1
|
Bourne N, Keith CA, Miller AL, Pyles RB, Cohen G, Milligan GN. Boosting of vaginal HSV-2-specific B and T cell responses by intravaginal therapeutic immunization results in diminished recurrent HSV-2 disease. J Virol 2023; 97:e0066923. [PMID: 37655939 PMCID: PMC10537585 DOI: 10.1128/jvi.00669-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/02/2023] [Indexed: 09/02/2023] Open
Abstract
Boosting herpes simplex virus (HSV)-specific immunity in the genital tissues of HSV-positive individuals to increase control of HSV-2 recurrent disease and virus shedding is an important goal of therapeutic immunization and would impact HSV-2 transmission. Experimental therapeutic HSV-2 vaccines delivered by a parenteral route have resulted in decreased recurrent disease in experimental animals. We used a guinea pig model of HSV-2 infection to test if HSV-specific antibody and cell-mediated responses in the vaginal mucosa would be more effectively increased by intravaginal (Ivag) therapeutic immunization compared to parenteral immunization. Therapeutic immunization with HSV glycoproteins and CpG adjuvant increased glycoprotein-specific IgG titers in vaginal secretions and serum to comparable levels in Ivag- and intramuscular (IM)-immunized animals. However, the mean numbers of HSV glycoprotein-specific antibody secreting cells (ASCs) and IFN-γ SCs were greater in Ivag-immunized animals demonstrating superior boosting of immunity in the vaginal mucosa compared to parenteral immunization. Therapeutic Ivag immunization also resulted in a significant decrease in the cumulative mean lesion days compared to IM immunization. There was no difference in the incidence or magnitude of HSV-2 shedding in either therapeutic immunization group compared to control-treated animals. Collectively, these data demonstrated that Ivag therapeutic immunization was superior compared to parenteral immunization to boost HSV-2 antigen-specific ASC and IFN-γ SC responses in the vagina and control recurrent HSV-2 disease. These results suggest that novel antigen delivery methods providing controlled release of optimized antigen/adjuvant combinations in the vaginal mucosa would be an effective approach for therapeutic HSV vaccines. IMPORTANCE HSV-2 replicates in skin cells before it infects sensory nerve cells where it establishes a lifelong but mostly silent infection. HSV-2 occasionally reactivates, producing new virus which is released back at the skin surface and may be transmitted to new individuals. Some HSV-specific immune cells reside at the skin site of the HSV-2 infection that can quickly activate and clear new virus. Immunizing people already infected with HSV-2 to boost their skin-resident immune cells and rapidly control the new HSV-2 infection is logical, but we do not know the best way to administer the vaccine to achieve this goal. In this study, a therapeutic vaccine given intravaginally resulted in significantly better protection against HSV-2 disease than immunization with the same vaccine by a conventional route. Immunization by the intravaginal route resulted in greater stimulation of vaginal-resident, virus-specific cells that produced antibody and produced immune molecules to rapidly clear virus.
Collapse
Affiliation(s)
- Nigel Bourne
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, USA
| | - Celeste A. Keith
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, USA
| | - Aaron L. Miller
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, USA
| | - Richard B. Pyles
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, USA
| | - Gary Cohen
- Department of Basic and Translational Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gregg N. Milligan
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
2
|
Danastas K, Larsen A, Jobson S, Guo G, Cunningham AL, Miranda-Saksena M. Herpes simplex virus-1 utilizes the host actin cytoskeleton for its release from axonal growth cones. PLoS Pathog 2022; 18:e1010264. [PMID: 35073379 PMCID: PMC8812851 DOI: 10.1371/journal.ppat.1010264] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/03/2022] [Accepted: 01/10/2022] [Indexed: 11/19/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) has evolved mechanisms to exploit the host cytoskeleton during entry, replication and exit from cells. In this study, we determined the role of actin and the molecular motor proteins, myosin II and myosin V, in the transport and release of HSV-1 from axon termini, or growth cones. Using compartmentalized neuronal devices, we showed that inhibition of actin polymerization, but not actin branching, significantly reduced the release of HSV-1 from axons. Furthermore, we showed that inhibition of myosin V, but not myosin II, also significantly reduced the release of HSV-1 from axons. Using confocal and electron microscopy, we determined that viral components are transported along axons to growth cones, despite actin or myosin inhibition. Overall, our study supports the role of actin in virus release from axonal growth cones and suggests myosin V as a likely candidate involved in this process. Herpes simplex virus type 1 (HSV-1) is a ubiquitous human pathogen causing cold sores and genital herpes. HSV-1 infects sensory neurons of the peripheral nervous system where it establishes a lifelong infection and cannot be cured. Reactivation is common, with the virus transported back along sensory nerves, forming new lesions, or is shed asymptomatically. Antiviral resistance is emerging to current antivirals that target viral replication, indicating the need to identify new targets for future treatment. The host cell cytoskeleton plays an important role during transport of the virus. HSV-1 is transported along axons via microtubules; however, how the virus is released from axon termini, where actin predominates, is unknown. Here we show that an intact actin cytoskeleton is required for efficient virus release from axon termini. Furthermore, we show that myosin V, an actin based molecular motor that drives transport, is essential in virus release from axon termini. Together, this study defines the mechanisms behind HSV-1 release from axon termini which will guide future directions in identifying possible therapeutic targets for HSV-1.
Collapse
Affiliation(s)
- Kevin Danastas
- Centre for Virus Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
| | - Ava Larsen
- Centre for Virus Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
| | - Sophie Jobson
- Centre for Virus Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
| | - Gerry Guo
- Centre for Virus Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
| | - Anthony L. Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
- * E-mail: (ALC); (MM-S)
| | - Monica Miranda-Saksena
- Centre for Virus Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
- * E-mail: (ALC); (MM-S)
| |
Collapse
|
3
|
Abstract
Two of the most prevalent human viruses worldwide, herpes simplex virus type 1 and type 2 (HSV-1 and HSV-2, respectively), cause a variety of diseases, including cold sores, genital herpes, herpes stromal keratitis, meningitis and encephalitis. The intrinsic, innate and adaptive immune responses are key to control HSV, and the virus has developed mechanisms to evade them. The immune response can also contribute to pathogenesis, as observed in stromal keratitis and encephalitis. The fact that certain individuals are more prone than others to suffer severe disease upon HSV infection can be partially explained by the existence of genetic polymorphisms in humans. Like all herpesviruses, HSV has two replication cycles: lytic and latent. During lytic replication HSV produces infectious viral particles to infect other cells and organisms, while during latency there is limited gene expression and lack of infectious virus particles. HSV establishes latency in neurons and can cause disease both during primary infection and upon reactivation. The mechanisms leading to latency and reactivation and which are the viral and host factors controlling these processes are not completely understood. Here we review the HSV life cycle, the interaction of HSV with the immune system and three of the best-studied pathologies: Herpes stromal keratitis, herpes simplex encephalitis and genital herpes. We also discuss the potential association between HSV-1 infection and Alzheimer's disease.
Collapse
Affiliation(s)
- Shuyong Zhu
- Institute of Virology, Hannover Medical School, Cluster of Excellence RESIST (Exc 2155), Hannover Medical School, Hannover, Germany
| | - Abel Viejo-Borbolla
- Institute of Virology, Hannover Medical School, Cluster of Excellence RESIST (Exc 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
4
|
Sandgren KJ, Truong NR, Smith JB, Bertram K, Cunningham AL. Vaccines for Herpes Simplex: Recent Progress Driven by Viral and Adjuvant Immunology. Methods Mol Biol 2020; 2060:31-56. [PMID: 31617171 DOI: 10.1007/978-1-4939-9814-2_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Herpes simplex viruses (HSV) types 1 and 2 are ubiquitous. They both cause genital herpes, occasionally severe disease in the immunocompromised, and facilitate much HIV acquisition globally. Despite more than 60 years of research, there is no licensed prophylactic HSV vaccine and some doubt as to whether this can be achieved. Nevertheless, a previous HSV vaccine candidate did have partial success in preventing genital herpes and HSV acquisition and another immunotherapeutic candidate reduced viral shedding and recurrent lesions, inspiring further research. However, the entry pathway of HSV into the anogenital mucosa and the subsequent cascade of immune responses need further elucidation so that these responses could be mimicked or improved by a vaccine, to prevent viral entry and colonization of the neuronal ganglia. For an effective novel vaccine against genital herpes the choice of antigen and adjuvant may be critical. The incorporation of adjuvants of the vaccine candidates in the past, may account for their partial efficacy. It is likely that they can be improved by understanding the mechanisms of immune responses elicited by different adjuvants and comparing these to natural immune responses. Here we review the history of vaccines for HSV, those in development and compare them to successful vaccines for chicken pox or herpes zoster. We also review what is known of the natural immune control of herpes lesions, via interacting innate immunity and CD4 and CD8 T cells and the lessons they provide for development of new, more effective vaccines.
Collapse
Affiliation(s)
- Kerrie J Sandgren
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Sydney Medical School, The University of Sydney, Westmead, NSW, Australia
| | - Naomi R Truong
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Sydney Medical School, The University of Sydney, Westmead, NSW, Australia
| | - Jacinta B Smith
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Sydney Medical School, The University of Sydney, Westmead, NSW, Australia
| | - Kirstie Bertram
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Sydney Medical School, The University of Sydney, Westmead, NSW, Australia
| | - Anthony L Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia. .,Sydney Medical School, The University of Sydney, Westmead, NSW, Australia.
| |
Collapse
|
5
|
Truong NR, Smith JB, Sandgren KJ, Cunningham AL. Mechanisms of Immune Control of Mucosal HSV Infection: A Guide to Rational Vaccine Design. Front Immunol 2019; 10:373. [PMID: 30894859 PMCID: PMC6414784 DOI: 10.3389/fimmu.2019.00373] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/14/2019] [Indexed: 12/17/2022] Open
Abstract
Herpes Simplex Virus (HSV) is a highly prevalent sexually transmitted infection that aside from causing cold sores and genital lesions, causes complications in the immunocompromised and has facilitated a large proportion of HIV acquisition globally. Despite decades of research, there is no prophylactic HSV vaccine ready for use in humans, leaving many questioning whether a prophylactic vaccine is an achievable goal. A previous HSV vaccine trial did have partial success in decreasing acquisition of HSV2–promising evidence that vaccines can prevent acquisition. However, there is still an incomplete understanding of the immune response pathways elicited by HSV after initial mucosal infection and how best to replicate these responses with a vaccine, such that acquisition and colonization of the dorsal root ganglia could be prevented. Another factor to consider in the rational design of an HSV vaccine is adjuvant choice. Understanding the immune responses elicited by different adjuvants and whether lasting humoral and cell-mediated responses are induced is important, especially when studies of past trial vaccines found that a sufficiently protective cell-mediated response was lacking. In this review, we discuss what is known of the immune control involved in initial herpes lesions and reactivation, including the importance of CD4 and CD8 T cells, and the interplay between innate and adaptive immunity in response to primary infection, specifically focusing on the viral relay involved. Additionally, a summary of previous and current vaccine trials, including the components used, immune responses elicited and the feasibility of prophylactic vaccines looking forward, will also be discussed.
Collapse
Affiliation(s)
- Naomi R Truong
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Jacinta B Smith
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Kerrie J Sandgren
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Anthony L Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
6
|
Kang S, Brown HM, Hwang S. Direct Antiviral Mechanisms of Interferon-Gamma. Immune Netw 2018; 18:e33. [PMID: 30402328 PMCID: PMC6215902 DOI: 10.4110/in.2018.18.e33] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/25/2018] [Accepted: 09/27/2018] [Indexed: 12/18/2022] Open
Abstract
Interferon-gamma (IFNG) is a pleiotropic cytokine that modulates both innate and adaptive immune networks; it is the most potent activator of macrophages and a signature cytokine of activated T lymphocytes. Though IFNG is now appreciated to have a multitude of roles in immune modulation and broad-spectrum pathogen defense, it was originally discovered, and named, as a secretory factor that interferes with viral replication. In contrast to the prototypical type I interferons produced by any cells upon viral infection, only specific subsets of immune cells can produce IFNG upon infection or stimulation with antigen or mitogen. Still, virtually all cells can respond to both types of interferons. This makes IFNG a versatile anti-microbial cytokine and also gives it a unique position in the antiviral defense system. The goal of this review is to highlight the direct antiviral mechanisms of IFNG, thereby clarifying its antiviral function in the effective control of viral infections.
Collapse
Affiliation(s)
- Soowon Kang
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Hailey M. Brown
- Committee on Immunology, The University of Chicago, Chicago, IL 60637, USA
| | - Seungmin Hwang
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
- Committee on Immunology, The University of Chicago, Chicago, IL 60637, USA
- Committee on Microbiology, The University of Chicago, Chicago, IL 60637, USA
- Committee on Cancer Biology, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
7
|
Bauer D, Alt M, Dirks M, Buch A, Heilingloh CS, Dittmer U, Giebel B, Görgens A, Palapys V, Kasper M, Eis-Hübinger AM, Sodeik B, Heiligenhaus A, Roggendorf M, Krawczyk A. A Therapeutic Antiviral Antibody Inhibits the Anterograde Directed Neuron-to-Cell Spread of Herpes Simplex Virus and Protects against Ocular Disease. Front Microbiol 2017; 8:2115. [PMID: 29163407 PMCID: PMC5671610 DOI: 10.3389/fmicb.2017.02115] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/17/2017] [Indexed: 12/17/2022] Open
Abstract
Herpes simplex virus (HSV) is a leading cause of blindness and viral encephalitis in the developed world. Upon reactivation from sensory neurons, HSV returns via axonal transport to peripheral tissues where it causes, e.g., severe, potentially blinding ocular diseases. In the present study we investigated whether the HSV-1/2 glycoprotein B-specific antibody mAb 2c or its humanized counterpart mAb hu2c can protect from ocular disease in a mouse model of HSV-1-induced acute retinal necrosis (ARN). In this model the viral spread from the initially infected to the contralateral eye resembles the routes taken in humans upon HSV reactivation. Systemic antibody treatment prior or early after infection effectively protected the mice from the development of ARN. These observations suggest that the antibody potently neutralized the infection and inhibited the viral transmission, since there was almost no virus detectable in the contralateral eyes and trigeminal ganglia of antibody treated mice. Besides of neutralizing free virus or limiting the infection via activating the complement or cellular effector functions, blocking of the anterograde directed neuron-to-cell spread of HSV represents a viable mode of action how mAb 2c protected the mice from ARN. We proved this hypothesis using a microfluidic chamber system. Neurons and epithelial cells were cultured in two separate compartments where the neurons sent axons via connecting microgrooves to the epithelial cells. Neurons were infected with a reporter HSV-1 strain expressing mCherry, and the co-culture was treated with neutralizing antibodies. In contrast to commercial polyclonal human HSV-neutralizing immunoglobulins, mAb 2c effectively blocked the anterograde directed neuron-to-cell transmission of the virus. Our data suggest that the humanized HSV-1/2-gB antibody protects mice from ocular disease by blocking the neuronal spread of HSV. Therefore, mAb hu2c may become a potent novel therapeutic option for severe ocular HSV infections.
Collapse
Affiliation(s)
- Dirk Bauer
- Department of Ophthalmology, Ophtha Lab, St. Franziskus-Hospital, Münster, Germany
| | - Mira Alt
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Miriam Dirks
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Anna Buch
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | | | - Ulf Dittmer
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - André Görgens
- Institute for Transfusion Medicine, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Vivien Palapys
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Maren Kasper
- Department of Ophthalmology, Ophtha Lab, St. Franziskus-Hospital, Münster, Germany
| | | | - Beate Sodeik
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Arnd Heiligenhaus
- Department of Ophthalmology, Ophtha Lab, St. Franziskus-Hospital, Münster, Germany.,Department of Ophthalmology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Michael Roggendorf
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Adalbert Krawczyk
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
8
|
Clementi N, Criscuolo E, Cappelletti F, Burioni R, Clementi M, Mancini N. Novel therapeutic investigational strategies to treat severe and disseminated HSV infections suggested by a deeper understanding of in vitro virus entry processes. Drug Discov Today 2016; 21:682-91. [PMID: 26976690 DOI: 10.1016/j.drudis.2016.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/11/2016] [Accepted: 03/04/2016] [Indexed: 01/28/2023]
Abstract
The global burden of herpes simplex virus (HSV) legitimates the critical need to develop new prevention strategies, such as drugs and vaccines that are able to fight either primary HSV infections or reactivations. Moreover, the ever-growing number of patients receiving transplants increases the number of severe HSV infections that are unresponsive to current therapies. Finally, the high global incidence of genital HSV-2 infection increases the risk of perinatal transmission to newborns, in which disseminated infection or central nervous system (CNS) involvement is frequent, with associated high morbidity and mortality rates. There are several key features shared by novel anti-HSV drugs, from currently available optimized drugs to small molecules able to interfere with various virus replication steps. However, several virological aspects of the disease and associated clinical needs highlight why an ideal anti-HSV drug has yet to be developed.
Collapse
Affiliation(s)
- Nicola Clementi
- Microbiology and Virology Unit, 'Vita-Salute San Raffaele' University, 20132 Milan, Italy.
| | - Elena Criscuolo
- Microbiology and Virology Unit, 'Vita-Salute San Raffaele' University, 20132 Milan, Italy
| | - Francesca Cappelletti
- Microbiology and Virology Unit, 'Vita-Salute San Raffaele' University, 20132 Milan, Italy
| | - Roberto Burioni
- Microbiology and Virology Unit, 'Vita-Salute San Raffaele' University, 20132 Milan, Italy
| | - Massimo Clementi
- Microbiology and Virology Unit, 'Vita-Salute San Raffaele' University, 20132 Milan, Italy
| | - Nicasio Mancini
- Microbiology and Virology Unit, 'Vita-Salute San Raffaele' University, 20132 Milan, Italy
| |
Collapse
|
9
|
Dual Role of Herpes Simplex Virus 1 pUS9 in Virus Anterograde Axonal Transport and Final Assembly in Growth Cones in Distal Axons. J Virol 2015; 90:2653-63. [PMID: 26699637 DOI: 10.1128/jvi.03023-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 12/16/2015] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED The herpes simplex virus type 1 (HSV-1) envelope protein pUS9 plays an important role in virus anterograde axonal transport and spread from neuronal axons. In this study, we used both confocal microscopy and transmission electron microscopy (TEM) to examine the role of pUS9 in the anterograde transport and assembly of HSV-1 in the distal axon of human and rat dorsal root ganglion (DRG) neurons using US9 deletion (US9(-)), repair (US9R), and wild-type (strain F, 17, and KOS) viruses. Using confocal microscopy and single and trichamber culture systems, we observed a reduction but not complete block in the anterograde axonal transport of capsids to distal axons as well as a marked (∼90%) reduction in virus spread from axons to Vero cells with the US9 deletion viruses. Axonal transport of glycoproteins (gC, gD, and gE) was unaffected. Using TEM, there was a marked reduction or absence of enveloped capsids, in varicosities and growth cones, in KOS strain and US9 deletion viruses, respectively. Capsids (40 to 75%) in varicosities and growth cones infected with strain 17, F, and US9 repair viruses were fully enveloped compared to less than 5% of capsids found in distal axons infected with the KOS strain virus (which also lacks pUS9) and still lower (<2%) with the US9 deletion viruses. Hence, there was a secondary defect in virus assembly in distal axons in the absence of pUS9 despite the presence of key envelope proteins. Overall, our study supports a dual role for pUS9, first in anterograde axonal transport and second in virus assembly in growth cones in distal axons. IMPORTANCE HSV-1 has evolved mechanisms for its efficient transport along sensory axons and subsequent spread from axons to epithelial cells after reactivation. In this study, we show that deletion of the envelope protein pUS9 leads to defects in virus transport along axons (partial defect) and in virus assembly and egress from growth cones (marked defect). Virus assembly and exit in the neuronal cell body are not impaired in the absence of pUS9. Thus, our findings indicate that pUS9 contributes to the overall HSV-1 anterograde axonal transport, including a major role in virus assembly at the axon terminus, which is not essential in the neuronal cell body. Overall, our data suggest that the process of virus assembly at the growth cones differs from that in the neuronal cell body and that HSV-1 has evolved different mechanisms for virus assembly and exit from different cellular compartments.
Collapse
|
10
|
Taylor MP, Enquist LW. Axonal spread of neuroinvasive viral infections. Trends Microbiol 2015; 23:283-8. [PMID: 25639651 DOI: 10.1016/j.tim.2015.01.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 12/31/2014] [Accepted: 01/07/2015] [Indexed: 02/05/2023]
Abstract
Neuroinvasive viral infections invade the nervous system, often eliciting serious disease and death. Members of four viral families are both neuroinvasive and capable of transmitting progeny virions or virion components within the long neuronal extensions known as axons. Axons provide physical structures that enable viral infection to spread within the host while avoiding extracellular immune responses. Technological advances in the analysis of in vivo neural circuits, neuronal culturing, and live imaging of fluorescent fusion proteins have enabled an unprecedented view into the steps of virion assembly, transport, and egress involved in axonal spread. In this review we summarize the literature supporting anterograde (axon to cell) spread of viral infection, describe the various strategies of virion transport, and discuss the effects of spread on populations of neuroinvasive viruses.
Collapse
Affiliation(s)
- Matthew P Taylor
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59718, USA.
| | - Lynn W Enquist
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
11
|
Krawczyk A, Dirks M, Kasper M, Buch A, Dittmer U, Giebel B, Wildschütz L, Busch M, Goergens A, Schneweis KE, Eis-Hübinger AM, Sodeik B, Heiligenhaus A, Roggendorf M, Bauer D. Prevention of herpes simplex virus induced stromal keratitis by a glycoprotein B-specific monoclonal antibody. PLoS One 2015; 10:e0116800. [PMID: 25587898 PMCID: PMC4294644 DOI: 10.1371/journal.pone.0116800] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 12/15/2014] [Indexed: 10/24/2022] Open
Abstract
The increasing incidence of acyclovir (ACV) and multidrug-resistant strains in patients with corneal HSV-1 infections leading to Herpetic Stromal Keratitis (HSK) is a major health problem in industrialized countries and often results in blindness. To overcome this obstacle, we have previously developed an HSV-gB-specific monoclonal antibody (mAb 2c) that proved to be highly protective in immunodeficient NOD/SCID-mice towards genital infections. In the present study, we examined the effectivity of mAb 2c in preventing the immunopathological disease HSK in the HSK BALB/c mouse model. Therefore, mice were inoculated with HSV-1 strain KOS on the scarified cornea to induce HSK and subsequently either systemically or topically treated with mAb 2c. Systemic treatment was performed by intravenous administration of mAb 2c 24 h prior to infection (pre-exposure prophylaxis) or 24, 40, and 56 hours after infection (post-exposure immunotherapy). Topical treatment was performed by periodical inoculations (5 times per day) of antibody-containing eye drops as control, starting at 24 h post infection. Systemic antibody treatment markedly reduced viral loads at the site of infection and completely protected mice from developing HSK. The administration of the antiviral antibody prior or post infection was equally effective. Topical treatment had no improving effect on the severity of HSK. In conclusion, our data demonstrate that mAb 2c proved to be an excellent drug for the treatment of corneal HSV-infections and for prevention of HSK and blindness. Moreover, the humanized counterpart (mAb hu2c) was equally effective in protecting mice from HSV-induced HSK when compared to the parental mouse antibody. These results warrant the future development of this antibody as a novel approach for the treatment of corneal HSV-infections in humans.
Collapse
Affiliation(s)
- Adalbert Krawczyk
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- * E-mail:
| | - Miriam Dirks
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Maren Kasper
- Ophtha-Lab, Department of Ophthalmology at St. Franziskus Hospital, Muenster, Germany
| | - Anna Buch
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Ulf Dittmer
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
| | - Lena Wildschütz
- Ophtha-Lab, Department of Ophthalmology at St. Franziskus Hospital, Muenster, Germany
| | - Martin Busch
- Ophtha-Lab, Department of Ophthalmology at St. Franziskus Hospital, Muenster, Germany
| | - Andre Goergens
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
| | - Karl E. Schneweis
- Institute of Virology, University Medical Center Bonn, Bonn, Germany
| | | | - Beate Sodeik
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Arnd Heiligenhaus
- Ophtha-Lab, Department of Ophthalmology at St. Franziskus Hospital, Muenster, Germany
| | - Michael Roggendorf
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Dirk Bauer
- Ophtha-Lab, Department of Ophthalmology at St. Franziskus Hospital, Muenster, Germany
| |
Collapse
|
12
|
|
13
|
Xia J, Veselenak RL, Gorder SR, Bourne N, Milligan GN. Virus-specific immune memory at peripheral sites of herpes simplex virus type 2 (HSV-2) infection in guinea pigs. PLoS One 2014; 9:e114652. [PMID: 25485971 PMCID: PMC4259353 DOI: 10.1371/journal.pone.0114652] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 11/12/2014] [Indexed: 12/30/2022] Open
Abstract
Despite its importance in modulating HSV-2 pathogenesis, the nature of tissue-resident immune memory to HSV-2 is not completely understood. We used genital HSV-2 infection of guinea pigs to assess the type and location of HSV-specific memory cells at peripheral sites of HSV-2 infection. HSV-specific antibody-secreting cells were readily detected in the spleen, bone marrow, vagina/cervix, lumbosacral sensory ganglia, and spinal cord of previously-infected animals. Memory B cells were detected primarily in the spleen and to a lesser extent in bone marrow but not in the genital tract or neural tissues suggesting that the HSV-specific antibody-secreting cells present at peripheral sites of HSV-2 infection represented persisting populations of plasma cells. The antibody produced by these cells isolated from neural tissues of infected animals was functionally relevant and included antibodies specific for HSV-2 glycoproteins and HSV-2 neutralizing antibodies. A vigorous IFN-γ-secreting T cell response developed in the spleen as well as the sites of HSV-2 infection in the genital tract, lumbosacral ganglia and spinal cord following acute HSV-2 infection. Additionally, populations of HSV-specific tissue-resident memory T cells were maintained at these sites and were readily detected up to 150 days post HSV-2 infection. Unlike the persisting plasma cells, HSV-specific memory T cells were also detected in uterine tissue and cervicothoracic region of the spinal cord and at low levels in the cervicothoracic ganglia. Both HSV-specific CD4+ and CD8+ resident memory cell subsets were maintained long-term in the genital tract and sensory ganglia/spinal cord following HSV-2 infection. Together these data demonstrate the long-term maintenance of both humoral and cellular arms of the adaptive immune response at the sites of HSV-2 latency and virus shedding and highlight the utility of the guinea pig infection model to investigate tissue-resident memory in the setting of HSV-2 latency and spontaneous reactivation.
Collapse
Affiliation(s)
- Jingya Xia
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Ronald L. Veselenak
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Summer R. Gorder
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Nigel Bourne
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Gregg N. Milligan
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
14
|
Different modes of herpes simplex virus type 1 spread in brain and skin tissues. J Neurovirol 2014; 20:18-27. [PMID: 24408306 DOI: 10.1007/s13365-013-0224-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/21/2013] [Accepted: 11/27/2013] [Indexed: 10/25/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) initially infects the skin and subsequently spreads to the nervous system. To investigate and compare HSV-1 mode of propagation in the two clinically relevant tissues, we have established ex vivo infection models, using native tissues of mouse and human skin, as well as mouse brain, maintained in organ cultures. HSV-1, which is naturally restricted to the human, infects and spreads in the mouse and human skin tissues in a similar fashion, thus validating the mouse model. The spread of HSV-1 in the skin was concentric to form typical plaques of limited size, predominantly of cytopathic cells. By contrast, HSV-1 spread in the brain tissue was directed along specific neuronal networks with no apparent cytopathic effect. Two additional differences were noted following infection of the skin and brain tissues. First, only a negligible amount of extracellular progeny virus was produced of the infected brain tissues, while substantial quantity of infectious progeny virus was released to the media of the infected skin. Second, antibodies against HSV-1, added following the infection, effectively restricted viral spread in the skin but have no effect on viral spread in the brain tissue. Taken together, these results reveal that HSV-1 spread within the brain tissue mostly by direct transfer from cell to cell, while in the skin the progeny extracellular virus predominates, thus facilitating the infection to new individuals.
Collapse
|
15
|
Rapid host immune response and viral dynamics in herpes simplex virus-2 infection. Nat Med 2013; 19:280-90. [PMID: 23467247 DOI: 10.1038/nm.3103] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 01/10/2013] [Indexed: 02/07/2023]
Abstract
Herpes simplex virus-2 (HSV-2) is periodically shed throughout the human genital tract. Although a high viral load correlates with the development of genital ulcers, shedding also commonly occurs even when ulcers are absent, allowing for silent transmission during coitus and contributing to high seroprevalence of HSV-2 worldwide. Frequent viral reactivation occurs within ganglia despite diverse and complementary host and viral mechanisms that predispose toward latency, suggesting that viral replication may be constantly occurring in a small minority of neurons at these sites. Within genital mucosa, the in vivo expansion and clearance rates of HSV-2 are extremely rapid. Resident dendritic cells and memory HSV-2 specific T cells persist at prior sites of genital tract reactivation and, in conjunction with prompt innate recognition of infected cells, lead to rapid containment of infected cells. The fact that immune responses usually control viral replication in genital skin before lesions develop provides hope that enhancing such responses could lead to effective vaccines and immunotherapies.
Collapse
|
16
|
An adjuvanted herpes simplex virus 2 subunit vaccine elicits a T cell response in mice and is an effective therapeutic vaccine in Guinea pigs. J Virol 2013; 87:3930-42. [PMID: 23365421 DOI: 10.1128/jvi.02745-12] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Immunotherapeutic herpes simplex virus 2 (HSV-2) vaccine efficacy depends upon the promotion of antigen-specific immune responses that inhibit reactivation or reactivated virus, thus controlling both recurrent lesions and viral shedding. In the present study, a candidate subunit vaccine, GEN-003/MM-2, was evaluated for its ability to induce a broad-spectrum immune response in mice and therapeutic efficacy in HSV-2-infected guinea pigs. GEN-003 is comprised of HSV-2 glycoprotein D2 (gD2ΔTMR340-363) and a truncated form of infected cell polypeptide 4 (ICP4383-766), formulated with Matrix M-2 (MM-2) adjuvant (GEN-003/MM-2). In addition to eliciting humoral immune responses, CD4(+) and CD8(+) T cells characterized by the secretion of multiple cytokines and cytolytic antigen-specific T cell responses that were able to be recalled at least 44 days after the last immunization were induced in immunized mice. Furthermore, vaccination with either GEN-003 or GEN-003/MM-2 led to significant reductions in both the prevalence and severity of lesions in HSV-2-infected guinea pigs compared to those of phosphate-buffered saline (PBS) control-vaccinated animals. While vaccination with MM-2 adjuvant alone decreased recurrent disease symptoms compared to the PBS control group, the difference was not statistically significant. Importantly, the frequency of recurrent viral shedding was considerably reduced in GEN-003/MM-2-vaccinated animals but not in GEN-003- or MM-2-vaccinated animals. These findings suggest a possible role for immunotherapeutic GEN-003/MM-2 vaccination as a viable alternative to chronic antiviral drugs in the treatment and control of genital herpes disease.
Collapse
|
17
|
El Sawy NA, Shahine EM, Alhadidi AS, Achmawi GA, Alhabashy NM. Cellular immune response in prognosis of Bell's palsy and its relation to clinical and electrophysiological findings. ALEXANDRIA JOURNAL OF MEDICINE 2012. [DOI: 10.1016/j.ajme.2012.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Noha A. El Sawy
- Alexandria Faculty of Medicine, Department of Physical Medicine , Rheumatology, and Rehabitation, Alexandria, Egypt
| | - Enas M. Shahine
- Alexandria Faculty of Medicine, Department of Physical Medicine , Rheumatology, and Rehabitation, Alexandria, Egypt
| | - Abir S. Alhadidi
- Alexandria Faculty of Medicine, Department of Clinical Pathology, Alexandria, Egypt
| | - Ghada A. Achmawi
- Alexandria Faculty of Medicine, Department of Neurology, Alexandria, Egypt
| | - Nehal M. Alhabashy
- Alexandria Faculty of Medicine, Department of Physiology, Alexandria, Egypt
| |
Collapse
|
18
|
Marinaro M, Rezza G, Del Giudice G, Colao V, Tarsitano E, Camero M, Losurdo M, Buonavoglia C, Tempesta M. A caprine herpesvirus 1 vaccine adjuvanted with MF59™ protects against vaginal infection and interferes with the establishment of latency in goats. PLoS One 2012; 7:e34913. [PMID: 22511971 PMCID: PMC3325274 DOI: 10.1371/journal.pone.0034913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 03/08/2012] [Indexed: 11/19/2022] Open
Abstract
The immunogenicity and the efficacy of a beta-propiolactone-inactivated caprine herpesvirus 1 (CpHV-1) vaccine adjuvanted with MF59™ were tested in goats. Following two subcutaneous immunizations, goats developed high titers of CpHV-1-specific serum and vaginal IgG and high serum virus neutralization (VN) titers. Peripheral blood mononuclear cells (PBMC) stimulated in vitro with inactivated CpHV-1 produced high levels of soluble IFN-gamma and exhibited high frequencies of IFN-gamma producing cells while soluble IL-4 was undetectable. On the other hand, control goats receiving the inactivated CpHV-1 vaccine without adjuvant produced only low serum antibody responses. A vaginal challenge with virulent CpHV-1 was performed in all vaccinated goats and in naïve goats to assess the efficacy of the two vaccines. Vaginal disease was not detected in goats vaccinated with inactivated CpHV-1 plus MF59™ and these animals had undetectable levels of infectious challenge virus in their vaginal washes. Goats vaccinated with inactivated CpHV-1 in the absence of adjuvant exhibited a less severe disease when compared to naïve goats but shed titers of challenge virus that were similar to those of naïve goats. Detection and quantitation of latent CpHV-1 DNA in sacral ganglia in challenged goats revealed that the inactivated CpHV-1 plus MF59™ vaccine was able to significantly reduce the latent viral load when compared either to the naïve goats or to the goats vaccinated with inactivated CpHV-1 in the absence of adjuvant. Thus, a vaccine composed of inactivated CpHV-1 plus MF59™ as adjuvant was strongly immunogenic and induced effective immunity against vaginal CpHV-1 infection in goats.
Collapse
Affiliation(s)
- Mariarosaria Marinaro
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Rome, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Varicella zoster virus (VZV) infection results in the establishment of latency in human sensory neurons. Reactivation of VZV leads to herpes zoster which can be followed by persistent neuropathic pain, termed post-herpetic neuralgia (PHN). Humans are the only natural host for VZV, and the strict species specificity of the virus has restricted the development of an animal model of infection which mimics all phases of disease. In order to elucidate the mechanisms which control the establishment of latency and reactivation as well as the effect of VZV replication on neuronal function, in vitro models of neuronal infection have been developed. Currently these models involve culturing and infecting dissociated human fetal neurons, with or without their supporting cells, an intact explant fetal dorsal root ganglia (DRG) model, neuroblastoma cell lines and rodent neuronal cell models. Each of these models has distinct advantages as well as disadvantages, and all have contributed towards our understanding of VZV neuronal infection. However, as yet none have been able to recapitulate the full virus lifecycle from primary infection to latency through to reactivation. The development of such a model will be a crucial step towards advancing our understanding of the mechanisms involved in VZV replication in neuronal cells, and the design of new therapies to combat VZV-related disease.
Collapse
|
20
|
Clinical, virological, and immunological parameters associated with superinfection of latently with FeHV-1 infected cats. Vet Microbiol 2009; 138:205-16. [PMID: 19359108 DOI: 10.1016/j.vetmic.2009.03.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 03/04/2009] [Accepted: 03/06/2009] [Indexed: 11/21/2022]
Abstract
Infections with feline herpesvirus type 1 (FeHV-1) are frequently associated with recurrent ocular disease, which may occur even in vaccinated cats. The underlying pathogenesis is poorly understood. Specifically, the role of circulating, superinfecting virus strains is unknown. To begin addressing this complex question, we reconstituted a marker-tagged mutant FeHV-1 from a bacterial artificial chromosome (BAC) harboring the FeHV-1 genome. This mutant was deleted for the glycoprotein G gene (DeltagG) but carried instead a gene encoding the green fluorescent protein (GFP). Nine latently with wild-type (wt) FeHV-1-infected cats were superinfected with this mutant and monitored for clinical, virological, and immunological parameters. While the mutant virus replicated locally, induced a rise in neutralizing antibody titers, and stimulated the interferon system, no evidence for ocular illness or reactivation of the underlying wtFeHV-1-infection was detected. However, cyclophosphamide-dexamethasone (C-D) treatment, applied 16 months after the superinfection, was able to reactivate wtFeHV-1. Reactivation was accompanied by recrudescence of ocular disease signs. In contrast, reactivation of the superinfecting mutant virus was not detected. Since kittens are normally infected with wtFeHV-1 prior to the first immunization, the data described in this study may be valuable for designing future live attenuated FeHV-1 vaccines.
Collapse
|
21
|
Liu WW, Goodhouse J, Jeon NL, Enquist LW. A microfluidic chamber for analysis of neuron-to-cell spread and axonal transport of an alpha-herpesvirus. PLoS One 2008; 3:e2382. [PMID: 18560518 PMCID: PMC2426917 DOI: 10.1371/journal.pone.0002382] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Accepted: 04/29/2008] [Indexed: 01/09/2023] Open
Abstract
Alpha-herpesviruses, including herpes simplex virus and pseudorabies virus (PRV), infect the peripheral nervous system (PNS) of their hosts. Here, we describe an in vitro method for studying neuron-to-cell spread of infection as well as viral transport in axons. The method centers on a novel microfluidic chamber system that directs growth of axons into a fluidically isolated environment. The system uses substantially smaller amounts of virus inoculum and media than previous chamber systems and yet offers the flexibility of applying multiple virology and cell biology assays including live-cell optical imaging. Using PRV infection of cultured PNS neurons, we demonstrate that the microfluidic chamber recapitulates all known facets of neuron-to-cell spread demonstrated in animals and other compartmented cell systems.
Collapse
Affiliation(s)
- Wendy W. Liu
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Joseph Goodhouse
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Noo Li Jeon
- Department of Biomedical Engineering, University of California Irvine, Irvine, California, United States of America
| | - L. W. Enquist
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
22
|
Chu CF, Meador MG, Young CG, Strasser JE, Bourne N, Milligan GN. Antibody-mediated protection against genital herpes simplex virus type 2 disease in mice by Fc gamma receptor-dependent and -independent mechanisms. J Reprod Immunol 2007; 78:58-67. [PMID: 17950908 DOI: 10.1016/j.jri.2007.08.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Revised: 08/20/2007] [Accepted: 08/24/2007] [Indexed: 11/19/2022]
Abstract
The ability of antibody (Ab) to modulate HSV pathogenesis is well recognized but the mechanisms by which HSV-specific IgG antibodies protect against genital HSV-2 disease are not well understood. The requirement for Ab interactions with Fcgamma receptors (FcgammaR) in protection was examined using a murine model of genital HSV-2 infection. IgG antibodies isolated from the serum of HSV-immune mice protected normal mice against HSV-2 disease when administered prior to genital HSV-2 inoculation. However, protection was significantly diminished in recipient mice lacking the gamma chain subunit utilized in FcgammaRI, FcgammaRIII, FcgammaRIV and FcepsilonRI receptors and in normal mice depleted of Gr-1(+) immune cell populations known to express FcgammaR, suggesting protection was largely mediated by an FcgammaR-dependent mechanism. To test whether neutralizing Ab might provide superior protection, a highly neutralizing HSV glycoprotein D (gD)-specific monoclonal antibody (mAb) was utilized. Similar to results with HSV-specific polyclonal IgG, administration of the gD-specific mAb did not prevent initial infection of the genital tract but resulted in lower virus loads in the vaginal epithelium and provided significant protection against disease and acute infection of the sensory ganglia; however, this protection was independent of host FcgammaR expression and was manifest in mice depleted of Gr-1(+) immune cells. Together, these data demonstrate that substantial Ab-mediated protection against genital HSV-2 disease could be achieved by either FcgammaR-dependent or -independent mechanisms. These studies suggest that HSV vaccines might need to elicit multiple, diverse antibody effector mechanisms to achieve optimal protection.
Collapse
Affiliation(s)
- Chin-Fun Chu
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555-0436, USA
| | | | | | | | | | | |
Collapse
|
23
|
Axonal transport mediates West Nile virus entry into the central nervous system and induces acute flaccid paralysis. Proc Natl Acad Sci U S A 2007; 104:17140-5. [PMID: 17939996 DOI: 10.1073/pnas.0705837104] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
West Nile virus (WNV) has emerged as a significant cause of epidemic viral encephalitis and flaccid limb paralysis, yet the mechanism by which it enters the CNS remains uncertain. We used compartmentalized neuron cultures to demonstrate that WNV spreads in both retrograde and anterograde directions via axonal transport. Transneuronal spread of WNV required axonal release of viral particles and was blocked by addition of a therapeutic neutralizing antibody. To test the physiologic significance of axonal transport in vivo, we directly inoculated the sciatic nerve of hamsters with WNV. Intrasciatic infection resulted in paralysis of the hind limb ipsilateral but not contralateral to the injection site. Limb paralysis was blocked either by surgical transection of the sciatic nerve or treatment with the therapeutic neutralizing antibody. Collectively, these studies establish that WNV undergoes bidirectional spread in neurons and that axonal transport promotes viral entry into the CNS and acute limb paralysis. Moreover, antibody therapeutics directly inhibit transneuronal spread of WNV infection and prevent the development of paralysis in vivo.
Collapse
|
24
|
Carter C, Savic S, Cole J, Wood P. Natural killer cell receptor expression in patients with severe and recurrent Herpes simplex virus-1 (HSV-1) infections. Cell Immunol 2007; 246:65-74. [PMID: 17706187 DOI: 10.1016/j.cellimm.2007.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 05/29/2007] [Accepted: 06/01/2007] [Indexed: 11/29/2022]
Abstract
Herpes simplex virus-1 (HSV-1) is an important human pathogen which in a minority of people causes severe infections. In immunocompetent hosts the infection is self limiting. However, a small minority of people have frequent attacks. As NK cells have been implicated in host protection against HSV-1, the aim of this study was to compare NK cell receptor expression in healthy controls and in patients suffering from recurrent HSV-1 reactivations using monoclonal antibodies against NK cell receptors and 3 colour flow cytometry. Eighteen patients were recruited into the study and the results were compared to a control group. The results obtained showed that overall there was no statistical difference between patient and control groups in the expression of the NK cell receptors. There were however, individuals in the patient group (in particular, two members of one family) with significantly reduced level of activating receptors compared to the control group.
Collapse
Affiliation(s)
- C Carter
- Cellular Immunology Laboratory, Department of Clinical Biochemistry and Immunology, St. James' University Hospital, Beckett Street, Leeds LS9 7TF, UK.
| | | | | | | |
Collapse
|
25
|
Feierbach B, Bisher M, Goodhouse J, Enquist LW. In vitro analysis of transneuronal spread of an alphaherpesvirus infection in peripheral nervous system neurons. J Virol 2007; 81:6846-57. [PMID: 17459934 PMCID: PMC1933274 DOI: 10.1128/jvi.00069-07] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The neurotropic alphaherpesviruses invade and spread in the nervous system in a directional manner between synaptically connected neurons. Until now, this property has been studied only in living animals and has not been accessible to in vitro analysis. In this study, we describe an in vitro system in which cultured peripheral nervous system neurons are separated from their neuron targets by an isolator chamber ring. Using pseudorabies virus (PRV), an alphaherpesvirus capable of transneuronal spread in neural circuits of many animals, we have recapitulated in vitro all known genetic requirements for retrograde and anterograde transneuronal spread as determined previously in vivo. We show that in vitro transneuronal spread requires intact axons and the presence of the viral proteins gE, gI, and Us9. We also show that transneuronal spread is dependent on the viral glycoprotein gB, which is required for membrane fusion, but not on gD, which is required for extracellular spread. We demonstrate ultrastructural differences between anterograde- and retrograde-traveling virions. Finally, we show live imaging of dynamic fluorescent virion components in axons and postsynaptic target neurons.
Collapse
Affiliation(s)
- B Feierbach
- 301 Schultz Building, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| | | | | | | |
Collapse
|
26
|
Cunningham AL, Diefenbach RJ, Miranda-Saksena M, Bosnjak L, Kim M, Jones C, Douglas MW. The cycle of human herpes simplex virus infection: virus transport and immune control. J Infect Dis 2006; 194 Suppl 1:S11-8. [PMID: 16921466 DOI: 10.1086/505359] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
After infection of skin or mucosa, herpes simplex virus enters the sensory nerve endings and is conveyed by retrograde axonal transport to the dorsal root ganglion, where the virus develops lifelong latency. Intermittent reactivation, which is spontaneous in humans, leads to anterograde transport of virus particles and proteins to the skin or mucosa, where the virus is shed and/or causes disease. Immune control of viral infection and replication occurs at the level of skin or mucosa during initial or recurrent infection and also within the dorsal root ganglion, where immune mechanisms control latency and reactivation. This article examines current views on the mechanisms of retrograde and anterograde transport of the virus in axons and the mechanisms of innate and adaptive immunity that control infection in the skin or mucosa and in the dorsal root ganglion--in particular, the role of interferons, myeloid and plasmacytoid dendritic cells, CD4(+) and CD8(+) T cells, and interferon- gamma and other cytokines, including their significance in the development of vaccines for genital herpes.
Collapse
Affiliation(s)
- Anthony L Cunningham
- Centre for Virus Research, Westmead Millennium Institute, University of Sydney and Westmead Hospital, Sydney, 2145, Australia.
| | | | | | | | | | | | | |
Collapse
|
27
|
Ch'ng TH, Enquist LW. An in vitro system to study trans-neuronal spread of pseudorabies virus infection. Vet Microbiol 2005; 113:193-7. [PMID: 16326047 DOI: 10.1016/j.vetmic.2005.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The neuronal spread of infection of alpha herpesviruses is controlled by unknown mechanisms. In the natural host, primary infection always leads to invasion of the peripheral nervous system, but rarely results in extensive invasion of the central nervous system. After reactivation of latent infection in the peripheral nervous system, virions are produced and shed from epithelial surfaces, but rarely invade the central nervous system. We have been studying two aspects of the general problem. First, using GFP and mRFP fusion proteins, we have used video confocal microscopy to assess mechanisms that influence spread of pseudorabies (PRV) virion components within axons. Second, and the subject of this report, is the development of a new in vitro cell culture system that enables the study of trans-neuronal spread of infection from neurons to non-neuronal cells similar to what happens after reactivation and spread to epithelial surfaces. We have developed a tissue culture system involving tri-chamber Teflon rings that enables facile analysis of trans-neuronal spread. The system duplicates all the known in vivo correlates of trans-neuronal spread and provides the opportunity to do both quantitative and qualitative assessment of spread of PRV infection from infected neurons to non-neuronal cells.
Collapse
Affiliation(s)
- T H Ch'ng
- Department of Molecular Biology, Princeton University, 314 Schultz Laboratory, Princeton, NJ 08544, USA
| | | |
Collapse
|
28
|
Abstract
Alphaherpesviruses are parasites of the peripheral nervous system in their natural hosts. After the initial infection of peripheral tissues such as mucosal cells, these neurotropic viruses will invade the peripheral nervous system that innervates the site of infection via long-distance axonal transport of the viral genome. In natural hosts, a latent and a nonproductive infection is usually established in the neuronal cell bodies. Upon reactivation, the newly replicated genome will be assembled into capsids and transported back to the site of entry, where a localized infection of the epithelial or mucosal cells will produce infectious virions that can infect naïve hosts. In this paper, we describe an in vitro method for studying neuron-to-cell spread of alphaherpesviruses using a compartmented culture system. Using pseudorabies virus as a model, we infected neuron cell bodies grown in Teflon chambers and observed spread of infection to nonneuronal cells plated in a different compartment. The cells are in contact with the neurons via axons that penetrate the Teflon barrier. We demonstrate that wild-type neuron-to-cell spread requires intact axons and the presence of gE, gI, and Us9 proteins, but does not require gD. We also provide ultrastructural evidence showing that capsids enclosed within vesicles can be found along the entire length of the axon during viral egress.
Collapse
Affiliation(s)
- T H Ch'ng
- Department of Molecular Biology, Princeton University, NJ 08544, USA
| | | |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Infection with herpes simplex virus remains a significant cause of disease. The host immune system plays an important role in containing viral replication, and there has been considerable progress in defining which components of immunity are key to the resolution of infection. Nevertheless, effective immunoprophylaxis or immunotherapy has not yet been achieved. RECENT FINDINGS Recent work has focused on understanding the early events leading to the herpes simplex virus-specific immune response, in particular on the role of antigen-presenting dendritic cells. Herpes simplex virus has evolved a number of ways of interfering with antigen presentation by dendritic cells, thus presumably impeding or delaying the host immune response. Nevertheless, herpes simplex virus triggers strong cellular and humoral immunity. The ability of dendritic cells to take up dead or dying infected cells and cross-present them to cognate T cells may be the key to resolving this apparent paradox. Interaction between dendritic cell subsets, and particularly the virus-induced release of type I interferons may be essential to drive efficient antigen cross-presentation and subsequent T-cell activation. SUMMARY A greater understanding of the importance of dendritic cells in driving viral immunity, and of the ligands that activate these cells and the cytokines they secrete, has provided novel vaccination strategies. The delivery of immunomodulatory genes together with viral antigens, for example by DNA vaccination, may harness the full potential of dendritic cells, and achieve the goal of effective immunological control of herpes simplex virus.
Collapse
Affiliation(s)
- Gabriele Pollara
- Department of Immunology and Molecular Pathology, University College London, Windeyer Institute of Medical Sciences, London, UK
| | | | | |
Collapse
|
30
|
van Lint A, Ayers M, Brooks AG, Coles RM, Heath WR, Carbone FR. Herpes simplex virus-specific CD8+ T cells can clear established lytic infections from skin and nerves and can partially limit the early spread of virus after cutaneous inoculation. THE JOURNAL OF IMMUNOLOGY 2004; 172:392-7. [PMID: 14688347 DOI: 10.4049/jimmunol.172.1.392] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
HSV infects skin or mucosal epithelium as well as entering the sensory nerves and ganglia. We have used TCR-transgenic T cells specific for the immunodominant class I-restricted determinant from HSV glycoprotein B (gB) combined with a flank zosteriform model of infection to examine the ability of CD8+ T cells to deal with infection. During the course of zosteriform disease, virus rapidly spreads from the primary inoculation site in the skin to sensory dorsal root ganglia and subsequently reappears in the distal flank. Virus begins to be cleared from all sites about 5 days after infection when gB-specific CD8+ T cells first appear within infected tissues. Although activated gB-specific effectors can partially limit virus egress from the skin, they do so only at the earliest times after infection and are ineffective at halting the progression of zosteriform disease once virus has left the inoculation site. In contrast, these same T cells can completely clear ongoing lytic replication if transferred into infected immunocompromised RAG-1-/- mice. Therefore, we propose that the role of CD8+ T cells during the normal course of disease is to clear replicating virus after infection is well established rather than limit the initial spread of HSV from the primary site of inoculation.
Collapse
MESH Headings
- Administration, Cutaneous
- Adoptive Transfer
- Animals
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/transplantation
- CD8-Positive T-Lymphocytes/virology
- Disease Progression
- Epitopes, T-Lymphocyte/immunology
- Female
- Ganglia, Spinal/immunology
- Ganglia, Spinal/pathology
- Ganglia, Spinal/virology
- Herpes Simplex/immunology
- Herpes Simplex/pathology
- Herpes Simplex/prevention & control
- Herpesvirus 1, Human/growth & development
- Herpesvirus 1, Human/immunology
- Hindlimb
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Peripheral Nervous System Diseases/immunology
- Peripheral Nervous System Diseases/pathology
- Peripheral Nervous System Diseases/prevention & control
- Receptors, Antigen, T-Cell/genetics
- Skin Diseases, Viral/immunology
- Skin Diseases, Viral/pathology
- Skin Diseases, Viral/prevention & control
- Viral Envelope Proteins/immunology
- Virus Replication/immunology
Collapse
Affiliation(s)
- Allison van Lint
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | | | |
Collapse
|
31
|
Iwasaki A. The role of dendritic cells in immune responses against vaginal infection by herpes simplex virus type 2. Microbes Infect 2004; 5:1221-30. [PMID: 14623018 DOI: 10.1016/j.micinf.2003.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Herpes simplex virus type 2 is a leading cause of genital ulcers that affects more women than men worldwide. Recent evidence indicates that protective immunity can be generated by specialized dendritic cells in the female genital mucosa. This article aims to provide an overview of the effector immunity required for protection from genital herpes, and to discuss the mechanism by which specific subsets of dendritic cells mediate induction of adaptive immunity following genital infection with herpes simplex virus type 2 in vivo.
Collapse
Affiliation(s)
- Akiko Iwasaki
- Department of Epidemiology and Public Health and Immunobiology, Yale University School of Medicine, 60 College Street, LEPH 716, New Haven, CT 06510, USA.
| |
Collapse
|
32
|
Carr DJJ, Al-khatib K, James CM, Silverman R. Interferon-beta suppresses herpes simplex virus type 1 replication in trigeminal ganglion cells through an RNase L-dependent pathway. J Neuroimmunol 2003; 141:40-6. [PMID: 12965252 PMCID: PMC4060623 DOI: 10.1016/s0165-5728(03)00216-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The induction of an antiviral state by type I interferons (IFN) was evaluated in primary trigeminal ganglion cell cultures using herpes simplex virus type 1 (HSV-1). Cells treated with mouse IFN-beta consistently showed the greatest resistance to HSV-1 infection in comparison to cells treated with IFN-alpha1, IFN-alpha4, IFN-alpha5, IFN-alpha6, or IFN-alpha9. The antiviral efficacy was dose-dependent and correlated with the induction of the IFN-inducible, antiviral genes, 2'-5' oligoadenylate synthetase (OAS) and double-stranded RNA-dependent protein kinase. In trigeminal ganglion cells deficient in the downstream effector molecule of the OAS pathway, RNase L, the antiviral state induced by IFN-beta was lost.
Collapse
Affiliation(s)
- Daniel J J Carr
- Department of Ophthalmology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | | | | | | |
Collapse
|
33
|
Richards CM, Case R, Hirst TR, Hill TJ, Williams NA. Protection against recurrent ocular herpes simplex virus type 1 disease after therapeutic vaccination of latently infected mice. J Virol 2003; 77:6692-9. [PMID: 12767989 PMCID: PMC156198 DOI: 10.1128/jvi.77.12.6692-6699.2003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2002] [Accepted: 03/24/2003] [Indexed: 11/20/2022] Open
Abstract
The potential of therapeutic vaccination of animals latently infected with herpes simplex virus type 1 (HSV-1) to enhance protective immunity to the virus and thereby reduce the incidence and severity of recurrent ocular disease was assessed in a mouse model. Mice latently infected with HSV-1 were vaccinated intranasally with a mixture of HSV-1 glycoproteins and recombinant Escherichia coli heat-labile enterotoxin B subunit (rEtxB) as an adjuvant. The systemic immune response induced was characterized by high levels of virus-specific immunoglobulin G1 (IgG1) in serum and very low levels of IgG2a. Mucosal immunity was demonstrated by high levels of IgA in eye and vaginal secretions. Proliferating T cells from lymph nodes of vaccinated animals produced higher levels of interleukin-10 (IL-10) than were produced by such cells from mock-vaccinated animals. This profile suggests that vaccination of latently infected mice modulates the Th1-dominated proinflammatory response usually induced upon infection. After reactivation of latent virus by UV irradiation, vaccinated mice showed reduced viral shedding in tears as well as a reduction in the incidence of recurrent herpetic corneal epithelial disease and stromal disease compared with mock-vaccinated mice. Moreover, vaccinated mice developing recurrent ocular disease showed less severe signs and a quicker recovery rate. Spread of virus to other areas close to the eye, such as the eyelid, was also significantly reduced. Encephalitis occurred in a small percentage (11%) of mock-vaccinated mice, but vaccinated animals were completely protected from such disease. The possible immune mechanisms involved in protection against recurrent ocular herpetic disease in therapeutically vaccinated animals are discussed.
Collapse
Affiliation(s)
- C M Richards
- Department of Pathology and Microbiology, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom.
| | | | | | | | | |
Collapse
|
34
|
Koelle DM, Corey L. Recent progress in herpes simplex virus immunobiology and vaccine research. Clin Microbiol Rev 2003; 16:96-113. [PMID: 12525427 PMCID: PMC145296 DOI: 10.1128/cmr.16.1.96-113.2003] [Citation(s) in RCA: 192] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus types 1 and 2 (HSV-1 and HSV-2) cause prevalent, chronic infections that have serious outcomes in some individuals. Neonatal herpes may occur when the infant traverses the cervix during maternal genital herpes. Genital herpes is a major risk factor for human immunodeficiency virus type 1 transmission. Considerable efforts have been made to design and test vaccines for HSV, focusing on genital infection with HSV-2. Several protein subunit vaccines based on HSV-2 envelope glycoproteins have reached advanced-phase clinical trials. These antigens were chosen because they are the targets of neutralizing-antibody responses and because they elicit cellular immunity. Encouraging results have been reported in studies of treatment of HSV-seronegative women with a vaccine consisting of truncated glycoprotein D of HSV-2 and a novel adjuvant. Because most sexual HSV transmission occurs during asymptomatic shedding, it is important to evaluate the impact of vaccination on HSV-2 infection, clinically apparent genital herpes, and HSV shedding among vaccine recipients who acquire infection. There are several other attractive formats, including subunit vaccines that target cellular immune responses, live attenuated virus strains, and mutant strains that undergo incomplete lytic replication. HSV vaccines have also been evaluated for the immunotherapy of established HSV infection.
Collapse
Affiliation(s)
- David M Koelle
- Department of Medicine, University of Washington, Seattle, Washington 98195, USA.
| | | |
Collapse
|
35
|
Mikloska Z, Cunningham AL. Alpha and gamma interferons inhibit herpes simplex virus type 1 infection and spread in epidermal cells after axonal transmission. J Virol 2001; 75:11821-6. [PMID: 11689663 PMCID: PMC114768 DOI: 10.1128/jvi.75.23.11821-11826.2001] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability of alpha interferon (IFN-alpha) and IFN-gamma to inhibit transmission of herpes simplex virus type 1 (HSV-1) from neuronal axon to epidermal cells (ECs), and subsequent spread in these cells was investigated in an in vitro dual-chamber model consisting of human fetal dorsal root ganglia (DRG) innervating autologous skin explants and compared with direct HSV-1 infection of epidermal explants. After axonal transmission from HSV-1-infected DRG neurons, both the number and size of viral cytopathic plaques in ECs was significantly reduced by addition of recombinant IFN-gamma and IFN-alpha to ECs in the outer chamber in a concentration-dependent fashion. Inhibition was maximal when IFNs were added at the same time as the DRG were infected with HSV-1. The mean numbers of plaques were reduced by 52% by IFN-alpha, 36% by IFN-gamma, and by 62% when IFN-alpha and IFN-gamma were combined, and the mean plaque size was reduced by 64, 43, and 72%, respectively. Similar but less-inhibitory effects of both IFNs were observed after direct infection of EC explants, being maximal when IFNs were added simultaneously or 6 h before HSV-1 infection. These results show that both IFN-alpha and IFN-gamma can interfere with HSV-1 infection after axonal transmission and subsequent spread of HSV-1 in ECs by a direct antiviral effect. Therefore, both IFN-alpha and -gamma could contribute to the control of HSV-1 spread and shedding in a similar fashion in recurrent herpetic lesions.
Collapse
Affiliation(s)
- Z Mikloska
- Centre for Virus Research, Westmead Millennium Institute, Westmead Hospital and University of Sydney, Westmead, New South Wales 2145, Australia
| | | |
Collapse
|
36
|
Carr DJ, Härle P, Gebhardt BM. The immune response to ocular herpes simplex virus type 1 infection. Exp Biol Med (Maywood) 2001; 226:353-66. [PMID: 11393165 DOI: 10.1177/153537020122600501] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a prevalent microbial pathogen infecting 60% to 90% of the adult world population. The co-evolution of the virus with humans is due, in part, to adaptations that the virus has evolved to aid it in escaping immune surveillance, including the establishment of a latent infection in its human host. A latent infection allows the virus to remain in the host without inducing tissue pathology or eliciting an immune response. During the acute infection or reactivation of latent virus, the immune response is significant, which can ultimately result in corneal blindness or fatal sporadic encephalitis. In fact, HSV-1 is one of the leading causes of infectious corneal blindness in the world as a result of chronic episodes of viral reactivation leading to stromal keratitis and scarring. Significant inroads have been made in identifying key immune mediators that control ocular HSV-1 infection and potentially viral reactivation. Likewise, viral mechanisms associated with immune evasion have also been identified and will be discussed. Lastly, novel therapeutic strategies that are currently under development show promise and will be included in this review. Most investigators have taken full advantage of the murine host as a viable working in vivo model of HSV-1 due to the sensitivity and susceptibility to viral infection, ease of manipulation, and a multitude of developed probes to study changes at the cellular and molecular levels. Therefore, comments in this review will primarily be restricted to those observations pertaining to the mouse model and the assumption (however great) that similar events occur in the human condition.
Collapse
Affiliation(s)
- D J Carr
- Department of Ophthalmology, The University of Oklahoma Health Sciences Center, Oklahoma City 73104, USA.
| | | | | |
Collapse
|
37
|
Morrison LA, Zhu L, Thebeau LG. Vaccine-induced serum immunoglobin contributes to protection from herpes simplex virus type 2 genital infection in the presence of immune T cells. J Virol 2001; 75:1195-204. [PMID: 11152492 PMCID: PMC114025 DOI: 10.1128/jvi.75.3.1195-1204.2001] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex type virus 2 (HSV-2) is a sexually transmitted pathogen that causes genital lesions and spreads to the nervous system to establish acute and latent infections. Systemic but not mucosal cellular and humoral immune responses are elicited by immunization of mice with a replication-defective mutant of HSV-2, yet the mice are protected against disease caused by subsequent challenge of the genital mucosa with virulent HSV-2. In this study, we investigated the role of immune serum antibody generated by immunization with a replication-defective HSV-2 vaccine prototype strain in protection of the genital mucosa and the nervous system from HSV-2 infection. Passive transfer of replication-defective virus-immune serum at physiologic concentrations to SCID or B-cell-deficient mice had no effect on replication of challenge virus in the genital mucosa but did significantly reduce the incidence and severity of genital and neurologic disease. In contrast, B-cell-deficient mice immunized with replication-defective HSV-2 were able to control replication of challenge virus in the genital mucosa, but not until 3 days postchallenge, and were not completely protected against genital and neurologic disease. Passive transfer of physiologic amounts of immune serum to immunized, B-cell-deficient mice completely restored their capacity to limit replication of challenge virus in the genital mucosa and prevented signs of genital and systemic disease. In addition, the numbers of viral genomes in the lumbosacral dorsal root ganglia of immunized, B-cell-deficient mice were dramatically reduced by transfer of immune serum prior to challenge. These results suggest that there is an apparent synergism between immune serum antibody and immune T cells in achieving protection and that serum antibody induced by vaccination with replication-defective virus aids in reducing establishment of latent infection after genital infection with HSV-2.
Collapse
Affiliation(s)
- L A Morrison
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri 63104, USA.
| | | | | |
Collapse
|
38
|
Mohamedi SA, Heath AW, Jennings R. A comparison of oral and parenteral routes for therapeutic vaccination with HSV-2 ISCOMs in mice; cytokine profiles, antibody responses and protection. Antiviral Res 2001; 49:83-99. [PMID: 11248361 DOI: 10.1016/s0166-3542(00)00142-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It is likely that recurrent infections with HSV-2 (or HSV-1) are influenced by local levels of immunity at mucosal surfaces, when virus reactivated from the latent state is infecting mucosal epithelial cells. Increasing the levels of cellular and humoral immunity through immunisation and maintaining such increased levels, may reduce establishment and spread of reactivated virus at the local site, thereby ameliorating recurrent disease symptoms. The use of HSV-2 antigens incorporated into immunostimulating complexes (ISCOMs) for immunisation of mice previously infected with HSV-2 was investigated in the present study. Prophylactic administration of HSV-2 ISCOM vaccine to mice elicits local antibody detectable in nasal washings, serum antibody and the presence of cytokines IL-2, IFN-gamma and IL-4 in supernatants from spleen cell cultures stimulated in vitro with HSV-2 antigens. Use of the same vaccine in mice infected previously with HSV-2, results in increased levels of total and subclass serum ELISA antibody and also increased levels of serum neutralising antibody. Treatment of HSV-2 infected mice with the HSV-2 ISCOM vaccine also induces higher levels of the cytokines IL-2, IFN-gamma and IL-4, in in vitro stimulated spleen cell cultures. Challenge with a lethal dose of HSV-1 showed that mice previously infected with HSV-2 and subsequently given two doses of HSV-2 ISCOMs vaccine were protected.
Collapse
Affiliation(s)
- S A Mohamedi
- Sheffield Institute for Vaccine Studies, Division of Molecular and Genetic Medicine, Floor F, University of Sheffield Medical School, Beech Hill Road, S10 2RX, Sheffield, UK
| | | | | |
Collapse
|
39
|
Sanna PP, Burton DR. Role of antibodies in controlling viral disease: lessons from experiments of nature and gene knockouts. J Virol 2000; 74:9813-7. [PMID: 11024107 PMCID: PMC102017 DOI: 10.1128/jvi.74.21.9813-9817.2000] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- P P Sanna
- Departments of Neuropharmacology, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | |
Collapse
|
40
|
Saldanha CE, Lubinski J, Martin C, Nagashunmugam T, Wang L, van Der Keyl H, Tal-Singer R, Friedman HM. Herpes simplex virus type 1 glycoprotein E domains involved in virus spread and disease. J Virol 2000; 74:6712-9. [PMID: 10888608 PMCID: PMC112186 DOI: 10.1128/jvi.74.15.6712-6719.2000] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) glycoprotein E (gE) functions as an immunoglobulin G (IgG) Fc binding protein and is involved in virus spread. Previously we studied a gE mutant virus that was impaired for IgG Fc binding but intact for spread and another that was normal for both activities. To further evaluate the role of gE in spread, two additional mutant viruses were constructed by introducing linker insertion mutations either outside the IgG Fc binding domain at gE position 210 or within the IgG Fc binding domain at position 380. Both mutant viruses were impaired for spread in epidermal cells in vitro; however, the 380 mutant virus was significantly more impaired and was as defective as gE null virus. gE mutant viruses were inoculated into the murine flank to measure epidermal disease at the inoculation site, travel of virus to dorsal root ganglia, and spread of virus from ganglia back to skin to produce zosteriform lesions. Disease at the inoculation and zosteriform sites was reduced for both mutant viruses, but more so for the 380 mutant virus. Moreover, the 380 mutant virus was highly impaired in its ability to reach the ganglia, as demonstrated by virus culture and real-time quantitative PCR. The results indicate that the domain surrounding amino acid 380 is important for both spread and IgG Fc binding and suggest that this domain is a potential target for antiviral therapy or vaccines.
Collapse
MESH Headings
- Animals
- Blotting, Southern
- Blotting, Western
- Cell Line
- Chlorocebus aethiops
- DNA, Viral/analysis
- Female
- Ganglia, Spinal/virology
- Herpes Simplex/pathology
- Herpes Simplex/virology
- Herpesvirus 1, Human/genetics
- Herpesvirus 1, Human/pathogenicity
- Herpesvirus 1, Human/physiology
- Humans
- Immunoglobulin Fc Fragments/genetics
- Immunoglobulin Fc Fragments/metabolism
- Immunoglobulin G/genetics
- Immunoglobulin G/metabolism
- Mice
- Mice, Inbred BALB C
- Mutagenesis, Insertional
- Protein Structure, Tertiary
- RNA, Viral/analysis
- Rosette Formation
- Vero Cells
- Viral Envelope Proteins/chemistry
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/metabolism
Collapse
Affiliation(s)
- C E Saldanha
- Division of Infectious Diseases, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6073, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Deshpande SP, Kumaraguru U, Rouse BT. Why do we lack an effective vaccine against herpes simplex virus infections? Microbes Infect 2000; 2:973-8. [PMID: 10962281 DOI: 10.1016/s1286-4579(00)00339-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
This review discusses the possible causes for the lack of an effective antiherpes vaccine. Future prospects of vaccines based on the current knowledge of immune responses to herpes viruses are discussed. It is argued that vaccines capable of expanding CD8 T-cell memory responses should be the focus of future anti-herpes simplex virus research.
Collapse
Affiliation(s)
- S P Deshpande
- Department of Microbiology, University of Tennessee, Knoxville 37996-0845, USA
| | | | | |
Collapse
|
42
|
Mikloska Z, Rückholdt M, Ghadiminejad I, Dunckley H, Denis M, Cunningham AL. Monophosphoryl lipid A and QS21 increase CD8 T lymphocyte cytotoxicity to herpes simplex virus-2 infected cell proteins 4 and 27 through IFN-gamma and IL-12 production. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:5167-76. [PMID: 10799875 DOI: 10.4049/jimmunol.164.10.5167] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have shown previously that IFN-gamma pretreatment of human epidermal cells (ECs) cultured in vitro partially reverses down-regulation of surface MHC class I by HSV infection, allowing recognition by CD8 CTLs, and that HSV immediate early (IE)/early (E) proteins are the predominant targets for CD8 CTLs. In this study of 25 subjects, CD8 CTLs recognized the HSV-2 IE infected cell protein 27 (ICP27) (expressed in autologous IFN-gamma-pretreated, Vaccinia virus recombinant-infected ECs) in all subjects studied, ICP4 in 89%, and ICP0 in 11%. The main hierarchy of recognition was ICP27 > ICP4. ICP27 was the dominant target in 89% of subjects but showed great individual variability in the degree of cytotoxicity. CD8 cytotoxicity specific for HSV-2 IE proteins was enhanced by 48-67% when CD8 CTLs were coincubated with the combination of monophosphoryl lipid A and QS21 adjuvants at the time of Ag presentation. These adjuvants also significantly enhanced IL-12 and IFN-gamma production from nonadherent mononuclear cells stimulated by HSV-2-infected ECs. Addition of IL-12 and IFN-gamma at the time of initial Ag presentation enhanced CD8 cytotoxicity to levels comparable with those stimulated by the adjuvants. Addition of neutralizing Abs to IL-12 or IFN-gamma inhibited CD8 T cell cytotoxicity up to 95% when a combination of the Abs were added at the time of initial Ag presentation. Therefore, the mechanism for the enhancement of CD8 T cell cytotoxicity by adjuvants in this system appears to be via increased levels of IL-12 and IFN-gamma.
Collapse
MESH Headings
- Adjuvants, Immunologic/pharmacology
- Cells, Cultured
- Cytotoxicity Tests, Immunologic
- Cytotoxicity, Immunologic/drug effects
- Dose-Response Relationship, Immunologic
- Drug Combinations
- Epidermal Cells
- Epidermis/immunology
- Epidermis/metabolism
- Epidermis/virology
- Herpesvirus 2, Human/genetics
- Herpesvirus 2, Human/immunology
- Humans
- Immediate-Early Proteins/biosynthesis
- Immediate-Early Proteins/genetics
- Immediate-Early Proteins/immunology
- Immune Sera/pharmacology
- Immunosuppressive Agents/pharmacology
- Interferon-gamma/antagonists & inhibitors
- Interferon-gamma/biosynthesis
- Interferon-gamma/genetics
- Interferon-gamma/immunology
- Interleukin-12/antagonists & inhibitors
- Interleukin-12/biosynthesis
- Interleukin-12/genetics
- Interleukin-12/immunology
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Lipid A/analogs & derivatives
- Lipid A/pharmacology
- Recombinant Proteins/immunology
- Saponins/pharmacology
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/virology
- Ubiquitin-Protein Ligases
- Vaccinia virus/genetics
- Vaccinia virus/immunology
Collapse
Affiliation(s)
- Z Mikloska
- Centre for Virus Research, Westmead Millennium Institute, Westmead Hospital and University of Sydney, Westmead, Australia.
| | | | | | | | | | | |
Collapse
|
43
|
Miranda-Saksena M, Armati P, Boadle RA, Holland DJ, Cunningham AL. Anterograde transport of herpes simplex virus type 1 in cultured, dissociated human and rat dorsal root ganglion neurons. J Virol 2000; 74:1827-39. [PMID: 10644356 PMCID: PMC111661 DOI: 10.1128/jvi.74.4.1827-1839.2000] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanism of anterograde transport of herpes simplex virus was studied in cultured dissociated human and rat dorsal root ganglion neurons. The neurons were infected with HSV-1 to examine the distribution of capsid (VP5), tegument (VP16), and glycoproteins (gC and gB) at 2, 6, 10, 13, 17, and 24 h postinfection (p.i.) with or without nocodazole (a microtubule depolymerizer) or brefeldin A (a Golgi inhibitor). Retrogradely transported VP5 was detected in the cytoplasm of the cell body up to the nuclear membrane at 2 h p.i. It was first detected de novo in the nucleus and cytoplasm at 10 h p.i., the axon hillock at 13 h p.i., and the axon at 15 to 17 h p.i. gC and gB were first detected de novo in the cytoplasm and the axon hillock at 10 h p.i. and then in the axon at 13 h p.i., which was always earlier than the detection of VP5. De novo-synthesized VP16 was first detected in the cytoplasm at 10 to 13 h p.i. and in the axon at 16 to 17 h p.i. Nocodazole inhibited the transport of all antigens, VP5, VP16, and gC or gB. The kinetics of inhibition of VP5 and gC could be dissociated. Brefeldin A inhibited the transport of gC or gB and VP16 but not VP5 into axons. Transmission immunoelectron microscopy confirmed that there were unenveloped nucleocapsids in the axon with or without brefeldin A. These findings demonstrate that glycoproteins and capsids, associated with tegument proteins, are transported by different pathways with slightly differing kinetics from the nucleus to the axon. Furthermore, axonal anterograde transport of the nucleocapsid can proceed despite the loss of most VP16.
Collapse
MESH Headings
- Animals
- Axonal Transport/drug effects
- Axonal Transport/physiology
- Brefeldin A/pharmacology
- Capsid/metabolism
- Capsid Proteins
- Cell Line
- Cells, Cultured
- Ganglia, Spinal/cytology
- Herpes Simplex Virus Protein Vmw65/metabolism
- Herpesvirus 1, Human/metabolism
- Herpesvirus 1, Human/physiology
- Herpesvirus 1, Human/ultrastructure
- Humans
- Kinetics
- Microscopy, Confocal
- Microscopy, Electron
- Microscopy, Immunoelectron
- Neurons/cytology
- Neurons/metabolism
- Neurons/virology
- Nocodazole/pharmacology
- Nucleocapsid/metabolism
- Rats
- Rats, Wistar
- Tumor Cells, Cultured
- Viral Envelope Proteins/metabolism
Collapse
Affiliation(s)
- M Miranda-Saksena
- Centre for Virus Research, Westmead Millennium Institute, Westmead Hospital and University of Sydney, Australia
| | | | | | | | | |
Collapse
|
44
|
Sanna PP, Deerinck TJ, Ellisman MH. Localization of a passively transferred human recombinant monoclonal antibody to herpes simplex virus glycoprotein D to infected nerve fibers and sensory neurons in vivo. J Virol 1999; 73:8817-23. [PMID: 10482637 PMCID: PMC112904 DOI: 10.1128/jvi.73.10.8817-8823.1999] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A human recombinant monoclonal antibody to herpes simplex virus (HSV) glycoprotein D labeled with the fluorescent dye Cy5 was administered to mice infected in the cornea with HSV type 1 (HSV-1). The distribution of such antibody in the corneas and trigeminal ganglia of the mice was then investigated by confocal microscopy. The antibody was detected on HSV-infected nerve fibers in the cornea--identified by colocalization with HSV antigens and the neuritic markers neurofilament, GAP-43, synapsin-1, and CNPase--and on the perikarya of sensory neurons in the HSV-1-infected neurons in ipsilateral trigeminal ganglia. Antibodies have been shown to be effective against many neurotropic viruses, often in the absence of obvious cell damage. Observations from experimental HSV infections suggest that antibodies could act in part by interfering with virus expression in the ganglia and/or with axonal spread. The present results provide morphological evidence of the localization of antiviral antibodies at anatomical sites relevant to such putative antibody-mediated protective actions and suggest that viral glycoproteins are accessible to antibodies on infected nerve fibers and sensory neurons.
Collapse
Affiliation(s)
- P P Sanna
- Department of Neuropharmacology, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
45
|
Holland DJ, Miranda-Saksena M, Boadle RA, Armati P, Cunningham AL. Anterograde transport of herpes simplex virus proteins in axons of peripheral human fetal neurons: an immunoelectron microscopy study. J Virol 1999; 73:8503-11. [PMID: 10482603 PMCID: PMC112870 DOI: 10.1128/jvi.73.10.8503-8511.1999] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus (HSV) reactivates from latency in the neurons of dorsal root ganglia (DRG) and is subsequently transported anterogradely along the axon to be shed at the skin or mucosa. Although we have previously shown that only unenveloped nucleocapsids are present in axons during anterograde transport, the mode of transport of tegument proteins and glycoproteins is not known. We used a two-chamber culture model with human fetal DRG cultivated in an inner chamber, allowing axons to grow out and penetrate an agarose barrier and interact with autologous epidermal cells in the outer chamber. After HSV infection of the DRG, anterograde transport of viral components could be examined in the axons in the outer chamber at different time points by electron and immunoelectron microscopy (IEM). In the axons, unenveloped nucleocapsids or focal collections of gold immunolabel for nucleocapsid (VP5) and/or tegument (VP16) were detected. VP5 and VP16 usually colocalized in both scanning and transmission IEM. In contrast, immunolabel for glycoproteins gB, gC, and gD was diffusely distributed in axons and was rarely associated with VP5 or VP16. In longitudinal sections of axons, immunolabel for glycoprotein was arrayed along the membranes of axonal vesicles. These findings provide evidence that in DRG axons, virus nucleocapsids coated with tegument proteins are transported separately from glycoproteins and suggest that final assembly of enveloped virus occurs at the axon terminus.
Collapse
Affiliation(s)
- D J Holland
- Centre for Virus Research, Westmead Institutes of Health Research, Westmead Hospital and University of Sydney, New South Wales 2145, Australia
| | | | | | | | | |
Collapse
|