1
|
Hu G, Do DN, Manafiazar G, Kelvin AA, Sargolzaei M, Plastow G, Wang Z, Davoudi P, Miar Y. Identifying selection signatures for immune response and resilience to Aleutian disease in mink using genotype data. Front Genet 2024; 15:1370891. [PMID: 39071778 PMCID: PMC11272623 DOI: 10.3389/fgene.2024.1370891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/17/2024] [Indexed: 07/30/2024] Open
Abstract
Aleutian disease (AD) brings tremendous financial losses to the mink industry. Selecting AD-resilient mink has been conducted to control AD. Such selections could have altered the patterns of genetic variation responding to selection pressures. This study aimed to identify selection signatures for immune response (IRE) and resilience to AD. A total of 1,411 mink from an AD-positive facility were used. For IRE, 264 animals were categorized according to the combined results of enzyme-linked immunosorbent assay (ELISA) and counterimmunoelectrophoresis (CIEP). For resilience, two grouping methods were used: 1) general resilience performance (GRP, n = 30) was evaluated based on the feed conversion ratio, Kleiber ratio, and pelt quality; and 2) female reproductive performance (FRP, n = 36) was measured based on the number of kits alive 24 h after birth. Detection methods were the pairwise fixation index, nucleotide diversity, and cross-population extended haplotype homozygosity. A total of 619, 569, and 526 SNPs were identified as candidates for IRE, GRP, and FRP, respectively. The annotated genes were involved in immune system process, growth, reproduction, and pigmentation. Two olfactory-related Gene Ontology (GO) terms were significant (q < 0.05) for all traits, suggesting the impact of AD on the sense of smell of infected mink. Differences in detected genes and GO terms among different color types for IRE indicated variations in immune response to AD among color types. The mitogen-activated protein kinase (MAPK) signaling pathway was significant (q < 0.05) for FRP, suggesting that AD may disrupt MAPK signaling and affect FRP. The findings of this research contribute to our knowledge of the genomic architecture and biological mechanisms underlying AD resilience in mink.
Collapse
Affiliation(s)
- Guoyu Hu
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, Canada
| | - Duy Ngoc Do
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, Canada
| | - Ghader Manafiazar
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, Canada
| | - Alyson A. Kelvin
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Canada
| | - Mehdi Sargolzaei
- Department of Pathobiology, University of Guelph, Guelph, Canada
- Select Sires Inc., Plain City, OH, United States
| | - Graham Plastow
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Zhiquan Wang
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Pourya Davoudi
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, Canada
| | - Younes Miar
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, Canada
| |
Collapse
|
2
|
Hsi J, Mietzsch M, Chipman P, Afione S, Zeher A, Huang R, Chiorini J, McKenna R. Structural and antigenic characterization of the avian adeno-associated virus capsid. J Virol 2023; 97:e0078023. [PMID: 37702486 PMCID: PMC10617571 DOI: 10.1128/jvi.00780-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/19/2023] [Indexed: 09/14/2023] Open
Abstract
IMPORTANCE AAVs are extensively studied as promising therapeutic gene delivery vectors. In order to circumvent pre-existing antibodies targeting primate-based AAV capsids, the AAAV capsid was evaluated as an alternative to primate-based therapeutic vectors. Despite the high sequence diversity, the AAAV capsid was found to bind to a common glycan receptor, terminal galactose, which is also utilized by other AAVs already being utilized in gene therapy trials. However, contrary to the initial hypothesis, AAAV was recognized by approximately 30% of human sera tested. Structural and sequence comparisons point to conserved epitopes in the fivefold region of the capsid as the reason determinant for the observed cross-reactivity.
Collapse
Affiliation(s)
- Jane Hsi
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Mario Mietzsch
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Paul Chipman
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Sandra Afione
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland, USA
| | - Allison Zeher
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
- Department of Epidemiology, Bloomberg School for Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Rick Huang
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - John Chiorini
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland, USA
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
3
|
Vahedi SM, Salek Ardestani S, Banabazi MH, Clark F. Epidemiology, pathogenesis, and diagnosis of Aleutian disease caused by Aleutian mink disease virus: A literature review with a perspective of genomic breeding for disease control in American mink (Neogale vison). Virus Res 2023; 336:199208. [PMID: 37633597 PMCID: PMC10474236 DOI: 10.1016/j.virusres.2023.199208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Aleutian disease (AD) is a multi-systemic infectious disease in American mink (Neogale vison) caused by the Aleutian mink disease virus (AMDV). Commonly referred to as mink plasmacytosis, AD is an economically significant disease in mink-breeding countries. Aleutian disease mainly induces weight loss, lower fertility, and dropped pelt quality in adults and can result in acute interstitial pneumonia with high mortality rates in kits. In this review, we employed the scientific literature on AD over the last 70 years to discuss the historical and contemporary status of AD outbreaks and seroprevalence in mink farming countries. We also explained different forms of AD and the differences between the pathogenicity of the virus in kits and adults. The application of the available AD serological tests in AD control strategies was argued. We explained how selection programs could help AD control and proposed different approaches to selecting animals for building AD-tolerant herds. The advantages of genomic selection for AD tolerance over traditional breeding strategies were discussed in detail. We also explained how genomic selection could help AD control by selecting tolerant animals for the next generation based on genome-wide single nucleotide polymorphisms (SNP) data and the challenges of implementing genomic selection for AD tolerance in the mink industry. This review collected the information required for designing successful breeding programs for AD tolerance. Examples of the application of information are presented, and data gaps are highlighted. We showed that AD tolerance is necessary to be among the traits that animals are selected for in the mink industry.
Collapse
Affiliation(s)
- Seyed Milad Vahedi
- Department of Animal Science and Aquaculture, Dalhousie University, Bible Hill, NS B2N5E3, Canada
| | | | - Mohammad Hossein Banabazi
- Department of animal breeding and genetics (HGEN), Centre for Veterinary Medicine and Animal Science (VHC), Swedish University of Agricultural Sciences (SLU), Uppsala 75007, Sweden; Department of Biotechnology, Animal Science Research Institute of IRAN (ASRI), Agricultural Research, Education & Extension Organization (AREEO), Karaj 3146618361, Iran.
| | - Fraser Clark
- Department of Animal Science and Aquaculture, Dalhousie University, Bible Hill, NS B2N5E3, Canada.
| |
Collapse
|
4
|
Canuti M, Pénzes JJ, Lang AS. A new perspective on the evolution and diversity of the genus Amdoparvovirus (family Parvoviridae) through genetic characterization, structural homology modeling, and phylogenetics. Virus Evol 2022; 8:veac056. [PMID: 35783582 PMCID: PMC9242002 DOI: 10.1093/ve/veac056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/13/2022] [Accepted: 06/13/2022] [Indexed: 12/11/2022] Open
Abstract
Amdoparvoviruses (genus Amdoparvovirus, family Parvoviridae) are primarily viruses of carnivorans, but recent studies have indicated that their host range might also extend to rodents and chiropterans. While their classification is based on the full sequence of the major nonstructural protein (NS1), several studies investigating amdoparvoviral diversity have been focused on partial sequences, leading to difficulties in accurately determining species demarcations and leaving several viruses unclassified. In this study, while reporting the complete genomic sequence of a novel amdoparvovirus identified in an American mink (British Columbia amdoparvovirus, BCAV), we studied the phylogenetic relationships of all amdoparvovirus-related sequences and provide a comprehensive reevaluation of their diversity and evolution. After excluding recombinant sequences, phylogenetic and pairwise sequence identity analyses allowed us to define fourteen different viruses, including the five currently classified species, BCAV, and four additional viruses that fulfill the International Committee on Taxonomy of Viruses criteria to be classified as species. We show that the group of viruses historically known as Aleutian mink disease virus (species Carnivore amdoparvovirus 1) should be considered as a cluster of at least four separate viral species that have been co-circulating in mink farms, facilitating the occurrence of inter-species recombination. Genome organization, splicing donor and acceptor sites, and protein sequence motifs were surprisingly conserved within the genus. The sequence of the major capsid protein virus protein 2 (VP2) was significantly more conserved between and within species compared to NS1, a phenomenon possibly linked to antibody-dependent enhancement (ADE). Homology models suggest a remarkably high degree of conservation of the spikes located near the icosahedral threefold axis of the capsid, comprising the surface region associated with ADE. A surprisingly high number of divergent amino acid positions were found in the luminal threefold and twofold axes of the capsid, regions of hitherto unknown function. We emphasize the importance of complete genome analyses and, given the marked phylogenetic inconsistencies across the genome, advise to obtain the complete coding sequences of divergent strains. Further studies on amdoparvovirus biology and structure as well as epidemiological and virus discovery investigations are required to better characterize the ecology and evolution of this important group of viruses.
Collapse
Affiliation(s)
- Marta Canuti
- Department of Biology, Memorial University of Newfoundland, 45 Arctic Ave., St. John’s NL A1C 5S7, Canada
| | - Judit J Pénzes
- Institute for Quantitative Biomedicine, Rutgers the State University of New Jersey, 174 Frelinghuysen Rd, Piscataway, NJ 08854, USA
| | - Andrew S Lang
- Department of Biology, Memorial University of Newfoundland, 45 Arctic Ave., St. John’s NL A1C 5S7, Canada
| |
Collapse
|
5
|
Alex CE, Canuti M, Schlesinger MS, Jackson KA, Needle D, Jardine C, Nituch L, Bourque L, Lang AS, Pesavento PA. Natural disease and evolution of an amdoparvovirus endemic in striped skunks (
Mephitis mephitis
). Transbound Emerg Dis 2022; 69:e1758-e1767. [DOI: 10.1111/tbed.14511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Charles E. Alex
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine University of California‐Davis Davis CA USA
| | - Marta Canuti
- Department of Biology Memorial University of Newfoundland St. John's NL Canada
| | - Maya S. Schlesinger
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine University of California‐Davis Davis CA USA
| | - Kenneth A. Jackson
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine University of California‐Davis Davis CA USA
| | - David Needle
- New Hampshire Veterinary Diagnostic Laboratory, College of Life Sciences and Agriculture University of New Hampshire Durham NH USA
| | - Claire Jardine
- Department of Pathobiology, Canadian Wildlife Health Cooperative University of Guelph Guelph ON Canada
| | - Larissa Nituch
- Ontario Ministry of Northern Development Mines, Natural Resources and Forestry Peterborough ON Canada
| | - Laura Bourque
- Canadian Wildlife Health Cooperative – Atlantic Region University of Prince Edward Island 550 University Ave Charlottetown PE C1A4P3 Canada
| | - Andrew S. Lang
- Department of Biology Memorial University of Newfoundland St. John's NL Canada
| | - Patricia A. Pesavento
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine University of California‐Davis Davis CA USA
| |
Collapse
|
6
|
Markarian NM, Abrahamyan L. AMDV Vaccine: Challenges and Perspectives. Viruses 2021; 13:v13091833. [PMID: 34578415 PMCID: PMC8472842 DOI: 10.3390/v13091833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022] Open
Abstract
Aleutian mink disease virus (AMDV) is known to cause the most significant disease in the mink industry. It is globally widespread and manifested as a deadly plasmacytosis and hyperglobulinemia. So far, measures to control the viral spread have been limited to manual serological testing for AMDV-positive mink. Further, due to the persistent nature of this virus, attempts to eradicate Aleutian disease (AD) have largely failed. Therefore, effective strategies to control the viral spread are of crucial importance for wildlife protection. One potentially key tool in the fight against this disease is by the immunization of mink against AMDV. Throughout many years, several researchers have tried to develop AMDV vaccines and demonstrated varying degrees of protection in mink by those vaccines. Despite these attempts, there are currently no vaccines available against AMDV, allowing the continuation of the spread of Aleutian disease. Herein, we summarize previous AMDV immunization attempts in mink as well as other preventative measures with the purpose to shed light on future studies designing such a potentially crucial preventative tool against Aleutian disease.
Collapse
Affiliation(s)
- Nathan M. Markarian
- Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
| | - Levon Abrahamyan
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Research Group on Infectious Diseases of Production Animals (GREMIP), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Correspondence:
| |
Collapse
|
7
|
Hu G, Do DN, Karimi K, Miar Y. Genetic and phenotypic parameters for Aleutian disease tests and their correlations with pelt quality, reproductive performance, packed-cell volume, and harvest length in mink. J Anim Sci 2021; 99:6323592. [PMID: 34279039 DOI: 10.1093/jas/skab216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/16/2021] [Indexed: 11/14/2022] Open
Abstract
Aleutian disease (AD), caused by the Aleutian mink disease virus (AMDV), is a major health concern that results in global economic losses to the mink industry. The unsatisfactory outcome of the culling strategy, immunoprophylaxis, and medical treatment in controlling AD have urged mink farmers to select AD resilient mink based on several detection tests, including enzyme-linked immunosorbent assay (ELISA), counterimmunoelectrophoresis (CIEP), and iodine agglutination test (IAT). However, the genetic analysis of these AD tests and their correlations with pelt quality, reproductive performance, packed-cell volume (PCV), and harvest length (HL) have not been investigated. In this study, data on 5,824 mink were used to estimate the genetic and phenotypic parameters of four AD tests, including two systems of ELISA, CIEP, and IAT, and their genetic and phenotypic correlations with two pelt quality, five female reproductive performance, PCV, and HL traits. Significances (P < 0.05) of fixed effects (sex, year, dam age, and color type), covariates (age at harvest and blood sampling), and random effects (additive genetic, permanent environmental, and maternal effects) were determined under univariate models using ASReml 4.1 software. The genetic and phenotypic parameters for all traits were estimated under bivariate models using ASReml 4.1 software. Estimated heritabilities (±SE) were 0.39 ± 0.06, 0.61 ± 0.07, 0.11 ± 0.07, and 0.26 ± 0.05 for AMDV antigen-based ELISA (ELISA-G), AMDV capsid protein-based ELISA, CIEP, and IAT, respectively. The ELISA-G also showed a moderate repeatability (0.58 ± 0.04) and had significant negative genetic correlations (±SE) with reproductive performance traits (from -0.41 ± 0.16 to -0.49 ± 0.12), PCV (-0.53 ± 0.09), and HL (-0.45 ± 0.16). These results indicated that ELISA-G had the potential to be applied as an indicator trait for genetic selection of AD resilient mink in AD endemic ranches and therefore help mink farmers to reduce the adverse effects caused by AD.
Collapse
Affiliation(s)
- Guoyu Hu
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, Nova Scotia, B2N 5E3, Canada
| | - Duy Ngoc Do
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, Nova Scotia, B2N 5E3, Canada
| | - Karim Karimi
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, Nova Scotia, B2N 5E3, Canada
| | - Younes Miar
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, Nova Scotia, B2N 5E3, Canada
| |
Collapse
|
8
|
Lu T, Zhang H, Zhou J, Ma Q, Yan W, Zhao L, Wu S, Chen H. Aptamer-targeting of Aleutian mink disease virus (AMDV) can be an effective strategy to inhibit virus replication. Sci Rep 2021; 11:4649. [PMID: 33633317 PMCID: PMC7907208 DOI: 10.1038/s41598-021-84223-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 02/12/2021] [Indexed: 12/03/2022] Open
Abstract
Aleutian mink disease (AMD), which is caused by Aleutian mink disease virus (AMDV), is an important contagious disease for which no effective vaccine is yet available. AMD causes major economic losses for mink farmers globally and threatens some carnivores such as skunks, genets, foxes and raccoons. Aptamers have exciting potential for the diagnosis and/or treatment of infectious viral diseases, including AMD. Using a magnetic beads-based systemic evolution of ligands by exponential enrichment (SELEX) approach, we have developed aptamers with activity against AMDV after 10 rounds of selection. After incubation with the ADVa012 aptamer (4 μM) for 48 h, the concentration of AMDV in the supernatant of infected cells was 47% lower than in the supernatant of untreated cells, whereas a random library of aptamers has no effect. The half-life of ADVa012 was ~ 32 h, which is significantly longer than that of other aptamers. Sequences and three dimensions structural modeling of selected aptamers indicated that they fold into similar stem-loop structures, which may be a preferred structure for binding to the target protein. The ADVa012 aptamer was shown to have an effective and long-lasting inhibitory effect on viral production in vitro.
Collapse
Affiliation(s)
- Taofeng Lu
- Institute for Laboratory Animal Research, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Hui Zhang
- Institute for Laboratory Animal Research, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Jie Zhou
- Shanghai Laboratory Animal Research Center, Shanghai, 201203, China.
| | - Qin Ma
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Wenzhuo Yan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Lili Zhao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Shuguang Wu
- Institute for Laboratory Animal Research, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Hongyan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| |
Collapse
|
9
|
Lu T, Wang Y, Wu Y, Zhao L, Wu S, Chen H. Development of an antigen-capture enzyme-linked immunosorbent assay for diagnosis of Aleutian mink disease virus. Arch Virol 2020; 166:83-90. [PMID: 33068192 DOI: 10.1007/s00705-020-04850-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 09/06/2020] [Indexed: 11/24/2022]
Abstract
Aleutian mink disease (AMD), caused by Aleutian mink disease virus (AMDV), is a very important infectious disease of mink. Currently, elimination of antibody- or antigen-positive animals is the most successful strategy for eradicating AMD, but the claw-cutting method of blood sampling is difficult to perform and painful for the animal. In this study, we aimed to establish an antigen capture enzyme-linked immunosorbent assay (AC-ELISA) method for the efficient detection of AMDV antigens using fecal samples. A purified mouse monoclonal antibody (mAb) was used as the capture antibody, and a rabbit polyclonal antibody (pAb) was used as the detection antibody. The assay was optimized by adjusting a series of parameters. Using a cutoff value of 0.205, the limit of detection of the AC-ELISA for strain AMDV-G antigen was 2 μg/mL, and there was no cross-reaction with other mink viruses. The intra- and inter-assay standard deviations were below 0.046, and the correlation of variance (CV) values were 1.24-7.12% when testing fecal samples. Compared with conventional PCR results, the specificity and sensitivity were 91.5% and 90.6%, respectively, and the concordance rate between the two methods was 91.1%.
Collapse
Affiliation(s)
- Taofeng Lu
- Institute for Laboratory Animal Research, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Yuanzhi Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, 150069, China
| | - Yanjun Wu
- Institute for Laboratory Animal Research, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Lili Zhao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, 150069, China
| | - Shuguang Wu
- Institute for Laboratory Animal Research, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Hongyan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, 150069, China.
| |
Collapse
|
10
|
Antiangiogenic Vascular Endothelial Growth Factor-Blocking Peptides Displayed on the Capsid of an Infectious Oncolytic Parvovirus: Assembly and Immune Interactions. J Virol 2019; 93:JVI.00798-19. [PMID: 31315994 DOI: 10.1128/jvi.00798-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/10/2019] [Indexed: 11/20/2022] Open
Abstract
As many tumor cells synthetize vascular endothelial growth factors (VEGF) that promote neo-vascularization and metastasis, frontline cancer therapies often administer anti-VEGF (α-VEGF) antibodies. To target the oncolytic parvovirus minute virus of mice (MVM) to the tumor vasculature, we studied the functional tolerance, evasion of neutralization, and induction of α-VEGF antibodies of chimeric viruses in which the footprint of a neutralizing monoclonal antibody within the 3-fold capsid spike was replaced by VEGF-blocking peptides: P6L (PQPRPL) and A7R (ATWLPPR). Both peptides allowed viral genome replication and nuclear translocation of chimeric capsid subunits. MVM-P6L efficiently propagated in culture, exposing the heterologous peptide on the capsid surface, and evaded neutralization by the anti-spike monoclonal antibody. In contrast, MVM-A7R yielded low infectious titers and was poorly recognized by an α-A7R monoclonal antibody. MVM-A7R showed a deficient assembly pattern, suggesting that A7R impaired a transitional configuration that the subunits must undergo in the 3-fold axis to close up the capsid shell. The MVM-A7R chimeric virus consistently evolved in culture into a mutant carrying the P6Q amino acid substitution within the A7R sequence, which restored normal capsid assembly and infectivity. Consistent with this finding, anti-native VEGF antibodies were induced in mice by a single injection of MVM-A7R empty capsids, but not by MVM-A7R virions. This fundamental study provides insights to endow an infectious parvovirus with immune antineovascularization and evasion capacities by replacing an antibody footprint in the capsid 3-fold axis with VEGF-blocking peptides, and it also illustrates the evolutionary capacity of single-stranded DNA (ssDNA) viruses to overcome engineered capsid structural restrictions.IMPORTANCE Targeting the VEGF signaling required for neovascularization by vaccination with chimeric capsids of oncolytic viruses may boost therapy for solid tumors. VEGF-blocking peptides (VEbp) engineered in the capsid 3-fold axis endowed the infectious parvovirus MVM with the ability to induce α-VEGF antibodies without adjuvant and to evade neutralization by MVM-specific antibodies. However, these properties may be compromised by structural restraints that the capsid imposes on the peptide configuration and by misassembly caused by the heterologous peptides. Significantly, chimeric MVM-VEbp resolved the structural restrictions by selecting mutations within the engineered peptides that restored efficient capsid assembly. These data show the promise of antineovascularization vaccines using chimeric VEbp-icosahedral capsids of oncolytic viruses but also raise safety concerns regarding the genetic stability of manipulated infectious parvoviruses in cancer and gene therapies.
Collapse
|
11
|
Leng X, Liu D, Li J, Shi K, Zeng F, Zong Y, Liu Y, Sun Z, Zhang S, Liu Y, Du R. Genetic diversity and phylogenetic analysis of Aleutian mink disease virus isolates in north-east China. Arch Virol 2018; 163:1241-1251. [DOI: 10.1007/s00705-018-3754-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 01/06/2018] [Indexed: 02/02/2023]
|
12
|
Lu T, Wang Y, Ge J, Ma Q, Yan W, Zhang Y, Zhao L, Chen H. Identification and characterization of a novel B-cell epitope on Aleutian Mink Disease virus capsid protein VP2 using a monoclonal antibody. Virus Res 2017; 248:74-79. [PMID: 29278728 DOI: 10.1016/j.virusres.2017.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 11/30/2022]
Abstract
Aleutian mink disease is caused by a highly contagious parvovirus (Aleutian mink disease virus, AMDV). This disease is one of the most commercially important infectious disease worldwide and causes considerable economic losses to mink farmers. The capsid protein VP2 is the major immunogenic antigenic protein of AMDV, and is involved in viral tropism, pathogenicity, and host selection. However, few reports have described the use of VP2-specific monoclonal antibodies (mAbs) in B-cell epitope identification and immunological detection. In this study, we produced a specific mAb, 1G5, against AMDV VP2 protein (amino acids: 200 ∼ 588) and characterized its specificity and relative affinity. Six partially overlapping truncated recombinant proteins and seven synthetized peptides were used to identify the epitopes recognized by 1G5. The results indicate that mAb 1G5 can distinguish AMDV, MEV and CPV2 with high affinity (Ka = 5.37 × 109), and the minimal linear epitope is located in amino acid residues 459EEEGWPAASGTHFED473. Sequence alignments demonstrated that the linear epitope was completely conserved among most Amdoparvoviruses except the bat parvovirus, where three substitutions (463W-463F, 466A-466G and 471F-471Y) were noted. Our results reveal that the identified epitope might be a common B-cell epitope of AMDV antibodies, and the 1G5 mAb can be used to identify the cleavage of the capsid proteins during AMDV infection. This is also the first report of a B-cell epitope on AMDV capsid protein VP2 (VP2: 459-473) using a mAb. These findings have potential applications in the development of new diagnostic tools for AMDV.
Collapse
Affiliation(s)
- Taofeng Lu
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, 150069, People's Republic of China
| | - Yuanzhi Wang
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, 150069, People's Republic of China
| | - Junwei Ge
- Veterinary Department, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, People's Republic of China
| | - Qin Ma
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, 150069, People's Republic of China
| | - Wenzhuo Yan
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, 150069, People's Republic of China
| | - Yuanyuan Zhang
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, 150069, People's Republic of China
| | - Lili Zhao
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, 150069, People's Republic of China
| | - Hongyan Chen
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, 150069, People's Republic of China.
| |
Collapse
|
13
|
Xi J, Zhang Y, Wang J, Yu Y, Zhang X, Li Z, Cui S, Liu W. Generation of an infectious clone of AMDV and identification of capsid residues essential for infectivity in cell culture. Virus Res 2017; 242:58-65. [DOI: 10.1016/j.virusres.2017.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/25/2017] [Accepted: 09/04/2017] [Indexed: 10/18/2022]
|
14
|
Structure-guided evolution of antigenically distinct adeno-associated virus variants for immune evasion. Proc Natl Acad Sci U S A 2017; 114:E4812-E4821. [PMID: 28559317 DOI: 10.1073/pnas.1704766114] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Preexisting neutralizing antibodies (NAbs) against adeno-associated viruses (AAVs) pose a major, unresolved challenge that restricts patient enrollment in gene therapy clinical trials using recombinant AAV vectors. Structural studies suggest that despite a high degree of sequence variability, antibody recognition sites or antigenic hotspots on AAVs and other related parvoviruses might be evolutionarily conserved. To test this hypothesis, we developed a structure-guided evolution approach that does not require selective pressure exerted by NAbs. This strategy yielded highly divergent antigenic footprints that do not exist in natural AAV isolates. Specifically, synthetic variants obtained by evolving murine antigenic epitopes on an AAV serotype 1 capsid template can evade NAbs without compromising titer, transduction efficiency, or tissue tropism. One lead AAV variant generated by combining multiple evolved antigenic sites effectively evades polyclonal anti-AAV1 neutralizing sera from immunized mice and rhesus macaques. Furthermore, this variant displays robust immune evasion in nonhuman primate and human serum samples at dilution factors as high as 1:5, currently mandated by several clinical trials. Our results provide evidence that antibody recognition of AAV capsids is conserved across species. This approach can be applied to any AAV strain to evade NAbs in prospective patients for human gene therapy.
Collapse
|
15
|
Ma F, Zhang L, Wang Y, Lu R, Hu B, Lv S, Xue X, Li X, Ling M, Fan S, Zhang H, Yan X. Development of a Peptide ELISA for the Diagnosis of Aleutian Mink Disease. PLoS One 2016; 11:e0165793. [PMID: 27802320 PMCID: PMC5089682 DOI: 10.1371/journal.pone.0165793] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 10/18/2016] [Indexed: 01/26/2023] Open
Abstract
Aleutian disease (AD) is a common immunosuppressive disease in mink farms world-wide. Since the 1980s, counterimmunoelectrophoresis (CIEP) has been the main detection method for infection with the Aleutian Mink Disease Virus (AMDV). In this study, six peptides derived from the AMDV structural protein VP2 were designed, synthesized, and used as ELISA antigens to detect anti-AMDV antibodies in the sera of infected minks. Serum samples were collected from 764 minks in farms from five different provinces, and analyzed by both CIEP (a gold standard) and peptide ELISA. A peptide designated P1 (415 aa-433 aa) exhibited good antigenicity. A novel ELISA was developed using ovalbumin-linked peptide P1 to detect anti-AMDV antibodies in mink sera. The sensitivity and specificity of the peptide ELISA was 98.0% and 97.5%, respectively. Moreover, the ELISA also detected 342 early-stage infected samples (negative by CIEP and positive by PCR), of which 43.6% (149/342) were true positives. These results showed that the peptide ELISA had better sensitivity compared with CIEP, and therefore could be preferable over CIEP for detecting anti-AMDV antibodies in serological screening.
Collapse
Affiliation(s)
- Fanshu Ma
- Division of Infectious Diseases of Special Animal, Institute of Special Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun, China
| | - Lei Zhang
- Division of Infectious Diseases of Special Animal, Institute of Special Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yang Wang
- Division of Infectious Diseases of Special Animal, Institute of Special Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun, China
| | - Rongguang Lu
- Division of Infectious Diseases of Special Animal, Institute of Special Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun, China
| | - Bo Hu
- Division of Infectious Diseases of Special Animal, Institute of Special Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun, China
| | - Shuang Lv
- Division of Infectious Diseases of Special Animal, Institute of Special Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xianghong Xue
- Division of Infectious Diseases of Special Animal, Institute of Special Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xintong Li
- Division of Infectious Diseases of Special Animal, Institute of Special Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun, China
| | - Mingyu Ling
- Division of Infectious Diseases of Special Animal, Institute of Special Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun, China
| | - Sining Fan
- Division of Infectious Diseases of Special Animal, Institute of Special Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun, China
| | - Hailing Zhang
- Division of Infectious Diseases of Special Animal, Institute of Special Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xijun Yan
- Division of Infectious Diseases of Special Animal, Institute of Special Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
16
|
Xi J, Wang J, Yu Y, Zhang X, Mao Y, Hou Q, Liu W. Genetic characterization of the complete genome of an Aleutian mink disease virus isolated in north China. Virus Genes 2016; 52:463-73. [PMID: 27007772 DOI: 10.1007/s11262-016-1320-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/12/2016] [Indexed: 12/16/2022]
Abstract
The genome of a highly pathogenic strain of Aleutian disease mink virus (AMDV-BJ) isolated from a domestic farm in North China has been determined and compared with other strains. Alignment analysis of the major structural protein VP2 revealed that AMDV-BJ is unique among 17 other AMDV strains. Compared with the nonpathogenic strain ADV-G, the 3' end Y-shaped hairpin was highly conserved, while a 4-base deletion in the 5' U-shaped terminal palindrome resulted in a different unpaired "bubble" group near the NS1-binding region of the 5' end hairpin which may affect replication efficiency in vivo. We also performed a protein analysis of the NS1, NS2, and new-confirmed NS3 of AMDV-BJ with some related AMDV DNA sequence published, providing information on evolution of AMDV genes. This study shows a useful method to obtain the full-length genome of AMDV and some other parvoviruses.
Collapse
Affiliation(s)
- Ji Xi
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Jigui Wang
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Yongle Yu
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Xiaomei Zhang
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Yaping Mao
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Qiang Hou
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Weiquan Liu
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| |
Collapse
|
17
|
Development of an Enzyme-Linked Immunosorbent Assay Based on Fusion VP2332-452 Antigen for Detecting Antibodies against Aleutian Mink Disease Virus. J Clin Microbiol 2015; 54:439-42. [PMID: 26582828 DOI: 10.1128/jcm.02625-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 10/31/2015] [Indexed: 11/20/2022] Open
Abstract
For detection of Aleutian mink disease virus (AMDV) antibodies, an enzyme-linked immunosorbent assay (ELISA) was developed using the recombinant VP2332-452 protein as an antigen. Counterimmunoelectrophoresis (CIEP) was used as a reference test to compare the results of the ELISA and Western blotting (WB); the specificity and sensitivity of the VP2332-452 ELISA were 97.9% and 97.3%, respectively, which were higher than those of WB. Therefore, this VP2332-452 ELISA may be a preferable method for detecting antibodies against AMDV.
Collapse
|
18
|
Affiliation(s)
- Shweta Kailasan
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida 32610
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida 32610
| | - Colin R. Parrish
- Baker Institute for Animal Health and Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853;
| |
Collapse
|
19
|
Canuti M, Whitney HG, Lang AS. Amdoparvoviruses in small mammals: expanding our understanding of parvovirus diversity, distribution, and pathology. Front Microbiol 2015; 6:1119. [PMID: 26528267 PMCID: PMC4600916 DOI: 10.3389/fmicb.2015.01119] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/28/2015] [Indexed: 11/13/2022] Open
Abstract
Many new viruses have been discovered recently, thanks in part to the advent of next-generation sequencing technologies. Among the Parvoviridae, three novel members of the genus Amdoparvovirus have been described in the last 4 years, expanding this genus that had contained a single species since its discovery, Aleutian mink disease virus. The increasing number of molecular and epidemiological studies on these viruses around the world also highlights the growing interest in this genus. Some aspects of amdoparvoviruses have been well characterized, however, many other aspects still need to be elucidated and the most recent reviews on this topic are outdated. We provide here an up-to-date overview of what is known and what still needs to be investigated about these scientifically and clinically relevant animal viruses.
Collapse
Affiliation(s)
- Marta Canuti
- Department of Biology, Memorial University of Newfoundland St. John's, NL, Canada
| | - Hugh G Whitney
- Animal Health Division, Forestry and Agrifoods Agency St. John's, NL, Canada
| | - Andrew S Lang
- Department of Biology, Memorial University of Newfoundland St. John's, NL, Canada
| |
Collapse
|
20
|
Kantola K, Hedman L, Tanner L, Simell V, Mäkinen M, Partanen J, Sadeghi M, Veijola R, Knip M, Ilonen J, Hyöty H, Toppari J, Simell O, Hedman K, Söderlund-Venermo M. B-Cell Responses to Human Bocaviruses 1-4: New Insights from a Childhood Follow-Up Study. PLoS One 2015; 10:e0139096. [PMID: 26418064 PMCID: PMC4587975 DOI: 10.1371/journal.pone.0139096] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 09/08/2015] [Indexed: 01/04/2023] Open
Abstract
Human bocaviruses (HBoVs) 1-4 are recently discovered, antigenically similar parvoviruses. We examined the hypothesis that the antigenic similarity of these viruses could give rise to clinically and diagnostically important immunological interactions. IgG and IgM EIAs as well as qPCR were used to study ~2000 sera collected from infancy to early adolescence at 3-6-month intervals from 109 children whose symptoms were recorded. We found that HBoV1-4-specific seroprevalences at age 6 years were 80%, 48%, 10%, and 0%, respectively. HBoV1 infections resulted in significantly weaker IgG responses among children who had pre-existing HBoV2 IgG, and vice versa. Furthermore, we documented a complete absence of virus type-specific immune responses in six viremic children who had pre-existing IgG for another bocavirus, indicating that not all HBoV infections can be diagnosed serologically. Our results strongly indicate that interactions between consecutive HBoV infections affect HBoV immunity via a phenomenon called "original antigenic sin", cross-protection, or both; however, without evident clinical consequences but with important ramifications for the serodiagnosis of HBoV infections. Serological data is likely to underestimate human exposure to these viruses.
Collapse
Affiliation(s)
- Kalle Kantola
- University of Helsinki, Department of Virology, Helsinki, Finland
- * E-mail:
| | - Lea Hedman
- University of Helsinki, Department of Virology, Helsinki, Finland
- Helsinki University Hospital Laboratory Services, Helsinki, Finland
| | - Laura Tanner
- Turku University Hospital, Department of Pediatrics, Turku, Finland
| | | | | | - Juulia Partanen
- University of Helsinki, Department of Virology, Helsinki, Finland
| | | | - Riitta Veijola
- University of Oulu, Department of Pediatrics, Oulu, Finland
| | - Mikael Knip
- University of Helsinki and Helsinki University Hospital, Children's Hospital and Research Programs Unit, Diabetes and Obesity, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Tampere University Hospital, Tampere Center for Child Health Research, Tampere, Finland
| | - Jorma Ilonen
- Turku University Hospital, Department of Pediatrics, Turku, Finland
- Medicity, University of Turku, Turku, Finland
- University of Eastern Finland, Department of Clinical Microbiology, Kuopio, Finland
- University of Turku, Immunogenetics Laboratory, Turku, Finland
| | - Heikki Hyöty
- University of Tampere, Department of Virology, Tampere, Finland
| | - Jorma Toppari
- Turku University Hospital, Department of Pediatrics, Turku, Finland
- Medicity, University of Turku, Turku, Finland
| | - Olli Simell
- Medicity, University of Turku, Turku, Finland
| | - Klaus Hedman
- University of Helsinki, Department of Virology, Helsinki, Finland
- Helsinki University Hospital Laboratory Services, Helsinki, Finland
| | | |
Collapse
|
21
|
Adeno-associated virus serotype 1 (AAV1)- and AAV5-antibody complex structures reveal evolutionary commonalities in parvovirus antigenic reactivity. J Virol 2014; 89:1794-808. [PMID: 25410874 DOI: 10.1128/jvi.02710-14] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The clinical utility of the adeno-associated virus (AAV) gene delivery system has been validated by the regulatory approval of an AAV serotype 1 (AAV1) vector for the treatment of lipoprotein lipase deficiency. However, neutralization from preexisting antibodies is detrimental to AAV transduction efficiency. Hence, mapping of AAV antigenic sites and engineering of neutralization-escaping vectors are important for improving clinical efficacy. We report the structures of four AAV-monoclonal antibody fragment complexes, AAV1-ADK1a, AAV1-ADK1b, AAV5-ADK5a, and AAV5-ADK5b, determined by cryo-electron microscopy and image reconstruction to a resolution of ∼11 to 12 Å. Pseudoatomic modeling mapped the ADK1a epitope to the protrusions surrounding the icosahedral 3-fold axis and the ADK1b and ADK5a epitopes, which overlap, to the wall between depressions at the 2- and 5-fold axes (2/5-fold wall), and the ADK5b epitope spans both the 5-fold axis-facing wall of the 3-fold protrusion and portions of the 2/5-fold wall of the capsid. Combined with the six antigenic sites previously elucidated for different AAV serotypes through structural approaches, including AAV1 and AAV5, this study identified two common AAV epitopes: one on the 3-fold protrusions and one on the 2/5-fold wall. These epitopes coincide with regions with the highest sequence and structure diversity between AAV serotypes and correspond to regions determining receptor recognition and transduction phenotypes. Significantly, these locations overlap the two dominant epitopes reported for autonomous parvoviruses. Thus, rather than the amino acid sequence alone, the antigenic sites of parvoviruses appear to be dictated by structural features evolved to enable specific infectious functions. IMPORTANCE The adeno-associated viruses (AAVs) are promising vectors for in vivo therapeutic gene delivery, with more than 20 years of intense research now realized in a number of successful human clinical trials that report therapeutic efficacy. However, a large percentage of the population has preexisting AAV capsid antibodies and therefore must be excluded from clinical trials or vector readministration. This report represents our continuing efforts to understand the antigenic structure of the AAVs, specifically, to obtain a picture of "polyclonal" reactivity as is the situation in humans. It describes the structures of four AAV-antibody complexes determined by cryo-electron microscopy and image reconstruction, increasing the number of mapped epitopes to four and three, respectively, for AAV1 and AAV5, two vectors currently in clinical trials. The results presented provide information essential for generating antigenic escape vectors to overcome a critical challenge remaining in the optimization of this highly promising vector delivery system.
Collapse
|
22
|
Dam-Tuxen R, Dahl J, Jensen TH, Dam-Tuxen T, Struve T, Bruun L. Diagnosing Aleutian mink disease infection by a new fully automated ELISA or by counter current immunoelectrophoresis: A comparison of sensitivity and specificity. J Virol Methods 2014; 199:53-60. [DOI: 10.1016/j.jviromet.2014.01.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 01/10/2014] [Accepted: 01/14/2014] [Indexed: 11/24/2022]
|
23
|
Tseng YS, Agbandje-McKenna M. Mapping the AAV Capsid Host Antibody Response toward the Development of Second Generation Gene Delivery Vectors. Front Immunol 2014; 5:9. [PMID: 24523720 PMCID: PMC3906578 DOI: 10.3389/fimmu.2014.00009] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 01/07/2014] [Indexed: 12/12/2022] Open
Abstract
The recombinant adeno-associated virus (rAAV) gene delivery system is entering a crucial and exciting phase with the promise of more than 20 years of intense research now realized in a number of successful human clinical trials. However, as a natural host to AAV infection, anti-AAV antibodies are prevalent in the human population. For example, ~70% of human sera samples are positive for AAV serotype 2 (AAV2). Furthermore, low levels of pre-existing neutralizing antibodies in the circulation are detrimental to the efficacy of corrective therapeutic AAV gene delivery. A key component to overcoming this obstacle is the identification of regions of the AAV capsid that participate in interactions with host immunity, especially neutralizing antibodies, to be modified for neutralization escape. Three main approaches have been utilized to map antigenic epitopes on AAV capsids. The first is directed evolution in which AAV variants are selected in the presence of monoclonal antibodies (MAbs) or pooled human sera. This results in AAV variants with mutations on important neutralizing epitopes. The second is epitope searching, achieved by peptide scanning, peptide insertion, or site-directed mutagenesis. The third, a structure biology-based approach, utilizes cryo-electron microscopy and image reconstruction of AAV capsids complexed to fragment antibodies, which are generated from MAbs, to directly visualize the epitopes. In this review, the contribution of these three approaches to the current knowledge of AAV epitopes and success in their use to create second generation vectors will be discussed.
Collapse
Affiliation(s)
- Yu-Shan Tseng
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
24
|
Molecular characterization of the small nonstructural proteins of parvovirus Aleutian mink disease virus (AMDV) during infection. Virology 2014; 452-453:23-31. [PMID: 24606679 DOI: 10.1016/j.virol.2014.01.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 08/29/2013] [Accepted: 01/07/2014] [Indexed: 12/15/2022]
Abstract
Aleutian mink disease virus (AMDV) is the only member in genus Amdovirus of the family Parvoviridae. During AMDV infection, six species of viral transcripts are generated from one precursor mRNA through alternative splicing and alternative polyadenylation. In addition to the large non-structural protein NS1, two small non-structural proteins, NS2 and NS3, are putatively encoded (Qiu J, et al., 2006. J. Virol. 80 654-662). However, these two proteins have not been experimentally demonstrated during virus infection, and nothing is known about their function. Here, we studied the nonstructural protein expression profile of AMDV, and for the first time, confirmed expression of NS2 and NS3 during infection, and identified their intracellular localization. More importantly, we provided evidence that both NS2 and NS3 are necessary for AMDV replication.
Collapse
|
25
|
Phylogenetic analysis of the VP2 gene of Aleutian mink disease parvoviruses isolated from 2009 to 2011 in China. Virus Genes 2012; 45:31-7. [PMID: 22415542 DOI: 10.1007/s11262-012-0734-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 02/28/2012] [Indexed: 10/28/2022]
Abstract
Aleutian mink disease parvovirus (AMDV) is a non-enveloped virus with a single-stranded DNA genome that causes a fatal, usually persistent immune complex disease in minks. In this study, a total of 18,654 serum samples were collected from minks that were farmed in China from 2009 to 2011. After testing by counter-current immunoelectrophoresis (CIE), the seroprevalence of AMDV was found to be 68.67 %. The results show that there is a serious epidemic among Chinese minks used for breeding. To gain detailed information regarding the molecular epidemiology of AMDV in China, nine strains of AMDV were isolated from mink samples that were collected from four of the primary mink farming areas in China. The full-length capsid protein VP2 gene from each strain was sequenced after PCR amplification, and a phylogenetic analysis was performed on the VP2 gene sequence, including the VP2 genes from the other 10 AMDV strains available in the GenBank database, which were submitted from the 1970s to 2009. The phylogenetic analysis showed that the AMDV isolates were divided into five independent clades. The Chinese AMDV strains were distributed among all five groups and showed a high level of genetic diversity. Over 50 % of the Chinese AMDV strains were classified into two clades that consisted only of isolates from China and that were distinct from AMDV strains found in other countries. This finding indicated that both local and imported ADMV species are prevalent in the Chinese mink farming population.
Collapse
|
26
|
Abstract
Parvoviruses package a ssDNA genome. Both nonpathogenic and pathogenic members exist, including those that cause fetal infections, encompassing the entire spectrum of virus phenotypes. Their small genomes and simple coding strategy has enabled functional annotation of many steps in the infectious life cycle. They assemble a multifunctional capsid responsible for cell recognition and the transport of the packaged genome to the nucleus for replication and progeny virus production. It is also the target of the host immune response. Understanding how the capsid structure relates to the function of parvoviruses provides a platform for recombinant engineering of viral gene delivery vectors for the treatment of clinical diseases, and is fundamental for dissecting the viral determinants of pathogenicity. This review focuses on our current understanding of parvovirus capsid structure and function with respect to the infectious life cycle.
Collapse
Affiliation(s)
- Sujata Halder
- Department of Biochemistry & Molecular Biology, Center for Structural Biology, The McKnight Brain Institute, College of Medicine, 1600 SW Archer Road, PO Box 100245, University of Florida, Gainesville, FL 32610, USA
| | - Robert Ng
- Department of Biochemistry & Molecular Biology, Center for Structural Biology, The McKnight Brain Institute, College of Medicine, 1600 SW Archer Road, PO Box 100245, University of Florida, Gainesville, FL 32610, USA
| | - Mavis Agbandje-McKenna
- Department of Biochemistry & Molecular Biology, Center for Structural Biology, The McKnight Brain Institute, College of Medicine, 1600 SW Archer Road, PO Box 100245, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
27
|
Patel JR, Heldens JGM, Bakonyi T, Rusvai M. Important mammalian veterinary viral immunodiseases and their control. Vaccine 2012; 30:1767-81. [PMID: 22261411 PMCID: PMC7130670 DOI: 10.1016/j.vaccine.2012.01.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 01/03/2012] [Accepted: 01/05/2012] [Indexed: 11/16/2022]
Abstract
This paper offers an overview of important veterinary viral diseases of mammals stemming from aberrant immune response. Diseases reviewed comprise those due to lentiviruses of equine infectious anaemia, visna/maedi and caprine arthritis encephalitis and feline immunodeficiency. Diseases caused by viruses of feline infectious peritonitis, feline leukaemia, canine distemper and aquatic counterparts, Aleutian disease and malignant catarrhal fever. We also consider prospects of immunoprophylaxis for the diseases and briefly other control measures. It should be realised that the outlook for effective vaccines for many of the diseases is remote. This paper describes the current status of vaccine research and the difficulties encountered during their development.
Collapse
Affiliation(s)
- J R Patel
- Jas Biologicals Ltd, 12 Pembroke Avenue, Denny Industrial Estate, Waterbeach, Cambridge CB25 9QR, UK.
| | | | | | | |
Collapse
|
28
|
Implementation and validation of a sensitive PCR detection method in the eradication campaign against Aleutian mink disease virus. J Virol Methods 2010; 171:81-5. [PMID: 20951744 DOI: 10.1016/j.jviromet.2010.10.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 10/03/2010] [Accepted: 10/07/2010] [Indexed: 11/23/2022]
Abstract
Aleutian mink disease virus (AMDV) is a severe progressive disease causing multiple different clinical syndromes in mink. In Denmark, the disease is notifiable and under official control. The control programme, based on serological screening, has confined successfully AMDV to the northern part of Denmark. However, re-infections and new introductions of virus into farms require a confirmatory virological test to verify the positive test results of single animals and ultimately to investigate disease transmission. A one step PCR amplifying a 374-base fragment of the NS1 gene of AMDV was compared to the counter-current immune electrophoresis (CIE) routinely used in the serological screening programme. Mink organs (n=299) obtained from 55 recently infected farms and 8 non-infected farms from 2008 to 2010 were tested by PCR, and the results were found to have a high correlation with the serological status of the mink. The relative diagnostic sensitivity of the PCR was 94.7%, and the relative diagnostic specificity was 97.9% when read in parallel with the CIE. PCR positive samples were sequenced and phylogenetic analysis revealed high similarity within the analysed AMDV strains and to AMDV strains described previously.
Collapse
|
29
|
The capsid proteins of Aleutian mink disease virus activate caspases and are specifically cleaved during infection. J Virol 2009; 84:2687-96. [PMID: 20042496 DOI: 10.1128/jvi.01917-09] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Aleutian mink disease virus (AMDV) is currently the only known member of the genus Amdovirus in the family Parvoviridae. It is the etiological agent of Aleutian disease of mink. We have previously shown that a small protein with a molecular mass of approximately 26 kDa was present during AMDV infection and following transfection of capsid expression constructs (J. Qiu, F. Cheng, L. R. Burger, and D. Pintel, J. Virol. 80:654-662, 2006). In this study, we report that the capsid proteins were specifically cleaved at aspartic acid residue 420 (D420) during virus infection, resulting in the previously observed cleavage product. Mutation of a single amino acid residue at D420 abolished the specific cleavage. Expression of the capsid proteins alone in Crandell feline kidney (CrFK) cells reproduced the cleavage of the capsid proteins in virus infection. More importantly, capsid protein expression alone induced active caspases, of which caspase-10 was the most active. Active caspases, in turn, cleaved capsid proteins in vivo. Our results also showed that active caspase-7 specifically cleaved capsid proteins at D420 in vitro. These results suggest that viral capsid proteins alone induce caspase activation, resulting in cleavage of capsid proteins. We also provide evidence that AMDV mutants resistant to caspase-mediated capsid cleavage increased virus production approximately 3- to 5-fold in CrFK cells compared to that produced from the parent virus AMDV-G at 37 degrees C but not at 31.8 degrees C. Collectively, our results indicate that caspase activity plays multiple roles in AMDV infection and that cleavage of the capsid proteins might have a role in regulating persistent infection of AMDV.
Collapse
|
30
|
Qiu J, Cheng F, Pintel D. The abundant R2 mRNA generated by aleutian mink disease parvovirus is tricistronic, encoding NS2, VP1, and VP2. J Virol 2007; 81:6993-7000. [PMID: 17428872 PMCID: PMC1933312 DOI: 10.1128/jvi.00244-07] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The abundant R2 mRNA encoded by the single left-end promoter of Aleutian mink disease parvovirus is tricistronic; it not only expresses the capsid proteins VP1 and VP2 but is also the major source for the nonstructural protein NS2. A cis-acting sequence within the NS2 gene was shown to be required for efficient capsid protein production, and its effect displayed a distinct location dependence. Ribosome transit through the upstream NS2 gene region was necessary for efficient VP1 and VP2 expression; however, neither ablation nor improvement of the NS2 initiating AUG had an effect on capsid protein production, suggesting that the translation of the NS2 protein per se had little influence on VP1 and VP2 expression. Thus, proper control of the alternative translation of the tricistronic R2 mRNA, a process critical for viral replication, is governed in a complex manner.
Collapse
Affiliation(s)
- Jianming Qiu
- Life Sciences Center, University of Missouri--Columbia, 1201 Rollins Rd., Columbia, MO 65212, USA
| | | | | |
Collapse
|
31
|
Qiu J, Cheng F, Burger LR, Pintel D. The transcription profile of Aleutian mink disease virus in CRFK cells is generated by alternative processing of pre-mRNAs produced from a single promoter. J Virol 2006; 80:654-62. [PMID: 16378968 PMCID: PMC1346859 DOI: 10.1128/jvi.80.2.654-662.2006] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A reevaluation of the transcription profile of Aleutian mink disease parvovirus (AMDV)-infected CRFK cells at either 32 degrees C or 37 degrees C has determined that strain AMDV-G encodes six species of mRNAs produced by alternative splicing and alternative polyadenylation of a pre-mRNA generated by a single promoter at the left end of the genome. Three different splicing patterns are used, and each type is found polyadenylated at either the 3' end of the genome (the distal site) or at a site in the center of the genome (the proximal site). All spliced species accumulate similarly over the course of infection, with the R2 RNA predominant throughout. The R2 RNA, which contains and can express the NS2 coding region, encodes the viral capsid proteins VP1 and VP2.
Collapse
Affiliation(s)
- Jianming Qiu
- Department of Molecular Microbiology and Immunology, University of Missouri-Columbia, School of Medicine, Life Sciences Center, 1201 E. Rollins Rd., Columbia, MO 65211-7310, USA.
| | | | | | | |
Collapse
|
32
|
López-Bueno A, Villarreal LP, Almendral JM. Parvovirus variation for disease: a difference with RNA viruses? Curr Top Microbiol Immunol 2006; 299:349-70. [PMID: 16568906 DOI: 10.1007/3-540-26397-7_13] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The Parvoviridae, a family of viruses with single-stranded DNA genomes widely spread from invertebrates to mammal and human hosts, display a remarkable evolutionary capacity uncommon in DNA genomes. Parvovirus populations show high genetic heterogeneity and large population sizes resembling the quasispecies found in RNA viruses. These viruses multiply in proliferating cells, causing acute, persistent or latent infections relying in the immunocompetence and developmental stage of the hosts. Some parvovirus populations in natural settings, such as carnivore autonomous parvoviruses or primate adeno associated virus, show a high degree of genetic heterogeneity. However, other parvoviruses such as the pathogenic B19 human erythrovirus or the porcine parvovirus, show little genetic variation, indicating different virus-host relationships. The Parvoviridae evolutionary potential in mammal infections has been modeled in the experimental system formed by the immunodeficient scid mouse infected by the minute virus of mice (MVM) under distinct immune and adaptive pressures. The sequence of viral genomes (close to 10(5) nucleotides) in emerging MVM pathogenic populations present in the organs of 26 mice showed consensus sequences not representing the complex distribution of viral clones and a high genetic heterogeneity (average mutation frequency 8.3 x 10(-4) substitutions/nt accumulated over 2-3 months). Specific amino acid changes, selected at a rate up to 1% in the capsid and in the NS2 nonstructural protein, endowed these viruses with new tropism and increased fitness. Further molecular analysis supported the notion that, in addition to immune pressures, the affinity of molecular interactions with cellular targets, as the Crml nuclear export receptor or the primary capsid receptor, as well as the adaptation to tissues enriched in proliferating cells, are major selective factors in the rapid parvovirus evolutionary dynamics.
Collapse
Affiliation(s)
- A López-Bueno
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049 Cantoblanco, Madrid, Spain
| | | | | |
Collapse
|
33
|
Yunoki M, Urayama T, Tsujikawa M, Sasaki Y, Abe S, Takechi K, Ikuta K. Inactivation of parvovirus B19 by liquid heating incorporated in the manufacturing process of human intravenous immunoglobulin preparations. Br J Haematol 2005; 128:401-4. [PMID: 15667545 DOI: 10.1111/j.1365-2141.2004.05309.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Several reports have suggested the possible transmission of human parvovirus B19 (B19) through the administration of plasma derivatives that had undergone virus inactivation by various types of heat treatment. However, none of the reports evaluated and discussed the inactivation of B19 by the heat treatment that is implemented in the individual manufacturing processes of such products. The present study evaluated the ability to inactivate B19 of liquid-heat treatment at 60 degrees C for 10 h that was incorporated in the manufacturing process of intravenous human immunoglobulin preparations. The results showed that B19 was rapidly inactivated under the conditions used for the liquid-heat treatment.
Collapse
Affiliation(s)
- Mikihiro Yunoki
- Hirakata Laboratory, Research and Development Division, Benesis Corporation, Osaka, Japan.
| | | | | | | | | | | | | |
Collapse
|
34
|
Castelruiz Y, Blixenkrone-Møller M, Aasted B. DNA vaccination with the Aleutian mink disease virus NS1 gene confers partial protection against disease. Vaccine 2005; 23:1225-31. [PMID: 15652664 DOI: 10.1016/j.vaccine.2004.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Revised: 09/01/2004] [Accepted: 09/08/2004] [Indexed: 11/21/2022]
Abstract
Aleutian disease virus (ADV) causes severe losses in mink. This happens in nature as well as in farms. In spite of several attempts to provide an efficient protective protein based vaccine, experiments have failed so far. Only partial protection has been obtained. The aim of this work was to construct and test a protective DNA vaccine based on the gene encoding for the ADV non-structural protein 1 (NS1) and to test this construct as a potential vaccine candidate against ADV infection or disease. First, the vaccine construct was tested by in vitro transfection studies. NS1 protein expression was found by immunofluorescent studies and the expected size of translated protein confirmed by Western blot. Then, 18 female mink were divided into three groups: a control group, a DNA vaccinated group, and a group which received DNA vaccine plus a boost with recombinant NS1 protein in the last immunization. After virus challenge, the two DNA vaccinated groups induced higher antibody levels in the first 23 weeks of the 32 week observation period. One month after virus challenge, the most interesting finding was, that the "DNA+protein" group exhibited a significantly higher percentage of CD8+ cells, when compared to the levels in the two other groups. This, we believe, indicate a memory CTL response created by the vaccination. Most CD8+ cells were found to contain interferon gamma as measured by FACS intracellular staining. Severity of Aleutian disease was judged by quantification of plasma gammaglobulin levels and mink death statistics. The findings let us to conclude, that the two DNA vaccinated groups of mink did show milder disease characteristics, but that the vaccine effect also in this trial could only be characterized as partial.
Collapse
Affiliation(s)
- Yurdana Castelruiz
- Laboratory of Virology and Immunology, Department of Veterinary Microbiology, The Royal Veterinary and Agricultural University, Stigbøjlen 7, 1870 Frederiksberg C, Copenhagen, Denmark
| | | | | |
Collapse
|
35
|
Walters RW, Agbandje-McKenna M, Bowman VD, Moninger TO, Olson NH, Seiler M, Chiorini JA, Baker TS, Zabner J. Structure of adeno-associated virus serotype 5. J Virol 2004; 78:3361-71. [PMID: 15016858 PMCID: PMC371067 DOI: 10.1128/jvi.78.7.3361-3371.2004] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Adeno-associated virus serotype 5 (AAV5) requires sialic acid on host cells to bind and infect. Other parvoviruses, including Aleutian mink disease parvovirus (ADV), canine parvovirus (CPV), minute virus of mice, and bovine parvovirus, also bind sialic acid. Hence, structural homology may explain this functional homology. The amino acids required for CPV sialic acid binding map to a site at the icosahedral twofold axes of the capsid. In contrast to AAV5, AAV2 does not bind sialic acid, but rather binds heparan sulfate proteoglycans at its threefold axes of symmetry. To explore the structure-function relationships among parvoviruses with respect to cell receptor attachment, we determined the structure of AAV5 by cryo-electron microscopy (cryo-EM) and image reconstruction at a resolution of 16 A. Surface features common to some parvoviruses, namely depressions encircling the fivefold axes and protrusions at or surrounding the threefold axes, are preserved in the AAV5 capsid. However, even though there were some similarities, a comparison of the AAV5 structure with those of ADV and CPV failed to reveal a feature which could account for the sialic acid binding phenotype common to all three viruses. In contrast, the overall surface topologies of AAV5 and AAV2 are similar. A pseudo-atomic model generated for AAV5 based on the crystal structure of AAV2 and constrained by the AAV5 cryo-EM envelope revealed differences only in surface loop regions. Surprisingly, the surface topologies of AAV5 and AAV2 are remarkably similar to that of ADV despite only exhibiting approximately 20% identity in amino acid sequences. Thus, capsid surface features are shared among parvoviruses and may not be unique to their replication phenotypes, i.e., whether they require a helper or are autonomous. Furthermore, specific surface features alone do not explain the variability in carbohydrate requirements for host cell receptor interactions among parvoviruses.
Collapse
Affiliation(s)
- Robert W Walters
- Department of Internal Medicine, College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
The past few years have seen major advances in our understanding of the controls of evolution, host range and cell tropism of parvoviruses. Notable findings have included the identification of the transferrin receptor TfR as the cell surface receptor for canine parvovirus and feline panleukopenia virus, and also the finding that specific binding to the canine TfR led to the emergence of canine parvovirus as a new pathogen in dogs. The structures of the adeno-associated virus-2 and porcine parvovirus capsids, along with those of the minute virus of mice, have also advanced our understanding of parvovirus biology. Structure-function studies have shown that in several different parvoviruses the threefold spikes or peaks of the capsid control several aspects of cell tropism and host range, and that those are subject to selective pressures leading to viral evolution. The cell and tissue tropisms of different adeno-associated virus serotypes were demonstrated to be due, in part, to specific receptor binding.
Collapse
Affiliation(s)
- Karsten Hueffer
- JA Baker Institute for Animal Health, Department of Microbiology Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | | |
Collapse
|
37
|
Jensen PV, Castelruiz Y, Aasted B. Cytokine profiles in adult mink infected with Aleutian mink disease parvovirus. J Virol 2003; 77:7444-51. [PMID: 12805443 PMCID: PMC164817 DOI: 10.1128/jvi.77.13.7444-7451.2003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to examine the levels of gamma interferon (IFN-gamma)-, interleukin 4 (IL-4)-, and IL-8-producing cells in peripheral blood mononuclear cells from mink infected with the Aleutian mink disease parvovirus (ADV). As expected, ADV-infected mink developed high plasma gamma globulin values (hypergammaglobulinemia) and enhanced quantities of CD8-positive (CD8(+)) cells in the blood during the infection. We quantified the percentages of IFN-gamma- and IL-4-positive lymphocytes and IL-8-positive monocytes up to week 38 after virus challenge. The results clearly indicated marked increases in the percentages of IFN-gamma- and IL-4-producing lymphocytes during ADV infection. The total number of IL-8-producing monocytes in the blood of ADV-infected mink stayed fairly constant during the infection. In order to characterize the phenotype of the cytokine-producing cells, we performed double-labeling fluorescence-activated cell sorter (FACS) experiments with CD8 surface labeling in one channel and cytokine intracellular staining in the other. We found that most IFN-gamma and IL-4 in ADV-infected mink was produced by CD8(+) cells, while in the uninfected mink, these cytokines were primarily produced by a cell type that was not CD8 (possibly CD4-positive cells). We also observed that IL-8 was almost exclusively produced by monocytes. All of the above findings led us to conclude that both Th1- and Th2-driven immune functions are found in mink plasmacytosis.
Collapse
Affiliation(s)
- P V Jensen
- Laboratory of Virology and Immunology, Department of Veterinary Microbiology, The Royal Veterinary and Agricultural University, 1870 Frederiksberg C, Copenhagen, Denmark
| | | | | |
Collapse
|
38
|
Best SM, Shelton JF, Pompey JM, Wolfinbarger JB, Bloom ME. Caspase cleavage of the nonstructural protein NS1 mediates replication of Aleutian mink disease parvovirus. J Virol 2003; 77:5305-12. [PMID: 12692232 PMCID: PMC153974 DOI: 10.1128/jvi.77.9.5305-5312.2003] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Virus-induced apoptosis of infected cells can limit both the time and the cellular machinery available for virus replication. Hence, many viruses have evolved strategies to specifically inhibit apoptosis. However, Aleutian mink disease parvovirus (ADV) is the first example of a DNA virus that not only induces apoptosis but also utilizes caspase activity to facilitate virus replication. To determine the function of caspase activity during ADV replication, virus-infected cell lysates or purified ADV proteins were incubated with various purified caspases. Caspases cleaved the major nonstructural protein of ADV (NS1) at two caspase recognition sequences, whereas ADV structural proteins could not be cleaved. Importantly, the NS1 products could be identified in ADV-infected cells but were not present in infected cells pretreated with caspase inhibitors. By mutating putative caspase cleavage sites (D to E), we mapped the two cleavage sites to amino acid residues NS1:227 (INTD downward arrow S) and NS1:285 (DQTD downward arrow S). Replication of ADV containing either of these mutations was reduced 10(3)- to 10(4)-fold compared to that of wild-type virus, and a construct containing both mutations was replication defective. Immunofluorescent studies revealed that cleavage was required for nuclear localization of NS1. The requirement for caspase activity during permissive replication suggests that limitation of caspase activation and apoptosis in vivo may be a novel approach to restricting virus replication.
Collapse
Affiliation(s)
- Sonja M Best
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana 59840, USA
| | | | | | | | | |
Collapse
|
39
|
López-Bueno A, Mateu MG, Almendral JM. High mutant frequency in populations of a DNA virus allows evasion from antibody therapy in an immunodeficient host. J Virol 2003; 77:2701-8. [PMID: 12552010 PMCID: PMC141124 DOI: 10.1128/jvi.77.4.2701-2708.2003] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The degree of genetic heterogeneity of DNA virus populations in nature and its consequences for disease control are virtually unknown. The parvovirus minute virus of mice (MVMi) was used here to investigate (i) the frequency of antibody-escape mutants in populations of a DNA virus and (ii) the ability of a DNA virus to evade in the long-term a passive monoclonal antibody (MAb) therapy in an immunodeficient natural host. Independent clonal populations of MVMi harbored a high proportion of mutants resistant to neutralizing MAb (mutant frequency = [2.8 +/- 0.5] x 10(-5)) that rapidly evolved under antibody pressure in culture to become mixtures dominated by genotypically diverse escape mutants. Immunodeficient mice naturally infected with clonal populations of MVMi and subsequently treated by intravenous injections of MAb were initially protected from the characteristic viral induced lethal leukopenia. However, some treated animals developed a delayed severe leukopenic syndrome associated with the emergence of genetically heterogeneous populations of MAb-resistant mutants in the MVMi main target organs. The 11 plaque-purified viruses analyzed from an antibody-resistant population obtained from one animal corresponded to four different mutant genotypes, although their consensus sequence remained wild type. All cloned escape mutants harbored single radical amino acid changes within a stretch of seven residues in a surface-exposed loop at the threefold axes of the capsid. This antigenic site, which can tolerate radical changes preserving MVMi pathogenic potential, may thereby allow the virus to evade the immune control. These findings indicate a high genetic heterogeneity and rapid adaptation of populations of a mammal DNA virus in vivo and provide a genetic basis for the failure of passive immunotherapy in the natural host.
Collapse
Affiliation(s)
- Alberto López-Bueno
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|