1
|
Lee YZ, Han J, Zhang YN, Ward G, Braz Gomes K, Auclair S, Stanfield RL, He L, Wilson IA, Zhu J. Rational design of uncleaved prefusion-closed trimer vaccines for human respiratory syncytial virus and metapneumovirus. Nat Commun 2024; 15:9939. [PMID: 39550381 PMCID: PMC11569192 DOI: 10.1038/s41467-024-54287-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024] Open
Abstract
Respiratory syncytial virus (RSV) and human metapneumovirus (hMPV) cause human respiratory diseases and are major targets for vaccine development. In this study, we design uncleaved prefusion-closed (UFC) trimers for the fusion protein (F) of both viruses by examining mutations critical to F metastability. For RSV, we assess four previous prefusion F designs, including the first and second generations of DS-Cav1, SC-TM, and 847A. We then identify key mutations that can maintain prefusion F in a native-like, closed trimeric form (up to 76%) without introducing any interprotomer disulfide bond. For hMPV, we develop a stable UFC trimer with a truncated F2-F1 linkage and an interprotomer disulfide bond. Dozens of UFC constructs are characterized by negative-stain electron microscopy (nsEM), x-ray crystallography (11 RSV-F structures and one hMPV-F structure), and antigenic profiling. Using an optimized RSV-F UFC trimer as bait, we identify three potent RSV neutralizing antibodies (NAbs) from a phage-displayed human antibody library, with a public NAb lineage targeting sites Ø and V and two cross-pneumovirus NAbs recognizing site III. In mouse immunization, rationally designed RSV-F and hMPV-F UFC trimers induce robust antibody responses with high neutralizing titers. Our study provides a foundation for future prefusion F-based RSV and hMPV vaccine development.
Collapse
Affiliation(s)
- Yi-Zong Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jerome Han
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Yi-Nan Zhang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Garrett Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | | | - Sarah Auclair
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Robyn L Stanfield
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Linling He
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jiang Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Uvax Bio, LLC, Newark, DE, 19702, USA.
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
2
|
Lee YZ, Han J, Zhang YN, Ward G, Gomes KB, Auclair S, Stanfield RL, He L, Wilson IA, Zhu J. A tale of two fusion proteins: understanding the metastability of human respiratory syncytial virus and metapneumovirus and implications for rational design of uncleaved prefusion-closed trimers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.07.583986. [PMID: 38496645 PMCID: PMC10942449 DOI: 10.1101/2024.03.07.583986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Respiratory syncytial virus (RSV) and human metapneumovirus (hMPV) cause human respiratory diseases and are major targets for vaccine development. In this study, we designed uncleaved prefusion-closed (UFC) trimers for the fusion (F) proteins of both viruses by examining mutations critical to F metastability. For RSV, we assessed four previous prefusion F designs, including the first and second generations of DS-Cav1, SC-TM, and 847A. We then identified key mutations that can maintain prefusion F in a native-like, closed trimeric form (up to 76%) without introducing any interprotomer disulfide bond. For hMPV, we developed a stable UFC trimer with a truncated F2-F1 linkage and an interprotomer disulfide bond. Tens of UFC constructs were characterized by negative-stain electron microscopy (nsEM), x-ray crystallography (11 RSV-F and one hMPV-F structures), and antigenic profiling. Using an optimized RSV-F UFC trimer as bait, we identified three potent RSV neutralizing antibodies (NAbs) from a phage-displayed human antibody library, with a public NAb lineage targeting sites Ø and V and two cross-pneumovirus NAbs recognizing site III. In mouse immunization, rationally designed RSV-F and hMPV-F UFC trimers induced robust antibody responses with high neutralizing titers. Our study provides a foundation for future prefusion F-based RSV and hMPV vaccine development.
Collapse
Affiliation(s)
- Yi-Zong Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Jerome Han
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Yi-Nan Zhang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Garrett Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Keegan Braz Gomes
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Sarah Auclair
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Robyn L Stanfield
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Linling He
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Jiang Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California 92037, USA
| |
Collapse
|
3
|
Bale S, Yang L, Alirezaei M, Wilson R, Ota T, Doyle ED, Cottrell C, Guenaga J, Tran K, Li W, Stamatatos L, Nemazee D, Ward AB, Wyatt RT. Fusion of the molecular adjuvant C3d to cleavage-independent native-like HIV-1 Env trimers improves the elicited antibody response. Front Immunol 2023; 14:1180959. [PMID: 37283743 PMCID: PMC10239957 DOI: 10.3389/fimmu.2023.1180959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/27/2023] [Indexed: 06/08/2023] Open
Abstract
An effective HIV vaccine likely requires the elicitation of neutralizing antibodies (NAbs) against multiple HIV-1 clades. The recently developed cleavage-independent native flexibly linked (NFL) envelope (Env) trimers exhibit well-ordered conformation and elicit autologous tier 2 NAbs in multiple animal models. Here, we investigated whether the fusion of molecular adjuvant C3d to the Env trimers can improve B- cell germinal center (GC) formation and antibody responses. To generate Env-C3d trimers, we performed a glycine-serine- based (G4S) flexible peptide linker screening and identified a linker range that allowed native folding. A 30-60- amino- acid- long linker facilitates Env-to-C3d association and achieves the secretion of well-ordered trimers and the structural integrity and functional integrity of Env and C3d. The fusion of C3d did not dramatically affect the antigenicity of the Env trimers and enhanced the ability of the Env trimers to engage and activate B cells in vitro. In mice, the fusion of C3d enhanced germinal center formation, the magnitude of Env-specific binding antibodies, and the avidity of the antibodies in the presence of an adjuvant. The Sigma Adjuvant System (SAS) did not affect the trimer integrity in vitro but contributed to altered immunogenicity in vivo, resulting in increased tier 1 neutralization, likely by increased exposure of variable region 3 (V3). Taken together, the results indicate that the fusion of the molecular adjuvant, C3d, to the Env trimers improves antibody responses and could be useful for Env-based vaccines against HIV.
Collapse
Affiliation(s)
- Shridhar Bale
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| | - Lifei Yang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| | - Mehrdad Alirezaei
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| | - Richard Wilson
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| | - Takayuki Ota
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| | - Esmeralda D. Doyle
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| | - Christopher A. Cottrell
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| | - Javier Guenaga
- International AIDS Vaccine Initiative, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, United States
| | - Karen Tran
- International AIDS Vaccine Initiative, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, United States
| | - Wenjuan Li
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| | - Leonidas Stamatatos
- Vaccines and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
| | - David Nemazee
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| | - Andrew B. Ward
- International AIDS Vaccine Initiative, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, United States
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, United States
| | - Richard T. Wyatt
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
- International AIDS Vaccine Initiative, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, United States
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
4
|
NK cell spatial dynamics and IgA responses in gut-associated lymphoid tissues during SIV infections. Commun Biol 2022; 5:674. [PMID: 35798936 PMCID: PMC9262959 DOI: 10.1038/s42003-022-03619-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 06/22/2022] [Indexed: 11/18/2022] Open
Abstract
HIV infection induces tissue damage including lymph node (LN) fibrosis and intestinal epithelial barrier disruption leading to bacterial translocation and systemic inflammation. Natural hosts of SIV, such as African Green Monkeys (AGM), do not display tissue damage despite high viral load in blood and intestinal mucosa. AGM mount a NK cell-mediated control of SIVagm replication in peripheral LN. We analyzed if NK cells also control SIVagm in mesenteric (mes) LN and if this has an impact on gut humoral responses and the production of IgA known for their anti-inflammatory role in the gut. We show that CXCR5 + NK cell frequencies increase in mesLN upon SIVagm infection and that NK cells migrate into and control viral replication in B cell follicles (BCF) of mesLN. The proportion of IgA+ memory B cells were increased in mesLN during SIVagm infection in contrast to SIVmac infection. Total IgA levels in gut remained normal during SIVagm infection, while strongly decreased in intestine of chronically SIVmac-infected macaques. Our data suggest an indirect impact of NK cell-mediated viral control in mesLN during SIVagm infection on preserved BCF function and IgA production in intestinal tissues. Differences between pathogenic and non-pathogenic SIV infections are investigated, in terms of NK cell location, function and IgA responses in gut associated lymphoid tissues (mesenteric lymph nodes, jejunum, ileon, colon).
Collapse
|
5
|
Vadászi H, Kiss B, Micsonai A, Schlosser G, Szaniszló T, Kovács RÁ, Györffy BA, Kékesi KA, Goto Y, Uzonyi B, Liliom K, Kardos J. Competitive inhibition of the classical complement pathway using exogenous single-chain C1q recognition proteins. J Biol Chem 2022; 298:102113. [PMID: 35690144 PMCID: PMC9270254 DOI: 10.1016/j.jbc.2022.102113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 11/26/2022] Open
Abstract
Complement component 1q (C1q) is a protein complex of the innate immune system with well-characterized binding partners that constitutes part of the classical complement pathway (CP). In addition, C1q was recently described in the central nervous system as having a role in synapse elimination both in the healthy brain and in neurodegenerative diseases. However, the molecular mechanism of C1q-associated synapse phagocytosis is still unclear. Here, we designed monomer and multimer protein constructs which comprised the globular interaction recognition parts of mouse C1q (gC1q) as single-chain molecules (sc-gC1q proteins) lacking the collagen-like effector region. These molecules, which can competitively inhibit the function of C1q, were expressed in an E. coli expression system, and their structure and capabilities to bind known CP activators were validated by mass spectrometry, analytical size exclusion chromatography, analytical ultracentrifugation, circular dichroism spectroscopy, and ELISA. We further characterized the interactions between these molecules and immunoglobulins and neuronal pentraxins using surface plasmon resonance spectroscopy. We demonstrated that sc-gC1qs potently inhibited the function of C1q. Furthermore, these sc-gC1qs competed with C1q in binding to the embryonal neuronal cell membrane. We conclude that the application of sc-gC1qs can reveal neuronal localization and functions of C1q in assays in vivo and might serve as a basis for engineering inhibitors for therapeutic purposes.
Collapse
Affiliation(s)
- Henrietta Vadászi
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Bence Kiss
- Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - András Micsonai
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Gitta Schlosser
- MTA ELTE Lendu¨let Ion Mobility Mass Spectrometry Research Group, Department of Analytical Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Tamás Szaniszló
- Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Réka Á Kovács
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Balázs A Györffy
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Katalin A Kékesi
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary; Department of Physiology and Neurobiology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Yuji Goto
- Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan
| | - Barbara Uzonyi
- Department of Immunology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary; MTA-ELTE Complement Research Group, Eötvös Loránd Research Network (ELKH), Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Károly Liliom
- Department of Biophysics and Radiation Biology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - József Kardos
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary.
| |
Collapse
|
6
|
Molinos-Albert LM, Lorin V, Monceaux V, Orr S, Essat A, Dufloo J, Schwartz O, Rouzioux C, Meyer L, Hocqueloux L, Sáez-Cirión A, Mouquet H, Prazuck T, Dieuleveult BD, Bani-Sadr F, Hentzien M, Berger JL, Kmiec I, Pichancourt G, Nasri S, Hittinger G, Lambry V, Beauey AC, Pialoux G, Palacios C, Siguier M, Adda A, Foucoin J, Weiss L, Karmochkine M, Meghadecha M, Ptak M, Salmon-Ceron D, Blanche P, Piétri MP, Molina JM, Taulera O, Lascoux-Combe C, Ponscarme D, Bertaut JD, Makhloufi D, Godinot M, Artizzu V, Yazdanpanah Y, Matheron S, Godard C, Julia Z, Bernard L, Bastides F, Bourgault O, Jacomet C, Goncalves E, Meybeck A, Huleux T, Cornavin P, Debab Y, Théron D, Miailhes P, Cotte L, Pailhes S, Ogoudjobi S, Viard JP, Dulucq MJ, Bodard L, Churaqui F, Guimard T, Laine L. Transient viral exposure drives functionally-coordinated humoral immune responses in HIV-1 post-treatment controllers. Nat Commun 2022; 13:1944. [PMID: 35410989 PMCID: PMC9001681 DOI: 10.1038/s41467-022-29511-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 03/21/2022] [Indexed: 12/11/2022] Open
Abstract
AbstractHIV-1 post-treatment controllers are rare individuals controlling HIV-1 infection for years after antiretroviral therapy interruption. Identification of immune correlates of control in post-treatment controllers could aid in designing effective HIV-1 vaccine and remission strategies. Here, we perform comprehensive immunoprofiling of the humoral response to HIV-1 in long-term post-treatment controllers. Global multivariate analyses combining clinico-virological and humoral immune data reveal distinct profiles in post-treatment controllers experiencing transient viremic episodes off therapy compared to those stably aviremic. Virally-exposed post-treatment controllers display stronger HIV-1 humoral responses, and develop more frequently Env-specific memory B cells and cross-neutralizing antibodies. Both are linked to short viremic exposures, which are also accompanied by an increase in blood atypical memory B cells and activated subsets of circulating follicular helper T cells. Still, most humoral immune variables only correlate with Th2-like circulating follicular helper T cells. Thus, post-treatment controllers form a heterogeneous group with two distinct viral behaviours and associated immune signatures. Post-treatment controllers stably aviremic present “silent” humoral profiles, while those virally-exposed develop functionally robust HIV-specific B-cell and antibody responses, which may participate in controlling infection.
Collapse
|
7
|
Lorin V, Fernández I, Masse-Ranson G, Bouvin-Pley M, Molinos-Albert LM, Planchais C, Hieu T, Péhau-Arnaudet G, Hrebík D, Girelli-Zubani G, Fiquet O, Guivel-Benhassine F, Sanders RW, Walker BD, Schwartz O, Scheid JF, Dimitrov JD, Plevka P, Braibant M, Seaman MS, Bontems F, Di Santo JP, Rey FA, Mouquet H. Epitope convergence of broadly HIV-1 neutralizing IgA and IgG antibody lineages in a viremic controller. J Exp Med 2022; 219:213042. [PMID: 35230385 PMCID: PMC8932546 DOI: 10.1084/jem.20212045] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/03/2022] [Accepted: 01/12/2022] [Indexed: 12/11/2022] Open
Abstract
Decrypting the B cell ontogeny of HIV-1 broadly neutralizing antibodies (bNAbs) is paramount for vaccine design. Here, we characterized IgA and IgG bNAbs of three distinct B cell lineages in a viremic controller, two of which comprised only IgG+ or IgA+ blood memory B cells; the third combined both IgG and IgA clonal variants. 7-269 bNAb in the IgA-only lineage displayed the highest neutralizing capacity despite limited somatic mutation, and delayed viral rebound in humanized mice. bNAbs in all three lineages targeted the N332 glycan supersite. The 2.8-Å resolution cryo-EM structure of 7-269-BG505 SOSIP.664 complex showed a similar pose as 2G12, on an epitope mainly composed of sugar residues comprising the N332 and N295 glycans. Binding and cryo-EM structural analyses showed that antibodies from the two other lineages interact mostly with glycans N332 and N386. Hence, multiple B cell lineages of IgG and IgA bNAbs focused on a unique HIV-1 site of vulnerability can codevelop in HIV-1 viremic controllers.
Collapse
Affiliation(s)
- Valérie Lorin
- Laboratory of Humoral Immunology, Department of Immunology, Institut Pasteur, Paris, France.,Institut national de la santé et de la recherche médicale U1222, Paris, France.,Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Ignacio Fernández
- Structural Virology Unit, Department of Virology, Institut Pasteur, Paris, France.,Centre national de la recherche scientifique URA3015, Paris, France
| | - Guillemette Masse-Ranson
- Innate Immunity Unit, Department of Immunology, Institut Pasteur, Paris, France.,Institut national de la santé et de la recherche médicale U1223, Paris, France
| | - Mélanie Bouvin-Pley
- Université de Tours, Institut national de la santé et de la recherche médicale U1259, Tours, France
| | - Luis M Molinos-Albert
- Laboratory of Humoral Immunology, Department of Immunology, Institut Pasteur, Paris, France.,Institut national de la santé et de la recherche médicale U1222, Paris, France
| | - Cyril Planchais
- Laboratory of Humoral Immunology, Department of Immunology, Institut Pasteur, Paris, France.,Institut national de la santé et de la recherche médicale U1222, Paris, France
| | - Thierry Hieu
- Laboratory of Humoral Immunology, Department of Immunology, Institut Pasteur, Paris, France.,Institut national de la santé et de la recherche médicale U1222, Paris, France
| | - Gérard Péhau-Arnaudet
- Imagopole, Plate-Forme de Microscopie Ultrastructurale and UMR 3528, Institut Pasteur, Paris, France
| | - Dominik Hrebík
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Giulia Girelli-Zubani
- Innate Immunity Unit, Department of Immunology, Institut Pasteur, Paris, France.,Institut national de la santé et de la recherche médicale U1223, Paris, France
| | - Oriane Fiquet
- Innate Immunity Unit, Department of Immunology, Institut Pasteur, Paris, France.,Institut national de la santé et de la recherche médicale U1223, Paris, France
| | - Florence Guivel-Benhassine
- Centre national de la recherche scientifique URA3015, Paris, France.,Virus and Immunity Unit, Department of Virology, Institut Pasteur, Paris, France
| | - Rogier W Sanders
- Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.,Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY
| | - Bruce D Walker
- Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, MA.,Partners AIDS Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Olivier Schwartz
- Centre national de la recherche scientifique URA3015, Paris, France.,Virus and Immunity Unit, Department of Virology, Institut Pasteur, Paris, France
| | - Johannes F Scheid
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Jordan D Dimitrov
- Centre de Recherche des Cordeliers, Institut national de la santé et de la recherche médicale, Sorbonne Université, Université de Paris, Paris, France
| | - Pavel Plevka
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Martine Braibant
- Université de Tours, Institut national de la santé et de la recherche médicale U1259, Tours, France
| | | | - François Bontems
- Structural Virology Unit, Department of Virology, Institut Pasteur, Paris, France.,Institut de Chimie des Substances Naturelles, Centre national de la recherche scientifique, Université Paris Saclay, Gif-sur-Yvette, France
| | - James P Di Santo
- Innate Immunity Unit, Department of Immunology, Institut Pasteur, Paris, France.,Institut national de la santé et de la recherche médicale U1223, Paris, France
| | - Félix A Rey
- Structural Virology Unit, Department of Virology, Institut Pasteur, Paris, France.,Centre national de la recherche scientifique URA3015, Paris, France
| | - Hugo Mouquet
- Laboratory of Humoral Immunology, Department of Immunology, Institut Pasteur, Paris, France.,Institut national de la santé et de la recherche médicale U1222, Paris, France
| |
Collapse
|
8
|
Weiss S, Itri V, Pan R, Jiang X, Luo CC, Morris L, Malherbe DC, Barnette P, Alexander J, Kong XP, Haigwood NL, Hessell AJ, Duerr R, Zolla-Pazner S. Differential V2-directed antibody responses in non-human primates infected with SHIVs or immunized with diverse HIV vaccines. Nat Commun 2022; 13:903. [PMID: 35173151 PMCID: PMC8850611 DOI: 10.1038/s41467-022-28450-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/25/2022] [Indexed: 11/24/2022] Open
Abstract
V2p and V2i antibodies (Abs) that are specific for epitopes in the V1V2 region of the HIV gp120 envelope (Env) do not effectively neutralize HIV but mediate Fc-dependent anti-viral activities that have been correlated with protection from, or control of HIV, SIV and SHIV infections. Here, we describe a novel molecular toolbox that allows the discrimination of antigenically and functionally distinct polyclonal V2 Ab responses. We identify different patterns of V2 Ab induction by SHIV infection and three separate vaccine regimens that aid in fine-tuning an optimized immunization protocol for inducing V2p and V2i Abs. We observe no, or weak and sporadic V2p and V2i Abs in non-vaccinated SHIV-infected NHPs, but strong V2p and/or V2i Ab responses after immunization with a V2-targeting vaccine protocol. The V2-focused vaccination is superior to both natural infection and to immunization with whole Env constructs for inducing functional V2p- and V2i-specific responses. Strikingly, levels of V2-directed Abs correlate inversely with Abs specific for peptides of V3 and C5. These data demonstrate that a V1V2-targeting vaccine has advantages over the imprecise targeting of SIV/SHIV infections and of whole Env-based immunization regimens for inducing a more focused functional V2p- and V2i-specific Ab response. Here the authors show that an HIV vaccine in non-human primates that focuses antibodies on the V1V2 region of gp120 is superior to infection or immunization with whole envelope vaccines for inducing V1V2 antibodies with anti-viral functions that correlate with protection.
Collapse
Affiliation(s)
- Svenja Weiss
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vincenza Itri
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ruimin Pan
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Xunqing Jiang
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Christina C Luo
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Lynn Morris
- National Institute for Communicable Diseases, National Health Laboratory Service, Sandringham, Johannesburg, South Africa.,MRC Antibody Research Unit, University of the Witwatersrand, Johannesburg and Center for the AIDS Program of Research in South Africa, Johannesburg, South Africa
| | - Delphine C Malherbe
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA.,University of Texas Medical Branch, Department of Pathology, Galveston National Laboratory, Galveston, TX, USA
| | - Philip Barnette
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Jeff Alexander
- PaxVax Corporation, Redwood City, CA, USA.,JL Alexander Research and Development Consulting LLC, San Diego, CA, USA
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Nancy L Haigwood
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Ann J Hessell
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Ralf Duerr
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Susan Zolla-Pazner
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Microbiology, Icahn School of Medicine, New York, NY, USA.
| |
Collapse
|
9
|
Masuda A, Lee JM, Miyata T, Mon H, Sato K, Oyama K, Sakurai Y, Yasuda J, Takahashi D, Ueda T, Kato Y, Nishida M, Karasaki N, Kakino K, Ebihara T, Nagasato T, Hino M, Nakashima A, Suzuki K, Tonooka Y, Tanaka M, Moriyama T, Nakatake H, Fujita R, Kusakabe T. Optimization of SARS-CoV-2 Spike Protein Expression in the Silkworm and Induction of Efficient Protective Immunity by Inoculation With Alum Adjuvants. Front Immunol 2022; 12:803647. [PMID: 35095889 PMCID: PMC8789674 DOI: 10.3389/fimmu.2021.803647] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
The newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing a spread of coronavirus disease 2019 (COVID-19) globally. In order to end the COVID-19 pandemic, an effective vaccine against SARS-CoV-2 must be produced at low cost and disseminated worldwide. The spike (S) protein of coronaviruses plays a pivotal role in the infection to host cells. Therefore, targeting the S protein is one of the most rational approaches in developing vaccines and therapeutic agents. In this study, we optimized the expression of secreted trimerized S protein of SARS-CoV-2 using a silkworm-baculovirus expression vector system and evaluated its immunogenicity in mice. The results showed that the S protein forming the trimeric structure was the most stable when the chicken cartilage matrix protein was used as the trimeric motif and could be purified in large amounts from the serum of silkworm larvae. The purified S protein efficiently induced antigen-specific antibodies in mouse serum without adjuvant, but its ability to induce neutralizing antibodies was low. After examining several adjuvants, the use of Alum adjuvant was the most effective in inducing strong neutralizing antibody induction. We also examined the adjuvant effect of paramylon from Euglena gracilis when administered with the S protein. Our results highlight the effectiveness and suitable construct design of the S protein produced in silkworms for the subunit vaccine development against SARS-CoV-2.
Collapse
Affiliation(s)
- Akitsu Masuda
- Laboratory of Insect Genome Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Jae Man Lee
- Laboratory of Creative Science for Insect Industries, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Takeshi Miyata
- Department of Biochemistry and Biotechnology, Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| | - Hiroaki Mon
- Laboratory of Insect Genome Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Keita Sato
- Department of Biochemistry and Biotechnology, Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| | - Kosuke Oyama
- Laboratory of Protein Structure, Function and Design, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasuteru Sakurai
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan.,National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, Japan
| | - Jiro Yasuda
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan.,National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, Japan
| | - Daisuke Takahashi
- Laboratory of Protein Structure, Function and Design, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Tadashi Ueda
- Laboratory of Protein Structure, Function and Design, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuri Kato
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Motohiro Nishida
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Noriko Karasaki
- Laboratory of Insect Genome Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Kohei Kakino
- Laboratory of Insect Genome Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Takeru Ebihara
- Laboratory of Insect Genome Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Takumi Nagasato
- Laboratory of Insect Genome Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Masato Hino
- Laboratory of Sanitary Entomology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Ayaka Nakashima
- The Research and Development Department, Euglena Co., Ltd, Tokyo, Japan
| | - Kengo Suzuki
- The Research and Development Department, Euglena Co., Ltd, Tokyo, Japan
| | - Yoshino Tonooka
- Laboratory of Insect Genome Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Miyu Tanaka
- Laboratory of Insect Genome Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Takato Moriyama
- Laboratory of Insect Genome Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | | | - Ryosuke Fujita
- Laboratory of Sanitary Entomology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Takahiro Kusakabe
- Laboratory of Insect Genome Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
10
|
The Versatile Manipulations of Self-Assembled Proteins in Vaccine Design. Int J Mol Sci 2021; 22:ijms22041934. [PMID: 33669238 PMCID: PMC7919822 DOI: 10.3390/ijms22041934] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/06/2021] [Accepted: 02/11/2021] [Indexed: 12/16/2022] Open
Abstract
Protein assemblies provide unique structural features which make them useful as carrier molecules in biomedical and chemical science. Protein assemblies can accommodate a variety of organic, inorganic and biological molecules such as small proteins and peptides and have been used in development of subunit vaccines via display parts of viral pathogens or antigens. Such subunit vaccines are much safer than traditional vaccines based on inactivated pathogens which are more likely to produce side-effects. Therefore, to tackle a pandemic and rapidly produce safer and more effective subunit vaccines based on protein assemblies, it is necessary to understand the basic structural features which drive protein self-assembly and functionalization of portions of pathogens. This review highlights recent developments and future perspectives in production of non-viral protein assemblies with essential structural features of subunit vaccines.
Collapse
|
11
|
Agnolon V, Kiseljak D, Wurm MJ, Wurm FM, Foissard C, Gallais F, Wehrle S, Muñoz-Fontela C, Bellanger L, Correia BE, Corradin G, Spertini F. Designs and Characterization of Subunit Ebola GP Vaccine Candidates: Implications for Immunogenicity. Front Immunol 2020; 11:586595. [PMID: 33250896 PMCID: PMC7672190 DOI: 10.3389/fimmu.2020.586595] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/13/2020] [Indexed: 11/13/2022] Open
Abstract
The humoral responses of Ebola virus (EBOV) survivors mainly target the surface glycoprotein GP, and anti-GP neutralizing antibodies have been associated with protection against EBOV infection. In order to elicit protective neutralizing antibodies through vaccination a native-like conformation of the antigen is required. We therefore engineered and expressed in CHO cells several GP variants from EBOV (species Zaire ebolavirus, Mayinga variant), including a soluble GP ΔTM, a mucin-like domain-deleted GP ΔTM-ΔMUC, as well as two GP ΔTM-ΔMUC variants with C-terminal trimerization motifs in order to favor their native trimeric conformation. Inclusion of the trimerization motifs resulted in proteins mimicking GP metastable trimer and showing increased stability. The mucin-like domain appeared not to be critical for the retention of the native conformation of the GP protein, and its removal unmasked several neutralizing epitopes, especially in the trimers. The soluble GP variants inhibited mAbs neutralizing activity in a pseudotype transduction assay, further confirming the proteins' structural integrity. Interestingly, the trimeric GPs, a native-like GP complex, showed stronger affinity for antibodies raised by natural infection in EBOV disease survivors rather than for antibodies raised in volunteers that received the ChAd3-EBOZ vaccine. These results support our hypothesis that neutralizing antibodies are preferentially induced when using a native-like conformation of the GP antigen. The soluble trimeric recombinant GP proteins we developed represent a novel and promising strategy to develop prophylactic vaccines against EBOV and other filoviruses.
Collapse
Affiliation(s)
- Valentina Agnolon
- Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | | | | | - Florian M Wurm
- ExcellGene SA, Monthey, Switzerland.,Faculty of Life Sciences, École Polytechnique Fédérale De Lausanne (EPFL), Lausanne, Switzerland
| | - Charlotte Foissard
- Université Paris Saclay, Commissariat à l'Energie Atomique et aux énergies alternatives (CEA), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Département Médicaments et Technologies pour la Santé (DMTS), SPI, Bagnols-sur-Cèze, France
| | - Fabrice Gallais
- Université Paris Saclay, Commissariat à l'Energie Atomique et aux énergies alternatives (CEA), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Département Médicaments et Technologies pour la Santé (DMTS), SPI, Bagnols-sur-Cèze, France
| | - Sarah Wehrle
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale De Lausanne (EPFL), Lausanne, Switzerland
| | - César Muñoz-Fontela
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,German Center for Infection Research (DZIF), Partner site Hamburg, Hamburg, Germany
| | - Laurent Bellanger
- Université Paris Saclay, Commissariat à l'Energie Atomique et aux énergies alternatives (CEA), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Département Médicaments et Technologies pour la Santé (DMTS), SPI, Bagnols-sur-Cèze, France
| | - Bruno Emanuel Correia
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale De Lausanne (EPFL), Lausanne, Switzerland
| | - Giampietro Corradin
- Department of Biochemistry, Université de Lausanne (UNIL), Epalinges, Switzerland
| | - François Spertini
- Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| |
Collapse
|
12
|
Schommers P, Gruell H, Abernathy ME, Tran MK, Dingens AS, Gristick HB, Barnes CO, Schoofs T, Schlotz M, Vanshylla K, Kreer C, Weiland D, Holtick U, Scheid C, Valter MM, van Gils MJ, Sanders RW, Vehreschild JJ, Cornely OA, Lehmann C, Fätkenheuer G, Seaman MS, Bloom JD, Bjorkman PJ, Klein F. Restriction of HIV-1 Escape by a Highly Broad and Potent Neutralizing Antibody. Cell 2020; 180:471-489.e22. [PMID: 32004464 PMCID: PMC7042716 DOI: 10.1016/j.cell.2020.01.010] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/05/2019] [Accepted: 01/06/2020] [Indexed: 02/07/2023]
Abstract
Broadly neutralizing antibodies (bNAbs) represent a promising approach to prevent and treat HIV-1 infection. However, viral escape through mutation of the HIV-1 envelope glycoprotein (Env) limits clinical applications. Here we describe 1-18, a new VH1-46-encoded CD4 binding site (CD4bs) bNAb with outstanding breadth (97%) and potency (GeoMean IC50 = 0.048 μg/mL). Notably, 1-18 is not susceptible to typical CD4bs escape mutations and effectively overcomes HIV-1 resistance to other CD4bs bNAbs. Moreover, mutational antigenic profiling uncovered restricted pathways of HIV-1 escape. Of most promise for therapeutic use, even 1-18 alone fully suppressed viremia in HIV-1-infected humanized mice without selecting for resistant viral variants. A 2.5-Å cryo-EM structure of a 1-18-BG505SOSIP.664 Env complex revealed that these characteristics are likely facilitated by a heavy-chain insertion and increased inter-protomer contacts. The ability of 1-18 to effectively restrict HIV-1 escape pathways provides a new option to successfully prevent and treat HIV-1 infection.
Collapse
Affiliation(s)
- Philipp Schommers
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, 50931 Cologne, Germany
| | - Henning Gruell
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, 50931 Cologne, Germany
| | - Morgan E Abernathy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - My-Kim Tran
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Adam S Dingens
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Harry B Gristick
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Christopher O Barnes
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Till Schoofs
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Maike Schlotz
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Kanika Vanshylla
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Christoph Kreer
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Daniela Weiland
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Udo Holtick
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Christof Scheid
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Markus M Valter
- Department of Gynecology and Obstetrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Marit J van Gils
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Rogier W Sanders
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Jörg J Vehreschild
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, 50931 Cologne, Germany; Medical Department 2, University Hospital of Frankfurt, 60590 Frankfurt, Germany
| | - Oliver A Cornely
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, 50931 Cologne, Germany; Clinical Trials Centre Cologne (ZKS Köln), University of Cologne, 50935 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Clara Lehmann
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Gerd Fätkenheuer
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, 50931 Cologne, Germany
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
13
|
Smith M, Hoffman J, Sojar H, Aalinkeel R, Hsiao CB, Hicar MD. Assessment of Antibody Interference of Enfuvirtide (T20) Function Shows Assay Dependent Variability. Curr HIV Res 2019; 16:404-415. [PMID: 30836922 PMCID: PMC6710457 DOI: 10.2174/1570162x17666190228154850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 02/06/2023]
Abstract
Background: During HIV infection, fusion of the viral and cellular membranes is dependent on folding of the gp41 trimer into a six-helix bundle. Fusion inhibitors, such as the antiretroviral Enfuvirtide (T20), interfere with the formation of the gp41 six-helix bundle. Recent in vitro studies reveal that the gp41 immunodominant region one targeting antibody 3D6 can block T20 interference, but the clinical and pathophysiologic significance of this finding is unclear. Objective/Method: We have previously characterized a number of antibodies that target conformational epitopes on gp41and herein characterized their ability to interfere with T20 in multiple assays and assess their prevalence in HIV infected subjects. Results: The T20 interference by antibody 3D6 was confirmed in a CHO-HXB2 envelope/ HeLaT4+ cell culture assay. Antibodies that target an immunodominant region one epitope, as well as a gp41 discontinuous epitope, also interfered in this assay, however, not all antibodies that targeted these epitopes showed T20 interference. This response was not due to the direct binding of T20 by the antibodies and could not be replicated utilizing TZM-bl and HL2/3 cells. Notably, serum competition studies on a panel of HIV subjects demonstrate that these conformational targeting antibodies are common in the HIV population. Conclusion: The relatively common nature of antibodies targeting these epitopes, the disparate in vitro results, and lack of reported clinical failures ascribed to such antibodies leads us to conclude that antibody interference of T20 is likely not clinically relevant. However, this warrants continued consideration with the advancement of other fusion inhibitors.
Collapse
Affiliation(s)
- Michele Smith
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Jonathon Hoffman
- Department of Pediatrics, Division of Infectious Diseases, University at Buffalo, Buffalo, NY, United States
| | - Hakimuddin Sojar
- Department of Pediatrics, Division of Infectious Diseases, University at Buffalo, Buffalo, NY, United States
| | - Ravikumar Aalinkeel
- Jacobs School of Medicine and Biomedical Sciences, Department of Medicine, Division of Allergy Immunology and Rheumatology, University at Buffalo, Buffalo, NY, United States
| | - Chiu-Bin Hsiao
- Temple University School of Medicine, Pittsburgh, PA, United States.,Allegheny General Hospital, Pittsburgh, PA, United States
| | - Mark Daniel Hicar
- Department of Pediatrics, School of Medicine and Biomedical Sciences, University at Buffalo, NY, United States
| |
Collapse
|
14
|
Schoofs T, Barnes CO, Suh-Toma N, Golijanin J, Schommers P, Gruell H, West AP, Bach F, Lee YE, Nogueira L, Georgiev IS, Bailer RT, Czartoski J, Mascola JR, Seaman MS, McElrath MJ, Doria-Rose NA, Klein F, Nussenzweig MC, Bjorkman PJ. Broad and Potent Neutralizing Antibodies Recognize the Silent Face of the HIV Envelope. Immunity 2019; 50:1513-1529.e9. [PMID: 31126879 PMCID: PMC6591006 DOI: 10.1016/j.immuni.2019.04.014] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/20/2019] [Accepted: 04/26/2019] [Indexed: 12/30/2022]
Abstract
Broadly neutralizing antibodies (bNAbs) against HIV-1 envelope (Env) inform vaccine design and are potential therapeutic agents. We identified SF12 and related bNAbs with up to 62% neutralization breadth from an HIV-infected donor. SF12 recognized a glycan-dominated epitope on Env's silent face and was potent against clade AE viruses, which are poorly covered by V3-glycan bNAbs. A 3.3Å cryo-EM structure of a SF12-Env trimer complex showed additional contacts to Env protein residues by SF12 compared with VRC-PG05, the only other known donor-derived silentface antibody, explaining SF12's increased neutralization breadth, potency, and resistance to Env mutation routes. Asymmetric binding of SF12 was associated with distinct N-glycan conformations across Env protomers, demonstrating intra-Env glycan heterogeneity. Administrating SF12 to HIV-1-infected humanized mice suppressed viremia and selected for viruses lacking the N448gp120 glycan. Effective bNAbs can therefore be raised against HIV-1 Env's silent face, suggesting their potential for HIV-1 prevention, therapy, and vaccine development.
Collapse
Affiliation(s)
- Till Schoofs
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA; Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research, partner site Bonn-Cologne, 50931 Cologne, Germany
| | - Christopher O Barnes
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Nina Suh-Toma
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Westridge High School, 324 Madeline Drive, Pasadena, CA 91105, USA
| | - Jovana Golijanin
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Philipp Schommers
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research, partner site Bonn-Cologne, 50931 Cologne, Germany
| | - Henning Gruell
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research, partner site Bonn-Cologne, 50931 Cologne, Germany
| | - Anthony P West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Franziska Bach
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| | - Yu Erica Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lilian Nogueira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Ivelin S Georgiev
- Vanderbilt Vaccine Center, Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37232, USA
| | - Robert T Bailer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Julie Czartoski
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research, partner site Bonn-Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
15
|
Prime-Boost Immunizations with DNA, Modified Vaccinia Virus Ankara, and Protein-Based Vaccines Elicit Robust HIV-1 Tier 2 Neutralizing Antibodies against the CAP256 Superinfecting Virus. J Virol 2019; 93:JVI.02155-18. [PMID: 30760570 PMCID: PMC6450106 DOI: 10.1128/jvi.02155-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/26/2019] [Indexed: 12/31/2022] Open
Abstract
A vaccine regimen that elicits broadly neutralizing antibodies (bNAbs) is a major goal in HIV-1 vaccine research. In this study, we assessed the immunogenicity of the CAP256 superinfecting viral envelope (CAP256 SU) protein delivered by modified vaccinia virus Ankara (MVA) and DNA vaccines in different prime-boost combinations followed by a soluble protein (P) boost. The envelope protein (Env) contained a flexible glycine linker and I559P mutation. Trimer-specific bNAbs PGT145, PG16, and CAP256 VRC26_08 efficiently bound to the membrane-bound CAP256 envelope expressed on the surface of cells transfected or infected with the DNA and MVA vaccines. The vaccines were tested in two different vaccination regimens in rabbits. Both regimens elicited autologous tier 2 neutralizing antibodies (NAbs) and high-titer binding antibodies to the matching CAP256 Env and CAP256 V1V2 loop scaffold. The immunogenicity of DNA and MVA vaccines expressing membrane-bound Env alone was compared to that of Env stabilized in a more native-like conformation on the surface of Gag virus-like particles (VLPs). The inclusion of Gag in the DNA and MVA vaccines resulted in earlier development of tier 2 NAbs for both vaccination regimens. In addition, a higher proportion of the rabbits primed with DNA and MVA vaccines that included Gag developed tier 2 NAbs than did those primed with vaccine expressing Env alone. Previously, these DNA and MVA vaccines expressing subtype C mosaic HIV-1 Gag were shown to elicit strong T cell responses in mice. Here we show that when the CAP256 SU envelope protein is included, these vaccines elicit autologous tier 2 NAbs.IMPORTANCE A vaccine is urgently needed to combat HIV-1, particularly in sub-Saharan Africa, which remains disproportionately affected by the AIDS pandemic and accounts for the majority of new infections and AIDS-related deaths. In this study, two different vaccination regimens were compared. Rabbits that received two DNA primes followed by two modified vaccinia virus Ankara (MVA) and two protein inoculations developed better immune responses than those that received two MVA and three protein inoculations. In addition, DNA and MVA vaccines that expressed mosaic Gag VLPs presenting a stabilized Env antigen elicited better responses than Env alone, which supports the inclusion of Gag VLPs in an HIV-1 vaccine.
Collapse
|
16
|
He L, Kumar S, Allen JD, Huang D, Lin X, Mann CJ, Saye-Francisco KL, Copps J, Sarkar A, Blizard GS, Ozorowski G, Sok D, Crispin M, Ward AB, Nemazee D, Burton DR, Wilson IA, Zhu J. HIV-1 vaccine design through minimizing envelope metastability. SCIENCE ADVANCES 2018; 4:eaau6769. [PMID: 30474059 PMCID: PMC6248932 DOI: 10.1126/sciadv.aau6769] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/19/2018] [Indexed: 05/17/2023]
Abstract
Overcoming envelope metastability is crucial to trimer-based HIV-1 vaccine design. Here, we present a coherent vaccine strategy by minimizing metastability. For 10 strains across five clades, we demonstrate that the gp41 ectodomain (gp41ECTO) is the main source of envelope metastability by replacing wild-type gp41ECTO with BG505 gp41ECTO of the uncleaved prefusion-optimized (UFO) design. These gp41ECTO-swapped trimers can be produced in CHO cells with high yield and high purity. The crystal structure of a gp41ECTO-swapped trimer elucidates how a neutralization-resistant tier 3 virus evades antibody recognition of the V2 apex. UFO trimers of transmitted/founder viruses and UFO trimers containing a consensus-based ancestral gp41ECTO suggest an evolutionary root of metastability. The gp41ECTO-stabilized trimers can be readily displayed on 24- and 60-meric nanoparticles, with incorporation of additional T cell help illustrated for a hyperstable 60-mer, I3-01. In mice and rabbits, these gp140 nanoparticles induced tier 2 neutralizing antibody responses more effectively than soluble trimers.
Collapse
Affiliation(s)
- Linling He
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sonu Kumar
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
- Scripps Center for HIV/AIDS Vaccine Immunology & Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Joel D. Allen
- Centre for Biological Sciences and Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK
| | - Deli Huang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xiaohe Lin
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Colin J. Mann
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Karen L. Saye-Francisco
- Scripps Center for HIV/AIDS Vaccine Immunology & Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jeffrey Copps
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Scripps Center for HIV/AIDS Vaccine Immunology & Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Anita Sarkar
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
- Scripps Center for HIV/AIDS Vaccine Immunology & Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Gabrielle S. Blizard
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
- Scripps Center for HIV/AIDS Vaccine Immunology & Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Devin Sok
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
- Scripps Center for HIV/AIDS Vaccine Immunology & Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Max Crispin
- Centre for Biological Sciences and Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
- Scripps Center for HIV/AIDS Vaccine Immunology & Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - David Nemazee
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Dennis R. Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
- Scripps Center for HIV/AIDS Vaccine Immunology & Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA 02139-3583, USA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
- Scripps Center for HIV/AIDS Vaccine Immunology & Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Corresponding author. (I.A.W.); (J.Z.)
| | - Jiang Zhu
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Corresponding author. (I.A.W.); (J.Z.)
| |
Collapse
|
17
|
Comparison of Uncleaved and Mature Human Immunodeficiency Virus Membrane Envelope Glycoprotein Trimers. J Virol 2018; 92:JVI.00277-18. [PMID: 29618643 DOI: 10.1128/jvi.00277-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 03/26/2018] [Indexed: 12/21/2022] Open
Abstract
The mature envelope glycoprotein (Env) spike on the surfaces of human immunodeficiency virus type 1 (HIV-1)-infected cells and virions is derived from proteolytic cleavage of a trimeric gp160 glycoprotein precursor. In these studies, we compared the conformations of cleaved and uncleaved membrane Envs with truncated cytoplasmic tails to those of stabilized soluble gp140 SOSIP.664 Env trimers. Deletion of the gp41 cytoplasmic tail did not significantly affect the sensitivity of viruses with the HIV-1AD8 Env to inhibition by antibodies or a CD4-mimetic compound. After glutaraldehyde fixation and purification from membranes, a cleaved Env exhibited a hydrodynamic radius of ∼10 nm and an antibody-binding profile largely consistent with that expected based on virus neutralization sensitivity. The purified cleaved Env trimers exhibited a hollow architecture with a central void near the trimer axis. Uncleaved Env, cross-linked and purified in parallel, exhibited a hydrodynamic radius similar to that of the cleaved Env. However, the uncleaved Env was recognized by poorly neutralizing antibodies and appeared by negative-stain electron microscopy to sample multiple conformations. Compared with membrane Envs, stabilized soluble gp140 SOSIP.664 Env trimers appear to be more compact, as reflected in their smaller hydrodynamic radii and negative-stain electron microscopy structures. The antigenic features of the soluble gp140 SOSIP.664 Env trimers differed from those of the cleaved membrane Env, particularly in gp120 V3 and some CD4-binding-site epitopes. Thus, proteolytic maturation allows the membrane-anchored Env to achieve a conformation that retains functional metastability but masks epitopes for poorly neutralizing antibodies.IMPORTANCE The entry of human immunodeficiency virus type 1 (HIV-1) into host cells is mediated by the envelope glycoprotein (Env) spike on the surface of the virus. Host antibodies elicited during natural HIV-1 infection or by vaccination can potentially recognize the Env spike and block HIV-1 infection. However, the changing shape of the HIV-1 Env spike protects the virus from antibody binding. Understanding the shapes of natural and man-made preparations of HIV-1 Envs will assist the development of effective vaccines against the virus. Here, we evaluate the effects of several Env modifications commonly used to produce Env preparations for vaccine studies and the determination of structure. We found that the cleavage of the HIV-1 Env precursor helps Env to assume its natural shape, which resists the binding of many commonly elicited antibodies. Stabilized soluble Envs exhibit more compact shapes but expose some Env elements differently than the natural Env.
Collapse
|
18
|
Freund NT, Wang H, Scharf L, Nogueira L, Horwitz JA, Bar-On Y, Golijanin J, Sievers SA, Sok D, Cai H, Cesar Lorenzi JC, Halper-Stromberg A, Toth I, Piechocka-Trocha A, Gristick HB, van Gils MJ, Sanders RW, Wang LX, Seaman MS, Burton DR, Gazumyan A, Walker BD, West AP, Bjorkman PJ, Nussenzweig MC. Coexistence of potent HIV-1 broadly neutralizing antibodies and antibody-sensitive viruses in a viremic controller. Sci Transl Med 2018; 9:9/373/eaal2144. [PMID: 28100831 DOI: 10.1126/scitranslmed.aal2144] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/14/2016] [Accepted: 12/08/2016] [Indexed: 12/13/2022]
Abstract
Some HIV-1-infected patients develop broad and potent HIV-1 neutralizing antibodies (bNAbs) that when passively transferred to mice or macaques can treat or prevent infection. However, bNAbs typically fail to neutralize coexisting autologous viruses due to antibody-mediated selection against sensitive viral strains. We describe an HIV-1 controller expressing HLA-B57*01 and HLA-B27*05 who maintained low viral loads for 30 years after infection and developed broad and potent serologic activity against HIV-1. Neutralization was attributed to three different bNAbs targeting nonoverlapping sites on the HIV-1 envelope trimer (Env). One of the three, BG18, an antibody directed against the glycan-V3 portion of Env, is the most potent member of this class reported to date and, as revealed by crystallography and electron microscopy, recognizes HIV-1 Env in a manner that is distinct from other bNAbs in this class. Single-genome sequencing of HIV-1 from serum samples obtained over a period of 9 years showed a diverse group of circulating viruses, 88.5% (31 of 35) of which remained sensitive to at least one of the temporally coincident autologous bNAbs and the individual's serum. Thus, bNAb-sensitive strains of HIV-1 coexist with potent neutralizing antibodies that target the virus and may contribute to control in this individual. When administered as a mix, the three bNAbs controlled viremia in HIV-1YU2-infected humanized mice. Our finding suggests that combinations of bNAbs may contribute to control of HIV-1 infection.
Collapse
Affiliation(s)
- Natalia T Freund
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10065, USA
| | - Haoqing Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Louise Scharf
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lilian Nogueira
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10065, USA
| | - Joshua A Horwitz
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10065, USA
| | - Yotam Bar-On
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10065, USA
| | - Jovana Golijanin
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10065, USA
| | - Stuart A Sievers
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Devin Sok
- Department of Immunology and Microbial Science, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, and International AIDS Vaccine Initiative Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hui Cai
- Department of Chemistry and Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742, USA
| | | | | | - Ildiko Toth
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02129, USA
| | - Alicja Piechocka-Trocha
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02129, USA
| | - Harry B Gristick
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marit J van Gils
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Rogier W Sanders
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Dennis R Burton
- Department of Immunology and Microbial Science, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, and International AIDS Vaccine Initiative Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02129, USA
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10065, USA
| | - Bruce D Walker
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02129, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Anthony P West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10065, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
19
|
Sun Z, Yan L, Tang J, Qian Q, Lenberg J, Zhu D, Liu W, Wu K, Wang Y, Lu S. Brief introduction of current technologies in isolation of broadly neutralizing HIV-1 antibodies. Virus Res 2017; 243:75-82. [PMID: 29051051 PMCID: PMC7114535 DOI: 10.1016/j.virusres.2017.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/13/2017] [Accepted: 10/15/2017] [Indexed: 12/11/2022]
Abstract
HIV/AIDS has become a worldwide pandemic. Before an effective HIV-1 vaccine eliciting broadly neutralizing monoclonal antibodies (bnmAbs) is fully developed, passive immunization for prevention and treatment of HIV-1 infection may alleviate the burden caused by the pandemic. Among HIV-1 infected individuals, about 20% of them generated cross-reactive neutralizing antibodies two to four years after infection, the details of which could provide knowledge for effective vaccine design. Recent progress in techniques for isolation of human broadly neutralizing antibodies has facilitated the study of passive immunization. The isolation and characterization of large panels of potent human broadly neutralizing antibodies has revealed new insights into the principles of antibody-mediated neutralization of HIV. In this paper, we review the current effective techniques in broadly neutralizing antibody isolation.
Collapse
Affiliation(s)
- Zehua Sun
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, United States.
| | - Lixin Yan
- Harbin Medical University Affiliated 2nd Hospital, 246 Xuefu Road, Harbin, 150086, China.
| | - Jiansong Tang
- Department of Technical Specialist, China Bioengineering Technology Group Limited, Unit 209,Building 16W, Hong Kong Science Park, Shatin, NT, HK, 999077, Hong Kong
| | - Qian Qian
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, United States
| | - Jerica Lenberg
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, United States; Augustana University, 2001 S Summit Avenue, Sioux Falls, SD, 571977, United States
| | - Dandan Zhu
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX, 77030, United States
| | - Wan Liu
- Harbin Medical University Affiliated 2nd Hospital, 246 Xuefu Road, Harbin, 150086, China
| | - Kao Wu
- Glyn O. Philips Hydrocolloid Research Center at HUT, Hubei University of Technology, Wuhan 430068, China
| | - Yilin Wang
- University of California, Irvine. 100 Pacific, Irvine, CA, 92618, United States
| | - Shiqiang Lu
- AIDS Institute, Faculty of Medicine, The University of Hong Kong, No21 Sassoon Road, 999077, Hong Kong, Hong Kong.
| |
Collapse
|
20
|
Liu H, Su D, Zhang J, Ge S, Li Y, Wang F, Gravel M, Roulston A, Song Q, Xu W, Liang JG, Shore G, Wang X, Liang P. Improvement of Pharmacokinetic Profile of TRAIL via Trimer-Tag Enhances its Antitumor Activity in vivo. Sci Rep 2017; 7:8953. [PMID: 28827692 PMCID: PMC5566391 DOI: 10.1038/s41598-017-09518-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/24/2017] [Indexed: 12/11/2022] Open
Abstract
TNF-related apoptosis-inducing ligand (TRAIL/Apo2L) has long been considered a tantalizing target for cancer therapy because it mediates activation of the extrinsic apoptosis pathway in a tumor-specific manner by binding to and trimerizing its functional receptors DR4 or DR5. Despite initial promise, both recombinant human TRAIL (native TRAIL) and dimeric DR4/DR5 agonist monoclonal antibodies (mAbs) failed in multiple human clinical trials. Here we show that in-frame fusion of human C-propeptide of α1(I) collagen (Trimer-Tag) to the C-terminus of mature human TRAIL leads to a disulfide bond-linked homotrimer which can be expressed at high levels as a secreted protein from CHO cells. The resulting TRAIL-Trimer not only retains similar bioactivity and receptor binding kinetics as native TRAIL in vitro which are 4-5 orders of magnitude superior to that of dimeric TRAIL-Fc, but also manifests more favorable pharmacokinetic and antitumor pharmacodynamic profiles in vivo than that of native TRAIL. Taken together, this work provides direct evidence for the in vivo antitumor efficacy of TRAIL being proportional to systemic drug exposure and suggests that the previous clinical failures may have been due to rapid systemic clearance of native TRAIL and poor apoptosis-inducing potency of dimeric agonist mAbs despite their long serum half-lives.
Collapse
Affiliation(s)
- Haipeng Liu
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Sichuan University, Chengdu, China
| | - Danmei Su
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jinlong Zhang
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Sichuan University, Chengdu, China
| | - Shuaishuai Ge
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Sichuan University, Chengdu, China
| | - Youwei Li
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Sichuan University, Chengdu, China
| | - Fei Wang
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Sichuan University, Chengdu, China
| | - Michel Gravel
- Laboratory for Therapeutic Development, Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal (QC), Canada
| | - Anne Roulston
- Laboratory for Therapeutic Development, Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal (QC), Canada
| | - Qin Song
- Clover Biopharmaceuticals, Chengdu, China
| | - Wei Xu
- Clover Biopharmaceuticals, Chengdu, China
| | | | - Gordon Shore
- Laboratory for Therapeutic Development, Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal (QC), Canada
| | - Xiaodong Wang
- National Institute of Biological Sciences, Beijing, China
| | - Peng Liang
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Sichuan University, Chengdu, China.
- Clover Biopharmaceuticals, Chengdu, China.
- GenHunter Corporation, 624 Grassmere Park, Nashville, TN, 37211, USA.
| |
Collapse
|
21
|
Karlsson Hedestam GB, Guenaga J, Corcoran M, Wyatt RT. Evolution of B cell analysis and Env trimer redesign. Immunol Rev 2017; 275:183-202. [PMID: 28133805 DOI: 10.1111/imr.12515] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
HIV-1 and its surface envelope glycoproteins (Env), gp120 and gp41, have evolved immune evasion strategies that render the elicitation of effective antibody responses to the functional Env entry unit extremely difficult. HIV-1 establishes chronic infection and stimulates vigorous immune responses in the human host; forcing selection of viral variants that escape cellular and antibody (Ab)-mediated immune pressure, yet possess contemporary fitness. Successful survival of fit variants through the gauntlet of the human immune system make this virus and these glycoproteins a formidable challenge to target by vaccination, requiring a systematic approach to Env mimetic immunogen design and evaluation of elicited responses. Here, we review key aspects of HIV-1 Env immunogenicity and immunogen re-design, based on experimental data generated by us and others over the past decade or more. We further provide rationale and details regarding the use of newly evolving tools to analyze B cell responses, including approaches to use next generation sequencing for antibody lineage tracing and B cell fate mapping. Together, these developments offer opportunities to address long-standing questions about the establishment of effective B cell immunity elicited by vaccination, not just against HIV-1.
Collapse
Affiliation(s)
| | - Javier Guenaga
- Department of Immunology and Microbial Science, IAVI Neutralizing Antibody Center at TSRI, La Jolla, CA, USA
| | - Martin Corcoran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Richard T Wyatt
- Department of Immunology and Microbial Science, IAVI Neutralizing Antibody Center at TSRI, La Jolla, CA, USA.,The Scripps CHAVI-ID, La Jolla, CA, USA
| |
Collapse
|
22
|
Abstract
Purpose of review To provide an update on the latest developments in the field of HIV-1 antibody-based soluble envelope glycoprotein (Env) trimer design for vaccine use. Recent findings The development of soluble native-like HIV-1 Env trimer immunogens has moved the field of antibody-based vaccine design forward dramatically over the past few years with refinement of various stabilizing approaches. However, despite this progress, significant challenges remain. Firstly, although trimers are relatively stable in solution, they nevertheless sample different conformational states, some of which may be less relevant to binding and induction of broadly neutralizing antibodies (bNAbs). Secondly, these trimers expose unwanted immunodominant surfaces that may distract the adaptive immune response from recognizing more immunorecessive but conserved neutralization-relevant surfaces on the trimer. The availability of atomic-resolution structural information has allowed guided design of mutations that have further stabilized trimers and allowed reduced exposure of unwanted epitopes. Moreover, chemical cross-linking approaches that do not require structural information have also contributed to trimer stabilization and selection of particular conformational forms. However, current knowledge suggests that strategies additional to trimer stabilization will be required to elicit bNAb, including targeting naïve B cell receptors with specific immunogens, and guiding B cell lineages toward recognizing conserved surfaces on Env with high affinity. Summary This review will give a perspective on these challenges, and summarize current approaches to overcoming them with the aim of developing immunogens to elicit bNAb responses in humans by active vaccination.
Collapse
|
23
|
HIV-Specific B Cell Frequency Correlates with Neutralization Breadth in Patients Naturally Controlling HIV-Infection. EBioMedicine 2017; 21:158-169. [PMID: 28615147 PMCID: PMC5514383 DOI: 10.1016/j.ebiom.2017.05.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/17/2017] [Accepted: 05/22/2017] [Indexed: 01/30/2023] Open
Abstract
HIV-specific broadly neutralizing antibodies (bnAbs) have been isolated from patients with high viremia but also from HIV controllers that repress HIV-1 replication. In these elite controllers (ECs), multiple parameters contribute to viral suppression, including genetic factors and immune responses. Defining the immune correlates associated with the generation of bnAbs may help in designing efficient immunotherapies. In this study, in ECs either positive or negative for the HLA-B*57 protective allele, in treated HIV-infected and HIV-negative individuals, we characterized memory B cell compartments and HIV-specific memory B cells responses using flow cytometry and ELISPOT. ECs preserved their memory B cell compartments and in contrast to treated patients, maintained detectable HIV-specific memory B cell responses. All ECs presented IgG1 + HIV-specific memory B cells but some individuals also preserved IgG2 + or IgG3 + responses. Importantly, we also analyzed the capacity of sera from ECs to neutralize a panel of HIV strains including transmitted/founder virus. 29% and 21% of HLA-B*57 + and HLA-B*57 − ECs, respectively, neutralized at least 40% of the viral strains tested. Remarkably, in HLA-B*57 + ECs the frequency of HIV-Env-specific memory B cells correlated positively with the neutralization breadth suggesting that preservation of HIV-specific memory B cells might contribute to the neutralizing responses in these patients. In contrast to treated HIV-infected patients, elite controllers (ECs) maintain HIV-specific memory B cell responses. In HLA-B*57 + ECs, HIV-specific B cell frequency correlates positively with the neutralization breadth of tier-2 HIV strains. In HLA-B*57 + and HLA-B*57 − ECs different antibody functions are probably involved in suppressing HIV replication.
A fraction of HIV-1-infected individuals (so-called elite controllers, ECs) naturally control HIV-1 replication maintaining undetectable viral loads. Understanding the mechanisms implicated in natural control of HIV-1 infection will help in developing efficient HIV vaccines. In ECs, we analyzed the influence of B cell antibody responses. We show that in contrast to successfully treated HIV-1-infected patients, ECs preserve memory B cell compartments and maintain HIV-specific B cell responses. In ECs positive for the protective HLA-B*57 allele, HIV-specific memory B cell responses are positively associated with the breadth of HIV neutralization. These findings will help develop novel immunotherapies to fight HIV.
Collapse
|
24
|
Differential Antibody Responses to Conserved HIV-1 Neutralizing Epitopes in the Context of Multivalent Scaffolds and Native-Like gp140 Trimers. mBio 2017; 8:mBio.00036-17. [PMID: 28246356 PMCID: PMC5347340 DOI: 10.1128/mbio.00036-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Broadly neutralizing antibodies (bNAbs) have provided valuable insights into the humoral immune response to HIV-1. While rationally designed epitope scaffolds and well-folded gp140 trimers have been proposed as vaccine antigens, a comparative understanding of their antibody responses has not yet been established. In this study, we probed antibody responses to the N332 supersite and the membrane-proximal external region (MPER) in the context of heterologous protein scaffolds and native-like gp140 trimers. Ferritin nanoparticles and fragment crystallizable (Fc) regions were utilized as multivalent carriers to display scaffold antigens with grafted N332 and MPER epitopes, respectively. Trimeric scaffolds were also identified to stabilize the MPER-containing BG505 gp140.681 trimer in a native-like conformation. Following structural and antigenic evaluation, a subset of scaffold and trimer antigens was selected for immunization in BALB/c mice. Serum binding revealed distinct patterns of antibody responses to these two bNAb targets presented in different structural contexts. For example, the N332 nanoparticles elicited glycan epitope-specific antibody responses that could also recognize the native trimer, while a scaffolded BG505 gp140.681 trimer generated a stronger and more rapid antibody response to the trimer apex than its parent gp140.664 trimer. Furthermore, next-generation sequencing (NGS) of mouse splenic B cells revealed expansion of antibody lineages with long heavy-chain complementarity-determining region 3 (HCDR3) loops upon activation by MPER scaffolds, in contrast to the steady repertoires primed by N332 nanoparticles and a soluble gp140.664 trimer. These findings will facilitate the future development of a coherent vaccination strategy that combines both epitope-focused and trimer-based approaches.IMPORTANCE Both epitope-focused and trimer-based strategies are currently being explored in HIV-1 vaccine development, which aims to elicit broadly neutralizing antibodies (bNAbs) targeting conserved epitopes on the viral envelope (Env). However, little is known about the differences in antibody response to these bNAb targets presented by foreign scaffolds and native Env. In this study, a systematic effort was undertaken to design multivalent epitope scaffolds and soluble gp140.681 trimers with a complete antigenic surface, and to comparatively analyze the antibody responses elicited by these antigens to the N332 supersite and MPER in a mouse model. This study will inform both epitope-focused and trimer-based vaccine design and will facilitate integration of the two vaccine strategies.
Collapse
|
25
|
Nguyen HT, Madani N, Ding H, Elder E, Princiotto A, Gu C, Darby P, Alin J, Herschhorn A, Kappes JC, Mao Y, Sodroski JG. Evaluation of the contribution of the transmembrane region to the ectodomain conformation of the human immunodeficiency virus (HIV-1) envelope glycoprotein. Virol J 2017; 14:33. [PMID: 28209172 PMCID: PMC5314615 DOI: 10.1186/s12985-017-0704-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/10/2017] [Indexed: 12/26/2022] Open
Abstract
Background The human immunodeficiency virus (HIV-1) envelope glycoprotein (Env), a Type 1 transmembrane protein, assembles into a trimeric spike complex that mediates virus entry into host cells. The high potential energy of the metastable, unliganded Env trimer is maintained by multiple non-covalent contacts among the gp120 exterior and gp41 transmembrane Env subunits. Structural studies suggest that the gp41 transmembrane region forms a left-handed coiled coil that contributes to the Env trimer interprotomer contacts. Here we evaluate the contribution of the gp41 transmembrane region to the folding and stability of Env trimers. Methods Multiple polar/charged amino acid residues, which hypothetically disrupt the stop-transfer signal, were introduced in the proposed lipid-interactive face of the transmembrane coiled coil, allowing release of soluble cleavage-negative Envs containing the modified transmembrane region (TMmod). We also examined effects of cleavage, the cytoplasmic tail and a C-terminal fibritin trimerization (FT) motif on oligomerization, antigenicity and functionality of soluble and membrane-bound Envs. Results The introduction of polar/charged amino acids into the transmembrane region resulted in the secretion of soluble Envs from the cell. However, these TMmod Envs primarily formed dimers. By contrast, control cleavage-negative sgp140 Envs lacking the transmembrane region formed soluble trimers, dimers and monomers. TMmod and sgp140 trimers were stabilized by the addition of a C-terminal FT sequence, but still exhibited carbohydrate and antigenic signatures of a flexible ectodomain structure. On the other hand, detergent-solubilized cleaved and uncleaved Envs isolated from the membranes of expressing cells exhibited "tighter” ectodomain structures, based on carbohydrate modifications. These trimers were found to be unstable in detergent solutions, but could be stabilized by the addition of a C-terminal FT moiety. The C-terminal FT domain decreased Env cleavage and syncytium-forming ability by approximately three-fold; alteration of the FT trimerization interface restored Env cleavage and syncytium formation to near-wild-type levels. Conclusion The modified transmembrane region was not conducive to trimerization of soluble Envs. However, for HIV-1 Env ectodomains that are minimally modified, membrane-anchored Envs exhibit the most native structures and can be stabilized by appropriately positioned FT domains.
Collapse
Affiliation(s)
- Hanh T Nguyen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Department of Microbiology and Immunobiology, Harvard Medical School, 450 Brookline Avenue, CLS 1010, Boston, MA, 02215, USA
| | - Navid Madani
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Department of Microbiology and Immunobiology, Harvard Medical School, 450 Brookline Avenue, CLS 1010, Boston, MA, 02215, USA
| | - Haitao Ding
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Emerald Elder
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Department of Microbiology and Immunobiology, Harvard Medical School, 450 Brookline Avenue, CLS 1010, Boston, MA, 02215, USA
| | - Amy Princiotto
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Department of Microbiology and Immunobiology, Harvard Medical School, 450 Brookline Avenue, CLS 1010, Boston, MA, 02215, USA
| | - Christopher Gu
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Department of Microbiology and Immunobiology, Harvard Medical School, 450 Brookline Avenue, CLS 1010, Boston, MA, 02215, USA
| | - Patrice Darby
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Department of Microbiology and Immunobiology, Harvard Medical School, 450 Brookline Avenue, CLS 1010, Boston, MA, 02215, USA
| | - James Alin
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Department of Microbiology and Immunobiology, Harvard Medical School, 450 Brookline Avenue, CLS 1010, Boston, MA, 02215, USA
| | - Alon Herschhorn
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Department of Microbiology and Immunobiology, Harvard Medical School, 450 Brookline Avenue, CLS 1010, Boston, MA, 02215, USA
| | - John C Kappes
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, AL, 35233, USA
| | - Youdong Mao
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Department of Microbiology and Immunobiology, Harvard Medical School, 450 Brookline Avenue, CLS 1010, Boston, MA, 02215, USA
| | - Joseph G Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Department of Microbiology and Immunobiology, Harvard Medical School, 450 Brookline Avenue, CLS 1010, Boston, MA, 02215, USA. .,Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, 02215, USA.
| |
Collapse
|
26
|
Kesavardhana S, Das R, Citron M, Datta R, Ecto L, Srilatha NS, DiStefano D, Swoyer R, Joyce JG, Dutta S, LaBranche CC, Montefiori DC, Flynn JA, Varadarajan R. Structure-based Design of Cyclically Permuted HIV-1 gp120 Trimers That Elicit Neutralizing Antibodies. J Biol Chem 2016; 292:278-291. [PMID: 27879316 DOI: 10.1074/jbc.m116.725614] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 11/18/2016] [Indexed: 11/06/2022] Open
Abstract
A major goal for HIV-1 vaccine development is an ability to elicit strong and durable broadly neutralizing antibody (bNAb) responses. The trimeric envelope glycoprotein (Env) spikes on HIV-1 are known to contain multiple epitopes that are susceptible to bNAbs isolated from infected individuals. Nonetheless, all trimeric and monomeric Env immunogens designed to date have failed to elicit such antibodies. We report the structure-guided design of HIV-1 cyclically permuted gp120 that forms homogeneous, stable trimers, and displays enhanced binding to multiple bNAbs, including VRC01, VRC03, VRC-PG04, PGT128, and the quaternary epitope-specific bNAbs PGT145 and PGDM1400. Constructs that were cyclically permuted in the V1 loop region and contained an N-terminal trimerization domain to stabilize V1V2-mediated quaternary interactions, showed the highest homogeneity and the best antigenic characteristics. In guinea pigs, a DNA prime-protein boost regimen with these new gp120 trimer immunogens elicited potent neutralizing antibody responses against highly sensitive Tier 1A isolates and weaker neutralizing antibody responses with an average titer of about 115 against a panel of heterologous Tier 2 isolates. A modest fraction of the Tier 2 virus neutralizing activity appeared to target the CD4 binding site on gp120. These results suggest that cyclically permuted HIV-1 gp120 trimers represent a viable platform in which further modifications may be made to eventually achieve protective bNAb responses.
Collapse
Affiliation(s)
- Sannula Kesavardhana
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Raksha Das
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Michael Citron
- Merck & Company, Inc., West Point, Pennsylvania 19486, and
| | - Rohini Datta
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Linda Ecto
- Merck & Company, Inc., West Point, Pennsylvania 19486, and
| | | | | | - Ryan Swoyer
- Merck & Company, Inc., West Point, Pennsylvania 19486, and
| | - Joseph G Joyce
- Merck & Company, Inc., West Point, Pennsylvania 19486, and
| | - Somnath Dutta
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Celia C LaBranche
- the Department of Surgery, Duke University, Durham, North Carolina 27705
| | - David C Montefiori
- the Department of Surgery, Duke University, Durham, North Carolina 27705
| | | | - Raghavan Varadarajan
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India,
| |
Collapse
|
27
|
A recombinant receptor-binding domain of MERS-CoV in trimeric form protects human dipeptidyl peptidase 4 (hDPP4) transgenic mice from MERS-CoV infection. Virology 2016; 499:375-382. [PMID: 27750111 PMCID: PMC5167628 DOI: 10.1016/j.virol.2016.10.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/04/2016] [Accepted: 10/06/2016] [Indexed: 11/24/2022]
Abstract
Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV) was first identified in 2012, and it continues to threaten human health worldwide. No MERS vaccines are licensed for human use, reinforcing the urgency to develop safe and efficacious vaccines to prevent MERS. MERS-CoV spike protein forms a trimer, and its receptor-binding domain (RBD) serves as a vaccine target. Nevertheless, the protective efficacy of RBD in its native trimeric form has never been evaluated. In this study, a trimeric protein, RBD-Fd, was generated by fusing RBD with foldon trimerization motif. It bound strongly to the receptor of MERS-CoV, dipeptidyl peptidase 4 (DPP4), and elicited robust RBD-specific neutralizing antibodies in mice, maintaining long-term neutralizing activity against MERS-CoV infection. RBD-Fd potently protected hDPP4 transgenic mice from lethal MERS-CoV challenge. These results suggest that MERS-CoV RBD in its trimeric form maintains native conformation and induces protective neutralizing antibodies, making it a candidate for further therapeutic development. A trimeric MERS-CoV protein (RBD-Fd) was constructed by fusing viral RBD with foldon trimerization motif. RBD-Fd bound strongly to dipeptidyl peptidase 4 (DPP4), the receptor of MERS-CoV, and RBD-specific neutralizing antibodies. RBD-Fd induced robust and long-term neutralizing antibodies, cross-neutralizing MERS pseudovirus of divergent strains. RBD-Fd potently protected hDPP4 transgenic mice from lethal MERS-CoV challenge.
Collapse
|
28
|
van Haaren MM, van den Kerkhof TLGM, van Gils MJ. Natural infection as a blueprint for rational HIV vaccine design. Hum Vaccin Immunother 2016; 13:229-236. [PMID: 27649455 PMCID: PMC5287307 DOI: 10.1080/21645515.2016.1232785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
So far, the development of a human immunodeficiency virus (HIV) vaccine has been unsuccessful. However, recent progress in the field of broadly neutralizing antibodies (bNAbs) has reinvigorated the search for an HIV vaccine. bNAbs develop in a minority of HIV infected individuals and passive transfer of these bNAbs to non-human primates provides protection from HIV infection. Studies in a number of HIV infected individuals on bNAb maturation alongside viral evolution and escape have shed light on the features important for bNAb elicitation. Here we review the observations from these studies, and how they influence the rational design of HIV vaccines.
Collapse
Affiliation(s)
- Marlies M van Haaren
- a Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - Tom L G M van den Kerkhof
- a Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - Marit J van Gils
- a Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| |
Collapse
|
29
|
Hicar MD, Chen X, Sulli C, Barnes T, Goodman J, Sojar H, Briney B, Willis J, Chukwuma VU, Kalams SA, Doranz BJ, Spearman P, Crowe JE. Human Antibodies that Recognize Novel Immunodominant Quaternary Epitopes on the HIV-1 Env Protein. PLoS One 2016; 11:e0158861. [PMID: 27411063 PMCID: PMC4943599 DOI: 10.1371/journal.pone.0158861] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 06/23/2016] [Indexed: 11/19/2022] Open
Abstract
Numerous broadly neutralizing antibodies (Abs) target epitopes that are formed or enhanced during mature HIV envelope formation (i.e. quaternary epitopes). Generally, it is thought that Env epitopes that induce broadly neutralizing Abs are difficult to access and poorly immunogenic because of the characteristic oligomerization, conformational flexibility, sequence diversity and extensive glycosylation of Env protein. To enhance for isolation of quaternary epitope-targeting Abs (QtAbs), we previously used HIV virus-like particles (VLPs) to bind B cells from long-term non-progressor subjects to identify a panel of monoclonal Abs. When expressed as recombinant full-length Abs, a subset of these novel Abs exhibited the binding profiles of QtAbs, as they either failed to bind to monomeric Env protein or showed much higher affinity for Env trimers and VLPs. These QtAbs represented a significant proportion of the B-cell response identified with VLPs. The Ab genes of these clones were highly mutated, but they did not neutralize common HIV strains. We sought to further define the epitopes targeted by these QtAbs. Competition-binding and mapping studies revealed these Abs targeted four separate epitopes; they also failed to compete for binding by Abs to known major neutralizing epitopes. Detailed epitope mapping studies revealed that two of the four epitopes were located in the gp41 subunit of Env. These QtAbs bound pre-fusion forms of antigen and showed differential binding kinetics depending on whether oligomers were produced as recombinant gp140 trimers or as full-length Env incorporated into VLPs. Antigenic regions within gp41 present unexpectedly diverse structural epitopes, including these QtAb epitopes, which may be targeted by the naturally occurring Ab response to HIV infection.
Collapse
Affiliation(s)
- Mark D. Hicar
- Departments of Pediatrics, University at Buffalo, Buffalo, New York, United States of America
- Departments of Microbiology and Immunology, University at Buffalo, Buffalo, New York, United States of America
| | - Xuemin Chen
- Departments of Pediatrics, Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Chidananda Sulli
- Integral Molecular, Inc., Philadelphia, Pennsylvania, United States of America
| | - Trevor Barnes
- Integral Molecular, Inc., Philadelphia, Pennsylvania, United States of America
| | - Jason Goodman
- Integral Molecular, Inc., Philadelphia, Pennsylvania, United States of America
| | - Hakimuddin Sojar
- Departments of Pediatrics, University at Buffalo, Buffalo, New York, United States of America
| | - Bryan Briney
- Departments of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Jordan Willis
- The Program in Chemical Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Valentine U. Chukwuma
- Departments of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Spyros A. Kalams
- Departments of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- The Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Benjamin J. Doranz
- Integral Molecular, Inc., Philadelphia, Pennsylvania, United States of America
| | - Paul Spearman
- Departments of Pediatrics, Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Children’s Healthcare of Atlanta, Atlanta, Georgia, United States of America
| | - James E. Crowe
- Departments of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
30
|
Luo Y, Jacobs EY, Greco TM, Mohammed KD, Tong T, Keegan S, Binley JM, Cristea IM, Fenyö D, Rout MP, Chait BT, Muesing MA. HIV-host interactome revealed directly from infected cells. Nat Microbiol 2016; 1:16068. [PMID: 27375898 PMCID: PMC4928716 DOI: 10.1038/nmicrobiol.2016.68] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 04/16/2016] [Indexed: 01/27/2023]
Abstract
Although genetically compact, HIV-1 commandeers vast arrays of cellular machinery to sustain and protect it during cycles of viral outgrowth. Transposon-mediated saturation linker scanning mutagenesis was used to isolate fully replication-competent viruses harbouring a potent foreign epitope tag. Using these viral isolates, we performed differential isotopic labelling and affinity-capture mass spectrometric analyses on samples obtained from cultures of human lymphocytes to classify the vicinal interactomes of the viral Env and Vif proteins as they occur during natural infection. Importantly, interacting proteins were recovered without bias, regardless of their potential for positive, negative or neutral impact on viral replication. We identified specific host associations made with trimerized Env during its biosynthesis, at virological synapses, with innate immune effectors (such as HLA-E) and with certain cellular signalling pathways (for example, Notch1). We also defined Vif associations with host proteins involved in the control of nuclear transcription and nucleoside biosynthesis as well as those interacting stably or transiently with the cytoplasmic protein degradation apparatus. Our approach is broadly applicable to elucidating pathogen-host interactomes, providing high-certainty identification of interactors by their direct access during cycling infection. Understanding the pathophysiological consequences of these associations is likely to provide strategic targets for antiviral intervention.
Collapse
Affiliation(s)
- Yang Luo
- Aaron Diamond AIDS Research Center, 455 1st Avenue, New York, New York 10016, USA
| | - Erica Y. Jacobs
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Todd M. Greco
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, New Jersey 08540, USA
| | - Kevin D. Mohammed
- Aaron Diamond AIDS Research Center, 455 1st Avenue, New York, New York 10016, USA
| | - Tommy Tong
- San Diego Biomedical Research Institute, 10865 Road to the Cure, San Diego, California 92121, USA
| | - Sarah Keegan
- Department of Biochemistry, New York University Langone Medical Center, 227 East 30th Street, New York, New York 10016, USA
| | - James M. Binley
- San Diego Biomedical Research Institute, 10865 Road to the Cure, San Diego, California 92121, USA
| | - Ileana M. Cristea
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, New Jersey 08540, USA
| | - David Fenyö
- Department of Biochemistry, New York University Langone Medical Center, 227 East 30th Street, New York, New York 10016, USA
| | - Michael P. Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Brian T. Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Mark A. Muesing
- Aaron Diamond AIDS Research Center, 455 1st Avenue, New York, New York 10016, USA
| |
Collapse
|
31
|
Kong L, He L, de Val N, Vora N, Morris CD, Azadnia P, Sok D, Zhou B, Burton DR, Ward AB, Wilson IA, Zhu J. Uncleaved prefusion-optimized gp140 trimers derived from analysis of HIV-1 envelope metastability. Nat Commun 2016; 7:12040. [PMID: 27349805 PMCID: PMC4931249 DOI: 10.1038/ncomms12040] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 05/24/2016] [Indexed: 11/17/2022] Open
Abstract
The trimeric HIV-1 envelope glycoprotein (Env) is critical for host immune recognition and neutralization. Despite advances in trimer design, the roots of Env trimer metastability remain elusive. Here we investigate the contribution of two Env regions to metastability. First, we computationally redesign a largely disordered bend in heptad region 1 (HR1) of SOSIP trimers that connects the long, central HR1 helix to the fusion peptide, substantially improving the yield of soluble, well-folded trimers. Structural and antigenic analyses of two distinct HR1 redesigns confirm that redesigned Env closely mimics the native, prefusion trimer with a more stable gp41. Next, we replace the cleavage site between gp120 and gp41 with various linkers in the context of an HR1 redesign. Electron microscopy reveals a potential fusion intermediate state for uncleaved trimers containing short but not long linkers. Together, these results outline a general approach for stabilization of Env trimers from diverse HIV-1 strains.
Collapse
Affiliation(s)
- Leopold Kong
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, California 92037, USA
- Scripps Center for HIV/AIDS Vaccine Immunology & Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Linling He
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Natalia de Val
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, California 92037, USA
- Scripps Center for HIV/AIDS Vaccine Immunology & Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Nemil Vora
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Charles D. Morris
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Parisa Azadnia
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Devin Sok
- International AIDS Vaccine Initiative Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, California 92037, USA
- Scripps Center for HIV/AIDS Vaccine Immunology & Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037, USA
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Bin Zhou
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Dennis R. Burton
- International AIDS Vaccine Initiative Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, California 92037, USA
- Scripps Center for HIV/AIDS Vaccine Immunology & Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037, USA
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92037, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02139-3583, USA
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, California 92037, USA
- Scripps Center for HIV/AIDS Vaccine Immunology & Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, California 92037, USA
- Scripps Center for HIV/AIDS Vaccine Immunology & Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037, USA
- The Joint Center for Structural Genomics, The Scripps Research Institute, La Jolla, California 92037, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Jiang Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
- Scripps Center for HIV/AIDS Vaccine Immunology & Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037, USA
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92037, USA
| |
Collapse
|
32
|
Yamamoto T, Lynch RM, Gautam R, Matus-Nicodemos R, Schmidt SD, Boswell KL, Darko S, Wong P, Sheng Z, Petrovas C, McDermott AB, Seder RA, Keele BF, Shapiro L, Douek DC, Nishimura Y, Mascola JR, Martin MA, Koup RA. Quality and quantity of TFH cells are critical for broad antibody development in SHIVAD8 infection. Sci Transl Med 2016. [PMID: 26223303 DOI: 10.1126/scitranslmed.aab3964] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Broadly neutralizing antibodies (bNAbs) protect against HIV-1 infection, yet how they are generated during chronic infection remains unclear. It is known that T follicular helper (TFH) cells are needed to promote affinity maturation of B cells during an immune response; however, the role of TFH during HIV-1 infection is undefined within lymph node germinal centers (GCs). We use nonhuman primates to investigate the relationship in the early stage of chronic SHIVAD8 (simian-human immunodeficiency virus AD8) infection between envelope (Env)-specific TFH cells, Env-specific B cells, virus, and the generation of bNAbs during later infection. We found that both the frequency and quality of Env-specific TFH cells were associated with an expansion of Env-specific immunoglobulin G-positive GC B cells and broader neutralization across HIV clades. We also found a correlation between breadth of neutralization and the degree of somatic hypermutation in Env-specific memory B cells. Finally, we observed high viral loads and greater diversity of Env sequences in rhesus macaques that developed cross-reactive neutralization as compared to those that did not. These studies highlight the importance of boosting high-quality TFH populations as part of a robust vaccine regimen aimed at eliciting bNabs.
Collapse
Affiliation(s)
- Takuya Yamamoto
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Rebecca M Lynch
- Humoral Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | - Rajeev Gautam
- Laboratory of Molecular Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Rodrigo Matus-Nicodemos
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Stephen D Schmidt
- Humoral Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | - Kristin L Boswell
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Sam Darko
- Human Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | - Patrick Wong
- Humoral Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | - Zizhang Sheng
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Constantinos Petrovas
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Adrian B McDermott
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Robert A Seder
- Cellular Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | - Yoshiaki Nishimura
- Laboratory of Molecular Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - John R Mascola
- Humoral Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | - Malcolm A Martin
- Laboratory of Molecular Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Richard A Koup
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| |
Collapse
|
33
|
Vzorov AN, Compans RW. VLP vaccines and effects of HIV-1 Env protein modifications on their antigenic properties. Mol Biol 2016. [DOI: 10.1134/s0026893316030110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
34
|
Apostólico JDS, Boscardin SB, Yamamoto MM, de Oliveira-Filho JN, Kalil J, Cunha-Neto E, Rosa DS. HIV Envelope Trimer Specific Immune Response Is Influenced by Different Adjuvant Formulations and Heterologous Prime-Boost. PLoS One 2016; 11:e0145637. [PMID: 26727218 PMCID: PMC4699765 DOI: 10.1371/journal.pone.0145637] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 12/07/2015] [Indexed: 02/07/2023] Open
Abstract
The development of a preventive vaccine against human immunodeficiency virus (HIV-1) infection is the most efficient method to control the epidemic. The ultimate goal is to develop a vaccine able to induce specific neutralizing, non-neutralizing antibodies and cellular mediated immunity (CMI). Humoral and CMI responses can be directed to glycoproteins that are normally presented as a trimeric spike on the virus surface (gp140). Despite safer, subunit vaccines are normally less immunogenic/effective and need to be delivered together with an adjuvant. The choice of a suitable adjuvant can induce effective humoral and CMI that utterly lead to full protection against disease. In this report, we established a hierarchy of adjuvant potency on humoral and CMI when admixed with the recombinant HIV gp140 trimer. We show that vaccination with gp140 in the presence of different adjuvants can induce high-affinity antibodies, follicular helper T cells and germinal center B cells. The data show that poly (I:C) is the most potent adjuvant to induce specific CMI responses evidenced by IFN-γ production and CD4+/CD8+ T cell proliferation. Furthermore, we demonstrate that combining some adjuvants like MPL plus Alum and MPL plus MDP exert additive effects that impact on the magnitude and quality of humoral responses while mixing MDP with poly (I:C) or with R848 had no impact on total IgG titers but highly impact IgG subclass. In addition, heterologous DNA prime- protein boost yielded higher IgG titers when compare to DNA alone and improved the quality of humoral response when compare to protein immunization as evidenced by IgG1/IgG2a ratio. The results presented in this paper highlight the importance of selecting the correct adjuvant-antigen combination to potentiate desired cells for optimal stimulation.
Collapse
Affiliation(s)
- Juliana de Souza Apostólico
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP/EPM), São Paulo, Brazil
| | - Silvia Beatriz Boscardin
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Márcio Massao Yamamoto
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jethe Nunes de Oliveira-Filho
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP/EPM), São Paulo, Brazil
| | - Jorge Kalil
- Heart Institute (InCor), University of São Paulo—School of Medicine, São Paulo, Brazil
- Institute for Investigation in Immunology—INCT, São Paulo, Brazil
| | - Edecio Cunha-Neto
- Heart Institute (InCor), University of São Paulo—School of Medicine, São Paulo, Brazil
- Institute for Investigation in Immunology—INCT, São Paulo, Brazil
- Laboratory of Clinical Immunology and Allergy—LIM60, University of São Paulo- School of Medicine, São Paulo, Brazil
| | - Daniela Santoro Rosa
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP/EPM), São Paulo, Brazil
- Institute for Investigation in Immunology—INCT, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
35
|
Structure-Guided Redesign Increases the Propensity of HIV Env To Generate Highly Stable Soluble Trimers. J Virol 2015; 90:2806-17. [PMID: 26719252 DOI: 10.1128/jvi.02652-15] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/18/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Due to high viral diversity, an effective HIV-1 vaccine will likely require Envs derived from multiple subtypes to generate broadly neutralizing antibodies (bNAbs). Soluble Env mimics, like the native flexibly linked (NFL) and SOSIP trimers, derived from the subtype A BG505 Env, form homogeneous, stable native-like trimers. However, other Env sequences, such as JRFL and 16055 from subtypes B and C, do so to a lesser degree. The high-resolution BG505 SOSIP crystal structures permit the identification and redesign of Env elements involved in trimer stability. Here, we identified structure trimer-derived (TD) residues that increased the propensity of the subtype B JRFL and subtype C 16055 Env sequences to form well-ordered, homogenous, and highly stable soluble trimers. The generation of these spike mimics no longer required antibody-based selection, positive or negative. Using the redesigned subtype B and C trimer representatives as respective foundations, we further stabilized the NFL TD trimers by engineering an intraprotomer disulfide linkage in the prebridging sheet, I201C-A433C (CC), that locks the gp120 in the receptor nontriggered state. We demonstrated that this disulfide pair prevented CD4 induced-conformational rearrangements in NFL trimers derived from the prototypic subtype A, B, and C representatives. Coupling the TD-based design with the engineered disulfide linkage, CC, increased the propensity of Env to form soluble highly stable spike mimics that are resistant to CD4-induced changes. These advances will allow testing of the hypothesis that such stabilized immunogens will more efficiently elicit neutralizing antibodies in small-animal models and primates. IMPORTANCE HIV-1 displays unprecedented global diversity circulating in the human population. Since the envelope glycoprotein (Env) is the target of neutralizing antibodies, Env-based vaccine candidates that address such diversity are needed. Soluble well-ordered Env mimics, typified by NFL and SOSIP trimers, are attractive vaccine candidates. However, the current designs do not allow most Envs to form well-ordered trimers. Here, we made design modifications to increase the propensity of representatives from two of the major HIV subtypes to form highly stable trimers. This approach should be applicable to other viral Envs, permitting the generation of a repertoire of homogeneous, highly stable trimers. The availability of such an array will allow us to assess if sequential or cocktail immune strategies can overcome some of the vaccine challenges presented by HIV diversity.
Collapse
|
36
|
Freund NT, Horwitz JA, Nogueira L, Sievers SA, Scharf L, Scheid JF, Gazumyan A, Liu C, Velinzon K, Goldenthal A, Sanders RW, Moore JP, Bjorkman PJ, Seaman MS, Walker BD, Klein F, Nussenzweig MC. A New Glycan-Dependent CD4-Binding Site Neutralizing Antibody Exerts Pressure on HIV-1 In Vivo. PLoS Pathog 2015; 11:e1005238. [PMID: 26516768 PMCID: PMC4627763 DOI: 10.1371/journal.ppat.1005238] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/28/2015] [Indexed: 11/18/2022] Open
Abstract
The CD4 binding site (CD4bs) on the envelope glycoprotein is a major site of vulnerability that is conserved among different HIV-1 isolates. Many broadly neutralizing antibodies (bNAbs) to the CD4bs belong to the VRC01 class, sharing highly restricted origins, recognition mechanisms and viral escape pathways. We sought to isolate new anti-CD4bs bNAbs with different origins and mechanisms of action. Using a gp120 2CC core as bait, we isolated antibodies encoded by IGVH3-21 and IGVL3-1 genes with long CDRH3s that depend on the presence of the N-linked glycan at position-276 for activity. This binding mode is similar to the previously identified antibody HJ16, however the new antibodies identified herein are more potent and broad. The most potent variant, 179NC75, had a geometric mean IC80 value of 0.42 μg/ml against 120 Tier-2 HIV-1 pseudoviruses in the TZM.bl assay. Although this group of CD4bs glycan-dependent antibodies can be broadly and potently neutralizing in vitro, their in vivo activity has not been tested to date. Here, we report that 179NC75 is highly active when administered to HIV-1-infected humanized mice, where it selects for escape variants that lack a glycan site at position-276. The same glycan was absent from the virus isolated from the 179NC75 donor, implying that the antibody also exerts selection pressure in humans. CD4bs is a central viral vulnerability site and isolation of new anti-HIV-1 CD4bs broadly neutralizing antibodies (bNAbs) provides information about viral escape mechanisms. Here we describe a new anti-HIV-1 bNAb that was isolated from an HIV-1 infected donor. The antibody, 179NC75, targets the CD4 binding site in a glycan-dependent manner. Although many CD4bs antibodies have been already described, a glycan-dependent mode of recognition is unusual for anti-HIV-1 CD4bs bNAbs. The glycan-dependent CD4bs antibodies have never been tested for their ability to neutralize HIV-1 in vivo. We infected humanized mice with HIV-1YU2 and treated them with 179NC75 three weeks after infection. We observed a drop in viral load immediately after treatment followed by a viral rebound. The viral rebound was associated with specific escape mutations in the plasma virus envelope, resulting in a deletion of N276 glycan, and in some cases a glycan shift from position 276 to position 460. Similar signature mutations were found in the envelope of the autologous virus cloned from patient’s plasma. This defines the escape pathways from 179NC75, and shows that they are the same in humans and in HIV-1YU2 infected humanized mice.
Collapse
Affiliation(s)
- Natalia T. Freund
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, United States of America
- * E-mail:
| | - Joshua A. Horwitz
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, United States of America
| | - Lilian Nogueira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, United States of America
| | - Stuart A. Sievers
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Louise Scharf
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Johannes F. Scheid
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, United States of America
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, United States of America
| | - Cassie Liu
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, United States of America
| | - Klara Velinzon
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, United States of America
| | - Ariel Goldenthal
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Rogier W. Sanders
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - John P. Moore
- Department of Microbiology and Immunology, Weill Medical College, Cornell University, New York, New York, United States of America
| | - Pamela J. Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Michael S. Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Bruce D. Walker
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Florian Klein
- First Department of Internal Medicine, University Hospital of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Germany
| | - Michel C. Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| |
Collapse
|
37
|
Killick MA, Grant ML, Cerutti NM, Capovilla A, Papathanasopoulos MA. Env-2dCD4 S60C complexes act as super immunogens and elicit potent, broadly neutralizing antibodies against clinically relevant human immunodeficiency virus type 1 (HIV-1). Vaccine 2015; 33:6298-306. [PMID: 26432912 DOI: 10.1016/j.vaccine.2015.09.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/24/2015] [Accepted: 09/16/2015] [Indexed: 11/28/2022]
Abstract
The ability to induce a broadly neutralizing antibody (bNAb) response following vaccination is regarded as a crucial aspect in developing an effective vaccine against human immunodeficiency virus type 1 (HIV-1). The bNAbs target the HIV-1 envelope glycoprotein (Env) which is exposed on the virus surface, thereby preventing cell entry. To date, conventional vaccine approaches such as the use of Env-based immunogens have been unsuccessful. We expressed, purified, characterized and evaluated the immunogenicity of several unique HIV-1 subtype C Env immunogens in small animals. Here we report that vaccine immunogens based on Env liganded to a two domain CD4 variant, 2dCD4(S60C) are capable of consistently eliciting potent, broadly neutralizing antibody responses in New Zealand white rabbits against a panel of clinically relevant HIV-1 pseudoviruses. This was irrespective of the Env protein subtype and context. Importantly, depletion of the anti-CD4 antibodies appeared to abrogate the neutralization activity in the rabbit sera. Taken together, this data suggests that the Env-2dCD4(S60C) complexes described here are "super" immunogens, and potentially immunofocus antibody responses to a unique epitope spanning the 2dCD4(60C). Recent data from the two available anti-CD4 monoclonal antibodies, Ibalizumab and CD4-Ig (and bispecific variants thereof) have highlighted that the use of these broad and potent entry inhibitors could circumvent the need for a conventional vaccine targeting HIV-1. Overall, the ability of the unique Env-2dCD4(S60C) complexes to elicit potent bNAb responses has not been described previously, reinforcing that further investigation for their utility in preventing and controlling HIV-1/SIV infection is warranted.
Collapse
Affiliation(s)
- Mark A Killick
- HIV Pathogenesis Research Unit, Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand Medical School, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Michelle L Grant
- HIV Pathogenesis Research Unit, Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand Medical School, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Nichole M Cerutti
- HIV Pathogenesis Research Unit, Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand Medical School, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Alexio Capovilla
- HIV Pathogenesis Research Unit, Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand Medical School, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Maria A Papathanasopoulos
- HIV Pathogenesis Research Unit, Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand Medical School, 7 York Road, Parktown, Johannesburg 2193, South Africa.
| |
Collapse
|
38
|
Influences on the Design and Purification of Soluble, Recombinant Native-Like HIV-1 Envelope Glycoprotein Trimers. J Virol 2015; 89:12189-210. [PMID: 26311893 DOI: 10.1128/jvi.01768-15] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 08/20/2015] [Indexed: 12/27/2022] Open
Abstract
UNLABELLED We have investigated factors that influence the production of native-like soluble, recombinant trimers based on the env genes of two isolates of human immunodeficiency virus type 1 (HIV-1), specifically 92UG037.8 (clade A) and CZA97.012 (clade C). When the recombinant trimers based on the env genes of isolates 92UG037.8 and CZA97.012 were made according to the SOSIP.664 design and purified by affinity chromatography using broadly neutralizing antibodies (bNAbs) against quaternary epitopes (PGT145 and PGT151, respectively), the resulting trimers are highly stable and they are fully native-like when visualized by negative-stain electron microscopy. They also have a native-like (i.e., abundant) oligomannose glycan composition and display multiple bNAb epitopes while occluding those for nonneutralizing antibodies. In contrast, uncleaved, histidine-tagged Foldon (Fd) domain-containing gp140 proteins (gp140UNC-Fd-His), based on the same env genes, very rarely form native-like trimers, a finding that is consistent with their antigenic and biophysical properties and glycan composition. The addition of a 20-residue flexible linker (FL20) between the gp120 and gp41 ectodomain (gp41ECTO) subunits to make the uncleaved 92UG037.8 gp140-FL20 construct is not sufficient to create a native-like trimer, but a small percentage of native-like trimers were produced when an I559P substitution in gp41ECTO was also present. The further addition of a disulfide bond (SOS) to link the gp120 and gp41 subunits in the uncleaved gp140-FL20-SOSIP protein increases native-like trimer formation to ∼20 to 30%. Analysis of the disulfide bond content shows that misfolded gp120 subunits are abundant in uncleaved CZA97.012 gp140UNC-Fd-His proteins but very rare in native-like trimer populations. The design and stabilization method and the purification strategy are, therefore, all important influences on the quality of trimeric Env proteins and hence their suitability as vaccine components. IMPORTANCE Soluble, recombinant multimeric proteins based on the HIV-1 env gene are current candidate immunogens for vaccine trials in humans. These proteins are generally designed to mimic the native trimeric envelope glycoprotein (Env) that is the target of virus-neutralizing antibodies on the surfaces of virions. The underlying hypothesis is that an Env-mimetic protein may be able to induce antibodies that can neutralize the virus broadly and potently enough for a vaccine to be protective. Multiple different designs for Env-mimetic trimers have been put forth. Here, we used the CZA97.012 and 92UG037.8 env genes to compare some of these designs and determine which ones best mimic virus-associated Env trimers. We conclude that the most widely used versions of CZA97.012 and 92UG037.8 oligomeric Env proteins do not resemble the trimeric Env glycoprotein on HIV-1 viruses, which has implications for the design and interpretation of ongoing or proposed clinical trials of these proteins.
Collapse
|
39
|
Vijayan A, García-Arriaza J, Raman SC, Conesa JJ, Chichón FJ, Santiago C, Sorzano CÓS, Carrascosa JL, Esteban M. A Chimeric HIV-1 gp120 Fused with Vaccinia Virus 14K (A27) Protein as an HIV Immunogen. PLoS One 2015. [PMID: 26208356 PMCID: PMC4514760 DOI: 10.1371/journal.pone.0133595] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the HIV vaccine field, there is a need to produce highly immunogenic forms of the Env protein with the capacity to trigger broad B and T-cell responses. Here, we report the generation and characterization of a chimeric HIV-1 gp120 protein (termed gp120-14K) by fusing gp120 from clade B with the vaccinia virus (VACV) 14K oligomeric protein (derived from A27L gene). Stable CHO cell lines expressing HIV-1 gp120-14K protein were generated and the protein purified was characterized by size exclusion chromatography, electron microscopy and binding to anti-Env antibodies. These approaches indicate that gp120-14K protein is oligomeric and reacts with a wide spectrum of HIV-1 neutralizing antibodies. Furthermore, in human monocyte-derived dendritic cells (moDCs), gp120-14K protein upregulates the levels of several proinflammatory cytokines and chemokines associated with Th1 innate immune responses (IL-1β, IFN-γ, IL-6, IL-8, IL-12, RANTES). Moreover, we showed in a murine model, that a heterologous prime/boost immunization protocol consisting of a DNA prime with a plasmid expressing gp120-14K protein followed by a boost with MVA-B [a recombinant modified vaccinia virus Ankara (MVA) expressing HIV-1 gp120, Gag, Pol and Nef antigens from clade B], generates stronger, more polyfunctional, and greater effector memory HIV-1-specific CD4+ and CD8+ T-cell immune responses, than immunization with DNA-gp120/MVA-B. The DNA/MVA protocol was superior to immunization with the combination of protein/MVA and the latter was superior to a prime/boost of MVA/MVA or protein/protein. In addition, these immunization protocols enhanced antibody responses against gp120 of the class IgG2a and IgG3, together favoring a Th1 humoral immune response. These results demonstrate that fusing HIV-1 gp120 with VACV 14K forms an oligomeric protein which is highly antigenic as it activates a Th1 innate immune response in human moDCs, and in vaccinated mice triggers polyfunctional HIV-1-specific adaptive and memory T-cell immune responses, as well as humoral responses. This novel HIV-1 gp120-14K immunogen might be considered as an HIV vaccine candidate for broad T and B-cell immune responses.
Collapse
Affiliation(s)
- Aneesh Vijayan
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Suresh C Raman
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - José Javier Conesa
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Francisco Javier Chichón
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - César Santiago
- X-ray Crystallization Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Carlos Óscar S Sorzano
- Biocomputing Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - José L Carrascosa
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| |
Collapse
|
40
|
Comparable Antigenicity and Immunogenicity of Oligomeric Forms of a Novel, Acute HIV-1 Subtype C gp145 Envelope for Use in Preclinical and Clinical Vaccine Research. J Virol 2015; 89:7478-93. [PMID: 25972551 DOI: 10.1128/jvi.00412-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 04/02/2015] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Eliciting broadly reactive functional antibodies remains a challenge in human immunodeficiency virus type 1 (HIV-1) vaccine development that is complicated by variations in envelope (Env) subtype and structure. The majority of new global HIV-1 infections are subtype C, and novel antigenic properties have been described for subtype C Env proteins. Thus, an HIV-1 subtype C Env protein (CO6980v0c22) from an infected person in the acute phase (Fiebig stage I/II) was developed as a research reagent and candidate immunogen. The gp145 envelope is a novel immunogen with a fully intact membrane-proximal external region (MPER), extended by a polylysine tail. Soluble gp145 was enriched for trimers that yielded the expected "fan blade" motifs when visualized by cryoelectron microscopy. CO6980v0c22 gp145 reacts with the 4E10, PG9, PG16, and VRC01 HIV-1 neutralizing monoclonal antibodies (MAbs), as well as the V1/V2-specific PGT121, 697, 2158, and 2297 MAbs. Different gp145 oligomers were tested for immunogenicity in rabbits, and purified dimers, trimers, and larger multimers elicited similar levels of cross-subtype binding and neutralizing antibodies to tier 1 and some tier 2 viruses. Immunized rabbit sera did not neutralize the highly resistant CO6980v0c22 pseudovirus but did inhibit the homologous infectious molecular clone in a peripheral blood mononuclear cell (PBMC) assay. This Env is currently in good manufacturing practice (GMP) production to be made available for use as a clinical research tool and further evaluation as a candidate vaccine. IMPORTANCE At present, the product pipeline for HIV vaccines is insufficient and is limited by inadequate capacity to produce large quantities of vaccine to standards required for human clinical trials. Such products are required to evaluate critical questions of vaccine formulation, route, dosing, and schedule, as well as to establish vaccine efficacy. The gp145 Env protein presented in this study forms physical trimers, binds to many of the well-characterized broad neutralizing MAbs that target conserved Env epitopes, and induce cross-subtype neutralizing antibodies as measured in both cell line and primary cell assays. This subtype C Env gp145 protein is currently undergoing good manufacturing practice production for use as a reagent for preclinical studies and for human clinical research. This product will serve as a reagent for comparative studies and may represent a next-generation candidate HIV immunogen.
Collapse
|
41
|
Lorin V, Mouquet H. Efficient generation of human IgA monoclonal antibodies. J Immunol Methods 2015; 422:102-10. [PMID: 25910833 DOI: 10.1016/j.jim.2015.04.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 04/15/2015] [Indexed: 11/17/2022]
Abstract
Immunoglobulin A (IgA) is the most abundant antibody isotype produced in humans. IgA antibodies primarily ensure immune protection of mucosal surfaces against invading pathogens, but also circulate and are present in large quantities in blood. IgAs are heterogeneous at a molecular level, with two IgA subtypes and the capacity to form multimers by interacting with the joining (J) chain. Here, we have developed an efficient strategy to rapidly generate human IgA1 and IgA2 monoclonal antibodies in their monomeric and dimeric forms. Recombinant monomeric and dimeric IgA1/IgA2 counterparts of a prototypical IgG1 monoclonal antibody, 10-1074, targeting the HIV-1 envelope protein, were produced in large amounts after expression cloning and transient transfection of 293-F cells. 10-1074 IgAs were FPLC-purified using a novel affinity-based resin engrafted with anti-IgA chimeric Fabs, followed by a monomers/multimers separation using size exclusion-based FPLC. ELISA binding experiments confirmed that the artificial IgA class switching of 10-1074 did not alter its antigen recognition. In summary, our technical approach allows the very efficient production of various forms of purified recombinant human IgA molecules, which are precious tools in dissecting IgA B-cell responses in physiological and pathophysiological conditions, and studying the biology, function and therapeutic potential of IgAs.
Collapse
Affiliation(s)
- Valérie Lorin
- Laboratory of Humoral Response to Pathogens, Department of Immunology, Institut Pasteur, Paris, 75015, France; CNRS-URA 1961, Paris, 75015, France
| | - Hugo Mouquet
- Laboratory of Humoral Response to Pathogens, Department of Immunology, Institut Pasteur, Paris, 75015, France; CNRS-URA 1961, Paris, 75015, France.
| |
Collapse
|
42
|
Immunogenic Display of Purified Chemically Cross-Linked HIV-1 Spikes. J Virol 2015; 89:6725-45. [PMID: 25878116 DOI: 10.1128/jvi.03738-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 04/11/2015] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED HIV-1 envelope glycoprotein (Env) spikes are prime vaccine candidates, at least in principle, but suffer from instability, molecular heterogeneity and a low copy number on virions. We anticipated that chemical cross-linking of HIV-1 would allow purification and molecular characterization of trimeric Env spikes, as well as high copy number immunization. Broadly neutralizing antibodies bound tightly to all major quaternary epitopes on cross-linked spikes. Covalent cross-linking of the trimer also stabilized broadly neutralizing epitopes, although surprisingly some individual epitopes were still somewhat sensitive to heat or reducing agent. Immunodepletion using non-neutralizing antibodies to gp120 and gp41 was an effective method for removing non-native-like Env. Cross-linked spikes, purified via an engineered C-terminal tag, were shown by negative stain EM to have well-ordered, trilobed structure. An immunization was performed comparing a boost with Env spikes on virions to spikes cross-linked and captured onto nanoparticles, each following a gp160 DNA prime. Although differences in neutralization did not reach statistical significance, cross-linked Env spikes elicited a more diverse and sporadically neutralizing antibody response against Tier 1b and 2 isolates when displayed on nanoparticles, despite attenuated binding titers to gp120 and V3 crown peptides. Our study demonstrates display of cross-linked trimeric Env spikes on nanoparticles, while showing a level of control over antigenicity, purity and density of virion-associated Env, which may have relevance for Env based vaccine strategies for HIV-1. IMPORTANCE The envelope spike (Env) is the target of HIV-1 neutralizing antibodies, which a successful vaccine will need to elicit. However, native Env on virions is innately labile, as well as heterogeneously and sparsely displayed. We therefore stabilized Env spikes using a chemical cross-linker and removed non-native Env by immunodepletion with non-neutralizing antibodies. Fixed native spikes were recognized by all classes of known broadly neutralizing antibodies but not by non-neutralizing antibodies and displayed on nanoparticles in high copy number. An immunization experiment in rabbits revealed that cross-linking Env reduced its overall immunogenicity; however, high-copy display on nanoparticles enabled boosting of antibodies that sporadically neutralized some relatively resistant HIV-1 isolates, albeit at a low titer. This study describes the purification of stable and antigenically correct Env spikes from virions that can be used as immunogens.
Collapse
|
43
|
Effects of the I559P gp41 change on the conformation and function of the human immunodeficiency virus (HIV-1) membrane envelope glycoprotein trimer. PLoS One 2015; 10:e0122111. [PMID: 25849367 PMCID: PMC4388519 DOI: 10.1371/journal.pone.0122111] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 02/20/2015] [Indexed: 12/21/2022] Open
Abstract
The mature human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimer is produced by proteolytic cleavage of a precursor and consists of three gp120 exterior and three gp41 transmembrane subunits. The metastable Env complex is induced to undergo conformational changes required for virus entry by the binding of gp120 to the receptors, CD4 and CCR5/CXCR4. An isoleucine-to-proline change (I559P) in the gp41 ectodomain has been used to stabilize soluble forms of HIV-1 Env trimers for structural characterization and for use as immunogens. In the native membrane-anchored HIV-1BG505 Env, the I559P change modestly decreased proteolytic maturation, increased the non-covalent association of gp120 with the Env trimer, and resulted in an Env conformation distinctly different from that of the wild-type HIV-1BG505 Env. Compared with the wild-type Env, the I559P Env was recognized inefficiently by polyclonal sera from HIV-1-infected individuals, by several gp41-directed antibodies, by some antibodies against the CD4-binding site of gp120, and by antibodies that preferentially recognize the CD4-bound Env. Some of the gp120-associated antigenic differences between the wild-type HIV-1BG505 Env and the I559P mutant were compensated by the SOS disulfide bond between gp120 and gp41, which has been used to stabilize cleaved soluble Env trimers. Nonetheless, regardless of the presence of the SOS changes, Envs with proline 559 were recognized less efficiently than Envs with isoleucine 559 by the VRC01 neutralizing antibody, which binds the CD4-binding site of gp120, and the PGT151 neutralizing antibody, which binds a hybrid gp120-gp41 epitope. The I559P change completely eliminated the ability of the HIV-1BG505 Env to mediate cell-cell fusion and virus entry, and abolished the capacity of the SOS Env to support virus infection in the presence of a reducing agent. These results suggest that differences exist between the quaternary structures of functional Env spikes and I559P Envs.
Collapse
|
44
|
Abstract
An effective human immunodeficiency virus type 1 (HIV-1) vaccine is expected to have the greatest impact on HIV-1 spread and remains a global scientific priority. Only one candidate vaccine has significantly reduced HIV-1 acquisition, yet at a limited efficacy of 31%, and none have delayed disease progression in vaccinated individuals. Thus, the challenge remains to develop HIV-1 immunogens that will elicit protective immunity. A combination of two independent approaches - namely the elicitation of broadly neutralising antibodies (bNAb) to prevent or reduce acquisition of infection and stimulation of effective cytotoxic T lymphocyte (CTL) responses to slow disease progression in breakthrough infections (recent evidence suggests that CTLs could also block HIV-1 from establishing persistent infection) - is the current ideal. The purpose of this review is to summarise strategies and progress in the design and testing of HIV-1 immunogens to elicit bNAb and protective CTL immune responses. Recent advances in mimicking the functional native envelope trimer structure and in designing structurally-stabilised bNAb epitope forms to drive development of germline precursors to mature bNAb are highlighted. Systematic or computational approaches to T cell immunogen design aimed at covering viral diversity, increasing the breadth of immune responses and/or reducing viable viral escape are discussed. We also discuss a recent novel vaccine vector approach shown to induce extremely broad and persistent T cell responses that could clear highly pathogenic simian immunodeficiency virus (SIV) early after infection in the monkey model. While in vitro and animal model data are promising, Phase II and III human clinical trials are ultimately needed to determine the efficacy of immunogen design approaches.
Collapse
Affiliation(s)
- Jaclyn K Mann
- />HIV Pathogenesis Programme, University of KwaZulu-Natal, 719 Umbilo Road, Durban, 4001 South Africa
- />KwaZulu-Natal Research Institute for Tuberculosis and HIV, University of KwaZulu-Natal, Durban, 4001 South Africa
| | - Thumbi Ndung’u
- />HIV Pathogenesis Programme, University of KwaZulu-Natal, 719 Umbilo Road, Durban, 4001 South Africa
- />KwaZulu-Natal Research Institute for Tuberculosis and HIV, University of KwaZulu-Natal, Durban, 4001 South Africa
- />Ragon Institute of MGH, MIT and Harvard University, Cambridge, MA 02139 USA
- />Max Planck Institute for Infection Biology, Chariteplatz, D-10117 Berlin, Germany
| |
Collapse
|
45
|
Receptor binding domain based HIV vaccines. BIOMED RESEARCH INTERNATIONAL 2015; 2015:594109. [PMID: 25667925 PMCID: PMC4312573 DOI: 10.1155/2015/594109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 10/16/2014] [Indexed: 11/17/2022]
Abstract
This paper analyzes the main trend of the development of acquired immunodeficiency syndrome (AIDS) vaccines in recent years. Designing an HIV-1 vaccine that provides robust protection from HIV-1 infection remains a challenge despite many years of effort. Therefore, we describe the receptor binding domain of gp120 as a target for developing AIDS vaccines. And we recommend some measures that could induce efficiently and produce cross-reactive neutralizing antibodies with high binding affinity. Those measures may offer a new way of the research and development of the potent and broad AIDS vaccines.
Collapse
|
46
|
Abstract
UNLABELLED Recombinant trimeric mimics of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) spike should expose as many epitopes as possible for broadly neutralizing antibodies (bNAbs) but few, if any, for nonneutralizing antibodies (non-NAbs). Soluble, cleaved SOSIP.664 gp140 trimers based on the subtype A strain BG505 approach this ideal and are therefore plausible vaccine candidates. Here, we report on the production and in vitro properties of a new SOSIP.664 trimer derived from a subtype B env gene, B41, including how to make this protein in low-serum media without proteolytic damage (clipping) to the V3 region. We also show that nonclipped trimers can be purified successfully via a positive-selection affinity column using the bNAb PGT145, which recognizes a quaternary structure-dependent epitope at the trimer apex. Negative-stain electron microscopy imaging shows that the purified, nonclipped, native-like B41 SOSIP.664 trimers contain two subpopulations, which we propose represent an equilibrium between the fully closed and a more open conformation. The latter is different from the fully open, CD4 receptor-bound conformation and may represent an intermediate state of the trimer. This new subtype B trimer adds to the repertoire of native-like Env proteins that are suitable for immunogenicity and structural studies. IMPORTANCE The cleaved, trimeric envelope protein complex is the only neutralizing antibody target on the HIV-1 surface. Many vaccine strategies are based on inducing neutralizing antibodies. For HIV-1, one approach involves using recombinant, soluble protein mimics of the native trimer. At present, the only reliable way to make native-like, soluble trimers in practical amounts is via the introduction of specific sequence changes that confer stability on the cleaved form of Env. The resulting proteins are known as SOSIP.664 gp140 trimers, and the current paradigm is based on the BG505 subtype A env gene. Here, we describe the production and characterization of a SOSIP.664 protein derived from a subtype B gene (B41), together with a simple, one-step method to purify native-like trimers by affinity chromatography with a trimer-specific bNAb, PGT145. The resulting trimers will be useful for structural and immunogenicity experiments aimed at devising ways to make an effective HIV-1 vaccine.
Collapse
|
47
|
Antibody B cell responses in HIV-1 infection. Trends Immunol 2014; 35:549-61. [DOI: 10.1016/j.it.2014.08.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 08/22/2014] [Accepted: 08/25/2014] [Indexed: 01/07/2023]
|
48
|
Stabilizing the native trimer of HIV-1 Env by destabilizing the heterodimeric interface of the gp41 postfusion six-helix bundle. J Virol 2014; 88:9590-604. [PMID: 24920800 DOI: 10.1128/jvi.00494-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The HIV-1 envelope glycoprotein (Env) is a trimer of gp120-gp41 heterodimers and is essential for viral entry. The gp41 subunit in native, prefusion trimeric Env exists in a metastable conformation and attains a stable six-helix bundle (6-HB) conformation comprised of a trimer of N-heptad repeat (NHR) and C-heptad repeat (CHR) heterodimers, that drives the fusion of viral and cellular membranes. We attempted to stabilize native Env trimers by incorporation of mutations at the NHR-CHR interface that disrupt the postfusion 6-HB of gp41. The mutations V570D and I573D stabilize native Env of the HIV-1 JRFL strain and occlude nonneutralizing epitopes to a greater extent than the previously identified I559P mutation that is at the interface of the NHR trimers in the 6-HB. The mutations prevent soluble-CD4 (sCD4)-induced gp120 shedding and 6-HB formation. In the context of cell surface-expressed JRFL Env, introduction of a previously reported additional disulfide between residues A501 and T605 perturbs the native conformation, though this effect is partially alleviated by furin coexpression. The data suggest that positions 570 and 573 are surface proximal in native Env and that the NHR homotrimeric coiled coil in native Env terminates before or close to residue 573. Aspartic acid substitutions at these positions stabilize native trimers through destabilization of the postfusion 6-HB conformation. These mutations can be used to stabilize Env in a DNA vaccine format. IMPORTANCE The major protein on the surface of HIV-1 is the envelope (Env) glycoprotein. Env is a trimer of gp120-gp41 heterodimers. gp120 is involved in receptor/coreceptor binding and gp41 in the fusion of viral and cellular membranes. Like many other viral fusion proteins, the gp41 subunit in native trimeric Env exists in a metastable conformation. gp41 readily forms a stable six-helix bundle (6-HB) conformation comprised of a trimer of N-heptad repeat (NHR) and C-heptad repeat (CHR) heterodimers that drives fusion of viral and cellular membranes. While it is expected that native Env is a good immunogen, its metastability results in exposure of immunodominant nonneutralizing epitopes. In the present study, we stabilize native Env trimers by incorporation of a number of different mutations at the NHR-CHR interface that disrupt the postfusion 6-HB of gp41. The stabilized constructs described here can be incorporated into DNA vaccine candidates.
Collapse
|
49
|
Immunogen design for HIV-1 and influenza. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1891-1906. [PMID: 24892211 DOI: 10.1016/j.bbapap.2014.05.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/23/2014] [Accepted: 05/26/2014] [Indexed: 12/12/2022]
Abstract
Vaccines provide the most cost effective defense against pathogens. Although vaccines have been designed for a number of viral diseases, a vaccine against HIV-1 still remains elusive. In contrast, while there are excellent influenza vaccines, these need to be changed every few years because of antigenic drift and shift. The recent discovery of a large number of broadly neutralizing antibodies (bNAbs) and structural characterization of the conserved epitopes targeted by them presents an opportunity for structure based HIV-1 and influenza A vaccine design. We discuss strategies to design immunogens either targeting a particular antigenic region or focusing on native structure stabilization. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody.
Collapse
|
50
|
A next-generation cleaved, soluble HIV-1 Env trimer, BG505 SOSIP.664 gp140, expresses multiple epitopes for broadly neutralizing but not non-neutralizing antibodies. PLoS Pathog 2013; 9:e1003618. [PMID: 24068931 PMCID: PMC3777863 DOI: 10.1371/journal.ppat.1003618] [Citation(s) in RCA: 773] [Impact Index Per Article: 64.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 07/30/2013] [Indexed: 01/17/2023] Open
Abstract
A desirable but as yet unachieved property of a human immunodeficiency virus type 1 (HIV-1) vaccine candidate is the ability to induce broadly neutralizing antibodies (bNAbs). One approach to the problem is to create trimeric mimics of the native envelope glycoprotein (Env) spike that expose as many bNAb epitopes as possible, while occluding those for non-neutralizing antibodies (non-NAbs). Here, we describe the design and properties of soluble, cleaved SOSIP.664 gp140 trimers based on the subtype A transmitted/founder strain, BG505. These trimers are highly stable, more so even than the corresponding gp120 monomer, as judged by differential scanning calorimetry. They are also homogenous and closely resemble native virus spikes when visualized by negative stain electron microscopy (EM). We used several techniques, including ELISA and surface plasmon resonance (SPR), to determine the relationship between the ability of monoclonal antibodies (MAbs) to bind the soluble trimers and neutralize the corresponding virus. In general, the concordance was excellent, in that virtually all bNAbs against multiple neutralizing epitopes on HIV-1 Env were highly reactive with the BG505 SOSIP.664 gp140 trimers, including quaternary epitopes (CH01, PG9, PG16 and PGT145). Conversely, non-NAbs to the CD4-binding site, CD4-induced epitopes or gp41ECTO did not react with the trimers, even when their epitopes were present on simpler forms of Env (e.g. gp120 monomers or dissociated gp41 subunits). Three non-neutralizing MAbs to V3 epitopes did, however, react strongly with the trimers but only by ELISA, and not at all by SPR and to only a limited extent by EM. These new soluble trimers are useful for structural studies and are being assessed for their performance as immunogens.
Collapse
|