1
|
Xiao N, Oong XY, Chen Y, Li C, Chung HCH, Wang P, Ye Z, Lam AHC, Cai J, Song W, Lee ACY, Chu H, Kok KH, Chan JFW, Yuan S, Chen H, Yuen KY, Zhang AJX. Reverse genetics-derived cattle H5N1 virus from Clade 2.3.4.4b shows enhanced systemic infectivity and pathogenicity than an older Clade 1 H5N1 virus in BALB/c mice. Emerg Microbes Infect 2025; 14:2475836. [PMID: 40035774 PMCID: PMC11915741 DOI: 10.1080/22221751.2025.2475836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 02/19/2025] [Accepted: 02/28/2025] [Indexed: 03/06/2025]
Abstract
The newly emerged avian influenza A H5N1 Clade 2.3.4.4b can infect dairy cows and shed live virus in their milk. Sporadic cattle-to-human infections have been reported, highlighting the urgent need to understand its pathogenesis in mammals. Using both non-lactating and lactating BALB/c mice, we examined the viral tissue tropism, histopathological damages, and host immune responses upon intranasal inoculation with a reverse-genetic virus constructed based on A/dairy cattle/Texas/24-008749-003/2024 (Cattle-H5N1) and comparing with an older reference Clade 1 virus, A/Vietnam/1194/2004 virus (VNM1194-H5N1). Cattle-H5N1 was highly lethal in mice (mLD50 = 1.48PFU) with broad tissue tropism and produced higher titer in respiratory tissue and multiple extrapulmonary organs than VNM1194-H5N1. In the lungs, Cattle-H5N1 infection of airway epithelium, type II pneumocytes and CD45+ immune cells were at a higher frequency than those of VNM1194-H5N1-infected mice, resulting in severe epithelial destruction and diffuse alveolar damage accompanied by elevated lung and serum pro-inflammatory cytokine/chemokines. Although both H5N1 viruses showed lactating mammary gland tropism, the gland tissue was more severely damaged after Cattle-H5N1 infection with abundant viral antigens expression in glandular cells, associated fat and lymphoid tissues. Furthermore, more suckling mice co-housed with Cattle-H5N1 infected lactating mice were virus-positive (7/30 pups) than VNM1194-H5N1. Brains were heavily infected by Cattle-H5N1, and neurological signs such as body-rolling/spinning, trembling and/or limb paralysis were seen only in Cattle-H5N1 infected mice. The spleen was more severely damaged by Cattle-H5N1 infection, which showed massive viral antigen expression accompanied by severe apoptosis and splenic atrophy, concluding that Cattle-H5N1 is more virulent in mice than VNM1194-H5N1.
Collapse
Affiliation(s)
- Na Xiao
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Xiang Yong Oong
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, Shatin, People's Republic of China
| | - Yanxia Chen
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, Shatin, People's Republic of China
| | - Can Li
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, Shatin, People's Republic of China
| | - Howard Chun-Ho Chung
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, Shatin, People's Republic of China
| | - Pui Wang
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, Shatin, People's Republic of China
| | - Zhanhong Ye
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, Shatin, People's Republic of China
| | - Alvin Hiu-Chung Lam
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, Shatin, People's Republic of China
| | - Jianpiao Cai
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, Shatin, People's Republic of China
| | - Wenchen Song
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Andrew Chak-Yiu Lee
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, Shatin, People's Republic of China
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, Shatin, People's Republic of China
| | - Kin-Hang Kok
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, Shatin, People's Republic of China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, Shatin, People's Republic of China
- Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
- Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People's Republic of China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, Shatin, People's Republic of China
| | - Honglin Chen
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, Shatin, People's Republic of China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, Shatin, People's Republic of China
- Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
- Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People's Republic of China
| | - Anna Jin-Xia Zhang
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, Shatin, People's Republic of China
| |
Collapse
|
2
|
Sun Y, Wei Y, Han X, Wang Y, Yin Q, Zhang Y, Yang T, Zhang J, Sun K, Fang F, Zhang S, Yuan K, Li M, Zhao G. Effect of Inoculation Volume on a Mouse Model of Influenza Virus Infected with the Same Viral Load. Vaccines (Basel) 2025; 13:173. [PMID: 40006720 PMCID: PMC11860169 DOI: 10.3390/vaccines13020173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/23/2025] [Accepted: 02/01/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Influenza is a highly contagious respiratory disease that poses significant health and economic burdens. Mice are commonly used as animal models for studying influenza virus pathogenesis and the development of vaccines and drugs. However, the viral volume used for nasal inoculation varies substantially in reported mouse influenza infection models, and the appropriate viral dose is crucial for reproducing experimental results. METHODS Mice were inoculated with mouse lung-adapted strains of influenza virus A/Puerto Rico/8/34 (H1N1) via intranasal administration of 10 μL, 20 μL, and 40 μL at doses of 200 plaque-forming units (PFU) and 2000 PFU. This study investigated the impact of varying viral inoculum volumes on murine outcomes at identical doses and assessed the disparities across diverse dosage levels. RESULTS Regarding weight change trajectories, mortalities, lung tissue viral titers, and pathological manifestations, the group that received the 40 μL inoculation volume within the low-dose infection mice (200 PFU) manifested a statistically significant divergence from those inoculated with both the 10 μL and 20 μL volumes. Within the context of high-dose infections (2000 PFU), groups that received inoculation volumes of 20 μL and 40 μL exhibited marked disparities when compared to those receiving the 10 μL volume. CONCLUSIONS Disparities in inoculation volume, even under uniform infection dosages, engender differential outcomes in pathogenicity. Of particular note, the viral replication efficacy at a 20 μL inoculation volume demonstrates conspicuous fluctuations across diverse infection dose regimens.
Collapse
Affiliation(s)
- Yali Sun
- Public Health School, Mudanjiang Medical University, Mudanjiang 157011, China; (Y.S.); (T.Y.); (K.S.); (K.Y.)
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (Y.W.); (X.H.); (Y.W.); (Q.Y.); (Y.Z.); (J.Z.); (F.F.); (S.Z.)
| | - Yuwei Wei
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (Y.W.); (X.H.); (Y.W.); (Q.Y.); (Y.Z.); (J.Z.); (F.F.); (S.Z.)
| | - Xuelian Han
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (Y.W.); (X.H.); (Y.W.); (Q.Y.); (Y.Z.); (J.Z.); (F.F.); (S.Z.)
| | - Yuan Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (Y.W.); (X.H.); (Y.W.); (Q.Y.); (Y.Z.); (J.Z.); (F.F.); (S.Z.)
| | - Qi Yin
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (Y.W.); (X.H.); (Y.W.); (Q.Y.); (Y.Z.); (J.Z.); (F.F.); (S.Z.)
| | - Yuhang Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (Y.W.); (X.H.); (Y.W.); (Q.Y.); (Y.Z.); (J.Z.); (F.F.); (S.Z.)
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Tiantian Yang
- Public Health School, Mudanjiang Medical University, Mudanjiang 157011, China; (Y.S.); (T.Y.); (K.S.); (K.Y.)
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (Y.W.); (X.H.); (Y.W.); (Q.Y.); (Y.Z.); (J.Z.); (F.F.); (S.Z.)
| | - Jiejie Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (Y.W.); (X.H.); (Y.W.); (Q.Y.); (Y.Z.); (J.Z.); (F.F.); (S.Z.)
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Keyu Sun
- Public Health School, Mudanjiang Medical University, Mudanjiang 157011, China; (Y.S.); (T.Y.); (K.S.); (K.Y.)
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (Y.W.); (X.H.); (Y.W.); (Q.Y.); (Y.Z.); (J.Z.); (F.F.); (S.Z.)
| | - Feimin Fang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (Y.W.); (X.H.); (Y.W.); (Q.Y.); (Y.Z.); (J.Z.); (F.F.); (S.Z.)
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Shuai Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (Y.W.); (X.H.); (Y.W.); (Q.Y.); (Y.Z.); (J.Z.); (F.F.); (S.Z.)
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Kai Yuan
- Public Health School, Mudanjiang Medical University, Mudanjiang 157011, China; (Y.S.); (T.Y.); (K.S.); (K.Y.)
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (Y.W.); (X.H.); (Y.W.); (Q.Y.); (Y.Z.); (J.Z.); (F.F.); (S.Z.)
| | - Min Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (Y.W.); (X.H.); (Y.W.); (Q.Y.); (Y.Z.); (J.Z.); (F.F.); (S.Z.)
| | - Guangyu Zhao
- Public Health School, Mudanjiang Medical University, Mudanjiang 157011, China; (Y.S.); (T.Y.); (K.S.); (K.Y.)
- Laboratory of Advanced Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| |
Collapse
|
3
|
Maine CJ, Miyake-Stoner SJ, Spasova DS, Picarda G, Chou AC, Brand ED, Olesiuk MD, Domingo CC, Little HJ, Goodman TT, Posy JL, Gonzalez J, Bayone TL, Sparks J, Gary EN, Xiang Z, Tursi NJ, Hojecki CE, Ertl HCJ, Weiner DB, Casmil IC, Blakney AK, Essink B, Somodevilla G, Wang NS, Geall AJ, Goldberg Z, Aliahmad P. Safety and immunogenicity of an optimized self-replicating RNA platform for low dose or single dose vaccine applications: a randomized, open label Phase I study in healthy volunteers. Nat Commun 2025; 16:456. [PMID: 39774967 PMCID: PMC11707033 DOI: 10.1038/s41467-025-55843-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025] Open
Abstract
Self-replicating RNA (srRNA) technology, in comparison to mRNA vaccines, has shown dose-sparing by approximately 10-fold and more durable immune responses. However, no improvements are observed in the adverse events profile. Here, we develop an srRNA vaccine platform with optimized non-coding regions and demonstrate immunogenicity and safety in preclinical and clinical development. Optimized srRNA vaccines generate protective immunity (according to the WHO defined thresholds) at doses up to 1,000,000-fold lower than mRNA in female mouse models of influenza and rabies. Clinically, safety and immunogenicity of RBI-4000, an srRNA vector encoding the rabies glycoprotein, was evaluated in a Phase I study (NCT06048770). RBI-4000 was able to elicit de novo protective immunity in the majority of healthy participants when administered at a dose of 0.1, 1, or 10 microgram (71%, 94%, 100%, respectively) in a prime-boost schedule. Similarly, we observe immunity above the WHO benchmark of protection following a single administration in most participants at both 1 and 10 microgram doses. There are no serious adverse events reported across all cohorts. These data establish the high therapeutic index of optimized srRNA vectors, demonstrating feasibility of both low dose and single dose approaches for vaccine applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Ebony N Gary
- The Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | - Zhi Xiang
- The Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | - Nicholas J Tursi
- The Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Casey E Hojecki
- The Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | - Hildegund C J Ertl
- The Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | - David B Weiner
- The Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | - Irafasha C Casmil
- Michael Smith Laboratories, School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Anna K Blakney
- Michael Smith Laboratories, School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | | | |
Collapse
|
4
|
Cargnin Faccin F, Perez DR. Pandemic preparedness through vaccine development for avian influenza viruses. Hum Vaccin Immunother 2024; 20:2347019. [PMID: 38807261 PMCID: PMC11141480 DOI: 10.1080/21645515.2024.2347019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/22/2024] [Indexed: 05/30/2024] Open
Abstract
Influenza A viruses pose a significant threat to global health, impacting both humans and animals. Zoonotic transmission, particularly from swine and avian species, is the primary source of human influenza outbreaks. Notably, avian influenza viruses of the H5N1, H7N9, and H9N2 subtypes are of pandemic concern through their global spread and sporadic human infections. Preventing and controlling these viruses is critical due to their high threat level. Vaccination remains the most effective strategy for influenza prevention and control in humans, despite varying vaccine efficacy across strains. This review focuses specifically on pandemic preparedness for avian influenza viruses. We delve into vaccines tested in animal models and summarize clinical trials conducted on H5N1, H7N9, and H9N2 vaccines in humans.
Collapse
Affiliation(s)
- Flavio Cargnin Faccin
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Daniel R. Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
5
|
De Meyer A, Meuleman P. Preclinical animal models to evaluate therapeutic antiviral antibodies. Antiviral Res 2024; 225:105843. [PMID: 38548022 DOI: 10.1016/j.antiviral.2024.105843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/25/2024] [Indexed: 04/05/2024]
Abstract
Despite the availability of effective preventative vaccines and potent small-molecule antiviral drugs, effective non-toxic prophylactic and therapeutic measures are still lacking for many viruses. The use of monoclonal and polyclonal antibodies in an antiviral context could fill this gap and provide effective virus-specific medical interventions. In order to develop these therapeutic antibodies, preclinical animal models are of utmost importance. Due to the variability in viral pathogenesis, immunity and overall characteristics, the most representative animal model for human viral infection differs between virus species. Therefore, throughout the years researchers sought to find the ideal preclinical animal model for each virus. The most used animal models in preclinical research include rodents (mice, ferrets, …) and non-human primates (macaques, chimpanzee, ….). Currently, antibodies are tested for antiviral efficacy against a variety of viruses including different hepatitis viruses, human immunodeficiency virus (HIV), influenza viruses, respiratory syncytial virus (RSV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and rabies virus. This review provides an overview of the current knowledge about the preclinical animal models that are used for the evaluation of therapeutic antibodies for the abovementioned viruses.
Collapse
Affiliation(s)
- Amse De Meyer
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Philip Meuleman
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
6
|
Kirk NM, Liang Y, Ly H. Comparative Pathology of Animal Models for Influenza A Virus Infection. Pathogens 2023; 13:35. [PMID: 38251342 PMCID: PMC10820042 DOI: 10.3390/pathogens13010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Animal models are essential for studying disease pathogenesis and to test the efficacy and safety of new vaccines and therapeutics. For most diseases, there is no single model that can recapitulate all features of the human condition, so it is vital to understand the advantages and disadvantages of each. The purpose of this review is to describe popular comparative animal models, including mice, ferrets, hamsters, and non-human primates (NHPs), that are being used to study clinical and pathological changes caused by influenza A virus infection with the aim to aid in appropriate model selection for disease modeling.
Collapse
Affiliation(s)
| | | | - Hinh Ly
- Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN 55108, USA; (N.M.K.); (Y.L.)
| |
Collapse
|
7
|
Bauer L, Benavides FFW, Veldhuis Kroeze EJB, de Wit E, van Riel D. The neuropathogenesis of highly pathogenic avian influenza H5Nx viruses in mammalian species including humans. Trends Neurosci 2023; 46:953-970. [PMID: 37684136 PMCID: PMC10591965 DOI: 10.1016/j.tins.2023.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/04/2023] [Indexed: 09/10/2023]
Abstract
Circulation of highly pathogenic avian influenza (HPAI) H5Nx viruses of the A/Goose/Guangdong/1/96 lineage in birds regularly causes infections of mammals, including humans. In many mammalian species, infections are associated with severe neurological disease, a unique feature of HPAI H5Nx viruses compared with other influenza A viruses. Here, we provide an overview of the neuropathogenesis of HPAI H5Nx virus infection in mammals, centered on three aspects: neuroinvasion, neurotropism, and neurovirulence. We focus on in vitro studies, as well as studies on naturally or experimentally infected mammals. Additionally, we discuss the contribution of viral factors to the neuropathogenesis of HPAI H5Nx virus infections and the efficacy of intervention strategies to prevent neuroinvasion or the development of neurological disease.
Collapse
Affiliation(s)
- Lisa Bauer
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | | | - Emmie de Wit
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Debby van Riel
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
8
|
Yunis J, Short KR, Yu D. Severe respiratory viral infections: T-cell functions diverging from immunity to inflammation. Trends Microbiol 2023; 31:644-656. [PMID: 36635162 PMCID: PMC9829516 DOI: 10.1016/j.tim.2022.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023]
Abstract
Respiratory viral infections such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A virus (IAV) trigger distinct clinical outcomes defined by immunity-based viral clearance or disease associated with exaggerated and prolonged inflammation. The important role of T cells in shaping both antiviral immunity and inflammation has revived interest in understanding the host-pathogen interactions that lead to the diverse functions of T cells in respiratory viral infections. Inborn deficiencies and acquired insufficiency in immunity can prolong infection and shift the immune response towards exacerbated inflammation, which results from persistent innate immune activation and bystander T-cell activation that is nonspecific to the pathogen but is often driven by cytokines. This review discusses how virus variants, exposure doses, routes of infection, host genetics, and immune history can modulate the activation and function of T cells, thus influencing clinical outcomes. Knowledge of virus-host interaction can inform strategies to prevent immune dysfunction in respiratory viral infection and help in the treatment of associated diseases.
Collapse
Affiliation(s)
- Joseph Yunis
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD 4102, Australia.
| | - Kirsty R Short
- School of Chemistry and Molecular Biosciences, Faculty of Science, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Di Yu
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD 4102, Australia; Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
9
|
Ng TA, Rashid S, Kwoh CK. Virulence network of interacting domains of influenza a and mouse proteins. FRONTIERS IN BIOINFORMATICS 2023; 3:1123993. [PMID: 36875146 PMCID: PMC9982101 DOI: 10.3389/fbinf.2023.1123993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/03/2023] [Indexed: 02/19/2023] Open
Abstract
There exist several databases that provide virus-host protein interactions. While most provide curated records of interacting virus-host protein pairs, information on the strain-specific virulence factors or protein domains involved, is lacking. Some databases offer incomplete coverage of influenza strains because of the need to sift through vast amounts of literature (including those of major viruses including HIV and Dengue, besides others). None have offered complete, strain specific protein-protein interaction records for the influenza A group of viruses. In this paper, we present a comprehensive network of predicted domain-domain interaction(s) (DDI) between influenza A virus (IAV) and mouse host proteins, that will allow the systematic study of disease factors by taking the virulence information (lethal dose) into account. From a previously published dataset of lethal dose studies of IAV infection in mice, we constructed an interacting domain network of mouse and viral protein domains as nodes with weighted edges. The edges were scored with the Domain Interaction Statistical Potential (DISPOT) to indicate putative DDI. The virulence network can be easily navigated via a web browser, with the associated virulence information (LD50 values) prominently displayed. The network will aid influenza A disease modeling by providing strain-specific virulence levels with interacting protein domains. It can possibly contribute to computational methods for uncovering influenza infection mechanisms mediated through protein domain interactions between viral and host proteins. It is available at https://iav-ppi.onrender.com/home.
Collapse
Affiliation(s)
| | | | - Chee Keong Kwoh
- School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
10
|
Chu JT, Gu H, Sun W, Fan RL, Nicholls JM, Valkenburg SA, Poon LL. Heterosubtypic immune pressure accelerates emergence of influenza A virus escape phenotypes in mice. Virus Res 2023; 323:198991. [PMID: 36302472 PMCID: PMC10194115 DOI: 10.1016/j.virusres.2022.198991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 11/07/2022]
Abstract
Rapid antigenic evolution of the influenza A virus surface antigen hemagglutinin undermines protection conferred by seasonal vaccines. Protective correlates targeted by universal vaccines such as cytotoxic T cells or HA stem directed broadly neutralizing antibodies have been shown to select for immune escape mutants during infection. We developed an in vivo serial passage mouse model for viral adaptation and used next generation sequencing to evaluate full genome viral evolution in the context of broadly protective immunity. Heterosubtypic immune pressure increased the incidence of genome-wide single nucleotide variants, though mutations found in early adapted populations were predominantly stochastic in nature. Prolonged adaptation under heterosubtypic immune selection resulted in the manifestation of highly virulent phenotypes that ablated vaccine mediated protection from mortality. High frequency mutations unique to escape phenotypes were identified within the polymerase encoding segments. These findings suggest that a suboptimial usage of population-wide universal influenza vaccine may drive formation of escape variants attributed to polygenic changes.
Collapse
Affiliation(s)
- Julie Ts Chu
- Division of Public Health Laboratory Sciences, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Haogao Gu
- Division of Public Health Laboratory Sciences, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Wanying Sun
- Division of Public Health Laboratory Sciences, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Rebecca Ly Fan
- Division of Public Health Laboratory Sciences, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - John M Nicholls
- Department of Pathology, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Sophie A Valkenburg
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Leo Lm Poon
- Division of Public Health Laboratory Sciences, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China; HKU-Pasteur Research Pole, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China; Centre for Immunology & Infection, Hong Kong Science Park, Hong Kong Special Administrative Region, China.
| |
Collapse
|
11
|
Lee J, Ahn SY, Le CTT, Lee DH, Jung J, Ko EJ. Protective and vaccine dose-sparing efficacy of Poly I:C-functionalized calcium phosphate nanoparticle adjuvants in inactivated influenza vaccination. Int Immunopharmacol 2022; 112:109240. [PMID: 36115278 DOI: 10.1016/j.intimp.2022.109240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022]
Abstract
Adjuvants are required to increase the immunogenicity and efficacy of vaccination and enable vaccine dose sparing. Polyinosinic-polycytidylic acid (Poly I:C), a toll-like receptor 3 agonist, is a promising adjuvant candidate that can induce cell-mediated immune responses; however, it remains unlicensed owing to its low stability and toxicity. Calcium phosphate (CaP), a biocompatible and biodegradable nanoparticle, is widely used in biomedicine for stable and targeted drug delivery. In this study, we developed Poly I:C-functionalized CaP (Poly-CaP) and evaluated its vaccine adjuvant efficacy in vitro and in vivo. A half dose of Poly-CaP nanoparticles showed similar efficacy to a full dose of soluble Poly I:C in stimulating bone marrow-derived dendritic cells and macrophages to secrete proinflammatory cytokines and express their activation markers. Immunization with a half dose of inactivated influenza vaccine in the presence of Poly I:C or Poly-CaP adjuvants induced sufficient antigen-specific humoral responses after boost immunization. Immunization with Poly I:C, CaP, or Poly-CaP-adjuvanted with a half dose of influenza vaccine showed comparable protective efficacy against lethal virus infection, with lower weight loss and virus titer than a full dose of influenza vaccine. The Poly-CaP adjuvant was effective in stimulating antigen-specific CD4+ T cell proliferation in the lungs. Collectively, our results showed that the Poly-CaP adjuvant enhanced antigen-specific cell-mediated immunity and humoral immune responses with vaccine dose-sparing effects, suggesting its potential as a novel vaccine adjuvant candidate.
Collapse
Affiliation(s)
- Jueun Lee
- College of Veterinary Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - So Yeon Ahn
- College of Veterinary Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Chau Thuy Tien Le
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Republic of Korea
| | - Dong-Ha Lee
- College of Veterinary Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Jaehan Jung
- Department of Materials Science and Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
| | - Eun-Ju Ko
- College of Veterinary Medicine, Jeju National University, Jeju 63243, Republic of Korea; Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Republic of Korea; Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Republic of Korea.
| |
Collapse
|
12
|
Protocatechuic acid protects mice from influenza A virus infection. Eur J Clin Microbiol Infect Dis 2022; 41:589-596. [PMID: 35067799 PMCID: PMC8784203 DOI: 10.1007/s10096-022-04401-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 01/10/2022] [Indexed: 11/08/2022]
Abstract
Influenza A virus (IAV) H1N1 infection remains great challenge to public health and causes great burden over the world. Although there are anti-viral agents available, searching for effective agents to treat H1N1 infection is still in urgent because of the emergence of resistant strain. Protocatechuic acid (PCA) is a biological agent with multiple functions. In present study, we explored the effects of PCA on H1N1 infection. Mice infected with mouse adapted influenza strain A/Font Monmouth were administrated with PCA. The body weight change, mortality, lung index, viral titer, immune cell infiltration, and cytokine production in the lung were monitored. The activation of toll-like receptor 4 (TLR4) and nuclear factor kappa light chain enhancer of activated B cells (NF-κB) pathway was investigated. PCA treatment prevented H1N1 infection-induced mice body weight loss and death. PCA reduced the lung index, viral titer, infiltration of immune cells, and cytokine level in the lung, as well as suppressed H1N1-induced TLR4/NF-κB activation. PCA protects mice against H1N1 infection and could be a potential therapeutic agent to treat influenza.
Collapse
|
13
|
Taniguchi K, Ando Y, Kobayashi M, Toba S, Nobori H, Sanaki T, Noshi T, Kawai M, Yoshida R, Sato A, Shishido T, Naito A, Matsuno K, Okamatsu M, Sakoda Y, Kida H. Characterization of the In Vitro and In Vivo Efficacy of Baloxavir Marboxil against H5 Highly Pathogenic Avian Influenza Virus Infection. Viruses 2022; 14:v14010111. [PMID: 35062315 PMCID: PMC8777714 DOI: 10.3390/v14010111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 02/04/2023] Open
Abstract
Human infections caused by the H5 highly pathogenic avian influenza virus (HPAIV) sporadically threaten public health. The susceptibility of HPAIVs to baloxavir acid (BXA), a new class of inhibitors for the influenza virus cap-dependent endonuclease, has been confirmed in vitro, but it has not yet been fully characterized. Here, the efficacy of BXA against HPAIVs, including recent H5N8 variants, was assessed in vitro. The antiviral efficacy of baloxavir marboxil (BXM) in H5N1 virus-infected mice was also investigated. BXA exhibited similar in vitro activities against H5N1, H5N6, and H5N8 variants tested in comparison with seasonal and other zoonotic strains. Compared with oseltamivir phosphate (OSP), BXM monotherapy in mice infected with the H5N1 HPAIV clinical isolate, the A/Hong Kong/483/1997 strain, also caused a significant reduction in viral titers in the lungs, brains, and kidneys, thereby preventing acute lung inflammation and reducing mortality. Furthermore, compared with BXM or OSP monotherapy, combination treatments with BXM and OSP using a 48-h delayed treatment model showed a more potent effect on viral replication in the organs, accompanied by improved survival. In conclusion, BXM has a potent antiviral efficacy against H5 HPAIV infections.
Collapse
Affiliation(s)
- Keiichi Taniguchi
- Shionogi & Co., Ltd., Osaka 561-0825, Japan; (K.T.); (Y.A.); (M.K.); (S.T.); (H.N.); (T.S.); (T.N.); (M.K.); (R.Y.); (A.S.); (A.N.)
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido 060-0818, Japan; (M.O.); (Y.S.)
| | - Yoshinori Ando
- Shionogi & Co., Ltd., Osaka 561-0825, Japan; (K.T.); (Y.A.); (M.K.); (S.T.); (H.N.); (T.S.); (T.N.); (M.K.); (R.Y.); (A.S.); (A.N.)
| | - Masanori Kobayashi
- Shionogi & Co., Ltd., Osaka 561-0825, Japan; (K.T.); (Y.A.); (M.K.); (S.T.); (H.N.); (T.S.); (T.N.); (M.K.); (R.Y.); (A.S.); (A.N.)
| | - Shinsuke Toba
- Shionogi & Co., Ltd., Osaka 561-0825, Japan; (K.T.); (Y.A.); (M.K.); (S.T.); (H.N.); (T.S.); (T.N.); (M.K.); (R.Y.); (A.S.); (A.N.)
- International Institute for Zoonosis Control, Hokkaido University, Hokkaido 001-0020, Japan; (K.M.); (H.K.)
| | - Haruaki Nobori
- Shionogi & Co., Ltd., Osaka 561-0825, Japan; (K.T.); (Y.A.); (M.K.); (S.T.); (H.N.); (T.S.); (T.N.); (M.K.); (R.Y.); (A.S.); (A.N.)
| | - Takao Sanaki
- Shionogi & Co., Ltd., Osaka 561-0825, Japan; (K.T.); (Y.A.); (M.K.); (S.T.); (H.N.); (T.S.); (T.N.); (M.K.); (R.Y.); (A.S.); (A.N.)
| | - Takeshi Noshi
- Shionogi & Co., Ltd., Osaka 561-0825, Japan; (K.T.); (Y.A.); (M.K.); (S.T.); (H.N.); (T.S.); (T.N.); (M.K.); (R.Y.); (A.S.); (A.N.)
| | - Makoto Kawai
- Shionogi & Co., Ltd., Osaka 561-0825, Japan; (K.T.); (Y.A.); (M.K.); (S.T.); (H.N.); (T.S.); (T.N.); (M.K.); (R.Y.); (A.S.); (A.N.)
| | - Ryu Yoshida
- Shionogi & Co., Ltd., Osaka 561-0825, Japan; (K.T.); (Y.A.); (M.K.); (S.T.); (H.N.); (T.S.); (T.N.); (M.K.); (R.Y.); (A.S.); (A.N.)
| | - Akihiko Sato
- Shionogi & Co., Ltd., Osaka 561-0825, Japan; (K.T.); (Y.A.); (M.K.); (S.T.); (H.N.); (T.S.); (T.N.); (M.K.); (R.Y.); (A.S.); (A.N.)
- International Institute for Zoonosis Control, Hokkaido University, Hokkaido 001-0020, Japan; (K.M.); (H.K.)
| | - Takao Shishido
- Shionogi & Co., Ltd., Osaka 561-0825, Japan; (K.T.); (Y.A.); (M.K.); (S.T.); (H.N.); (T.S.); (T.N.); (M.K.); (R.Y.); (A.S.); (A.N.)
- Correspondence: ; Tel.: +81-6-6331-7263
| | - Akira Naito
- Shionogi & Co., Ltd., Osaka 561-0825, Japan; (K.T.); (Y.A.); (M.K.); (S.T.); (H.N.); (T.S.); (T.N.); (M.K.); (R.Y.); (A.S.); (A.N.)
| | - Keita Matsuno
- International Institute for Zoonosis Control, Hokkaido University, Hokkaido 001-0020, Japan; (K.M.); (H.K.)
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Hokkaido 001-0020, Japan
| | - Masatoshi Okamatsu
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido 060-0818, Japan; (M.O.); (Y.S.)
| | - Yoshihiro Sakoda
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido 060-0818, Japan; (M.O.); (Y.S.)
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Hokkaido 001-0020, Japan
| | - Hiroshi Kida
- International Institute for Zoonosis Control, Hokkaido University, Hokkaido 001-0020, Japan; (K.M.); (H.K.)
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Hokkaido 001-0020, Japan
| |
Collapse
|
14
|
Yeo JY, Gan SKE. Peering into Avian Influenza A(H5N8) for a Framework towards Pandemic Preparedness. Viruses 2021; 13:2276. [PMID: 34835082 PMCID: PMC8622263 DOI: 10.3390/v13112276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/20/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022] Open
Abstract
2014 marked the first emergence of avian influenza A(H5N8) in Jeonbuk Province, South Korea, which then quickly spread worldwide. In the midst of the 2020-2021 H5N8 outbreak, it spread to domestic poultry and wild waterfowl shorebirds, leading to the first human infection in Astrakhan Oblast, Russia. Despite being clinically asymptomatic and without direct human-to-human transmission, the World Health Organization stressed the need for continued risk assessment given the nature of Influenza to reassort and generate novel strains. Given its promiscuity and easy cross to humans, the urgency to understand the mechanisms of possible species jumping to avert disastrous pandemics is increasing. Addressing the epidemiology of H5N8, its mechanisms of species jumping and its implications, mutational and reassortment libraries can potentially be built, allowing them to be tested on various models complemented with deep-sequencing and automation. With knowledge on mutational patterns, cellular pathways, drug resistance mechanisms and effects of host proteins, we can be better prepared against H5N8 and other influenza A viruses.
Collapse
Affiliation(s)
- Joshua Yi Yeo
- Antibody & Product Development Lab, EDDC-BII, Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore;
| | - Samuel Ken-En Gan
- Antibody & Product Development Lab, EDDC-BII, Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore;
- APD SKEG Pte Ltd., Singapore 439444, Singapore
| |
Collapse
|
15
|
Kombiah S, Kumar M, Murugkar HV, Nagarajan S, Tosh C, Senthilkumar D, Rajukumar K, Kalaiyarasu S, Gautam S, Singh R, Karikalan M, Sharma AK, Singh VP. Role of expression of host cytokines in the pathogenesis of H9N2-PB2 reassortant and non-reassortant H5N1 avian influenza viruses isolated from crows in BALB/c mice. Microb Pathog 2021; 161:105239. [PMID: 34648926 DOI: 10.1016/j.micpath.2021.105239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/06/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022]
Abstract
The present experiment was conducted to study the role of cytokine, chemokine and TLRs responses of H9N2-PB2 reassortant H5N1 virus as compared to non-reassortant H5N1 virus isolated from crows in BALB/c mice. Two groups (12 mice each) of 6-8 weeks old BALB/c mice were intranasally inoculated with 106 EID50/ml of viruses A/crow/India/03CA04/2015 (H9N2-PB2 reassortant H5N1) and A/crow/India/02CA01/2012 (non-reassortant H5N1). At each interval, brain, lung and spleen were collected and relative quantification of cytokines, chemokines and TLRs was done by qPCR. The H9N2-PB2 reassortant H5N1 infected mice brain, the transcripts of TLR7 were significantly higher than other cytokines at 3dpi and KC was significantly upregulated at 7dpi. In non-reassortant H5N1 infected mice brain showed, TLR 7 and IFNα upregulation at 3dpi and IFNγ and TLR7 upregulation at 7dpi. The H9N2-PB2 reassortant H5N1 infected mice lung revealed, IL2 and TLR7 significant upregulation at 3dpi and in non-reassortant H5N1 infected mice, IL6 was significantly upregulated. At 7dpi in H9N2-PB2 reassortant H5N1 virus infected group mice, IL1 and TLR 3 were significantly upregulated in lungs and in non-reassortant group mice, IL1 and TLR7 were significantly upregulated. At 3dpi in H9N2-PB2 reassortant H5N1 virus infected mice spleen, IL4, IFNα, IFNβ were significantly downregulated and TLR7 transcript was significantly upregulated. In non-reassortant group mice, IL6, IFNα, IFNβ and TLR 3 were significantly upregulated. At 7dpi in H9N2-PB2 reassortant H5N1 virus infected mice spleen, IFNα, IFNβ and TLR7 were significantly lower than other cytokines and in non-reassortant group mice, IFNα and IFNβ were significantly downregulated. This study concludes that dysregulation of cytokines in lungs and brain might have contributed to the pathogenesis of both the viruses in mice.
Collapse
Affiliation(s)
- Subbiah Kombiah
- ICAR - National Institute of High Security Animal Diseases, Anand Nagar, Bhopal, Madhya Pradesh, 462 022, India; ICAR - Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243 122, India
| | - Manoj Kumar
- ICAR - National Institute of High Security Animal Diseases, Anand Nagar, Bhopal, Madhya Pradesh, 462 022, India.
| | - Harshad Vinayakrao Murugkar
- ICAR - National Institute of High Security Animal Diseases, Anand Nagar, Bhopal, Madhya Pradesh, 462 022, India
| | - Shanmugasundaram Nagarajan
- ICAR - National Institute of High Security Animal Diseases, Anand Nagar, Bhopal, Madhya Pradesh, 462 022, India
| | - Chakradhar Tosh
- ICAR - National Institute of High Security Animal Diseases, Anand Nagar, Bhopal, Madhya Pradesh, 462 022, India
| | - Dhanapal Senthilkumar
- ICAR - National Institute of High Security Animal Diseases, Anand Nagar, Bhopal, Madhya Pradesh, 462 022, India
| | - Katherukamem Rajukumar
- ICAR - National Institute of High Security Animal Diseases, Anand Nagar, Bhopal, Madhya Pradesh, 462 022, India
| | - Semmannan Kalaiyarasu
- ICAR - National Institute of High Security Animal Diseases, Anand Nagar, Bhopal, Madhya Pradesh, 462 022, India
| | - Siddharth Gautam
- ICAR - Indian Veterinary Research Institute, Mukteshwar, Nainital, Uttrakhand, 263138, India
| | - Rajendra Singh
- ICAR - Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243 122, India
| | - Mathesh Karikalan
- ICAR - Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243 122, India
| | - Anil Kumar Sharma
- ICAR - Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243 122, India
| | - Vijendra Pal Singh
- ICAR - National Institute of High Security Animal Diseases, Anand Nagar, Bhopal, Madhya Pradesh, 462 022, India
| |
Collapse
|
16
|
Viral and Bacterial Co-Infections in the Lungs: Dangerous Liaisons. Viruses 2021; 13:v13091725. [PMID: 34578306 PMCID: PMC8472850 DOI: 10.3390/v13091725] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/23/2022] Open
Abstract
Respiratory tract infections constitute a significant public health problem, with a therapeutic arsenal that remains relatively limited and that is threatened by the emergence of antiviral and/or antibiotic resistance. Viral–bacterial co-infections are very often associated with the severity of these respiratory infections and have been explored mainly in the context of bacterial superinfections following primary influenza infection. This review summarizes our current knowledge of the mechanisms underlying these co-infections between respiratory viruses (influenza viruses, RSV, and SARS-CoV-2) and bacteria, at both the physiological and immunological levels. This review also explores the importance of the microbiome and the pathological context in the evolution of these respiratory tract co-infections and presents the different in vitro and in vivo experimental models available. A better understanding of the complex functional interactions between viruses/bacteria and host cells will allow the development of new, specific, and more effective diagnostic and therapeutic approaches.
Collapse
|
17
|
Mittal N, Sengupta N, Malladi SK, Reddy P, Bhat M, Rajmani RS, Sedeyn K, Saelens X, Dutta S, Varadarajan R. Protective Efficacy of Recombinant Influenza Hemagglutinin Ectodomain Fusions. Viruses 2021; 13:v13091710. [PMID: 34578291 PMCID: PMC8473191 DOI: 10.3390/v13091710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 12/15/2022] Open
Abstract
In current seasonal influenza vaccines, neutralizing antibody titers directed against the hemagglutinin surface protein are the primary correlate of protection. These vaccines are, therefore, quantitated in terms of their hemagglutinin content. Adding other influenza surface proteins, such as neuraminidase and M2e, to current quadrivalent influenza vaccines would likely enhance vaccine efficacy. However, this would come with increased manufacturing complexity and cost. To address this issue, as a proof of principle, we have designed genetic fusions of hemagglutinin ectodomains from H3 and H1 influenza A subtypes. These recombinant H1-H3 hemagglutinin ectodomain fusions could be transiently expressed at high yield in mammalian cell culture using Expi293F suspension cells. Fusions were trimeric, and as stable in solution as their individual trimeric counterparts. Furthermore, the H1-H3 fusion constructs were antigenically intact based on their reactivity with a set of conformation-specific monoclonal antibodies. H1-H3 hemagglutinin ectodomain fusion immunogens, when formulated with the MF59 equivalent adjuvant squalene-in-water emulsion (SWE), induced H1 and H3-specific humoral immune responses equivalent to those induced with an equimolar mixture of individually expressed H1 and H3 ectodomains. Mice immunized with these ectodomain fusions were protected against challenge with heterologous H1N1 (Bel/09) and H3N2 (X-31) mouse-adapted viruses with higher neutralizing antibody titers against the H1N1 virus. Use of such ectodomain-fused immunogens would reduce the number of components in a vaccine formulation and allow for the inclusion of other protective antigens to increase influenza vaccine efficacy.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Cross Protection/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/administration & dosage
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Mice
- Mice, Inbred BALB C
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/prevention & control
- Vaccine Efficacy
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Nidhi Mittal
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru 560012, India; (N.M.); (N.S.); (S.K.M.); (R.S.R.); (S.D.)
| | - Nayanika Sengupta
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru 560012, India; (N.M.); (N.S.); (S.K.M.); (R.S.R.); (S.D.)
| | - Sameer Kumar Malladi
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru 560012, India; (N.M.); (N.S.); (S.K.M.); (R.S.R.); (S.D.)
| | - Poorvi Reddy
- Mynvax Private Limited, ES12, Entrepreneurship Centre, SID, Indian Institute of Science, Bengaluru 560012, India; (P.R.); (M.B.)
| | - Madhuraj Bhat
- Mynvax Private Limited, ES12, Entrepreneurship Centre, SID, Indian Institute of Science, Bengaluru 560012, India; (P.R.); (M.B.)
| | - Raju S. Rajmani
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru 560012, India; (N.M.); (N.S.); (S.K.M.); (R.S.R.); (S.D.)
| | - Koen Sedeyn
- VIB-UGent Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium; (K.S.); (X.S.)
- Department of Biochemistry and Microbiology, Ghent University, 9052 Ghent, Belgium
| | - Xavier Saelens
- VIB-UGent Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium; (K.S.); (X.S.)
- Department of Biochemistry and Microbiology, Ghent University, 9052 Ghent, Belgium
| | - Somnath Dutta
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru 560012, India; (N.M.); (N.S.); (S.K.M.); (R.S.R.); (S.D.)
| | - Raghavan Varadarajan
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru 560012, India; (N.M.); (N.S.); (S.K.M.); (R.S.R.); (S.D.)
- Correspondence: ; Tel.: +91-80-22932612; Fax: +91-80-23600535
| |
Collapse
|
18
|
Nguyen TQ, Rollon R, Choi YK. Animal Models for Influenza Research: Strengths and Weaknesses. Viruses 2021; 13:1011. [PMID: 34071367 PMCID: PMC8228315 DOI: 10.3390/v13061011] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 12/16/2022] Open
Abstract
Influenza remains one of the most significant public health threats due to its ability to cause high morbidity and mortality worldwide. Although understanding of influenza viruses has greatly increased in recent years, shortcomings remain. Additionally, the continuous mutation of influenza viruses through genetic reassortment and selection of variants that escape host immune responses can render current influenza vaccines ineffective at controlling seasonal epidemics and potential pandemics. Thus, there is a knowledge gap in the understanding of influenza viruses and a corresponding need to develop novel universal vaccines and therapeutic treatments. Investigation of viral pathogenesis, transmission mechanisms, and efficacy of influenza vaccine candidates requires animal models that can recapitulate the disease. Furthermore, the choice of animal model for each research question is crucial in order for researchers to acquire a better knowledge of influenza viruses. Herein, we reviewed the advantages and limitations of each animal model-including mice, ferrets, guinea pigs, swine, felines, canines, and non-human primates-for elucidating influenza viral pathogenesis and transmission and for evaluating therapeutic agents and vaccine efficacy.
Collapse
Affiliation(s)
- Thi-Quyen Nguyen
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Korea; (T.-Q.N.); (R.R.)
| | - Rare Rollon
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Korea; (T.-Q.N.); (R.R.)
| | - Young-Ki Choi
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Korea; (T.-Q.N.); (R.R.)
- Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju 28644, Korea
| |
Collapse
|
19
|
Wang G, Liu D, Hu J, Gu M, Wang X, He D, Zhang L, Li J, Zheng X, Zeng Z, Liu H, Hu S, Peng D, Jiao X, Liu X. Mutations during the adaptation of H7N9 avian influenza virus to mice lungs enhance human-like sialic acid binding activity and virulence in mice. Vet Microbiol 2021; 254:109000. [PMID: 33515926 DOI: 10.1016/j.vetmic.2021.109000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/18/2021] [Indexed: 01/18/2023]
Abstract
The first avian H7N9 influenza outbreak in spring of 2013 emerged in an unprecedented transmission from infected poultry to humans in the Yangtze delta area, eastern China, posing a dual challenge to public health and poultry industry. However, the mechanism for how avian H7N9 influenza virus adapts to mammalian hosts has not been clearly understood. Here, to identify adaptive changes that confer enhanced virulence of H7N9 virus in mammals, we generated a mouse-adapted H7N9 variant virus (S8) by serial lung-to-lung passages of the wild-type SDL124 virus in mice and compared their phenotype in vivo and in vitro. Sequence analysis showed that the two viruses differed by 27 amino acids distributed among six genes, containing changes in PB2 (E627K, D701N) and HA (Q226L) genes. The 50% mouse lethal dose (MLD50) of S8 reduced about 500 folds, to be moderately pathogenic to mice when compared to that of low pathogenic wild-type SDL124. Moreover, S8 replicated efficiently in mouse lungs and displayed expanded tissue tropism, and induced a greater degree of pulmonary edema and higher level of inflammatory cell infiltration in bronchoalveolar lavage fluids than SDL124 did. Interestingly, the mouse adapted S8 virus obtained strong affinity for human-like (SAα-2,6 Gal) receptor during the adaptation in mice. Correspondingly, compared with SDL124 virus, S8 virus showed higher replication efficiency in mammalian cells, whereas lower replication ability in avian cells. Taken together, these findings suggest that these mutations synergistically elevate the ability of H7N9 virus to disseminate to multiple organs and subsequently enhance the virulence of H7N9 virus in mammalian hosts.
Collapse
Affiliation(s)
- Guoqing Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China(26116120), Yangzhou University, Yangzhou, China
| | - Dong Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China(26116120), Yangzhou University, Yangzhou, China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China(26116120), Yangzhou University, Yangzhou, China
| | - Min Gu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China(26116120), Yangzhou University, Yangzhou, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China(26116120), Yangzhou University, Yangzhou, China
| | - Dongchang He
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China(26116120), Yangzhou University, Yangzhou, China
| | - Lei Zhang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China(26116120), Yangzhou University, Yangzhou, China
| | - Jun Li
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China(26116120), Yangzhou University, Yangzhou, China
| | - Xinxin Zheng
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China(26116120), Yangzhou University, Yangzhou, China
| | - Zixiong Zeng
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China(26116120), Yangzhou University, Yangzhou, China
| | - Huimou Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China(26116120), Yangzhou University, Yangzhou, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China(26116120), Yangzhou University, Yangzhou, China
| | - Daxin Peng
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China(26116120), Yangzhou University, Yangzhou, China
| | - Xinan Jiao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China(26116120), Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China(26116120), Yangzhou University, Yangzhou, China.
| |
Collapse
|
20
|
Yudhawati R, Amin M, Rantam FA, Prasetya RR, Dewantari JR, Nastri AM, Poetranto ED, Wulandari L, Lusida MI, Koesnowidagdo S, Soegiarto G, Shimizu YK, Mori Y, Shimizu K. Bone marrow-derived mesenchymal stem cells attenuate pulmonary inflammation and lung damage caused by highly pathogenic avian influenza A/H5N1 virus in BALB/c mice. BMC Infect Dis 2020; 20:823. [PMID: 33176722 PMCID: PMC7656227 DOI: 10.1186/s12879-020-05525-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 10/16/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The highly pathogenic avian influenza A/H5N1 virus is one of the causative agents of acute lung injury (ALI) with high mortality rate. Studies on therapeutic administration of bone marrow-derived mesenchymal stem cells (MSCs) in ALI caused by the viral infection have been limited in number and have shown conflicting results. The aim of the present investigation is to evaluate the therapeutic potential of MSC administration in A/H5N1-caused ALI, using a mouse model. METHODS MSCs were prepared from the bone marrow of 9 to 12 week-old BALB/c mice. An H5N1 virus of A/turkey/East Java/Av154/2013 was intranasally inoculated into BALB/c mice. On days 2, 4, and 6 after virus inoculation, MSCs were intravenously administered into the mice. To evaluate effects of the treatment, we examined for lung alveolar protein as an indicator for lung injury, PaO2/FiO2 ratio for lung functioning, and lung histopathology. Expressions of NF-κB, RAGE (transmembrane receptor for damage associated molecular patterns), TNFα, IL-1β, Sftpc (alveolar cell type II marker), and Aqp5+ (alveolar cell type I marker) were examined by immunohistochemistry. In addition, body weight, virus growth in lung and brain, and duration of survival were measured. RESULTS The administration of MSCs lowered the level of lung damage in the virus-infected mice, as shown by measuring lung alveolar protein, PaO2/FiO2 ratio, and histopathological score. In the MSC-treated group, the expressions of NF-κB, RAGE, TNFα, and IL-1β were significantly suppressed in comparison with a mock-treated group, while those of Sftpc and Aqp5+ were enhanced. Body weight, virus growth, and survival period were not significantly different between the groups. CONCLUSION The administration of MSCs prevented further lung injury and inflammation, and enhanced alveolar cell type II and I regeneration, while it did not significantly affect viral proliferation and mouse morbidity and mortality. The results suggested that MSC administration was a promissing strategy for treatment of acute lung injuries caused by the highly pathogenic avian influenza A/H5N1 virus, although further optimization and combination use of anti-viral drugs will be obviously required to achieve the goal of reducing mortality.
Collapse
Affiliation(s)
- Resti Yudhawati
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia. .,Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Airlangga University, Surabaya, Indonesia.
| | - Muhammad Amin
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Fedik A Rantam
- Department of Virology and Immunology, Faculty of Veterinary Medicine / Stem Cell Research and Development Center, Airlangga University, Surabaya, Indonesia
| | - Rima R Prasetya
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - Jezzy R Dewantari
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - Aldise M Nastri
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - Emmanuel D Poetranto
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - Laksmi Wulandari
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia.,Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Maria I Lusida
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - Soetjipto Koesnowidagdo
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - Gatot Soegiarto
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - Yohko K Shimizu
- Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yasuko Mori
- Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kazufumi Shimizu
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia. .,Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan.
| |
Collapse
|
21
|
Kiseleva I, Rekstin A, Al Farroukh M, Bazhenova E, Katelnikova A, Puchkova L, Rudenko L. Non-Mouse-Adapted H1N1pdm09 Virus as a Model for Influenza Research. Viruses 2020; 12:v12060590. [PMID: 32485821 PMCID: PMC7354452 DOI: 10.3390/v12060590] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/21/2020] [Accepted: 05/27/2020] [Indexed: 12/26/2022] Open
Abstract
The number of lung-adapted influenza viruses is limited. Most of them are not antigenically related to current circulating viruses. Viruses similar to recent strains are required for screening modern antiviral compounds and studying new vaccine candidates against novel influenza viruses. The process by which an influenza virus adapts to a new host is rather difficult. The aim of this study was to select a non-adapted current virus whose major biological properties correspond to those of classical lab-adapted viruses. Mice were inoculated intranasally with non-lung-adapted influenza viruses of subtype H1N1pdm09. They were monitored closely for body weight loss, mortality outcomes and gross pathology for 14 days following inoculation, as well as viral replication in lung tissue. Lung-adapted PR8 virus was used as a control. The tested viruses multiplied equally well in the lower respiratory tract of mice without prior adaptation but dramatically differed in lethality; the differences in their toxicity and pathogenicity in mice were established. A/South Africa/3626/2013 (H1N1)pdm09 virus was found to be an appropriate candidate to replace PR8 as a model virus for influenza research. No prior adaptation to the animal model is needed to reach the pathogenicity level of the classical mouse-adapted PR8 virus.
Collapse
Affiliation(s)
- Irina Kiseleva
- Department of Virology, Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”, 197376 St Petersburg, Russia; (A.R.); (M.A.F.); (E.B.); (L.P.); (L.R.)
- Correspondence:
| | - Andrey Rekstin
- Department of Virology, Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”, 197376 St Petersburg, Russia; (A.R.); (M.A.F.); (E.B.); (L.P.); (L.R.)
| | - Mohammad Al Farroukh
- Department of Virology, Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”, 197376 St Petersburg, Russia; (A.R.); (M.A.F.); (E.B.); (L.P.); (L.R.)
| | - Ekaterina Bazhenova
- Department of Virology, Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”, 197376 St Petersburg, Russia; (A.R.); (M.A.F.); (E.B.); (L.P.); (L.R.)
| | - Anastasia Katelnikova
- Department of Toxicology and Microbiology, Institute of Preclinical Research Ltd., 188663 St Petersburg, Russia;
| | - Ludmila Puchkova
- Department of Virology, Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”, 197376 St Petersburg, Russia; (A.R.); (M.A.F.); (E.B.); (L.P.); (L.R.)
| | - Larisa Rudenko
- Department of Virology, Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”, 197376 St Petersburg, Russia; (A.R.); (M.A.F.); (E.B.); (L.P.); (L.R.)
| |
Collapse
|
22
|
Yudhawati R, Prasetya RR, Dewantari JR, Nastri AM, Rahardjo K, Novianti AN, Amin M, Rantam FA, Poetranto ED, Wulandari L, Lusida MI, Soetjipto, Soegiarto G, Shimizu YK, Mori Y, Shimizu K. Comparison of Virulence and Lethality in Mice for Avian Influenza Viruses of Two A/H5N1 and One A/H3N6 Isolated from Poultry during Year 2013-2014 in Indonesia. Jpn J Infect Dis 2020; 73:336-342. [PMID: 32350224 DOI: 10.7883/yoken.jjid.2020.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In Indonesia, the highly pathogenic avian influenza A/H5N1 virus has become endemic and has been linked with direct transmission to humans. From 2013 to 2014, we isolated avian influenza A/H5N1 and A/H3N6 viruses from poultry in Indonesia. This study aimed to reveal their pathogenicity in mammals using a mouse model. Three of the isolates, Av154 of A/H5N1 clade 2.3.2.1c, Av240 of A/H5N1 clade 2.1.3.2b, and Av39 of A/H3N6, were inoculated into BALB/c mice. To assess morbidity and mortality, we measured body weight daily and monitored survival for 20 d. Av154- and Av240-infected mice lost 25% of their starting body weight by day 7, while Av39-infected mice did not. Most of the Av154-infected mice died on day 8, while the majority of the Av240-infected mice survived until day 20. A 50% mouse lethal dose was calculated to be 2.0 × 101 50% egg infectious doses for Av154, 1.1 × 105 for Av240 and > 3.2 × 106 for Av39. The Av154 virus was highly virulent and lethal in mice without prior adaptation, suggesting its high pathogenic potential in mammals. The Av240 virus was highly virulent but modestly lethal, whereas the Av39 virus was neither virulent nor lethal. Several mammalian adaptive markers of amino acid residues were associated with the highly virulent and lethal phenotypes of the Av154 virus.
Collapse
Affiliation(s)
- Resti Yudhawati
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Indnesia.,Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Indonesia
| | - Rima R Prasetya
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Indonesia
| | - Jezzy R Dewantari
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Indonesia
| | - Aldise M Nastri
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Indonesia
| | - Krisnoadi Rahardjo
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Indonesia
| | - Arindita N Novianti
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Indonesia
| | - Muhammad Amin
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Indnesia
| | - Fedik A Rantam
- Department of Virology and Immunology, Faculty of Veterinary Medicine / Stem Cell Research and Development Center, Airlangga University, Indonesia
| | - Emmanuel D Poetranto
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Indonesia
| | - Laksmi Wulandari
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Indnesia.,Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Indonesia
| | - Maria I Lusida
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Indonesia
| | - Soetjipto
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Indonesia
| | - Gatot Soegiarto
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Indonesia
| | - Yohko K Shimizu
- Center for Infectious Diseases, Kobe University Graduate School of Medicine, Japan
| | - Yasuko Mori
- Center for Infectious Diseases, Kobe University Graduate School of Medicine, Japan
| | - Kazufumi Shimizu
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Indonesia.,Center for Infectious Diseases, Kobe University Graduate School of Medicine, Japan
| |
Collapse
|
23
|
Toots M, Yoon JJ, Hart M, Natchus MG, Painter GR, Plemper RK. Quantitative efficacy paradigms of the influenza clinical drug candidate EIDD-2801 in the ferret model. Transl Res 2020; 218:16-28. [PMID: 31945316 PMCID: PMC7568909 DOI: 10.1016/j.trsl.2019.12.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/17/2019] [Accepted: 12/20/2019] [Indexed: 12/15/2022]
Abstract
Seasonal influenza viruses cause major morbidity and mortality worldwide, threatening in particular older adults and the immunocompromised. Two classes of influenza therapeutics dominate current disease management, but both are compromised by pre-existing or rapidly emerging viral resistance. We have recently reported a novel ribonucleoside analog clinical candidate, EIDD-2801, that combines potent antiviral efficacy in ferrets and human airway epithelium cultures with a high barrier against viral escape. In this study, we established fundamental EIDD-2801 efficacy paradigms against pandemic and seasonal influenza A virus (IAV) strains in ferrets that can be used to inform exposure targets and treatment regimens. Based on reduction of shed virus titers, alleviation of clinical signs, and lowered virus burden in upper and lower respiratory tract tissues, lowest efficacious oral dose concentrations of EIDD-2801, given twice daily, were 2.3 and 7 mg/kg of body weight against seasonal and pandemic IAVs, respectively. The latest opportunity for initiation of efficacious treatment was 36 hours after infection of ferrets. Administered in 12-hour intervals, three 7 mg/kg doses of EIDD-2801 were sufficient for maximal therapeutic benefit against a pandemic IAV and significantly shortened the time to resolution of clinical signs. Ferrets infected with pandemic IAV and treated following the minimally efficacious EIDD-2801 regimen demonstrated significantly less shed virus and inflammatory cellular infiltrates in nasal lavages, but mounted a robust humoral antiviral response after recovery that was indistinguishable from that of vehicle-treated animals. These results provide an experimental basis in a human disease-relevant influenza animal model for clinical testing of EIDD-2801.
Collapse
Affiliation(s)
- Mart Toots
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Jeong-Joong Yoon
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Michael Hart
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Michael G Natchus
- Emory Institute for Drug Development, Emory University, Atlanta, Georgia
| | - George R Painter
- Emory Institute for Drug Development, Emory University, Atlanta, Georgia; Department of Pharmacology, Emory University, Atlanta, Georgia
| | - Richard K Plemper
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia.
| |
Collapse
|
24
|
Mendoza M, Gunasekera D, Pratt KP, Qiu Q, Casares S, Brumeanu TD. The humanized DRAGA mouse (HLA-A2. HLA-DR4. RAG1 KO. IL-2R g c KO. NOD) establishes inducible and transmissible models for influenza type A infections. Hum Vaccin Immunother 2020; 16:2222-2237. [PMID: 32129705 DOI: 10.1080/21645515.2020.1713605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We have engineered a Human Immune System (HIS)-reconstituted mouse strain (DRAGA mouse: HLA-A2. HLA-DR4. Rag1 KO. IL-2Rγc KO. NOD) in which the murine immune system has been replaced by a long-term, functional HIS via infusion of CD34+ hematopoietic stem cells (HSC) from cord blood. Herein, we report that the DRAGA mice can sustain inducible and transmissible H1N1 and H3N2 influenza A viral (IAV) infections. DRAGA female mice were significantly more resilient than the males to the H3N2/Aichi infection, but not to H3N2/Hong Kong, H3N2/Victoria, or H1N1/PR8 sub-lethal infections. Consistently associated with large pulmonary hemorrhagic areas, both human and murine Factor 8 mRNA transcripts were undetectable in the damaged lung tissues but not in livers of DRAGA mice advancing to severe H1N1/PR8 infection. Infected DRAGA mice mounted a neutralizing anti-viral antibody response and developed lung-resident CD103 T cells. These results indicate that the DRAGA mouse model for IAV infections can more closely approximate the human lung pathology and anti-viral immune responses compared to non-HIS mice. This mouse model may also allow further investigations into gender-based resilience to IAV infections, and may potentially be used to evaluate the efficacy of IAV vaccine regimens for humans.
Collapse
Affiliation(s)
- Mirian Mendoza
- Department of Medicine, Division of Immunology, Uniformed Services University of the Health Sciences , Bethesda, MD, USA.,Department of Pathology, Uniformed Services University of the Health Sciences , Bethesda, MD, USA
| | - Devi Gunasekera
- Department of Medicine, Division of Immunology, Uniformed Services University of the Health Sciences , Bethesda, MD, USA
| | - Kathleen P Pratt
- Department of Medicine, Division of Immunology, Uniformed Services University of the Health Sciences , Bethesda, MD, USA
| | - Qi Qiu
- Department of Medicine, Division of Immunology, Uniformed Services University of the Health Sciences , Bethesda, MD, USA.,US Military Malaria Vaccine Development, Naval Medical Research Center/Walter Reed Army Institute of Research , Silver Spring, MD, USA
| | - Sofia Casares
- Department of Medicine, Division of Immunology, Uniformed Services University of the Health Sciences , Bethesda, MD, USA.,US Military Malaria Vaccine Development, Naval Medical Research Center/Walter Reed Army Institute of Research , Silver Spring, MD, USA
| | - Teodor-D Brumeanu
- Department of Medicine, Division of Immunology, Uniformed Services University of the Health Sciences , Bethesda, MD, USA
| |
Collapse
|
25
|
Morcol T, Nagappan P, Bell SJD, Cawthon AG. Influenza A(H5N1) Virus Subunit Vaccine Administered with CaPNP Adjuvant Induce High Virus Neutralization Antibody Titers in Mice. AAPS PharmSciTech 2019; 20:315. [PMID: 31591662 DOI: 10.1208/s12249-019-1530-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/09/2019] [Indexed: 12/17/2022] Open
Abstract
The highly pathogenic avian influenza H5N1 virus continues to spread globally in domestic poultry with sporadic transmission to humans. The possibility for its rapid transmission to humans raised global fears for the virus to gain capacity for human-to-human transmission to start a future pandemic. Through direct contact with infected poultry, it caused the largest number of reported cases of severe disease and death in humans of any avian influenza strains. For pandemic preparedness, use of safe and effective vaccine adjuvants and delivery systems to improve vaccine efficacy are considered imperative. We previously demonstrated CaPtivate's proprietary CaP nanoparticles (CaPNP) as a potent vaccine adjuvant/delivery system with ability to induce both humoral and cell-mediated immune responses against many viral or bacterial infections. In this study, we investigated the delivery of insect cell culture-derived recombinant hemagglutinin protein (HA) of A/H5N1/Vietnam/1203/2004 virus using CaPNP. We evaluated the vaccine immunogenicity in mice following two intramuscular doses of 3 μg antigen combined with escalating doses of CaPNP. Our data showed CaPNP-adjuvanted HA(H5N1) vaccines eliciting significantly higher IgG, hemagglutination inhibition, and virus neutralization titers compared to non-adjuvanted vaccine. Among the four adjuvant doses that were tested, CaPNP at 0.24% final concentration elicited the highest IgG and neutralizing antibody titers. We also evaluated the inflammatory response to CaPNP following a single intramuscular injection in guinea pigs and showed that CaPNP does not induce any systemic reaction or adverse effects. Current data further support our earlier studies demonstrating CaPNP as a safe and an effective adjuvant for influenza vaccines.
Collapse
|
26
|
Kramskaya T, Leontieva G, Desheva Y, Grabovskaya K, Gupalova T, Rudenko L, Suvorov A. Combined immunization with attenuated live influenza vaccine and chimeric pneumococcal recombinant protein improves the outcome of virus-bacterial infection in mice. PLoS One 2019; 14:e0222148. [PMID: 31513620 PMCID: PMC6742370 DOI: 10.1371/journal.pone.0222148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/22/2019] [Indexed: 11/29/2022] Open
Abstract
Influenza and its bacterial complications are a leading cause of morbidity and mortality worldwide. The effect of combined immunization with live influenza vaccine and recombinant chimeric pneumococcal protein in dual infection caused by influenza H1N1 and S. pneumoniae (serotype 3) has been studied. The combined vaccine consisted of the strain A/California/2009/38 (H1N1) pdm and chimeric recombinant protein PSPF composed of immunodominant fragments of the surface virulence factors of S. pneumoniae—PsaA, PspA, and Shr1875—associated with modified salmonella flagellin. Vaccinated mice were infected with the influenza virus 24 hours before or 24 hours after the onset of pneumococcal infection. The protective effect of combined vaccination was shown on both models of viral-bacterial infection.
Collapse
Affiliation(s)
- T. Kramskaya
- Department of Molecular Microbiology, Institute of Experimental Medicine, Saint Petersburg, Russian Federation
| | - G. Leontieva
- Department of Molecular Microbiology, Institute of Experimental Medicine, Saint Petersburg, Russian Federation
- * E-mail:
| | - Yu. Desheva
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russian Federation
- Department of Fundamental Medicine and Medical Technologies, Faculty of Dentistry and Medical Technologies, Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - K. Grabovskaya
- Department of Molecular Microbiology, Institute of Experimental Medicine, Saint Petersburg, Russian Federation
| | - T. Gupalova
- Department of Molecular Microbiology, Institute of Experimental Medicine, Saint Petersburg, Russian Federation
| | - L. Rudenko
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russian Federation
| | - A. Suvorov
- Department of Molecular Microbiology, Institute of Experimental Medicine, Saint Petersburg, Russian Federation
- Department of Fundamental Medicine and Medical Technologies, Faculty of Dentistry and Medical Technologies, Saint Petersburg State University, Saint Petersburg, Russian Federation
| |
Collapse
|
27
|
Mucosal vaccine based on attenuated influenza virus and the group B Streptococcus recombinant peptides protected mice from influenza and S. pneumoniae infections. PLoS One 2019; 14:e0218544. [PMID: 31237893 PMCID: PMC6592537 DOI: 10.1371/journal.pone.0218544] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 06/04/2019] [Indexed: 02/06/2023] Open
Abstract
Although many influenza-related deaths are attributable to secondary bacterial infection with S. pneumoniae, vaccines that simultaneously protect against influenza and pneumococcal infection are currently not developed. The aim of our study was to evaluate the possibility to prevent post-influenza pneumococcal infection using an associated vaccine based on live influenza vaccine (LAIV) combined with recombinant polypeptides derived from superficial factors of Group B streptococcus (GBS) determining pathogenicity. We demonstrated in a model of post-influenza pneumococcal pneumonia that intranasal pneumococcal super-infection seriously complicated the course of A/Shanghai/2/2013(H7N9) CDC-RG virus infection in mice. Associated immunization using LAIV and GBS vaccine (GBSV) prevented post-influenza pneumococcal pneumonia better than mono-LAIV or GBSV immunization. At the same time, parenteral pneumococcal post-influenza infection of immune mice was more severe in the groups immunized using recombinant GBS peptides which can be explained by antibody-dependent enhancement of infection. In this case, the introduction of blockers of histamine receptors type 1 and 2 reduced the burden of secondary pneumococcal infection.
Collapse
|
28
|
Desheva YA, Leontieva GF, Kramskaya TA, Landgraf GO, Sychev IA, Rekstin AR, Suvorov AN. Factors of early protective action of live influenza vaccine combined with recombinant bacterial polypeptides against homologous and heterologous influenza infection. Heliyon 2019; 5:e01154. [PMID: 30839941 PMCID: PMC6365543 DOI: 10.1016/j.heliyon.2019.e01154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/21/2018] [Accepted: 01/18/2019] [Indexed: 12/29/2022] Open
Abstract
We are developing an associated vaccine based on live influenza vaccine (LAIV) and streptococcal recombinant peptides. The recombinant group B streptococcus (GBS) peptides P6 and ScaAB demonstrated a distinguished immunomodulating effect in THP-1 cells. The increase in IFN 1-alpha expression after ScaAB inoculation was similar to that against LAIV. We immunized mice intranasal using of A/H7N3 LAIV or/and ScaAB peptide. At day 5 after immunization, we detected serum IgM which reacted with non-vaccine influenza viruses. Associated vaccination of mice using LAIV and GBS peptide was the most effective against sub-lethal infection with A/H7N9 influenza virus and against lethal challenge with A/H1N1pdm virus at day 5 after immunization. Not only LAIV but also the ScaAB protected about 20% of the immunized animals against lethal challenge with A/H1N1pdm virus. The early protection was related to increasing type 1 interferons expression in the lungs. Our results in mice have shown that successful protection against homologous and heterologous influenza infections can be achieved soon after vaccination with either LAIV or LAIV in combination with GBS recombinant peptide. Presumably, such protection may be mediated by non-specific IgM antibodies and an increase in the expression of early cytokines in the airway.
Collapse
Affiliation(s)
- Yulia A Desheva
- Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", Saint Petersburg, Acad. Pavlov's Str., 12, 197376, Russian Federation.,Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Galina F Leontieva
- Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", Saint Petersburg, Acad. Pavlov's Str., 12, 197376, Russian Federation
| | - Tatiana A Kramskaya
- Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", Saint Petersburg, Acad. Pavlov's Str., 12, 197376, Russian Federation
| | - Galina O Landgraf
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Ivan A Sychev
- Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", Saint Petersburg, Acad. Pavlov's Str., 12, 197376, Russian Federation
| | - Andrey R Rekstin
- Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", Saint Petersburg, Acad. Pavlov's Str., 12, 197376, Russian Federation
| | - Alexander N Suvorov
- Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", Saint Petersburg, Acad. Pavlov's Str., 12, 197376, Russian Federation.,Saint Petersburg State University, Saint Petersburg, Russian Federation
| |
Collapse
|
29
|
Han HJ, Song MS, Park SJ, Byun HY, Robles NJC, Ha SH, Choi YK. Efficacy of A/H1N1/2009 split inactivated influenza A vaccine (GC1115) in mice and ferrets. J Microbiol 2019; 57:163-169. [PMID: 30706345 DOI: 10.1007/s12275-019-8504-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/31/2018] [Accepted: 11/04/2018] [Indexed: 12/16/2022]
Abstract
To evaluate the efficacy of a non-adjuvant A/H1N1/2009 influenza A vaccine (GC1115), we demonstrated the immunogenicity and protective efficacy of GC1115 in mouse and ferret models. The immunogenicity of GC1115 was confirmed after intramuscular administration of 1.875, 3.75, 7.5, and 15 μg hemagglutinin antigen (HA) in mice and 7.5, 15, and 30 μg HA in ferrets at 3-week intervals. A single immunization with GC1115 at HA doses > 7.5 μg induced detectable seroconversion in most mice, and all mice given a second dose exhibited high antibody responses in a dose-dependent manner. The mice in the mock (PBS) and 1.875 μg HA immunized groups succumbed by 13 days following A/California/ 04/09 infection, while all mice in groups given more than 3.75 μg HA were protected from lethal challenge with the A/California/04/09 virus. In ferrets, although immunization with even a single dose of 15 or 30 μg of HA induced detectable HI antibodies, all ferrets given two doses of vaccine seroconverted and exhibited HI titers greater than 80 units. Following challenge with A/California/04/09, the mock (PBS) immunized ferrets showed influenza-like clinical symptoms, such as increased numbers of coughs, elevated body temperature, and body weight loss, for 7 days, while GC1115- immunized ferrets showed attenuated clinical symptoms only for short time period (3-4 days). Further, GC1115-immunized ferrets displayed significantly lower viral titers in the upper respiratory tract (nasal cavity) than the mock vaccinated group in a dose-dependent manner. Taken together, this study demonstrates the immunogenicity and protective efficacy of GC1115 as a non-adjuvanted vaccine.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Animals
- Antibodies, Viral/blood
- Body Temperature
- Body Weight
- Cough
- Disease Models, Animal
- Dose-Response Relationship, Immunologic
- Ferrets
- Hemagglutination Inhibition Tests
- Immunogenicity, Vaccine/immunology
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/immunology
- Injections, Intramuscular
- Lung/pathology
- Mice
- Mice, Inbred BALB C
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/pathology
- Orthomyxoviridae Infections/physiopathology
- Orthomyxoviridae Infections/prevention & control
- Respiratory System/virology
- Survival Rate
- Vaccination/methods
- Vaccines, Inactivated/administration & dosage
- Vaccines, Inactivated/immunology
- Viral Load
Collapse
Affiliation(s)
- Hae Jung Han
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, 28644, Republic of Korea
- Research & Development Center, GC Pharma., Yongin, 16924, Republic of Korea
| | - Min-Suk Song
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Su-Jin Park
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Han Yeul Byun
- Research & Development Center, GC Pharma., Yongin, 16924, Republic of Korea
| | - Norbert John C Robles
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Suk-Hoon Ha
- Research & Development Center, GC Pharma., Yongin, 16924, Republic of Korea
| | - Young Ki Choi
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
30
|
Vaccination of poultry successfully eliminated human infection with H7N9 virus in China. SCIENCE CHINA-LIFE SCIENCES 2018; 61:1465-1473. [DOI: 10.1007/s11427-018-9420-1] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 10/17/2018] [Indexed: 01/06/2023]
|
31
|
Shi J, Deng G, Ma S, Zeng X, Yin X, Li M, Zhang B, Cui P, Chen Y, Yang H, Wan X, Liu L, Chen P, Jiang Y, Guan Y, Liu J, Gu W, Han S, Song Y, Liang L, Qu Z, Hou Y, Wang X, Bao H, Tian G, Li Y, Jiang L, Li C, Chen H. Rapid Evolution of H7N9 Highly Pathogenic Viruses that Emerged in China in 2017. Cell Host Microbe 2018; 24:558-568.e7. [PMID: 30269969 DOI: 10.1016/j.chom.2018.08.006] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/29/2018] [Accepted: 08/13/2018] [Indexed: 01/21/2023]
Abstract
H7N9 low pathogenic influenza viruses emerged in China in 2013 and mutated to highly pathogenic strains in 2017, resulting in human infections and disease in chickens. To control spread, a bivalent H5/H7 inactivated vaccine was introduced in poultry in September 2017. To monitor virus evolution and vaccine efficacy, we collected 53,884 poultry samples across China from February 2017 to January 2018. We isolated 252 H7N9 low pathogenic viruses, 69 H7N9 highly pathogenic viruses, and one H7N2 highly pathogenic virus, of which two low pathogenic and 14 highly pathogenic strains were collected after vaccine introduction. Genetic analysis of highly pathogenic strains revealed nine genotypes, one of which is predominant and widespread and contains strains exhibiting high virulence in mice. Additionally, some H7N9 and H7N2 viruses carrying duck virus genes are lethal in ducks. Thus, although vaccination reduced H7N9 infections, the increased virulence and expanded host range to ducks pose new challenges.
Collapse
Affiliation(s)
- Jianzhong Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, People's Republic of China
| | - Guohua Deng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, People's Republic of China
| | - Shujie Ma
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, People's Republic of China
| | - Xianying Zeng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, People's Republic of China
| | - Xin Yin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, People's Republic of China
| | - Mei Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, People's Republic of China
| | - Bo Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, People's Republic of China
| | - Pengfei Cui
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, People's Republic of China
| | - Yan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, People's Republic of China
| | - Huanliang Yang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, People's Republic of China
| | - Xiaopeng Wan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, People's Republic of China
| | - Liling Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, People's Republic of China
| | - Pucheng Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, People's Republic of China
| | - Yongping Jiang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, People's Republic of China
| | - Yuntao Guan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, People's Republic of China
| | - Jinxiong Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, People's Republic of China
| | - Wenli Gu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, People's Republic of China
| | - Shuyu Han
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, People's Republic of China
| | - Yangming Song
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, People's Republic of China
| | - Libin Liang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, People's Republic of China
| | - Zhiyuan Qu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, People's Republic of China
| | - Yujie Hou
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, People's Republic of China
| | - Xiurong Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, People's Republic of China
| | - Hongmei Bao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, People's Republic of China
| | - Guobin Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, People's Republic of China
| | - Yanbing Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, People's Republic of China
| | - Li Jiang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, People's Republic of China
| | - Chengjun Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, People's Republic of China
| | - Hualan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, People's Republic of China.
| |
Collapse
|
32
|
Attenuation of highly pathogenic avian influenza A(H5N1) viruses in Indonesia following the reassortment and acquisition of genes from low pathogenicity avian influenza A virus progenitors. Emerg Microbes Infect 2018; 7:147. [PMID: 30131494 PMCID: PMC6104089 DOI: 10.1038/s41426-018-0147-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 06/06/2018] [Accepted: 06/23/2018] [Indexed: 12/13/2022]
Abstract
The highly pathogenic avian influenza (HPAI) A(H5N1) virus is endemic in Indonesian poultry and has caused sporadic human infection in Indonesia since 2005. Surveillance of H5N1 viruses in live bird markets (LBMs) during 2012 and 2013 was carried out to provide epidemiologic and virologic information regarding viral circulation and the risk of human exposure. Real-time RT-PCR of avian cloacal swabs and environmental samples revealed influenza A-positive specimens, which were then subjected to virus isolation and genomic sequencing. Genetic analysis of specimens collected at multiple LBMs in Indonesia identified both low pathogenicity avian influenza (LPAI) A(H3N8) and HPAI A(H5N1) viruses belonging to clade 2.1.3.2a. Comparison of internal gene segments among the LPAI and HPAI viruses revealed that the latter had acquired the PB2, PB1, and NS genes from LPAI progenitors and other viruses containing a wild type (wt) genomic constellation. Comparison of murine infectivity of the LPAI A(H3N8), wt HPAI A(H5N1) and reassortant HPAI A(H5N1) viruses showed that the acquisition of LPAI internal genes attenuated the reassortant HPAI virus, producing a mouse infectivity/virulence phenotype comparable to that of the LPAI virus. Comparison of molecular markers in each viral gene segment suggested that mutations in PB2 and NS1 may facilitate attenuation. The discovery of an attenuated HPAI A(H5N1) virus in mice that resulted from reassortment may have implications for the capability of these viruses to transmit and cause disease. In addition, surveillance suggests that LBMs in Indonesia may play a role in the generation of reassortant A(H5) viruses and should be monitored.
Collapse
|
33
|
Pan W, Xie H, Li X, Guan W, Chen P, Zhang B, Zhang M, Dong J, Wang Q, Li Z, Li S, Yang Z, Li C, Zhong N, Huang J, Chen L. Patient-derived avian influenza A (H5N6) virus is highly pathogenic in mice but can be effectively treated by anti-influenza polyclonal antibodies. Emerg Microbes Infect 2018; 7:107. [PMID: 29899428 PMCID: PMC6000000 DOI: 10.1038/s41426-018-0113-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 05/04/2018] [Accepted: 05/13/2018] [Indexed: 11/30/2022]
Abstract
Highly pathogenic avian influenza A (H5N6) virus has been circulating in poultry since 2013 and causes sporadic infections and fatalities in humans. Due to the re-occurrence and continuous evolution of this virus subtype, there is an urgent need to better understand the pathogenicity of the H5N6 virus and to identify effective preventative and therapeutic strategies. We established a mouse model to evaluate the virulence of H5N6 A/Guangzhou/39715/2014 (H5N6/GZ14), which was isolated from an infected patient. BALB/c mice were inoculated intranasally with H5N6/GZ14 and monitored for morbidity, mortality, cytokine production, lung injury, viral replication, and viral dissemination to other organs. H5N6/GZ14 is highly pathogenic and can kill 50% of mice at a very low infectious dose of 5 plaque-forming units (pfu). Infection with H5N6/GZ14 showed rapid disease progression, viral replication to high titers in the lung, a strongly induced pro-inflammatory cytokine response, and severe lung injury. Moreover, infectious H5N6/GZ14 could be detected in the heart and brain of the infected mice. We also demonstrated that anti-influenza polyclonal antibodies generated by immunizing rhesus macaques could protect mice from lethal infection. Our results provide insights into the pathogenicity of the H5N6 human isolate.
Collapse
Affiliation(s)
- Weiqi Pan
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Haojun Xie
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaobo Li
- Health Quarantine Laboratory, Guangdong Inspection and Quarantine Technology Center, Guangzhou, China
| | - Wenda Guan
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Peihai Chen
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Beiwu Zhang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Mincong Zhang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ji Dong
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qian Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zhixia Li
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Shufen Li
- Health Quarantine Laboratory, Guangdong Inspection and Quarantine Technology Center, Guangzhou, China
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chufang Li
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jicheng Huang
- Health Quarantine Laboratory, Guangdong Inspection and Quarantine Technology Center, Guangzhou, China.
| | - Ling Chen
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China. .,Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
34
|
Yu KM, Yu MA, Park SJ, Kim YI, Robles NJ, Kwon HI, Kim EH, Si YJ, Nguyen HD, Choi YK. Seroprevalence and genetic characterization of severe fever with thrombocytopenia syndrome virus in domestic goats in South Korea. Ticks Tick Borne Dis 2018; 9:1202-1206. [PMID: 29748119 DOI: 10.1016/j.ttbdis.2018.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 05/01/2018] [Accepted: 05/01/2018] [Indexed: 11/26/2022]
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is a newly emerging tick-borne infectious disease caused by the SFTS virus (SFTSV). To investigate the prevalence of SFTSV in domestic goats in South Korea, we collected blood samples in commercial slaughterhouses in Chungbuk Province in 2017. Of the 207 samples tested, 4 (2%) were found to be positive for viral RNA by RT-PCR and 30 (14.4%) were positive for SFTSV antibody as detected by a nucleocapsid (NP) protein-based ELISA. Phylogenetic analysis of the non-structural protein (NS) sequences showed that all viruses belonged to the genotype B, although they were clustered into two different sublineages that showed the highest homology with the KR612076-JP01 and KY789441-CB3 human isolate from South Korea. Further, we confirmed the specificity of seropositive goat sera by FRNT50 and western blotting analysis and found differential cross-reactivity of the sera with genotype A and B SFTSV strains. Collectively, this study suggests that relatively high numbers of goats are infected by antigenically different SFTSV strains, which might have a potential for zoonotic infection.
Collapse
Affiliation(s)
- Kwang-Min Yu
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea; Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Min-Ah Yu
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea; Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Su-Jin Park
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea; Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Young-Il Kim
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea; Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Norbert John Robles
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea; Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Hyeok-Il Kwon
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea; Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Eun-Ha Kim
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea; Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Young-Jae Si
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea; Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Hiep Dinh Nguyen
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea; Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Young Ki Choi
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea; Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju, Republic of Korea.
| |
Collapse
|
35
|
Long Y, Ma L, Liu Z, Song S, Geng X, Yang F, Guo Q, Li Z, Li W, Liao G. Preparation and evaluation of a novel, live, attenuated influenza H1N1 vaccine strain produced by a modified classical reassortment method. Hum Vaccin Immunother 2017; 14:615-622. [PMID: 29064728 DOI: 10.1080/21645515.2017.1380761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Live attenuated influenza vaccine (LAIV)-based Vero cells could provide a better choice to control and prevent influenza virus infections. This study used the human influenza virus A/Yunnan/1/2005Vca(H3N2) (YN/05Vca) as a donor strain. YN/05Vca has a double phenotype of cold adaption (ca) and Vero cell adaption (va). The parental virus strain used was the wild-type A/Solomon Islands/3/2006 (H1N1) (SI/06wt). The study employed the modified classical reassortment method to generate a new virus strain. After co-infection of Vero cells, some different sub-types of the reassorted viruses were generated randomly. Then, the specific anti-serum (anti-YN/05Vca) could combine with and neutralize the donor virus, and the original parental virus could not grow in Vero cells at a low temperature until it was re-structured with the meaningful gene fragment from the donor virus in Vero cells. According to the plaques and RT-PCR results, a new monoclonal strain of Vero cell cold adaption virus was screened: SI/06Vca. After immunological and biological identification, this new strain virus could be used as a seed bank for LAIV, which has maintained surface antigenicity with SI/06wt. Consequently, this new Vero cell cold adaption virus SI/06Vca could be used for large-scale vaccine production with sufficient safety and efficacy, as confirmed by animal experiments with mice and ferrets.
Collapse
Affiliation(s)
- Yunfeng Long
- a The fifth Department of Biological products , Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China.,b Department of Food Laboratory, Animal, Plant and Food Inspection Center, Jiangsu Entry-Exit Inspection and Quarantine Bureau , Nanjing , People's Republic of China
| | - Lei Ma
- a The fifth Department of Biological products , Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| | - Ze Liu
- a The fifth Department of Biological products , Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| | - Shaohui Song
- a The fifth Department of Biological products , Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| | - Xingliang Geng
- a The fifth Department of Biological products , Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| | - Fan Yang
- a The fifth Department of Biological products , Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China.,c Department of Pathogenic Biology, Medical Faculty , Kunming University of Science and Technology , Kunming , People's Republic of China
| | - Qi Guo
- a The fifth Department of Biological products , Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| | - Zhuofan Li
- a The fifth Department of Biological products , Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| | - Weidong Li
- d The Department of Production Administration , Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| | - Guoyang Liao
- a The fifth Department of Biological products , Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| |
Collapse
|
36
|
Epigallocatechin-3-gallate inhibits TLR4 signaling through the 67-kDa laminin receptor and effectively alleviates acute lung injury induced by H9N2 swine influenza virus. Int Immunopharmacol 2017; 52:24-33. [PMID: 28858723 DOI: 10.1016/j.intimp.2017.08.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/24/2017] [Accepted: 08/25/2017] [Indexed: 11/22/2022]
Abstract
Epigallocatechin-3-gallate (EGCG) was found to inhibit the Toll-like receptor 4 (TLR4) pathway involved in influenza virus pathogenesis. Here, the effect of EGCG on TLR4 in an H9N2 virus-induced acute lung injury mouse model was investigated. BALB/c mice were inoculated intranasally with A/Swine/Hebei/108/2002 (H9N2) virus or noninfectious allantoic fluid, and treated with EGCG and E5564 or normal saline orally for 5 consecutive days. PMVECs were treated with EGCG or anti-67kDa laminin receptor (LR). Lung physiopathology, inflammation, oxidative stress, viral replication, and TLR4/NF-κB/Toll-interacting protein (Tollip) pathway in lung tissue and/or PMVECs were investigated. EGCG attenuated lung histological lesions, decreased lung W/D ratio, cytokines levels, and inhibited MPO activity and prolonged mouse survival. EGCG treatment also markedly downregulated TLR4 and NF-κB protein levels but Tollip expression was upregulated compared with that in untreated H9N2-infected mice (P<0.05). In PMVECs, anti-67LR antibody treatment significantly downregulated Tollip levels; however, the TLR4 and NF-κB protein levels dramatically increased compared with that in the EGCG-treated group (P<0.05). EGCG remarkably downregulated TLR4 protein levels through 67LR/Tollip, decreased MPO activity and inflammatory cytokine levels, supporting EGCG as a potential therapeutic agent for managing acute lung injury induced by H9N2 SIV.
Collapse
|
37
|
Choi WS, Lloren KKS, Baek YH, Song MS. The significance of avian influenza virus mouse-adaptation and its application in characterizing the efficacy of new vaccines and therapeutic agents. Clin Exp Vaccine Res 2017; 6:83-94. [PMID: 28775972 PMCID: PMC5540968 DOI: 10.7774/cevr.2017.6.2.83] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/03/2017] [Accepted: 05/12/2017] [Indexed: 11/26/2022] Open
Abstract
Due to the increased frequency of interspecies transmission of avian influenza viruses, studies designed to identify the molecular determinants that could lead to an expansion of the host range have been increased. A variety of mouse-based mammalian-adaptation studies of avian influenza viruses have provided insight into the genetic alterations of various avian influenza subtypes that may contribute to the generation of a pandemic virus. To date, the studies have focused on avian influenza subtypes H5, H6, H7, H9, and H10 which have recently caused human infection. Although mice cannot fully reflect the course of human infection with avian influenza, these mouse studies can be a useful method for investigating potential mammalian adaptive markers against newly emerging avian influenza viruses. In addition, due to the lack of appropriate vaccines against the diverse emerging influenza viruses, the generation of mouse-adapted lethal variants could contribute to the development of effective vaccines or therapeutic agents. Within this review, we will summarize studies that have demonstrated adaptations of avian influenza viruses that result in an altered pathogenicity in mice which may suggest the potential application of mouse-lethal strains in the development of influenza vaccines and/or therapeutics in preclinical studies.
Collapse
Affiliation(s)
- Won-Suk Choi
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Korea
| | - Khristine Kaith S Lloren
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Korea
| | - Yun Hee Baek
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Korea
| | - Min-Suk Song
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
38
|
A recombinant H7N9 influenza vaccine with the H7 hemagglutinin transmembrane domain replaced by the H3 domain induces increased cross-reactive antibodies and improved interclade protection in mice. Antiviral Res 2017; 143:97-105. [DOI: 10.1016/j.antiviral.2017.03.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/20/2017] [Indexed: 11/20/2022]
|
39
|
Desheva YA, Leontieva GF, Kramskaya TA, Smolonogina TA, Grabovskaya KB, Landgraf GO, Karev VE, Suvorov AN, Rudenko LG. Prevention of Influenza A(H7N9) and Bacterial Infections in Mice Using Intranasal Immunization With Live Influenza Vaccine and the Group B Streptococcus Recombinant Polypeptides. Virology (Auckl) 2017; 8:1178122X17710949. [PMID: 28615930 PMCID: PMC5462492 DOI: 10.1177/1178122x17710949] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/25/2017] [Indexed: 01/26/2023] Open
Abstract
We investigate the protective effect of combined vaccination based on live attenuated influenza vaccine (LAIV) and group B streptococcus (GBS) recombinant polypeptides against potential pandemic H7N9 influenza infection followed by GBS burden. Mice were intranasally immunized using 107 50% egg infectious dose (EID50) of H7N3 LAIV, the mix of the 4 GBS peptides (group B streptococcus vaccine [GBSV]), or combined LAIV + GBSV vaccine. The LAIV raised serum hemagglutination-inhibition antibodies against H7N9 in higher titers than against H7N3. Combined vaccination provided advantageous protection against infections with A/Shanghai/2/2013(H7N9)CDC-RG influenza and serotype II GBS. Combined vaccine significantly improved bacterial clearance from the lungs after infection compared with other vaccine groups. The smallest lung lesions due to combined LAIV + GBSV vaccination were associated with a prevalence of lung interferon-γ messenger RNA expression. Thus, combined viral and bacterial intranasal immunization using H7N3 LAIV and recombinant bacterial polypeptides induced balanced adaptive immune response, providing protection against potential pandemic influenza H7N9 and bacterial complications.
Collapse
Affiliation(s)
- Yulia A Desheva
- Virology Department, Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", Saint Petersburg, Russian Federation.,Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Galina F Leontieva
- Molecular Microbiology Department, Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", Saint Petersburg, Russian Federation
| | - Tatiana A Kramskaya
- Molecular Microbiology Department, Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", Saint Petersburg, Russian Federation
| | - Tatiana A Smolonogina
- Virology Department, Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", Saint Petersburg, Russian Federation
| | - Kornelia B Grabovskaya
- Molecular Microbiology Department, Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", Saint Petersburg, Russian Federation
| | - Galina O Landgraf
- Virology Department, Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", Saint Petersburg, Russian Federation
| | - Vadim E Karev
- Laboratory of Pathomorphology, Children's Scientific and Clinical Center of Infectious Diseases Saint Petersburg, Russian Federation
| | - Alexander N Suvorov
- Molecular Microbiology Department, Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", Saint Petersburg, Russian Federation.,Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Larisa G Rudenko
- Virology Department, Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", Saint Petersburg, Russian Federation
| |
Collapse
|
40
|
Camp JV, Jonsson CB. A Role for Neutrophils in Viral Respiratory Disease. Front Immunol 2017; 8:550. [PMID: 28553293 PMCID: PMC5427094 DOI: 10.3389/fimmu.2017.00550] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 04/24/2017] [Indexed: 12/23/2022] Open
Abstract
Neutrophils are immune cells that are well known to be present during many types of lung diseases associated with acute respiratory distress syndrome (ARDS) and may contribute to acute lung injury. Neutrophils are poorly studied with respect to viral infection, and specifically to respiratory viral disease. Influenza A virus (IAV) infection is the cause of a respiratory disease that poses a significant global public health concern. Influenza disease presents as a relatively mild and self-limiting although highly pathogenic forms exist. Neutrophils increase in the respiratory tract during infection with mild seasonal IAV, moderate and severe epidemic IAV infection, and emerging highly pathogenic avian influenza (HPAI). During severe influenza pneumonia and HPAI infection, the number of neutrophils in the lower respiratory tract is correlated with disease severity. Thus, comparative analyses of the relationship between IAV infection and neutrophils provide insights into the relative contribution of host and viral factors that contribute to disease severity. Herein, we review the contribution of neutrophils to IAV disease pathogenesis and to other respiratory virus infections.
Collapse
Affiliation(s)
- Jeremy V Camp
- Institute of Virology, University of Veterinary Medicine at Vienna, Vienna, Austria
| | - Colleen B Jonsson
- Department of Microbiology, University of Tennessee-Knoxville, Knoxville, TN, USA
| |
Collapse
|
41
|
Evaluation of the Immune Responses to and Cross-Protective Efficacy of Eurasian H7 Avian Influenza Viruses. J Virol 2017; 91:JVI.02259-16. [PMID: 28331080 DOI: 10.1128/jvi.02259-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/03/2017] [Indexed: 12/28/2022] Open
Abstract
Due to increasing concerns about human infection by various H7 influenza viruses, including recent H7N9 viruses, we evaluated the genetic relationships and cross-protective efficacies of three different Eurasian H7 avian influenza viruses. Phylogenic and molecular analyses revealed that recent Eurasian H7 viruses can be separated into two different lineages, with relatively high amino acid identities within groups (94.8 to 98.8%) and low amino acid identities between groups (90.3 to 92.6%). In vivo immunization with representatives of each group revealed that while group-specific cross-reactivity was induced, cross-reactive hemagglutination inhibition (HI) titers were approximately 4-fold lower against heterologous group viruses than against homologous group viruses. Moreover, the group I (RgW109/06) vaccine protected 100% of immunized mice from various group I viruses, while only 20 to 40% of immunized mice survived lethal challenge with heterologous group II viruses and exhibited high viral titers in the lung. Moreover, while the group II (RgW478/14) vaccine also protected mice from lethal challenge with group II viruses, it failed to elicit cross-protection against group I viruses. However, it is noteworthy that vaccination with RgAnhui1/13, a virus of a sublineage of group I, cross-protected immunized mice against lethal challenge with both group I and II viruses and significantly attenuated lung viral titers. Interestingly, immune sera from RgAnhui1/13-vaccinated mice showed a broad neutralizing spectrum rather than the group-specific pattern observed with the other viruses. These results suggest that the recent human-infective H7N9 strain may be a candidate broad cross-protective vaccine for Eurasian H7 viruses.IMPORTANCE Genetic and phylogenic analyses have demonstrated that the Eurasian H7 viruses can be separated into at least two different lineages, both of which contain human-infective fatal H7 viruses, including the recent novel H7N9 viruses isolated in China since 2013. Due to the increasing concerns regarding the global public health risk posed by H7 viruses, we evaluated the genetic relationships between Eurasian H7 avian influenza viruses and the cross-protective efficacies of three different H7 viruses: W109/06 (group I), W478/14 (group II), and Anhui1/13 (a sublineage of group I). While each vaccine induced group-specific antibody responses and cross-protective efficacy, only Anhui1/13 was able to cross-protect immunized hosts against lethal challenge across groups. In fact, the Anhui1/13 virus induced not only cross-protection but also broad serum neutralizing antibody responses against both groups of viruses. This suggests that Anhui1/13-like H7N9 viruses may be viable vaccine candidates for broad protection against Eurasian H7 viruses.
Collapse
|
42
|
Construction of a highly efficient CRISPR/Cas9-mediated duck enteritis virus-based vaccine against H5N1 avian influenza virus and duck Tembusu virus infection. Sci Rep 2017; 7:1478. [PMID: 28469192 PMCID: PMC5431151 DOI: 10.1038/s41598-017-01554-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/31/2017] [Indexed: 01/05/2023] Open
Abstract
Duck enteritis virus (DEV), duck tembusu virus (DTMUV), and highly pathogenic avian influenza virus (HPAIV) H5N1 are the most important viral pathogens in ducks, as they cause significant economic losses in the duck industry. Development of a novel vaccine simultaneously effective against these three viruses is the most economical method for reducing losses. In the present study, by utilizing a clustered regularly interspaced short palindromic repeats (CRISPR)/associated 9 (Cas9)-mediated gene editing strategy, we efficiently generated DEV recombinants (C-KCE-HA/PrM-E) that simultaneously encode the hemagglutinin (HA) gene of HPAIV H5N1 and pre-membrane proteins (PrM), as well as the envelope glycoprotein (E) gene of DTMUV, and its potential as a trivalent vaccine was also evaluated. Ducks immunized with C-KCE-HA/PrM-E enhanced both humoral and cell-mediated immune responses to H5N1 and DTMUV. Importantly, a single-dose of C-KCE-HA/PrM-E conferred solid protection against virulent H5N1, DTMUV, and DEV challenges. In conclusion, these results demonstrated for the first time that the CRISPR/Cas9 system can be applied for modification of the DEV genome rapidly and efficiently, and that recombinant C-KCE-HA/PrM-E can serve as a potential candidate trivalent vaccine to prevent H5N1, DTMUV, and DEV infections in ducks.
Collapse
|
43
|
Immunogenicity and Cross Protection in Mice Afforded by Pandemic H1N1 Live Attenuated Influenza Vaccine Containing Wild-Type Nucleoprotein. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9359276. [PMID: 28210631 PMCID: PMC5292185 DOI: 10.1155/2017/9359276] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 11/21/2016] [Indexed: 01/31/2023]
Abstract
Since conserved viral proteins of influenza virus, such as nucleoprotein (NP) and matrix 1 protein, are the main targets for virus-specific CD8+ cytotoxic T-lymphocytes (CTLs), we hypothesized that introduction of the NP gene of wild-type virus into the genome of vaccine reassortants could lead to better immunogenicity and afford better protection. This paper describes in vitro and in vivo preclinical studies of two new reassortants of pandemic H1N1 live attenuated influenza vaccine (LAIV) candidates. One had the hemagglutinin (HA) and neuraminidase (NA) genes from A/South Africa/3626/2013 H1N1 wild-type virus on the A/Leningrad/134/17/57 master donor virus backbone (6 : 2 formulation) while the second had the HA, NA, and NP genes of the wild-type virus on the same backbone (5 : 3 formulation). Although both LAIVs induced similar antibody immune responses, the 5 : 3 LAIV provoked greater production of virus-specific CTLs than the 6 : 2 variant. Furthermore, the 5 : 3 LAIV-induced CTLs had higher in vivo cytotoxic activity, compared to 6 : 2 LAIV. Finally, the 5 : 3 LAIV candidate afforded greater protection against infection and severe illness than the 6 : 2 LAIV. Inclusion in LAIV of the NP gene from wild-type influenza virus is a new approach to inducing cross-reactive cell-mediated immune responses and cross protection against pandemic influenza.
Collapse
|
44
|
Lei H, Jin S, Karlsson E, Schultz-Cherry S, Ye K. Yeast Surface-Displayed H5N1 Avian Influenza Vaccines. J Immunol Res 2016; 2016:4131324. [PMID: 28078309 PMCID: PMC5204078 DOI: 10.1155/2016/4131324] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/25/2016] [Accepted: 10/19/2016] [Indexed: 12/24/2022] Open
Abstract
Highly pathogenic H5N1 avian influenza viruses pose a pandemic threat to human health. A rapid vaccine production against fast outbreak is desired. We report, herein, a paradigm-shift influenza vaccine technology by presenting H5N1 hemagglutinin (HA) to the surface of yeast. We demonstrated, for the first time, that the HA surface-presented yeast can be used as influenza vaccines to elicit both humoral and cell-mediated immunity in mice. The HI titer of antisera reached up to 128 in vaccinated mice. A high level of H5N1 HA-specific IgG1 and IgG2a antibody production was detected after boost immunization. Furthermore, we demonstrated that the yeast surface-displayed HA preserves its antigenic sites. It preferentially binds to both avian- and human-type receptors. In addition, the vaccine exhibited high cross-reactivity to both homologous and heterologous H5N1 viruses. A high level production of anti-HA antibodies was detected in the mice five months after vaccination. Finally, our animal experimental results indicated that the yeast vaccine offered complete protection of mice from lethal H5N1 virus challenge. No severe side effect of yeast vaccines was noted in animal studies. This new technology allows for rapid and large-scale production of influenza vaccines for prepandemic preparation.
Collapse
MESH Headings
- Adjuvants, Immunologic
- Animals
- Antibodies, Viral/blood
- Antigens, Surface/immunology
- Cell Surface Display Techniques
- Cross Reactions
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Humans
- Immunity, Cellular
- Immunoglobulin G/blood
- Influenza A Virus, H5N1 Subtype/genetics
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/economics
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Influenza, Human/prevention & control
- Lung/immunology
- Lung/virology
- Mice
- Mice, Inbred BALB C
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/virology
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/immunology
- Saccharomyces cerevisiae/genetics
- Vaccination
Collapse
Affiliation(s)
- Han Lei
- Department of Biomedical Engineering, Watson School of Engineering and Applied Sciences, Binghamton University, State University of New York (SUNY), Binghamton, NY 13902, USA
| | - Sha Jin
- Department of Biomedical Engineering, Watson School of Engineering and Applied Sciences, Binghamton University, State University of New York (SUNY), Binghamton, NY 13902, USA
| | - Erik Karlsson
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Kaiming Ye
- Department of Biomedical Engineering, Watson School of Engineering and Applied Sciences, Binghamton University, State University of New York (SUNY), Binghamton, NY 13902, USA
| |
Collapse
|
45
|
Characterization of Clade 7.2 H5 Avian Influenza Viruses That Continue To Circulate in Chickens in China. J Virol 2016; 90:9797-9805. [PMID: 27558424 PMCID: PMC5068530 DOI: 10.1128/jvi.00855-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 08/13/2016] [Indexed: 11/20/2022] Open
Abstract
The H5N1 avian influenza viruses emerged in Southeast Asia in the late 20th century and have evolved into multiple phylogenetic clades based on their hemagglutinin (HA)-encoding genes. The clade 7.2 viruses were first detected in chickens in northern China in 2006, and vaccines specifically targeted to the clade were developed and have been used in poultry in China since 2006. During routine surveillance and disease diagnosis, we isolated seven H5 viruses between 2011 and 2014 that bear the clade 7.2 HA genes. Here, we performed extensive studies to understand how the clade 7.2 H5 viruses have evolved in chickens in China. Full genome sequence analysis revealed that the seven viruses formed two subtypes (four H5N1 viruses and three H5N2 viruses) and four genotypes by deriving genes from other influenza viruses. All of the viruses had antigenically drifted from the clade 7.2 viruses that were isolated in 2006. Pathogenicity studies of four viruses, one from each genotype, revealed that all of the viruses are highly pathogenic in chickens, but none of them could replicate in ducks. The four viruses exclusively bound to avian-type receptors and replicated only in the turbinates and/or lungs of mice; none of them were lethal to mice at a dosage of 106 50% egg infective doses (EID50). Our study indicates that although the clade 7.2 viruses have not been eradicated from poultry through vaccination, they have not become more dangerous to other animals (e.g., ducks and mice) and humans. IMPORTANCE Animal influenza viruses can acquire the ability to infect and kill humans. The H5N1 viruses have been a concern in recent decades because of their clear pandemic potential. We sorted H5N1 influenza viruses into different phylogenetic clades based on their HA genes. The clade 7.2 viruses were detected in chickens in several provinces of northern China in 2006. Vaccines for these viruses were subsequently developed and have been used ever since to control infection of poultry. Here, we analyzed the genetic and biologic properties of seven clade 7.2 viruses that were isolated from chickens between 2011 and 2014. We found that after nearly 9 years of circulation in chickens, the clade 7.2 viruses still exclusively bind to avian-type receptors and are of low pathogenicity to mice, suggesting that these H5 viruses pose a low risk to human public health.
Collapse
|
46
|
Park SJ, Si YJ, Kim J, Song MS, Kim SM, Kim EH, Kwon HI, Kim YI, Lee OJ, Shin OS, Kim CJ, Shin EC, Choi YK. Cross-protective efficacies of highly-pathogenic avian influenza H5N1 vaccines against a recent H5N8 virus. Virology 2016; 498:36-43. [PMID: 27543757 DOI: 10.1016/j.virol.2016.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/09/2016] [Accepted: 08/11/2016] [Indexed: 11/27/2022]
Abstract
To investigate cross-protective vaccine efficacy of highly-pathogenic avian influenza H5N1 viruses against a recent HPAI H5N8 virus, we immunized C57BL/6 mice and ferrets with three alum-adjuvanted inactivated whole H5N1 vaccines developed through reverse-genetics (Rg): [Vietnam/1194/04xPR8 (clade 1), Korea/W149/06xPR8 (clade 2.2), and Korea/ES223N/03xPR8 (clade 2.5)]. Although relatively low cross-reactivities (10-40 HI titer) were observed against heterologous H5N8 virus, immunized animals were 100% protected from challenge with the 20 mLD50 of H5N8 virus, with the exception of mice vaccinated with 3.5μg of Rg Vietnam/1194/04xPR8. Of note, the Rg Korea/ES223N/03xPR8 vaccine provided not only effective protection, but also markedly inhibited viral replication in the lungs and nasal swabs of vaccine recipients within five days of HPAI H5N8 virus challenge. Further, we demonstrated that antibody-dependent cell-mediated cytotoxicity (ADCC) of an antibody-coated target cell by cytotoxic effector cells also plays a role in the heterologous protection of H5N1 vaccines against H5N8 challenge.
Collapse
Affiliation(s)
- Su-Jin Park
- College of Medicine and Medical Research Institute, Chungbuk National University, Chungdae-ro 1, Seowon-Ku, Cheongju 28644, Republic of Korea
| | - Young-Jae Si
- College of Medicine and Medical Research Institute, Chungbuk National University, Chungdae-ro 1, Seowon-Ku, Cheongju 28644, Republic of Korea
| | - Jihye Kim
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daehak-ro 291, Yuseong-Gu, Daejeon 34141, Republic of Korea
| | - Min-Suk Song
- College of Medicine and Medical Research Institute, Chungbuk National University, Chungdae-ro 1, Seowon-Ku, Cheongju 28644, Republic of Korea
| | - Se-Mi Kim
- College of Medicine and Medical Research Institute, Chungbuk National University, Chungdae-ro 1, Seowon-Ku, Cheongju 28644, Republic of Korea
| | - Eun-Ha Kim
- College of Medicine and Medical Research Institute, Chungbuk National University, Chungdae-ro 1, Seowon-Ku, Cheongju 28644, Republic of Korea
| | - Hyeok-Il Kwon
- College of Medicine and Medical Research Institute, Chungbuk National University, Chungdae-ro 1, Seowon-Ku, Cheongju 28644, Republic of Korea
| | - Young-Il Kim
- College of Medicine and Medical Research Institute, Chungbuk National University, Chungdae-ro 1, Seowon-Ku, Cheongju 28644, Republic of Korea
| | - Ok-Jun Lee
- College of Medicine and Medical Research Institute, Chungbuk National University, Chungdae-ro 1, Seowon-Ku, Cheongju 28644, Republic of Korea
| | - Ok Sarah Shin
- Department of Microbiology, College of Medicine, Korea University, Seoul 136-701, Republic of Korea
| | - Chul-Joong Kim
- College of Veterinary Medicine, Chungnam National University, Daehak-ro 99, Yuseong-Gu, Daejeon 34134, Republic of Korea
| | - Eui-Cheol Shin
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daehak-ro 291, Yuseong-Gu, Daejeon 34141, Republic of Korea
| | - Young Ki Choi
- College of Medicine and Medical Research Institute, Chungbuk National University, Chungdae-ro 1, Seowon-Ku, Cheongju 28644, Republic of Korea.
| |
Collapse
|
47
|
Post-exposure treatment with whole inactivated H5N1 avian influenza virus protects against lethal homologous virus infection in mice. Sci Rep 2016; 6:29433. [PMID: 27405487 PMCID: PMC4942574 DOI: 10.1038/srep29433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/14/2016] [Indexed: 11/26/2022] Open
Abstract
Concerns with H5N1 influenza viruses include their prevalence in wild and domestic poultry, high mortality rate (~60%) in humans with some strains, lack of pre-existing immunity in humans, and the possibility that these viruses acquire mutations that enable efficient transmission between humans. H5 subtype viruses of Eurasian origin have recently appeared in wild and domestic bird populations in North America, and have led to the generation of new virus strains that are highly pathogenic in poultry. These new H5 HA containing viruses with their ability to evolve rapidly represent an unknown threat to humans in contact with infected poultry, and vaccination with an off-the-shelf vaccine may be impractical to provide protection to at-risk individuals. Instead, we have evaluated the efficacy of a formalin-inactivated vaccine, which could be derived directly from a circulating virus, to provide post-exposure protection. This strategy was evaluated using a prototypic highly pathogenic avian H5N1 strain, A/Vietnam/1203/2004, and demonstrated rapid induction of adaptive immune responses providing protection in a mammalian model of lethal infection. Additionally, this post-exposure vaccine was highly efficacious when administered 24 hours after exposure. This study offers a platform for developing effective post-exposure vaccines for treatment of highly virulent influenza infections.
Collapse
|
48
|
Peripheral Leukocyte Migration in Ferrets in Response to Infection with Seasonal Influenza Virus. PLoS One 2016; 11:e0157903. [PMID: 27315117 PMCID: PMC4912066 DOI: 10.1371/journal.pone.0157903] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/07/2016] [Indexed: 12/31/2022] Open
Abstract
In order to better understand inflammation associated with influenza virus infection, we measured cell trafficking, via flow cytometry, to various tissues in the ferret model following infection with an A(H3N2) human seasonal influenza virus (A/Perth/16/2009). Changes in immune cells were observed in the blood, bronchoalveolar lavage fluid, and spleen, as well as lymph nodes associated with the site of infection or distant from the respiratory system. Nevertheless clinical symptoms were mild, with circulating leukocytes exhibiting rapid, dynamic, and profound changes in response to infection. Each of the biological compartments examined responded differently to influenza infection. Two days after infection, when infected ferrets showed peak fever, a marked, transient lymphopenia and granulocytosis were apparent in all infected animals. Both draining and distal lymph nodes demonstrated significant accumulation of T cells, B cells, and granulocytes at days 2 and 5 post-infection. CD8+ T cells significantly increased in spleen at days 2 and 5 post-infection; CD4+ T cells, B cells and granulocytes significantly increased at day 5. We interpret our findings as showing that lymphocytes exit the peripheral blood and differentially home to lymph nodes and tissues based on cell type and proximity to the site of infection. Monitoring leukocyte homing and trafficking will aid in providing a more detailed view of the inflammatory impact of influenza virus infection.
Collapse
|
49
|
Liu F, Sun X, Fairman J, Lewis DB, Katz JM, Levine M, Tumpey TM, Lu X. A cationic liposome-DNA complexes adjuvant (JVRS-100) enhances the immunogenicity and cross-protective efficacy of pre-pandemic influenza A (H5N1) vaccine in ferrets. Virology 2016; 492:197-203. [PMID: 26967975 PMCID: PMC5796654 DOI: 10.1016/j.virol.2016.02.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 10/22/2022]
Abstract
Influenza A (H5N1) viruses continue to pose a public health threat. As inactivated H5N1 vaccines are poorly immunogenic, adjuvants are needed to improve the immunogenicity of H5N1 vaccine in humans. Here, we investigated the immunogenicity and cross-protective efficacy in ferrets of a clade 2.2-derived vaccine with addition of JVRS-100, an adjuvant consisting of cationic liposome-DNA complexes (CLDC). After the first vaccination, significantly higher levels of hemagglutination-inhibition (HAI) and neutralizing antibody titers were detected in ferrets immunized with adjuvanted vaccine compared to unadjuvanted vaccine. Following a second dose of adjuvanted vaccine, HAI antibody titers of ≥ 40 were detected against viruses from multiple H5N1 clades. HAI antibodies against newly isolated H5N2 and H5N8 viruses were also augmented by JVRS-100. Ferrets were challenged with a heterologous H5N1 virus. All ferrets that received two doses of adjuvanted vaccine exhibited mild illness, significantly reduced nasal wash virus titers and protection from lethal challenge. In contrast, ferrets that received unadjuvanted vaccine showed greater weight loss, high viral titers and 3 of 6 animals succumbed to the lethal challenge. Our results indicate that the addition of JVRS-100 to H5N1 vaccine enhanced immunogenicity and cross-protection against lethal H5N1 virus disease in ferrets. JVRS-100 warrants further investigation as a potential adjuvant for influenza vaccines.
Collapse
Affiliation(s)
- Feng Liu
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Xiangjie Sun
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - David B Lewis
- Department of Pediatrics, Interdepartmental Program in Immunology, and Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, CA, USA
| | - Jacqueline M Katz
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Min Levine
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Terrence M Tumpey
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Xiuhua Lu
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| |
Collapse
|
50
|
Durrant DM, Ghosh S, Klein RS. The Olfactory Bulb: An Immunosensory Effector Organ during Neurotropic Viral Infections. ACS Chem Neurosci 2016; 7:464-9. [PMID: 27058872 DOI: 10.1021/acschemneuro.6b00043] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
In 1935, the olfactory route was hypothesized to be a portal for virus entry into the central nervous system (CNS). This hypothesis was based on experiments in which nasophayngeal infection with poliovirus in monkeys was prevented from spreading to their CNS via transection of olfactory tracts between the olfactory neuroepithelium (ONE) of the nasal cavity and the olfactory bulb (OB). Since then, numerous neurotropic viruses have been observed to enter the CNS via retrograde transport along axons of olfactory sensory neurons whose cell bodies reside in the ONE. Importantly, this route of infection can occur even after subcutaneous inoculation of arboviruses that can cause encephalitis in humans. While the olfactory route is now accepted as an important pathway for viral entry into the CNS, it is unclear whether it provides a way for infection to spread to other brain regions. More recently, studies of antiviral innate and adaptive immune responses within the olfactory bulb suggest it provides early virologic control. Here we will review the data demonstrating that neurotropic viruses gain access to the CNS initially via the olfactory route with emphasis on findings that suggest the OB is a critical immunosensory effector organ that effectively clears virus.
Collapse
Affiliation(s)
- Douglas M. Durrant
- Biological
Sciences Department, California State Polytechnic University, 3801 West
Temple Ave., Pomona, California 91768, United States
| | | | | |
Collapse
|