1
|
Štafl K, Trávníček M, Janovská A, Kučerová D, Pecnová Ľ, Yang Z, Stepanec V, Jech L, Salker MS, Hejnar J, Trejbalová K. Receptor usage of Syncytin-1: ASCT2, but not ASCT1, is a functional receptor and effector of cell fusion in the human placenta. Proc Natl Acad Sci U S A 2024; 121:e2407519121. [PMID: 39432789 PMCID: PMC11536146 DOI: 10.1073/pnas.2407519121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/12/2024] [Indexed: 10/23/2024] Open
Abstract
Syncytin-1, a human fusogenic protein of retroviral origin, is crucial for placental syncytiotrophoblast formation. To mediate cell-to-cell fusion, Syncytin-1 requires specific interaction with its cognate receptor. Two trimeric transmembrane proteins, Alanine, Serine, Cysteine Transporters 1 and 2 (ASCT1 and ASCT2), were suggested and widely accepted as Syncytin-1 cellular receptors. To quantitatively assess the individual contributions of human ASCT1 and ASCT2 to the fusogenic activity of Syncytin-1, we developed a model system where the ASCT1 and ASCT2 double knockout was rescued by ectopic expression of either ASCT1 or ASCT2. We demonstrated that ASCT2 was required for Syncytin-1 binding, cellular entry, and cell-to-cell fusion, while ASCT1 was not involved in this receptor interaction. We experimentally validated the ASCT1-ASCT2 heterotrimers as a possible explanation for the previous misidentification of ASCT1 as a receptor for Syncytin-1. This redefinition of receptor specificity is important for proper understanding of Syncytin-1 function in normal and pathological pregnancy.
Collapse
Affiliation(s)
- Kryštof Štafl
- Laboratory of Viral and Cellular Genetics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská14220, Czech Republic
| | - Martin Trávníček
- Laboratory of Viral and Cellular Genetics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská14220, Czech Republic
| | - Anna Janovská
- CZ-OpenScreen National Infrastructure for Chemical Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská14220, Czech Republic
| | - Dana Kučerová
- Laboratory of Viral and Cellular Genetics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská14220, Czech Republic
| | - Ľubomíra Pecnová
- Laboratory of Viral and Cellular Genetics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská14220, Czech Republic
| | - Zhiqi Yang
- Department of Women's Health, University of Tübingen, Tübingen72076, Germany
| | - Vladimír Stepanec
- Laboratory of Viral and Cellular Genetics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská14220, Czech Republic
| | - Lukáš Jech
- Laboratory of Viral and Cellular Genetics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská14220, Czech Republic
| | - Madhuri S. Salker
- Department of Women's Health, University of Tübingen, Tübingen72076, Germany
| | - Jiří Hejnar
- Laboratory of Viral and Cellular Genetics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská14220, Czech Republic
| | - Kateřina Trejbalová
- Laboratory of Viral and Cellular Genetics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská14220, Czech Republic
| |
Collapse
|
2
|
Whitley JA, Cai H. Engineering extracellular vesicles to deliver CRISPR ribonucleoprotein for gene editing. J Extracell Vesicles 2023; 12:e12343. [PMID: 37723839 PMCID: PMC10507228 DOI: 10.1002/jev2.12343] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 09/20/2023] Open
Abstract
Clustered regularly interspaced palindromic repeats (CRISPR) is a gene editing tool with tremendous therapeutic potential. Recently, ribonucleoprotein (RNP) complex-based CRISPR systems have gained momentum due to their reduction of off-target editing. This has coincided with the emergence of extracellular vesicles (EVs) as a therapeutic delivery vehicle due to its low immunogenicity and high capacity for manipulation. EVs are cell-derived membranous nanoparticles which mediate the intercellular transfer of molecular components. Current technologies achieve CRISPR RNP encapsulation into EVs through EVs biogenesis, thereby avoiding unnecessary physical, chemical or biological manipulations to the vesicles directly. Herein, we identify sixteen EVs-based CRISPR RNP encapsulation strategies, each with distinct genetic features to encapsulate CRISPR RNP. According to the molecular mechanism facilitating the encapsulation process, there are six strategies of encapsulating Cas9 RNP into virus-like particles based on genetic fusion, seven into EVs based on protein tethering, and three based on sgRNA-coupled encapsulation. Additionally, the incorporation of a targeting moiety to the EVs membrane surface through EVs biogenesis confers tropism and increases delivery efficiency to specific cell types. The targeting moieties include viral envelope proteins, recombinant proteins containing a ligand peptide, single-chain fragment variable (scFv) antibodies, and integrins. However, current strategies still have a number of limitations which prevent their use in clinical trials. Among those, the incorporation of viral proteins for encapsulation of Cas9 RNP have raised issues of biocompatibility due to host immune response. Future studies should focus on genetically engineering the EVs without viral proteins, enhancing EVs delivery specificity, and promoting EVs-based homology directed repair. Nevertheless, the integration of CRISPR RNP encapsulation and tropism technologies will provide strategies for the EVs-based delivery of CRISPR RNP in gene therapy and disease treatment.
Collapse
Affiliation(s)
- Joseph Andrew Whitley
- Department of Pharmaceutical and Biomedical SciencesCollege of PharmacyUniversity of GeorgiaAthensGeorgiaUSA
| | - Houjian Cai
- Department of Pharmaceutical and Biomedical SciencesCollege of PharmacyUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
3
|
Noguchi K, Ikawa Y, Takenaka M, Sakai Y, Fujiki T, Kuroda R, Chappell M, Ghiaccio V, Rivella S, Wada T. Protocol for a high titer of BaEV-Rless pseudotyped lentiviral vector: Focus on syncytium formation and detachment. J Virol Methods 2023; 314:114689. [PMID: 36739979 DOI: 10.1016/j.jviromet.2023.114689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/12/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
The development of hematopoietic stem cell (HSCs) gene therapy for DNA repair disorders, such as Fanconi anemia and Bloom syndrome, is challenging because of the induction of HSCs apoptosis by cytokine stimulation. Although the Baboon envelope pseudotyped lentiviral vector (BaEV-Rless-LV) has been reported as a non-stimulatory gene transfer tool, the virus titer of BaEV-Rless-LV is too low for use in clinical applications. Transfected 293 T cells with helper plasmids, including the BaEV-Rless plasmid, showed morphological changes, such as syncytium formation and detachment. To establish a novel protocol for producing a high titer of BaEV-Rless-LV, we optimized three aspects of a basic virus production protocol by focusing on modifying culture conditions and the use of reagents: the virus titer increased 3-fold when the amount of BaEV-Rless plasmid was increased 1.2-fold; the highest titer was obtained when the viral supernatant was harvested at 48-h post-transfection, despite complete syncytium formation and detachment of the 293 T cells; and the use of poly-L-lysine-coated culture plates to enhance the adhesion and proliferation of 293 T cells and prevent detachment doubled the titer. Collectively, our novel protocol resulted in a 10-fold titer increase compared to the basic protocol and may be useful in clinical applications for treating DNA repair disorders.
Collapse
Affiliation(s)
- Kazuhiro Noguchi
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Japan
| | - Yasuhiro Ikawa
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Japan.
| | - Mika Takenaka
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Japan
| | - Yuta Sakai
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Japan
| | - Toshihiro Fujiki
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Japan
| | - Rie Kuroda
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Japan
| | - Maxwell Chappell
- Department of Hematology, Children's Hospital of Philadelphia, United States
| | - Valentina Ghiaccio
- Department of Hematology, Children's Hospital of Philadelphia, United States
| | - Stefano Rivella
- Department of Hematology, Children's Hospital of Philadelphia, United States
| | - Taizo Wada
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Japan
| |
Collapse
|
4
|
Liu H, Zhu Z, Xue Q, Yang F, Cao W, Xue Z, Liu X, Zheng H. Picornavirus infection enhances aspartate by the SLC38A8 transporter to promote viral replication. PLoS Pathog 2023; 19:e1011126. [PMID: 36735752 PMCID: PMC9931120 DOI: 10.1371/journal.ppat.1011126] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 02/15/2023] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
Foot-and-mouth disease, a class of animal diseases, is caused by foot-and-mouth disease virus (FMDV). The metabolic changes during FMDV infection remain unclear. Here, PK-15 cells, serum, and tonsils infected with FMDV were analyzed by metabolomics. A total of 284 metabolites in cells were significantly changed after FMDV infection, and most of them belong to amino acids and nucleotides. Further studies showed that FMDV infection significantly enhanced aspartate in vitro and in vivo. The amino acid transporter solute carrier family 38 member 8 (SLC38A8) was responsible for FMDV-upregulated aspartate. Enterovirus 71 (EV71) and Seneca Valley virus (SVV) infection also enhanced aspartate by SLC38A8. Aspartate aminotransferase activity was also elevated in FMDV-, EV71-, and SVV-infected cells, which may lead to reversible transition between the TCA cycle and amino acids synthesis. Aspartate and SLC38A8 were essential for FMDV, EV71, and SVV replication in cells. In addition, aspartate and SLC38A8 also promoted FMDV and EV71 replication in mice. Detailed analysis indicated that FMDV infection promoted the transfer of mTOR to lysosome to enhance interaction between mTOR and Rheb, and activated PI3K/AKT/TSC2/Rheb/mTOR/p70S6K1 pathway to promote viral replication. The mTORC1 signaling pathway was responsible for FMDV-induced SLC38A8 protein expression. For the first time, our data identified metabolic changes during FMDV infection. These data identified a novel mechanism used by FMDV to upregulate aspartate to promote viral replication and will provide new perspectives for developing new preventive strategies.
Collapse
Affiliation(s)
- Huisheng Liu
- State Key Laboratory of Veterinary Etiological Biology; College of Veterinary Medicine, Lanzhou University, WOAH/National reference laboratory for foot-and-mouth disease; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zixiang Zhu
- State Key Laboratory of Veterinary Etiological Biology; College of Veterinary Medicine, Lanzhou University, WOAH/National reference laboratory for foot-and-mouth disease; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Qiao Xue
- State Key Laboratory of Veterinary Etiological Biology; College of Veterinary Medicine, Lanzhou University, WOAH/National reference laboratory for foot-and-mouth disease; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fan Yang
- State Key Laboratory of Veterinary Etiological Biology; College of Veterinary Medicine, Lanzhou University, WOAH/National reference laboratory for foot-and-mouth disease; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Weijun Cao
- State Key Laboratory of Veterinary Etiological Biology; College of Veterinary Medicine, Lanzhou University, WOAH/National reference laboratory for foot-and-mouth disease; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhaoning Xue
- State Key Laboratory of Veterinary Etiological Biology; College of Veterinary Medicine, Lanzhou University, WOAH/National reference laboratory for foot-and-mouth disease; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiangtao Liu
- State Key Laboratory of Veterinary Etiological Biology; College of Veterinary Medicine, Lanzhou University, WOAH/National reference laboratory for foot-and-mouth disease; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology; College of Veterinary Medicine, Lanzhou University, WOAH/National reference laboratory for foot-and-mouth disease; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
5
|
Hogan V, Johnson WE. Unique Structure and Distinctive Properties of the Ancient and Ubiquitous Gamma-Type Envelope Glycoprotein. Viruses 2023; 15:v15020274. [PMID: 36851488 PMCID: PMC9967133 DOI: 10.3390/v15020274] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023] Open
Abstract
After the onset of the AIDS pandemic, HIV-1 (genus Lentivirus) became the predominant model for studying retrovirus Env glycoproteins and their role in entry. However, HIV Env is an inadequate model for understanding entry of viruses in the Alpharetrovirus, Gammaretrovirus and Deltaretrovirus genera. For example, oncogenic model system viruses such as Rous sarcoma virus (RSV, Alpharetrovirus), murine leukemia virus (MLV, Gammaretrovirus) and human T-cell leukemia viruses (HTLV-I and HTLV-II, Deltaretrovirus) encode Envs that are structurally and functionally distinct from HIV Env. We refer to these as Gamma-type Envs. Gamma-type Envs are probably the most widespread retroviral Envs in nature. They are found in exogenous and endogenous retroviruses representing a broad spectrum of vertebrate hosts including amphibians, birds, reptiles, mammals and fish. In endogenous form, gamma-type Envs have been evolutionarily coopted numerous times, most notably as placental syncytins (e.g., human SYNC1 and SYNC2). Remarkably, gamma-type Envs are also found outside of the Retroviridae. Gp2 proteins of filoviruses (e.g., Ebolavirus) and snake arenaviruses in the genus Reptarenavirus are gamma-type Env homologs, products of ancient recombination events involving viruses of different Baltimore classes. Distinctive hallmarks of gamma-type Envs include a labile disulfide bond linking the surface and transmembrane subunits, a multi-stage attachment and fusion mechanism, a highly conserved (but poorly understood) "immunosuppressive domain", and activation by the viral protease during virion maturation. Here, we synthesize work from diverse retrovirus model systems to illustrate these distinctive properties and to highlight avenues for further exploration of gamma-type Env structure and function.
Collapse
|
6
|
Miluzio A, Cuomo A, Cordiglieri C, Donnici L, Pesce E, Bombaci M, Conti M, Fasciani A, Terracciano L, Manganaro L, Toccafondi M, Scagliola A, Oliveto S, Ricciardi S, Grifantini R, De Francesco R, Abrignani S, Manfrini N, Biffo S. Mapping of functional SARS-CoV-2 receptors in human lungs establishes differences in variant binding and SLC1A5 as a viral entry modulator of hACE2. EBioMedicine 2022; 87:104390. [PMID: 36584595 PMCID: PMC9795807 DOI: 10.1016/j.ebiom.2022.104390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The COVID-19 pandemic is an infectious disease caused by SARS-CoV-2. The first step of SARS-CoV-2 infection is the recognition of angiotensin-converting enzyme 2 (ACE2) receptors by the receptor-binding domain (RBD) of the viral Spike (S) glycoprotein. Although the molecular and structural bases of the SARS-CoV-2-RBD/hACE2 interaction have been thoroughly investigated in vitro, the relationship between hACE2 expression and in vivo infection is less understood. METHODS Here, we developed an efficient SARS-CoV-2-RBD binding assay suitable for super resolution microscopy and simultaneous hACE2 immunodetection and mapped the correlation between hACE2 receptor abundance and SARS-CoV-2-RBD binding, both in vitro and in human lung biopsies. Next, we explored the specific proteome of SARS-CoV-2-RBD/hACE2 through a comparative mass spectrometry approach. FINDINGS We found that only a minority of hACE2 positive spots are actually SARS-CoV-2-RBD binding sites, and that the relationship between SARS-CoV-2-RBD binding and hACE2 presence is variable, suggesting the existence of additional factors. Indeed, we found several interactors that are involved in receptor localization and viral entry and characterized one of them: SLC1A5, an amino acid transporter. High-resolution receptor-binding studies showed that co-expression of membrane-bound SLC1A5 with hACE2 predicted SARS-CoV-2 binding and entry better than hACE2 expression alone. SLC1A5 depletion reduces SARS-CoV-2 binding and entry. Notably, the Omicron variant is more efficient in binding hACE2 sites, but equally sensitive to SLC1A5 downregulation. INTERPRETATION We propose a method for mapping functional SARS-CoV-2 receptors in vivo. We confirm the existence of hACE2 co-factors that may contribute to differential sensitivity of cells to infection. FUNDING This work was supported by an unrestricted grant from "Fondazione Romeo ed Enrica Invernizzi" to Stefano Biffo and by AIRC under MFAG 2021 - ID. 26178 project - P.I. Manfrini Nicola.
Collapse
Affiliation(s)
- Annarita Miluzio
- National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi", INGM, 20122, Milan, Italy
| | - Alessandro Cuomo
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20141, Milan, Italy
| | - Chiara Cordiglieri
- National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi", INGM, 20122, Milan, Italy
| | - Lorena Donnici
- National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi", INGM, 20122, Milan, Italy
| | - Elisa Pesce
- National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi", INGM, 20122, Milan, Italy
| | - Mauro Bombaci
- National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi", INGM, 20122, Milan, Italy
| | - Matteo Conti
- National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi", INGM, 20122, Milan, Italy
| | - Alessandra Fasciani
- National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi", INGM, 20122, Milan, Italy
| | - Luigi Terracciano
- Institute of Pathology, University Hospital Basel, 4031, Basel, Switzerland
| | - Lara Manganaro
- National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi", INGM, 20122, Milan, Italy
| | - Mirco Toccafondi
- National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi", INGM, 20122, Milan, Italy
| | - Alessandra Scagliola
- National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi", INGM, 20122, Milan, Italy
| | - Stefania Oliveto
- National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi", INGM, 20122, Milan, Italy
| | - Sara Ricciardi
- National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi", INGM, 20122, Milan, Italy,Department of Biosciences, University of Milan, 20133, Milan, Italy
| | - Renata Grifantini
- National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi", INGM, 20122, Milan, Italy
| | - Raffaele De Francesco
- National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi", INGM, 20122, Milan, Italy,Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133, Milan, Italy
| | - Sergio Abrignani
- National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi", INGM, 20122, Milan, Italy,Department of Clinical Sciences and Community Health, University of Milan, 20122, Milan, Italy
| | - Nicola Manfrini
- National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi", INGM, 20122, Milan, Italy,Department of Biosciences, University of Milan, 20133, Milan, Italy,Corresponding author. National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi", INGM, 20122, Milan, Italy.
| | - Stefano Biffo
- National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi", INGM, 20122, Milan, Italy,Department of Biosciences, University of Milan, 20133, Milan, Italy,Corresponding author. National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi", INGM, 20122, Milan, Italy.
| |
Collapse
|
7
|
Bhutia YD, Mathew M, Sivaprakasam S, Ramachandran S, Ganapathy V. Unconventional Functions of Amino Acid Transporters: Role in Macropinocytosis (SLC38A5/SLC38A3) and Diet-Induced Obesity/Metabolic Syndrome (SLC6A19/SLC6A14/SLC6A6). Biomolecules 2022; 12:biom12020235. [PMID: 35204736 PMCID: PMC8961558 DOI: 10.3390/biom12020235] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 02/06/2023] Open
Abstract
Amino acid transporters are expressed in mammalian cells not only in the plasma membrane but also in intracellular membranes. The conventional function of these transporters is to transfer their amino acid substrates across the lipid bilayer; the direction of the transfer is dictated by the combined gradients for the amino acid substrates and the co-transported ions (Na+, H+, K+ or Cl−) across the membrane. In cases of electrogenic transporters, the membrane potential also contributes to the direction of the amino acid transfer. In addition to this expected traditional function, several unconventional functions are known for some of these amino acid transporters. This includes their role in intracellular signaling, regulation of acid–base balance, and entry of viruses into cells. Such functions expand the biological roles of these transporters beyond the logical amino acid homeostasis. In recent years, two additional unconventional biochemical/metabolic processes regulated by certain amino acid transporters have come to be recognized: macropinocytosis and obesity. This adds to the repertoire of biological processes that are controlled and regulated by amino acid transporters in health and disease. In the present review, we highlight the unusual involvement of selective amino acid transporters in macropinocytosis (SLC38A5/SLC38A3) and diet-induced obesity/metabolic syndrome (SLC6A19/SLC6A14/SLC6A6).
Collapse
|
8
|
Scalise M, Console L, Cosco J, Pochini L, Galluccio M, Indiveri C. ASCT1 and ASCT2: Brother and Sister? SLAS DISCOVERY 2021; 26:1148-1163. [PMID: 34269129 DOI: 10.1177/24725552211030288] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The SLC1 family includes seven members divided into two groups, namely, EAATs and ASCTs, that share similar 3D architecture; the first one includes high-affinity glutamate transporters, and the second one includes SLC1A4 and SLC1A5, known as ASCT1 and ASCT2, respectively, responsible for the traffic of neutral amino acids across the cell plasma membrane. The physiological role of ASCT1 and ASCT2 has been investigated over the years, revealing different properties in terms of substrate specificities, affinities, and regulation by physiological effectors and posttranslational modifications. Furthermore, ASCT1 and ASCT2 are involved in pathological conditions, such as neurodegenerative disorders and cancer. This has driven research in the pharmaceutical field aimed to find drugs able to target the two proteins.This review focuses on structural, functional, and regulatory aspects of ASCT1 and ASCT2, highlighting similarities and differences.
Collapse
Affiliation(s)
- Mariafrancesca Scalise
- Department DiBEST (Biologia, Ecologia e Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Lara Console
- Department DiBEST (Biologia, Ecologia e Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Jessica Cosco
- Department DiBEST (Biologia, Ecologia e Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Lorena Pochini
- Department DiBEST (Biologia, Ecologia e Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Michele Galluccio
- Department DiBEST (Biologia, Ecologia e Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia e Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy.,CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), Bari, Italy
| |
Collapse
|
9
|
Schust DJ, Bonney EA, Sugimoto J, Ezashi T, Roberts RM, Choi S, Zhou J. The Immunology of Syncytialized Trophoblast. Int J Mol Sci 2021; 22:ijms22041767. [PMID: 33578919 PMCID: PMC7916661 DOI: 10.3390/ijms22041767] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/02/2021] [Accepted: 02/06/2021] [Indexed: 02/06/2023] Open
Abstract
Multinucleate syncytialized trophoblast is found in three forms in the human placenta. In the earliest stages of pregnancy, it is seen at the invasive leading edge of the implanting embryo and has been called primitive trophoblast. In later pregnancy, it is represented by the immense, multinucleated layer covering the surface of placental villi and by the trophoblast giant cells found deep within the uterine decidua and myometrium. These syncytia interact with local and/or systemic maternal immune effector cells in a fine balance that allows for invasion and persistence of allogeneic cells in a mother who must retain immunocompetence for 40 weeks of pregnancy. Maternal immune interactions with syncytialized trophoblast require tightly regulated mechanisms that may differ depending on the location of fetal cells and their invasiveness, the nature of the surrounding immune effector cells and the gestational age of the pregnancy. Some specifically reflect the unique mechanisms involved in trophoblast cell–cell fusion (aka syncytialization). Here we will review and summarize several of the mechanisms that support healthy maternal–fetal immune interactions specifically at syncytiotrophoblast interfaces.
Collapse
Affiliation(s)
- Danny J. Schust
- Department of Obstetrics, Gynecology, University of Missouri School of Medicine, Columbia, MO 65202, USA; (T.E.); (R.M.R.); (S.C.); (J.Z.)
- Correspondence:
| | - Elizabeth A. Bonney
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Vermont College of Medicine, Burlington, VT 05405, USA;
| | - Jun Sugimoto
- Department of Obstetrics and Gynecology, Hiroshima University, Hiroshima 734-8551, Japan;
| | - Toshi Ezashi
- Department of Obstetrics, Gynecology, University of Missouri School of Medicine, Columbia, MO 65202, USA; (T.E.); (R.M.R.); (S.C.); (J.Z.)
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - R. Michael Roberts
- Department of Obstetrics, Gynecology, University of Missouri School of Medicine, Columbia, MO 65202, USA; (T.E.); (R.M.R.); (S.C.); (J.Z.)
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Sehee Choi
- Department of Obstetrics, Gynecology, University of Missouri School of Medicine, Columbia, MO 65202, USA; (T.E.); (R.M.R.); (S.C.); (J.Z.)
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Jie Zhou
- Department of Obstetrics, Gynecology, University of Missouri School of Medicine, Columbia, MO 65202, USA; (T.E.); (R.M.R.); (S.C.); (J.Z.)
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
10
|
Perry C, Rayat ACME. Lentiviral Vector Bioprocessing. Viruses 2021; 13:268. [PMID: 33572347 PMCID: PMC7916122 DOI: 10.3390/v13020268] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/11/2022] Open
Abstract
Lentiviral vectors (LVs) are potent tools for the delivery of genes of interest into mammalian cells and are now commonly utilised within the growing field of cell and gene therapy for the treatment of monogenic diseases and adoptive therapies such as chimeric antigen T-cell (CAR-T) therapy. This is a comprehensive review of the individual bioprocess operations employed in LV production. We highlight the role of envelope proteins in vector design as well as their impact on the bioprocessing of lentiviral vectors. An overview of the current state of these operations provides opportunities for bioprocess discovery and improvement with emphasis on the considerations for optimal and scalable processing of LV during development and clinical production. Upstream culture for LV generation is described with comparisons on the different transfection methods and various bioreactors for suspension and adherent producer cell cultivation. The purification of LV is examined, evaluating different sequences of downstream process operations for both small- and large-scale production requirements. For scalable operations, a key focus is the development in chromatographic purification in addition to an in-depth examination of the application of tangential flow filtration. A summary of vector quantification and characterisation assays is also presented. Finally, the assessment of the whole bioprocess for LV production is discussed to benefit from the broader understanding of potential interactions of the different process options. This review is aimed to assist in the achievement of high quality, high concentration lentiviral vectors from robust and scalable processes.
Collapse
Affiliation(s)
- Christopher Perry
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, Gower St, London WC1E 6BT, UK;
- Division of Advanced Therapies, National Institute for Biological Standards and Control, South Mimms EN6 3QG, UK
| | - Andrea C. M. E. Rayat
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, Gower St, London WC1E 6BT, UK;
| |
Collapse
|
11
|
van der Kuyl AC. Contemporary Distribution, Estimated Age, and Prehistoric Migrations of Old World Monkey Retroviruses. EPIDEMIOLGIA (BASEL, SWITZERLAND) 2021; 2:46-67. [PMID: 36417189 PMCID: PMC9620922 DOI: 10.3390/epidemiologia2010005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/18/2021] [Accepted: 01/29/2021] [Indexed: 12/14/2022]
Abstract
Old World monkeys (OWM), simians inhabiting Africa and Asia, are currently affected by at least four infectious retroviruses, namely, simian foamy virus (SFV), simian immunodeficiency virus (SIV), simian T-lymphotropic virus (STLV), and simian type D retrovirus (SRV). OWM also show chromosomal evidence of having been infected in the past with four more retroviral species, baboon endogenous virus (BaEV), Papio cynocephalus endogenous virus (PcEV), simian endogenous retrovirus (SERV), and Rhesus endogenous retrovirus-K (RhERV-K/SERV-K1). For some of the viruses, transmission to other primates still occurs, resulting, for instance, in the HIV pandemic. Retroviruses are intimately connected with their host as they are normally spread by close contact. In this review, an attempt to reconstruct the distribution and history of OWM retroviruses will be made. A literature overview of the species infected by any of the eight retroviruses as well as an age estimation of the pathogens will be given. In addition, primate genomes from databases have been re-analyzed for the presence of endogenous retrovirus integrations. Results suggest that some of the oldest retroviruses, SERV and PcEV, have travelled with their hosts to Asia during the Miocene, when a higher global temperature allowed simian expansions. In contrast, younger viruses, such as SIV and SRV, probably due to the lack of a primate continuum between the continents in later times, have been restricted to Africa and Asia, respectively.
Collapse
Affiliation(s)
- Antoinette C van der Kuyl
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
12
|
Schmidt P, Raftery MJ, Pecher G. Engineering NK Cells for CAR Therapy-Recent Advances in Gene Transfer Methodology. Front Immunol 2021; 11:611163. [PMID: 33488617 PMCID: PMC7817882 DOI: 10.3389/fimmu.2020.611163] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/24/2020] [Indexed: 12/21/2022] Open
Abstract
The development of chimeric antigen receptor (CAR) T cell therapy has introduced a new and effective strategy to guide and promote the immune response against tumors in the clinic. More recently, in an attempt to enhance its utility, this method has been expanded to novel cell types. One of the more successful variants has proven to be the expression of CARs in Natural Killer (NK) cells (CAR-NK). Gene engineering NK cells to express an exogenous CAR receptor allows the innate anti-tumor ability of NK cells to be harnessed and directed against a target tumor antigen. In addition, the biology of NK cells allows the development of an allogeneic cell therapeutic product useable with most or all patient haplotypes. NK cells cause little or no graft versus host disease (GvHD) and are therefore suitable for development of an "off the shelf" therapeutic product. Initial trials have also shown that CAR-NK cells rarely cause cytokine release syndrome. However, despite their potential NK cells have proven to be difficult to engineer, with high sensitivity to apoptosis and low levels of gene expression. The creation of optimized methods to introduce genes into NK cells will promote the widespread application of CAR-NK in research laboratories and the clinics.
Collapse
Affiliation(s)
| | | | - Gabriele Pecher
- Medical Clinic of Hematology, Oncology and Tumor Immunology, CCM, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
13
|
Daniel-Moreno A, Lamsfus-Calle A, Wilber A, Chambers CB, Johnston I, Antony JS, Epting T, Handgretinger R, Mezger M. Comparative analysis of lentiviral gene transfer approaches designed to promote fetal hemoglobin production for the treatment of β-hemoglobinopathies. Blood Cells Mol Dis 2020; 84:102456. [PMID: 32498026 DOI: 10.1016/j.bcmd.2020.102456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/25/2020] [Accepted: 05/25/2020] [Indexed: 01/05/2023]
Abstract
β-Hemoglobinopathies are among the most common single-gene disorders and are caused by different mutations in the β-globin gene. Recent curative therapeutic approaches for these disorders utilize lentiviral vectors (LVs) to introduce a functional copy of the β-globin gene into the patient's hematopoietic stem cells. Alternatively, fetal hemoglobin (HbF) can reduce or even prevent the symptoms of disease when expressed in adults. Thus, induction of HbF by means of LVs and other molecular approaches has become an alternative treatment of β-hemoglobinopathies. Here, we performed a head-to-head comparative analysis of HbF-inducing LVs encoding for: 1) IGF2BP1, 2) miRNA-embedded shRNA (shmiR) sequences specific for the γ-globin repressor protein BCL11A, and 3) γ-globin gene. Furthermore, two novel baboon envelope proteins (BaEV)-LVs were compared to the commonly used vesicular-stomatitis-virus glycoprotein (VSV-G)-LVs. Therapeutic levels of HbF were achieved for all VSV-G-LV approaches, from a therapeutic level of 20% using γ-globin LVs to 50% for both IGF2BP1 and BCL11A-shmiR LVs. Contrarily, BaEV-LVs conferred lower HbF expression with a peak level of 13%, however, this could still ameliorate symptoms of disease. From this thorough comparative analysis of independent HbF-inducing LV strategies, we conclude that HbF-inducing VSV-G-LVs represent a promising alternative to β-globin gene addition for patients with β-hemoglobinopathies.
Collapse
Affiliation(s)
- Alberto Daniel-Moreno
- University Children's Clinic Department of Pediatrics I, Hematology and Oncology, University of Tübingen, Germany
| | - Andrés Lamsfus-Calle
- University Children's Clinic Department of Pediatrics I, Hematology and Oncology, University of Tübingen, Germany
| | - Andrew Wilber
- Department of Medical Microbiology, Immunology and Cell Biology, SIU School of Medicine, and Simmons Cancer Institute, Springfield, IL, USA
| | - Christopher B Chambers
- Department of Medical Microbiology, Immunology and Cell Biology, SIU School of Medicine, and Simmons Cancer Institute, Springfield, IL, USA
| | - Ian Johnston
- Research & Development, Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
| | - Justin S Antony
- University Children's Clinic Department of Pediatrics I, Hematology and Oncology, University of Tübingen, Germany
| | - Thomas Epting
- Clinical Chemistry and Laboratory Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Rupert Handgretinger
- University Children's Clinic Department of Pediatrics I, Hematology and Oncology, University of Tübingen, Germany
| | - Markus Mezger
- University Children's Clinic Department of Pediatrics I, Hematology and Oncology, University of Tübingen, Germany.
| |
Collapse
|
14
|
Baboon envelope LVs efficiently transduced human adult, fetal, and progenitor T cells and corrected SCID-X1 T-cell deficiency. Blood Adv 2020; 3:461-475. [PMID: 30755435 DOI: 10.1182/bloodadvances.2018027508] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/13/2019] [Indexed: 01/15/2023] Open
Abstract
T cells represent a valuable tool for treating cancers and infectious and inherited diseases; however, they are mainly short-lived in vivo. T-cell therapies would strongly benefit from gene transfer into long-lived persisting naive T cells or T-cell progenitors. Here we demonstrate that baboon envelope glycoprotein pseudotyped lentiviral vectors (BaEV-LVs) far outperformed other LV pseudotypes for transduction of naive adult and fetal interleukin-7-stimulated T cells. Remarkably, BaEV-LVs efficiently transduced thymocytes and T-cell progenitors generated by culture of CD34+ cells on Delta-like ligand 4 (Dll4). Upon NOD/SCIDγC-/- engraftment, high transduction levels (80%-90%) were maintained in all T-cell subpopulations. Moreover, T-cell lineage reconstitution was accelerated in NOD/SCIDγC-/- recipients after T-cell progenitor injection compared with hematopoietic stem cell transplantation. Furthermore, γC-encoding BaEV-LVs very efficiently transduced Dll4-generated T-cell precursors from a patient with X-linked severe combined immunodeficiency (SCID-X1), which fully rescued T-cell development in vitro. These results indicate that BaEV-LVs are valuable tools for the genetic modification of naive T cells, which are important targets for gene therapy. Moreover, they allowed for the generation of gene-corrected T-cell progenitors that rescued SCID-X1 T-cell development in vitro. Ultimately, the coinjection of LV-corrected T-cell progenitors and hematopoietic stem cells might accelerate T-cell reconstitution in immunodeficient patients.
Collapse
|
15
|
Müller S, Bexte T, Gebel V, Kalensee F, Stolzenberg E, Hartmann J, Koehl U, Schambach A, Wels WS, Modlich U, Ullrich E. High Cytotoxic Efficiency of Lentivirally and Alpharetrovirally Engineered CD19-Specific Chimeric Antigen Receptor Natural Killer Cells Against Acute Lymphoblastic Leukemia. Front Immunol 2020; 10:3123. [PMID: 32117200 PMCID: PMC7025537 DOI: 10.3389/fimmu.2019.03123] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/23/2019] [Indexed: 01/03/2023] Open
Abstract
Autologous chimeric antigen receptor-modified (CAR) T cells with specificity for CD19 showed potent antitumor efficacy in clinical trials against relapsed and refractory B-cell acute lymphoblastic leukemia (B-ALL). Contrary to T cells, natural killer (NK) cells kill their targets in a non-antigen-specific manner and do not carry the risk of inducing graft vs. host disease (GvHD), allowing application of donor-derived cells in an allogenic setting. Hence, unlike autologous CAR-T cells, therapeutic CD19-CAR-NK cells can be generated as an off-the-shelf product from healthy donors. Nevertheless, genetic engineering of peripheral blood (PB) derived NK cells remains challenging and optimized protocols are needed. In our study, we aimed to optimize the generation of CD19-CAR-NK cells by retroviral transduction to improve the high antileukemic capacity of NK cells. We compared two different retroviral vector platforms, the lentiviral and alpharetroviral, both in combination with two different transduction enhancers (Retronectin and Vectofusin-1). We further explored different NK cell isolation techniques (NK cell enrichment and CD3/CD19 depletion) to identify the most efficacious methods for genetic engineering of NK cells. Our results demonstrated that transduction of NK cells with RD114-TR pseudotyped retroviral vectors, in combination with Vectofusin-1 was the most efficient method to generate CD19-CAR-NK cells. Retronectin was potent in enhancing lentiviral/VSV-G gene delivery to NK cells but not alpharetroviral/RD114-TR. Furthermore, the Vectofusin-based transduction of NK cells with CD19-CARs delivered by alpharetroviral/RD114-TR and lentiviral/RD114-TR vectors outperformed lentiviral/VSV-G vectors. The final generated CD19-CAR-NK cells displayed superior cytotoxic activity against CD19-expressing target cells when compared to non-transduced NK cells achieving up to 90% specific killing activity. In summary, our findings present the use of RD114-TR pseudotyped retroviral particles in combination with Vectofusin-1 as a successful strategy to genetically modify PB-derived NK cells to achieve highly cytotoxic CD19-CAR-NK cells at high yield.
Collapse
Affiliation(s)
- Stephan Müller
- Experimental Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Division of Pediatric Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Tobias Bexte
- Experimental Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Division of Pediatric Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK) Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany
| | - Veronika Gebel
- Experimental Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Division of Pediatric Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Franziska Kalensee
- Experimental Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Division of Pediatric Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Eva Stolzenberg
- Experimental Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Division of Pediatric Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Jessica Hartmann
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany
| | - Ulrike Koehl
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany.,Institute of Cellular Therapeutics, Hannover Medical School, Hanover, Germany.,Institute of Clinical Immunology, Faculty of Medicine, University Leipzig, Leipzig, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hanover, Germany.,Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Winfried S Wels
- German Cancer Consortium (DKTK) Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany.,Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Ute Modlich
- Research Group for Gene Modification in Stem Cells, Division of Veterinary Medicine, Paul-Ehrlich Institute, Langen, Germany
| | - Evelyn Ullrich
- Experimental Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Division of Pediatric Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK) Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
16
|
Bari R, Granzin M, Tsang KS, Roy A, Krueger W, Orentas R, Schneider D, Pfeifer R, Moeker N, Verhoeyen E, Dropulic B, Leung W. A Distinct Subset of Highly Proliferative and Lentiviral Vector (LV)-Transducible NK Cells Define a Readily Engineered Subset for Adoptive Cellular Therapy. Front Immunol 2019; 10:2001. [PMID: 31507603 PMCID: PMC6713925 DOI: 10.3389/fimmu.2019.02001] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/07/2019] [Indexed: 01/08/2023] Open
Abstract
Genetic engineering is an important tool for redirecting the function of various types of immune cells and their use for therapeutic purpose. Although NK cells have many beneficial therapeutic features, genetic engineering of immune cells for targeted therapy focuses mostly on T cells. One of the major obstacles for NK cell immunotherapy is the lack of an efficient method for gene transfer. Lentiviral vectors have been proven to be a safe tool for genetic engineering, however lentiviral transduction is inefficient for NK cells. We show in this study that lentiviral vectors pseudotyped with a modified baboon envelope glycoprotein can transduce NK cells 20-fold or higher in comparison to VSV-G pseudotyped lentiviral vector. When we investigated the mechanism of transduction, we found that activated NK cells expressed baboon envelope receptor ASCT-2. Further analysis revealed that only a subset of NK cells could be expanded and transduced with an expression profile of NK56bright, CD16dim, TRAILhigh, and CX3CR1neg. Using CD19-CAR, we could show that CD19 redirected NK cells efficiently and specifically kill cell lines expressing CD19. Taken together, the results from this study will be important for future genetic modification and for redirecting of NK cell function for therapeutic purpose.
Collapse
Affiliation(s)
- Rafijul Bari
- Lentigen, a Miltenyi Biotec Company, Miltenyi Biotec Company, Gaithersburg, MD, United States
| | | | - Kam Sze Tsang
- Miltenyi Biotec Inc, Gaithersburg, MD, United States
| | - Andre Roy
- Lentigen, a Miltenyi Biotec Company, Miltenyi Biotec Company, Gaithersburg, MD, United States
| | - Winfried Krueger
- Lentigen, a Miltenyi Biotec Company, Miltenyi Biotec Company, Gaithersburg, MD, United States
| | - Rimas Orentas
- Lentigen, a Miltenyi Biotec Company, Miltenyi Biotec Company, Gaithersburg, MD, United States
| | - Dina Schneider
- Lentigen, a Miltenyi Biotec Company, Miltenyi Biotec Company, Gaithersburg, MD, United States
| | | | | | - Els Verhoeyen
- CIRI, Université de Lyon 1, INSERM U1111, CNRS UMR 5308, ENS de Lyon, Lyon, France
- Université Côte d'Azur, INSERM U1065, C3M, Nice, France
| | - Boro Dropulic
- Lentigen, a Miltenyi Biotec Company, Miltenyi Biotec Company, Gaithersburg, MD, United States
| | - Wing Leung
- Miltenyi Biotec Inc, Gaithersburg, MD, United States
| |
Collapse
|
17
|
Greenwood AD, Ishida Y, O'Brien SP, Roca AL, Eiden MV. Transmission, Evolution, and Endogenization: Lessons Learned from Recent Retroviral Invasions. Microbiol Mol Biol Rev 2018; 82:e00044-17. [PMID: 29237726 PMCID: PMC5813887 DOI: 10.1128/mmbr.00044-17] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Viruses of the subfamily Orthoretrovirinae are defined by the ability to reverse transcribe an RNA genome into DNA that integrates into the host cell genome during the intracellular virus life cycle. Exogenous retroviruses (XRVs) are horizontally transmitted between host individuals, with disease outcome depending on interactions between the retrovirus and the host organism. When retroviruses infect germ line cells of the host, they may become endogenous retroviruses (ERVs), which are permanent elements in the host germ line that are subject to vertical transmission. These ERVs sometimes remain infectious and can themselves give rise to XRVs. This review integrates recent developments in the phylogenetic classification of retroviruses and the identification of retroviral receptors to elucidate the origins and evolution of XRVs and ERVs. We consider whether ERVs may recurrently pressure XRVs to shift receptor usage to sidestep ERV interference. We discuss how related retroviruses undergo alternative fates in different host lineages after endogenization, with koala retrovirus (KoRV) receiving notable interest as a recent invader of its host germ line. KoRV is heritable but also infectious, which provides insights into the early stages of germ line invasions as well as XRV generation from ERVs. The relationship of KoRV to primate and other retroviruses is placed in the context of host biogeography and the potential role of bats and rodents as vectors for interspecies viral transmission. Combining studies of extant XRVs and "fossil" endogenous retroviruses in koalas and other Australasian species has broadened our understanding of the evolution of retroviruses and host-retrovirus interactions.
Collapse
Affiliation(s)
- Alex D Greenwood
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research (IZW) in the Forschungsverbund Berlin e.V., Berlin, Germany
| | - Yasuko Ishida
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Sean P O'Brien
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Alfred L Roca
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Maribeth V Eiden
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research (IZW) in the Forschungsverbund Berlin e.V., Berlin, Germany
| |
Collapse
|
18
|
Sinha A, Johnson WE. Retroviruses of the RDR superinfection interference group: ancient origins and broad host distribution of a promiscuous Env gene. Curr Opin Virol 2017; 25:105-112. [PMID: 28837888 DOI: 10.1016/j.coviro.2017.07.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/08/2017] [Accepted: 07/23/2017] [Indexed: 12/24/2022]
Abstract
Due to recombination, different regions of a retrovirus genome can have distinct phylogenetic histories. The RD114-and-D-type-retrovirus (RDR) interference group provides an extreme example: the RDR group comprises a variety of taxonomically distinct retroviruses, isolated from diverse mammalian and avian hosts, that share a homologous env gene and use the same cell-surface entry receptor. RDR env homologs are also found among ancient endogenous retrovirus (ERV) sequences, including the syncytin genes of humans and rabbits, indicating that RDR Env glycoproteins have likely mediated endogenization on multiple occasions in diverse vertebrate lineages. The distribution of RDR env among exogenous and endogenous retroviruses indicates that it has been swapped between viruses many times, and that it likely facilitated multiple cross-species transmission events spanning millions of years of vertebrate evolution.
Collapse
Affiliation(s)
- Anindita Sinha
- Biology Department, Boston College, 355 Higgins Hall, 140 Commonwealth Ave., Chestnut Hill, MA 02467, USA
| | - Welkin E Johnson
- Biology Department, Boston College, 355 Higgins Hall, 140 Commonwealth Ave., Chestnut Hill, MA 02467, USA.
| |
Collapse
|
19
|
Baboon envelope pseudotyped lentiviral vectors: a highly efficient new tool to genetically manipulate T-cell acute lymphoblastic leukaemia-initiating cells. Leukemia 2016; 31:977-980. [PMID: 27922597 DOI: 10.1038/leu.2016.372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Levy C, Fusil F, Amirache F, Costa C, Girard-Gagnepain A, Negre D, Bernadin O, Garaulet G, Rodriguez A, Nair N, Vandendriessche T, Chuah M, Cosset FL, Verhoeyen E. Baboon envelope pseudotyped lentiviral vectors efficiently transduce human B cells and allow active factor IX B cell secretion in vivo in NOD/SCIDγc -/- mice. J Thromb Haemost 2016; 14:2478-2492. [PMID: 27685947 DOI: 10.1111/jth.13520] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 08/25/2016] [Indexed: 12/30/2022]
Abstract
Essentials B cells are attractive targets for gene therapy and particularly interesting for immunotherapy. A baboon envelope pseudotyped lentiviral vector (BaEV-LV) was tested for B-cell transduction. BaEV-LVs transduced mature and plasma human B cells with very high efficacy. BaEV-LVs allowed secretion of functional factor IX from B cells at therapeutic levels in vivo. SUMMARY Background B cells are attractive targets for gene therapy for diseases associated with B-cell dysfunction and particularly interesting for immunotherapy. Moreover, B cells are potent protein-secreting cells and can be tolerogenic antigen-presenting cells. Objective Evaluation of human B cells for secretion of clotting factors such as factor IX (FIX) as a possible treatment for hemophilia. Methods We tested here for the first time our newly developed baboon envelope (BaEV) pseudotyped lentiviral vectors (LVs) for human (h) B-cell transduction following their adaptive transfer into an NOD/SCIDγc-/- (NSG) mouse. Results Upon B-cell receptor stimulation, BaEV-LVs transduced up to 80% of hB cells, whereas vesicular stomatitis virus G protein VSV-G-LV only reached 5%. Remarkably, BaEVTR-LVs permitted efficient transduction of 20% of resting naive and 40% of resting memory B cells. Importantly, BaEV-LVs reached up to 100% transduction of human plasmocytes ex vivo. Adoptive transfer of BaEV-LV-transduced mature B cells into NOD/SCID/γc-/- (NSG) [non-obese diabetic (NOD), severe combined immuno-deficiency (SCID)] mice allowed differentiation into plasmablasts and plasma B cells, confirming a sustained high-level gene marking in vivo. As proof of principle, we assessed BaEV-LV for transfer of human factor IX (hFIX) into B cells. BaEV-LVs encoding FIX efficiently transduced hB cells and their transfer into NSG mice demonstrated for the first time secretion of functional hFIX from hB cells at therapeutic levels in vivo. Conclusions The BaEV-LVs might represent a valuable tool for therapeutic protein secretion from autologous B cells in vivo in the treatment of hemophilia and other acquired or inherited diseases.
Collapse
Affiliation(s)
- C Levy
- CIRI - International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France
| | - F Fusil
- CIRI - International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France
| | - F Amirache
- CIRI - International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France
| | - C Costa
- CIRI - International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France
| | - A Girard-Gagnepain
- CIRI - International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France
| | - D Negre
- CIRI - International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France
| | - O Bernadin
- CIRI - International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France
| | - G Garaulet
- Department of Molecular Biology, Universidad Autonoma de Madrid, Madrid, Spain
| | - A Rodriguez
- Department of Molecular Biology, Universidad Autonoma de Madrid, Madrid, Spain
| | - N Nair
- Department of Gene Therapy and Regenerative Medicine, Free University of Brussels, Brussels, Belgium
- Center for Molecular and Vascular Biology and Department of Cardiovascular Medicine, University of Leuven, Leuven, Belgium
| | - T Vandendriessche
- Department of Gene Therapy and Regenerative Medicine, Free University of Brussels, Brussels, Belgium
- Center for Molecular and Vascular Biology and Department of Cardiovascular Medicine, University of Leuven, Leuven, Belgium
| | - M Chuah
- Department of Molecular Biology, Universidad Autonoma de Madrid, Madrid, Spain
- Center for Molecular and Vascular Biology and Department of Cardiovascular Medicine, University of Leuven, Leuven, Belgium
| | - F-L Cosset
- CIRI - International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France
| | - E Verhoeyen
- CIRI - International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France
- Centre Méditerranéen de Médecine Moléculaire (C3M), Inserm, U1065, Équipe 'contrôle métabolique des morts cellulaires', Nice, France
| |
Collapse
|
21
|
Labenski V, Suerth JD, Barczak E, Heckl D, Levy C, Bernadin O, Charpentier E, Williams DA, Fehse B, Verhoeyen E, Schambach A. Alpharetroviral self-inactivating vectors produced by a superinfection-resistant stable packaging cell line allow genetic modification of primary human T lymphocytes. Biomaterials 2016; 97:97-109. [PMID: 27162078 DOI: 10.1016/j.biomaterials.2016.04.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 04/09/2016] [Accepted: 04/20/2016] [Indexed: 01/06/2023]
Abstract
Primary human T lymphocytes represent an important cell population for adoptive immunotherapies, including chimeric-antigen and T-cell receptor applications, as they have the capability to eliminate non-self, virus-infected and tumor cells. Given the increasing numbers of clinical immunotherapy applications, the development of an optimal vector platform for genetic T lymphocyte engineering, which allows cost-effective high-quality vector productions, remains a critical goal. Alpharetroviral self-inactivating vectors (ARV) have several advantages compared to other vector platforms, including a more random genomic integration pattern and reduced likelihood for inducing aberrant splicing of integrated proviruses. We developed an ARV platform for the transduction of primary human T lymphocytes. We demonstrated functional transgene transfer using the clinically relevant herpes-simplex-virus thymidine kinase variant TK.007. Proof-of-concept of alpharetroviral-mediated T-lymphocyte engineering was shown in vitro and in a humanized transplantation model in vivo. Furthermore, we established a stable, human alpharetroviral packaging cell line in which we deleted the entry receptor (SLC1A5) for RD114/TR-pseudotyped ARVs to prevent superinfection and enhance genomic integrity of the packaging cell line and viral particles. We showed that superinfection can be entirely prevented, while maintaining high recombinant virus titers. Taken together, this resulted in an improved production platform representing an economic strategy for translating the promising features of ARVs for therapeutic T-lymphocyte engineering.
Collapse
Affiliation(s)
- Verena Labenski
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Julia D Suerth
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Elke Barczak
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Dirk Heckl
- Department of Pediatric Hematology & Oncology, Hannover Medical School, Hannover, Germany; Department of Regulation in Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Camille Levy
- CIRI, EVIR Team, Inserm, U1111, CNRS, UMR5308, Université de Lyon-1, ENS de Lyon, Lyon, France
| | - Ornellie Bernadin
- CIRI, EVIR Team, Inserm, U1111, CNRS, UMR5308, Université de Lyon-1, ENS de Lyon, Lyon, France
| | - Emmanuelle Charpentier
- Department of Regulation in Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - David A Williams
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Boris Fehse
- Research Department Cell and Gene Therapy, Dept. of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Els Verhoeyen
- CIRI, EVIR Team, Inserm, U1111, CNRS, UMR5308, Université de Lyon-1, ENS de Lyon, Lyon, France; Inserm, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), équipe "contrôle métabolique des morts cellulaires", Nice, France
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
22
|
Formisano TM, Van Winkle LJ. At Least Three Transporters Likely Mediate Threonine Uptake Needed for Mouse Embryonic Stem Cell Proliferation. Front Cell Dev Biol 2016; 4:17. [PMID: 27014692 PMCID: PMC4791362 DOI: 10.3389/fcell.2016.00017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 02/29/2016] [Indexed: 01/19/2023] Open
Abstract
Stem cells are at the forefront of current regenerative and biomedical research. Thus, there exists an imperative and urgent need to understand the mechanisms that drive stem cell function in order to exploit their use as a therapeutic tool. Amino acids are potent inducers of signaling cascades that drive stem cell proliferation and differentiation. With a focus on mouse embryonic stem (mES) cells, Threonine (Thr) is the only amino acid required in culture media for mES cell proliferation. Current research associates this need for Thr with threonine dehydrogenase (TDH), which catabolizes Thr to glycine and acetyl-CoA in mES cells. This theory depends, in part, on the ability of 3- hydroxynorvaline (3-HNV) to inhibit both TDH and mES cell proliferation. However, the concentration of 3-HNV needed to inhibit mES cell proliferation is more than an order of magnitude less than its apparent Ki for TDH inhibition. Additionally, 3-HNV inhibits human embryonic stem (hES) cell proliferation, but hES cells do not express a functional tdh gene. Such findings indicate another mechanism for Thr stimulated mES and hES cell proliferation. Since amino acid transporters may be inducers of signaling cascades, we characterized the Thr transport systems in mES cells. We found that there is a Na+-dependent and a Na+-independent component of substrate-saturable transport, with the Na+-dependent component predominating. We also found that of 20 amino acids tested, the amino acids that were the strongest inhibitors of the Na+-dependent component of radiolabeled Thr transport were Ser, Cys, 4-OH-Pro, Asn, Met, and non-radiolabeled Thr itself. Such findings are consistent with characteristics of the ASC transport system, suggesting that this ASC system is responsible for the majority of Thr transport in mES cells. We confirmed expression of mRNA encoding the ASC system transporters, ASCT1 and ASCT2, in mES cells using RT-PCR. In conclusion, mES cells likely express at least three transporters of Thr; at least two Na+-dependent transporters and one Na+-independent one.
Collapse
Affiliation(s)
- Tara M Formisano
- Department of Biochemistry, Midwestern University College of Health Science Downers Grove, IL, USA
| | - Lon J Van Winkle
- Department of Biochemistry, Midwestern University College of Health Science Downers Grove, IL, USA
| |
Collapse
|
23
|
Miyaho RN, Nakagawa S, Hashimoto-Gotoh A, Nakaya Y, Shimode S, Sakaguchi S, Yoshikawa R, Takahashi MU, Miyazawa T. Susceptibility of domestic animals to a pseudotype virus bearing RD-114 virus envelope protein. Gene 2015; 567:189-95. [PMID: 25936996 DOI: 10.1016/j.gene.2015.04.079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 04/27/2015] [Accepted: 04/29/2015] [Indexed: 01/18/2023]
Abstract
Retroviral vectors are used for gene transduction into cells and have been applied to gene therapy. Retroviral vectors using envelope protein (Env) of RD-114 virus, a feline endogenous retrovirus, have been used for gene transduction. In this study, we investigated the susceptibility to RD-114 Env-pseudotyped virus in twelve domestic animals including cattle, sheep, horse, pig, dog, cat, ferret, mink, rabbit, rat, mouse, and quail. Comparison of nucleotide sequences of ASCT2 (SLC1A5), a receptor of RD-114 virus, in 10 mammalian and 2 avian species revealed that insertion and deletion events at the region C of ASCT2 where RD-114 viral Env interacts occurred independently in the mouse and rat lineage and in the chicken and quail lineage. By the pseudotype virus infection assay, we found that RD-114 Env-pseudotyped virus could efficiently infect all cell lines except those from mouse and rat. Furthermore, we confirmed that bovine ASCT2 (bASCT2) functions as a receptor for RD-114 virus infection. We also investigated bASCT2 mRNA expression in cattle tissues and found that it is expressed in various tissues including lung, spleen and kidney. These results indicate that retrovirus vectors with RD-114 virus Env can be used for gene therapy in large domestic animals in addition to companion animals such as cat and dog.
Collapse
Affiliation(s)
- Rie Nakaoka Miyaho
- Laboratory of Signal Transduction, Department of Cell Biology, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan; Laboratory of Virolution, Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - So Nakagawa
- Department of Molecular Life Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan; Micro/Nano Technology Center, Tokai University, 411 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan.
| | - Akira Hashimoto-Gotoh
- Laboratory of Signal Transduction, Department of Cell Biology, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan; Laboratory of Virolution, Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yuki Nakaya
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, Kawaramachi-hirokoji, Kamigyo-ku, Kyoto 606-8566, Japan
| | - Sayumi Shimode
- Laboratory of Signal Transduction, Department of Cell Biology, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan; Laboratory of Virolution, Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shoichi Sakaguchi
- Laboratory of Signal Transduction, Department of Cell Biology, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan; Laboratory of Virolution, Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Rokusuke Yoshikawa
- Laboratory of Signal Transduction, Department of Cell Biology, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan; Laboratory of Virolution, Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Mahoko Ueda Takahashi
- Micro/Nano Technology Center, Tokai University, 411 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan
| | - Takayuki Miyazawa
- Laboratory of Signal Transduction, Department of Cell Biology, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan; Laboratory of Virolution, Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
24
|
Genetic diversity of koala retroviral envelopes. Viruses 2015; 7:1258-70. [PMID: 25789509 PMCID: PMC4379569 DOI: 10.3390/v7031258] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 03/04/2015] [Accepted: 03/11/2015] [Indexed: 01/03/2023] Open
Abstract
Genetic diversity, attributable to the low fidelity of reverse transcription, recombination and mutation, is an important feature of infectious retroviruses. Under selective pressure, such as that imposed by superinfection interference, gammaretroviruses commonly adapt their envelope proteins to use alternative receptors to overcome this entry block. The first characterized koala retroviruses KoRV subgroup A (KoRV-A) were remarkable in their absence of envelope genetic variability. Once it was determined that KoRV-A was present in all koalas in US zoos, regardless of their disease status, we sought to isolate a KoRV variant whose presence correlated with neoplastic malignancies. More than a decade after the identification of KoRV-A, we isolated a second subgroup of KoRV, KoRV-B from koalas with lymphomas. The envelope proteins of KoRV-A and KoRV-B are sufficiently divergent to confer the ability to bind and employ distinct receptors for infection. We have now obtained a number of additional KoRV envelope variants. In the present studies we report these variants, and show that they differ from KoRV-A and KoRV-B envelopes in their host range and superinfection interference properties. Thus, there appears to be considerable variation among KoRVs envelope genes suggesting genetic diversity is a factor following the KoRV-A infection process.
Collapse
|
25
|
Baboon envelope pseudotyped LVs outperform VSV-G-LVs for gene transfer into early-cytokine-stimulated and resting HSCs. Blood 2014; 124:1221-31. [PMID: 24951430 DOI: 10.1182/blood-2014-02-558163] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hematopoietic stem cell (HSC)-based gene therapy holds promise for the cure of many diseases. The field is now moving toward the use of lentiviral vectors (LVs) as evidenced by 4 successful clinical trials. These trials used vesicular-stomatitis-virus-G protein (VSV-G)-LVs at high doses combined with strong cytokine-cocktail stimulation to obtain therapeutically relevant transduction levels; however, they might compromise the HSC character. Summarizing all these disadvantages, alternatives to VSV-G-LVs are urgently needed. We generated here high-titer LVs pseudotyped with a baboon retroviral envelope glycoprotein (BaEV-LVs), resistant to human complement. Under mild cytokine prestimulation to preserve the HSC characteristics, a single BaEV-LV application at a low dose, resulted in up to 90% of hCD34(+) cell transduction. Even more striking was that these new BaEV-LVs allowed, at low doses, efficient transduction of up to 30% of quiescent hCD34(+) cells, whereas high-dose VSV-G-LVs were insufficient. Importantly, reconstitution of NOD/Lt-SCID/γc(-/-) (NSG) mice with BaEV-LV-transduced hCD34(+) cells maintained these high transduction levels in all myeloid and lymphoid lineages, including early progenitors. This transduction pattern was confirmed or even increased in secondary NSG recipient mice. This suggests that BaEV-LVs efficiently transduce true HSCs and could improve HSC-based gene therapy, for which high-level HSC correction is needed for life-long cure.
Collapse
|
26
|
Guo D, Zhu Q, Zhang H, Sun D. Proteomic analysis of membrane proteins of vero cells: exploration of potential proteins responsible for virus entry. DNA Cell Biol 2013; 33:20-8. [PMID: 24286161 DOI: 10.1089/dna.2013.2193] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Vero cells are highly susceptible to many viruses in humans and animals, and its membrane proteins (MPs) are responsible for virus entry. In our study, the MP proteome of the Vero cells was investigated using a shotgun LC-MS/MS approach. Six hundred twenty-seven proteins, including a total of 1839 peptides, were identified in MP samples of the Vero cells. In 627 proteins, 307 proteins (48.96%) were annotated in terms of biological process of gene ontology (GO) categories; 356 proteins (56.78%) were annotated in terms of molecular function of GO categories; 414 proteins (66.03%) were annotated in terms of cellular components of GO categories. Of 627 identified proteins, seventeen proteins had been revealed to be virus receptor proteins. The resulting protein lists and highlighted proteins may provide valuable information to increase understanding of virus infection of Vero cells.
Collapse
Affiliation(s)
- Donghua Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University , Daqing, People's Republic of China
| | | | | | | |
Collapse
|
27
|
Shimode S, Nakaoka R, Shogen H, Miyazawa T. Characterization of feline ASCT1 and ASCT2 as RD-114 virus receptor. J Gen Virol 2013; 94:1608-1612. [PMID: 23580426 DOI: 10.1099/vir.0.052928-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RD-114 virus is a replication-competent feline endogenous retrovirus (ERV). RD-114 virus had been thought to be xenotropic; however, recent findings indicate that RD-114 virus is polytropic and can infect and grow efficiently in feline cells. Receptor(s) for RD-114 virus has not been identified and characterized in cats. In this study, we confirmed that two feline sodium-dependent neutral amino acid transporters (ASCTs), fASCT1 and fASCT2, function as RD-114 virus receptors. By chimeric analyses of feline and murine ASCTs, we revealed that extracellular loop 2 of both fASCT1 and fASCT2 determines the susceptibility to RD-114 virus. Further, we revealed ubiquitous expression of these genes, consistent with the general metabolic role of the ASCT molecules. Our study indicates that RD-114 virus may reinfect tissues and cells in cats, once the virus is activated. Implications of the involvement of RD-114 virus in feline oncogenesis are also discussed.
Collapse
Affiliation(s)
- Sayumi Shimode
- Laboratory of Signal Transduction, Department of Cell Biology, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Rie Nakaoka
- Department of Veterinary Pathology, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai-Midorimachi, Ebetsu 069-8501, Japan
| | - Hiroko Shogen
- Laboratory of Signal Transduction, Department of Cell Biology, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takayuki Miyazawa
- Laboratory of Signal Transduction, Department of Cell Biology, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
28
|
Barel M, Meibom K, Dubail I, Botella J, Charbit A. Francisella tularensis regulates the expression of the amino acid transporter SLC1A5 in infected THP-1 human monocytes. Cell Microbiol 2012; 14:1769-83. [PMID: 22804921 DOI: 10.1111/j.1462-5822.2012.01837.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 07/03/2012] [Accepted: 07/06/2012] [Indexed: 01/14/2023]
Abstract
Francisella tularensis, a Gram-negative bacterium that causes the disease tularemia in a large number of animal species, is thought to reside preferentially within macrophages in vivo. F. tularensis has developed mechanisms to rapidly escape from the phagosome into the cytoplasm of infected cells, a habitat with a rich supply of nutrients, ideal for multiplication. SLC1A5 is a neutral amino acid transporter expressed by human cells, which serves, along with SLC7A5 to equilibrate cytoplasmic amino acid pools. We herein analysed whether SLC1A5 was involved in F. tularensis intracellular multiplication. We demonstrate that expression of SLC1A5 is specifically upregulated by F. tularensis in infected THP-1 human monocytes. Furthermore, we show that SLC1A5 downregulation decreases intracellular bacterial multiplication, supporting the involvement of SLC1A5 in F. tularensis infection. Notably, after entry of F. tularensis into cells and during the whole infection, the highly glycosylated form of SLC1A5 was deglycosylated only by bacteria capable of cytosolic multiplication. These data suggest that intracellular replication of F. tularensis depends on the function of host cell SLC1A5. Our results are the first, which show that Francisella intracellular multiplication in human monocyte cytoplasm is associated with a post-translational modification of a eukaryotic amino acid transporter.
Collapse
Affiliation(s)
- Monique Barel
- INSERM U1002, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| | | | | | | | | |
Collapse
|
29
|
Yoshikawa R, Yasuda J, Kobayashi T, Miyazawa T. Canine ASCT1 and ASCT2 are functional receptors for RD-114 virus in dogs. J Gen Virol 2011; 93:603-607. [PMID: 22131312 DOI: 10.1099/vir.0.036228-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
All domestic cats carry an infectious endogenous retrovirus termed RD-114 virus. Recently, we and others found that several live-attenuated vaccines for dogs were contaminated with infectious RD-114 virus. In this study, we confirmed that the RD-114 virus efficiently infected and proliferated well in canine primary kidney cells, as well as three tested canine cell lines. Further, we identified canine ASCT1 and ASCT2, sodium-dependent neutral amino acid transporters, as RD-114 virus receptors. Canine ASCT2 also acts as a functional receptor for simian retrovirus 2, a pathogenic retrovirus that induces immunodeficiency in rhesus macaques. Identification of the canine receptor for RD-114 virus will help in evaluating the risk from vaccines contaminated by the virus.
Collapse
Affiliation(s)
- Rokusuke Yoshikawa
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-Nihonmatsucho, Sakyo-ku, Kyoto 606-8501, Japan.,Laboratory of Primate Model, Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan.,Laboratory of Signal Transduction, Department of Cell Biology, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Jiro Yasuda
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Takeshi Kobayashi
- Laboratory of Primate Model, Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Takayuki Miyazawa
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-Nihonmatsucho, Sakyo-ku, Kyoto 606-8501, Japan.,Laboratory of Signal Transduction, Department of Cell Biology, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
30
|
Phylogeny-directed search for murine leukemia virus-like retroviruses in vertebrate genomes and in patients suffering from myalgic encephalomyelitis/chronic fatigue syndrome and prostate cancer. Adv Virol 2011; 2011:341294. [PMID: 22315600 PMCID: PMC3265301 DOI: 10.1155/2011/341294] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Revised: 06/11/2011] [Accepted: 06/22/2011] [Indexed: 01/20/2023] Open
Abstract
Gammaretrovirus-like sequences occur in most vertebrate genomes. Murine Leukemia Virus (MLV) like retroviruses (MLLVs) are a subset, which may be pathogenic and spread cross-species. Retroviruses highly similar to MLLVs (xenotropic murine retrovirus related virus (XMRV) and Human Mouse retrovirus-like RetroViruses (HMRVs)) reported from patients suffering from prostate cancer (PC) and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) raise the possibility that also humans have been infected. Structurally intact, potentially infectious MLLVs occur in the genomes of some mammals, especially mouse. Mouse MLLVs contain three major groups. One, MERV G3, contained MLVs and XMRV/HMRV. Its presence in mouse DNA, and the abundance of xenotropic MLVs in biologicals, is a source of false positivity. Theoretically, XMRV/HMRV could be one of several MLLV transspecies infections. MLLV pathobiology and diversity indicate optimal strategies for investigating XMRV/HMRV in humans and raise ethical concerns. The alternatives that XMRV/HMRV may give a hard-to-detect “stealth” infection, or that XMRV/HMRV never reached humans, have to be considered.
Collapse
|
31
|
Susceptibility and production of a feline endogenous retrovirus (RD-114 virus) in various feline cell lines. Virus Res 2011; 155:268-73. [DOI: 10.1016/j.virusres.2010.10.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 10/08/2010] [Accepted: 10/19/2010] [Indexed: 11/19/2022]
|
32
|
Abstract
The resurrection of endogenous retroviruses from inactive molecular fossils has allowed the investigation of interactions between extinct pathogens and their hosts that occurred millions of years ago. Two such paleoviruses, chimpanzee endogenous retrovirus-1 and -2 (CERV1 and CERV2), are relatives of modern MLVs and are found in the genomes of a variety of Old World primates, but are absent from the human genome. No extant CERV1 and -2 proviruses are known to encode functional proteins. To investigate the host range restriction of these viruses, we attempted to reconstruct functional envelopes by generating consensus genes and proteins. CERV1 and -2 enveloped MLV particles infected cell lines from a range of mammalian species. Using CERV2 Env-pseudotyped MLV reporters, we identified copper transport protein 1 (CTR1) as a receptor that was presumably used by CERV2 during its ancient exogenous replication in primates. Expression of human CTR1 was sufficient to confer CERV2 permissiveness on otherwise resistant hamster cells, and CTR1 knockdown or CuCl(2) treatment specifically inhibited CERV2 infection of human cells. Mutations in highly conserved CTR1 residues that have rendered hamster cells resistant to CERV2 include a unique deletion in a copper-binding motif. These CERV2 receptor-inactivating mutations in hamster CTR1 are accompanied by apparently compensating changes, including an increased number of extracellular copper-coordinating residues, and this may represent an evolutionary barrier to the acquisition of CERV2 resistance in primates.
Collapse
|
33
|
Abstract
Mutations in FLVCR2, a cell surface protein related by homology and membrane topology to the heme exporter/retroviral receptor FLVCR1, have recently been associated with Fowler syndrome, a vascular disorder of the brain. We previously identified FLVCR2 to function as a receptor for FY981 feline leukemia virus (FeLV). However, the cellular function of FLVCR2 remains unresolved. Here, we report the cellular function of FLVCR2 as an importer of heme, based on the following observations. First, FLVCR2 binds to hemin-conjugated agarose, and binding is competed by free hemin. Second, mammalian cells and Xenopus laevis oocytes expressing FLVCR2 display enhanced heme uptake. Third, heme import is reduced after the expression of FLVCR2-specific small interfering RNA (siRNA) or after the binding of the FY981 FeLV envelope protein to the FLVCR2 receptor. Finally, cells overexpressing FLVCR2 are more sensitive to heme toxicity, a finding most likely attributable to enhanced heme uptake. Tissue expression analysis indicates that FLVCR2 is expressed in a broad range of human tissues, including liver, placenta, brain, and kidney. The identification of a cellular function for FLVCR2 will have important implications in elucidating the pathogenic mechanisms of Fowler syndrome and of phenotypically associated disorders.
Collapse
|
34
|
Miyazawa T. Endogenous retroviruses as potential hazards for vaccines. Biologicals 2010; 38:371-6. [PMID: 20378372 DOI: 10.1016/j.biologicals.2010.03.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 03/12/2010] [Indexed: 11/26/2022] Open
|
35
|
[Receptors for animal retroviruses]. Uirusu 2010; 59:223-42. [PMID: 20218331 DOI: 10.2222/jsv.59.223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Diseases caused by animal retroviruses have been recognized since 19th century in veterinary field. Most livestock and companion animals have own retroviruses. To disclose the receptors for these retroviruses will be useful for understanding retroviral pathogenesis, developments of anti-retroviral drugs and vectors for human and animal gene therapies. Of retroviruses in veterinary field, receptors for the following viruses have been identified; equine infectious anemia virus, feline immunodeficiency virus, feline leukemia virus subgroups A, B, C, and T, Jaagsiekte sheep retrovirus, enzootic nasal tumor virus, avian leukosis virus subgroups A, B, C, D, E, and J, reticuloendotheliosis virus, RD-114 virus (a feline endogenous retrovirus), and porcine endogenous retrovirus subgroup A. Primate lentiviruses require two molecules (CD4 and chemokine receptors such as CXCR4) as receptors. Likewise, feline immunodeficiency virus also requires two molecules, i.e., CD134 (an activation marker of CD4 T cells) and CXCR4 in infection. Gammaretroviruses utilize multi-spanning transmembrane proteins, most of which are transporters of amino acids, vitamins and inorganic ions. Betaretroviruses and alpharetroviruses utilize transmembrane and/or GPI-anchored proteins as receptors. In this review, I overviewed receptors for animal retroviruses in veterinary field.
Collapse
|
36
|
Differential resistance to cell entry by porcine endogenous retrovirus subgroup A in rodent species. Retrovirology 2007; 4:93. [PMID: 18081925 PMCID: PMC2241639 DOI: 10.1186/1742-4690-4-93] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Accepted: 12/14/2007] [Indexed: 12/23/2022] Open
Abstract
Background The risk of zoonotic infection by porcine endogenous retroviruses (PERV) has been highlighted in the context of pig-to-human xenotransplantation. The use of receptors for cell entry often determines the host range of retroviruses. A human-tropic PERV subgroup, PERV-A, can enter human cells through either of two homologous multitransmembrane proteins, huPAR-1 and huPAR-2. Here, we characterised human PARs and their homologues in the PERV-A resistant rodent species, mouse and rat (muPAR and ratPAR, respectively). Results Upon exogenous expression in PERV-A resistant cells, human and rat PARs, but not muPAR, conferred PERV-A sensitivity. Exogenously expressed ratPAR binds PERV-A Env and allows PERV-A infection with equivalent efficiency to that of huPAR-1. Endogenous ratPAR expression in rat cell lines appeared to be too low for PERV-A infection. In contrast, the presence of Pro at position 109 in muPAR was identified to be the determinant for PERV-A resistance. Pro109. was shown to be located in the second extracellular loop (ECL2) and affected PERV-A Env binding to PAR molecules. Conclusion The basis of resistance to PERV-A infection in two rodent species is different. Identification of a single a.a. mutation in muPAR, which is responsible for mouse cell resistance to PERV-A highlighted the importance of ECL-2 for the viral receptor function.
Collapse
|
37
|
Cell fusion during development. Trends Cell Biol 2007; 17:537-46. [PMID: 17981036 DOI: 10.1016/j.tcb.2007.09.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 09/07/2007] [Accepted: 09/07/2007] [Indexed: 11/21/2022]
Abstract
Most readers of this review originated from a sperm-egg fusion event. Cell fusion is a process that is crucial at many intersections later during development. However, we do not know which molecules (fusogens) fuse the membranes of gametes to form zygotes, myoblasts to form myotubes in muscles, macrophages to form osteoclasts in bones, or cytotrophoblasts to form syncytiotrophoblasts in placentas. There are five gold standards that can be applied for the identification of genuine fusogens. Based on these criteria, a numerical score can be used to assess the likelihood of protein fusogenicity. We compare distinct families of candidate developmental, viral and intracellular fusogens and analyze current models of membrane fusion.
Collapse
|
38
|
Hayward MD, Pötgens AJG, Drewlo S, Kaufmann P, Rasko JEJ. Distribution of human endogenous retrovirus type W receptor in normal human villous placenta. Pathology 2007; 39:406-12. [PMID: 17676482 DOI: 10.1080/00313020701444572] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND The fusion of trophoblast cells into the villous syncytiotrophoblast is crucial for appropriate placental function and fetal development. Fusion occurs following the interaction of syncytin-1, an envelope protein of the endogenous retrovirus HERV-W, and the RD114/mammalian type D retrovirus receptor (RDR/ASCT2) on adjacent cell membranes. This process must be tightly regulated in order to maintain the proliferative pool of cytotrophoblast cells as well as the function of the syncytia. AIM We sought to investigate whether syncytial fusion of placental cytotrophoblast cells may be regulated via modulation of RDR/ASCT2 expression. METHODS Expression of RDR/ASCT2 in term and first trimester villous placenta was assessed along with a number of molecular markers using immunofluorescent staining. In a complementary approach, Western blotting was used to investigate RDR/ASCT2 expression in a panel of choriocarcinoma cell lines before and after stimulation of fusion. RESULTS Villous placental RDR/ASCT2 expression was found to be restricted to the cytotrophoblast compartment, being largely absent in the syncytiotrophoblast. Local variations in RDR/ASCT2 expression were not associated with the proliferative status of cytotrophoblast cells. RDR/ASCT2 expression was also shown to be down-regulated in BeWo choriocarcinoma cells after stimulation of syncytial fusion. CONCLUSION This first report of the localisation and distribution of RDR/ASCT2 in human placental villi suggests that the fusion of placental trophoblast cells is not regulated by local or temporal variations of RDR/ASCT2 expression in villous cytotrophoblast cells.
Collapse
Affiliation(s)
- M D Hayward
- Gene and Stem Cell Therapy Program, Centenary Institute of Cancer Medicine and Cell Biology, University of Sydney, NSW, Australia
| | | | | | | | | |
Collapse
|
39
|
Kozak SL, Marin M, Rose KM, Bystrom C, Kabat D. The Anti-HIV-1 Editing Enzyme APOBEC3G Binds HIV-1 RNA and Messenger RNAs That Shuttle between Polysomes and Stress Granules. J Biol Chem 2006; 281:29105-19. [PMID: 16887808 DOI: 10.1074/jbc.m601901200] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Deoxycytidine deaminases APOBEC3G (A3G) and APOBEC3F (A3F) (members of the apolipoprotein B mRNA-editing catalytic polypeptide 3 family) have RNA-binding motifs, invade assembling human immunodeficiency virus (HIV-1), and hypermutate reverse transcripts. Antagonistically, HIV-1 viral infectivity factor degrades these enzymes. A3G is enzymatically inhibited by binding RNA within an unidentified large cytosolic ribonucleoprotein, implying that RNA degradation during reverse transcription may activate intravirion A3G at the necessary moment. We purified a biologically active tandem affinity-tagged A3G from human HEK293T cells. Mass spectrometry and coimmunoprecipitation from HEK293T and T lymphocyte extracts identified many RNA-binding proteins specifically associated with A3G and A3F, including poly(A)-binding proteins (PABPs), YB-1, Ro-La, RNA helicases, ribosomal proteins, and Staufen1. Most strikingly, nearly all A3G-associated proteins were known to bind exclusively or intermittently to translating and/or dormant mRNAs. Accordingly, A3G in HEK293T and T lymphocyte extracts was almost completely in A3G-mRNA-PABP complexes that shifted reversibly between polysomes and dormant pools in response to translational inhibitors. For example arsenite, which inhibits 5'-cap-dependent translational initiation, shifted mRNA-A3G-PABP from polysomes into stress granules in a manner that was blocked and reversed by the elongation inhibitor cycloheximide. Immunofluorescence microscopy showed A3G-mRNA-PABP stress granules only partially overlapping with Staufen1. A3G coimmunoprecipitated HIV-1 RNA and many mRNAs. Ribonuclease released nearly all A3G-associated proteins, including A3G homo-oligomers and A3G-A3F hetero-oligomers, but the viral infectivity factor remained bound. Many proteins and RNAs associated with A3G are excluded from A3G-containing virions, implying that A3G competitively partitions into virions based on affinity for HIV-1 RNA.
Collapse
Affiliation(s)
- Susan L Kozak
- Department of Biochemistry and Molecular Biology and Proteomics Shared Resource, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | | | | | |
Collapse
|
40
|
Weis S, Llenos IC, Dulay JR, Verma N, Sabunciyan S, Yolken RH. Changes in region- and cell type-specific expression patterns of neutral amino acid transporter 1 (ASCT-1) in the anterior cingulate cortex and hippocampus in schizophrenia, bipolar disorder and major depression. J Neural Transm (Vienna) 2006; 114:261-71. [PMID: 16897601 DOI: 10.1007/s00702-006-0544-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Accepted: 06/17/2006] [Indexed: 11/30/2022]
Abstract
Although, the pathogenetic mechanisms of schizophrenia, bipolar disorder, and major depression are not clearly understood, various neurotransmitter systems are reported to have altered expression patterns of their receptor and transporter proteins. Changes in the expression of the neutral amino acid transporter 1 (ASCT-1) protein in the anterior cingulate gyrus and the hippocampus were investigated using immunohistochemistry and western blotting. A significant decrease in ASCT-1 immunoreactivity in neurons in the cingulate cortex as well as astrocytes of the white matter was seen in schizophrenia. In bipolar disorder and major depression, similar results were seen for neurons. In the hippocampus, there was a striking loss of immunoreactivity on astrocytes, neurons and interneurons in multiple regions in schizophrenia and bipolar disorder, while only minor changes were seen in major depression. The altered expression of ASCT-1 in neurons and astrocytes reflects profound changes in glutamatergic neurotransmission and highlights a significant role of astrocytes in the pathophysiology of neurotransmission in these major psychiatric disorders.
Collapse
Affiliation(s)
- S Weis
- Laboratory of Brain Research and Neuropathology, Department of Psychiatry, Uniformed Services University of the Health Sciences, and Stanley Medical Research Institute, Bethesda, MD 20814, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Huppertz B, Bartz C, Kokozidou M. Trophoblast fusion: Fusogenic proteins, syncytins and ADAMs, and other prerequisites for syncytial fusion. Micron 2006; 37:509-17. [PMID: 16497505 DOI: 10.1016/j.micron.2005.12.011] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2005] [Accepted: 12/27/2005] [Indexed: 11/26/2022]
Abstract
Trophoblast fusion in the placenta is an event of major importance for the preservation of a healthy pregnancy. This process takes place throughout pregnancy and is crucial for the maintenance of the syncytiotrophoblast layer, the direct border between maternal blood and fetal tissues. Different regulatory proteins have been reported that are involved in trophoblast fusion. Syncytin-1 is a candidate regulator of fusion together with its receptors ASCT2 (RDR) and ASCT1. Little is known about the receptor properties and the interactions between receptor and ligand. Syncytin-2 or HERV-FRD is another strong candidate also of retroviral origin; while its actual function still remains to be explored. ADAM12 has been proposed to be a candidate regulator of trophoblast fusion since it is known to be involved in myoblast fusion, a process with a variety of similarities to trophoblast fusion. Beside these regulatory proteins, there is the necessity of a flip of phosphatidylserine from the inner to the outer leaflet of the plasma membranes of the fusing cells. Moreover, appropriate events of the early and still reversible stages of the apoptosis cascade are indispensable for trophoblast fusion. In this review, we present some details on the above events and proteins with their most important properties that could explain their roles in trophoblast fusion.
Collapse
Affiliation(s)
- Berthold Huppertz
- Department of Cell Biology, Histology and Embryology, Medical University Graz, Harrachgasse 21, 8010 Graz, Austria.
| | | | | |
Collapse
|
42
|
Coil DA, Miller AD. Phosphatidylserine treatment relieves the block to retrovirus infection of cells expressing glycosylated virus receptors. Retrovirology 2005; 2:49. [PMID: 16091143 PMCID: PMC1201173 DOI: 10.1186/1742-4690-2-49] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Accepted: 08/09/2005] [Indexed: 01/13/2023] Open
Abstract
Background A major determinant of retrovirus host range is the presence or absence of appropriate cell-surface receptors required for virus entry. Often orthologs of functional receptors are present in a wide range of species, but amino acid differences can render these receptors non-functional. In some cases amino acid differences result in additional N-linked glycosylation that blocks virus infection. The latter block to retrovirus infection can be overcome by treatment of cells with compounds such as tunicamycin, which prevent the addition of N-linked oligosaccharides. Results We have discovered that treatment of cells with liposomes composed of phosphatidylserine (PS) can also overcome the block to infection mediated by N-linked glycosylation. Importantly, this effect occurs without apparent change in the glycosylation state of the receptors for these viruses. This effect occurs with delayed kinetics compared to previous results showing enhancement of virus infection by PS treatment of cells expressing functional virus receptors. Conclusion We have demonstrated that PS treatment can relieve the block to retrovirus infection of cells expressing retroviral receptors that have been rendered non-functional by glycosylation. These findings have important implications for the current model describing inhibition of virus entry by receptor glycosylation.
Collapse
Affiliation(s)
- David A Coil
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024 USA
- Molecular and Cellular Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024 USA
| | - A Dusty Miller
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024 USA
| |
Collapse
|
43
|
Wieland H, Ullrich S, Lang F, Neumeister B. Intracellular multiplication of Legionella pneumophila depends on host cell amino acid transporter SLC1A5. Mol Microbiol 2005; 55:1528-37. [PMID: 15720558 DOI: 10.1111/j.1365-2958.2005.04490.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The infectious agent of Legionnaires' disease, Legionella (L) pneumophila, multiplies intracellularly in eukaryotic cells. This study has been performed to explore the nutrient requirements of L. pneumophila during intracellular replication. In human monocytes, bacterial replication rate was reduced by 76% in defined medium lacking L-cysteine, L-glutamine or L-serine. SLC1A5 (hATB(0,+)), a neutral amino acid transporter, was upregulated in the host cells after infection with L. pneumophila. Inhibition of SLC1A5 by BCH, a competitive inhibitor of amino acid uptake as well as siRNA silencing of the slc1a5 gene blocked intracellular multiplication of L. pneumophila without compromising viability of host cells. These observations suggest that replication of L. pneumophila depends on the function of host cell SLC1A5.
Collapse
Affiliation(s)
- Hagen Wieland
- Institute of Physiology, University of Tuebingen, 72076 Tuebingen, Germany
| | | | | | | |
Collapse
|
44
|
Pötgens AJG, Drewlo S, Kokozidou M, Kaufmann P. Syncytin: the major regulator of trophoblast fusion? Recent developments and hypotheses on its action. Hum Reprod Update 2004; 10:487-96. [PMID: 15333590 DOI: 10.1093/humupd/dmh039] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Syncytin is a membrane protein derived from the envelope gene of an endogenous retrovirus of the HERV-W family. The gene appears to be almost exclusively expressed in placenta; the protein was found in particular in syncytiotrophoblast. After transfection into various cell types it has proven to be a very fusogenic protein, inducing the formation of syncytia. Therefore, the question rises as to whether syncytin is responsible for the fusion process of villous cytotrophoblast into syncytiotrophoblast in vivo. If so, how is this fusion process regulated if syncytin is found all over the syncytiotrophoblast? Can this process be regulated through local or temporal changes in syncytin expression, or is syncytin merely one factor in a cascade of events leading to fusion limited at some other level? This review will try to summarize the published data on the regulation of fusion in trophoblast models as well as on the localization and regulation of syncytin expression and of its presumed receptors. Assuming that syncytin is the key factor inducing trophoblast fusion, a number of models will be presented by which syncytin and/or its receptors might regulate this process. In some of the hypotheses proposed, local coexpression of syncytin and receptor, leading to blocking of one factor by the other, is of functional relevance.
Collapse
Affiliation(s)
- A J G Pötgens
- Department of Anatomy II, University Hospital Aachen, Wendlingweg 2, D-52057 Aachen, Germany.
| | | | | | | |
Collapse
|
45
|
Rose KM, Marin M, Kozak SL, Kabat D. Transcriptional regulation of APOBEC3G, a cytidine deaminase that hypermutates human immunodeficiency virus. J Biol Chem 2004; 279:41744-9. [PMID: 15297452 DOI: 10.1074/jbc.m406760200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3G (APOBEC3G) is an antiretroviral deoxycytidine deaminase that lethally hypermutates human immunodeficiency virus type 1 (HIV-1) but is itself neutralized by the HIV-1-encoded viral infectivity factor. Accordingly, APOBEC3G occurs specifically in human T lymphocytic cell lines that contain this antiviral defense, including H9. Since the substrate specificities of related cytidine deaminases are strongly influenced by their intracellular quantities, we analyzed the factors that control APOBEC3G expression. The levels of APOBEC3G mRNA and protein were unaffected by treatment of proliferating H9 cells with interferons or tumor necrosis factor-alpha but were enhanced up to 20-fold by phorbol myristate acetate. This induction was mediated at the transcriptional level by a pathway that required activation of the protein kinase Calpha/betaI isozyme (PKC), mitogen-activated protein kinase kinase (MEK) 1 and 2, and extracellular signal-regulated kinase (ERK). Correspondingly, induction of APOBEC3G was blocked by multiple inhibitors that act at diverse steps of this pathway. The PKCalpha/betaI/MEK/ERK pathway also controlled basal levels of APOBEC3G mRNA and protein, which consequently declined when cells were treated with these inhibitors or arrested in the G(0) state of the cell cycle by serum starvation. We conclude that expression of the antiviral APOBEC3G editing enzyme is dynamically controlled by the PKCalpha/betaI/MEK/ERK protein kinase cascade in human T lymphocytes.
Collapse
Affiliation(s)
- Kristine M Rose
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239-3098, USA
| | | | | | | |
Collapse
|
46
|
Tailor CS, Lavillette D, Marin M, Kabat D. Cell surface receptors for gammaretroviruses. Curr Top Microbiol Immunol 2003; 281:29-106. [PMID: 12932075 DOI: 10.1007/978-3-642-19012-4_2] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Evidence obtained during the last few years has greatly extended our understanding of the cell surface receptors that mediate infections of retroviruses and has provided many surprising insights. In contrast to other cell surface components such as lectins or proteoglycans that influence infections indirectly by enhancing virus adsorption onto specific cells, the true receptors induce conformational changes in the viral envelope glycoproteins that are essential for infection. One surprise is that all of the cell surface receptors for gamma-retroviruses are proteins that have multiple transmembrane (TM) sequences, compatible with their identification in known instances as transporters for important solutes. In striking contrast, almost all other animal viruses use receptors that exclusively have single TM sequences, with the sole proven exception we know of being the coreceptors used by lentiviruses. This evidence strongly suggests that virus genera have been prevented because of their previous evolutionary adaptations from switching their specificities between single-TM and multi-TM receptors. This evidence also implies that gamma-retroviruses formed by divergent evolution from a common origin millions of years ago and that individual viruses have occasionally jumped between species (zoonoses) while retaining their commitment to using the orthologous receptor of the new host. Another surprise is that many gamma-retroviruses use not just one receptor but pairs of closely related receptors as alternatives. This appears to have enhanced viral survival by severely limiting the likelihood of host escape mutations. All of the receptors used by gamma-retroviruses contain hypervariable regions that are often heavily glycosylated and that control the viral host range properties, consistent with the idea that these sequences are battlegrounds of virus-host coevolution. However, in contrast to previous assumptions, we propose that gamma-retroviruses have become adapted to recognize conserved sites that are important for the receptor's natural function and that the hypervariable sequences have been elaborated by the hosts as defense bulwarks that surround the conserved viral attachment sites. Previously, it was believed that binding to receptors directly triggers a series of conformational changes in the viral envelope glycoproteins that culminate in fusion of the viral and cellular membranes. However, new evidence suggests that gamma-retroviral association with receptors triggers an obligatory interaction or cross-talk between envelope glycoproteins on the viral surface. If this intermediate step is prevented, infection fails. Conversely, in several circumstances this cross-talk can be induced in the absence of a cell surface receptor for the virus, in which case infection can proceed efficiently. This new evidence strongly implies that the role of cell surface receptors in infections of gamma-retroviruses (and perhaps of other enveloped animal viruses) is more complex and interesting than was previously imagined. Recently, another gammaretroviral receptor with multiple transmembrane sequences was cloned. See Prassolov, Y., Zhang, D., Ivanov, D., Lohler, J., Ross, S.R., and Stocking, C. Sodium-dependent myo-inositol transporter 1 is a receptor for Mus cervicolor M813 murine leukemia virus.
Collapse
Affiliation(s)
- C S Tailor
- Infection, Immunity Injury and Repair Program, Hospital for Sick Children, Toronto, ON M5G 1XB, Canada
| | | | | | | |
Collapse
|
47
|
Marin M, Rose KM, Kozak SL, Kabat D. HIV-1 Vif protein binds the editing enzyme APOBEC3G and induces its degradation. Nat Med 2003; 9:1398-403. [PMID: 14528301 DOI: 10.1038/nm946] [Citation(s) in RCA: 632] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2003] [Accepted: 09/15/2003] [Indexed: 12/18/2022]
Abstract
The viral infectivity factor (Vif) encoded by HIV-1 neutralizes a potent antiviral pathway that occurs in human T lymphocytes and several leukemic T-cell lines termed nonpermissive, but not in other cells termed permissive. In the absence of Vif, this antiviral pathway efficiently inactivates HIV-1. It was recently reported that APOBEC3G (also known as CEM-15), a cytidine deaminase nucleic acid-editing enzyme, confers this antiviral phenotype on permissive cells. Here we describe evidence that Vif binds APOBEC3G and induces its rapid degradation, thus eliminating it from cells and preventing its incorporation into HIV-1 virions. Studies of Vif mutants imply that it contains two domains, one that binds APOBEC3G and another with a conserved SLQ(Y/F)LA motif that mediates APOBEC3G degradation by a proteasome-dependent pathway. These results provide promising approaches for drug discovery.
Collapse
Affiliation(s)
- Mariana Marin
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Mail Code L224, Portland, Oregon 97239-3098, USA
| | | | | | | |
Collapse
|
48
|
Hein S, Prassolov V, Zhang Y, Ivanov D, Löhler J, Ross SR, Stocking C. Sodium-dependent myo-inositol transporter 1 is a cellular receptor for Mus cervicolor M813 murine leukemia virus. J Virol 2003; 77:5926-32. [PMID: 12719585 PMCID: PMC154034 DOI: 10.1128/jvi.77.10.5926-5932.2003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Retrovirus infection is initiated by binding of the surface (SU) portion of the viral envelope glycoprotein (Env) to specific receptors on cells. This binding triggers conformational changes in the transmembrane portion of Env, leading to membrane fusion and cell entry, and is thus a major determinant of retrovirus tissue and species tropism. The M813 murine leukemia virus (MuLV) is a highly fusogenic gammaretrovirus, isolated from Mus cervicolor, whose host range is limited to mouse cells. To delineate the molecular mechanisms of its restricted host range and its high fusogenic potential, we initiated studies to characterize the cell surface protein that mediates M813 infection. Screening of the T31 mouse-hamster radiation hybrid panel for M813 infectivity localized the receptor gene to the distal end of mouse chromosome 16. Expression of one of the likely candidate genes (slc5a3) within this region in human cells conferred susceptibility to both M813 infection and M813-induced fusogenicity. slc5a3 encodes sodium myo-inositol transporter 1 (SMIT1), thus adding another sodium-dependent transporter to the growing list of proteins used by MuLVs for cell entry. Characterization of SMIT1 orthologues in different species identified several amino acid variations within two extracellular loops that may restrict susceptibility to M813 infection.
Collapse
Affiliation(s)
- Sibyll Hein
- Department of Cell and Virus Genetics, Heinrich-Pette-Institute for Experimental ImmunologyVirology, D-20251 Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|
49
|
Brenner S, Malech HL. Current developments in the design of onco-retrovirus and lentivirus vector systems for hematopoietic cell gene therapy. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1640:1-24. [PMID: 12676350 DOI: 10.1016/s0167-4889(03)00024-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Over the past dozen years, the majority of clinical gene therapy trials for inherited genetic diseases and cancer therapy have been performed using murine onco-retrovirus as the gene delivery vector. The earliest systems used were relatively inefficient in both the rates of transduction and expression of the transgene. Formidable obstacles inherent in the cell biology and/or the immunology of the target cell systems limited the efficacy of gene therapy for many target diseases. Development of novel retrovirus gene transfer systems that are in progress have begun to overcome these obstacles. Evidence of this progress is the recent successful functional correction of the immune T and B lymphocyte deficiency in patients with X-linked severe combined immunodeficiency (X-SCID) and adenosine deaminase (ADA)-deficient SCID following onco-retrovirus vector ex vivo transduction of autologous marrow stem cells [Science 296 (2002) 2410; Science 288 (2000) 669; N. Engl. J. Med. 346 (2002) 1185]. These achievements of prolonged clinical benefit from gene therapy were tempered by the finding of insertional mutageneses in two of the treated X-SCID patients [N. Engl. J. Med. 348 (2003) 255].
Collapse
Affiliation(s)
- Sebastian Brenner
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
50
|
Marin M, Lavillette D, Kelly SM, Kabat D. N-linked glycosylation and sequence changes in a critical negative control region of the ASCT1 and ASCT2 neutral amino acid transporters determine their retroviral receptor functions. J Virol 2003; 77:2936-45. [PMID: 12584318 PMCID: PMC149750 DOI: 10.1128/jvi.77.5.2936-2945.2003] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A widely dispersed interference group of retroviruses that includes the feline endogenous virus (RD114), baboon endogenous virus (BaEV), human endogenous virus type W (HERV-W), and type D primate retroviruses uses the human Na(+)-dependent neutral amino acid transporter type 2 (hASCT2; gene name, SLC1A5) as a common cell surface receptor. Although hamster cells are fully resistant to these viruses and murine cells are susceptible only to BaEV and HERV-W pseudotype viruses, these rodent cells both become highly susceptible to all of the viruses after treatment with tunicamycin, an inhibitor of protein N-linked glycosylation. A partial explanation for these results was recently provided by findings that the orthologous murine transporter mASCT2 is inactive as a viral receptor, that a related (ca. 55% identity) murine paralog (mASCT1; gene name, SLC1A4) mediates infections specifically of BaEV and HERV-W, and that N-deglycosylation of mASCT1 activates it as a receptor for all viruses of this interference group. Because the only two N-linked oligosaccharides in mASCT1 occur in the carboxyl-terminal region of extracellular loop 2 (ECL2), it was inferred that this region contributes in an inhibitory manner to infections by RD114 and type D primate viruses. To directly and more thoroughly investigate the receptor active sites, we constructed and analyzed a series of hASCT2/mASCT2 chimeras and site-directed mutants. Our results suggest that a hypervariable sequence of 21 amino acids in the carboxyl-terminal portion of ECL2 plays a critical role in determining the receptor properties of ASCT2 proteins for all viruses in this interference group. In addition, we analyzed the tunicamycin-dependent viral susceptibility of hamster cells. In contrast to mASCT1, which contains two N-linked oligosaccharides that partially restrict viral infections, hamster ASCT1 contains an additional N-linked oligosaccharide clustered close to the others in the carboxyl-terminal region of ECL2. Removal of this N-linked oligosaccharide by mutagenesis enabled hamster ASCT1 to function as a receptor for all viruses of this interference group. These results strongly suggest that combinations of amino acid sequence changes and N-linked oligosaccharides in a critical carboxyl-terminal region of ECL2 control retroviral utilization of both the ASCT1 and ASCT2 receptors.
Collapse
Affiliation(s)
- Mariana Marin
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon 97201-3098, USA
| | | | | | | |
Collapse
|