Cheyne Kurokawa
- Department of Molecular Medicine and.,Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kimberly Viker
- Department of Molecular Medicine and.,Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Arun Ammayappan
- Department of Molecular Medicine and.,Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | | | - Aaron J Johnson
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
| | - Ianko D Iankov
- Department of Molecular Medicine and.,Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Evanthia Galanis
- Department of Molecular Medicine and.,Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
18
|
Muñoz-Alía MÁ, Nace RA, Zhang L, Russell SJ. Serotypic evolution of measles virus is constrained by multiple co-dominant B cell epitopes on its surface glycoproteins. Cell Rep Med 2021; 2:100225. [PMID: 33948566 PMCID: PMC8080110 DOI: 10.1016/j.xcrm.2021.100225] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/11/2021] [Accepted: 03/04/2021] [Indexed: 11/27/2022]
Abstract
After centuries of pestilence and decades of global vaccination, measles virus (MeV) genotypes capable of evading vaccine-induced immunity have not emerged. Here, by systematically building mutations into the hemagglutinin (H) glycoprotein of an attenuated measles virus strain and assaying for serum neutralization, we show that virus evolution is severely constrained by the existence of numerous co-dominant H glycoprotein antigenic sites, some critical for binding to the pathogenicity receptors SLAMF1 and nectin-4. We further demonstrate the existence in serum of protective neutralizing antibodies targeting co-dominant fusion (F) glycoprotein epitopes. Lack of a substantial reduction in serum neutralization of mutant measles viruses that retain even one of the co-dominant antigenic sites makes evolution of pathogenic measles viruses capable of escaping serum neutralization in vaccinated individuals extremely unlikely.
Collapse
Affiliation(s)
| | - Rebecca A. Nace
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Lianwen Zhang
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Stephen J. Russell
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Medicine and Division of Hematology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
19
|
Iankov I, Viker K, Turgeon C, Matern D, Galanis E. Parameters of immunoglobulin extraction from dried blood spot cards and immunoassays for detection of antibody response to pathogens including the novel SARS-CoV-2. J Immunol Methods 2021; 492:112996. [PMID: 33582147 PMCID: PMC7877893 DOI: 10.1016/j.jim.2021.112996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/25/2021] [Accepted: 02/02/2021] [Indexed: 12/27/2022]
Abstract
Dried blood spots (DBS) are routinely used in screening newborns for treatable disorders. Immunoglobulin extraction from DBS, serum or other biological fluids loaded on filter paper cards could represent a valuable method of specimen preservation in monitoring immune response against pathogens as well as vaccination efficiency. In this study using different sources including serum, and monoclonal antibodies we established parameters for antibody extraction from the filter cards to assess antibody reactivity against Helicobacter pylori, measles virus (MV) and the novel coronavirus SARS-CoV-2 antigens. We demonstrated that DBS and dried undiluted serum result in completely preserved antibody activity for immunoassays, including in virus neutralization assays against MV. Extraction efficiency was determined by IgG concentration measurements. The plaque-reduction neutralization titer 50% of dried human serum spots remained stable after more than 10-day storage – 1:359 vs. 1:345 for the corresponding frozen sample. DBSs could be used to monitor immune response to bacterial and viral antigens following natural exposure or immunization. Mice immunized with recombinant spike protein receptor-binding domain of SARS-CoV-2 developed a strong antibody response by day 14 and reached titers above 1:64,000 on day 21 following the secondary boost immunization as measured on DBS samples in antigen-mediated ELISA. Variability in IgG concentration of eluted DBS could be influenced by factors involved in sample application, extraction process and sample characteristics. Adjustment of antibody specific activity to the eluted IgG concentration can increase accuracy of the result interpretation, including in SARS-CoV-2 serological diagnostics.
Collapse
Affiliation(s)
- Ianko Iankov
- Department of Molecular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA; Division of Medical Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| | - Kimberly Viker
- Department of Molecular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Coleman Turgeon
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Dietrich Matern
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Evanthia Galanis
- Department of Molecular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA; Division of Medical Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
20
|
Muñoz-Alía MÁ, Nace RA, Tischer A, Zhang L, Bah ES, Auton M, Russell SJ. MeV-Stealth: A CD46-specific oncolytic measles virus resistant to neutralization by measles-immune human serum. PLoS Pathog 2021; 17:e1009283. [PMID: 33534834 PMCID: PMC7886131 DOI: 10.1371/journal.ppat.1009283] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 02/16/2021] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
The frequent overexpression of CD46 in malignant tumors has provided a basis to use vaccine-lineage measles virus (MeV) as an oncolytic virotherapy platform. However, widespread measles seropositivity limits the systemic deployment of oncolytic MeV for the treatment of metastatic neoplasia. Here, we report the development of MeV-Stealth, a modified vaccine MeV strain that exhibits oncolytic properties and escapes antimeasles antibodies in vivo. We engineered this virus using homologous envelope glycoproteins from the closely-related but serologically non-cross reactive canine distemper virus (CDV). By fusing a high-affinity CD46 specific single-chain antibody fragment (scFv) to the CDV-Hemagglutinin (H), ablating its tropism for human nectin-4 and modifying the CDV-Fusion (F) signal peptide we achieved efficient retargeting to CD46. A receptor binding affinity of ~20 nM was required to trigger CD46-dependent intercellular fusion at levels comparable to the original MeV H/F complex and to achieve similar antitumor efficacy in myeloma and ovarian tumor-bearing mice models. In mice passively immunized with measles-immune serum, treatment of ovarian tumors with MeV-Stealth significantly increased overall survival compared with treatment with vaccine-lineage MeV. Our results show that MeV-Stealth effectively targets and lyses CD46-expressing cancer cells in mouse models of ovarian cancer and myeloma, and evades inhibition by human measles-immune serum. MeV-Stealth could therefore represent a strong alternative to current oncolytic MeV strains for treatment of measles-immune cancer patients. Vaccine strains of the measles virus (MeV) have been shown to be promising anti-cancer agents because of the frequent overexpression of the host-cell receptor CD46 in human malignancies. However, anti-MeV antibodies in the human population severely restrict the use of MeV as an oncolytic agent. Here, we engineered a neutralization-resistant MeV vaccine, MeV-Stealth, by replacing its envelope glycoproteins with receptor-targeted glycoproteins from wild-type canine distemper virus. By fully-retargeting the new envelope to the receptor CD46, we found that in mouse models of ovarian cancer and myeloma MeV-Stealth displayed oncolytic properties similar to the parental MeV vaccine. Furthermore, we found that passive immunization with measles-immune human serum did not eliminate the oncolytic potency of the MeV-Stealth, whereas it did destroy the potency of the parental MeV strain. The virus we here report may be considered a suitable oncolytic agent for the treatment of MeV-immune patients.
Collapse
Affiliation(s)
- Miguel Ángel Muñoz-Alía
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail: (MÁM-A); (SJR)
| | - Rebecca A. Nace
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Alexander Tischer
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Lianwen Zhang
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Eugene S. Bah
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, United States of America
| | - Matthew Auton
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Stephen J. Russell
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail: (MÁM-A); (SJR)
| |
Collapse
|
21
|
Iankov ID, Kurokawa C, Viker K, Robinson SI, Ammayappan A, Panagioti E, Federspiel MJ, Galanis E. Live Attenuated Measles Virus Vaccine Expressing Helicobacter pylori Heat Shock Protein A. MOLECULAR THERAPY-ONCOLYTICS 2020; 19:136-148. [PMID: 33145397 PMCID: PMC7585873 DOI: 10.1016/j.omto.2020.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/17/2020] [Indexed: 12/31/2022]
Abstract
Measles virus (MV) Edmonston derivative strains are attractive vector platforms in vaccine development and oncolytic virotherapy. Helicobacter pylori heat shock protein A (HspA) is a bacterial heat shock chaperone with essential function as a Ni-ion scavenging protein. We generated and characterized the immunogenicity of an attenuated MV strain encoding the HspA transgene (MV-HspA). MV-HspA showed faster replication within 48 h of infection with >10-fold higher titers and faster accumulation of the MV proteins. It also demonstrated a superior tumor-killing effect in vitro against a variety of human solid tumor cell lines, including sarcoma, ovarian and breast cancer. Two intraperitoneal (i.p.) doses of 106 50% tissue culture infectious dose (TCID50) MV-HspA significantly improved survival in an ovarian cancer xenograft model: 63.5 days versus 27 days for the control group. The HspA transgene induced a humoral immune response in measles-permissive Ifnarko-CD46Ge transgenic mice. Eight of nine animals developed a long-term anti-HspA antibody response with titers of 1:400 to 1:12,800 without any negative impact on development of protective anti-MV immune memory. MV-HspA triggered an immunogenic cytopathic effect as measured by an HMGB1 assay. The absence of significant elevation of PD-L1 expression indicated that vector-encoded HspA could act as an immunomodulator on the immune check point axis. These data demonstrate that MV-HspA is a potent oncolytic agent and vaccine candidate for clinical translation in cancer treatment and immunoprophylaxis against H. pylori.
Collapse
Affiliation(s)
- Ianko D Iankov
- Department of Molecular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.,Division of Medical Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Cheyne Kurokawa
- Department of Molecular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Kimberly Viker
- Department of Molecular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Steven I Robinson
- Department of Molecular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.,Division of Medical Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Arun Ammayappan
- Department of Molecular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Eleni Panagioti
- Department of Molecular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Mark J Federspiel
- Department of Molecular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Evanthia Galanis
- Department of Molecular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.,Division of Medical Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
22
|
Masemann D, Ludwig S, Boergeling Y. Advances in Transgenic Mouse Models to Study Infections by Human Pathogenic Viruses. Int J Mol Sci 2020; 21:E9289. [PMID: 33291453 PMCID: PMC7730764 DOI: 10.3390/ijms21239289] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 02/08/2023] Open
Abstract
Medical research is changing into direction of precision therapy, thus, sophisticated preclinical models are urgently needed. In human pathogenic virus research, the major technical hurdle is not only to translate discoveries from animals to treatments of humans, but also to overcome the problem of interspecies differences with regard to productive infections and comparable disease development. Transgenic mice provide a basis for research of disease pathogenesis after infection with human-specific viruses. Today, humanized mice can be found at the very heart of this forefront of medical research allowing for recapitulation of disease pathogenesis and drug mechanisms in humans. This review discusses progress in the development and use of transgenic mice for the study of virus-induced human diseases towards identification of new drug innovations to treat and control human pathogenic infectious diseases.
Collapse
Affiliation(s)
| | | | - Yvonne Boergeling
- Institute of Virology Muenster, University of Muenster, 48149 Muenster, Germany; (D.M.); (S.L.)
| |
Collapse
|
23
|
A highly immunogenic and effective measles virus-based Th1-biased COVID-19 vaccine. Proc Natl Acad Sci U S A 2020; 117:32657-32666. [PMID: 33257540 PMCID: PMC7768780 DOI: 10.1073/pnas.2014468117] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The COVID-19 pandemic has already caused over 1 million deaths. Therefore, effective vaccine concepts are urgently needed. In search of such a concept, we have analyzed a measles virus-based vaccine candidate targeting SARS-CoV-2. Using this well-known, safe vaccine backbone, we demonstrate here induction of functional immune responses in both arms of adaptive immunity, yielding antiviral efficacy in vivo with the desired immune bias. Consequently, no immunopathologies became evident during challenge experiments. Moreover, the candidate still induces immunity against the measles, recognized as a looming second menace, when countries are forced to stop routine vaccination campaigns in the face of COVID-19. Thus, a bivalent measles-based COVID-19 vaccine could be the solution for two significant public health threats. The COVID-19 pandemic is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and has spread worldwide, with millions of cases and more than 1 million deaths to date. The gravity of the situation mandates accelerated efforts to identify safe and effective vaccines. Here, we generated measles virus (MeV)-based vaccine candidates expressing the SARS-CoV-2 spike glycoprotein (S). Insertion of the full-length S protein gene in two different MeV genomic positions resulted in modulated S protein expression. The variant with lower S protein expression levels was genetically stable and induced high levels of effective Th1-biased antibody and T cell responses in mice after two immunizations. In addition to neutralizing IgG antibody responses in a protective range, multifunctional CD8+ and CD4+ T cell responses with S protein-specific killing activity were detected. Upon challenge using a mouse-adapted SARS-CoV-2, virus loads in vaccinated mice were significantly lower, while vaccinated Syrian hamsters revealed protection in a harsh challenge setup using an early-passage human patient isolate. These results are highly encouraging and support further development of MeV-based COVID-19 vaccines.
Collapse
|
24
|
Sasso E, D'Alise AM, Zambrano N, Scarselli E, Folgori A, Nicosia A. New viral vectors for infectious diseases and cancer. Semin Immunol 2020; 50:101430. [PMID: 33262065 DOI: 10.1016/j.smim.2020.101430] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/23/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022]
Abstract
Since the discovery in 1796 by Edward Jenner of vaccinia virus as a way to prevent and finally eradicate smallpox, the concept of using a virus to fight another virus has evolved into the current approaches of viral vectored genetic vaccines. In recent years, key improvements to the vaccinia virus leading to a safer version (Modified Vaccinia Ankara, MVA) and the discovery that some viruses can be used as carriers of heterologous genes encoding for pathological antigens of other infectious agents (the concept of 'viral vectors') has spurred a new wave of clinical research potentially providing for a solution for the long sought after vaccines against major diseases such as HIV, TB, RSV and Malaria, or emerging infectious diseases including those caused by filoviruses and coronaviruses. The unique ability of some of these viral vectors to stimulate the cellular arm of the immune response and, most importantly, T lymphocytes with cell killing activity, has also reawakened the interest toward developing therapeutic vaccines against chronic infectious diseases and cancer. To this end, existing vectors such as those based on Adenoviruses have been improved in immunogenicity and efficacy. Along the same line, new vectors that exploit viruses such as Vesicular Stomatitis Virus (VSV), Measles Virus (MV), Lymphocytic choriomeningitis virus (LCMV), cytomegalovirus (CMV), and Herpes Simplex Virus (HSV), have emerged. Furthermore, technological progress toward modifying their genome to render some of these vectors incompetent for replication has increased confidence toward their use in infant and elderly populations. Lastly, their production process being the same for every product has made viral vectored vaccines the technology of choice for rapid development of vaccines against emerging diseases and for 'personalised' cancer vaccines where there is an absolute need to reduce time to the patient from months to weeks or days. Here we review the recent developments in viral vector technologies, focusing on novel vectors based on primate derived Adenoviruses and Poxviruses, Rhabdoviruses, Paramixoviruses, Arenaviruses and Herpesviruses. We describe the rationale for, immunologic mechanisms involved in, and design of viral vectored gene vaccines under development and discuss the potential utility of these novel genetic vaccine approaches in eliciting protection against infectious diseases and cancer.
Collapse
Affiliation(s)
- Emanuele Sasso
- Nouscom srl, Via di Castel Romano 100, 00128 Rome, Italy; Ceinge-Biotecnologie Avanzate S.C. A.R.L., via Gaetano Salvatore 486, 80145 Naples, Italy.
| | | | - Nicola Zambrano
- Ceinge-Biotecnologie Avanzate S.C. A.R.L., via Gaetano Salvatore 486, 80145 Naples, Italy; Department of Molecular Medicine and Medical Biotechnology, University Federico II, Via Pansini 5, 80131 Naples, Italy.
| | | | | | - Alfredo Nicosia
- Ceinge-Biotecnologie Avanzate S.C. A.R.L., via Gaetano Salvatore 486, 80145 Naples, Italy; Department of Molecular Medicine and Medical Biotechnology, University Federico II, Via Pansini 5, 80131 Naples, Italy.
| |
Collapse
|
25
|
Mühlebach MD. Measles virus in cancer therapy. Curr Opin Virol 2020; 41:85-97. [PMID: 32861945 DOI: 10.1016/j.coviro.2020.07.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
Over the last years, the development of viruses to treat cancer patients has re-gained considerable attention. A genetically modified herpesvirus, Talimogene laherparepvec, has already been authorized for the treatment of melanoma patients. Also recombinant measles virus (MeV) is developed as an oncolytic virus. Because of its high genetic flexibility, a number of different MeV strains have been the basis for the generation of targeted, armed, or shielded viruses that are highly specific for a given tumor target, more effective, or protected against serum neutralization. Such MeV have been extensively tested in vitro and in vivo, whereby remarkable oncolytic potency is accompanied by safety also in non-human primates. Therefore, MeV has been introduced into 19 different clinical trials and has reached phase II against two different tumor entities, multiple myeloma and ovarian carcinoma. Remarkably, one patient with advanced stage myeloma experienced long-term remission after treatment, visualizing the potency of this approach.
Collapse
Affiliation(s)
- Michael D Mühlebach
- Division of Veterinary Medicine, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, D-63225 Langen, Germany.
| |
Collapse
|
26
|
Abstract
This chapter describes the development of recombinant oncolytic measles viruses (MeV) that selectively enter and destroy tumor cells. The envelope of MeV is a favorable targeting substrate because receptor attachment and membrane fusion functions are separated on two proteins: the hemagglutinin (H) that binds receptors, and the fusion (F) protein that fuses the viral envelope with the cell membrane. The cell entry process, which depends on receptor recognition and occurs at the plasma membrane at neutral pH, results in the delivery of encapsidated genomes to the cytoplasm, where they replicate. Towards improving cancer specificity of oncolytic MeV, two types of cell entry targeting have been achieved. First, entry has been redirected through cancer-specific cell surface proteins. This was done by displaying specificity domains on H while also ablating binding to its natural receptors. Second, activation of the F protein was made dependent on secreted cancer proteases, while also interfering with F cleavage/activation by a ubiquitous intracellular protease. This chapter describes how entry-targeted MeV are produced: In short, gene cassettes with modified H or F coding regions are generated, and then introduced into the viral genome available on plasmid DNA. Such full-length genome plasmids are transfected in cell lines expressing, stably or transiently, the three viral proteins necessary for genome replication. Infectious centers form among these "rescue" cells, which allow isolation of clonal recombinant viruses. These are amplified, characterized in vitro, and then evaluated for their oncolytic activity in appropriate preclinical animal models.
Collapse
Affiliation(s)
- Michael D Mühlebach
- Section Product Testing of Immunological Veterinary Medicinal Products, Division of Veterinary Medicine, Paul-Ehrlich-Institut, Langen, Germany.
| | - Roberto Cattaneo
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
27
|
Ferren M, Horvat B, Mathieu C. Measles Encephalitis: Towards New Therapeutics. Viruses 2019; 11:E1017. [PMID: 31684034 PMCID: PMC6893791 DOI: 10.3390/v11111017] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/25/2019] [Accepted: 10/31/2019] [Indexed: 12/20/2022] Open
Abstract
Measles remains a major cause of morbidity and mortality worldwide among vaccine preventable diseases. Recent decline in vaccination coverage resulted in re-emergence of measles outbreaks. Measles virus (MeV) infection causes an acute systemic disease, associated in certain cases with central nervous system (CNS) infection leading to lethal neurological disease. Early following MeV infection some patients develop acute post-infectious measles encephalitis (APME), which is not associated with direct infection of the brain. MeV can also infect the CNS and cause sub-acute sclerosing panencephalitis (SSPE) in immunocompetent people or measles inclusion-body encephalitis (MIBE) in immunocompromised patients. To date, cellular and molecular mechanisms governing CNS invasion are still poorly understood. Moreover, the known MeV entry receptors are not expressed in the CNS and how MeV enters and spreads in the brain is not fully understood. Different antiviral treatments have been tested and validated in vitro, ex vivo and in vivo, mainly in small animal models. Most treatments have high efficacy at preventing infection but their effectiveness after CNS manifestations remains to be evaluated. This review describes MeV neural infection and current most advanced therapeutic approaches potentially applicable to treat MeV CNS infection.
Collapse
Affiliation(s)
- Marion Ferren
- CIRI, International Center for Infectiology Research, INSERM U1111, University of Lyon, University Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, France.
| | - Branka Horvat
- CIRI, International Center for Infectiology Research, INSERM U1111, University of Lyon, University Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, France.
| | - Cyrille Mathieu
- CIRI, International Center for Infectiology Research, INSERM U1111, University of Lyon, University Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, France.
| |
Collapse
|
28
|
Hanauer JRH, Koch V, Lauer UM, Mühlebach MD. High-Affinity DARPin Allows Targeting of MeV to Glioblastoma Multiforme in Combination with Protease Targeting without Loss of Potency. MOLECULAR THERAPY-ONCOLYTICS 2019; 15:186-200. [PMID: 31788553 PMCID: PMC6880102 DOI: 10.1016/j.omto.2019.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/14/2019] [Indexed: 12/19/2022]
Abstract
Measles virus (MeV) is naturally cytolytic by extensive cell-to-cell fusion. Vaccine-derived MeV is toxic for cancer cells and is clinically tested as oncolytic virus. To combine the potential of MeV with enhanced safety, different targeting strategies have been described. We generated a receptor-targeted MeV by using receptor-blind viral attachment protein genetically fused to designed ankyrin repeat protein (DARPin) binding domains specific for the epidermal growth factor receptor (EGFR). To reduce on-target toxicity for EGFR+ healthy cells, we used an engineered viral fusion protein activatable by tumor-associated matrix metalloproteases (MMPs) for additional protease targeting. The dual-targeted virus replicated exclusively on EGFR+/MMP+ tumor cells but was safe on healthy EGFR+ target cells, primary human keratinocytes. Nevertheless, glioblastoma and other tumor cells were efficiently killed by all targeted viruses, although replication and oncolysis were slower for protease-targeted MeV. In vivo, efficacy of EGFR-targeted MeV was virtually unimpaired, whereas also dual-targeted MeV showed significant intra-tumoral spread and efficacy and could be armed with a prodrug convertase. The use of DARPin-domains resulted in potent EGFR-targeted MeV and for the first time effective dual retargeting of an oncolytic virus, further enhancing tumor selectivity. Together with powerful cell-toxic genes, the application as highly tumor-specific platform is promising.
Collapse
Affiliation(s)
- Jan R H Hanauer
- Oncolytic Measles Viruses and Vaccine Vectors, Paul-Ehrlich-Institut, 63225 Langen, Germany.,Veterinary Medicine, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Vivian Koch
- Oncolytic Measles Viruses and Vaccine Vectors, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Ulrich M Lauer
- Department of Medical Oncology and Pneumology, University Hospital, University of Tübingen, 72076 Tübingen, Germany
| | - Michael D Mühlebach
- Oncolytic Measles Viruses and Vaccine Vectors, Paul-Ehrlich-Institut, 63225 Langen, Germany.,Veterinary Medicine, Paul-Ehrlich-Institut, 63225 Langen, Germany
| |
Collapse
|
29
|
Lal S, Carrera D, Phillips JJ, Weiss WA, Raffel C. An oncolytic measles virus-sensitive Group 3 medulloblastoma model in immune-competent mice. Neuro Oncol 2019; 20:1606-1615. [PMID: 29912438 DOI: 10.1093/neuonc/noy089] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background Oncolytic measles virus (MV) is effective in xenograft models of many tumor types in immune-compromised mice. However, no murine cell line exists that is tumorigenic, grows in immune-competent mice, and is killed by MV. The lack of such a model prevents an examination of the effect of the immune system on MV oncotherapy. Methods Cerebellar stem cells from human CD46-transgenic immunocompetent mice were transduced to express Sendai virus C-protein, murine C-Myc, and Gfi1b proteins. The resultant cells were injected into the brain of NSG mice, and a cell line, called CSCG, was prepared from the resulting tumor. Results CSCG cells are highly proliferative, and express stem cell markers. These cells are permissive for replication of MV and are killed by the virus in a dose- and time-dependent manner. CSCG cells form aggressive tumors that morphologically resemble medulloblastoma when injected into the brains of immune-competent mice. On the molecular level, CSCG tumors overexpress natriuretic peptide receptor 3 and gamma-aminobutyric acid type A receptor alpha 5, markers of Group 3 medulloblastoma. A single intratumoral injection of MV‒green fluorescent protein resulted in complete tumor regression and prolonged survival of animals compared with treatments with phosphate buffered saline (P = 0.0018) or heat-inactivated MV (P = 0.0027). Conclusions This immune-competent model provides the first platform to test therapeutic regimens of oncolytic MV for Group 3 medulloblastoma in the presence of anti-measles immunity. The strategy presented here can be used to make MV-sensitive murine models of any human tumor for which the driving mutations are known.
Collapse
Affiliation(s)
- Sangeet Lal
- Department of Neurological Surgery, Brain Tumor Research Center, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco (UCSF), San Francisco, California
| | - Diego Carrera
- Department of Neurological Surgery, Brain Tumor Research Center, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco (UCSF), San Francisco, California
| | - Joanna J Phillips
- Department of Neurological Surgery, Brain Tumor Research Center, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco (UCSF), San Francisco, California
| | - William A Weiss
- Department of Neurology, Pediatrics, and Neurological Surgery and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Corey Raffel
- Department of Neurological Surgery, Brain Tumor Research Center, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco (UCSF), San Francisco, California
| |
Collapse
|
30
|
Welsch JC, Charvet B, Dussurgey S, Allatif O, Aurine N, Horvat B, Gerlier D, Mathieu C. Type I Interferon Receptor Signaling Drives Selective Permissiveness of Astrocytes and Microglia to Measles Virus during Brain Infection. J Virol 2019; 93:e00618-19. [PMID: 31019048 PMCID: PMC6580971 DOI: 10.1128/jvi.00618-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 04/16/2019] [Indexed: 12/14/2022] Open
Abstract
Fatal neurological syndromes can occur after measles virus (MeV) infection of the brain. The mechanisms controlling MeV spread within the central nervous system (CNS) remain poorly understood. We analyzed the role of type I interferon (IFN-I) receptor (IFNAR) signaling in the control of MeV infection in a murine model of brain infection. Using organotypic brain cultures (OBC) from wild-type and IFNAR-knockout (IFNARKO) transgenic mice ubiquitously expressing the human SLAM (CD150) receptor, the heterogeneity of the permissiveness of different CNS cell types to MeV infection was characterized. In the absence of IFNAR signaling, MeV propagated significantly better in explant slices. In OBC from IFNAR-competent mice, while astrocytes and microglia were infected on the day of explant preparation, they became refractory to infection with time, in contrast to neurons and oligodendrocytes, which remained permissive to infection. This selective loss of permissiveness to MeV infection was not observed in IFNARKO mouse OBC. Accordingly, the development of astrogliosis related to the OBC procedure was exacerbated in the presence of IFNAR signaling. In the hippocampus, this astrogliosis was characterized by a change in the astrocyte phenotype and by an increase of IFN-I transcripts. A proteome analysis showed the upregulation of 84 out of 111 secreted proteins. In the absence of IFNAR, only 27 secreted proteins were upregulated, and none of these were associated with antiviral activities. Our results highlight the essential role of the IFN-I response in astrogliosis and in the permissiveness of astrocytes and microglia that could control MeV propagation throughout the CNS.IMPORTANCE Measles virus (MeV) can infect the central nervous system (CNS), with dramatic consequences. The mechanisms controlling MeV invasion of the CNS remain ill-defined since most previous data were obtained from postmortem analysis. Here, we highlight for the first time the crucial role of the type I interferon (IFN-I) response not only in the control of CNS invasion but also in the early permissiveness of glial cells to measles virus infection.
Collapse
Affiliation(s)
- Jeremy Charles Welsch
- CIRI, International Center for Infectiology Research, CIRI, International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université de Lyon, Lyon, France
- LabEx Ecofect, Université de Lyon, Lyon, France
| | - Benjamin Charvet
- CIRI, International Center for Infectiology Research, CIRI, International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université de Lyon, Lyon, France
| | - Sebastien Dussurgey
- SFR BioSciences, INSERM, CNRS, UMS3444/US8, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Omran Allatif
- CIRI, International Center for Infectiology Research, CIRI, International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université de Lyon, Lyon, France
| | - Noemie Aurine
- CIRI, International Center for Infectiology Research, CIRI, International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université de Lyon, Lyon, France
| | - Branka Horvat
- CIRI, International Center for Infectiology Research, CIRI, International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université de Lyon, Lyon, France
- LabEx Ecofect, Université de Lyon, Lyon, France
| | - Denis Gerlier
- CIRI, International Center for Infectiology Research, CIRI, International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université de Lyon, Lyon, France
- LabEx Ecofect, Université de Lyon, Lyon, France
| | - Cyrille Mathieu
- CIRI, International Center for Infectiology Research, CIRI, International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université de Lyon, Lyon, France
- LabEx Ecofect, Université de Lyon, Lyon, France
| |
Collapse
|
31
|
Msaouel P, Opyrchal M, Dispenzieri A, Peng KW, Federspiel MJ, Russell SJ, Galanis E. Clinical Trials with Oncolytic Measles Virus: Current Status and Future Prospects. Curr Cancer Drug Targets 2019; 18:177-187. [PMID: 28228086 DOI: 10.2174/1568009617666170222125035] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 11/15/2016] [Accepted: 12/05/2016] [Indexed: 01/23/2023]
Abstract
Attenuated Edmonston lineage measles virus (MV-Edm) vaccine strains can preferentially infect and lyse a wide variety of cancer cells. Oncolytic MV-Edm derivatives are genetically engineered to express the human carcinoembryonic antigen (MV-CEA virus) or the human sodium iodide symporter (MV-NIS virus) and are currently being tested in clinical trials against ovarian cancer, glioblastoma multiforme, multiple myeloma, mesothelioma, head and neck cancer, breast cancer and malignant peripheral nerve sheath tumors. This review describes the basic and preclinical data that facilitated the clinical translation of MV-Edm strains, and summarizes the clinical results of this oncolytic platform to date. Furthermore, we discuss the latest clinically relevant MV-Edm vector developments and creative strategies for future translational steps.
Collapse
Affiliation(s)
- Pavlos Msaouel
- MD Anderson Cancer Center, Division of Cancer Medicine, 1400 Holcombe Blvd, Unit 0463, Houston, TX 77030, USA
| | - Mateusz Opyrchal
- Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY 14263, USA
| | - Angela Dispenzieri
- Division of Hematology, Mayo Clinic 200 First Street SW, Rochester, MN 55905, USA.,Department of Molecular Medicine, Mayo Clinic 200 First Street SW, Rochester, MN 55905, USA
| | - Kah Whye Peng
- Department of Molecular Medicine, Mayo Clinic 200 First Street SW, Rochester, MN 55905, USA
| | - Mark J Federspiel
- Department of Molecular Medicine, Mayo Clinic 200 First Street SW, Rochester, MN 55905, USA
| | - Stephen J Russell
- Division of Hematology, Mayo Clinic 200 First Street SW, Rochester, MN 55905, USA.,Department of Molecular Medicine, Mayo Clinic 200 First Street SW, Rochester, MN 55905, USA
| | - Evanthia Galanis
- Department of Molecular Medicine, Mayo Clinic 200 First Street SW, Rochester, MN 55905, USA.,Division of Medical Oncology, Mayo Clinic 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
32
|
Pliquet E, Ruffie C, Escande M, Thalmensi J, Najburg V, Combredet C, Bestetti T, Julithe M, Liard C, Huet T, Wain-Hobson S, Tangy F, Langlade-Demoyen P. Strong antigen-specific T-cell immunity induced by a recombinant human TERT measles virus vaccine and amplified by a DNA/viral vector prime boost in IFNAR/CD46 mice. Cancer Immunol Immunother 2019; 68:533-544. [PMID: 30656384 PMCID: PMC11028090 DOI: 10.1007/s00262-018-2272-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 11/01/2018] [Indexed: 12/20/2022]
Abstract
Cancer immunotherapy is seeing an increasing focus on vaccination with tumor-associated antigens (TAAs). Human telomerase (hTERT) is a TAA expressed by most tumors to overcome telomere shortening. Tolerance to hTERT can be easily broken both naturally and experimentally and hTERT DNA vaccine candidates have been introduced in clinical trials. DNA prime/boost strategies have been widely developed to immunize efficiently against infectious diseases. We explored the use of a recombinant measles virus (MV) hTERT vector to boost DNA priming as recombinant live attenuated measles virus has an impressive safety and efficacy record. Here, we show that a MV-TERT vector can rapidly and strongly boost DNA hTERT priming in MV susceptible IFNAR/CD46 mouse models. The cellular immune responses were Th1 polarized. No humoral responses were elicited. The 4 kb hTERT transgene did not impact MV replication or induction of cell-mediated responses. These findings validate the MV-TERT vector to boost cell-mediated responses following DNA priming in humans.
Collapse
Affiliation(s)
- Elodie Pliquet
- Invectys, Pépinière Paris Santé Cochin, 27, rue du Faubourg Saint Jacques, 75014, Paris, France.
- Molecular Retrovirology Unit, Institut Pasteur, CNRS-URA 3015, Paris, France.
| | - Claude Ruffie
- Viral Genomics and Vaccination Unit, Institut Pasteur, CNRS-UMR 3965, Paris, France
| | - Marie Escande
- Invectys, Pépinière Paris Santé Cochin, 27, rue du Faubourg Saint Jacques, 75014, Paris, France
| | - Jessie Thalmensi
- Invectys, Pépinière Paris Santé Cochin, 27, rue du Faubourg Saint Jacques, 75014, Paris, France
| | - Valérie Najburg
- Viral Genomics and Vaccination Unit, Institut Pasteur, CNRS-UMR 3965, Paris, France
| | - Chantal Combredet
- Viral Genomics and Vaccination Unit, Institut Pasteur, CNRS-UMR 3965, Paris, France
| | - Thomas Bestetti
- Invectys, Pépinière Paris Santé Cochin, 27, rue du Faubourg Saint Jacques, 75014, Paris, France
| | - Marion Julithe
- Invectys, Pépinière Paris Santé Cochin, 27, rue du Faubourg Saint Jacques, 75014, Paris, France
| | - Christelle Liard
- Invectys, Pépinière Paris Santé Cochin, 27, rue du Faubourg Saint Jacques, 75014, Paris, France
| | - Thierry Huet
- Invectys, Pépinière Paris Santé Cochin, 27, rue du Faubourg Saint Jacques, 75014, Paris, France
| | - Simon Wain-Hobson
- Invectys, Pépinière Paris Santé Cochin, 27, rue du Faubourg Saint Jacques, 75014, Paris, France
- Molecular Retrovirology Unit, Institut Pasteur, CNRS-URA 3015, Paris, France
| | - Frédéric Tangy
- Viral Genomics and Vaccination Unit, Institut Pasteur, CNRS-UMR 3965, Paris, France
| | - Pierre Langlade-Demoyen
- Invectys, Pépinière Paris Santé Cochin, 27, rue du Faubourg Saint Jacques, 75014, Paris, France
- Molecular Retrovirology Unit, Institut Pasteur, CNRS-URA 3015, Paris, France
| |
Collapse
|
33
|
Gerke C, Frantz PN, Ramsauer K, Tangy F. Measles-vectored vaccine approaches against viral infections: a focus on Chikungunya. Expert Rev Vaccines 2019; 18:393-403. [PMID: 30601074 DOI: 10.1080/14760584.2019.1562908] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION The large global burden of viral infections and especially the rapidly spreading vector-borne diseases and other emerging viral diseases show the need for new approaches in vaccine development. Several new vaccine technology platforms have been developed and are under evaluation. Areas covered: This article discusses the measles vector platform technology derived from the safe and highly efficacious measles virus vaccine. The pipeline of measles-vectored vaccine candidates against viral diseases is reviewed. Particular focus is given to the Chikungunya vaccine candidate as the first measles-vectored vaccine that demonstrated safety, immunogenicity, and functionality of the technology in humans even in the presence of pre-existing anti-measles immunity and thus achieved proof of concept for the technology. Expert commentary: Demonstrating no impact of pre-existing anti-measles immunity in humans on the response to the transgene was fundamental for the technology and indicates that the technology is suitable for large-scale immunization in measles pre-immune populations. The proof of concept in humans combined with a large preclinical track record of safety, immunogenicity, and efficacy for a variety of pathogens suggest the measles vector platform as promising plug-and-play vaccine platform technology for rapid development of effective preventive vaccines against viral and other infectious diseases.
Collapse
Affiliation(s)
| | - Phanramphoei N Frantz
- b Viral Genomics and Vaccination Unit, UMR-3569 CNRS, Department of Virology , Institut Pasteur , Paris , France.,c Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC) , National Science and Technology Development Agency , Pathumthani , Thailand
| | | | - Frédéric Tangy
- b Viral Genomics and Vaccination Unit, UMR-3569 CNRS, Department of Virology , Institut Pasteur , Paris , France
| |
Collapse
|
34
|
Nürnberger C, Bodmer BS, Fiedler AH, Gabriel G, Mühlebach MD. A Measles Virus-Based Vaccine Candidate Mediates Protection against Zika Virus in an Allogeneic Mouse Pregnancy Model. J Virol 2019; 93:e01485-18. [PMID: 30429338 PMCID: PMC6340036 DOI: 10.1128/jvi.01485-18] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/27/2018] [Indexed: 12/19/2022] Open
Abstract
The impact of the Zika virus (ZIKV) epidemic highlights the need for vaccines that reduce or prevent infection and reliably prevent teratogenic complications. The live-attenuated measles virus (MV) vaccine strains are a promising vaccine platform, since they induce robust humoral and cellular immune responses against additional antigens and have an excellent safety record. To explore its potential to protect against ZIKV, we compared a recombinant Schwarz strain MV that encodes ZIKV prM and soluble E proteins (MV-Zika-sE) with a prototypic alum-adjuvanted whole inactivated ZIKV particle vaccine. Analysis of MV-Zika-sE-infected cells confirmed antigen expression, and the virus replicated with vaccine strain characteristics. Immunized IFNAR-/--CD46Ge mice developed E protein-specific and neutralizing antibodies, and ZIKV E-specific cellular immune responses were observed by gamma interferon (IFN-γ) enzyme-linked immunospot (ELISpot) and in vitro T cell proliferation assays. To analyze protective efficacy, vaccinated female mice were challenged with ZIKV after allogeneic mating. In MV-Zika-sE-vaccinated mice, weight gain was similar to that in uninfected mice, while no plasma viremia was detectable in the majority of the animals. In contrast, infected control animals gained less weight and experienced about 100-fold higher viremia over at least 3 days. Moreover, vaccination with MV-Zika-sE reduced the ZIKV load in different organs and the placentas and prevented infection of the fetus. Consequently, no fetal growth retardation, anemia, or death due to ZIKV infection was seen in MV-Zika-sE-vaccinated dams. In contrast, the inactivated ZIKV vaccine had little to no effect in our studies. Therefore, the MV-derived ZIKV vaccine is a promising candidate for further preclinical and clinical development.IMPORTANCE Zika virus (ZIKV) is a mosquito-borne flavivirus that causes a variety of neurological complications, including congenital birth defects. Despite the urgent need, no ZIKV vaccine has yet been licensed. Recombinant vaccine strain-derived measles viruses (MV) constitute a promising vector platform to induce immunity against foreign pathogens by expressing antigens from additional transcription units while at the same time possessing a remarkable safety profile. This concept has already been validated against different pathogens, including at least 3 other flaviviruses, and our data show that vaccination with MV expressing soluble ZIKV E protein significantly diminishes infection and prevents fetal loss or damage in an allogeneic mouse pregnancy model. It can thus be regarded as a promising emergency vaccine candidate with the potential for inclusion in routine vaccination settings in areas of endemicity to prevent teratogenic effects of circulating ZIKV during pregnancy, comparable to standard rubella virus vaccination.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/blood
- Disease Models, Animal
- Female
- Genome, Viral
- Immunity, Cellular/immunology
- Immunity, Humoral/immunology
- Measles Vaccine/administration & dosage
- Measles Vaccine/immunology
- Measles virus/immunology
- Membrane Cofactor Protein/physiology
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Pregnancy
- Receptor, Interferon alpha-beta/physiology
- Vaccination
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/immunology
- Viral Envelope Proteins/immunology
- Zika Virus/genetics
- Zika Virus/immunology
- Zika Virus Infection/immunology
- Zika Virus Infection/prevention & control
- Zika Virus Infection/virology
Collapse
Affiliation(s)
- Cindy Nürnberger
- Veterinary Medicine Division, Paul-Ehrlich-Institut, Langen, Germany
- German Center for Infection Research, Gießen-Marburg-Langen, Germany
| | - Bianca S Bodmer
- Veterinary Medicine Division, Paul-Ehrlich-Institut, Langen, Germany
| | - Anna H Fiedler
- Veterinary Medicine Division, Paul-Ehrlich-Institut, Langen, Germany
- German Center for Infection Research, Gießen-Marburg-Langen, Germany
| | - Gülsah Gabriel
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- Institute for Virology, University of Veterinary Medicine, Hannover, Germany
| | - Michael D Mühlebach
- Veterinary Medicine Division, Paul-Ehrlich-Institut, Langen, Germany
- German Center for Infection Research, Gießen-Marburg-Langen, Germany
| |
Collapse
|
35
|
Kuroda H, Tachikawa M, Yagi Y, Umetsu M, Nurdin A, Miyauchi E, Watanabe M, Uchida Y, Terasaki T. Cluster of Differentiation 46 Is the Major Receptor in Human Blood-Brain Barrier Endothelial Cells for Uptake of Exosomes Derived from Brain-Metastatic Melanoma Cells (SK-Mel-28). Mol Pharm 2018; 16:292-304. [PMID: 30452273 DOI: 10.1021/acs.molpharmaceut.8b00985] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Brain metastasis is a frequent complication of cancer and may be mediated, at least in part, by the internalization of cancer-cell-derived exosomes into brain capillary endothelial cells. Clarifying the mechanism(s) of this internalization is of interest because it could help us to develop ways to block brain metastasis, as well as affording a potential new route for drug delivery into the brain. Therefore, the purpose of the present study was to address this issue by identifying the receptors involved in the internalization of exosomes derived from a brain-metastatic cancer cell line (SK-Mel-28) into human blood-brain barrier endothelial cells (hCMEC/D3 cells). The combination of sulfo-SBED-based cross-linking and comprehensive proteomics yielded 20 proteins as exosome receptor candidates in hCMEC/D3 cells. The uptake of PKH67-labeled exosomes by hCMEC/D3 cells measured at 37 °C was significantly reduced by 95.6% at 4 °C and by 15.3% in the presence of 1 mM RGD peptide, an integrin ligand. Therefore, we focused on the identified RGD receptors, integrin α5 and integrin αV, and CD46, which is reported to act as an adenovirus receptor, together with integrin αV. A mixture of neutralizing antibodies against integrin α5 and integrin αV significantly decreased the exosome uptake by 11.8%, while application of CD46 siRNA reduced it by 39.0%. Immunohistochemical analysis confirmed the presence of CD46 in human brain capillary endothelial cells. These results suggest that CD46 is a major receptor for the uptake of SK-Mel-28-derived exosomes by human blood-brain barrier endothelial cells (hCMEC/D3 cells).
Collapse
Affiliation(s)
- Hiroki Kuroda
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences , Tohoku University , Sendai 980-8578 , Japan
| | - Masanori Tachikawa
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences , Tohoku University , Sendai 980-8578 , Japan
| | - Yuta Yagi
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences , Tohoku University , Sendai 980-8578 , Japan
| | - Mina Umetsu
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences , Tohoku University , Sendai 980-8578 , Japan
| | - Armania Nurdin
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences , Tohoku University , Sendai 980-8578 , Japan
| | - Eisuke Miyauchi
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences , Tohoku University , Sendai 980-8578 , Japan
| | - Michitoshi Watanabe
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences , Tohoku University , Sendai 980-8578 , Japan
| | - Yasuo Uchida
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences , Tohoku University , Sendai 980-8578 , Japan
| | - Tetsuya Terasaki
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences , Tohoku University , Sendai 980-8578 , Japan
| |
Collapse
|
36
|
Mura M, Ruffié C, Billon-Denis E, Combredet C, Tournier J, Tangy F. hCD46 receptor is not required for measles vaccine Schwarz strain replication in vivo: Type-I IFN is the species barrier in mice. Virology 2018; 524:151-159. [DOI: 10.1016/j.virol.2018.08.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 08/13/2018] [Accepted: 08/17/2018] [Indexed: 12/26/2022]
|
37
|
Fusogenic Viruses in Oncolytic Immunotherapy. Cancers (Basel) 2018; 10:cancers10070216. [PMID: 29949934 PMCID: PMC6070779 DOI: 10.3390/cancers10070216] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 06/22/2018] [Accepted: 06/23/2018] [Indexed: 01/09/2023] Open
Abstract
Oncolytic viruses are under intense development and have earned their place among the novel class of cancer immunotherapeutics that are changing the face of cancer therapy. Their ability to specifically infect and efficiently kill tumor cells, while breaking immune tolerance and mediating immune responses directed against the tumor, make oncolytic viruses highly attractive candidates for immunotherapy. Increasing evidence indicates that a subclass of oncolytic viruses, which encodes for fusion proteins, could outperform non-fusogenic viruses, both in their direct oncolytic potential, as well as their immune-stimulatory properties. Tumor cell infection with these viruses leads to characteristic syncytia formation and cell death due to fusion, as infected cells become fused with neighboring cells, which promotes intratumoral spread of the infection and releases additional immunogenic signals. In this review, we discuss the potential of fusogenic oncolytic viruses as optimal candidates to enhance immunotherapy and initiate broad antitumor responses. We provide an overview of the cytopathic mechanism of syncytia formation through viral-mediated expression of fusion proteins, either endogenous or engineered, and their benefits for cancer therapy. Growing evidence indicates that fusogenicity could be an important feature to consider in the design of optimal oncolytic virus platforms for combinatorial oncolytic immunotherapy.
Collapse
|
38
|
Bodmer BS, Fiedler AH, Hanauer JRH, Prüfer S, Mühlebach MD. Live-attenuated bivalent measles virus-derived vaccines targeting Middle East respiratory syndrome coronavirus induce robust and multifunctional T cell responses against both viruses in an appropriate mouse model. Virology 2018; 521:99-107. [PMID: 29902727 PMCID: PMC7118890 DOI: 10.1016/j.virol.2018.05.028] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/04/2018] [Accepted: 05/31/2018] [Indexed: 12/15/2022]
Abstract
Cases of Middle East respiratory syndrome coronavirus (MERS-CoV) continue to occur, making it one of the WHO´s targets for accelerated vaccine development. One vaccine candidate is based on live-attenuated measles virus (MV) vaccine encoding the MERS-CoV spike glycoprotein (MERS-S). MVvac2-MERS-S(H) induces robust humoral and cellular immunity against MERS-S mediating protection. Here, the induction and nature of immunity after vaccination with MVvac2-MERS-S(H) or novel MVvac2-MERS-N were further characterized. We focused on the necessity for vector replication and the nature of induced T cells, since functional CD8+ T cells contribute importantly to clearance of MERS-CoV. While no immunity against MERS-CoV or MV was detected in MV-susceptible mice after immunization with UV-inactivated virus, replication-competent MVvac2-MERS-S(H) triggered robust neutralizing antibody titers also in adult mice. Furthermore, a significant fraction of MERS CoV-specific CD8+ T cells and MV-specific CD4+ T cells simultaneously expressing IFN-γ and TNF-α were induced, revealing that MVvac2-MERS-S(H) induces multifunctional cellular immunity.
Collapse
Affiliation(s)
- Bianca S Bodmer
- Product Testing of IVMPs, Div. of Veterinary Medicine, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, D-63225 Langen, Germany; German Center for Infection Research, Langen, Germany
| | - Anna H Fiedler
- Product Testing of IVMPs, Div. of Veterinary Medicine, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, D-63225 Langen, Germany; German Center for Infection Research, Langen, Germany
| | - Jan R H Hanauer
- Product Testing of IVMPs, Div. of Veterinary Medicine, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, D-63225 Langen, Germany
| | - Steffen Prüfer
- Product Testing of IVMPs, Div. of Veterinary Medicine, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, D-63225 Langen, Germany
| | - Michael D Mühlebach
- Product Testing of IVMPs, Div. of Veterinary Medicine, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, D-63225 Langen, Germany; German Center for Infection Research, Langen, Germany.
| |
Collapse
|
39
|
Antigen-specific oncolytic MV-based tumor vaccines through presentation of selected tumor-associated antigens on infected cells or virus-like particles. Sci Rep 2017; 7:16892. [PMID: 29203786 PMCID: PMC5715114 DOI: 10.1038/s41598-017-16928-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/19/2017] [Indexed: 12/24/2022] Open
Abstract
Recombinant vaccine strain-derived measles virus (MV) is clinically tested both as vaccine platform to protect against other pathogens and as oncolytic virus for tumor treatment. To investigate the potential synergism in anti-tumoral efficacy of oncolytic and vaccine properties, we chose Ovalbumin and an ideal tumor antigen, claudin-6, for pre-clinical proof of concept. To enhance immunogenicity, both antigens were presented by retroviral virus-like particle produced in situ during MV-infection. All recombinant MV revealed normal growths, genetic stability, and proper expression and presentation of both antigens. Potent antigen-specific humoral and cellular immunity were found in immunized MV-susceptible IFNAR-/--CD46Ge mice. These immune responses significantly inhibited metastasis formation or increased therapeutic efficacy compared to control MV in respective novel in vivo tumor models using syngeneic B16-hCD46/mCLDN6 murine melanoma cells. These data indicate the potential of MV to trigger selected tumor antigen-specific immune responses on top of direct tumor lysis for enhanced efficacy.
Collapse
|
40
|
Wang H, Richter M, Psatha N, Li C, Kim J, Liu J, Ehrhardt A, Nilsson SK, Cao B, Palmer D, Ng P, Izsvák Z, Haworth KG, Kiem HP, Papayannopoulou T, Lieber A. A Combined In Vivo HSC Transduction/Selection Approach Results in Efficient and Stable Gene Expression in Peripheral Blood Cells in Mice. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 8:52-64. [PMID: 29255741 PMCID: PMC5722719 DOI: 10.1016/j.omtm.2017.11.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 11/06/2017] [Indexed: 12/21/2022]
Abstract
We recently reported on an in vivo hematopoietic stem cell (HSC) gene therapy approach. It involves the subcutaneous injections of G-CSF/AMD3100 to mobilize HSCs from the bone marrow into the peripheral blood stream and the intravenous injection of an integrating helper-dependent adenovirus vector system. HSCs transduced in the periphery homed back to the bone marrow, where they persisted long-term. However, high transgene marking rates found in primitive bone marrow HSCs were not reflected in peripheral blood cells. Here, we tested small-molecule drugs to achieve selective mobilization and transduction of HSCs. We found more efficient GFP marking in bone marrow HSCs but no increased marking in the peripheral blood cells. We then used an in vivo HSC chemo-selection based on a mutant of the O6-methylguanine-DNA methyltransferase (mgmtP140K) gene that confers resistance to O6-BG/BCNU and should give stably transduced HSCs a proliferation stimulus and allow for the selective survival and expansion of progeny cells. Short-term exposure of G-CSF/AMD3100-mobilized, in vivo-transduced mice to relatively low selection drug doses resulted in stable GFP expression in up to 80% of peripheral blood cells. Overall, the further improvement of our in vivo HSC transduction approach creates the basis for a simpler HSC gene therapy.
Collapse
Affiliation(s)
- Hongjie Wang
- University of Washington, Department of Medicine, Division of Medical Genetics, Box 357720, Seattle, WA 98195, USA
| | - Maximilian Richter
- University of Washington, Department of Medicine, Division of Medical Genetics, Box 357720, Seattle, WA 98195, USA
| | - Nikoletta Psatha
- Department of Medicine, Division of Hematology, University of Washington, Seattle, WA, USA
| | - Chang Li
- University of Washington, Department of Medicine, Division of Medical Genetics, Box 357720, Seattle, WA 98195, USA
| | - Jiho Kim
- University of Washington, Department of Medicine, Division of Medical Genetics, Box 357720, Seattle, WA 98195, USA
| | - Jing Liu
- Witten/Herdecke University, Witten, 58448, Germany
| | | | - Susan K Nilsson
- Biomedical Manufacturing, CSIRO, Clayton, VIC 3800, Australia.,Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Benjamin Cao
- Biomedical Manufacturing, CSIRO, Clayton, VIC 3800, Australia.,Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Donna Palmer
- Baylor College of Medicine, Houston, TX 77046, USA
| | - Philip Ng
- Baylor College of Medicine, Houston, TX 77046, USA
| | - Zsuzsanna Izsvák
- Max-Delbrück-Center for Molecular Medicine, Berlin 13092, Germany
| | - Kevin G Haworth
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Hans-Peter Kiem
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Thalia Papayannopoulou
- Department of Medicine, Division of Hematology, University of Washington, Seattle, WA, USA
| | - André Lieber
- University of Washington, Department of Medicine, Division of Medical Genetics, Box 357720, Seattle, WA 98195, USA.,Department of Pathology, University of Washington, Seattle, WA, USA
| |
Collapse
|
41
|
Julik E, Reyes-Del Valle J. A Recombinant Measles Vaccine with Enhanced Resistance to Passive Immunity. Viruses 2017; 9:v9100265. [PMID: 28934110 PMCID: PMC5691617 DOI: 10.3390/v9100265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 12/12/2022] Open
Abstract
Current measles vaccines suffer from poor effectiveness in young infants due primarily to the inhibitory effect of residual maternal immunity on vaccine responses. The development of a measles vaccine that resists such passive immunity would strongly contribute to the stalled effort toward measles eradication. In this concise communication, we show that a measles virus (MV) with enhanced hemagglutinin (H) expression and incorporation, termed MVvac2-H2, retained its enhanced immunogenicity, previously established in older mice, when administered to very young, genetically modified, MV-susceptible mice in the presence of passive anti-measles immunity. This immunity level mimics the sub-neutralizing immunity prevalent in infants too young to be vaccinated. Additionally, toward a more physiological small animal model of maternal anti-measles immunity interference, we document vertical transfer of passive anti-MV immunity in genetically-modified, MV susceptible mice and show in this physiological model a better MVvac2-H2 immunogenic profile than that of the parental vaccine strain. In sum, these data support the notion that enhancing MV hemagglutinin incorporation can circumvent in vivo neutralization. This strategy merits additional exploration as an alternative pediatric measles vaccine.
Collapse
Affiliation(s)
- Emily Julik
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Jorge Reyes-Del Valle
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.
- Process Development Department, Virus and Gene Therapy, Merck KGaA, 64293 Darmstadt, Germany.
| |
Collapse
|
42
|
Abstract
The classic development of vaccines is lengthy, tedious, and may not necessarily be successful as demonstrated by the case of HIV. This is especially a problem for emerging pathogens that are newly introduced into the human population and carry the inherent risk of pandemic spread in a naïve population. For such situations, a considerable number of different platform technologies are under development. These are also under development for pathogens, where directly derived vaccines are regarded as too complicated or even dangerous due to the induction of inefficient or unwanted immune responses causing considerable side-effects as for dengue virus. Among platform technologies are plasmid-based DNA vaccines, RNA replicons, single-round infectious vector particles, or replicating vaccine-based vectors encoding (a) critical antigen(s) of the target pathogens. Among the latter, recombinant measles viruses derived from vaccine strains have been tested. Measles vaccines are among the most effective and safest life-attenuated vaccines known. Therefore, the development of Schwarz-, Moraten-, or AIK-C-strain derived recombinant vaccines against a wide range of mostly viral, but also bacterial pathogens was quite straightforward. These vaccines generally induce powerful humoral and cellular immune responses in appropriate animal models, i.e., transgenic mice or non-human primates. Also in the recent first clinical phase I trial, the results have been quite encouraging. The trial indicated the expected safety and efficacy also in human patients, interestingly independent from the level of prevalent anti-measles immunity before the trial. Thereby, recombinant measles vaccines expressing additional antigens are a promising platform for future vaccines.
Collapse
Affiliation(s)
- Michael D Mühlebach
- Product Testing of IVMPs, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, 63225, Langen, Germany.
| |
Collapse
|
43
|
Kleinlützum D, Hanauer JDS, Muik A, Hanschmann KM, Kays SK, Ayala-Breton C, Peng KW, Mühlebach MD, Abel T, Buchholz CJ. Enhancing the Oncolytic Activity of CD133-Targeted Measles Virus: Receptor Extension or Chimerism with Vesicular Stomatitis Virus Are Most Effective. Front Oncol 2017; 7:127. [PMID: 28695108 PMCID: PMC5483446 DOI: 10.3389/fonc.2017.00127] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/01/2017] [Indexed: 12/16/2022] Open
Abstract
Therapy resistance and tumor recurrence are often linked to a small refractory and highly tumorigenic subpopulation of neoplastic cells, known as cancer stem cells (CSCs). A putative marker of CSCs is CD133 (prominin-1). We have previously described a CD133-targeted oncolytic measles virus (MV-CD133) as a promising approach to specifically eliminate CD133-positive tumor cells. Selectivity was introduced at the level of cell entry by an engineered MV hemagglutinin (H). The H protein was blinded for its native receptors and displayed a CD133-specific single-chain antibody fragment (scFv) as targeting domain. Interestingly, MV-CD133 was more active in killing CD133-positive tumors than the unmodified MV-NSe despite being highly selective for its target cells. To further enhance the antitumoral activity of MV-CD133, we here pursued arming technologies, receptor extension, and chimeras between MV-CD133 and vesicular stomatitis virus (VSV). All newly generated viruses including VSV-CD133 were highly selective in eliminating CD133-positive cells. MV-CD46/CD133 killed in addition CD133-negative cells being positive for the MV receptors. In an orthotopic glioma model, MV-CD46/CD133 and MVSCD-CD133, which encodes the super cytosine deaminase, were most effective. Notably, VSV-CD133 caused fatal neurotoxicity in this tumor model. Use of CD133 as receptor could be excluded as being causative. In a subcutaneous tumor model of hepatocellular cancer, VSV-CD133 revealed the most potent oncolytic activity and also significantly prolonged survival of the mice when injected intravenously. Compared to MV-CD133, VSV-CD133 infected a more than 104-fold larger area of the tumor within the same time period. Our data not only suggest new concepts and approaches toward enhancing the oncolytic activity of CD133-targeted oncolytic viruses but also raise awareness about careful toxicity testing of novel virus types.
Collapse
Affiliation(s)
- Dina Kleinlützum
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany.,German Cancer Consortium (DKTK), Partner Site Heidelberg, Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julia D S Hanauer
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
| | - Alexander Muik
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
| | | | - Sarah-Katharina Kays
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
| | | | - Kah-Whye Peng
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Michael D Mühlebach
- Product Testing of Immunological Medicinal Products for Veterinary Use, Paul-Ehrlich-Institut, Langen, Germany
| | - Tobias Abel
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
| | - Christian J Buchholz
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany.,German Cancer Consortium (DKTK), Partner Site Heidelberg, Heidelberg, Germany
| |
Collapse
|
44
|
Abstract
This chapter describes the development of recombinant measles virus (MV)-based vaccines starting from plasmid DNA. Live-attenuated measles vaccines are very efficient and safe. Since the availability of a reverse genetic system to manipulate MV genomes and to generate respective recombinant viruses, a considerable number of recombinant viruses has been generated that present antigens of foreign pathogens during MV replication. Thereby, robust humoral and cellular immune responses can be induced, which have shown protective capacity in a substantial number of experiments.For this purpose, the foreign antigen-encoding genes are cloned into additional transcription units of plasmid based full-length MV vaccine strain genomes, which in turn are used to rescue recombinant MV by providing both full-length viral RNA genomes respective anti-genomes together with all protein components of the viral ribonucleoprotein complex after transient transfection of the so-called rescue cells. Infectious centers form among these transfected cells, which allow clonal isolation of single recombinant viruses that are subsequently amplified, characterized in vitro, and then evaluated for their immunogenicity in appropriate preclinical animal models.
Collapse
Affiliation(s)
- Maureen C. Ferran
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York USA
| | - Gary R. Skuse
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York USA
| |
Collapse
|
45
|
Wang X, Zhang D, Sjölinder M, Wan Y, Sjölinder H. CD46 accelerates macrophage-mediated host susceptibility to meningococcal sepsis in a murine model. Eur J Immunol 2016; 47:119-130. [DOI: 10.1002/eji.201646397] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 09/04/2016] [Accepted: 10/26/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Xiao Wang
- Department of Molecular Biosciences, the Wenner-Gren Institute; Stockholm University; Stockholm Sweden
| | - Ding Zhang
- College of Animal Science and Veterinary Medicine; Shanxi Agricultural University; Taigu China
| | - Mikael Sjölinder
- Department of Molecular Biosciences, the Wenner-Gren Institute; Stockholm University; Stockholm Sweden
| | - Yi Wan
- Department of Molecular Biosciences, the Wenner-Gren Institute; Stockholm University; Stockholm Sweden
| | - Hong Sjölinder
- Department of Molecular Biosciences, the Wenner-Gren Institute; Stockholm University; Stockholm Sweden
- Cancer Center; Mälar Hospital; Eskilstuna Sweden
| |
Collapse
|
46
|
Lal S, Peng KW, Steele MB, Jenks N, Ma H, Kohanbash G, Phillips JJ, Raffel C. Safety Study: Intraventricular Injection of a Modified Oncolytic Measles Virus into Measles-Immune, hCD46-Transgenic, IFNαRko Mice. HUM GENE THER CL DEV 2016; 27:145-151. [PMID: 27604429 DOI: 10.1089/humc.2016.062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The modified Edmonston vaccine strain of measles virus (MV) has shown potent oncolytic efficacy against various tumor types and is being investigated in clinical trials. Our laboratory showed that MV effectively kills medulloblastoma tumor cells in both localized disease and when tumor cells are disseminated through cerebrospinal fluid (CSF). Although the safety of repeated intracerebral injection of modified MV in rhesus macaques has been established, the safety of administering MV into CSF has not been adequately investigated. In this study, we assessed the safety of MV-NIS (MV modified to express the human sodium iodide symporter protein) injected into the CSF of measles-immunized and measles virus-susceptible transgenic (CD46, IFNαRko) mice. Treated animals were administered a single intraventricular injection of 1 × 105 or 1 × 106 TCID50 (50% tissue culture infective dose) of MV-NIS. Detailed clinical observation was performed over a 90-day period. Clinically, we did not observe any measles-related toxic effects or behavioral abnormality in animals of any treated cohort. The complete blood count and blood chemistry analysis results were found to be within normal range for all the cohorts. Histologic examination of brains and spinal cords revealed inflammatory changes, mostly related to the needle track; these resolved by day 21 postinjection. To assess viral biodistribution, quantitative RT-PCR to detect the measles virus N-protein was performed on blood and brain samples. Viral RNA was not detectable in the blood as soon as 2 days after injection, and virus cleared from the brain by 45 days postadministration in all treatment cohorts. In conclusion, our data suggest that a single injection of modified MV into the CSF is safe and can be used in future therapeutic applications.
Collapse
Affiliation(s)
- Sangeet Lal
- 1 Department of Neurological Surgery, Helen Diller Family Comprehensive Cancer Center, University of California , San Francisco, San Francisco, California
| | - Kah-Whye Peng
- 2 Department of Molecular Medicine, Toxicology and Pharmacology Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Michael B Steele
- 2 Department of Molecular Medicine, Toxicology and Pharmacology Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Nathan Jenks
- 2 Department of Molecular Medicine, Toxicology and Pharmacology Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Hong Ma
- 1 Department of Neurological Surgery, Helen Diller Family Comprehensive Cancer Center, University of California , San Francisco, San Francisco, California
| | - Gary Kohanbash
- 1 Department of Neurological Surgery, Helen Diller Family Comprehensive Cancer Center, University of California , San Francisco, San Francisco, California
| | - Joanna J Phillips
- 1 Department of Neurological Surgery, Helen Diller Family Comprehensive Cancer Center, University of California , San Francisco, San Francisco, California
| | - Corey Raffel
- 1 Department of Neurological Surgery, Helen Diller Family Comprehensive Cancer Center, University of California , San Francisco, San Francisco, California
| |
Collapse
|
47
|
Gupta G, Giannino V, Rishi N, Glueck R. Immunogenicity of next-generation HPV vaccines in non-human primates: Measles-vectored HPV vaccine versus Pichia pastoris recombinant protein vaccine. Vaccine 2016; 34:4724-4731. [PMID: 27523740 PMCID: PMC7126718 DOI: 10.1016/j.vaccine.2016.07.051] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 07/16/2016] [Accepted: 07/27/2016] [Indexed: 01/12/2023]
Abstract
Human papillomavirus (HPV) infection is the most common sexually transmitted disease worldwide. HPVs are oncogenic small double-stranded DNA viruses that are the primary causal agent of cervical cancer and other types of cancers, including in the anus, oropharynx, vagina, vulva, and penis. Prophylactic vaccination against HPV is an attractive strategy for preventing cervical cancer and some other types of cancers. However, there are few safe and effective vaccines against HPV infections. Current first-generation commercial HPV vaccines are expensive to produce and deliver. The goal of this study was to develop an alternate potent HPV recombinant L1-based vaccines by producing HPV virus-like particles into a vaccine that is currently used worldwide. Live attenuated measles virus (MV) vaccines have a well-established safety and efficacy record, and recombinant MV (rMV) produced by reverse genetics may be useful for generating candidate HPV vaccines to meet the needs of the developing world. We studied in non-human primate rMV-vectored HPV vaccine in parallel with a classical alum adjuvant recombinant HPV16L1 and 18L1 protein vaccine produced in Pichia pastoris. A combined prime-boost approach using both vaccines was evaluated, as well as immune interference due to pre-existing immunity against the MV. The humoral immune response induced by the MV, Pichia-expressed vaccine, and their combination as priming and boosting approaches was found to elicit HPV16L1 and 18L1 specific total IgG and neutralizing antibody titres. Pre-existing antibodies against measles did not prevent the immune response against HPV16L1 and 18L1.
Collapse
Affiliation(s)
- Gaurav Gupta
- Department of Virology, Vaccine Technology Centre, Cadila Healthcare Ltd., Ahmedabad, India; Etna Biotech S.r.l., Stradale Vincenzo Lancia 57, 95121 Catania, Italy; Amity Institute of Virology and Immunology, Amity University, Noida, India.
| | - Viviana Giannino
- Etna Biotech S.r.l., Stradale Vincenzo Lancia 57, 95121 Catania, Italy.
| | - Narayan Rishi
- Amity Institute of Virology and Immunology, Amity University, Noida, India
| | - Reinhard Glueck
- Department of Virology, Vaccine Technology Centre, Cadila Healthcare Ltd., Ahmedabad, India; Etna Biotech S.r.l., Stradale Vincenzo Lancia 57, 95121 Catania, Italy
| |
Collapse
|
48
|
Duncan CJA, Mohamad SMB, Young DF, Skelton AJ, Leahy TR, Munday DC, Butler KM, Morfopoulou S, Brown JR, Hubank M, Connell J, Gavin PJ, McMahon C, Dempsey E, Lynch NE, Jacques TS, Valappil M, Cant AJ, Breuer J, Engelhardt KR, Randall RE, Hambleton S. Human IFNAR2 deficiency: Lessons for antiviral immunity. Sci Transl Med 2016; 7:307ra154. [PMID: 26424569 DOI: 10.1126/scitranslmed.aac4227] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Type I interferon (IFN-α/β) is a fundamental antiviral defense mechanism. Mouse models have been pivotal to understanding the role of IFN-α/β in immunity, although validation of these findings in humans has been limited. We investigated a previously healthy child with fatal encephalitis after inoculation of the live attenuated measles, mumps, and rubella (MMR) vaccine. By targeted resequencing, we identified a homozygous mutation in the high-affinity IFN-α/β receptor (IFNAR2) in the proband, as well as a newborn sibling, that rendered cells unresponsive to IFN-α/β. Reconstitution of the proband's cells with wild-type IFNAR2 restored IFN-α/β responsiveness and control of IFN-attenuated viruses. Despite the severe outcome of systemic live vaccine challenge, the proband had previously shown no evidence of heightened susceptibility to respiratory viral pathogens. The phenotype of IFNAR2 deficiency, together with similar findings in STAT2-deficient patients, supports an essential but narrow role for IFN-α/β in human antiviral immunity.
Collapse
Affiliation(s)
- Christopher J A Duncan
- Primary Immunodeficiency Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE1 4LP, UK. Department of Infectious Diseases and Tropical Medicine, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, UK.
| | - Siti M B Mohamad
- Primary Immunodeficiency Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE1 4LP, UK. Advanced Medical and Dental Institute, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Dan F Young
- School of Biology, University of St. Andrews, St. Andrews KY16 9ST, UK
| | - Andrew J Skelton
- Bioinformatics Support Unit, Newcastle University, Newcastle upon Tyne NE1 4LP, UK
| | - T Ronan Leahy
- Department of Pediatric Infectious Diseases and Immunology, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland
| | - Diane C Munday
- School of Biology, University of St. Andrews, St. Andrews KY16 9ST, UK
| | - Karina M Butler
- Department of Pediatric Infectious Diseases and Immunology, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland
| | - Sofia Morfopoulou
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Julianne R Brown
- Virology Department, Great Ormond Street Hospital for Children National Health Service (NHS) Foundation Trust, London WC1N 3JH, UK. National Institutes of Health Research Biomedical Research Centre, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Mike Hubank
- Molecular Haematology and Cancer Biology Unit, Institute of Child Health, University College London, London WC1E 6BT, UK
| | - Jeff Connell
- National Virus Reference Laboratory, University College Dublin, Belfield, Dublin 4, Ireland
| | - Patrick J Gavin
- Department of Pediatric Infectious Diseases and Immunology, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland
| | - Cathy McMahon
- Department of Pediatric Intensive Care and Anaesthetics, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland
| | - Eugene Dempsey
- INFANT Centre, Cork University Maternity Hospital, University College Cork, Ireland
| | - Niamh E Lynch
- Department of Pediatrics, Bon Secours Hospital, Cork, Ireland
| | - Thomas S Jacques
- Developmental Biology and Cancer Programme, University College London Institute of Child Health, London WC1N 1EH, UK
| | - Manoj Valappil
- Public Health England, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, UK
| | - Andrew J Cant
- Primary Immunodeficiency Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE1 4LP, UK. Pediatric Immunology Service, Great North Children's Hospital, Newcastle upon Tyne NE1 4LP, UK
| | - Judith Breuer
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK. Virology Department, Great Ormond Street Hospital for Children National Health Service (NHS) Foundation Trust, London WC1N 3JH, UK
| | - Karin R Engelhardt
- Primary Immunodeficiency Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE1 4LP, UK
| | - Richard E Randall
- School of Biology, University of St. Andrews, St. Andrews KY16 9ST, UK
| | - Sophie Hambleton
- Primary Immunodeficiency Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE1 4LP, UK. Pediatric Immunology Service, Great North Children's Hospital, Newcastle upon Tyne NE1 4LP, UK.
| |
Collapse
|
49
|
Generation of a More Immunogenic Measles Vaccine by Increasing Its Hemagglutinin Expression. J Virol 2016; 90:5270-5279. [PMID: 26984727 DOI: 10.1128/jvi.00348-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 03/11/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Imported measles virus (MV) outbreaks are maintained by poor vaccine responders and unvaccinated people. A convenient but more immunogenic vaccination strategy would enhance vaccine performance, contributing to measles eradication efforts. We report here the generation of alternative pediatric vaccines against MV with increased expression of the H protein in the background of the current MV vaccine strain. We generated two recombinants: MVvac2-H2, with increased full-length H expression resulting in a 3-fold increase in H incorporation into virions, and MVvac2-Hsol, vectoring a truncated, soluble form of the H protein that is secreted into the supernatants of infected cells. Replication fitness was conserved despite the duplication of the H cistron for both vectors. The modification to the envelope of MVvac2-H2 conferred upon this virus a measurable level of resistance to in vitro neutralization by MV polyclonal immune sera without altering its thermostability. Most interestingly, both recombinant MVs with enhanced H expression were significantly more immunogenic than their parental strain in outbred mice, while MVvac2-H2 additionally proved more immunogenic after a single, human-range dose in genetically modified MV-susceptible mice. IMPORTANCE Measles incidence was reduced drastically following the introduction of attenuated vaccines, but progress toward the eradication of this virus has stalled, and MV still threatens unvaccinated populations. Due to the contributions of primary vaccine failures and too-young-to-be-vaccinated infants to this problem, more immunogenic measles vaccines are highly desirable. We generated two experimental MV vaccines based on a current vaccine's genome but with enriched production of the H protein, the main MV antigen in provoking immunity. One vaccine incorporated H at higher rates in the viral envelope, and the other secreted a soluble H protein from infected cells. The increased expression of H by these vectors improved neutralizing responses induced in two small-animal models of MV immunogenicity. The enhanced immunogenicity of these vectors, mainly from the MV that incorporates additional H, suggests their value as potential alternative pediatric MV vaccines.
Collapse
|
50
|
Matsui H, Nakatani Y, Yoshida H, Takizawa A, Takeuchi O, Øverby A, Takahashi T, Murayama SY, Matsuo K. Flesh-eatingStreptococcus pyogenestriggers the expression of receptor activator of nuclear factor-κB ligand. Cell Microbiol 2016; 18:1390-404. [DOI: 10.1111/cmi.12581] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 02/11/2016] [Accepted: 02/12/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Hidenori Matsui
- Department of Infection Control and Immunology, Kitasato Institute for Life Sciences; Kitasato University; Minato-ku Tokyo 108-8641 Japan
| | - Yuriko Nakatani
- Department of Infection Control and Immunology, Kitasato Institute for Life Sciences; Kitasato University; Minato-ku Tokyo 108-8641 Japan
- National Center for Child Health and Development; 2-10-1 Okura Setagaya-ku Tokyo 157-8535 Japan
| | - Haruno Yoshida
- Department of Infection Control and Immunology, Kitasato Institute for Life Sciences; Kitasato University; Minato-ku Tokyo 108-8641 Japan
| | - Asako Takizawa
- Biomedical Laboratory, Biochemical Research Center, Kitasato Institute Hospital; Kitasato University; Minato-ku Tokyo 108-8642 Japan
| | - Osamu Takeuchi
- Biomedical Laboratory, Biochemical Research Center, Kitasato Institute Hospital; Kitasato University; Minato-ku Tokyo 108-8642 Japan
| | - Anders Øverby
- Research and Education Center for Clinical Pharmacy, School of Pharmaceutical Sciences; Kitasato University; Minato-ku Tokyo 108-8641 Japan
| | - Takashi Takahashi
- Department of Infection Control and Immunology, Kitasato Institute for Life Sciences; Kitasato University; Minato-ku Tokyo 108-8641 Japan
| | - Somay Y. Murayama
- Department of Infection Control and Immunology, Kitasato Institute for Life Sciences; Kitasato University; Minato-ku Tokyo 108-8641 Japan
- Laboratory of Molecular Cell Biology; Nihon University School of Pharmacy; 7-7-1 Narashinodai Funabashi-shi Chiba 274-8555 Japan
| | - Koichi Matsuo
- Laboratory of Cell and Tissue Biology; Keio University School of Medicine; Shinjuku-ku Tokyo 160-8582 Japan
| |
Collapse
|