1
|
Oumeslakht L, Ababou M, Badaoui B, Qmichou Z. Worldwide genetic variations in high-risk human papillomaviruses capsid L1 gene and their impact on vaccine efficiency. Gene 2021; 782:145533. [PMID: 33636291 DOI: 10.1016/j.gene.2021.145533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/14/2020] [Accepted: 02/09/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Human papillomavirus is the most common sexually transmitted infection. It is associated with different cancers, mainly cervical cancer, which remains the fourth most frequent cancer among women worldwide; it is also related to anogenital (anus, vulvar, vagina, and penis) and oropharyngeal cancers. Vaccination against HPV infection is the major way of prevention, and it has demonstrated impressive efficacy in reducing cervical cancer incidence. Nowadays, all the licensed HPV recombinant vaccines were designed based on HPV major capsid L1 protein. However, some variations in the HPV L1 gene sequence may induce structural changes within the L1 protein, which may alter the affinity and interaction of monoclonal antibodies (MAbs) with L1 protein epitopes, and influence host immune response and recognition. Hence, the importance of accuracy in delineating epitopes relevant to vaccine design and defining genetic variations within antigenic regions in the L1 gene to predict its impact on prophylactic vaccine efficiency. The present review reports the sequence variations in HR-HPV L1 gene isolates from different countries around the world, which may help to understand the effect of HPV L1 gene variations on vaccine efficiency. METHODS Research studies were retrieved from PubMed, Google Scholar, Science direct, and the National Center for Biotechnology Information (NCBI) database. A total of 31 articles describing genetic variations within the major capsid L1 gene and conducted in Africa, Europe, America and Asia were found. Only 26 studies conducted on HPV16, 18, 31, 33, 58, 45 and 52 which are the targets of HPV prophylactic vaccines, and which reported genetic variations within the L1 gene, were selected and evaluated in this review. FINDINGS We found a total of 87, 49, 11, 7, 22, 3, and 17 non-synonymous single nucleotide polymorphisms (SNPs) within HPV16, HPV18, HPV31, HPV58, HPV45, and HPV52 L1 gene, respectively. Four mutations were frequently observed in HPV16 L1 sequences: T353P in the HI loop, H228D in the EF loop, T266A in the FG loop, and T292A in the FG loop. Two mutations in HPV58 L1 sequences: T375N in the HI loop and L150F in the DE loop. Three mutations in HPV33 L1 sequences: T56N in the BC loop, G133S in the DE loop, T266K in the FG loop. Other mutations were found in HPV18, HPV45, and HPV52 L1 sequences. Some were found in different countries, and others were specific to a given population. Furthermore, some variations were located on peptide binding epitopes and lead to a modification of epitopes, which may influence MAbs interactions. Others need further investigations due to the lack of studies. CONCLUSION This study investigated the major capsid L1 genetic diversity of HPV16, 18, 31, 33, 58, 45, and 52 circulating in different populations around the world. Further investigations should be conducted to confirm their effect on immunogenicity and prophylactic vaccine efficiency.
Collapse
Affiliation(s)
- Loubna Oumeslakht
- Medical Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation and Research, MAScIR, Rabat, Morocco; Laboratory of Biodiversity, Ecology and Genome, Department of Biology, Faculty of Sciences Rabat, Mohammed V University, Rabat, Morocco
| | - Mouna Ababou
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences Rabat, Mohammed V University, Rabat, Morocco
| | - Bouabid Badaoui
- Laboratory of Biodiversity, Ecology and Genome, Department of Biology, Faculty of Sciences Rabat, Mohammed V University, Rabat, Morocco
| | - Zineb Qmichou
- Medical Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation and Research, MAScIR, Rabat, Morocco.
| |
Collapse
|
2
|
Identification of the mimotopes within the major capsid protein L1 of human papillomavirus types 18 and 45, using neutralizing monoclonal antibodies. Int J Biol Macromol 2021; 174:587-595. [PMID: 33493568 DOI: 10.1016/j.ijbiomac.2021.01.137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/24/2020] [Accepted: 01/19/2021] [Indexed: 11/20/2022]
Abstract
Persistent infection with high-risk mucosal human papillomavirus (HPV) types has much association with the development of cervical cancer. The major capsid protein L1 has been confirmed to be a major candidate antigen for the development of vaccines. Here, the HPV18 L1 protein was successfully expressed and purified, then nine anti-HPV18 L1 monoclonal antibodies were prepared. Four neutralizing monoclonal antibodies (NmAbs) were identified by using hemagglutination inhibition assay and pseudovirus based neutralization assay. The results of Dot-ELISA, Western blot and indirect immunofluorescence assay showed that the neutralizing antibodies could cross-react with HPV16/18/45/31/33/58/35/39 L1. The mimotopes on HPV18/45 L1 proteins were identified and analyzed by using both phage display and Bioinformatics tool. The B cell epitopes 43-54 aa and 116-126 aa of HPV18 L1 protein, the B cell epitope 381-389 aa of HPV45 L1 protein, and the mimotopes epitope of HPV45 L1 protein were identified by peptide-ELISA and competitive ELISA. The results of PyMOL and Pepitope server analysis indicated that epitopes recognized by NmAbs 7F4, 5A6, 3G11, and 2F5 are located on the surface of L1 VLPs. The results of this study enriched the library of HPV neutralizing antibodies, revealed the mechanism of antibody neutralization, might open new perspectives on the antibody-antigen reaction and have important implications for the development of novel HPV vaccines.
Collapse
|
3
|
Ozbun MA, Bondu V, Patterson NA, Sterk RT, Waxman AG, Bennett EC, McKee R, Sharma A, Yarwood J, Rogers M, Eichenbaum G. Infectious titres of human papillomaviruses (HPVs) in patient lesions, methodological considerations in evaluating HPV infectivity and implications for the efficacy of high-level disinfectants. EBioMedicine 2021; 63:103165. [PMID: 33422988 PMCID: PMC7808919 DOI: 10.1016/j.ebiom.2020.103165] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/07/2020] [Accepted: 11/27/2020] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Recent publications from a single research group have suggested that aldehyde-based high-level disinfectants (HLDs), such as ortho-phthalaldehyde (OPA), are not effective at inactivating HPVs and that therefore, patients may be at risk of HPV infection from medical devices. These results could have significant public health consequences and therefore necessitated evaluation of their reproducibility and clinical relevance. METHODS We developed methods and used standardised controls to: (1) quantify the infectious levels of clinically-sourced HPVs from patient lesions and compare them to laboratory-derived HPVs, (2) evaluate experimental factors that should be controlled to ensure consistent and reproducible infectivity measurements of different HPV genotypes, and (3) determine the efficacy of select HLDs. FINDINGS A novel focus forming unit (FFU) infectivity assay demonstrated that exfoliates from patient anogenital lesions and respiratory papillomas yielded infectious HPV burdens up to 2.7 × 103 FFU; therefore, using 2.2 × 102 to 1.0 × 104 FFU of laboratory-derived HPVs in disinfection assays provides a relevant range for clinical exposures. RNase and neutralising antibody sensitivities were used to ensure valid infectivity measures of tissue-derived and recombinant HPV preparations. HPV infectivity was demonstrated over a dynamic range of 4-5 log10; and disinfection with OPA and hypochlorite was achieved over 3 to >4 log10 with multiple genotypes of tissue-derived and recombinant HPV isolates. INTERPRETATION This work, along with a companion publication from an independent lab in this issue, address a major public health question by showing that HPVs are susceptible to HLDs. FUNDING Advanced Sterilization Products; US NIH (R01CA207368, U19AI084081, P30CA118100).
Collapse
Affiliation(s)
- Michelle A Ozbun
- Department of Molecular Genetics & Microbiology, The University of New Mexico School of Medicine, Albuquerque, NM 87131, United States; Department of Obstetrics & Gynecology, The University of New Mexico School of Medicine, Albuquerque, NM 87131, United States; The University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, United States.
| | - Virginie Bondu
- Department of Molecular Genetics & Microbiology, The University of New Mexico School of Medicine, Albuquerque, NM 87131, United States
| | - Nicole A Patterson
- Department of Molecular Genetics & Microbiology, The University of New Mexico School of Medicine, Albuquerque, NM 87131, United States
| | - Rosa T Sterk
- Department of Molecular Genetics & Microbiology, The University of New Mexico School of Medicine, Albuquerque, NM 87131, United States
| | - Alan G Waxman
- Department of Obstetrics & Gynecology, The University of New Mexico School of Medicine, Albuquerque, NM 87131, United States
| | - Erica C Bennett
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, The University of New Mexico School of Medicine, Albuquerque, NM 87131, United States
| | - Rohini McKee
- Department of Surgery, Division of General Surgery, The University of New Mexico School of Medicine, Albuquerque, NM 87131, United States
| | - Ankur Sharma
- Advanced Sterilization Products, Inc., 33 Technology Drive, Irvine, CA 92618, United States
| | - Jeremy Yarwood
- Advanced Sterilization Products, Inc., 33 Technology Drive, Irvine, CA 92618, United States
| | - Marc Rogers
- Advanced Sterilization Products, Inc., 33 Technology Drive, Irvine, CA 92618, United States
| | - Gary Eichenbaum
- Johnson & Johnson, Office of the Chief Medical Officer, 410 George Street, New Brunswick, NJ 08901, United States
| |
Collapse
|
4
|
Hassen E, Bansal D, Ghdira R, Chaieb A, Khairi H, Zakhama A, Remadi S, Hoebeke J, Sultan AA, Chouchane L. Prevalence of antibodies against a cyclic peptide mimicking the FG loop of the human papillomavirus type 16 capsid among Tunisian women. J Transl Med 2020; 18:288. [PMID: 32727491 PMCID: PMC7391620 DOI: 10.1186/s12967-020-02450-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/21/2020] [Indexed: 12/01/2022] Open
Abstract
Background In the past decade, cervical cancer has gone from being the second to the fourth most common cancer in women worldwide, but remains the second most common in developing countries. This cancer is most commonly caused by high-risk types of human papillomavirus (HPV), mainly type 16 (HPV16), which are sexually transmitted. This study aimed to investigate the usefulness of a cyclic synthetic peptide designed from the major L1 capsid protein of HPV16 for detecting anti-HPV16 antibodies. Methods We designed and synthetized a peptide that corresponds to the full sequence of the surface-exposed FG loop. We tested the antigenicity of the linear and the cyclic peptides against HPV16 L1 monoclonal antibodies. We used ELISA to detect anti-peptide antibodies in sera and cervical secretions of 179 Tunisian women, and we applied polymerase chain reaction and direct sequencing methods to detect and genotype HPV DNA. Results Both the linear and the cyclic peptides were recognized by the same neutralizing monoclonal antibodies, but the cyclic peptide was more reactive with human sera. The prevalence of the anti-peptide antibodies in sera was higher in women with low-grade squamous intraepithelial lesions (LGSIL) than in women with high-grade squamous intraepithelial lesions (HGSIL) (44% and 15%, respectively). This contrasts with HPV16 DNA prevalence. Compared to women from the general population, systemic IgG prevalence was significantly higher among sex workers (25%; P = 0.002) and women with LGSIL (44%; P = 0.001). In addition, systemic IgA and cervical IgG prevalence was higher among sex workers only (P = 0.002 and P = 0.001, respectively). We did not observe anti-peptide IgG antibodies in women with a current HPV16 infection. Conclusion Anti-peptide IgG in sera or in cervical secretions could be markers of an effective natural immunization against HPV16. This may open novel perspectives for monitoring vaccinated women and for the design of synthetic peptide-based vaccines.
Collapse
Affiliation(s)
- Elham Hassen
- Laboratoire d'immuno-oncologie moléculaire, Faculté de Médecine de Monastir, 5019, Monastir, Tunisia.,Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Monastir, Tunisia
| | - Devendra Bansal
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Randa Ghdira
- Laboratoire d'immuno-oncologie moléculaire, Faculté de Médecine de Monastir, 5019, Monastir, Tunisia
| | - Anouar Chaieb
- Laboratoire d'immuno-oncologie moléculaire, Faculté de Médecine de Monastir, 5019, Monastir, Tunisia.,Service d'obstétrique et des maladies féminines, Hôpital Universitaire Farhat Hached, Sousse, Tunisia
| | - Hedi Khairi
- Laboratoire d'immuno-oncologie moléculaire, Faculté de Médecine de Monastir, 5019, Monastir, Tunisia.,Service d'obstétrique et des maladies féminines, Hôpital Universitaire Farhat Hached, Sousse, Tunisia
| | - Abdelfattah Zakhama
- Laboratoire d'immuno-oncologie moléculaire, Faculté de Médecine de Monastir, 5019, Monastir, Tunisia.,Laboratoire d'anatomo-pathologie, Faculté de Médecine de Monastir, Monastir, Tunisia
| | | | - Johan Hoebeke
- UPR9021 «Immunologie et Chimie Thérapeutiques», Institut de Biologie Moléculaire et Cellulaire, CNRS, Strasbourg, France
| | - Ali A Sultan
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Lotfi Chouchane
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar, Doha, Qatar. .,Department of Genetic Medicine, Weill Cornell Medicine, New York, USA. .,Genetic Intelligence Laboratory, Weill Cornell Medicine-Qatar, Qatar Foundation, P.O. Box 24144, Doha, Qatar.
| |
Collapse
|
5
|
Different types of adjuvants in prophylactic and therapeutic human papillomavirus vaccines in laboratory animals: a systematic review. Arch Virol 2019; 165:263-284. [PMID: 31802228 DOI: 10.1007/s00705-019-04479-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 10/23/2019] [Indexed: 01/06/2023]
Abstract
Human papillomavirus (HPV) causes cervical carcinoma, which and is the third most common cancer, accounting for 275,000 deaths annually worldwide. Adjuvants have a key role in promotion of vaccine efficacy; therefore, using prophylactic and therapeutic vaccines combined with adjuvant could be of great benefit in prevention and treatment of cervical cancer. There are different types of adjuvants, including MF59TM adjuvants, RNA-based, JY (interleukin2/chitosan), cholera toxin (CT), heat-labile enterotoxin (LT), Freund's adjuvant, alum, SA-4-1BBL, λ-carrageenan (λ-CGN), heat shock proteins (HSPs), juzen-taiho-to (JTT) and hochu-ekki-to (HET), ISCOM and ISCOMATRIX™, very small size proteoliposomes (VSSPs), granulocyte macrophage colony-stimulating factor (GM-CSF), and Toll-like receptors (TLRs). Adjuvants have various functions, especially in therapeutic vaccines, and they lead to an increase in cytotoxic T lymphocytes (CTLs), so they are important in the design of vaccines. Here, we review the currently used adjuvants and their combinations with HPV protein vaccines in order to introduce an appropriate adjuvant for HPV vaccines.
Collapse
|
6
|
Chabeda A, van Zyl AR, Rybicki EP, Hitzeroth II. Substitution of Human Papillomavirus Type 16 L2 Neutralizing Epitopes Into L1 Surface Loops: The Effect on Virus-Like Particle Assembly and Immunogenicity. FRONTIERS IN PLANT SCIENCE 2019; 10:779. [PMID: 31281327 PMCID: PMC6597877 DOI: 10.3389/fpls.2019.00779] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/28/2019] [Indexed: 05/19/2023]
Abstract
Cervical cancer caused by infection with human papillomaviruses (HPVs) is the fourth most common cancer in women globally, with the burden mainly in developing countries due to limited healthcare resources. Current vaccines based on virus-like particles (VLPs) assembled from recombinant expression of the immunodominant L1 protein are highly effective in the prevention of cervical infection; however, these vaccines are expensive and type-specific. Therefore, there is a need for more broadly protective and affordable vaccines. The HPV-16 L2 peptide sequences 108-120, 65-81, 56-81, and 17-36 are highly conserved across several HPV types and have been shown to elicit cross-neutralizing antibodies. To increase L2 immunogenicity, L1:L2 chimeric VLPs (cVLP) vaccine candidates were developed. The four L2 peptides mentioned above were substituted into the DE loop of HPV-16 L1 at position 131 (SAC) or in the C-terminal region at position 431 (SAE) to generate HPV-16-derived L1:L2 chimeras. All eight chimeras were transiently expressed in Nicotiana benthamiana via Agrobacterium tumefaciens-mediated DNA transfer. SAC chimeras predominantly assembled into higher order structures (T = 1 and T = 7 VLPs), whereas SAE chimeras assembled into capsomeres or formed aggregates. Four SAC and one SAE chimeras were used in vaccination studies in mice, and their ability to generate cross-neutralizing antibodies was analyzed in HPV pseudovirion-based neutralization assays. Of the seven heterologous HPVs tested, cross-neutralization with antisera specific to chimeras was observed for HPV-11 (SAE 65-18), HPV-18 (SAC 108-120, SAC 65-81, SAC 56-81, SAE 65-81), and HPV-58 (SAC 108-120). Interestingly, only anti-SAE 65-81 antiserum showed neutralization of homologous HPV-16, suggesting that the position of the L2 epitope display is critical for maintaining L1-specific neutralizing epitopes.
Collapse
Affiliation(s)
- Aleyo Chabeda
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Albertha R. van Zyl
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Edward P. Rybicki
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Inga I. Hitzeroth
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
7
|
Dingman R, Balu-Iyer SV. Immunogenicity of Protein Pharmaceuticals. J Pharm Sci 2019; 108:1637-1654. [PMID: 30599169 PMCID: PMC6720129 DOI: 10.1016/j.xphs.2018.12.014] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023]
Abstract
Protein therapeutics have drastically changed the landscape of treatment for many diseases by providing a regimen that is highly specific and lacks many off-target toxicities. The clinical utility of many therapeutic proteins has been undermined by the potential development of unwanted immune responses against the protein, limiting their efficacy and negatively impacting its safety profile. This review attempts to provide an overview of immunogenicity of therapeutic proteins, including immune mechanisms and factors influencing immunogenicity, impact of immunogenicity, preclinical screening methods, and strategies to mitigate immunogenicity.
Collapse
Affiliation(s)
- Robert Dingman
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14214
| | - Sathy V Balu-Iyer
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14214.
| |
Collapse
|
8
|
Wang A, Li N, Zhou J, Chen Y, Jiang M, Qi Y, Liu H, Liu Y, Liu D, Zhao J, Wang Y, Zhang G. Mapping the B cell epitopes within the major capsid protein L1 of human papillomavirus type 16. Int J Biol Macromol 2018; 118:1354-1361. [DOI: 10.1016/j.ijbiomac.2018.06.094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 04/13/2018] [Accepted: 06/20/2018] [Indexed: 10/28/2022]
|
9
|
Bywaters SM, Brendle SA, Biryukov J, Wang JW, Walston J, Milici J, Roden RB, Meyers C, Christensen ND. Production and characterization of a novel HPV anti-L2 monoclonal antibody panel. Virology 2018; 524:106-113. [PMID: 30170240 DOI: 10.1016/j.virol.2018.08.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/17/2018] [Accepted: 08/20/2018] [Indexed: 12/21/2022]
Abstract
The major capsid protein of HPV, L1, assembles into pentamers that form a T = 7 icosahedral particle, but the location of the co-assembled minor capsid protein, L2, remains controversial. Several researchers have developed useful monoclonal antibodies targeting L2, but most react with linear epitopes toward the N-terminus. As a means to better define the virus capsid and better assess the localization and exposure of L2 epitopes in the context of assembled HPV, we have developed a panel of 30 monoclonal antibodies (mAbs) which target the N-terminus of L2 amino acids 11-200, previously defined as a broadly protective immunogen. Select mAbs were processed with enzymes and anti-L2 Fabs were generated. These new mAb/Fab probes will be beneficial in future studies to unravel the placement of L2 and to help better define the role of L2 in the HPV lifecycle and the nature of the broadly protective epitopes.
Collapse
Affiliation(s)
- S M Bywaters
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | - S A Brendle
- Jake Gittlen Laboratories for Cancer Research, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | - J Biryukov
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | - J W Wang
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA.
| | - J Walston
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | - J Milici
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | - R B Roden
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA.
| | - C Meyers
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | - N D Christensen
- Jake Gittlen Laboratories for Cancer Research, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
10
|
Kim HJ, Cho SY, Park MH, Kim HJ. Comparison of the size distributions and immunogenicity of human papillomavirus type 16 L1 virus-like particles produced in insect and yeast cells. Arch Pharm Res 2018; 41:544-553. [PMID: 29637494 DOI: 10.1007/s12272-018-1024-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/16/2018] [Indexed: 10/17/2022]
Abstract
Insect and yeast cells are considered the expression systems of choice for producing virus-like particles (VLPs), and numerous types of VLPs have been produced in these systems. However, previous studies were restricted to identifying the characteristics of individual VLP preparations. No direct comparison of the structures and immunogenic properties of insect and yeast-derived VLPs has so far been made. In the present study, the size distribution and immunogenic properties of human papillomavirus type 16 (HPV16) L1 VLPs produced in Spodoptera frugipedra-9 insect cells and Saccharomyces cerevisiae were compared. The insect cell-derived VLPs were larger than the yeast ones (P < 0.0001), with median sizes of 34 and 26 nm, respectively. In addition, the insect-derived VLPs appeared to be more diverse in size than the yeast-derived VLPs. Immunization of mice with 30 ng per dose of VLPs elicited 2.7- and 2.4-fold higher anti-HPV16 L1 IgG and anti-HPV16 neutralizing antibody titers than immunization with the same amounts of the yeast-derived VLPs after the 4th immunizations, respectively. Our results suggest that the choice of expression system critically affects the particle size and immunogenic property of HPV16 L1 VLPs.
Collapse
Affiliation(s)
- Hyoung Jin Kim
- Laboratory of Virology, College of Pharmacy, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, South Korea
| | - Seo Young Cho
- Laboratory of Virology, College of Pharmacy, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, South Korea
| | - Min-Hye Park
- Laboratory of Virology, College of Pharmacy, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, South Korea
| | - Hong-Jin Kim
- Laboratory of Virology, College of Pharmacy, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, South Korea.
| |
Collapse
|
11
|
Guan J, Bywaters SM, Brendle SA, Ashley RE, Makhov AM, Conway JF, Christensen ND, Hafenstein S. High-Resolution Structure Analysis of Antibody V5 and U4 Conformational Epitopes on Human Papillomavirus 16. Viruses 2017; 9:v9120374. [PMID: 29211035 PMCID: PMC5744149 DOI: 10.3390/v9120374] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/13/2017] [Accepted: 11/18/2017] [Indexed: 01/14/2023] Open
Abstract
Cancers attributable to human papillomavirus (HPV) place a huge burden on the health of both men and women. The current commercial vaccines are genotype specific and provide little therapeutic benefit to patients with existing HPV infections. Identifying the conformational epitopes on the virus capsid supports the development of improved recombinant vaccines to maximize long-term protection against multiple types of HPV. Fragments of antibody (Fab) digested from the neutralizing monoclonal antibodies H16.V5 (V5) and H16.U4 (U4) were bound to HPV16 capsids and the structures of the two virus-Fab complexes were solved to near atomic resolution using cryo-electron microscopy. The structures reveal virus conformational changes, the Fab-binding mode to the capsid, the residues comprising the epitope and indicate a potential interaction of U4 with the minor structural protein, L2. Competition enzyme-linked immunosorbent assay (ELISA) showed V5 outcompetes U4 when added sequentially, demonstrating a steric interference even though the footprints do not overlap. Combined with our previously reported immunological and structural results, we propose that the virus may initiate host entry through an interaction between the icosahedral five-fold vertex of the capsid and receptors on the host cell. The highly detailed epitopes identified for the two antibodies provide a framework for continuing biochemical, genetic and biophysical studies.
Collapse
Affiliation(s)
- Jian Guan
- Department of Medicine, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | - Stephanie M Bywaters
- Department of Pathology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | - Sarah A Brendle
- Department of Pathology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | - Robert E Ashley
- Department of Medicine, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | - Alexander M Makhov
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 5th Ave, Pittsburgh, PA 15260, USA.
| | - James F Conway
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 5th Ave, Pittsburgh, PA 15260, USA.
| | - Neil D Christensen
- Department of Pathology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | - Susan Hafenstein
- Department of Medicine, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, Millennium Science Complex, University Park, State College, PA 16802, USA.
| |
Collapse
|
12
|
Antibody Competition Reveals Surface Location of HPV L2 Minor Capsid Protein Residues 17-36. Viruses 2017; 9:v9110336. [PMID: 29125554 PMCID: PMC5707543 DOI: 10.3390/v9110336] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/31/2017] [Accepted: 11/01/2017] [Indexed: 12/30/2022] Open
Abstract
The currently available nonavalent human papillomavirus (HPV) vaccine exploits the highly antigenic L1 major capsid protein to promote high-titer neutralizing antibodies, but is limited to the HPV types included in the vaccine since the responses are highly type-specific. The limited cross-protection offered by the L1 virus-like particle (VLP) vaccine warrants further investigation into cross-protective L2 epitopes. The L2 proteins are yet to be fully characterized as to their precise placement in the virion. Adding to the difficulties in localizing L2, studies have suggested that L2 epitopes are not well exposed on the surface of the mature capsid prior to cellular engagement. Using a series of competition assays between previously mapped anti-L1 monoclonal antibodies (mAbs) (H16.V5, H16.U4 and H16.7E) and novel anti-L2 mAbs, we probed the capsid surface for the location of an L2 epitope (aa17-36). The previously characterized L1 epitopes together with our competition data is consistent with a proposed L2 epitope within the canyons of pentavalent capsomers.
Collapse
|
13
|
Ning T, Wolfe A, Nie J, Huang W, Chen XS, Wang Y. Naturally Occurring Single Amino Acid Substitution in the L1 Major Capsid Protein of Human Papillomavirus Type 16: Alteration of Susceptibility to Antibody-Mediated Neutralization. J Infect Dis 2017; 216:867-876. [PMID: 28968823 DOI: 10.1093/infdis/jix274] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/02/2017] [Indexed: 09/08/2024] Open
Abstract
Background Each vaccine for human papillomavirus type 16 (HPV16) has been developed on the basis of a single variant, and whether these vaccines can prevent infection due to naturally occurring variants was not clear. Methods To examine this question, constructs of 39 naturally occurring single amino acid substitutions in L1 were generated for pseudovirion production, based on the analysis of 1204 HPV16 L1 protein sequences from the National Center for Biotechnology Information and Papilloma Virus Episteme. Results Thirty-one of 39 HPV16 L1 mutants produced infectious pseudovirions that exhibited similar particle-to-infectivity ratios, compared with reference pseudovirions. Twenty-one of 31 pseudovirion-producing mutants showed different susceptibilities to monoclonal antibodies, with 6 resulting in complete loss of reactivity to some of the tested monoclonal antibodies. The vaccinated sera neutralized all 31 variants. Mean neutralization titers of most variants changed by approximately 4-fold, compared with the reference pseudovirions, with the C428W and K430Q mutations displaying 9-fold and 11-fold lower susceptibilities, respectively, to neutralization by the sera than the reference pseudovirions. Conclusions These results suggest that the current HPV vaccines may not offer equal protection against all of the naturally occurring HPV16 variants discovered so far.
Collapse
Affiliation(s)
- Tingting Ning
- Graduate School of Peking Union Medical College
- Division of HIV/AIDS and Sexually Transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Aaron Wolfe
- Program in Genetic, Molecular, and Cellular Biology, Keck School of Medicine
| | - Jianhui Nie
- Division of HIV/AIDS and Sexually Transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Weijin Huang
- Division of HIV/AIDS and Sexually Transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Xiaojiang S Chen
- Program in Genetic, Molecular, and Cellular Biology, Keck School of Medicine
- Molecular and Computational Biology Section, Department of Biological Sciences
- Department of Chemistry, University of Southern California, Los Angeles
| | - Youchun Wang
- Graduate School of Peking Union Medical College
- Division of HIV/AIDS and Sexually Transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| |
Collapse
|
14
|
Cerqueira C, Thompson CD, Day PM, Pang YYS, Lowy DR, Schiller JT. Efficient Production of Papillomavirus Gene Delivery Vectors in Defined In Vitro Reactions. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 5:165-179. [PMID: 28497074 PMCID: PMC5423317 DOI: 10.1016/j.omtm.2017.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/13/2017] [Indexed: 11/17/2022]
Abstract
Papillomavirus capsids can package a wide variety of nonviral DNA plasmids and deliver the packaged genetic material to cells, making them attractive candidates for targeted gene delivery vehicles. However, the papillomavirus vectors generated by current methods are unlikely to be suitable for clinical applications. We have developed a chemically defined, cell-free, papillomavirus-based vector production system that allows the incorporation of purified plasmid DNA (pseudogenome) into high-titer papillomavirus L1/L2 capsids. We investigated the incorporation of several DNA forms into a variety of different papillomavirus types, including human and animal types. Our results show that papillomavirus capsids can package and transduce linear or circular DNA under defined conditions. Packaging and transduction efficiencies were surprisingly variable across capsid types, DNA forms, and assembly reaction conditions. The pseudoviruses produced by these methods are sensitive to the same entry inhibitors as cell-derived pseudovirions, including neutralizing antibodies and heparin. The papillomavirus vector production systems developed in this study generated as high as 1011 infectious units/mg of L1. The pseudoviruses were infectious both in vitro and in vivo and should be compatible with good manufacturing practice (GMP) requirements.
Collapse
Affiliation(s)
- Carla Cerqueira
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cynthia D. Thompson
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Patricia M. Day
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yuk-Ying S. Pang
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Douglas R. Lowy
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - John T. Schiller
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Corresponding author: John T. Schiller, Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 37, Room 4112B, Bethesda, MD 20892, USA.
| |
Collapse
|
15
|
Baidya S, Das R, Kabir MG, Arifuzzaman M. Epitope design of L1 protein for vaccine production against Human Papilloma Virus types 16 and 18. Bioinformation 2017; 13:86-93. [PMID: 28584449 PMCID: PMC5450250 DOI: 10.6026/97320630013086] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 02/07/2023] Open
Abstract
Cervical cancer accounts for about two-thirds of all cancer cases linked etiologically to Human Papilloma Virus (HPV). 15 oncogenic HPV types can cause cervical cancer, of which HPV16 and HPV18 combinedly account for about 70% of it. So, effective epitope design for the clinically relevant HPV types 16 and 18 would be of major medical benefit. Here, a comprehensive analysis is carried out to predict the epitopes against HPV types 16 and 18 through "reverse vaccinology" approach. We attempted to identify the evolutionarily conserved regions of major capsid protein (L1) as well as minor capsid protein (L2) of HPV and designed epitopes within these regions. In this study, we analyzed about 49 and 27 sequences of HPV L2 and L1 proteins respectively. Since we found that the intertype variability of L2 is higher than for L1 proteins, our analysis was emphasized on epitopes of L1 of HPV types 16 and 18. We had selected HLA-A*0201, DRB1*1501, DQB1*0602, DRB1*0401 and DQB1*0301 alleles for the prediction of T cell epitopes of L1 of HPV 16 and 18. Finally, we reported that predicted epitope sequences EEYDLQFIFQLCKITLTA, and RHGEEYDLQFIFQLCKITLTA of L1 protein of HPV 16, and LPDPNKF, PETQRLVWAC, PVPGQYDA, YNPETQRLVWAC, DTGYGAMD, PVPGQYDATK, KQDIPKVSAYQYRVFRV, RDNVSVDYKQTQLCI and YSRHVEEYDLQFIF of L1 protein of HPV 18 could be therapeutic tools for vaccine design against HPV.
Collapse
Affiliation(s)
- Sunanda Baidya
- Department of Biochemistry & Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh
| | - Rasel Das
- Leibniz Institute for Surface Modification, Permoserstraße 15, 04318 Leipzig, Germany
| | - Md. Golam Kabir
- Department of Biochemistry & Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh
| | - Md. Arifuzzaman
- Department of Biochemistry and Biotechnology, University of Science and Technology Chittagong (USTC), Foy’s Lake, Chittagong 4202, Bangladesh
| |
Collapse
|
16
|
Trausch JJ, Shank-Retzlaff M, Verch T. Development and Characterization of an HPV Type-16 Specific Modified DNA Aptamer for the Improvement of Potency Assays. Anal Chem 2017; 89:3554-3561. [PMID: 28233502 DOI: 10.1021/acs.analchem.6b04852] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Measuring vaccine potency is critical for vaccine release and is often accomplished using antibody-based ELISAs. Antibodies can be associated with significant drawbacks that are often overlooked including lot-to-lot variability, problems with cell-line maintenance, limited stability, high cost, and long discovery lead times. Here, we address many of these issues through the development of an aptamer, known as a slow off-rate modified DNA aptamer (SOMAmer), which targets a vaccine antigen in the human papillomavirus (HPV) vaccine Gardasil. The aptamer, termed HPV-07, was selected to bind the Type 16 virus-like-particle (VLP) formed by the self-assembling capsid protein L1. It is capable of binding with high sensitivity (EC50 of 0.1 to 0.4 μg/mL depending on assay format) while strongly discriminating against other VLP types. The aptamer competes for binding with the neutralizing antibody H16.V5, indicating at least partial recognition of a neutralizing and clinically relevant epitope. This makes it a useful reagent for measuring both potency and stability. When used in an ELISA format, the aptamer displays both high precision (intermediate precision of 6.3%) and a large linear range spanning from 25% to 200% of a typical formulation. To further exploit the advantages of aptamers, a simplified mix and read assay was also developed. This assay format offers significant time and resource reductions compared to a traditional ELISA. These results show aptamers are suitable reagents for biological potency assays, and we expect that their implementation could improve upon current assay formats.
Collapse
Affiliation(s)
- Jeremiah J Trausch
- Department of Vaccine Analytical Development, MRL, Merck & Co., Inc. , West Point, Pennsylvania 19486, United States
| | - Mary Shank-Retzlaff
- Department of Vaccine Analytical Development, MRL, Merck & Co., Inc. , West Point, Pennsylvania 19486, United States
| | - Thorsten Verch
- Department of Vaccine Analytical Development, MRL, Merck & Co., Inc. , West Point, Pennsylvania 19486, United States
| |
Collapse
|
17
|
Variants of human papillomaviruses 16 (HPV16) in Uigur women in Xinjiang, China. Infect Agent Cancer 2016; 11:44. [PMID: 27540411 PMCID: PMC4989296 DOI: 10.1186/s13027-016-0089-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 06/27/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Persistent infection of high-risk human papillomaviruses 16 (HPV16) has been considered as the leading cause of cervical cancer. In this study we assessed HPV16 sequence variation and genetic diversity of HPV16 variants in cervical cancer in Uigur women in Xinjiang, China. We analyzed the nucleotide sequences of the open reading frames of E6 and E7, and part of the open reading frames of L1 of HPV16 in Uigur women. METHODS Biopsies of histologically confirmed HPV16 infections with cervical cancer were obtained from 43 Uigur women in Xinjiang, China. E6, E7 and L1 genes of HPV16 of all samples were amplified and sequenced; the sequences were used in phylogenetic analysis of HPV16 variants. RESULTS Our analysis revealed nine nucleotide changes in E6 (five changes), E7 (one change) and L1 (three changes) gene. The most frequently observed variations were T350G (79.1 %). One variation T295G (D64E) at E6 were detected in 6 cases (KT959536, KT959542, KT959546, KT959550, KT959553, KT959558). Deletion (464Asp) along with insertion (448Ser) were observed in L1 (100 %). Most variants were European lineage (97.7 %); only one belongs to Asia variants with common T178G (D25E) in E6 and A647G (N29S) in E7. CONCLUSION The most prevalent HPV16 variants in the Uigur women we studied were of the European lineage. Our results indicate that HPV16 European lineage may serve as a harmful factor associated with the development and progression of cervical cancer.
Collapse
|
18
|
López-Toledo G, Schädlich L, Alonso-Castro ÁJ, Monroy-García A, García-Rocha R, Guido MC, Gissmann L, García-Carrancá A. Immunization with Human Papillomavirus 16 L1+E2 Chimeric Capsomers Elicits Cellular Immune Response and Antitumor Activity in a Mouse Model. Viral Immunol 2016; 29:276-87. [PMID: 27058179 DOI: 10.1089/vim.2015.0080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Development of cervical cancer is associated with persistent infections by high-risk human papillomavirus (HPV). Although current HPV L1-based prophylactic vaccines prevent infection, they do not help to eliminate prevalent infections or lesions. Our aims were (i) to generate a vaccine combining prophylactic and therapeutic properties by producing chimeric capsomers after fusion of the L1 protein to different fragments of E2 from HPV 16, and (ii) to evaluate their capacity to generate an antitumoral cellular response, while conserving L1 neutralizing epitopes. Chimeric proteins were produced in Escherichia coli and purified by glutathione S-transferase (GST)-affinity chromatography. Their structure was characterized using size exclusion chromatography, sucrose gradient centrifugation, electron microscopy, and anti-L1 enzyme-linked immunosorbent assay. All chimeric proteins form capsomers and heterogeneous aggregates. One, containing part of the carboxy-terminal domain of E2 and its hinge region (L1Δ+E2H/NC, aa 206-307), conserved the neutralizing epitope H16.V5. We then evaluated the capacity of this chimeric protein to induce a cytotoxic T-cell response against HPV 16 E2. In (51)Cr release cytotoxicity assays, splenocytes from C57BL/6 immunized mice recognized and lysed TC-1/E2 cells, which express and present endogenously processed E2 peptides. Moreover, this E2-specific cytotoxic response inhibited the growth of tumors of TC-1/E2 cells in mice. Finally, we identified an epitope (aa 292-301) of E2 involved in this cytotoxic response. We conclude that the L1Δ+E2H/NC chimeric protein produced in bacteria can be an effective and economically interesting candidate for a combined prophylactic and therapeutic vaccine that could help eliminating HPV16-positive low-grade cervical lesions and persistent viral infections, thus preventing the development of lesions and, at the same time, the establishment of new infections.
Collapse
Affiliation(s)
- Gabriela López-Toledo
- 1 Department of Molecular Biology and Biotechnology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México , Mexico City, Mexico .,2 Laboratory of Virus and Cancer, Division of Basic Research, Instituto Nacional de Cancerología-SS , Mexico City, Mexico
| | - Lysann Schädlich
- 3 Division of Genome Modifications and Carcinogenesis, German Cancer Research Center (DKFZ) , Heidelberg, Germany
| | - Ángel Josabad Alonso-Castro
- 2 Laboratory of Virus and Cancer, Division of Basic Research, Instituto Nacional de Cancerología-SS , Mexico City, Mexico
| | - Alberto Monroy-García
- 4 Laboratory of Immunobiology, Facultad de Estudios Superiores Zaragoza , Unidad de Investigación en Diferenciación Celular y Cáncer, UMIEZ, UNAM, Mexico City, Mexico .,5 Laboratory of Immunology and Cancer, Unidad de Investigación Médica en Enfermedades Oncológicas , CMN SXXI, IMSS, Mexico City, Mexico
| | - Rosario García-Rocha
- 5 Laboratory of Immunology and Cancer, Unidad de Investigación Médica en Enfermedades Oncológicas , CMN SXXI, IMSS, Mexico City, Mexico .,6 Department of Immunology, Escuela Nacional de Ciencias Biológicas , IPN, Mexico City, Mexico
| | - Miriam C Guido
- 1 Department of Molecular Biology and Biotechnology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México , Mexico City, Mexico .,2 Laboratory of Virus and Cancer, Division of Basic Research, Instituto Nacional de Cancerología-SS , Mexico City, Mexico
| | - Lutz Gissmann
- 3 Division of Genome Modifications and Carcinogenesis, German Cancer Research Center (DKFZ) , Heidelberg, Germany
| | - Alejandro García-Carrancá
- 1 Department of Molecular Biology and Biotechnology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México , Mexico City, Mexico .,2 Laboratory of Virus and Cancer, Division of Basic Research, Instituto Nacional de Cancerología-SS , Mexico City, Mexico
| |
Collapse
|
19
|
Zhang X, Xin L, Li S, Fang M, Zhang J, Xia N, Zhao Q. Lessons learned from successful human vaccines: Delineating key epitopes by dissecting the capsid proteins. Hum Vaccin Immunother 2016; 11:1277-92. [PMID: 25751641 DOI: 10.1080/21645515.2015.1016675] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Recombinant VLP-based vaccines have been successfully used against 3 diseases caused by viral infections: Hepatitis B, cervical cancer and hepatitis E. The VLP approach is attracting increasing attention in vaccine design and development for human and veterinary use. This review summarizes the clinically relevant epitopes on the VLP antigens in successful human vaccines. These virion-like epitopes, which can be delineated with molecular biology, cryo-electron microscopy and x-ray crystallographic methods, are the prerequisites for these efficacious vaccines to elicit functional antibodies. The critical epitopes and key factors influencing these epitopes are discussed for the HEV, HPV and HBV vaccines. A pentamer (for HPV) or a dimer (for HEV and HBV), rather than a monomer, is the basic building block harboring critical epitopes for the assembly of VLP antigen. The processing and formulation of VLP-based vaccines need to be developed to promote the formation and stabilization of these epitopes in the recombinant antigens. Delineating the critical epitopes is essential for antigen design in the early phase of vaccine development and for critical quality attribute analysis in the commercial phase of vaccine manufacturing.
Collapse
Affiliation(s)
- Xiao Zhang
- a State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases; Xiamen University ; Xiamen , Fujian , PR China
| | | | | | | | | | | | | |
Collapse
|
20
|
Vega JF, Vicente-Alique E, Núñez-Ramírez R, Wang Y, Martínez-Salazar J. Evidences of Changes in Surface Electrostatic Charge Distribution during Stabilization of HPV16 Virus-Like Particles. PLoS One 2016; 11:e0149009. [PMID: 26885635 PMCID: PMC4757414 DOI: 10.1371/journal.pone.0149009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/26/2016] [Indexed: 11/25/2022] Open
Abstract
The stabilization of human papillomavirus type 16 virus-like particles has been examined by means of different techniques including dynamic and static light scattering, transmission electron microscopy and electrophoretic mobility. All these techniques provide different and often complementary perspectives about the aggregation process and generation of stabilized virus-like particles after a period of time of 48 hours at a temperature of 298 K. Interestingly, static light scattering results point towards a clear colloidal instability in the initial systems, as suggested by a negative value of the second virial coefficient. This is likely related to small repulsive electrostatic interactions among the particles, and in agreement with relatively small absolute values of the electrophoretic mobility and, hence, of the net surface charges. At this initial stage the small repulsive interactions are not able to compensate binding interactions, which tend to aggregate the particles. As time proceeds, an increase of the size of the particles is accompanied by strong increases, in absolute values, of the electrophoretic mobility and net surface charge, suggesting enhanced repulsive electrostatic interactions and, consequently, a stabilized colloidal system. These results show that electrophoretic mobility is a useful methodology that can be applied to screen the stabilization factors for virus-like particles during vaccine development.
Collapse
Affiliation(s)
- Juan F. Vega
- Biophym, Departamento de Física Macromolecular, Instituto de Estructura de la Materia, IEM-CSIC, Madrid, Spain
- * E-mail:
| | - Ernesto Vicente-Alique
- Biophym, Departamento de Física Macromolecular, Instituto de Estructura de la Materia, IEM-CSIC, Madrid, Spain
| | - Rafael Núñez-Ramírez
- Biophym, Departamento de Física Macromolecular, Instituto de Estructura de la Materia, IEM-CSIC, Madrid, Spain
| | - Yang Wang
- Sino Biological, Inc., Beijing, People’s Republic of China
| | - Javier Martínez-Salazar
- Biophym, Departamento de Física Macromolecular, Instituto de Estructura de la Materia, IEM-CSIC, Madrid, Spain
| |
Collapse
|
21
|
Lamprecht RL, Kennedy P, Huddy SM, Bethke S, Hendrikse M, Hitzeroth II, Rybicki EP. Production of Human papillomavirus pseudovirions in plants and their use in pseudovirion-based neutralisation assays in mammalian cells. Sci Rep 2016; 6:20431. [PMID: 26853456 PMCID: PMC4745065 DOI: 10.1038/srep20431] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 01/04/2016] [Indexed: 01/21/2023] Open
Abstract
Human papillomaviruses (HPV) cause cervical cancer and have recently also been implicated in mouth, laryngeal and anogenital cancers. There are three commercially available prophylactic vaccines that show good efficacy; however, efforts to develop second-generation vaccines that are more affordable, stable and elicit a wider spectrum of cross-neutralising immunity are still ongoing. Testing antisera elicited by current and candidate HPV vaccines for neutralizing antibodies is done using a HPV pseudovirion (PsV)-based neutralisation assay (PBNA). PsVs are produced by transfection of mammalian cell cultures with plasmids expressing L1 and L2 capsid proteins, and a reporter gene plasmid, a highly expensive process. We investigated making HPV-16 PsVs in plants, in order to develop a cheaper alternative. The secreted embryonic alkaline phosphatase (SEAP) reporter gene and promoter were cloned into a geminivirus-derived plant expression vector, in order to produce circular dsDNA replicons. This was co-introduced into Nicotiana benthamiana plants with vectors expressing L1 and L2 via agroinfiltration, and presumptive PsVs were purified. The PsVs contained DNA, and could be successfully used for PBNA with anti-HPV antibodies. This is the first demonstration of the production of mammalian pseudovirions in plants, and the first demonstration of the potential of plants to make DNA vaccines.
Collapse
Affiliation(s)
- Renate L Lamprecht
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, 7701, South Africa
| | - Paul Kennedy
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, 7701, South Africa
| | - Suzanne M Huddy
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, 7701, South Africa
| | - Susanne Bethke
- Pharmaceutical Product Development, Fraunhofer IME, Aachen, 52074, Germany
| | - Megan Hendrikse
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, 7701, South Africa
| | - Inga I Hitzeroth
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, 7701, South Africa
| | - Edward P Rybicki
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, 7701, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, 7701, South Africa
| |
Collapse
|
22
|
Xia L, Xian Y, Wang D, Chen Y, Huang X, Bi X, Yu H, Fu Z, Liu X, Li S, An Z, Luo W, Zhao Q, Xia N. A human monoclonal antibody against HPV16 recognizes an immunodominant and neutralizing epitope partially overlapping with that of H16.V5. Sci Rep 2016; 6:19042. [PMID: 26750243 PMCID: PMC4707464 DOI: 10.1038/srep19042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/03/2015] [Indexed: 11/13/2022] Open
Abstract
The presence of neutralizing epitopes in human papillomavirus (HPV) L1 virus-like particles (VLPs) is the structural basis of prophylactic vaccines. An anti-HPV16 neutralizing monoclonal antibody (N-mAb) 26D1 was isolated from a memory B cell of a human vaccinee. The pre-binding of heparan sulfate to VLPs inhibited the binding of both N-mAbs to the antigen, indicating that the epitopes are critical for viral cell attachment/entry. Hybrid VLP binding with surface loop swapping between types indicated the essential roles of the DE and FG loops for both 26D1 (DEa in particular) and H16.V5 binding. Specifically, Tyr(135) and Val(141) on the DEa loop were shown to be critical residues for 26D1 binding via site-directed mutagenesis. Partially overlap between the epitopes between 26D1 and H16.V5 was shown using pairwise epitope mapping, and their binding difference is demonstrated to be predominantly in DE loop region. In addition, 26D1 epitope is immunodominant epitope recognized by both antibodies elicited by the authentic virus from infected individuals and polyclonal antibodies from vaccinees. Overall, a partially overlapping but distinct neutralizing epitope from that of H16.V5 was identified using a human N-mAb, shedding lights to the antibody arrays as part of human immune response to vaccination and infection.
Collapse
Affiliation(s)
- Lin Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University; Xiamen 361105, China
| | - Yangfei Xian
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University; Xiamen 361105, China
| | - Daning Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University; Xiamen 361105, China
| | - Yuanzhi Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University; Xiamen 361105, China
| | - Xiaofen Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University; Xiamen 361105, China
| | - Xingjian Bi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University; Xiamen 361105, China
| | - Hai Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University; Xiamen 361105, China
| | - Zheng Fu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University; Xiamen 361105, China
| | - Xinlin Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University; Xiamen 361105, China
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University; Xiamen 361105, China
| | - Zhiqiang An
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University; Xiamen 361105, China
- Texas Therapeutics Institute, The Brown Foundation of Molecular Medicine, University of Texas Health Science Center at Houston, Houston TX77030, USA
| | - Wenxin Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University; Xiamen 361105, China
| | - Qinjian Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University; Xiamen 361105, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University; Xiamen 361105, China
| |
Collapse
|
23
|
Cruz L, Biryukov J, Conway MJ, Meyers C. Cleavage of the HPV16 Minor Capsid Protein L2 during Virion Morphogenesis Ablates the Requirement for Cellular Furin during De Novo Infection. Viruses 2015; 7:5813-30. [PMID: 26569287 PMCID: PMC4664983 DOI: 10.3390/v7112910] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/23/2015] [Accepted: 10/29/2015] [Indexed: 12/17/2022] Open
Abstract
Infections by high-risk human papillomaviruses (HPV) are the causative agents for the development of cervical cancer. As with other non-enveloped viruses, HPVs are taken up by the cell through endocytosis following primary attachment to the host cell. Through studies using recombinant pseudovirus particles (PsV), many host cellular proteins have been implicated in the process. The proprotein convertase furin has been demonstrated to cleave the minor capsid protein, L2, post-attachment to host cells and is required for infectious entry by HPV16 PsV. In contrast, using biochemical inhibition by a furin inhibitor and furin-negative cells, we show that tissue-derived HPV16 native virus (NV) initiates infection independent of cellular furin. We show that HPV16 L2 is cleaved during virion morphogenesis in differentiated tissue. In addition, HPV45 is also not dependent on cellular furin, but two other alpha papillomaviruses, HPV18 and HPV31, are dependent on the activity of cellular furin for infection.
Collapse
Affiliation(s)
- Linda Cruz
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | - Jennifer Biryukov
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | - Michael J Conway
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | - Craig Meyers
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
24
|
The U4 Antibody Epitope on Human Papillomavirus 16 Identified by Cryo-electron Microscopy. J Virol 2015; 89:12108-17. [PMID: 26401038 DOI: 10.1128/jvi.02020-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 09/16/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The human papillomavirus (HPV) major structural protein L1 composes capsomers that are linked together through interactions mediated by the L1 C terminus to constitute a T=7 icosahedral capsid. H16.U4 is a type-specific monoclonal antibody recognizing a conformation-dependent neutralizing epitope of HPV thought to include the L1 protein C terminus. The structure of human papillomavirus 16 (HPV16) complexed with H16.U4 fragments of antibody (Fab) was solved by cryo-electron microscopy (cryo-EM) image reconstruction. Atomic structures of virus and Fab were fitted into the corresponding cryo-EM densities to identify the antigenic epitope. The antibody footprint mapped predominately to the L1 C-terminal arm with an additional contact point on the side of the capsomer. This footprint describes an epitope that is presented capsid-wide. However, although the H16.U4 epitope suggests the presence of 360 potential binding sites exposed in the capsid valley between each capsomer, H16.U4 Fab bound only to epitopes located around the icosahedral five-fold vertex of the capsid. Thus, the binding characteristics of H16.U4 defined in this study showed a distinctive selectivity for local conformation-dependent interactions with specific L1 invading arms between five-fold related capsomers. IMPORTANCE Human papillomavirus 16 (HPV16) is the most prevalent oncogenic genotype in HPV-associated anogenital and oral cancers. Here we use cryo-EM reconstruction techniques to solve the structures of the HPV16 capsid complexes using H16.U4 fragment of antibody (Fab). Different from most other antibodies directed against surface loops, H16.U4 monoclonal antibody is unique in targeting the C-terminal arm of the L1 protein. This monoclonal antibody (MAb) is used throughout the HPV research community in HPV serological and vaccine development and to define mechanisms of HPV uptake. The unique binding mode of H16.U4 defined here shows important conformation-dependent interactions within the HPV16 capsid. By targeting an important structural and conformational epitope, H16.U4 may identify subtle conformational changes in different maturation stages of the HPV capsid and provide a key probe to analyze the mechanisms of HPV uptake during the early stages of virus infection. Our analyses precisely define important conformational epitopes on HPV16 capsids that are key targets for successful HPV prophylactic vaccines.
Collapse
|
25
|
Biryukov J, Meyers C. Papillomavirus Infectious Pathways: A Comparison of Systems. Viruses 2015; 7:4303-25. [PMID: 26247955 PMCID: PMC4576184 DOI: 10.3390/v7082823] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 06/06/2015] [Accepted: 07/23/2015] [Indexed: 12/19/2022] Open
Abstract
The HPV viral lifecycle is tightly linked to the host cell differentiation, causing difficulty in growing virions in culture. A system that bypasses the need for differentiating epithelium has allowed for generation of recombinant particles, such as virus-like particles (VLPs), pseudovirions (PsV), and quasivirions (QV). Much of the research looking at the HPV life cycle, infectivity, and structure has been generated utilizing recombinant particles. While recombinant particles have proven to be invaluable, allowing for a rapid progression of the HPV field, there are some significant differences between recombinant particles and native virions and very few comparative studies using native virions to confirm results are done. This review serves to address the conflicting data in the HPV field regarding native virions and recombinant particles.
Collapse
Affiliation(s)
- Jennifer Biryukov
- Department of Microbiology and Immunology, The Pennsylvania State University, 500 University Drive, Hershey, PA 17033, USA.
| | - Craig Meyers
- Department of Microbiology and Immunology, The Pennsylvania State University, 500 University Drive, Hershey, PA 17033, USA.
| |
Collapse
|
26
|
Naturally Occurring Capsid Protein Variants of Human Papillomavirus Genotype 31 Represent a Single L1 Serotype. J Virol 2015; 89:7748-57. [PMID: 25995264 DOI: 10.1128/jvi.00842-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/06/2015] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED We investigated naturally occurring variation within the major (L1) and minor (L2) capsid proteins of oncogenic human papillomavirus (HPV) genotype 31 (HPV31) to determine the impact on capsid antigenicity. L1L2 pseudoviruses (PsVs) representing the three HPV31 variant lineages, variant lineages A, B, and C, exhibited comparable particle-to-infectivity ratios and morphologies. Lineage-specific L1L2 PsVs demonstrated subtle differences in susceptibility to neutralization by antibodies elicited following vaccination or preclinical L1 virus-like particle (VLP) immunization or by monoclonal antibodies; however, these differences were generally of a low magnitude. These data indicate that the diagnostic lineage-specific single nucleotide polymorphisms within the HPV31 capsid genes have a limited effect on L1 antibody-mediated neutralization and that the three HPV31 variant lineages belong to a single L1 serotype. These data contribute to our understanding of HPV L1 variant antigenicity. IMPORTANCE The virus coat (capsid) of the human papillomavirus contains major (L1) and minor (L2) capsid proteins. These proteins facilitate host cell attachment and viral infectivity and are the targets for antibodies which interfere with these events. In this study, we investigated the impact of naturally occurring variation within these proteins upon susceptibility to viral neutralization by antibodies induced by L1 VLP immunization. We demonstrate that HPV31 L1 and L2 variants exhibit similar susceptibility to antibody-mediated neutralization and that for the purposes of L1 VLP-based vaccines, these variant lineages represent a single serotype.
Collapse
|
27
|
Hassett KJ, Meinerz NM, Semmelmann F, Cousins MC, Garcea RL, Randolph TW. Development of a highly thermostable, adjuvanted human papillomavirus vaccine. Eur J Pharm Biopharm 2015; 94:220-8. [PMID: 25998700 DOI: 10.1016/j.ejpb.2015.05.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 05/06/2015] [Accepted: 05/13/2015] [Indexed: 01/06/2023]
Abstract
A major impediment to economical, worldwide vaccine distribution is the requirement for a "cold chain" to preserve antigenicity. We addressed this problem using a model human papillomavirus (HPV) vaccine stabilized by immobilizing HPV16 L1 capsomeres, i.e., pentameric subunits of the virus capsid, within organic glasses formed by lyophilization. Lyophilized glass and liquid vaccine formulations were incubated at 50°C for 12weeks, and then analyzed for retention of capsomere conformational integrity and the ability to elicit neutralizing antibody responses after immunization of BALB/c mice. Capsomeres in glassy-state vaccines retained tertiary and quaternary structure, and critical conformational epitopes. Moreover, glassy formulations adjuvanted with aluminum hydroxide or aluminum hydroxide and glycopyranoside lipid A were not only as immunogenic as the commercially available HPV vaccine Cervarix®, but also retained complete neutralizing immunogenicity after high-temperature storage. The thermal stability of such adjuvanted vaccine powder preparations may thus eliminate the need for the cold chain.
Collapse
Affiliation(s)
- Kimberly J Hassett
- Center for Pharmaceutical Biotechnology, Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, United States
| | - Natalie M Meinerz
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, United States; The Bio Frontiers Institute, University of Colorado, Boulder, CO 80309, United States
| | - Florian Semmelmann
- Center for Pharmaceutical Biotechnology, Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, United States
| | - Megan C Cousins
- Center for Pharmaceutical Biotechnology, Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, United States
| | - Robert L Garcea
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, United States; The Bio Frontiers Institute, University of Colorado, Boulder, CO 80309, United States
| | - Theodore W Randolph
- Center for Pharmaceutical Biotechnology, Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, United States.
| |
Collapse
|
28
|
A cryo-electron microscopy study identifies the complete H16.V5 epitope and reveals global conformational changes initiated by binding of the neutralizing antibody fragment. J Virol 2014; 89:1428-38. [PMID: 25392224 DOI: 10.1128/jvi.02898-14] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED Human papillomavirus 16 (HPV16) is a worldwide health threat and an etiologic agent of cervical cancer. To understand the antigenic properties of HPV16, we pursued a structural study to elucidate HPV capsids and antibody interactions. The cryo-electron microscopy (cryo-EM) structures of a mature HPV16 particle and an altered capsid particle were solved individually and as complexes with fragment of antibody (Fab) from the neutralizing antibody H16.V5. Fitted crystal structures provided a pseudoatomic model of the virus-Fab complex, which identified a precise footprint of H16.V5, including previously unrecognized residues. The altered-capsid-Fab complex map showed that binding of the Fab induced significant conformational changes that were not seen in the altered-capsid structure alone. These changes included more ordered surface loops, consolidated so-called "invading-arm" structures, and tighter intercapsomeric connections at the capsid floor. The H16.V5 Fab preferentially bound hexavalent capsomers likely with a stabilizing effect that directly correlated with the number of bound Fabs. Additional cryo-EM reconstructions of the virus-Fab complex for different incubation times and structural analysis provide a model for a hyperstabilization of the capsomer by H16.V5 Fab and showed that the Fab distinguishes subtle differences between antigenic sites. IMPORTANCE Our analysis of the cryo-EM reconstructions of the HPV16 capsids and virus-Fab complexes has identified the entire HPV.V5 conformational epitope and demonstrated a detailed neutralization mechanism of this clinically important monoclonal antibody against HPV16. The Fab bound and ordered the apical loops of HPV16. This conformational change was transmitted to the lower region of the capsomer, resulting in enhanced intercapsomeric interactions evidenced by the more ordered capsid floor and "invading-arm" structures. This study advances the understanding of the neutralization mechanism used by H16.V5.
Collapse
|
29
|
DiGiuseppe S, Bienkowska-Haba M, Hilbig L, Sapp M. The nuclear retention signal of HPV16 L2 protein is essential for incoming viral genome to transverse the trans-Golgi network. Virology 2014; 458-459:93-105. [PMID: 24928042 DOI: 10.1016/j.virol.2014.04.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/12/2014] [Accepted: 04/17/2014] [Indexed: 11/27/2022]
Abstract
The Human papillomavirus (HPV) capsid is composed of the major and minor capsid proteins, L1 and L2, respectively. Infectious entry requires a complex series of conformational changes in both proteins that lead to uptake and allow uncoating to occur. During entry, the capsid is disassembled and host cyclophilins dissociate L1 protein from the L2/DNA complex. Herein, we describe a mutant HPV16 L2 protein (HPV16 L2-R302/5A) that traffics pseudogenome to the trans-Golgi network (TGN) but fails to egress. Our data provide further evidence that HPV16 traffics through the TGN and demonstrates that L2 is essential for TGN egress. Furthermore, we show that cyclophilin activity is required for the L2/DNA complex to be transported to the TGN which is accompanied by a reduced L1 protein levels.
Collapse
Affiliation(s)
- Stephen DiGiuseppe
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Feist-Weiller Cancer Center, LSU Health Shreveport, Shreveport, LA, USA
| | - Malgorzata Bienkowska-Haba
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Feist-Weiller Cancer Center, LSU Health Shreveport, Shreveport, LA, USA
| | - Lydia Hilbig
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Feist-Weiller Cancer Center, LSU Health Shreveport, Shreveport, LA, USA
| | - Martin Sapp
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Feist-Weiller Cancer Center, LSU Health Shreveport, Shreveport, LA, USA.
| |
Collapse
|
30
|
Wang SX, Zhang XS, Guan HS, Wang W. Potential anti-HPV and related cancer agents from marine resources: an overview. Mar Drugs 2014; 12:2019-35. [PMID: 24705500 PMCID: PMC4012449 DOI: 10.3390/md12042019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 03/10/2014] [Accepted: 03/14/2014] [Indexed: 12/14/2022] Open
Abstract
Recently, the studies on the prevention and treatment of human papillomavirus (HPV) which is closely related to the cervical cancer and other genital diseases are attracting more and more attention all over the world. Marine-derived polysaccharides and other bioactive compounds have been shown to possess a variety of anti-HPV and related cancer activities. This paper will review the recent progress in research on the potential anti-HPV and related cancer agents from marine resources. In particular, it will provide an update on the anti-HPV actions of heparinoid polysaccharides and bioactive compounds present in marine organisms, as well as the therapeutic vaccines relating to marine organisms. In addition, the possible mechanisms of anti-HPV actions of marine bioactive compounds and their potential for therapeutic application will also be summarized in detail.
Collapse
Affiliation(s)
- Shi-Xin Wang
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao 266003, China.
| | - Xiao-Shuang Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao 266003, China.
| | - Hua-Shi Guan
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao 266003, China.
| | - Wei Wang
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
31
|
Singharoy A, Polavarapu A, Joshi H, Baik MH, Ortoleva P. Epitope fluctuations in the human papillomavirus are under dynamic allosteric control: a computational evaluation of a new vaccine design strategy. J Am Chem Soc 2013; 135:18458-68. [PMID: 24199651 DOI: 10.1021/ja407489r] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The dynamic properties of the capsid of the human papillomavirus (HPV) type 16 were examined using classical molecular dynamics simulations. By systematically comparing the structural fluctuations of the capsid protein, a strong dynamic allosteric connection between the epitope containing loops and the h4 helix located more than 50 Å away is identified, which was not recognized thus far. Computer simulations show that restricting the structural fluctuations of the h4 helix is key to rigidifying the epitopes, which is thought to be required for eliciting a proper immune response. The allostery identified in the components of the HPV is nonclassical because the mean structure of the epitope carrying loops remains unchanged, but as a result of allosteric effect the structural fluctuations are altered significantly, which in turn changes the biochemical reactivity profile of the epitopes. Exploiting this novel insight, a new vaccine design strategy is proposed wherein a relatively small virus capsid fragment is deposited on a silica nanoparticle in such a way that the fluctuations of the h4 helix are suppressed. The structural and dynamic properties of the epitope carrying loops on this hybrid nanoparticle match the characteristics of epitopes found on the full virus-like particle precisely, suggesting that these nanoparticles may serve as potent, cost-effective, and safe alternatives to traditionally developed vaccines. The structural and dynamic properties of the hybrid nanoparticle are examined in detail to establish the general concepts of the proposed new design.
Collapse
Affiliation(s)
- Abhishek Singharoy
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405, United States
| | | | | | | | | |
Collapse
|
32
|
Mutations in human papillomavirus type 16 L1 hypervariable surface-exposed loops affect L2 binding and DNA encapsidation. J Gen Virol 2013; 94:1841-1849. [DOI: 10.1099/vir.0.054205-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Prophylactic vaccines against human papillomavirus (HPV) based on virus-like particles (VLP) induce type-specific neutralizing antibodies against a small number of hypervariable residues positioned in surface-exposed loops of the major capsid protein L1. To investigate the importance of these residues for neutralization, cross-neutralization, L2 incorporation and genome encapsidation, ten surface-exposed amino acid residues in four hypervariable loops of L1 were mutated. VLPs containing mutated or WT L1, with or without WT L2, were produced in 293TT cells using pseudovirion expression vectors. The mutations reduced the ability to induce neutralizing antibodies and to incorporate the L2 protein in the capsid. Ability to induce cross-neutralizing antibodies and to encapsidate pseudogenomes were completely abrogated. In summary, the surface-exposed L1 loops are important for the function of the HPV particle.
Collapse
|
33
|
Towne V, Zhao Q, Brown M, Finnefrock AC. Pairwise antibody footprinting using surface plasmon resonance technology to characterize human papillomavirus type 16 virus-like particles with direct anti-HPV antibody immobilization. J Immunol Methods 2012; 388:1-7. [PMID: 23159495 DOI: 10.1016/j.jim.2012.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 10/28/2012] [Accepted: 11/08/2012] [Indexed: 10/27/2022]
Abstract
This paper describes an approach to surface plasmon resonance (SPR) based epitope mapping, also referred to as pairwise antibody footprinting, involving the direct immobilization of an antigen-specific primary mAb to the surface of an SPR interface. This technique offers a more straightforward approach than indirect capture (e.g., via rabbit anti-mouse Fc) as it does not require additional steps to block the unoccupied immobilized anti-Fc to prevent non-specific antibody binding. This is also an alternative to the direct immobilization of an antigen of interest, which may cause conformational changes in the antigen or epitope degradation upon chemical immobilization, particularly in successive regeneration cycles. It is particularly suitable for highly multivalent targets such as virus-like particles (VLPs). Using this technique, we assessed a panel of eight monoclonal antibodies against HPV (human papilloma virus) L1 protein VLPs expressed by Saccharomyces cerevisiae. In the antibody epitope screening studies, HPV16 L1-directed conformational mAbs were clearly distinguished from the linear mAbs and consistent with known epitope information. Additional studies using a linear mAb and a conformational mAb demonstrate the practical application of this technique for characterizing the result of process changes and the consistency of recombinant HPV16 VLPs. The method is readily extensible to other VLPs and VLP-based vaccines.
Collapse
Affiliation(s)
- Victoria Towne
- Vaccine Manufacturing Sciences and Commercialization, Merck Research Laboratories, West Point, PA 19486, USA
| | | | | | | |
Collapse
|
34
|
The choice of resin-bound ligand affects the structure and immunogenicity of column-purified human papillomavirus type 16 virus-like particles. PLoS One 2012; 7:e35893. [PMID: 22563414 PMCID: PMC3338541 DOI: 10.1371/journal.pone.0035893] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 03/26/2012] [Indexed: 01/17/2023] Open
Abstract
Cell growth conditions and purification methods are important in determining biopharmaceutical activity. However, in studies aimed at manufacturing virus-like particles (VLPs) for the purpose of creating a prophylactic vaccine and antigen for human papillomavirus (HPV), the effects of the presence of a resin-bound ligand during purification have never been investigated. In this study, we compared the structural integrity and immunogenicity of two kinds of VLPs derived from HPV type 16 (HPV16 VLPs): one VLP was purified by heparin chromatography (hHPV16 VLP) and the other by cation-exchange chromatography (cHPV16 VLP). The reactivity of anti-HPV16 neutralizing monoclonal antibodies (H16.V5 and H16.E70) towards hHPV16 VLP were significantly higher than the observed cHPV16 VLP reactivities, implying that hHPV16 VLP possesses a greater number of neutralizing epitopes and has a greater potential to elicit anti-HPV16 neutralizing antibodies. After the application of heparin chromatography, HPV16 VLP has a higher affinity for H16.V5 and H16.E70. This result indicates that heparin chromatography is valuable in selecting functional HPV16 VLPs. In regard to VLP immunogenicity, the anti-HPV16 L1 IgG and neutralizing antibody levels elicited by immunizations of mice with hHPV16 VLPs were higher than those elicited by cHPV16 VLP with and without adjuvant. Therefore, the ability of hHPV16 VLP to elicit humoral immune responses was superior to that of cHPV16 VLP. We conclude that the specific chromatographic technique employed for the purification of HPV16 VLPs is an important factor in determining the structural characteristics and immunogenicity of column-purified VLPs.
Collapse
|
35
|
Matić S, Rinaldi R, Masenga V, Noris E. Efficient production of chimeric human papillomavirus 16 L1 protein bearing the M2e influenza epitope in Nicotiana benthamiana plants. BMC Biotechnol 2011; 11:106. [PMID: 22085463 PMCID: PMC3248878 DOI: 10.1186/1472-6750-11-106] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 11/15/2011] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Human papillomavirus 16 (HPV-16) L1 protein has the capacity to self-assemble into capsomers or virus-like particles (VLPs) that are highly immunogenic, allowing their use in vaccine production. Successful expression of HPV-16 L1 protein has been reported in plants, and plant-produced VLPs have been shown to be immunogenic after administration to animals. RESULTS We investigated the potential of HPV-16 L1 to act as a carrier of two foreign epitopes from Influenza A virus: (i) M2e2-24, ectodomain of the M2 protein (M2e), that is highly conserved among all influenza A isolates, or (ii) M2e2-9, a shorter version of M2e containing the N-terminal highly conserved epitope, that is common for both M1 and M2 influenza proteins. A synthetic HPV-16 L1 gene optimized with human codon usage was used as a backbone gene to design four chimeric sequences containing either the M2e2-24 or the M2e2-9 epitope in two predicted surface-exposed L1 positions. All chimeric constructs were transiently expressed in plants using the Cowpea mosaic virus-derived expression vector, pEAQ-HT. Chimeras were recognized by a panel of linear and conformation-specific anti HPV-16 L1 MAbs, and two of them also reacted with the anti-influenza MAb. Electron microscopy showed that chimeric proteins made in plants spontaneously assembled in higher order structures, such as VLPs of T = 1 or T = 7 symmetry, or capsomers. CONCLUSIONS In this study, we report for the first time the transient expression and the self-assembly of a chimeric HPV-16 L1 bearing the M2e influenza epitope in plants, representing also the first record of a successful expression of chimeric HPV-16 L1 carrying an epitope of a heterologous virus in plants. This study further confirms the usefulness of human papillomavirus particles as carriers of exogenous epitopes and their potential relevance for the production in plants of monovalent or multivalent vaccines.
Collapse
Affiliation(s)
- Slavica Matić
- Istituto di Virologia Vegetale, CNR, Strada delle Cacce 73, 10135 Torino, Italy
| | - Riccardo Rinaldi
- Istituto di Virologia Vegetale, CNR, Strada delle Cacce 73, 10135 Torino, Italy
| | - Vera Masenga
- Istituto di Virologia Vegetale, CNR, Strada delle Cacce 73, 10135 Torino, Italy
| | - Emanuela Noris
- Istituto di Virologia Vegetale, CNR, Strada delle Cacce 73, 10135 Torino, Italy
| |
Collapse
|
36
|
Joshi H, Cheluvaraja S, Somogyi E, Brown DR, Ortoleva P. A molecular dynamics study of loop fluctuation in human papillomavirus type 16 virus-like particles: a possible indicator of immunogenicity. Vaccine 2011; 29:9423-30. [PMID: 22027487 DOI: 10.1016/j.vaccine.2011.10.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 08/15/2011] [Accepted: 10/17/2011] [Indexed: 12/28/2022]
Abstract
Immunogenicity varies between the human papillomavirus (HPV) L1 monomer assemblies of various sizes (e.g., monomers, pentamers or whole capsids). The hypothesis that this can be attributed to the intensity of fluctuations of important loops containing neutralizing epitopes for the various assemblies is proposed for HPV L1 assemblies. Molecular dynamics simulations were utilized to begin testing this hypothesis. Fluctuations of loops that contain critical neutralizing epitopes (especially FG loop) were quantified via root-mean-square fluctuation and features in the frequency spectrum of dynamic changes in loop conformation. If this fluctuation-immunogenicity hypothesis is a universal aspect of immunogenicity (i.e., immune system recognition of an epitope within a loop is more reliable when it is presented via a more stable delivery structure), then fluctuation measures can serve as one predictor of immunogenicity as part of a computer-aided vaccine design strategy.
Collapse
Affiliation(s)
- Harshad Joshi
- Chemistry Department, Indiana University, Bloomington, IN 47405, USA
| | | | | | | | | |
Collapse
|
37
|
Genetic Diversity of HPV-16E6,E7, andL1Genes in Women With Cervical Lesions in Liaoning Province, China. Int J Gynecol Cancer 2011; 21:551-8. [DOI: 10.1097/igc.0b013e3182112023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
IntroductionHigh-risk human papillomaviruses (HPVs) play a cardinal role in the etiology of cervical cancer. The most prevalent type, HPV-16, shows intratypic sequence variants that are known to differ in oncogenic potential and geographic distribution. Intratype variations in oncogenic E6/E7 and capsid L1 proteins of HPV-16 are associated with risk of viral persistence and progression.MethodsThis study was designed to analyze sequence variations inE6,E7, andL1genes of HPV-16 in patients with cervical lesion to identify the most prevalent and novel HPV-16 variants in northern China.ResultsOur results showed that HPV-16 variants with respect to E6 and E7 were high prevalence of the Asian lineage: 48.3% and 51.4%, respectively. Sequences of theE6gene revealed 4 amino acid changes of variants D25E and L83V, with 48.3% (69/143) and 11.2% (16/143), respectively, and variants H78Y and E113D in this study. The results also showed the prevalence of 4 hot spots of E7 nucleotide variations leading to N29H, N29S, and 2 silent variations, nucleotide G666A and nucleotide T846C, with 4.2% (6/142), 43% (61/142), 32.4% (46/142), and 43% (61/142), respectively. The following L1 variations were found in this study: L103F, P104K, P104Y, P104S, D105G, P106S, N108P, F109V, C172S, H228D, and T292A. It was also found that 448S was inserted and 465D was deleted in the L1 amino acid sequences of all the samples. No significant relationship between HPV-16 variants and high-grade lesions was found.ConclusionsThe study provides some new data on the genetic diversity of HPV-16, which may help to understand the oncogenic potential of the virus and design the diagnosis reagents and vaccine of HPV in China. Furthermore, in-depth studies are needed to determine the clinical and biological effects of these variants.
Collapse
|
38
|
Dillner J, Arbyn M, Unger E, Dillner L. Monitoring of human papillomavirus vaccination. Clin Exp Immunol 2010; 163:17-25. [PMID: 21062269 DOI: 10.1111/j.1365-2249.2010.04268.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Persistent infection with oncogenic human papillomavirus (HPV) is a necessary causal factor in the development of cervical cancer. Moreover, HPV, predominately type 16 and to a lesser degree type 18, is linked causally to varying proportions of other anogenital cancers (vulva, vagina, penis, anus) as well as cancers elsewhere in the body (oropharynx, larynx, conjunctiva). HPV types 6 and 11 cause most of genital warts and recurrent respiratory papillomatosis. Effective prophylactic vaccines have been developed. In this review, we address briefly the immunological aspects of HPV infection and the results of HPV vaccination trials. Internationally standardized monitoring and evaluation of prophylactic HPV vaccination programmes will be essential for arriving at the most cost-effective strategies for cancer control.
Collapse
Affiliation(s)
- J Dillner
- WHO HPV LabNet Global Reference Laboratory at Department of Clinical Microbiology, University Hospital, Malmö,
| | | | | | | |
Collapse
|
39
|
Millán AFS, Gómez-Sebastián S, Nuñez MC, Veramendi J, Escribano JM. Human papillomavirus-like particles vaccine efficiently produced in a non-fermentative system based on insect larva. Protein Expr Purif 2010; 74:1-8. [PMID: 20600940 DOI: 10.1016/j.pep.2010.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 06/16/2010] [Accepted: 06/17/2010] [Indexed: 11/16/2022]
Affiliation(s)
- Alicia Fernández-San Millán
- Instituto de Agrobiotecnología (Universidad Pública de Navarra-CSIC-Gobierno de Navarra), Campus Arrosadía, 31006 Pamplona, Spain
| | | | | | | | | |
Collapse
|
40
|
Sapp M, Bienkowska-Haba M. Viral entry mechanisms: human papillomavirus and a long journey from extracellular matrix to the nucleus. FEBS J 2010; 276:7206-16. [PMID: 19878308 DOI: 10.1111/j.1742-4658.2009.07400.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Papillomaviruses are epitheliotropic non-enveloped double-stranded DNA viruses, whose replication is strictly dependent on the terminally differentiating tissue of the epidermis. They induce self-limiting benign tumors of skin and mucosa, which may progress to malignancy (e.g. cervical carcinoma). Prior to entry into basal cells, virions attach to heparan sulfate moieties of the basement membrane. This triggers conformational changes, which affect both capsid proteins, L1 and L2, and such changes are a prerequisite for interaction with the elusive uptake receptor. These processes are very slow, resulting in an uptake half-time of up to 14 h. This minireview summarizes recent advances in our understanding of cell surface events, internalization and the subsequent intracellular trafficking of papillomaviruses.
Collapse
Affiliation(s)
- Martin Sapp
- Department of Microbiology and Immunology, Feist Weiller-Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA.
| | | |
Collapse
|
41
|
Identification of B-cell epitopes on virus-like particles of cutaneous alpha-human papillomaviruses. J Virol 2009; 83:12692-701. [PMID: 19793806 DOI: 10.1128/jvi.01582-09] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Human papillomavirus (PV) (HPV) types 2, 27, and 57 are closely related and, hence, represent a promising model system to study the correlation of phylogenetic relationship and immunological distinctiveness of PVs. These HPV types cause a large fraction of cutaneous warts occurring in immunocompromised patients. Therefore, they constitute a target for the development of virus-like particle (VLP)-based vaccines. However, the immunogenic structure of HPV type 2, 27, and 57 capsids has not been studied yet. Here we provide, for the first time, a characterization of the B-cell epitopes on VLPs of cutaneous alpha-HPVs using a panel of 94 monoclonal antibodies (MAbs) generated upon immunization with capsids from HPV types 2, 27, and 57. The MAbs generated were characterized regarding their reactivities with glutathione S-transferase-L1 fusion proteins from 18 different PV types, the nature of their recognized epitopes, their isotypes, and their ability to neutralize HPV type 2, 27, 57, or 16. In total, 33 of the 94 MAbs (35%) showed type-specific reactivity. All type-specific MAbs recognize linear epitopes, most of which map to the hypervariable surface loop regions of the L1 amino acid sequence. Four of the generated MAbs neutralized pseudovirions of the inoculated HPV type efficiently. All four MAbs recognized epitopes within the BC loop, which is required and sufficient for their neutralizing activity. Our data highlight the immunological distinctiveness of individual HPV types, even in comparison to their closest relatives, and they provide a basis for the development of VLP-based vaccines against cutaneous alpha-HPVs.
Collapse
|
42
|
Fleury MJJ, Touzé A, Maurel MC, Moreau T, Coursaget P. Identification of neutralizing conformational epitopes on the human papillomavirus type 31 major capsid protein and functional implications. Protein Sci 2009; 18:1425-38. [PMID: 19533761 DOI: 10.1002/pro.156] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The aim of this study was to characterize the conformational neutralizing epitopes of the major capsid protein of human papillomavirus type 31. Analysis of the epitopes was performed by competitive epitope mapping using 15 anti-HPV31 and by reactivity analysis using a HPV31 mutant with an insertion of a seven-amino acid motif within the FG loop of the capsid protein. Fine mapping of neutralizing conformational epitopes on HPV L1 was analyzed by a new approach using a system displaying a combinatorial library of constrained peptides exposed on E. coli flagella. The findings demonstrate that the HPV31 FG loop is dense in neutralizing epitopes and suggest that HPV31 MAbs bind to overlapping but distinct epitopes on the central part of the FG loop, in agreement with the exposure of the FG loop on the surface of HPV VLPs, and thus confirming that neutralizing antibodies are mainly located on the tip of capsomeres. In addition, we identified a crossreacting and partially crossneutralizing conformational epitope on the relatively well conserved N-terminal part of the FG loop. Moreover, our findings support the hypothesis that there is no correlation between neutralization and the ability of MAbs to inhibit VLP binding to heparan sulfate, and confirm that the blocking of virus attachment to the extracellular matrix is an important mechanism of neutralization.
Collapse
|
43
|
Abstract
Human papillomaviruses (HPVs) are small dsDNA tumor viruses, which are the etiologic agents of most cervical cancers and are associated with a growing percentage of oropharyngeal cancers. The HPV capsid is non-enveloped, having a T=7 icosahedral symmetry formed via the interaction among 72 pentamers of the major capsid protein, L1. The minor capsid protein L2 associates with L1 pentamers, although it is not known if each L1 pentamer contains a single L2 protein. The HPV life cycle strictly adheres to the host cell differentiation program, and as such, native HPV virions are only produced in vivo or in organotypic "raft" culture. Research producing synthetic papillomavirus particles--such as virus-like particles (VLPs), papillomavirus-based gene transfer vectors, known as pseudovirions (PsV), and papillomavirus genome-containing quasivirions (QV)--has bypassed the need for stratifying and differentiating host tissue in viral assembly and has allowed for the rapid analysis of HPV infectivity pathways, transmission, immunogenicity, and viral structure.
Collapse
Affiliation(s)
- M J Conway
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | |
Collapse
|
44
|
Pillai MR, Hariharan R, Babu JM, Lakshmi S, Chiplunkar SV, Patkar M, Tongaonkar H, Dinshaw K, Jayshree RS, Reddy BKM, Siddiqui M, Roychoudury S, Saha B, Abraham P, Gnanamony M, Peedicayil A, Subhashini J, Ram TS, Dey B, Sharma C, Jain SK, Singh N. Molecular variants of HPV-16 associated with cervical cancer in Indian population. Int J Cancer 2009; 125:91-103. [PMID: 19358280 DOI: 10.1002/ijc.24322] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human papilloma virus is a causative factor in the etiology of cervical cancer with HPV16 being the most prevalent genotype associated with it. Intratype variations in oncogenic E6/E7 and capsid L1 proteins of HPV 16 besides being of phylogenetic importance, are associated with risk of viral persistence and progression. The objective of this multicentric study was to identify HPV-16 E6, E7 and L1 variants prevalent in India and their possible biological effects. Squamous cell cervical cancer biopsies were collected from 6 centres in India and examined for the presence of HPV 16. Variants of HPV-16 were characterized by full length sequence analysis of L1, E6 and E7 genes in 412 samples. Similar distribution of the variants was seen from the different centres/regions, with the European variant E350G being the most prevalent (58%), followed by American Asian variant (11.4%). Fifty six changes were seen in E6 region, 31 being nonsynonymous. The most frequent being L83V (72.3%), Q14H (13.1%) and H78Y (12.1%). Twenty-nine alterations were seen in E7 region, with 12 being nonsynonymous. The most frequent being F57V (9%). L1 region showed 204 changes, of which 67 were nonsynonymous. The most frequent being 448insS (100%), and 465delD (100%), H228D (94%), T292A (85%). The identified variants some new and some already reported can disrupt pentamer formation, transcriptional regulation of the virus, L1 protein interface interaction, B and T cell epitopes, p53 degradation, and thus their distribution is important for development of HPV diagnostics, vaccine, and for therapeutic purpose.
Collapse
Affiliation(s)
- M R Pillai
- Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Analysis of modified human papillomavirus type 16 L1 capsomeres: the ability to assemble into larger particles correlates with higher immunogenicity. J Virol 2009; 83:7690-705. [PMID: 19457985 DOI: 10.1128/jvi.02588-08] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
L1 capsomeres purified from Escherichia coli represent an economic alternative to the recently launched virus-like particle (VLP)-based prophylactic vaccines against infection with human papillomavirus types 16 and 18 (HPV-16 and HPV-18), which are causative agents of cervical cancer. It was recently reported that capsomeres are much less immunogenic than VLPs. Numerous modifications of the L1 protein leading to the formation of capsomeres but preventing capsid assembly have been described, such as the replacement of the cysteine residues that form capsid-stabilizing disulfide bonds or the deletion of helix 4. So far, the influence of these modifications on immunogenicity has not been thoroughly investigated. Here, we describe the purification of eight different HPV-16 L1 proteins as capsomeres from Escherichia coli. We compared them for yield, structure, and immunogenicity in mice. All L1 proteins formed almost identical pentameric structures yet differed strongly in their immunogenicity, especially regarding the humoral immune responses. Immunization of TLR4(-/-) mice and DNA immunization by the same constructs confirmed that immunogenicity was independent of different degrees of contamination with copurifying immune-stimulatory molecules from E. coli. We hypothesize that immunogenicity correlates with the intrinsic ability of the capsomeres to assemble into larger particles, as only assembly-competent L1 proteins induced high antibody responses. One of the proteins (L1DeltaN10) proved to be the most immunogenic, inducing antibody titers equivalent to those generated in response to VLPs. However, preassembly prior to injection did not increase immunogenicity. Our data suggest that certain L1 constructs can be used to produce highly immunogenic capsomeres in bacteria as economic alternatives to VLP-based formulations.
Collapse
|
46
|
Sapp M, Day PM. Structure, attachment and entry of polyoma- and papillomaviruses. Virology 2009; 384:400-9. [PMID: 19157477 DOI: 10.1016/j.virol.2008.12.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Accepted: 12/08/2008] [Indexed: 12/14/2022]
Abstract
Polyoma- (PY) and Papillomavirus (PV) virions have remarkable structural equivalence although no discernable sequence similarities among the capsid proteins can be detected. Their similarities include the overall surface organization, the presence of 72 capsomeres composed of five molecules of the major capsid proteins, VP1 and L1, respectively, the structure of the core segment of capsomeres with classical antiparallel "jelly roll" beta strands as the major feature, and the linkage of neighboring capsomeres by invading C-terminal arms. Differences include the size of surface exposed loops that contain the dominant neutralizing epitopes, the details of the intercapsomeric interactions, and the presence of 2 or 1 minor capsid proteins, respectively. These differences may affect the dramatic differences observed in receptor binding and internalization pathways utilized by these viruses, but as detailed later even structural differences cannot completely explain receptor and pathway usage. In recent years, technical advances aiding the study of entry processes have allowed the identification of novel endocytic compartments and an appreciation of the links between endocytic pathways that were previously thought to be completely separable. This review is intended to highlight recent advances in our understanding of virus receptor interactions and their consequences for endocytosis and intracellular trafficking.
Collapse
Affiliation(s)
- Martin Sapp
- Department of Microbiology and Immunology, Feist Weiller-Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana, 71130-3932, USA.
| | | |
Collapse
|
47
|
Lowe J, Panda D, Rose S, Jensen T, Hughes WA, Tso FY, Angeletti PC. Evolutionary and structural analyses of alpha-papillomavirus capsid proteins yields novel insights into L2 structure and interaction with L1. Virol J 2008; 5:150. [PMID: 19087355 PMCID: PMC2630942 DOI: 10.1186/1743-422x-5-150] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2008] [Accepted: 12/17/2008] [Indexed: 11/10/2022] Open
Abstract
Background PVs (PV) are small, non-enveloped, double-stranded DNA viruses that have been identified as the primary etiological agent for cervical cancer and their potential for malignant transformation in mucosal tissue has a large impact on public health. The PV family Papillomaviridae is organized into multiple genus based on sequential parsimony, host range, tissue tropism, and histology. We focused this analysis on the late gene products, major (L1) and minor (L2) capsid proteins from the family Papillomaviridae genus Alpha-papillomavirus. Alpha-PVs preferentially infect oral and anogenital mucosa of humans and primates with varied risk of oncogenic transformation. Development of evolutionary associations between PVs will likely provide novel information to assist in clarifying the currently elusive relationship between PV and its microenvironment (i.e., the single infected cell) and macro environment (i.e., the skin tissue). We attempt to identify the regions of the major capsid proteins as well as minor capsid proteins of alpha-papillomavirus that have been evolutionarily conserved, and define regions that are under constant selective pressure with respect to the entire family of viruses. Results This analysis shows the loops of L1 are in fact the most variable regions among the alpha-PVs. We also identify regions of L2, involved in interaction with L1, as evolutionarily conserved among the members of alpha- PVs. Finally, a predicted three-dimensional model was generated to further elucidate probable aspects of the L1 and L2 interaction.
Collapse
Affiliation(s)
- John Lowe
- School of Biological Sciences, Nebraska Center for Virology, University of Nebraska-Lincoln, 68583-0900, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Mukherjee S, Thorsteinsson MV, Johnston LB, DePhillips PA, Zlotnick A. A Quantitative Description of In Vitro Assembly of Human Papillomavirus 16 Virus-Like Particles. J Mol Biol 2008; 381:229-37. [DOI: 10.1016/j.jmb.2008.05.079] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 05/25/2008] [Accepted: 05/29/2008] [Indexed: 11/25/2022]
|
49
|
A direct comparison of human papillomavirus type 16 L1 particles reveals a lower immunogenicity of capsomeres than viruslike particles with respect to the induced antibody response. J Virol 2008; 82:5472-85. [PMID: 18385253 DOI: 10.1128/jvi.02482-07] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Capsomeres are considered to be an alternative to viruslike particle (VLP)-based vaccines as they can be produced in prokaryotic expression systems. So far, no detailed side-by-side comparison of VLPs and capsomeres has been performed. In the present study, we immunized mice with insect cell-derived human papillomavirus type 16 VLPs and capsomeres. VLPs induced consistently higher antibody titers than capsomeres but the two forms induced similar CD8 T-cell responses after subcutaneous, intranasal, and oral immunization, and at least 20 to 40 times more L1 in the form of capsomeres than in the form of VLPs was needed to achieve comparable antibody responses. These results were confirmed by DNA immunization. The lower immunogenicity of capsomeres was independent of the isotype switch, as it was also observed for the early immunoglobulin M responses. Although there were differences in the display of surface epitopes between the L1 particles, these did not contribute significantly to the differences in the immune responses. capsomeres were less immunogenic than VLPs in Toll-like receptor 4 (TLR4)-deficient mice, suggesting that the lower immunogenicity is not due to a failure of capsomeres to trigger TLR4. We observed better correlation between antibody results from enzyme-linked immunosorbent assays and neutralization assays for sera from VLP-immunized mice than for sera from capsomere-immunized mice, suggesting qualitative differences between VLPs and capsomeres. We also showed that the lower immunogenicity of capsomeres could be compensated by the use of an adjuvant system containing MPL. Taken together, these results suggest that, presumably because of the lower degree of complexity of the antigen organization, capsomeres are significantly less immunogenic than VLPs with respect to the humoral immune response and that this characteristic should be considered in the design of putative capsomere-based prophylactic vaccines.
Collapse
|
50
|
Rizk RZ, Christensen ND, Michael KM, Müller M, Sehr P, Waterboer T, Pawlita M. Reactivity pattern of 92 monoclonal antibodies with 15 human papillomavirus types. J Gen Virol 2008; 89:117-129. [PMID: 18089735 DOI: 10.1099/vir.0.83145-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most anti-human papillomavirus (HPV) capsid antibody assays are based on virus-like particles (VLP). We evaluated glutathione S-transferase (GST)-L1 fusion proteins as ELISA antigens for determining type specificity and cross-reactivity of 92 VLP-specific monoclonal antibodies (mAb) generated against nine mucosal alpha papillomavirus types of species 7, 9 and 10. The antibody panel included 25 new mAb, and 24 previously published mAb are further characterized. We determined the cross-reactivity patterns with 15 different HPV types representing 6 species (alpha1, 2, 4, 7, 9 and 10) and neutralization and cross-neutralization properties with HPV types 6, 11, 16, 18 and 45. Eighty-nine (97 %) of the antibodies including 34, 71 and 14 recognizing neutralizing, conformational and linear epitopes, respectively, reacted with the GST-L1 protein of the HPV type used as immunogen, with log titres ranging from 2.0 to 7.3. Of these 89 antibodies, 52 % were monotypic, 20 % showed intra-species and 28 % inter-species cross-reactivity. Log neutralization titres to the immunogen HPV ranged from 1.7 to 5.6. A single cross-neutralizing mAb (H6.L12) was found. ELISA titres were always higher than neutralization titres. All neutralizing epitopes were conformational and mostly type-specific. Our data show that bacterially expressed, affinity-purified GST-L1 fusion proteins display a broad variety of epitopes and thus are well suited for detection of HPV antibodies. Cross-reactivity is associated with linear as well as conformational epitopes. Distantly related mucosal and skin alpha papillomaviruses share some conformational epitopes and the phylogenetic L1-based species definition may not define a serological unit since no species-specific epitope was found.
Collapse
Affiliation(s)
- Raeda Z Rizk
- Department of Genome Modifications and Cancer, Infection and Cancer Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | - Neil D Christensen
- Departments of Pathology and Microbiology and Immunology, The Jake Gittlen Cancer Research Foundation, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | - Kristina M Michael
- Department of Genome Modifications and Cancer, Infection and Cancer Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | - Martin Müller
- Department of Genome Modifications and Cancer, Infection and Cancer Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | - Peter Sehr
- Department of Genome Modifications and Cancer, Infection and Cancer Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | - Tim Waterboer
- Department of Genome Modifications and Cancer, Infection and Cancer Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | - Michael Pawlita
- Department of Genome Modifications and Cancer, Infection and Cancer Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| |
Collapse
|