1
|
Domingo E, Martínez-González B, Somovilla P, García-Crespo C, Soria ME, de Ávila AI, Gadea I, Perales C. A general and biomedical perspective of viral quasispecies. RNA (NEW YORK, N.Y.) 2025; 31:429-443. [PMID: 39689947 DOI: 10.1261/rna.080280.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/30/2024] [Accepted: 12/03/2024] [Indexed: 12/19/2024]
Abstract
Viral quasispecies refers to the complex and dynamic mutant distributions (also termed mutant spectra, clouds, or swarms) that arise as a result of high error rates during RNA genome replication. The mutant spectrum of individual RNA virus populations is modified by continuous generation of variant genomes, competition and interactions among them, environmental influences, bottleneck events, and bloc transmission of viral particles. Quasispecies dynamics provides a new perspective on how viruses adapt, evolve, and cause disease, and sheds light on strategies to combat them. Molecular flexibility, together with ample opportunity of mutant cloud traffic in our global world, are key ingredients of viral disease emergences, as exemplified by the recent COVID-19 pandemic. In the present article, we present a brief overview of the molecular basis of mutant swarm formation and dynamics, and how the latter relates to viral disease and epidemic spread. We outline future challenges derived of the highly diverse cellular world in which viruses are necessarily installed.
Collapse
Affiliation(s)
- Esteban Domingo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), 28049 Madrid, Spain
| | - Brenda Martínez-González
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Pilar Somovilla
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), 28049 Madrid, Spain
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | - María Eugenia Soria
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), 28049 Madrid, Spain
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
| | | | - Ignacio Gadea
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
- Centre for Biomedical Network Research on Infectious Diseases (CIBERINFEC), 28029 Madrid, Spain
| | - Celia Perales
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
| |
Collapse
|
2
|
Siering O, Langbein M, Herrmann M, Wittwer K, von Messling V, Sawatsky B, Pfaller CK. Genetic diversity accelerates canine distemper virus adaptation to ferrets. J Virol 2024; 98:e0065724. [PMID: 39007615 PMCID: PMC11334482 DOI: 10.1128/jvi.00657-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/16/2024] [Accepted: 06/12/2024] [Indexed: 07/16/2024] Open
Abstract
RNA viruses adapt rapidly to new host environments by generating highly diverse genome sets, so-called "quasispecies." Minor genetic variants promote their rapid adaptation, allowing for the emergence of drug-resistance or immune-escape mutants. Understanding these adaptation processes is highly relevant to assessing the risk of cross-species transmission and the safety and efficacy of vaccines and antivirals. We hypothesized that genetic memory within a viral genome population facilitates rapid adaptation. To test this, we investigated the adaptation of the Morbillivirus canine distemper virus to ferrets and compared an attenuated, Vero cell-adapted virus isolate with its recombinant derivative over consecutive ferret passages. Although both viruses adapted to the new host, the reduced initial genetic diversity of the recombinant virus resulted in delayed disease onset. The non-recombinant virus gradually increased the frequencies of beneficial mutations already present at very low frequencies in the input virus. In contrast, the recombinant virus first evolved de novo mutations to compensate for the initial fitness impairments. Importantly, while both viruses evolved different sets of mutations, most mutations found in the adapted non-recombinant virus were identical to those found in a previous ferret adaptation experiment with the same isolate, indicating that mutations present at low frequency in the original virus stock serve as genetic memory. An arginine residue at position 519 in the carboxy terminus of the nucleoprotein shared by all adapted viruses was found to contribute to pathogenesis in ferrets. Our work illustrates the importance of genetic diversity for adaptation to new environments and identifies regions with functional relevance.IMPORTANCEWhen viruses encounter a new host, they can rapidly adapt to this host and cause disease. How these adaptation processes occur remains understudied. Morbilliviruses have high clinical and veterinary relevance and are attractive model systems to study these adaptation processes. The canine distemper virus is of particular interest, as it exhibits a broader host range than other morbilliviruses and frequently crosses species barriers. Here, we compared the adaptation of an attenuated virus and its recombinant derivative to that of ferrets. Pre-existing mutations present at low frequency allowed faster adaptation of the non-recombinant virus compared to the recombinant virus. We identified a common point mutation in the nucleoprotein that affected the pathogenesis of both viruses. Our study shows that genetic memory facilitates environmental adaptation and that erasing this genetic memory by genetic engineering results in delayed and different adaptation to new environments, providing an important safety aspect for the generation of live-attenuated vaccines.
Collapse
Affiliation(s)
- Oliver Siering
- Division of Veterinary Medicine, Paul-Ehrlich-Institute, Langen, Germany
| | - Mareike Langbein
- Division of Veterinary Medicine, Paul-Ehrlich-Institute, Langen, Germany
| | - Maike Herrmann
- Division of Veterinary Medicine, Paul-Ehrlich-Institute, Langen, Germany
| | - Kevin Wittwer
- Division of Veterinary Medicine, Paul-Ehrlich-Institute, Langen, Germany
| | | | - Bevan Sawatsky
- Division of Veterinary Medicine, Paul-Ehrlich-Institute, Langen, Germany
| | - Christian K. Pfaller
- Division of Veterinary Medicine, Paul-Ehrlich-Institute, Langen, Germany
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
3
|
Landa CR, Ariza-Mateos A, Briones C, Perales C, Wagner A, Domingo E, Gómez J. Adapting the rhizome concept to an extended definition of viral quasispecies and the implications for molecular evolution. Sci Rep 2024; 14:17914. [PMID: 39095425 PMCID: PMC11297277 DOI: 10.1038/s41598-024-68760-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/18/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024] Open
Abstract
The rhizome concept proposed by Gilles Deleuze and Félix Guattari offers a novel perspective on the organization and interdependence of complex constellations of heterogeneous entities, their mapping and their ruptures. The emphasis of the present study is placed on the dynamics of contacts and communication among such entities that arise from experimentation, without any favored hierarchy or origin. When applied to biological evolution, the rhizome concept integrates all types of heterogeneity resulting from "symbiotic" relationships among living beings (or their genomic material), horizontal genetic transfer, recombination and mutation, and breaks away from the approach that gives rise to the phylogenetic tree of life. It has already been applied to describe the dynamics and evolution of RNA viruses. Thus, here we introduce a novel framework for the interpretation the viral quasispecies concept, which explains the evolution of RNA virus populations as the result of dynamic interconnections and multifaceted interdependence between highly heterogeneous viral sequences and its inherently heterogeneous host cells. The rhizome network perspective underlines even further the medical implications of the broad mutant spectra of viruses that are in constant flow, given the multiple pathways they have available for fitness loss and gain.
Collapse
Affiliation(s)
- Carlos Raico Landa
- Laboratory of RNA Archaeology, Instituto de Parasitología y Biomedicina "López-Neyra" (CSIC), Avd. Conocimiento 17, 18016, Armilla, Granada, Spain
| | - Ascensión Ariza-Mateos
- Laboratory of RNA Archaeology, Instituto de Parasitología y Biomedicina "López-Neyra" (CSIC), Avd. Conocimiento 17, 18016, Armilla, Granada, Spain
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Campus de Cantoblanco, Madrid, Spain
| | - Carlos Briones
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Madrid, Spain
| | - Celia Perales
- Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Madrid, Spain
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
| | | | - Esteban Domingo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Campus de Cantoblanco, Madrid, Spain
| | - Jordi Gómez
- Laboratory of RNA Archaeology, Instituto de Parasitología y Biomedicina "López-Neyra" (CSIC), Avd. Conocimiento 17, 18016, Armilla, Granada, Spain.
| |
Collapse
|
4
|
Ariza-Mateos A, Briones C, Perales C, Sobrino F, Domingo E, Gómez J. Natural languages and RNA virus evolution. J Physiol 2024; 602:2565-2580. [PMID: 37983617 DOI: 10.1113/jp284415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/03/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
Information concepts from physics, mathematics and computer science support many areas of research in biology. Their focus is on objective information, which provides correlations and patterns related to objects, processes, marks and signals. In these approaches only the quantitative aspects of the meaning of the information is relevant. In other areas of biology, 'meaningful information', which is subjective in nature, relies on the physiology of the organism's sensory organs and on the interpretation of the perceived signals, which is then translated into action, even if this is only mental (in brained animals). Information is involved, in terms of both amount and quality. Here we contextualize and review the main theories that deal with 'meaningful-information' at a molecular level from different areas of natural language research, namely biosemiotics, code-biology, biocommunication and biohermeneutics. As this information mediates between the organism and its environment, we emphasize how such theories compare with the neo-Darwinian treatment of genetic information, and how they project onto the rapid evolution of RNA viruses.
Collapse
Affiliation(s)
- Ascensión Ariza-Mateos
- Laboratory of RNA Archaeology, Instituto de Parasitología y Biomedicina 'López-Neyra' (CSIC), Granada, Spain
- Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Madrid, Spain
| | - Carlos Briones
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Madrid, Spain
| | - Celia Perales
- Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Madrid, Spain
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
| | - Francisco Sobrino
- Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Madrid, Spain
| | - Esteban Domingo
- Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Madrid, Spain
| | - Jordi Gómez
- Laboratory of RNA Archaeology, Instituto de Parasitología y Biomedicina 'López-Neyra' (CSIC), Granada, Spain
| |
Collapse
|
5
|
Domingo E, Witzany G. Quasispecies productivity. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2024; 111:11. [PMID: 38372790 DOI: 10.1007/s00114-024-01897-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/06/2023] [Revised: 01/05/2024] [Accepted: 02/06/2024] [Indexed: 02/20/2024]
Abstract
The quasispecies theory is a helpful concept in the explanation of RNA virus evolution and behaviour, with a relevant impact on methods used to fight viral diseases. It has undergone some adaptations to integrate new empirical data, especially the non-deterministic nature of mutagenesis, and the variety of behavioural motifs in cooperation, competition, communication, innovation, integration, and exaptation. Also, the consortial structure of quasispecies with complementary roles of memory genomes of minority populations better fits the empirical data than did the original concept of a master sequence and its mutant spectra. The high productivity of quasispecies variants generates unique sequences that never existed before and will never exist again. In the present essay, we underline that such sequences represent really new ontological entities, not just error copies of previous ones. Their primary unique property, the incredible variant production, is suggested here as quasispecies productivity, which replaces the error-replication narrative to better fit into a new relationship between mankind and living nature in the twenty-first century.
Collapse
Affiliation(s)
- Esteban Domingo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | | |
Collapse
|
6
|
Abstract
Our understanding of the key players in evolution and of the development of all organisms in all domains of life has been aided by current knowledge about RNA stem-loop groups, their proposed interaction motifs in an early RNA world and their regulative roles in all steps and substeps of nearly all cellular processes, such as replication, transcription, translation, repair, immunity and epigenetic marking. Cooperative evolution was enabled by promiscuous interactions between single-stranded regions in the loops of naturally forming stem-loop structures in RNAs. It was also shown that cooperative RNA stem-loops outcompete selfish ones and provide foundational self-constructive groups (ribosome, editosome, spliceosome, etc.). Self-empowerment from abiotic matter to biological behavior does not just occur at the beginning of biological evolution; it is also essential for all levels of socially interacting RNAs, cells and viruses.
Collapse
Affiliation(s)
- Luis Villarreal
- Center for Virus Research, University of California, Irvine, California, USA
| | - Guenther Witzany
- Telos - Philosophische Praxis, Buermoos, Salzburg, 5111, Austria
| |
Collapse
|
7
|
Davidson I. Avian Oncogenic and Immunosuppressive Viruses. Infect Dis (Lond) 2023. [DOI: 10.1007/978-1-0716-2463-0_1091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 02/10/2023] Open
|
8
|
Liao M, Xie Y, Shi M, Cui J. Over two decades of research on the marine RNA virosphere. IMETA 2022; 1:e59. [PMID: 38867898 PMCID: PMC10989941 DOI: 10.1002/imt2.59] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 06/07/2022] [Revised: 08/30/2022] [Accepted: 09/14/2022] [Indexed: 06/14/2024]
Abstract
RNA viruses (realm: Riboviria), including RNA phages and eukaryote-infecting RNA viruses, are essential components of marine ecosystems. A large number of marine RNA viruses have been discovered in the last two decades because of the rapid development of next-generation sequencing (NGS) technology. Indeed, the combination of NGS and state-of-the-art meta-omics methods (viromics, the study of all viruses in a specific environment) has led to a fundamental understanding of the taxonomy and genetic diversity of RNA viruses in the sea, suggesting the complex ecological roles played by RNA viruses in this complex ecosystem. Furthermore, comparisons of viromes in the context of highly variable marine niches reveal the biogeographic patterns and ecological impact of marine RNA viruses, whose role in global ecology is becoming increasingly clearer. In this review, we summarize the characteristics of the global marine RNA virosphere and outline the taxonomic hierarchy of RNA viruses with a specific focus on their ancient evolutionary history. We also review the development of methodology and the major progress resulting from its applications in RNA viromics. The aim of this review is not only to provide an in-depth understanding of multifaceted aspects of marine RNA viruses, but to offer future perspectives on developing a better methodology for discovery, and exploring the evolutionary origin and major ecological significance of marine RNA virosphere.
Collapse
Affiliation(s)
- Meng‐en Liao
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega‐ScienceChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yunyi Xie
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega‐ScienceChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Mang Shi
- School of MedicineSun Yat‐sen UniversityShenzhen Campus of Sun Yat‐sen UniversityShenzhenChina
| | - Jie Cui
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega‐ScienceChinese Academy of SciencesShanghaiChina
- Laboatory for Marine Biology and BiotechnologyPilot National Laboratory for Marine Science and Technology (Qingdao)QingdaoChina
| |
Collapse
|
9
|
Nguyen TK, Van Le D. Identification of NS5B Resistance-Associated Mutations in Hepatitis C Virus Circulating in Treatment Naïve Vietnamese Patients. Infect Drug Resist 2022; 15:1547-1554. [PMID: 35411152 PMCID: PMC8994603 DOI: 10.2147/idr.s353605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/11/2021] [Accepted: 03/23/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Treatment of HCV infection with peginterferon and ribavirin results in a low sustained virologic response rate, but has a number of undesirable adverse effects. Direct-acting antivirals (DAAs) offer a high efficacy, low risk, and a short treatment time. However, the existence of resistance-associated mutations, particularly in the NS5B polymerase, can attenuate the efficacy of DAAs. The objective of this study was to identify amino acid changes in the NS5B gene linked to DAA resistance in treatment-naive Vietnamese chronic hepatitis C patients. Methods Blood samples and treatment data were collected from 100 HCV-infected patients hospitalized at the National Hospital for Tropical Diseases between January and December 2020; the plasma was then isolated and stored at –80°C for molecular analysis. The NS5B gene fragments of 100 samples were amplified with specified primers and the nucleotide sequences were obtained using the Sanger sequencing system. The nucleotide sequences were then analyzed and compared to identify substitutions in the NS5B region. Results A total of 100 HCV isolates from patients were classified into three genotypes, including genotypes 1, 3, and 6. The NS5B sequence analysis revealed many amino acid mutations in all genotypes, although these mutations were not strongly associated with resistance to DAAs like S282T. Analytical data on ribavirin–resistance mutations revealed that Q309R was predominantly found in genotype 1a, D310N was mostly found in genotype 1b, and N244I, T329I, A333E were not observed. The following mutations were shown to be related with DAAs resistance: E237G, S282R, L320F, V321A, and V321I. Furthermore, NS5B-resistance mutations were not associated with clinical characteristics, long-term virological response, or improvements in clinical parameters (liver enzymes or liver fibrosis index). Conclusion Although NS5B mutations were found in treatment-naive Vietnamese patients, changes in the NS5B gene did not appear to be highly correlated with HCV ribavirin and DAA antiviral resistance.
Collapse
Affiliation(s)
- Thu Kim Nguyen
- Clinical Laboratories, National Hospital for Tropical Diseases, Hanoi, Vietnam
- Infectious Department, Hanoi Medical University, Hanoi, Vietnam
| | - Duyet Van Le
- Clinical Laboratories, National Hospital for Tropical Diseases, Hanoi, Vietnam
- Correspondence: Duyet Van Le, Tel +84936647979, Email
| |
Collapse
|
10
|
Barroso R, Vieira-Pires A, Antunes A, Fidalgo-Carvalho I. Susceptibility of Pets to SARS-CoV-2 Infection: Lessons from a Seroepidemiologic Survey of Cats and Dogs in Portugal. Microorganisms 2022; 10:345. [PMID: 35208799 PMCID: PMC8879010 DOI: 10.3390/microorganisms10020345] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/16/2021] [Revised: 01/24/2022] [Accepted: 01/29/2022] [Indexed: 02/04/2023] Open
Abstract
Betacoronavirus (β-CoV) are positive single-stranded RNA viruses known to infect mammals. In 2019, a novel zoonotic β-CoV emerged, the severe acute respiratory syndrome (SARS)-CoV-2. Although the most frequent SARS-CoV-2 transmission route is within humans, spillover from humans to domestic and wild animals has been reported, including cats (Felis catus), dogs (Canis lupus familiaris), and minks (Neovision vision). In order to understand the potential role of domestic animals in SARS-CoV-2 global transmission, as well their susceptibility to infection, a seroepidemiologic survey of cats and dogs in Portugal was conducted. Antibodies against SARS-CoV-2 were detected in 15/69 (21.74%) cats and 7/148 (4.73%) dogs. Of the SARS-CoV-2 seropositive animals, 11/22 (50.00%) were possibly infected by human-to-animal transmission, and 5/15 (33.33%) cats were probably infected by cat-to-cat transmission. Moreover, one dog tested positive for SARS-CoV-2 RNA. Data suggest that cats and dogs are susceptible to SARS-CoV-2 infection in natural conditions. Hence, a one-health approach is crucial in the SARS-CoV-2 pandemic to understand the risk factors beyond infection in a human-animal environment interface.
Collapse
Affiliation(s)
- Ricardo Barroso
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal;
| | - Alexandre Vieira-Pires
- Equigerminal, S.A., Rua Eduardo Correia, n°13 lote 20.12, 3030-507 Coimbra, Portugal; (A.V.-P.); (I.F.-C.)
- CNC-Center for Neuroscience and Cell Biology, CIBB, PhD Programme in Experimental Biology and Biomedicine (PDBEB) and Institute for Interdisciplinary Research, University of Coimbra (III UC), Rua Larga, 3004-504 Coimbra, Portugal
| | - Agostinho Antunes
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal;
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal
| | - Isabel Fidalgo-Carvalho
- Equigerminal, S.A., Rua Eduardo Correia, n°13 lote 20.12, 3030-507 Coimbra, Portugal; (A.V.-P.); (I.F.-C.)
- CIVG - Vasco da Gama Research Center, Escola Universitária Vasco da Gama (EUVG), Campus Universitário, Av. José R. Sousa Fernandes, 3020-210 Coimbra, Portugal
| |
Collapse
|
11
|
Murrieta RA, Garcia-Luna SM, Murrieta DJ, Halladay G, Young MC, Fauver JR, Gendernalik A, Weger-Lucarelli J, Rückert C, Ebel GD. Impact of extrinsic incubation temperature on natural selection during Zika virus infection of Aedes aegypti and Aedes albopictus. PLoS Pathog 2021; 17:e1009433. [PMID: 34752502 PMCID: PMC8629396 DOI: 10.1371/journal.ppat.1009433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/24/2021] [Revised: 11/29/2021] [Accepted: 10/18/2021] [Indexed: 01/10/2023] Open
Abstract
Arthropod-borne viruses (arboviruses) require replication across a wide range of temperatures to perpetuate. While vertebrate hosts tend to maintain temperatures of approximately 37°C—40°C, arthropods are subject to ambient temperatures which can have a daily fluctuation of > 10°C. Temperatures impact vector competence, extrinsic incubation period, and mosquito survival unimodally, with optimal conditions occurring at some intermediate temperature. In addition, the mean and range of daily temperature fluctuations influence arbovirus perpetuation and vector competence. The impact of temperature on arbovirus genetic diversity during systemic mosquito infection, however, is poorly understood. Therefore, we determined how constant extrinsic incubation temperatures of 25°C, 28°C, 32°C, and 35°C control Zika virus (ZIKV) vector competence and population dynamics within Aedes aegypti and Aedes albopictus mosquitoes. We also examined fluctuating temperatures which better mimic field conditions in the tropics. We found that vector competence varied in a unimodal manner for constant temperatures peaking between 28°C and 32°C for both Aedes species. Transmission peaked at 10 days post-infection for Aedes aegypti and 14 days for Aedes albopictus. Conversely, fluctuating temperature decreased vector competence. Using RNA-seq to characterize ZIKV population structure, we identified that temperature alters the selective environment in unexpected ways. During mosquito infection, constant temperatures more often elicited positive selection whereas fluctuating temperatures led to strong purifying selection in both Aedes species. These findings demonstrate that temperature has multiple impacts on ZIKV biology, including major effects on the selective environment within mosquitoes. Arthropod-borne viruses (arboviruses) have emerged in recent decades due to complex factors that include increases in international travel and trade, the breakdown of public health infrastructure, land use changes, and many others. Climate change also has the potential to shift the geographical ranges of arthropod vectors, consequently increasing the global risk of arbovirus infection. Changing temperatures may alter the virus-host interaction, ultimately resulting in the emergence of new viruses and virus genotypes in new areas. Therefore, we sought to characterize how temperature (both constant and fluctuating) alters the ability of Aedes aegypti and Aedes albopictus to transmit Zika virus, and how it influences virus populations within mosquitoes. We found that intermediate temperatures maximize virus transmission compared to more extreme and fluctuating temperatures. Constant temperatures increased positive selection on virus genomes, while fluctuating temperatures strengthened purifying selection. Our studies provide evidence that in addition to altering vector competence, temperature significantly influences natural selection within mosquitoes.
Collapse
Affiliation(s)
- Reyes A. Murrieta
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Selene M. Garcia-Luna
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - Deedra J. Murrieta
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Gareth Halladay
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Michael C. Young
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Joseph R. Fauver
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, Laboratory of Epidemiology of Public Health, New Haven, Connecticut, United States of America
| | - Alex Gendernalik
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - James Weger-Lucarelli
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Claudia Rückert
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- Department of Biochemistry and Molecular Biology, College of Agriculture, Biotechnology & Natural Resources, University of Nevada, Reno, Nevada, United States of America
| | - Gregory D. Ebel
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
12
|
Torres MC, Lima de Mendonça MC, Damasceno dos Santos Rodrigues C, Fonseca V, Ribeiro MS, Brandão AP, Venâncio da Cunha R, Dias AI, Santos Vilas Boas L, Felix AC, Alves Pereira M, de Oliveira Pinto LM, Sakuntabhai A, Bispo de Filippis AM. Dengue Virus Serotype 2 Intrahost Diversity in Patients with Different Clinical Outcomes. Viruses 2021; 13:v13020349. [PMID: 33672226 PMCID: PMC7926750 DOI: 10.3390/v13020349] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/27/2020] [Revised: 02/07/2021] [Accepted: 02/13/2021] [Indexed: 02/07/2023] Open
Abstract
Intrahost genetic diversity is thought to facilitate arbovirus adaptation to changing environments and hosts, and it might also be linked to viral pathogenesis. Dengue virus serotype 2 (DENV-2) has circulated in Brazil since 1990 and is associated with severe disease and explosive outbreaks. Intending to shed light on the viral determinants for severe dengue pathogenesis, we sought to analyze the DENV-2 intrahost genetic diversity in 68 patient cases clinically classified as dengue fever (n = 31), dengue with warning signs (n = 19), and severe dengue (n = 18). Unlike previous DENV intrahost diversity studies whose approaches employed PCR, here we performed viral whole-genome deep sequencing from clinical samples with an amplicon-free approach, representing the real intrahost diversity scenario. Striking differences were detected in the viral population structure between the three clinical categories, which appear to be driven mainly by different infection times and selection pressures, rather than being linked with the clinical outcome itself. Diversity in the NS2B gene, however, showed to be constrained, irrespective of clinical outcome and infection time. Finally, 385 non-synonymous intrahost single-nucleotide variants located along the viral polyprotein, plus variants located in the untranslated regions, were consistently identified among the samples. Of them, 124 were exclusively or highly detected among cases with warning signs and among severe cases. However, there was no variant that by itself appeared to characterize the cases of greater severity, either due to its low intrahost frequency or the conservative effect on amino acid substitution. Although further studies are necessary to determine their real effect on viral proteins, this heightens the possibility of epistatic interactions. The present analysis represents an initial effort to correlate DENV-2 genetic diversity to its pathogenic potential and thus contribute to understanding the virus’s dynamics within its human host.
Collapse
Affiliation(s)
- Maria Celeste Torres
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fiocruz, 21040-360 Rio de Janeiro, Brazil; (M.C.L.d.M.); (C.D.d.S.R.); (A.M.B.d.F.)
- Correspondence:
| | - Marcos Cesar Lima de Mendonça
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fiocruz, 21040-360 Rio de Janeiro, Brazil; (M.C.L.d.M.); (C.D.d.S.R.); (A.M.B.d.F.)
| | | | - Vagner Fonseca
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, Nelson R Mandela School of Medicine, College of Health Sciences, University of KwaZulu-Natal, 4041 Durban, South Africa;
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil
- Coordenação Geral dos Laboratórios de Saúde Pública/Secretaria de Vigilância em Saúde, Ministério da Saúde, (CGLAB/SVS-MS) Brasília, 70719-040 Distrito Federal, Brazil
| | - Mario Sergio Ribeiro
- Superintendência Secretaria de Vigilância em Saúde do Estado do Rio de Janeiro, 20031-142 Rio de Janeiro, Brazil;
| | - Ana Paula Brandão
- Laboratório Central Noel Nutels/LACEN, 20231-092 Rio de Janeiro, Brazil;
| | - Rivaldo Venâncio da Cunha
- Coordenação de Vigilância em Saúde e Laboratórios de Referência da Fundação Oswaldo Cruz, FIOCRUZ, 21040-360 Rio de Janeiro, Brazil;
| | - Ana Isabel Dias
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, 05403-000 São Paulo, Brazil; (A.I.D.); (L.S.V.B.); (A.C.F.)
| | - Lucy Santos Vilas Boas
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, 05403-000 São Paulo, Brazil; (A.I.D.); (L.S.V.B.); (A.C.F.)
| | - Alvina Clara Felix
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, 05403-000 São Paulo, Brazil; (A.I.D.); (L.S.V.B.); (A.C.F.)
| | | | | | - Anavaj Sakuntabhai
- Functional Genetics of Infectious Diseases, Department of Global Health, Institut Pasteur, 75015 Paris, France;
| | - Ana Maria Bispo de Filippis
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fiocruz, 21040-360 Rio de Janeiro, Brazil; (M.C.L.d.M.); (C.D.d.S.R.); (A.M.B.d.F.)
| | - on behalf of ZikAction Consortium
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fiocruz, 21040-360 Rio de Janeiro, Brazil; (M.C.L.d.M.); (C.D.d.S.R.); (A.M.B.d.F.)
| |
Collapse
|
13
|
Helmová R, Hönig V, Tykalová H, Palus M, Bell-Sakyi L, Grubhoffer L. Tick-Borne Encephalitis Virus Adaptation in Different Host Environments and Existence of Quasispecies. Viruses 2020; 12:v12080902. [PMID: 32824843 PMCID: PMC7472235 DOI: 10.3390/v12080902] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/17/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022] Open
Abstract
A highly virulent strain (Hypr) of tick-borne encephalitis virus (TBEV) was serially subcultured in the mammalian porcine kidney stable (PS) and Ixodes ricinus tick (IRE/CTVM19) cell lines, producing three viral variants. These variants exhibited distinct plaque sizes and virulence in a mouse model. Comparing the full-genome sequences of all variants, several nucleotide changes were identified in different genomic regions. Furthermore, different sequential variants were revealed to co-exist within one sample as quasispecies. Interestingly, the above-mentioned nucleotide changes found within the whole genome sequences of the new variants were present alongside the nucleotide sequence of the parental strain, which was represented as a minority quasispecies. These observations further imply that TBEV exists as a heterogeneous population that contains virus variants pre-adapted to reproduction in different environments, probably enabling virus survival in ticks and mammals.
Collapse
Affiliation(s)
- Renata Helmová
- Faculty of Science, University of South Bohemia in České Budějovice, 37005 České Budějovice, Czech Republic; (R.H.); (H.T.); (L.G.)
| | - Václav Hönig
- Faculty of Science, University of South Bohemia in České Budějovice, 37005 České Budějovice, Czech Republic; (R.H.); (H.T.); (L.G.)
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic;
- Department of Virology, Veterinary Research Institute, 62100 Brno, Czech Republic
- Correspondence: ; Tel.: +420-387-775-463
| | - Hana Tykalová
- Faculty of Science, University of South Bohemia in České Budějovice, 37005 České Budějovice, Czech Republic; (R.H.); (H.T.); (L.G.)
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic;
| | - Martin Palus
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic;
- Department of Virology, Veterinary Research Institute, 62100 Brno, Czech Republic
| | - Lesley Bell-Sakyi
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK;
| | - Libor Grubhoffer
- Faculty of Science, University of South Bohemia in České Budějovice, 37005 České Budějovice, Czech Republic; (R.H.); (H.T.); (L.G.)
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic;
| |
Collapse
|
14
|
Braun T, Bordería AV, Barbezange C, Vignuzzi M, Louzoun Y. Long-term context-dependent genetic adaptation of the viral genetic cloud. Bioinformatics 2020; 35:1907-1915. [PMID: 30346482 DOI: 10.1093/bioinformatics/bty891] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/17/2018] [Revised: 10/10/2018] [Accepted: 10/20/2018] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION RNA viruses generate a cloud of genetic variants within each host. This cloud contains high-frequency genotypes, and many rare variants. The dynamics of these variants is crucial to understand viral evolution and their effect on their host. RESULTS We use an experimental evolution system to show that the genetic cloud surrounding the Coxsackie virus master sequence slowly, but steadily, evolves over hundreds of generations. This movement is determined by strong context-dependent mutations, where the frequency and type of mutations are affected by neighboring positions, even in silent mutations. This context-dependent mutation pattern serves as a spearhead for the viral population's movement within the adaptive landscape and affects which new dominant variants will emerge. The non-local mutation patterns affect the mutated dinucleotide distribution, and eventually lead to a non-uniform dinucleotide distribution in the main viral sequence. We tested these results on other RNA viruses with similar conclusions. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Tzipi Braun
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Antonio V Bordería
- Institut Pasteur, Viral Populations and Pathogenesis, CNRS UMR 3569, Paris, France
| | - Cyril Barbezange
- Institut Pasteur, Viral Populations and Pathogenesis, CNRS UMR 3569, Paris, France
| | - Marco Vignuzzi
- Institut Pasteur, Viral Populations and Pathogenesis, CNRS UMR 3569, Paris, France
| | - Yoram Louzoun
- Department of Mathematics and Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
15
|
D'Andrea L, Pérez-Rodríguez FJ, de Castellarnau M, Guix S, Ribes E, Quer J, Gregori J, Bosch A, Pintó RM. The Critical Role of Codon Composition on the Translation Efficiency Robustness of the Hepatitis A Virus Capsid. Genome Biol Evol 2020; 11:2439-2456. [PMID: 31290967 PMCID: PMC6735747 DOI: 10.1093/gbe/evz146] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 07/08/2019] [Indexed: 12/13/2022] Open
Abstract
Hepatoviruses show an intriguing deviated codon usage, suggesting an evolutionary signature. Abundant and rare codons in the cellular genome are scarce in the human hepatitis A virus (HAV) genome, while intermediately abundant host codons are abundant in the virus. Genotype–phenotype maps, or fitness landscapes, are a means of representing a genotype position in sequence space and uncovering how genotype relates to phenotype and fitness. Using genotype–phenotype maps of the translation efficiency, we have shown the critical role of the HAV capsid codon composition in regulating translation and determining its robustness. Adaptation to an environmental perturbation such as the artificial induction of cellular shutoff—not naturally occurring in HAV infection—involved movements in the sequence space and dramatic changes of the translation efficiency. Capsid rare codons, including abundant and rare codons of the cellular genome, slowed down the translation efficiency in conditions of no cellular shutoff. In contrast, rare capsid codons that are abundant in the cellular genome were efficiently translated in conditions of shutoff. Capsid regions very rich in slowly translated codons adapt to shutoff through sequence space movements from positions with highly robust translation to others with diminished translation robustness. These movements paralleled decreases of the capsid physical and biological robustness, and resulted in the diversification of capsid phenotypes. The deviated codon usage of extant hepatoviruses compared with that of their hosts may suggest the occurrence of a virus ancestor with an optimized codon usage with respect to an unknown ancient host.
Collapse
Affiliation(s)
- Lucía D'Andrea
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, School of Biology, and Institute of Nutrition and Safety, University of Barcelona, Spain
| | - Francisco-Javier Pérez-Rodríguez
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, School of Biology, and Institute of Nutrition and Safety, University of Barcelona, Spain
| | - Montserrat de Castellarnau
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, School of Biology, and Institute of Nutrition and Safety, University of Barcelona, Spain
| | - Susana Guix
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, School of Biology, and Institute of Nutrition and Safety, University of Barcelona, Spain
| | - Enric Ribes
- Enteric Virus Laboratory, Department of Cell Biology, Physiology and Immunology, School of Biology, University of Barcelona, Spain
| | - Josep Quer
- Liver Unit, Internal Medicine, Hepatic Diseases Laboratory, Vall d'Hebron Research Institute-Hospital Universitari Vall d'Hebron (VHIR-HUVH), Barcelona, Spain.,Centre of the Biomedical Research Network (CIBER) for Hepatic and Digestive Diseases (CIBERehd), Instituto de Salud Carlos III
| | - Josep Gregori
- Liver Unit, Internal Medicine, Hepatic Diseases Laboratory, Vall d'Hebron Research Institute-Hospital Universitari Vall d'Hebron (VHIR-HUVH), Barcelona, Spain.,Roche Diagnostics SL, Barcelona, Spain
| | - Albert Bosch
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, School of Biology, and Institute of Nutrition and Safety, University of Barcelona, Spain
| | - Rosa M Pintó
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, School of Biology, and Institute of Nutrition and Safety, University of Barcelona, Spain
| |
Collapse
|
16
|
Fish I, Stenfeldt C, Palinski RM, Pauszek SJ, Arzt J. Into the Deep (Sequence) of the Foot-and-Mouth Disease Virus Gene Pool: Bottlenecks and Adaptation during Infection in Naïve and Vaccinated Cattle. Pathogens 2020; 9:pathogens9030208. [PMID: 32178297 PMCID: PMC7157448 DOI: 10.3390/pathogens9030208] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/05/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/11/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) infects hosts as a population of closely related viruses referred to as a quasispecies. The behavior of this quasispecies has not been described in detail in natural host species. In this study, virus samples collected from vaccinated and non-vaccinated cattle up to 35 days post-experimental infection with FMDV A24-Cruzeiro were analyzed by deep-sequencing. Vaccination induced significant differences compared to viruses from non-vaccinated cattle in substitution rates, entropy, and evidence for adaptation. Genomic variation detected during early infection reflected the diversity inherited from the source virus (inoculum), whereas by 12 days post infection, dominant viruses were defined by newly acquired mutations. Mutations conferring recognized fitness gain occurred and were associated with selective sweeps. Persistent infections always included multiple FMDV subpopulations, suggesting distinct foci of infection within the nasopharyngeal mucosa. Subclinical infection in vaccinated cattle included very early bottlenecks associated with reduced diversity within virus populations. Viruses from both animal cohorts contained putative antigenic escape mutations. However, these mutations occurred during later stages of infection, at which time transmission is less likely to occur. This study improves upon previously published work by analyzing deep sequences of samples, allowing for detailed characterization of FMDV populations over time within multiple hosts.
Collapse
Affiliation(s)
- Ian Fish
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, ARS, USDA, Orient, NY 11957, USA; (I.F.); (C.S.); (R.M.P.); (S.J.P.)
- Oak Ridge Institute for Science and Education, PIADC Research Participation Program, Oak Ridge, TN 37830, USA
| | - Carolina Stenfeldt
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, ARS, USDA, Orient, NY 11957, USA; (I.F.); (C.S.); (R.M.P.); (S.J.P.)
- College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Rachel M. Palinski
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, ARS, USDA, Orient, NY 11957, USA; (I.F.); (C.S.); (R.M.P.); (S.J.P.)
| | - Steven J. Pauszek
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, ARS, USDA, Orient, NY 11957, USA; (I.F.); (C.S.); (R.M.P.); (S.J.P.)
| | - Jonathan Arzt
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, ARS, USDA, Orient, NY 11957, USA; (I.F.); (C.S.); (R.M.P.); (S.J.P.)
- Correspondence:
| |
Collapse
|
17
|
A new implication of quasispecies dynamics: Broad virus diversification in absence of external perturbations. INFECTION GENETICS AND EVOLUTION 2020; 82:104278. [PMID: 32165244 DOI: 10.1016/j.meegid.2020.104278] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/21/2020] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 12/17/2022]
Abstract
RNA genetic elements include many important animal and plant pathogens. They share high mutability, a trait that has multiple implications for the interactions with their host organisms. Here we review evidence of a new adaptive feature of RNA viruses that we term "broadly diversifying selection". It constitutes a new type of positive selection without participation of any external selective agent, and which is built upon a progressive increase of the number of different genomes that dominate the population. The evidence was provided by analyses of mutant spectrum composition of two important viral pathogens, foot-and-mouth disease virus (FMDV) and hepatitis C virus (HCV) after prolonged replication in their respective cell culture environment. Despite being fueled by mutations that arise randomly and in absence of an external guiding selective force, this type of selection prepares the viral population for a response to selective forces still to occur. Since current evidence suggests that broadly diversifying selection is favored by elevated mutation rates and population sizes, it may constitute a more general behavior, relevant also to the adaptive dynamics of microbial populations and cancer cells.
Collapse
|
18
|
Abstract
Viral quasispecies refers to a population structure that consists of extremely large numbers of variant genomes, termed mutant spectra, mutant swarms or mutant clouds. Fueled by high mutation rates, mutants arise continually, and they change in relative frequency as viral replication proceeds. The term quasispecies was adopted from a theory of the origin of life in which primitive replicons) consisted of mutant distributions, as found experimentally with present day RNA viruses. The theory provided a new definition of wild type, and a conceptual framework for the interpretation of the adaptive potential of RNA viruses that contrasted with classical studies based on consensus sequences. Standard clonal analyses and deep sequencing methodologies have confirmed the presence of myriads of mutant genomes in viral populations, and their participation in adaptive processes. The quasispecies concept applies to any biological entity, but its impact is more evident when the genome size is limited and the mutation rate is high. This is the case of the RNA viruses, ubiquitous in our biosphere, and that comprise many important pathogens. In virology, quasispecies are defined as complex distributions of closely related variant genomes subjected to genetic variation, competition and selection, and that may act as a unit of selection. Despite being an integral part of their replication, high mutation rates have an upper limit compatible with inheritable information. Crossing such a limit leads to RNA virus extinction, a transition that is the basis of an antiviral design termed lethal mutagenesis.
Collapse
Affiliation(s)
- Esteban Domingo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
| | - Celia Perales
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
| |
Collapse
|
19
|
Bialosuknia SM, Tan Y, Zink SD, Koetzner CA, Maffei JG, Halpin RA, Mueller EA, Novotny M, Shilts M, Fedorova NB, Amedeo P, Das SR, Pickett B, Kramer LD, Ciota AT. Evolutionary dynamics and molecular epidemiology of West Nile virus in New York State: 1999-2015. Virus Evol 2019; 5:vez020. [PMID: 31341640 PMCID: PMC6642743 DOI: 10.1093/ve/vez020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/20/2022] Open
Abstract
Following its introduction into New York State (NYS) in 1999, West Nile virus (WNV; Flavivirus, Flaviviridae) underwent a rapid expansion throughout the USA and into Canada and Latin America. WNV has been characterized as being evolutionarily stable, with weak geographic structure, a dominance of purifying selection and limited adaptive change. We analyzed all available full-genome WNV sequences, focusing on the 543 available sequences from NYS, which included 495 newly sequenced 2000-15 isolates. In addition, we analyzed deep-sequencing data from 317 of these isolates. While our data are generally in agreement with the limited pace of evolutionary change and broad geographic and temporal mixing identified in other studies, we have identified some important exceptions. Most notably, there are 14 codons which demonstrated evidence of positive selection as determined by multiple models, including some positions with evidence of selection in NYS exclusively. Coincident with increased WNV activity, genotypes possessing one or more of these mutations, designated NY01, NY07, and NY10, have increased in prevalence in recent years and displaced historic strains. In addition, we have found a geographical bias with many of these mutations, which suggests selective pressures and adaptations could be regional. Lastly, our deep-sequencing data suggest both increased overall diversity in avian tissue isolates relative to mosquito isolates and multiple non-synonymous minority variants that are both host-specific and retained over time and space. Together, these data provide novel insight into the evolutionary pressures on WNV and the need for continued genetic surveillance and characterization of emergent strains.
Collapse
Affiliation(s)
- Sean M Bialosuknia
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, 5668 State Farm Road, Slingerlands, NY, USA
| | - Yi Tan
- Department of Medicine, Vanderbilt University Medical Center, Nashville, 1161 21st Street, Nashville, TN, USA
| | - Steven D Zink
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, 5668 State Farm Road, Slingerlands, NY, USA
| | - Cheri A Koetzner
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, 5668 State Farm Road, Slingerlands, NY, USA
| | - Joseph G Maffei
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, 5668 State Farm Road, Slingerlands, NY, USA
| | - Rebecca A Halpin
- J. Craig Venter Institute, Virology, 9605 Medical Center Drive, Rockville, MD, USA
| | - Emmi A Mueller
- J. Craig Venter Institute, Virology, 9605 Medical Center Drive, Rockville, MD, USA
| | - Mark Novotny
- J. Craig Venter Institute, Virology, 9605 Medical Center Drive, Rockville, MD, USA
| | - Meghan Shilts
- Department of Medicine, Vanderbilt University Medical Center, Nashville, 1161 21st Street, Nashville, TN, USA
- J. Craig Venter Institute, Virology, 9605 Medical Center Drive, Rockville, MD, USA
| | - Nadia B Fedorova
- J. Craig Venter Institute, Virology, 9605 Medical Center Drive, Rockville, MD, USA
| | - Paolo Amedeo
- J. Craig Venter Institute, Virology, 9605 Medical Center Drive, Rockville, MD, USA
| | - Suman R Das
- Department of Medicine, Vanderbilt University Medical Center, Nashville, 1161 21st Street, Nashville, TN, USA
| | - Brett Pickett
- J. Craig Venter Institute, Virology, 9605 Medical Center Drive, Rockville, MD, USA
| | - Laura D Kramer
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, 5668 State Farm Road, Slingerlands, NY, USA
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Rensselear, NY, USA
| | - Alexander T Ciota
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, 5668 State Farm Road, Slingerlands, NY, USA
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Rensselear, NY, USA
| |
Collapse
|
20
|
Bai XW, Bao HF, Li PH, Ma XQ, Sun P, Bai QF, Zhang M, Yuan H, Chen DD, Li K, Chen YL, Cao YM, Fu YF, Zhang J, Li D, Lu ZJ, Liu ZX, Luo JX. Engineering Responses to Amino Acid Substitutions in the VP0- and VP3-Coding Regions of PanAsia-1 Strains of Foot-and-Mouth Disease Virus Serotype O. J Virol 2019; 93:e02278-18. [PMID: 30700601 PMCID: PMC6430551 DOI: 10.1128/jvi.02278-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/03/2019] [Accepted: 01/15/2019] [Indexed: 12/05/2022] Open
Abstract
The presence of sequence divergence through adaptive mutations in the major capsid protein VP1, and also in VP0 (VP4 and VP2) and VP3, of foot-and-mouth disease virus (FMDV) is relevant to a broad range of viral characteristics. To explore the potential role of isolate-specific residues in the VP0 and VP3 coding regions of PanAsia-1 strains in genetic and phenotypic properties of FMDV, a series of recombinant full-length genomic clones were constructed using Cathay topotype infectious cDNA as the original backbone. The deleterious and compensatory effects of individual amino acid substitutions at positions 4008 and 3060 and in several different domains of VP2 illustrated that the chain-based spatial interaction patterns of VP1, VP2, and VP3 (VP1-3), as well as between the internal VP4 and the three external capsid proteins of FMDV, might contribute to the assembly of eventually viable viruses. The Y2079H site-directed mutants dramatically induced a decrease in plaque size on BHK-21 cells and viral pathogenicity in suckling mice. Remarkably, the 2079H-encoding viruses displayed a moderate increase in acid sensitivity correlated with NH4Cl resistance compared to the Y2079-encoding viruses. Interestingly, none of all the 16 rescued viruses were able to infect heparan sulfate-expressing CHO-K1 cells. However, viral infection in BHK-21 cells was facilitated by utilizing non-integrin-dependent, heparin-sensitive receptor(s) and replacements of four uncharged amino acids at position 3174 in VP3 of FMDV had no apparent influence on heparin affinity. These results provide particular insights into the correlation of evolutionary biology with genetic diversity in adapting populations of FMDV.IMPORTANCE The sequence variation within the capsid proteins occurs frequently in the infection of susceptible tissue cultures, reflecting the high levels of genetic diversity of FMDV. A systematic study for the functional significance of isolate-specific residues in VP0 and VP3 of FMDV PanAsia-1 strains suggested that the interaction of amino acid side chains between the N terminus of VP4 and several potential domains of VP1-3 had cascading effects on the viability and developmental characteristics of progeny viruses. Y2079H in VP0 of the indicated FMDVs could affect plaque size and pathogenicity, as well as acid sensitivity correlated with NH4Cl resistance, whereas there was no inevitable correlation in viral plaque and acid-sensitive phenotypes. The high affinity of non-integrin-dependent FMDVs for heparin might be explained by the differences in structures of heparan sulfate proteoglycans on the surfaces of different cell lines. These results may contribute to our understanding of the distinct phenotypic properties of FMDV in vitro and in vivo.
Collapse
Affiliation(s)
- Xing-Wen Bai
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Hui-Fang Bao
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Ping-Hua Li
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Xue-Qing Ma
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Pu Sun
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Qi-Feng Bai
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Meng Zhang
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Hong Yuan
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Dong-Dong Chen
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Kun Li
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Ying-Li Chen
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Yi-Mei Cao
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Yuan-Fang Fu
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Jing Zhang
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Dong Li
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Zeng-Jun Lu
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Zai-Xin Liu
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Jian-Xun Luo
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| |
Collapse
|
21
|
Ciota AT. The role of co-infection and swarm dynamics in arbovirus transmission. Virus Res 2019; 265:88-93. [PMID: 30879977 DOI: 10.1016/j.virusres.2019.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/01/2019] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 02/07/2023]
Abstract
Arthropod-borne viruses (arboviruses) are transmitted by hematophagous insects, primarily mosquitoes. The geographic range and prevalence of mosquito-borne viruses and their vectors has dramatically increased over the last 50 years. As a result, the most medically important arboviurses now co-exist in many regions, resulting in an increased frequency of co-infections in hosts and vectors. In addition to concurrent infections with human pathogens, mosquito-only viruses and/or enzootic viruses not associated with human disease are ubiquitous in mosquito populations. Moreover, mosquito-borne viruses are largely RNA viruses that exist within individual hosts as a diverse and dynamic swarm of closely related genotypes. Interactions among co-infecting viruses and genotypes can have profound effects on virulence, fitness and evolution. Here, we review our understanding of how these complex interactions influence transmission of mosquito-borne viruses, focusing on the often-neglected virus interactions in the mosquito vector, and identify gaps in our knowledge that should guide future studies.
Collapse
Affiliation(s)
- Alexander T Ciota
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, USA; Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Albany, NY, USA.
| |
Collapse
|
22
|
Litov AG, Deviatkin AA, Goptar IA, Dedkov VG, Gmyl AP, Markelov ML, Shipulin GA, Karganova GG. Evaluation of the population heterogeneity of TBEV laboratory variants using high-throughput sequencing. J Gen Virol 2019; 99:240-245. [PMID: 29393021 DOI: 10.1099/jgv.0.001003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/30/2022] Open
Abstract
We studied minor variants within two tick-borne encephalitis virus (TBEV) populations with a common ancestor: the mouse brain-adapted variant EK-328c and the tick-adapted variant M. High-throughput sequencing with custom amplicons from RT-PCR viral RNA was performed on Illumina MiSeq 2*250 paired-end v2 chemistry. Using the LowFreq program (default settings) and Sanger-sequenced consensus as a reference, variants with an abundance of 1 % and above within the studied populations were identified. Using the obtained data in the context of our previous studies, we concluded that TBEV variants, which are different from the major population phenotype and can become a major part of the viral population under favourable environmental conditions, can exist at abundances of less than 1 % in the long-term. The comparison of our data with the literature allowed us to conclude that the laboratory variant EK-328c and variant M have similar SNV counts to TBEV variants from natural populations and some fast-evolving RNA viruses.
Collapse
Affiliation(s)
- Alexander G Litov
- Chumakov Institute of Poliomyelitis and Viral Encephalitides (Chumakov FSC R&D IBP), prem. 8, k.17, pos. Institut Poliomielita, poselenie Moskovskiy, Moscow 108819, Russia
- Lomonosov MSU, Faculty of Biology, Lenin Hills, 1/12, Moscow 119234, Russia
| | - Andrey A Deviatkin
- Chumakov Institute of Poliomyelitis and Viral Encephalitides (Chumakov FSC R&D IBP), prem. 8, k.17, pos. Institut Poliomielita, poselenie Moskovskiy, Moscow 108819, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
- Research Institute of Occupational Health, Moscow, Russia
| | - Irina A Goptar
- Research Institute of Occupational Health, Moscow, Russia
- Central Research Institute for Epidemiology (CRIE), Federal Service on Consumer Rights Protection and Human Well-Being Surveillance, Moscow, Russia
| | - Vladimir G Dedkov
- Central Research Institute for Epidemiology (CRIE), Federal Service on Consumer Rights Protection and Human Well-Being Surveillance, Moscow, Russia
| | - Anatoly P Gmyl
- Chumakov Institute of Poliomyelitis and Viral Encephalitides (Chumakov FSC R&D IBP), prem. 8, k.17, pos. Institut Poliomielita, poselenie Moskovskiy, Moscow 108819, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
| | | | - German A Shipulin
- Central Research Institute for Epidemiology (CRIE), Federal Service on Consumer Rights Protection and Human Well-Being Surveillance, Moscow, Russia
| | - Galina G Karganova
- Lomonosov MSU, Faculty of Biology, Lenin Hills, 1/12, Moscow 119234, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
- Chumakov Institute of Poliomyelitis and Viral Encephalitides (Chumakov FSC R&D IBP), prem. 8, k.17, pos. Institut Poliomielita, poselenie Moskovskiy, Moscow 108819, Russia
| |
Collapse
|
23
|
Singh I, Deb R, Kumar S, Singh R, Andonissamy J, Smita S, Sengar GS, Kumar R, Ojha KK, Sahoo NR, Murali S, Chandran R, Nair RV, Lal SB, Mishra DC, Rai A. Deciphering foot-and-mouth disease (FMD) virus-host tropism. J Biomol Struct Dyn 2019; 37:4779-4789. [PMID: 30654708 DOI: 10.1080/07391102.2019.1567386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/27/2022]
Abstract
The pattern of interactions between foot and mouth disease (FMD) viral protein 1 (VP1) with susceptible and resistant host integrins were deciphered. The putative effect of site-directed mutation on alteration of interaction is illustrated using predicted and validated 3D structures of VP1, mutated VP1 and integrins of Bos taurus, Gallus and Canis. Strong interactions were observed between FMDV-VP1 protein motifs at conserved tripeptide, Arg-Gly-Asp 143RGD145 and at domain 676SIPLQ680 in alpha-integrin of B. taurus. Notably, in-silico site-directed mutation in FMDV-VP1 protein led to complete loss of interaction between FMD-VP1 protein and B. taurus integrin, which confirmed the active role of arginine-glycine-aspartic acid (RGD) domain. Interestingly, in-vitro analysis demonstrates the persistence of the putative tropism site 'SIPLQ' in different cattle breeds undertaken. Thus, the attempt to decipher the tropism of FMDV at host receptor level interaction might be useful for future FMD control strategies through development of mimetic marker vaccines and/or host receptor manipulations. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Indra Singh
- Centre for Agricultural Bio-Informatics ICAR-Indian Agricultural Statistics Research Institute , New Delhi , India
| | - Rajib Deb
- ICAR-Central Institute for Research on Cattle , Meerut , India
| | - Sanjeev Kumar
- Centre for Agricultural Bio-Informatics ICAR-Indian Agricultural Statistics Research Institute , New Delhi , India
| | - Rani Singh
- ICAR-Central Institute for Research on Cattle , Meerut , India
| | | | - Shuchi Smita
- Centre for Agricultural Bio-Informatics ICAR-Indian Agricultural Statistics Research Institute , New Delhi , India
| | | | - Rajiv Kumar
- ICAR-Central Sheep and Wool Research Institute , Avikanagar , India
| | | | | | - S Murali
- ICAR-India National Bureau of Fish Genetic Resources , Lucknow , India
| | - Rejani Chandran
- ICAR-Central Institute of Fisheries Technology , Cochin , India
| | | | - S B Lal
- Centre for Agricultural Bio-Informatics ICAR-Indian Agricultural Statistics Research Institute , New Delhi , India
| | - Dwijesh Chandra Mishra
- Centre for Agricultural Bio-Informatics ICAR-Indian Agricultural Statistics Research Institute , New Delhi , India
| | - Anil Rai
- Centre for Agricultural Bio-Informatics ICAR-Indian Agricultural Statistics Research Institute , New Delhi , India
| |
Collapse
|
24
|
Arzt J, Fish I, Pauszek SJ, Johnson SL, Chain PS, Rai DK, Rieder E, Goldberg TL, Rodriguez LL, Stenfeldt C. The evolution of a super-swarm of foot-and-mouth disease virus in cattle. PLoS One 2019; 14:e0210847. [PMID: 31022193 DOI: 10.1101/512178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/21/2018] [Accepted: 04/05/2019] [Indexed: 05/21/2023] Open
Abstract
Foot-and-mouth disease (FMD) is a highly contagious viral disease that severely impacts global food security and is one of the greatest constraints on international trade of animal products. Extensive viral population diversity and rapid, continuous mutation of circulating FMD viruses (FMDVs) pose significant obstacles to the control and ultimate eradication of this important transboundary pathogen. The current study investigated mechanisms contributing to within-host evolution of FMDV in a natural host species (cattle). Specifically, vaccinated and non-vaccinated cattle were infected with FMDV under controlled, experimental conditions and subsequently sampled for up to 35 days to monitor viral genomic changes as related to phases of disease and experimental cohorts. Consensus-level genomic changes across the entire FMDV coding region were characterized through three previously defined stages of infection: early, transitional, and persistent. The overall conclusion was that viral evolution occurred via a combination of two mechanisms: emergence of full-genomic minority haplotypes from within the inoculum super-swarm, and concurrent continuous point mutations. Phylogenetic analysis indicated that individuals were infected with multiple distinct haplogroups that were pre-existent within the ancestral inoculum used to infect all animals. Multiple shifts of dominant viral haplotype took place during the early and transitional phases of infection, whereas few shifts occurred during persistent infection. Overall, this work suggests that the establishment of the carrier state is not associated with specific viral genomic characteristics. These insights into FMDV population dynamics have important implications for virus sampling methodology and molecular epidemiology.
Collapse
Affiliation(s)
- Jonathan Arzt
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, ARS, USDA, Greenport, NY, United States of America
| | - Ian Fish
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, ARS, USDA, Greenport, NY, United States of America
- Oak Ridge Institute for Science and Education, PIADC Research Participation Program, Oak Ridge, TN, United States of America
| | - Steven J Pauszek
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, ARS, USDA, Greenport, NY, United States of America
| | - Shannon L Johnson
- Los Alamos National Laboratory, Los Alamos, NM, United States of America
| | - Patrick S Chain
- Los Alamos National Laboratory, Los Alamos, NM, United States of America
| | - Devendra K Rai
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, ARS, USDA, Greenport, NY, United States of America
- Department of Veterinary Population Medicine, University of Minnesota, St Paul, MN, United States of America
| | - Elizabeth Rieder
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, ARS, USDA, Greenport, NY, United States of America
| | - Tony L Goldberg
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Luis L Rodriguez
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, ARS, USDA, Greenport, NY, United States of America
| | - Carolina Stenfeldt
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, ARS, USDA, Greenport, NY, United States of America
- Department of Veterinary Population Medicine, University of Minnesota, St Paul, MN, United States of America
| |
Collapse
|
25
|
Patterson EI, Khanipov K, Rojas MM, Kautz TF, Rockx-Brouwer D, Golovko G, Albayrak L, Fofanov Y, Forrester NL. Mosquito bottlenecks alter viral mutant swarm in a tissue and time-dependent manner with contraction and expansion of variant positions and diversity. Virus Evol 2018; 4:vey001. [PMID: 29479479 PMCID: PMC5814806 DOI: 10.1093/ve/vey001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/26/2022] Open
Abstract
Viral diversity is theorized to play a significant role during virus infections, particularly for arthropod-borne viruses (arboviruses) that must infect both vertebrate and invertebrate hosts. To determine how viral diversity influences mosquito infection and dissemination Culex taeniopus mosquitoes were infected with the Venezuelan equine encephalitis virus endemic strain 68U201. Bodies and legs/wings of the mosquitoes were collected individually and subjected to multi-parallel sequencing. Virus sequence diversity was calculated for each tissue. Greater diversity was seen in mosquitoes with successful dissemination versus those with no dissemination. Diversity across time revealed that bottlenecks influence diversity following dissemination to the legs/wings, but levels of diversity are restored by Day 12 post-dissemination. Specific minority variants were repeatedly identified across the mosquito cohort, some in nearly every tissue and time point, suggesting that certain variants are important in mosquito infection and dissemination. This study demonstrates that the interaction between the mosquito and the virus results in changes in diversity and the mutational spectrum and may be essential for successful transition of the bottlenecks associated with arbovirus infection.
Collapse
Affiliation(s)
- Edward I Patterson
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0610, USA
| | - Kamil Khanipov
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-0617, USA
| | - Mark M Rojas
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-0617, USA
| | - Tiffany F Kautz
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0610, USA
| | - Dedeke Rockx-Brouwer
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0610, USA
| | - Georgiy Golovko
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-0617, USA
| | - Levent Albayrak
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-0617, USA
| | - Yuriy Fofanov
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-0617, USA
| | - Naomi L Forrester
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0610, USA
| |
Collapse
|
26
|
Domingo E, Perales C. Quasispecies and virus. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2018; 47:443-457. [PMID: 29397419 DOI: 10.1007/s00249-018-1282-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/17/2017] [Revised: 01/11/2018] [Accepted: 01/27/2018] [Indexed: 12/13/2022]
Abstract
Quasispecies theory has been instrumental in the understanding of RNA virus population dynamics because it considered for the first time mutation as an integral part of the replication process. The key influences of quasispecies theory on experimental virology have been: (1) to disclose the mutant spectrum nature of viral populations and to evaluate its consequences; (2) to unveil collective properties of genome ensembles that can render a mutant spectrum a unit of selection; and (3) to identify new vulnerability points of pathogenic RNA viruses on three fronts: the need to apply multiple selective constraints (in the form of drug combinations) to minimize selection of treatment-escape variants, to translate the error threshold concept into antiviral designs, and to construct attenuated vaccine viruses through alterations of viral polymerase copying fidelity or through displacements of viral genomes towards unfavorable regions of sequence space. These three major influences on the understanding of viral pathogens preceded extensions of quasispecies to non-viral systems such as bacterial and tumor cell collectivities and prions. These developments are summarized here.
Collapse
Affiliation(s)
- Esteban Domingo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049, Madrid, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain.
| | - Celia Perales
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain.,Liver Unit, Internal Medicine, Laboratory of Malalties Hepàtiques, Vall d'Hebron Institut de Recerca-Hospital Universitari Vall d'Hebron (VHIR-HUVH), Universitat Autònoma de Barcelona, 08035, Barcelona, Spain
| |
Collapse
|
27
|
Time-Sampled Population Sequencing Reveals the Interplay of Selection and Genetic Drift in Experimental Evolution of Potato Virus Y. J Virol 2017; 91:JVI.00690-17. [PMID: 28592544 PMCID: PMC5533922 DOI: 10.1128/jvi.00690-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/21/2017] [Accepted: 05/28/2017] [Indexed: 11/20/2022] Open
Abstract
RNA viruses are one of the fastest-evolving biological entities. Within their hosts, they exist as genetically diverse populations (i.e., viral mutant swarms), which are sculpted by different evolutionary mechanisms, such as mutation, natural selection, and genetic drift, and also the interactions between genetic variants within the mutant swarms. To elucidate the mechanisms that modulate the population diversity of an important plant-pathogenic virus, we performed evolution experiments with Potato virus Y (PVY) in potato genotypes that differ in their defense response against the virus. Using deep sequencing of small RNAs, we followed the temporal dynamics of standing and newly generated variations in the evolving viral lineages. A time-sampled approach allowed us to (i) reconstruct theoretical haplotypes in the starting population by using clustering of single nucleotide polymorphisms' trajectories and (ii) use quantitative population genetics approaches to estimate the contribution of selection and genetic drift, and their interplay, to the evolution of the virus. We detected imprints of strong selective sweeps and narrow genetic bottlenecks, followed by the shift in frequency of selected haplotypes. Comparison of patterns of viral evolution in differently susceptible host genotypes indicated possible diversifying evolution of PVY in the less-susceptible host (efficient in the accumulation of salicylic acid).IMPORTANCE High diversity of within-host populations of RNA viruses is an important aspect of their biology, since they represent a reservoir of genetic variants, which can enable quick adaptation of viruses to a changing environment. This study focuses on an important plant virus, Potato virus Y, and describes, at high resolution, temporal changes in the structure of viral populations within different potato genotypes. A novel and easy-to-implement computational approach was established to cluster single nucleotide polymorphisms into viral haplotypes from very short sequencing reads. During the experiment, a shift in the frequency of selected viral haplotypes was observed after a narrow genetic bottleneck, indicating an important role of the genetic drift in the evolution of the virus. On the other hand, a possible case of diversifying selection of the virus was observed in less susceptible host genotypes.
Collapse
|
28
|
Xu X, Xiang K, Su M, Li Y, Ji W, Li Y, Zhuang H, Li T. HBV Drug Resistance Substitutions Existed before the Clinical Approval of Nucleos(t)ide Analogues: A Bioinformatic Analysis by GenBank Data Mining. Viruses 2017; 9:v9080199. [PMID: 28749433 PMCID: PMC5580456 DOI: 10.3390/v9080199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/24/2017] [Revised: 07/21/2017] [Accepted: 07/24/2017] [Indexed: 02/07/2023] Open
Abstract
Naturally occurring nucleos(t)ide analogue resistance (NUCr) substitution frequencies in the reverse transcriptase (RT) of the hepatitis B virus (HBV) were studied extensively after the clinical approval of nucleos(t)ide analogues (NUCs; year of approval 1998). We aimed to study NUCr substitutions in HBV RT sequences obtained before 1998 and better understand the evolution of RT sequences without NUC pressures. Our strategy was to retrieve HBV sequences from GenBank deposited before 1998. The initial search used the keywords "hepatitis B virus" or "HBV" and 1139 sequences were found. Data analyses included information extraction: sequence quality control and amino acid substitution analysis on 8 primary NUCr and 3 secondary substitution codons. Three hundred and ninety-four RT-containing sequences of 8 genotypes from 25 countries in 4 continents were selected. Twenty-seven (6.9%) sequences were found to harbor substitutions at NUCr-related codons. Secondary substitutions (rtL80V and rtV173G/A/L) occurred more frequently than primary NUCr substitutions (rtI169L; rtA181G; T184A/S; rtS202T/R; rtM204L and rtM250K). Typical amino acid substitutions associated with NUCr were of rtL80V, rtV173L and rtT184A/S. We confirm the presence of naturally occurring typical HBV NUCr substitutions with very low frequencies, and secondary substitutions are more likely to occur than primary NUCr substitutions without the selective pressure of NUCs.
Collapse
Affiliation(s)
- Xizhan Xu
- Department of Microbiology and Center of Infectious Disease, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| | - Kuanhui Xiang
- Department of Microbiology and Center of Infectious Disease, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| | - Mingze Su
- Department of Microbiology and Center of Infectious Disease, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| | - Yao Li
- Department of Microbiology and Center of Infectious Disease, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| | - Wei Ji
- Department of Microbiology and Center of Infectious Disease, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| | - Yutang Li
- Department of Microbiology and Center of Infectious Disease, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| | - Hui Zhuang
- Department of Microbiology and Center of Infectious Disease, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| | - Tong Li
- Department of Microbiology and Center of Infectious Disease, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
29
|
Baba Sheikh MO, Rashid PMA, Marouf AS, Raheem ZH, Janga SC. Phylogenic analysis of serotype Asia1 foot-and-mouth disease virus from Sulaimani/Iraq using VP1 protein: heterogeneity with vaccine strain As1/Shamir/89. IRANIAN JOURNAL OF VETERINARY RESEARCH 2017; 18:212-215. [PMID: 29163652 PMCID: PMC5674446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Academic Contribution Register] [Received: 02/28/2016] [Revised: 12/22/2016] [Accepted: 02/28/2017] [Indexed: 06/07/2023]
Abstract
Foot-and-mouth disease virus (FMDV) serotypes O, A and Asia1 are responsible for a significant number of disease outbreaks in Iraq. The current study can be considered as the first molecular characterization of serotype Asia1 in Iraq. The present investigation reports the detection of serotype FMDV Asia1 from local farms in Sulaimani districts in 2012 and 2014 outbreaks. Phylogenetic analysis of the complete VP1 gene has shown that FMDV Asia1 field isolates were under genetic novel variant Sindh-08 (group VII) including PAK/iso/11 and TUR/13 strains. The VP1 protein sequence of circulatory FMDV Asia1 genotype showed heterogeneity of nine amino acid substitutions within the G-H loop with the vaccine strain As1/Shamir/89 (JF739177) that is currently used in vaccination program in Iraq. Our result indicated that differences in VP1 protein at G-H loop of the locally circulated FMDV serotype Asia1 strain may be a reason for current vaccination failure.
Collapse
Affiliation(s)
- M. O. Baba Sheikh
- School of Informatics and Computing, Indiana University-Purdue University, Indianapolis, 46202, India
- Department of Molecular Biology, Veterinary Laboratory Center, Sulaimani Veterinary Directorate, Sulaimani, Iraq
| | - P. M. A. Rashid
- Department of Molecular Biology, Veterinary Laboratory Center, Sulaimani Veterinary Directorate, Sulaimani, Iraq
| | - A. S. Marouf
- Department of Molecular Biology, Veterinary Laboratory Center, Sulaimani Veterinary Directorate, Sulaimani, Iraq
| | - Z. H. Raheem
- Department of Molecular Biology, Veterinary Laboratory Center, Sulaimani Veterinary Directorate, Sulaimani, Iraq
| | - S. C. Janga
- School of Informatics and Computing, Indiana University-Purdue University, Indianapolis, 46202, India
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, 5021 Health Information and Translational Sciences (HITS), Indianapolis, 46202, India, and Department of Medical and Molecular Genetics, Indiana University School of Medicine, Medical Research and Library Building, Indianapolis, 46202, India
| |
Collapse
|
30
|
Martín V, Perales C, Fernández-Algar M, Dos Santos HG, Garrido P, Pernas M, Parro V, Moreno M, García-Pérez J, Alcamí J, Torán JL, Abia D, Domingo E, Briones C. An Efficient Microarray-Based Genotyping Platform for the Identification of Drug-Resistance Mutations in Majority and Minority Subpopulations of HIV-1 Quasispecies. PLoS One 2016; 11:e0166902. [PMID: 27959928 PMCID: PMC5154500 DOI: 10.1371/journal.pone.0166902] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/28/2016] [Accepted: 11/04/2016] [Indexed: 02/07/2023] Open
Abstract
The response of human immunodeficiency virus type 1 (HIV-1) quasispecies to antiretroviral therapy is influenced by the ensemble of mutants that composes the evolving population. Low-abundance subpopulations within HIV-1 quasispecies may determine the viral response to the administered drug combinations. However, routine sequencing assays available to clinical laboratories do not recognize HIV-1 minority variants representing less than 25% of the population. Although several alternative and more sensitive genotyping techniques have been developed, including next-generation sequencing (NGS) methods, they are usually very time consuming, expensive and require highly trained personnel, thus becoming unrealistic approaches in daily clinical practice. Here we describe the development and testing of a HIV-1 genotyping DNA microarray that detects and quantifies, in majority and minority viral subpopulations, relevant mutations and amino acid insertions in 42 codons of the pol gene associated with drug- and multidrug-resistance to protease (PR) and reverse transcriptase (RT) inhibitors. A customized bioinformatics protocol has been implemented to analyze the microarray hybridization data by including a new normalization procedure and a stepwise filtering algorithm, which resulted in the highly accurate (96.33%) detection of positive/negative signals. This microarray has been tested with 57 subtype B HIV-1 clinical samples extracted from multi-treated patients, showing an overall identification of 95.53% and 89.24% of the queried PR and RT codons, respectively, and enough sensitivity to detect minority subpopulations representing as low as 5–10% of the total quasispecies. The developed genotyping platform represents an efficient diagnostic and prognostic tool useful to personalize antiviral treatments in clinical practice.
Collapse
Affiliation(s)
- Verónica Martín
- Centro de Biología Molecular ‘Severo Ochoa’ (CBMSO, CSIC-UAM). Campus de Cantoblanco, Madrid, Spain
| | - Celia Perales
- Centro de Biología Molecular ‘Severo Ochoa’ (CBMSO, CSIC-UAM). Campus de Cantoblanco, Madrid, Spain
- Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBERehd), Spain
- Liver Unit, Internal Medicine, Laboratory of Malalties Hepàtiques, Vall d’Hebron Institut de Recerca-Hospital Universitari Vall d´Hebron (VHIR-HUVH), Universitat Autònoma de Barcelona. Barcelona, Spain
| | - María Fernández-Algar
- Department of Molecular Evolution, Centro de Astrobiología (CAB, CSIC-INTA). Torrejón de Ardoz, Madrid, Spain
| | - Helena G. Dos Santos
- Centro de Biología Molecular ‘Severo Ochoa’ (CBMSO, CSIC-UAM). Campus de Cantoblanco, Madrid, Spain
| | - Patricia Garrido
- Biotherapix, SLU. Parque Tecnológico de Madrid, Tres Cantos, Madrid. Spain
| | - María Pernas
- Biotherapix, SLU. Parque Tecnológico de Madrid, Tres Cantos, Madrid. Spain
| | - Víctor Parro
- Department of Molecular Evolution, Centro de Astrobiología (CAB, CSIC-INTA). Torrejón de Ardoz, Madrid, Spain
| | - Miguel Moreno
- Department of Molecular Evolution, Centro de Astrobiología (CAB, CSIC-INTA). Torrejón de Ardoz, Madrid, Spain
| | - Javier García-Pérez
- AIDS Immunopathogenesis Unit, Instituto de Salud Carlos III. Majadahonda, Madrid, Spain
| | - José Alcamí
- AIDS Immunopathogenesis Unit, Instituto de Salud Carlos III. Majadahonda, Madrid, Spain
| | - José Luis Torán
- Biotherapix, SLU. Parque Tecnológico de Madrid, Tres Cantos, Madrid. Spain
| | - David Abia
- Centro de Biología Molecular ‘Severo Ochoa’ (CBMSO, CSIC-UAM). Campus de Cantoblanco, Madrid, Spain
| | - Esteban Domingo
- Centro de Biología Molecular ‘Severo Ochoa’ (CBMSO, CSIC-UAM). Campus de Cantoblanco, Madrid, Spain
- Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBERehd), Spain
| | - Carlos Briones
- Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBERehd), Spain
- Department of Molecular Evolution, Centro de Astrobiología (CAB, CSIC-INTA). Torrejón de Ardoz, Madrid, Spain
- * E-mail:
| |
Collapse
|
31
|
Cervera H, Elena SF. Genetic variation in fitness within a clonal population of a plant RNA virus. Virus Evol 2016; 2:vew006. [PMID: 27774299 PMCID: PMC4989883 DOI: 10.1093/ve/vew006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/04/2016] [Revised: 02/11/2016] [Accepted: 02/16/2016] [Indexed: 01/01/2023] Open
Abstract
A long-standing observation in evolutionary virology is that RNA virus populations are highly polymorphic, composed by a mixture of genotypes whose abundances in the population depend on complex interaction between fitness differences, mutational coupling and genetic drift. It was shown long ago, though in cell cultures, that most of these genotypes had lower fitness than the population they belong, an observation that explained why single-virion passages turned on Muller’s ratchet while very large population passages resulted in fitness increases in novel environments. Here we report the results of an experiment specifically designed to evaluate in vivo the fitness differences among the subclonal components of a clonal population of the plant RNA virus tobacco etch potyvirus (TEV). Over 100 individual biological subclones from a TEV clonal population well adapted to the natural tobacco host were obtained by infectivity assays on a local lesion host. The replicative fitness of these subclones was then evaluated during infection of tobacco relative to the fitness of large random samples taken from the starting clonal population. Fitness was evaluated at increasing number of days post-inoculation. We found that at early days, the average fitness of subclones was significantly lower than the fitness of the clonal population, thus confirming previous observations that most subclones contained deleterious mutations. However, as the number of days of viral replication increases, population size expands exponentially, more beneficial and compensatory mutations are produced, and selection becomes more effective in optimizing fitness, the differences between subclones and the population disappeared.
Collapse
Affiliation(s)
- Héctor Cervera
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, Campus UPV CPI 8E, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | - Santiago F Elena
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, Campus UPV CPI 8E, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain; The Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| |
Collapse
|
32
|
Pérez-Del-Pulgar S, Gregori J, Rodríguez-Frías F, González P, García-Cehic D, Ramírez S, Casillas R, Domingo E, Esteban JI, Forns X, Quer J. Quasispecies dynamics in hepatitis C liver transplant recipients receiving grafts from hepatitis C virus infected donors. J Gen Virol 2015; 96:3493-3498. [PMID: 26395289 DOI: 10.1099/jgv.0.000289] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/05/2023] Open
Abstract
The allocation of liver grafts from hepatitis C virus (HCV)-positive donors in HCV-infected liver transplant (LT) recipients leads to infection with two different viral populations. In a previous study, we examined quasispecies dynamics during reinfection by clonal sequencing, which did not allow an accurate characterization of coexistence and competition events. To overcome this limitation, here we used deep-sequencing analysis of a fragment of the HCV NS5B gene in six HCV-infected LT recipients who received HCV-infected grafts. Successive expansions and contractions of quasispecies complexity were observed, evolving in all cases towards a more homogeneous population. The population that became dominant was the one displaying the highest mutant spectrum complexity. In four patients, coexistence of minority mutants, derived from the donor or the recipient, were detected. In conclusion, our study shows that, during reinfection with a different HCV strain in LT recipients, the viral population with the highest diversity always becomes dominant.
Collapse
Affiliation(s)
| | - Josep Gregori
- Liver Unit, Lab. Malalties Hepàtiques, Vall d'Hebron Institut de Recerca, Hospital Vall d'Hebron, CIBERehd, Universitat Autònoma de Barcelona, Barcelona, Spain
- Roche Diagnostics, Sant Cugat del Vallès, Barcelona, Spain
| | - Francisco Rodríguez-Frías
- Biochemistry Department, Vall d'Hebron Institut de Recerca, Hospital Vall d'Hebron, CIBERehd, Barcelona, Spain
| | | | - Damir García-Cehic
- Liver Unit, Lab. Malalties Hepàtiques, Vall d'Hebron Institut de Recerca, Hospital Vall d'Hebron, CIBERehd, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Rosario Casillas
- Liver Unit, Lab. Malalties Hepàtiques, Vall d'Hebron Institut de Recerca, Hospital Vall d'Hebron, CIBERehd, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Esteban Domingo
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (CSIC-UAM), Campus de Cantoblanco, CIBERehd, Madrid, Spain
| | - Juan I Esteban
- Liver Unit, Lab. Malalties Hepàtiques, Vall d'Hebron Institut de Recerca, Hospital Vall d'Hebron, CIBERehd, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Xavier Forns
- Liver Unit, Hospital Clínic, IDIBAPS, CIBERehd, Barcelona, Spain
| | - Josep Quer
- Liver Unit, Lab. Malalties Hepàtiques, Vall d'Hebron Institut de Recerca, Hospital Vall d'Hebron, CIBERehd, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
33
|
Perales C, Quer J, Gregori J, Esteban JI, Domingo E. Resistance of Hepatitis C Virus to Inhibitors: Complexity and Clinical Implications. Viruses 2015; 7:5746-66. [PMID: 26561827 PMCID: PMC4664975 DOI: 10.3390/v7112902] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/22/2015] [Revised: 10/23/2015] [Accepted: 10/26/2015] [Indexed: 12/20/2022] Open
Abstract
Selection of inhibitor-resistant viral mutants is universal for viruses that display quasi-species dynamics, and hepatitis C virus (HCV) is no exception. Here we review recent results on drug resistance in HCV, with emphasis on resistance to the newly-developed, directly-acting antiviral agents, as they are increasingly employed in the clinic. We put the experimental observations in the context of quasi-species dynamics, in particular what the genetic and phenotypic barriers to resistance mean in terms of exploration of sequence space while HCV replicates in the liver of infected patients or in cell culture. Strategies to diminish the probability of viral breakthrough during treatment are briefly outlined.
Collapse
Affiliation(s)
- Celia Perales
- Liver Unit, Internal Medicine, Laboratory of Malalties Hepàtiques, Vall d'Hebron Institut de Recerca-Hospital Universitari Vall d'Hebron (VHIR-HUVH), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain.
- Centro de Biologia Molecular "Severo Ochoa" (CSIC-UAM), Cantoblanco, 28049 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08035 Barcelona, Spain.
| | - Josep Quer
- Liver Unit, Internal Medicine, Laboratory of Malalties Hepàtiques, Vall d'Hebron Institut de Recerca-Hospital Universitari Vall d'Hebron (VHIR-HUVH), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08035 Barcelona, Spain.
- Universitat Autònoma de Barcelona, Bellaterra 08193, Spain.
| | - Josep Gregori
- Liver Unit, Internal Medicine, Laboratory of Malalties Hepàtiques, Vall d'Hebron Institut de Recerca-Hospital Universitari Vall d'Hebron (VHIR-HUVH), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08035 Barcelona, Spain.
- Roche Diagnostics SL, 08174 Sant Cugat del Vallès, Spain.
| | - Juan Ignacio Esteban
- Liver Unit, Internal Medicine, Laboratory of Malalties Hepàtiques, Vall d'Hebron Institut de Recerca-Hospital Universitari Vall d'Hebron (VHIR-HUVH), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08035 Barcelona, Spain.
- Universitat Autònoma de Barcelona, Bellaterra 08193, Spain.
| | - Esteban Domingo
- Centro de Biologia Molecular "Severo Ochoa" (CSIC-UAM), Cantoblanco, 28049 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08035 Barcelona, Spain.
| |
Collapse
|
34
|
Abstract
New generation sequencing is greatly expanding the capacity to examine the composition of mutant spectra of viral quasispecies in infected cells and host organisms. Here we review recent progress in the understanding of quasispecies dynamics, notably the occurrence of intra-mutant spectrum interactions, and implications of fitness landscapes for virus adaptation and de-adaptation. Complementation or interference can be established among components of the same mutant spectrum, dependent on the mutational status of the ensemble. Replicative fitness relates to an optimal mutant spectrum that provides the molecular basis for phenotypic flexibility, with implications for antiviral therapy. The biological impact of viral fitness renders particularly relevant the capacity of new generation sequencing to establish viral fitness landscapes. Progress with experimental model systems is becoming an important asset to understand virus behavior in the more complex environments faced during natural infections.
Collapse
|
35
|
Dengue Virus Evolution under a Host-Targeted Antiviral. J Virol 2015; 89:5592-601. [PMID: 25762732 DOI: 10.1128/jvi.00028-15] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/06/2015] [Accepted: 03/02/2015] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED The host-targeted antiviral drug UV-4B reduces viral replication and promotes survival in a mouse model of experimental dengue virus (DENV) infection. UV-4B is an iminosugar that inhibits the α-glucosidase family of enzymes and subsequently the folding of glycosylated proteins, both viral and host. Here, we utilized next-generation sequencing to investigate evolution of a flavivirus under selective pressure by a host-targeted antiviral in vivo. In viral populations recovered from UV-4B-treated mice, there was a significant increase in the number of single-nucleotide polymorphisms (SNPs) and the ratio of nonsynonymous to synonymous SNPs compared to findings in viral populations from vehicle-treated mice. The strongest evidence of positive selection was in the glycosylated membrane protein, thereby providing in vivo validation of the mechanism of action of an iminosugar. In addition, mutations in glycosylated proteins were present only in drug-treated mice after a single passage. However, the bulk of the other mutations were present in both populations, indicating nonspecific selective pressure. Together with the continued control of viremia by UV-4B, these findings are consistent with the previously predicted high genetic barrier to escape mutations in host-targeted antivirals. IMPORTANCE Although hundreds of millions of people are infected with DENV every year, there is currently no approved vaccine or antiviral therapy. UV-4B has demonstrated antiviral activity against DENV and is expected to enter clinical trials soon. Therefore, it is important to understand the mechanisms of DENV resistance to UV-4B. Host-targeted antivirals are thought to have a higher genetic barrier to escape mutants than directly acting antivirals, yet there are very few published studies of viral evolution under host-targeted antivirals. No study to date has described flavivirus evolution in vivo under selective pressure by a host-based antiviral drug. We present the first in vivo study of the sequential progression of viral evolution under selective pressure by a host-targeted antiviral compound. This study bolsters support for the clinical development of UV-4B as an antiviral drug against DENV, and it provides a framework to compare how treatment with other host-targeted antiflaviviral drugs in humans and different animal models influence viral genetic diversity.
Collapse
|
36
|
Moraes CTP, Oliveira DBL, Campos ACA, Bosso PA, Lima HN, Stewien KE, Gilio AE, Vieira SE, Botosso VF, Durigon EL. Genetic variability in G2 and F2 region between biological clones of human respiratory syncytial virus with or without host immune selection pressure. Mem Inst Oswaldo Cruz 2015; 110:138-41. [PMID: 25742274 PMCID: PMC4371228 DOI: 10.1590/0074-02760140299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/14/2014] [Accepted: 12/18/2014] [Indexed: 11/22/2022] Open
Abstract
Human respiratory syncytial virus (HRSV) is an important respiratory pathogens among
children between zero-five years old. Host immunity and viral genetic variability are
important factors that can make vaccine production difficult. In this work,
differences between biological clones of HRSV were detected in clinical samples in
the absence and presence of serum collected from children in the convalescent phase
of the illness and from their biological mothers. Viral clones were selected by
plaque assay in the absence and presence of serum and nucleotide sequences of the G2
and F2 genes of HRSV biological clones were compared. One non-synonymous mutation was
found in the F gene (Ile5Asn) in one clone of an HRSV-B sample and one non-synonymous
mutation was found in the G gene (Ser291Pro) in four clones of the same HRSV-B
sample. Only one of these clones was obtained after treatment with the child's serum.
In addition, some synonymous mutations were determined in two clones of the HRSV-A
samples. In conclusion, it is possible that minor sequences could be selected by host
antibodies contributing to the HRSV evolutionary process, hampering the development
of an effective vaccine, since we verify the same codon alteration in absence and
presence of human sera in individual clones of BR-85 sample.
Collapse
|
37
|
Evolutionary analysis of structural protein gene VP1 of foot-and-mouth disease virus serotype Asia 1. ScientificWorldJournal 2015; 2015:734253. [PMID: 25793223 PMCID: PMC4352495 DOI: 10.1155/2015/734253] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/01/2014] [Revised: 12/29/2014] [Accepted: 02/02/2015] [Indexed: 12/02/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) serotype Asia 1 was mostly endemic in Asia and then was responsible for economically important viral disease of cloven-hoofed animals, but the study on its selection and evolutionary process is comparatively rare. In this study, we characterized 377 isolates from Asia collected up until 2012, including four vaccine strains. Maximum likelihood analysis suggested that the strains circulating in Asia were classified into 8 different groups (groups I–VIII) or were unclassified (viruses collected before 2000). On the basis of divergence time analyses, we infer that the TMRCA of Asia 1 virus existed approximately 86.29 years ago. The result suggested that the virus had a high mutation rate (5.745 × 10−3 substitutions/site/year) in comparison to the other serotypes of FMDV VP1 gene. Furthermore, the structural protein VP1 was under lower selection pressure and the positive selection occurred at many sites, and four codons (positions 141, 146, 151, and 169) were located in known critical antigenic residues. The remaining sites were not located in known functional regions and were moderately conserved, and the reason for supporting all sites under positive selection remains to be elucidated because the power of these analyses was largely unknown.
Collapse
|
38
|
Molecular basis of interferon resistance in hepatitis C virus. Curr Opin Virol 2014; 8:38-44. [DOI: 10.1016/j.coviro.2014.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/25/2014] [Revised: 05/15/2014] [Accepted: 05/19/2014] [Indexed: 02/08/2023]
|
39
|
Analysis of the evolution and structure of a complex intrahost viral population in chronic hepatitis C virus mapped by ultradeep pyrosequencing. J Virol 2014; 88:13709-21. [PMID: 25231312 DOI: 10.1128/jvi.01732-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED Hepatitis C virus (HCV) causes chronic infection in up to 50% to 80% of infected individuals. Hypervariable region 1 (HVR1) variability is frequently studied to gain an insight into the mechanisms of HCV adaptation during chronic infection, but the changes to and persistence of HCV subpopulations during intrahost evolution are poorly understood. In this study, we used ultradeep pyrosequencing (UDPS) to map the viral heterogeneity of a single patient over 9.6 years of chronic HCV genotype 4a infection. Informed error correction of the raw UDPS data was performed using a temporally matched clonal data set. The resultant data set reported the detection of low-frequency recombinants throughout the study period, implying that recombination is an active mechanism through which HCV can explore novel sequence space. The data indicate that polyvirus infection of hepatocytes has occurred but that the fitness quotients of recombinant daughter virions are too low for the daughter virions to compete against the parental genomes. The subpopulations of parental genomes contributing to the recombination events highlighted a dynamic virome where subpopulations of variants are in competition. In addition, we provide direct evidence that demonstrates the growth of subdominant populations to dominance in the absence of a detectable humoral response. IMPORTANCE Analysis of ultradeep pyrosequencing data sets derived from virus amplicons frequently relies on software tools that are not optimized for amplicon analysis, assume random incorporation of sequencing errors, and are focused on achieving higher specificity at the expense of sensitivity. Such analysis is further complicated by the presence of hypervariable regions. In this study, we made use of a temporally matched reference sequence data set to inform error correction algorithms. Using this methodology, we were able to (i) detect multiple instances of hepatitis C virus intrasubtype recombination at the E1/E2 junction (a phenomenon rarely reported in the literature) and (ii) interrogate the longitudinal quasispecies complexity of the virome. Parallel to the UDPS, isolation of IgG-bound virions was found to coincide with the collapse of specific viral subpopulations.
Collapse
|
40
|
Adaptation to fluctuating temperatures in an RNA virus is driven by the most stringent selective pressure. PLoS One 2014; 9:e100940. [PMID: 24963780 PMCID: PMC4071030 DOI: 10.1371/journal.pone.0100940] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/17/2014] [Accepted: 06/01/2014] [Indexed: 02/05/2023] Open
Abstract
The frequency of change in the selective pressures is one of the main factors driving evolution. It is generally accepted that constant environments select specialist organisms whereas changing environments favour generalists. The particular outcome achieved in either case also depends on the relative strength of the selective pressures and on the fitness costs of mutations across environments. RNA viruses are characterized by their high genetic diversity, which provides fast adaptation to environmental changes and helps them evade most antiviral treatments. Therefore, the study of the adaptive possibilities of RNA viruses is highly relevant for both basic and applied research. In this study we have evolved an RNA virus, the bacteriophage Qβ, under three different temperatures that either were kept constant or alternated periodically. The populations obtained were analyzed at the phenotypic and the genotypic level to characterize the evolutionary process followed by the virus in each case and the amount of convergent genetic changes attained. Finally, we also investigated the influence of the pre-existent genetic diversity on adaptation to high temperature. The main conclusions that arise from our results are: i) under periodically changing temperature conditions, evolution of bacteriophage Qβ is driven by the most stringent selective pressure, ii) there is a high degree of evolutionary convergence between replicated populations and also among populations evolved at different temperatures, iii) there are mutations specific of a particular condition, and iv) adaptation to high temperatures in populations differing in their pre-existent genetic diversity takes place through the selection of a common set of mutations.
Collapse
|
41
|
Li MJ, Kim JK, Seo EY, Hong SM, Hwang EI, Moon JK, Domier LL, Hammond J, Youn YN, Lim HS. Sequence variability in the HC-Pro coding regions of Korean soybean mosaic virus isolates is associated with differences in RNA silencing suppression. Arch Virol 2014; 159:1373-83. [PMID: 24378822 DOI: 10.1007/s00705-013-1964-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/11/2013] [Accepted: 12/17/2013] [Indexed: 11/25/2022]
Abstract
Soybean mosaic virus (SMV), a member of the family Potyviridae, is an important viral pathogen affecting soybean production in Korea. Variations in helper component proteinase (HC-Pro) sequences and the pathogenicity of SMV samples from seven Korean provinces were compared with those of previously characterized SMV isolates from China, Korea and the United States. Phylogenetic analysis separated 16 new Korean SMV isolates into two groups. Fourteen of the new Korean SMV samples belonged to group II and were very similar to U.S. strain SMV G7 and Chinese isolate C14. One isolate in group II, A297-13, differed at three amino acid positions (L54F, N286D, D369N) in the HC-Pro coding sequence from severe isolates and SMV 413, showed very weak silencing suppressor activity, and produced only mild symptoms in soybean. To test the role of each amino acid substitution in RNA silencing and viral RNA accumulation, a series of point mutations was constructed. Substitution of N for D at position 286 in HC-Pro of SMV A297-12 significantly reduced silencing suppression activity. When the mutant HC-Pro of A297-13 was introduced into an infectious clone of SMV 413, accumulation of viral RNA was reduced to less than 3 % of the level of SMV 413 containing HC-Pro of A297-12 at 10 days post-inoculation (dpi) but increased to 40 % of SMV 413(HC-Pro A297-12) at 40 dpi. At 50 dpi RNA accumulation of SMV 413(HC-Pro A297-13) was similar to that of SMV 413(HC-Pro A297-12). However, at 50 dpi, the D at position 286 of HC-Pro in SMV 413(HC-Pro A297-13) was found to have reverted to N. The results showed that 1) a naturally occurring mutation in HC-Pro significantly reduced silencing suppression activity and accumulation of transgene and viral RNAs, and 2) that there was strong selection for revision to wild type when the mutation was introduced into an infectious clone of SMV.
Collapse
Affiliation(s)
- Mei-Jia Li
- Department of Applied Biology, Chungnam National University, Daejeon, 305-764, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Ciota AT, Payne AF, Ngo KA, Kramer LD. Consequences of in vitro host shift for St. Louis encephalitis virus. J Gen Virol 2014; 95:1281-1288. [PMID: 24643879 DOI: 10.1099/vir.0.063545-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/26/2023] Open
Abstract
Understanding the potential for host range shifts and expansions of RNA viruses is critical to predicting the evolutionary and epidemiological paths of these pathogens. As arthropod-borne viruses (arboviruses) experience frequent spillover from their amplification cycles and are generalists by nature, they are likely to experience a relatively high frequency of success in a range of host environments. Despite this, the potential for host expansion, the genetic correlates of adaptation to novel environments and the costs of such adaptations in originally competent hosts are still not characterized fully for arboviruses. In the studies presented here, we utilized experimental evolution of St. Louis encephalitis virus (SLEV; family Flaviviridae, genus Flavivirus) in vitro in the Dermacentor andersoni line of tick cells to model adaptation to a novel invertebrate host. Our results demonstrated that levels of adaptation and costs in alternate hosts are highly variable among lineages, but also that significant fitness increases in tick cells are achievable with only modest change in consensus genetic sequence. In addition, although accumulation of diversity may at times buffer against phenotypic costs within the SLEV swarm, an increased proportion of variants with an impaired capacity to infect and spread on vertebrate cell culture accumulated with tick cell passage. Isolation and characterization of a subset of these variants implicates the NS3 gene as an important host range determinant for SLEV.
Collapse
Affiliation(s)
- Alexander T Ciota
- Wadsworth Center, New York State Department of Health, Slingerlands, NY, USA
| | - Anne F Payne
- Wadsworth Center, New York State Department of Health, Slingerlands, NY, USA
| | - Kiet A Ngo
- Wadsworth Center, New York State Department of Health, Slingerlands, NY, USA
| | - Laura D Kramer
- School of Public Health, State University of New York at Albany, Albany, NY, USA.,Wadsworth Center, New York State Department of Health, Slingerlands, NY, USA
| |
Collapse
|
43
|
Hepatitis A virus adaptation to cellular shutoff is driven by dynamic adjustments of codon usage and results in the selection of populations with altered capsids. J Virol 2014; 88:5029-41. [PMID: 24554668 DOI: 10.1128/jvi.00087-14] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Hepatitis A virus (HAV) has a highly biased and deoptimized codon usage compared to the host cell and fails to inhibit host protein synthesis. It has been proposed that an optimal combination of abundant and rare codons controls the translation speed required for the correct capsid folding. The artificial shutoff host protein synthesis results in the selection of variants containing mutations in the HAV capsid coding region critical for folding, stability, and function. Here, we show that these capsid mutations resulted in changes in their antigenicity; in a reduced stability to high temperature, low pH, and biliary salts; and in an increased efficacy of cell entry. In conclusion, the adaptation to cellular shutoff resulted in the selection of large-plaque-producing virus populations. IMPORTANCE HAV has a naturally deoptimized codon usage with respect to that of its cell host and is unable to shut down the cellular translation. This fact contributes to the low replication rate of the virus, in addition to other factors such as the highly inefficient internal ribosome entry site (IRES), and explains the outstanding physical stability of this pathogen in the environment mediated by a folding-dependent highly cohesive capsid. Adaptation to artificially induced cellular transcription shutoff resulted in a redeoptimization of its capsid codon usage, instead of an optimization. These genomic changes are related to an overall change of capsid folding, which in turn induces changes in the cell entry process. Remarkably, the adaptation to cellular shutoff allowed the virus to significantly increase its RNA uncoating efficiency, resulting in the selection of large-plaque-producing populations. However, these populations produced much-debilitated virions.
Collapse
|
44
|
Chang Y, Dou Y, Bao H, Luo X, Liu X, Mu K, Liu Z, Liu X, Cai X. Multiple microRNAs targeted to internal ribosome entry site against foot-and-mouth disease virus infection in vitro and in vivo. Virol J 2014; 11:1. [PMID: 24393133 PMCID: PMC3903555 DOI: 10.1186/1743-422x-11-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/22/2013] [Accepted: 12/27/2013] [Indexed: 11/25/2022] Open
Abstract
Background Foot-and-mouth disease virus (FMDV) causes a severe vesicular disease in domestic and wild cloven-hoofed animals. Because of the limited early protection induced by current vaccines, emergency antiviral strategies to control the rapid spread of FMD outbreaks are needed. Here we constructed multiple microRNAs (miRNAs) targeting the internal ribosome entry site (IRES) element of FMDV and investigated the effect of IRES-specific miRNAs on FMDV replication in baby hamster kidney (BHK-21) cells and suckling mice. Results Four IRES-specific miRNAs significantly reduced enhanced green fluorescent protein (EGFP) expression from IRES-EGFP reporter plasmids, which were used with each miRNA expression plasmid in co-transfection of BHK-21 cells. Furthermore, treatment of BHK-21 cells with Bi-miRNA (a mixture of two miRNA expression plasmids) and Dual-miRNA (a co-cistronic expression plasmid containing two miRNA hairpin structures) induced more efficient and greater inhibition of EGFP expression than did plasmids carrying single miRNA sequences. Stably transformed BHK-21 cells and goat fibroblasts with an integrating IRES-specific Dual-miRNA were generated, and real-time quantitative RT-PCR showed that the Dual-miRNA was able to effectively inhibit the replication of FMDV (except for the Mya98 strain) in the stably transformed BHK-21 cells. The Dual-miRNA plasmid significantly delayed the deaths of suckling mice challenged with 50× and 100× the 50% lethal dose (LD50) of FMDV vaccine strains of three serotypes (O, A and Asia 1), and induced partial/complete protection against the prevalent PanAsia-1 and Mya98 strains of FMDV serotype O. Conclusion These data demonstrate that IRES-specific miRNAs can significantly inhibit FMDV infection in vitro and in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xuepeng Cai
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, P, R of China.
| |
Collapse
|
45
|
Gong L, Han Y, Chen L, Liu F, Hao P, Sheng J, Li XH, Yu DM, Gong QM, Tian F, Guo XK, Zhang XX. Comparison of next-generation sequencing and clone-based sequencing in analysis of hepatitis B virus reverse transcriptase quasispecies heterogeneity. J Clin Microbiol 2013; 51:4087-94. [PMID: 24088859 PMCID: PMC3838070 DOI: 10.1128/jcm.01723-13] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/06/2023] Open
Abstract
We previously reported that, based on clone-based sequencing (CBS), hepatitis B virus (HBV) heterogeneity within the reverse transcriptase (RT) region was a predictor of antiviral efficacy. Here, by comparing ultradeep pyrosequencing (UDPS), i.e., next-generation sequencing (NGS), with CBS in characterizing the genetic heterogeneity of HBV quasispecies within the RT region, we evaluated the performance of UDPS in the analysis of HBV viral populations. HBV genomic DNA was extracted from serum samples from 31 antiviral treatment-naive patients with chronic hepatitis B. The RT region quasispecies were analyzed in parallel using CBS and UDPS. Characterization of quasispecies heterogeneity was conducted using bioinformatics analysis. Quasispecies complexity values were calculated with the formula Sn = -Σi(pilnpi)/lnN. The number of qualified strains obtained by UDPS was much larger than that obtained by CBS (P < 0.001). Pearson analysis showed that there was a positive correlation of quasispecies complexity values at the nucleotide level for the two methods (P < 0.05), while the complexity value derived from UDPS data was higher than that derived from CBS data (P < 0.001). Study of the prevalences of variations within the RT region showed that CBS detected an average of 9.7 ± 1.1 amino acid substitutions/sample and UDPS detected an average of 16.2 ± 1.4 amino acid substitutions/sample. The phylogenetic analysis based on UDPS data showed more genetic entities than did that based on CBS data. Viral heterogeneity determination by the UDPS technique is more sensitive and efficient in terms of low-abundance variation detection and quasispecies simulation than that by the CBS method, although imperfect, and thus sheds light on the future clinical application of NGS in HBV quasispecies studies.
Collapse
Affiliation(s)
- Ling Gong
- Department of Infectious Diseases, Institute of Infectious and Respiratory Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yue Han
- Department of Infectious Diseases, Institute of Infectious and Respiratory Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Li Chen
- Department of Infectious Diseases, Institute of Infectious and Respiratory Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Feng Liu
- Department of Infectious Diseases, Institute of Infectious and Respiratory Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Pei Hao
- Shanghai Center for Bioinformation Technology, Shanghai, China
| | - Jia Sheng
- Shanghai Center for Bioinformation Technology, Shanghai, China
| | - Xin-Hua Li
- Department of Infectious Diseases, Institute of Infectious and Respiratory Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - De-Min Yu
- Department of Infectious Diseases, Institute of Infectious and Respiratory Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qi-Ming Gong
- Department of Infectious Diseases, Institute of Infectious and Respiratory Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fei Tian
- Department of Medical Microbiology and Parasitology, Institutes of Medical Sciences, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiao-kui Guo
- Department of Medical Microbiology and Parasitology, Institutes of Medical Sciences, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xin-Xin Zhang
- Department of Infectious Diseases, Institute of Infectious and Respiratory Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
46
|
Ruiz-Mirazo K, Briones C, de la Escosura A. Prebiotic Systems Chemistry: New Perspectives for the Origins of Life. Chem Rev 2013; 114:285-366. [DOI: 10.1021/cr2004844] [Citation(s) in RCA: 563] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kepa Ruiz-Mirazo
- Biophysics
Unit (CSIC-UPV/EHU), Leioa, and Department of Logic and Philosophy
of Science, University of the Basque Country, Avenida de Tolosa 70, 20080 Donostia−San Sebastián, Spain
| | - Carlos Briones
- Department
of Molecular Evolution, Centro de Astrobiología (CSIC−INTA, associated to the NASA Astrobiology Institute), Carretera de Ajalvir, Km 4, 28850 Torrejón de Ardoz, Madrid, Spain
| | - Andrés de la Escosura
- Organic
Chemistry Department, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
47
|
Genetic analysis of West Nile virus isolates from an outbreak in Idaho, United States, 2006-2007. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:4486-506. [PMID: 24065039 PMCID: PMC3799518 DOI: 10.3390/ijerph10094486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 07/09/2013] [Revised: 09/12/2013] [Accepted: 09/16/2013] [Indexed: 12/26/2022]
Abstract
West Nile virus (WNV) appeared in the U.S. in 1999 and has since become endemic, with yearly summer epidemics causing tens of thousands of cases of serious disease over the past 14 years. Analysis of WNV strains isolated during the 2006–2007 epidemic seasons demonstrates that a new genetic variant had emerged coincidentally with an intense outbreak in Idaho during 2006. The isolates belonging to the new variant carry a 13 nt deletion, termed ID-Δ13, located at the variable region of the 3′UTR, and are genetically related. The analysis of deletions and insertions in the 3′UTR of two major lineages of WNV revealed the presence of conserved repeats and two indel motifs in the variable region of the 3′UTR. One human and two bird isolates from the Idaho 2006–2007 outbreaks were sequenced using Illumina technology and within-host variability was analyzed. Continued monitoring of new genetic variants is important for public health as WNV continues to evolve.
Collapse
|
48
|
Schönherz AA, Lorenzen N, Einer-Jensen K. Inter-species transmission of viral hemorrhagic septicemia virus (VHSV) from turbot (Scophthalmus maximus) to rainbow trout (Onchorhynchus mykiss). J Gen Virol 2013; 94:869-875. [DOI: 10.1099/vir.0.048223-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/24/2022] Open
Abstract
Successful viral infection is a complex mechanism, involving many host–pathogen interactions that developed during coevolution of host and pathogen, and often result in host-species specificity. Nevertheless, many viruses are able to infect several host species and sporadically cross species barriers. The viral hemorrhagic septicemia virus (VHSV), a rhabdovirus with high economic impact on the aquaculture industry, has developed an exceptionally wide host range across marine and freshwater environments. Transmission of VHSV between host species therefore represents a potential risk for aquaculture, which currently is not addressed in biosecurity managements. The objective of this study was to investigate the inter-species transmission potential of VHSV and evaluate whether infected marine wild fish pose a potential risk on marine cultured rainbow trout. A cohabitation infection trial with turbot as donor and rainbow trout as recipient host species was conducted. Turbot were intraperitoneally injected with either a marine-adapted (MA) or a trout-adapted (TA) VHSV isolate and subsequently grouped with naïve rainbow trout. Both VHSV isolates were able to replicate and cause mortality in turbot, while only the TA isolate was able to cross the species barrier and infect rainbow trout with fatal outcome. The results demonstrate that a marine fish species can function as reservoir and transmitter of TA VHSV isolates.
Collapse
Affiliation(s)
- Anna A. Schönherz
- Aarhus University, Faculty of Science and Technology, Department of Molecular Biology and Genetics, DK-8300 Tjele, Denmark
| | - Niels Lorenzen
- Technical University Denmark, National Veterinary Institute, DK-8200 Aarhus, Denmark
| | - Katja Einer-Jensen
- Technical University Denmark, National Veterinary Institute, DK-8200 Aarhus, Denmark
| |
Collapse
|
49
|
Mahabadi M, Norouzi M, Alavian SM, Samimirad K, Azad TM, Saberfar E, Mahmoodi M, Ramezani F, Karimzadeh H, Malekzadeh R, Montazeri G, Nejatizadeh A, Ziaee M, Abedi F, Ataei B, Yaran M, Sayad B, Hossein Somi M, Sarizadeh G, Sanei-Moghaddam I, Mansour-Ghanaei F, Rafatpanah H, Pourhosseingholi MA, Keyvani H, Kalantari E, Saberifiroozi M, Ali Judaki M, Ghamari S, Daram M, Fazeli Z, Goodarzi Z, Khedive A, Moradi A, Jazayeri SM. Drug-related mutational patterns in hepatitis B virus (HBV) reverse transcriptase proteins from Iranian treatment-naïve chronic HBV patients. HEPATITIS MONTHLY 2013; 13:e6712. [PMID: 23596461 PMCID: PMC3626233 DOI: 10.5812/hepatmon.6712] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 07/11/2012] [Revised: 10/09/2012] [Accepted: 11/12/2012] [Indexed: 02/06/2023]
Abstract
BACKGROUND Immunomodulators and Nucleotide analogues have been used globally for the dealing of chronic hepatitis B virus (HBV) infection. However, the development of drug resistance is a major limitation to their long-term effectiveness. OBJECTIVES The aim of this study was to characterize the hepatitis B virus reverse transcriptase (RT) protein variations among Iranian chronic HBV carriers who did not receive any antiviral treatments. MATERIALS AND METHODS Hepatitis B virus partial RT genes from 325 chronic in active carrier patients were amplified and directly sequenced. Nucleotide/amino acid substitutions were identified compared to the sequences obtained from the database. RESULTS All strains belonging to genotype D.365 amino-acid substitutions were found. Mutations related to lamivudine, adefovir, telbivudine, and entecavir occurred in (YMDD) 4% (n = 13), (SVQ) 17.23% (n = 56), (M204I/V + L180M) 2.45% (n = 8) and (M204I) 2.76% (n = 9) of patients, respectively. CONCLUSIONS RT mutants do occur naturally and could be found in HBV carriers who have never received antiviral therapy. However, mutations related to drug resistance in Iranian treatment-naïve chronic HBV patients were found to be higher than other studies published formerly. Chronic HBV patients should be monitored closely prior the commencement of therapy to achieve the best regimen option.
Collapse
Affiliation(s)
- Mostafa Mahabadi
- Hepatitis B Molecular Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Mehdi Norouzi
- Hepatitis B Molecular Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
| | | | - Katayoon Samimirad
- Hepatitis C Molecular Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Talat Mokhtari Azad
- Hepatitis B Molecular Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Esmaeil Saberfar
- The research and development department of Bayerpaul vaccine and pharmaceutical company, Tehran, IR Iran
| | - Mahmood Mahmoodi
- Department of Epidemiology, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Fatemeh Ramezani
- Hepatitis B Molecular Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Hadi Karimzadeh
- Hepatitis B Molecular Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Reza Malekzadeh
- Digestive Disease Research Center, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Ghodrat Montazeri
- Digestive Disease Research Center, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Azim Nejatizadeh
- Research Center for Molecular Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, IR Iran
| | - Masood Ziaee
- Hepatitis Research Center, Department of Internal Medicine, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, IR Iran
| | - Farshid Abedi
- Department of Infectious Disease, Mashhad University of Medical Sciences, Mashhad, IR Iran
| | - Behrooz Ataei
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, IR Iran
| | - Majid Yaran
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, IR Iran
| | - Babak Sayad
- Kermanshah Liver Diseases and Hepatitis Research Center, Kermanshah, IR Iran
| | - Mohammad Hossein Somi
- Liver and Gastrointestinal Disease Research Center, Tabriz University of Medical Sciences, Tabriz, IR Iran
| | | | | | - Fariborz Mansour-Ghanaei
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, IR Iran
| | - Houshang Rafatpanah
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, IR Iran
| | | | - Hossain Keyvani
- Department of Virology, School of Medicine, Tehran University of Medical Sciences, Tehran, IR Iran
| | | | - Mehdi Saberifiroozi
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Mohammad Ali Judaki
- Hepatitis B Molecular Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Shiva Ghamari
- Hepatitis B Molecular Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Maryam Daram
- Hepatitis B Molecular Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Zeinab Fazeli
- Hepatitis B Molecular Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Zahra Goodarzi
- The research and development department of Bayerpaul vaccine and pharmaceutical company, Tehran, IR Iran
| | - Abolfazl Khedive
- Hepatitis B Molecular Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Abdolvahab Moradi
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, IR Iran
| | - Seyed Mohamad Jazayeri
- Hepatitis B Molecular Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
- Corresponding author: Seyed Mohamad Jazayeri, Hepatitis B Lab, Department of Virology, School of Public Health, Tehran University of Medical Sciences, P.O. Box: 14155-6446, Tehran, IR Iran. Tel.: +98-2188962343, Fax: +98-2188992660, E-mail:
| |
Collapse
|
50
|
Kim Y, Lee C. Ribavirin efficiently suppresses porcine nidovirus replication. Virus Res 2012; 171:44-53. [PMID: 23108045 PMCID: PMC7114464 DOI: 10.1016/j.virusres.2012.10.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/31/2012] [Revised: 10/19/2012] [Accepted: 10/19/2012] [Indexed: 11/27/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) and porcine epidemic diarrhea virus (PEDV) are porcine nidoviruses that represent emerging viral pathogens causing heavy economic impacts on the swine industry. Although ribavirin is a well-known antiviral drug against a broad range of both DNA and RNA viruses in vitro, its inhibitory effect and mechanism of action on porcine nidovirus replication remains to be elucidated. Therefore, the present study was conducted to determine whether ribavirin suppresses porcine nidovirus infection. Our results demonstrated that ribavirin treatment dose-dependently inhibited the replication of both nidoviruses. The antiviral activity of ribavirin on porcine nidovirus replication was found to be primarily exerted at early times post-infection. Treatment with ribavirin resulted in marked reduction of viral genomic and subgenomic RNA synthesis, viral protein expression, and progeny virus production in a dose-dependent manner. Investigations into the mechanism of action of ribavirin against PRRSV and PEDV revealed that the addition of guanosine to the ribavirin treatment significantly reversed the antiviral effects, suggesting that depletion of the intracellular GTP pool by inhibiting IMP dehydrogenase may be essential for ribavirin activity. Further sequencing analysis showed that the mutation frequency in ribavirin-treated cells was similar to that in untreated cells, indicating that ribavirin did not induce error-prone replication. Taken together, our data indicate that ribavirin might not only be a good therapeutic agent against porcine nidovirus, but also a potential candidate to be evaluated against other human and animal coronaviruses.
Collapse
Affiliation(s)
- Youngnam Kim
- Department of Microbiology, College of Natural Sciences, Kyungpook National University, Daegu 702-701, South Korea
| | | |
Collapse
|