1
|
Dermentzaki G, Furlan M, Tanaka I, Leonardi T, Rinchetti P, Passos PMS, Bastos A, Ayala YM, Hanna JH, Przedborski S, Bonanomi D, Pelizzola M, Lotti F. Depletion of Mettl3 in cholinergic neurons causes adult-onset neuromuscular degeneration. Cell Rep 2024; 43:113999. [PMID: 38554281 PMCID: PMC11216409 DOI: 10.1016/j.celrep.2024.113999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 01/25/2024] [Accepted: 03/10/2024] [Indexed: 04/01/2024] Open
Abstract
Motor neuron (MN) demise is a hallmark of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Post-transcriptional gene regulation can control RNA's fate, and defects in RNA processing are critical determinants of MN degeneration. N6-methyladenosine (m6A) is a post-transcriptional RNA modification that controls diverse aspects of RNA metabolism. To assess the m6A requirement in MNs, we depleted the m6A methyltransferase-like 3 (METTL3) in cells and mice. METTL3 depletion in embryonic stem cell-derived MNs has profound and selective effects on survival and neurite outgrowth. Mice with cholinergic neuron-specific METTL3 depletion display a progressive decline in motor behavior, accompanied by MN loss and muscle denervation, culminating in paralysis and death. Reader proteins convey m6A effects, and their silencing phenocopies METTL3 depletion. Among the m6A targets, we identified transactive response DNA-binding protein 43 (TDP-43) and discovered that its expression is under epitranscriptomic control. Thus, impaired m6A signaling disrupts MN homeostasis and triggers neurodegeneration conceivably through TDP-43 deregulation.
Collapse
Affiliation(s)
- Georgia Dermentzaki
- Center for Motor Neuron Biology and Disease, Departments of Pathology & Cell Biology and Neurology, Columbia University, New York, NY, USA
| | - Mattia Furlan
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Milan, Italy
| | - Iris Tanaka
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Milan, Italy
| | - Tommaso Leonardi
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Milan, Italy
| | - Paola Rinchetti
- Center for Motor Neuron Biology and Disease, Departments of Pathology & Cell Biology and Neurology, Columbia University, New York, NY, USA
| | - Patricia M S Passos
- Department of Biochemistry & Molecular Biology, St. Louis University School of Medicine, St. Louis, Missouri, USA
| | - Alliny Bastos
- Department of Biochemistry & Molecular Biology, St. Louis University School of Medicine, St. Louis, Missouri, USA
| | - Yuna M Ayala
- Department of Biochemistry & Molecular Biology, St. Louis University School of Medicine, St. Louis, Missouri, USA
| | - Jacob H Hanna
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Serge Przedborski
- Center for Motor Neuron Biology and Disease, Departments of Pathology & Cell Biology and Neurology, Columbia University, New York, NY, USA; Department of Neuroscience, Columbia University, New York, NY, USA
| | - Dario Bonanomi
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mattia Pelizzola
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Milan, Italy; Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Francesco Lotti
- Center for Motor Neuron Biology and Disease, Departments of Pathology & Cell Biology and Neurology, Columbia University, New York, NY, USA.
| |
Collapse
|
2
|
Perrone M, Chiodoni C, Lecchi M, Botti L, Bassani B, Piva A, Jachetti E, Milani M, Lecis D, Tagliabue E, Verderio P, Sangaletti S, Colombo MP. ATF3 Reprograms the Bone Marrow Niche in Response to Early Breast Cancer Transformation. Cancer Res 2023; 83:117-129. [PMID: 36318106 PMCID: PMC9811157 DOI: 10.1158/0008-5472.can-22-0651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 09/13/2022] [Accepted: 10/28/2022] [Indexed: 11/05/2022]
Abstract
Cancer is a systemic disease able to reprogram the bone marrow (BM) niche towards a protumorigenic state. The impact of cancer on specific BM subpopulations can qualitatively differ according to the signals released by the tumor, which can vary on the basis of the tissue of origin. Using a spontaneous model of mammary carcinoma, we identified BM mesenchymal stem cells (MSC) as the first sensors of distal cancer cells and key mediators of BM reprogramming. Through the release of IL1B, BM MSCs induced transcriptional upregulation and nuclear translocation of the activating transcription factor 3 (ATF3) in hematopoietic stem cells. ATF3 in turn promoted the formation of myeloid progenitor clusters and sustained myeloid cell differentiation. Deletion of Atf3 specifically in the myeloid compartment reduced circulating monocytes and blocked their differentiation into tumor-associated macrophages. In the peripheral blood, the association of ATF3 expression in CD14+ mononuclear cells with the expansion CD11b+ population was able to discriminate between women with malignant or benign conditions at early diagnosis. Overall, this study identifies the IL1B/ATF3 signaling pathway in the BM as a functional step toward the establishment of a tumor-promoting emergency myelopoiesis, suggesting that ATF3 could be tested in a clinical setting as a circulating marker of early transformation and offering the rationale for testing the therapeutic benefits of IL1B inhibition in patients with breast cancer. Significance: Bone marrow mesenchymal stem cells respond to early breast tumorigenesis by upregulating IL1B to promote ATF3 expression in hematopoietic stem cells and to induce myeloid cell differentiation that supports tumor development.
Collapse
Affiliation(s)
- Milena Perrone
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Claudia Chiodoni
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Mara Lecchi
- Bioinformatics and Biostatistics Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Laura Botti
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Barbara Bassani
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Annamaria Piva
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Elena Jachetti
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Matteo Milani
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Daniele Lecis
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Elda Tagliabue
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Paolo Verderio
- Bioinformatics and Biostatistics Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sabina Sangaletti
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Corresponding Authors: Mario P. Colombo, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy. Phone: 223-902-252; Fax: 223-902-630; E-mail: ; and Sabina Sangaletti,
| | - Mario P. Colombo
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Corresponding Authors: Mario P. Colombo, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy. Phone: 223-902-252; Fax: 223-902-630; E-mail: ; and Sabina Sangaletti,
| |
Collapse
|
3
|
Seymour BJ, Singh S, Certo HM, Sommer K, Sather BD, Khim S, Clough C, Hale M, Pangallo J, Ryu BY, Khan IF, Adair JE, Rawlings DJ. Effective, safe, and sustained correction of murine XLA using a UCOE-BTK promoter-based lentiviral vector. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 20:635-651. [PMID: 33718514 PMCID: PMC7907679 DOI: 10.1016/j.omtm.2021.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 01/14/2021] [Indexed: 02/06/2023]
Abstract
X-linked agammaglobulinemia (XLA) is an immune disorder caused by mutations in Bruton’s tyrosine kinase (BTK). BTK is expressed in B and myeloid cells, and its deficiency results in a lack of mature B cells and protective antibodies. We previously reported a lentivirus (LV) BTK replacement therapy that restored B cell development and function in Btk and Tec double knockout mice (a phenocopy of human XLA). In this study, with the goal of optimizing both the level and lineage specificity of BTK expression, we generated LV incorporating the proximal human BTK promoter. Hematopoietic stem cells from Btk−/−Tec−/− mice transduced with this vector rescued lineage-specific expression and restored B cell function in Btk−/−Tec−/− recipients. Next, we tested addition of candidate enhancers and/or ubiquitous chromatin opening elements (UCOEs), as well as codon optimization to improve BTK expression. An Eμ enhancer improved B cell rescue, but increased immunoglobulin G (IgG) autoantibodies. Addition of the UCOE avoided autoantibody generation while improving B cell development and function and reducing vector silencing. An optimized vector containing a truncated UCOE upstream of the BTK promoter and codon-optimized BTK cDNA resulted in stable, lineage-regulated BTK expression that mirrored endogenous BTK, making it a strong candidate for XLA therapy.
Collapse
Affiliation(s)
- Brenda J Seymour
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Swati Singh
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Hannah M Certo
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Karen Sommer
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Blythe D Sather
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Socheath Khim
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Courtnee Clough
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Malika Hale
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Joseph Pangallo
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Byoung Y Ryu
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Iram F Khan
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Jennifer E Adair
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Department of Medical Oncology, University of Washington, Seattle, WA 98195, USA
| | - David J Rawlings
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA.,Departments of Pediatrics and Immunology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
4
|
Chiodoni C, Cancila V, Renzi TA, Perrone M, Tomirotti AM, Sangaletti S, Botti L, Dugo M, Milani M, Bongiovanni L, Marrale M, Tripodo C, Colombo MP. Transcriptional Profiles and Stromal Changes Reveal Bone Marrow Adaptation to Early Breast Cancer in Association with Deregulated Circulating microRNAs. Cancer Res 2019; 80:484-498. [PMID: 31776132 DOI: 10.1158/0008-5472.can-19-1425] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 10/17/2019] [Accepted: 11/21/2019] [Indexed: 11/16/2022]
Abstract
The presence of a growing tumor establishes a chronic state of inflammation that acts locally and systemically. Bone marrow responds to stress signals by expanding myeloid cells endowed with immunosuppressive functions, further fostering tumor growth and dissemination. How early in transformation the cross-talk with the bone marrow begins and becomes detectable in blood is unknown. Here, gene expression profiling of the bone marrow along disease progression in a spontaneous model of mammary carcinogenesis demonstrates that transcriptional modifications in the hematopoietic compartment occurred as early as preinvasive disease stages. The transcriptional profile showed downregulation of adaptive immunity and induction of programs related to innate immunity and response to danger signals triggered by activating transcription factor 3. Transcriptional reprogramming was paralleled by the expansion of myeloid populations at the expense of erythroid and B lymphoid fractions. Hematopoietic changes were associated with modifications of the bone marrow stromal architecture through relocalization and increased density in the interstitial area of Nestin+ mesenchymal cells expressing CXCL12 and myeloid cells expressing CXCL12 receptor CXCR4. These early events were concomitant with deregulation of circulating miRNAs, which were predicted regulators of transcripts downregulated in the bone marrow and involved in lymphoid differentiation and activation. These data provide a link between sensing of peripheral cancer initiation by the bone marrow and hematopoietic adaptation to distant noxia through transcriptional rewiring toward innate/inflammatory response programs. SIGNIFICANCE: The bone marrow senses distant tissue transformation at premalignant/preinvasive stages, suggesting that circulating messengers, intercepted in the blood, could serve as early diagnostic markers.
Collapse
Affiliation(s)
- Claudia Chiodoni
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Valeria Cancila
- Tumor Immunology Unit, Department of Health Sciences, Human Pathology Section, University of Palermo School of Medicine, Palermo, Italy
| | - Tiziana A Renzi
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Milena Perrone
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Andrea M Tomirotti
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sabina Sangaletti
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Laura Botti
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Matteo Dugo
- Platform of Integrated Biology - Bioinformatics, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori Milan, Italy
| | - Matteo Milani
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Lucia Bongiovanni
- Tumor Immunology Unit, Department of Health Sciences, Human Pathology Section, University of Palermo School of Medicine, Palermo, Italy
| | - Maurizio Marrale
- Department of Physics and Chemistry, University of Palermo, Palermo, Italy
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Health Sciences, Human Pathology Section, University of Palermo School of Medicine, Palermo, Italy
| | - Mario P Colombo
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| |
Collapse
|
5
|
Maetzig T, Ruschmann J, Lai CK, Ngom M, Imren S, Rosten P, Norddahl GL, von Krosigk N, Sanchez Milde L, May C, Selich A, Rothe M, Dhillon I, Schambach A, Humphries RK. A Lentiviral Fluorescent Genetic Barcoding System for Flow Cytometry-Based Multiplex Tracking. Mol Ther 2017; 25:606-620. [PMID: 28253481 DOI: 10.1016/j.ymthe.2016.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/29/2016] [Accepted: 12/05/2016] [Indexed: 11/25/2022] Open
Abstract
Retroviral integration site analysis and barcoding have been instrumental for multiplex clonal fate mapping, although their use imposes an inherent delay between sample acquisition and data analysis. Monitoring of multiple cell populations in real time would be advantageous, but multiplex assays compatible with flow cytometric tracking of competitive growth behavior are currently limited. We here describe the development and initial validation of three generations of lentiviral fluorescent genetic barcoding (FGB) systems that allow the creation of 26, 14, or 6 unique labels. Color-coded populations could be tracked in multiplex in vitro assays for up to 28 days by flow cytometry using all three vector systems. Those involving lower levels of multiplexing eased color-code generation and the reliability of vector expression and enabled functional in vitro and in vivo studies. In proof-of-principle experiments, FGB vectors facilitated in vitro multiplex screening of microRNA (miRNA)-induced growth advantages, as well as the in vivo recovery of color-coded progeny of murine and human hematopoietic stem cells. This novel series of FGB vectors provides new tools for assessing comparative growth properties in in vitro and in vivo multiplexing experiments, while simultaneously allowing for a reduction in sample numbers by up to 26-fold.
Collapse
Affiliation(s)
- Tobias Maetzig
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada; Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany.
| | - Jens Ruschmann
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Courteney K Lai
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Mor Ngom
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Suzan Imren
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Patricia Rosten
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Gudmundur L Norddahl
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Niklas von Krosigk
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Lea Sanchez Milde
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Christopher May
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Anton Selich
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Michael Rothe
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Ishpreet Dhillon
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - R Keith Humphries
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada; Department of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
6
|
Fernández-Rubio P, Torres-Rusillo S, Molina IJ. Regulated expression of murine CD40L by a lentiviral vector transcriptionally targeted through its endogenous promoter. J Gene Med 2016. [PMID: 26223487 DOI: 10.1002/jgm.2837] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Targeted lentiviral vectors may contribute to circumventing genotoxicity associated with uncontrolled transcription of therapeutic genes. Some vectors replacing strong viral sequences for gene promoters such as β-globin, CD4, CD19 or Igκ were able to drive tissue-specific expression of the transgene. Gene therapy, however, faces even greater hurdles when the therapeutic transgene is subject to strict regulatory mechanisms. This is the case of the CD40LG gene, which encodes for the CD154 (also known as CD40L) molecule, transiently expressed upon activation on CD4(+) T cells. Mutations in this gene cause the X-linked hyper IgM syndrome (HIGM1) in humans because the interaction of CD40L with its ligand CD40 triggers signals that are critical for the immunobiology of B lymphocytes. METHODS We developed a lentiviral vector containing the murine Cd40lg cDNA under the control of its endogenous promoter. RESULTS The CD4(+) BW5147 T cells transduced with the pCd40lg-Cd40lg lentiviral vector express CD40L only upon stimulation. The intensity of the expression correlates with the number of vector integrations per cell and detected molecules rapidly decay after removing the stimulating agent. The tissue-specific, activation-dependent and reversible expression of CD40L fully mimics the physiological induction and disappearance of the molecule from the surface of murine T lymphocytes. The functional activity of the regulated lentiviral vector is demonstrated by the ability of transduced BW5147 cells to promote the proliferation of purified B cell splenocytes. CONCLUSIONS We have developed a fine-regulated lentiviral vector that can be a model for expressing molecules subject to stringent regulatory mechanisms.
Collapse
Affiliation(s)
- Pablo Fernández-Rubio
- Institute of Biopathology and Regenerative Medicine, Center for Biomedical Research, University of Granada. Health Sciences Technology Park, Armilla, Granada, Spain
| | - Sara Torres-Rusillo
- Institute of Biopathology and Regenerative Medicine, Center for Biomedical Research, University of Granada. Health Sciences Technology Park, Armilla, Granada, Spain
| | - Ignacio J Molina
- Institute of Biopathology and Regenerative Medicine, Center for Biomedical Research, University of Granada. Health Sciences Technology Park, Armilla, Granada, Spain
| |
Collapse
|
7
|
Baiamonte E, Bagliesi M, Motta V, Spina B, Pecoraro A. Development of Plasmids for Quantitative Detection of Integrated Lentiviral Vectors and Evaluation of Culture Time to Perform Vector Titer by Real-Time Quantitative Polymerase Chain Reaction Assay. THALASSEMIA REPORTS 2014. [DOI: 10.4081/thal.2014.2189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The accurate assessment of provirus copy number per cell (VCN/cell) is a fundamental issue in transgenesis as well as in gene therapy studies based on stably integrated vectors. To this end, real-time quantitative polymerase chain reaction (qPCR) is a powerful method but it is sensible to differences in quality or concentration of the two-plasmid preparations used for the construction of the standard curves. In order to minimize technical errors we included genome specific sequences (mouse or human) and vector specific sequences in the same plasmid. We evaluated the specificity and sensitivity of these bivalent plasmids by qPCR analysis on mouse and human genomic DNA containing a known number of a reporter lentiviral vector and we found that the system is reliable to measure up to 0.1 VCN/cell. Here we have applied this assay to measure vector titer of virus stock preparations and to determine the optimal cell passages at which viral titration effectively reflects the number of integrated vectors.
Collapse
|
8
|
Giannandrea M, Guarnieri FC, Gehring NH, Monzani E, Benfenati F, Kulozik AE, Valtorta F. Nonsense-mediated mRNA decay and loss-of-function of the protein underlie the X-linked epilepsy associated with the W356× mutation in synapsin I. PLoS One 2013; 8:e67724. [PMID: 23818987 PMCID: PMC3688603 DOI: 10.1371/journal.pone.0067724] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/21/2013] [Indexed: 11/22/2022] Open
Abstract
Synapsins are a family of neuronal phosphoproteins associated with the cytosolic surface of synaptic vesicles. Experimental evidence suggests a role for synapsins in synaptic vesicle clustering and recycling at the presynaptic terminal, as well as in neuronal development and synaptogenesis. Synapsin knock-out (Syn1(-/-) ) mice display an epileptic phenotype and mutations in the SYN1 gene have been identified in individuals affected by epilepsy and/or autism spectrum disorder. We investigated the impact of the c.1067G>A nonsense transition, the first mutation described in a family affected by X-linked syndromic epilepsy, on the expression and functional properties of the synapsin I protein. We found that the presence of a premature termination codon in the human SYN1 transcript renders it susceptible to nonsense-mediated mRNA decay (NMD). Given that the NMD efficiency is highly variable among individuals and cell types, we investigated also the effects of expression of the mutant protein and found that it is expressed at lower levels compared to wild-type synapsin I, forms perinuclear aggregates and is unable to reach presynaptic terminals in mature hippocampal neurons grown in culture. Taken together, these data indicate that in patients carrying the W356× mutation the function of synapsin I is markedly impaired, due to both the strongly decreased translation and the altered function of the NMD-escaped protein, and support the value of Syn1(-/-) mice as an experimental model mimicking the human pathology.
Collapse
MESH Headings
- Animals
- Blotting, Northern
- Cells, Cultured
- Codon, Nonsense
- Epilepsy/genetics
- Epilepsy/metabolism
- Female
- Gene Expression
- Genetic Diseases, X-Linked/genetics
- Genetic Diseases, X-Linked/metabolism
- HeLa Cells
- Hippocampus/cytology
- Hippocampus/metabolism
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microscopy, Fluorescence
- Microtubule-Associated Proteins/metabolism
- Neurons/metabolism
- Nonsense Mediated mRNA Decay
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Synapsins/genetics
- Synapsins/metabolism
Collapse
Affiliation(s)
- Maila Giannandrea
- Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy
| | - Fabrizia C. Guarnieri
- Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy
| | | | - Elena Monzani
- Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy
| | - Fabio Benfenati
- Department of Neuroscience and Brain Technologies, The Italian Institute of Technology, Genoa, Italy
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Andreas E. Kulozik
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg Medical Center and Molecular Medicine Partnership Unit, EMBL and University of Heidelberg, Heidelberg, Germany
| | - Flavia Valtorta
- Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy
| |
Collapse
|
9
|
Reetz J, Herchenröder O, Schmidt A, Pützer BM. Vector Technology and Cell Targeting: Peptide-Tagged Adenoviral Vectors as a Powerful Tool for Cell Specific Targeting. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
10
|
Roth JC, Ismail M, Reese JS, Lingas KT, Ferrari G, Gerson SL. Cotransduction with MGMT and Ubiquitous or Erythroid-Specific GFP Lentiviruses Allows Enrichment of Dual-Positive Hematopoietic Progenitor Cells In Vivo. ISRN HEMATOLOGY 2012; 2012:212586. [PMID: 22888445 PMCID: PMC3408655 DOI: 10.5402/2012/212586] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 05/29/2012] [Indexed: 11/23/2022]
Abstract
The P140K point mutant of MGMT allows robust hematopoietic stem cell (HSC) enrichment in vivo. Thus, dual-gene vectors that couple MGMT and therapeutic gene expression have allowed enrichment of gene-corrected HSCs in animal models. However, expression levels from dual-gene vectors are often reduced for one or both genes. Further, it may be desirable to express selection and therapeutic genes at distinct stages of cell differentiation. In this regard, we evaluated whether hematopoietic cells could be efficiently cotransduced using low MOIs of two separate single-gene lentiviruses, including MGMT for dual-positive cell enrichment. Cotransduction efficiencies were evaluated using a range of MGMT : GFP virus ratios, MOIs, and selection stringencies in vitro. Cotransduction was optimal when equal proportions of each virus were used, but low MGMT : GFP virus ratios resulted in the highest proportion of dual-positive cells after selection. This strategy was then evaluated in murine models for in vivo selection of HSCs cotransduced with a ubiquitous MGMT expression vector and an erythroid-specific GFP vector. Although the MGMT and GFP expression percentages were variable among engrafted recipients, drug selection enriched MGMT-positive leukocyte and GFP-positive erythroid cell populations. These data demonstrate cotransduction as a mean to rapidly enrich and evaluate therapeutic lentivectors in vivo.
Collapse
Affiliation(s)
- Justin C Roth
- Division of Infectious Diseases, Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | |
Collapse
|
11
|
Miccio A, Poletti V, Tiboni F, Rossi C, Antonelli A, Mavilio F, Ferrari G. The GATA1-HS2 enhancer allows persistent and position-independent expression of a β-globin transgene. PLoS One 2011; 6:e27955. [PMID: 22164220 PMCID: PMC3229501 DOI: 10.1371/journal.pone.0027955] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 10/28/2011] [Indexed: 11/19/2022] Open
Abstract
Gene therapy of genetic diseases requires persistent and position-independent expression of a therapeutic transgene. Transcriptional enhancers binding chromatin-remodeling and modifying complexes may play a role in shielding transgenes from repressive chromatin effects. We tested the activity of the HS2 enhancer of the GATA1 gene in protecting the expression of a β-globin minigene delivered by a lentiviral vector in hematopoietic stem/progenitor cells. Gene expression from proviruses carrying GATA1-HS2 in both LTRs was persistent and resistant to silencing at most integration sites in the in vivo progeny of human hematopoietic progenitors and murine long-term repopulating stem cells. The GATA1-HS2-modified vector allowed correction of murine β-thalassemia at low copy number without inducing clonal selection of erythroblastic progenitors. Chromatin immunoprecipitation studies showed that GATA1 and the CBP acetyltransferase bind to GATA1-HS2, significantly increasing CBP-specific histone acetylations at the LTRs and β-globin promoter. Recruitment of CBP by the LTRs thus establishes an open chromatin domain encompassing the entire provirus, and increases the therapeutic efficacy of β-globin gene transfer by reducing expression variegation and epigenetic silencing.
Collapse
Affiliation(s)
- Annarita Miccio
- H. San Raffaele-Telethon Institute for Gene Therapy (HSR-TIGET), Istituto Scientifico H. San Raffaele, Milan, Italy
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Valentina Poletti
- Laboratory of Gene Expression, Istituto Scientifico H. San Raffaele, Milan, Italy
| | - Francesca Tiboni
- H. San Raffaele-Telethon Institute for Gene Therapy (HSR-TIGET), Istituto Scientifico H. San Raffaele, Milan, Italy
| | - Claudia Rossi
- H. San Raffaele-Telethon Institute for Gene Therapy (HSR-TIGET), Istituto Scientifico H. San Raffaele, Milan, Italy
| | - Antonella Antonelli
- H. San Raffaele-Telethon Institute for Gene Therapy (HSR-TIGET), Istituto Scientifico H. San Raffaele, Milan, Italy
| | - Fulvio Mavilio
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Laboratory of Gene Expression, Istituto Scientifico H. San Raffaele, Milan, Italy
| | - Giuliana Ferrari
- H. San Raffaele-Telethon Institute for Gene Therapy (HSR-TIGET), Istituto Scientifico H. San Raffaele, Milan, Italy
- University Vita-Salute San Raffaele, Milan, Italy
- * E-mail:
| |
Collapse
|
12
|
Perlini LE, Botti F, Fornasiero EF, Giannandrea M, Bonanomi D, Amendola M, Naldini L, Benfenati F, Valtorta F. Effects of phosphorylation and neuronal activity on the control of synapse formation by synapsin I. J Cell Sci 2011; 124:3643-53. [DOI: 10.1242/jcs.086223] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Synapsins are synaptic vesicle (SV)-associated proteins that regulate synaptic transmission and neuronal differentiation. At early stages, Syn I and II phosphorylation at Ser9 by cAMP-dependent protein kinase (PKA) and Ca2+/calmodulin-dependent protein kinase I/IV modulates axon elongation and SV-precursor dynamics. We evaluated the requirement of Syn I for synapse formation by siRNA-mediated knockdown as well as by overexpression of either its wild-type (WT) form or its phosphorylation mutants. Syn1 knockdown at 14 days in vitro caused a decrease in the number of synapses, accompanied by a reduction of SV recycling. Although overexpression of WT Syn I was ineffective, overexpression of its phosphorylation mutants resulted in a complex temporal regulation of synapse density. At early stages of synaptogenesis, phosphomimetic Syn I S9E significantly increased the number of synapses. Conversely, dephosphomimetic Syn I S9A decreased synapse number at more advanced stages. Overexpression of either WT Syn I or its phosphomimetic S9E mutant rescued the decrease in synapse number caused by chronic treatment with tetrodotoxin at early stages, suggesting that Syn I participates in an alternative PKA-dependent mechanism that can compensate for the impairment of the activity-dependent synaptogenic pathway. Altogether these results indicate that Syn I is an important regulator of synapse formation, which adjusts synapse number in response to extracellular signals.
Collapse
Affiliation(s)
- Laura E. Perlini
- San Raffaele Scientific Institute and Vita-Salute University, Via Olgettina 58, 20132 Milano, Italy
- Department of Neuroscience and Brain Technologies, The Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy
| | - Francesca Botti
- San Raffaele Scientific Institute and Vita-Salute University, Via Olgettina 58, 20132 Milano, Italy
| | - Eugenio F. Fornasiero
- San Raffaele Scientific Institute and Vita-Salute University, Via Olgettina 58, 20132 Milano, Italy
| | - Maila Giannandrea
- San Raffaele Scientific Institute and Vita-Salute University, Via Olgettina 58, 20132 Milano, Italy
| | - Dario Bonanomi
- San Raffaele Scientific Institute and Vita-Salute University, Via Olgettina 58, 20132 Milano, Italy
| | - Mario Amendola
- San Raffaele Scientific Institute and Vita-Salute University, Via Olgettina 58, 20132 Milano, Italy
- TIGET, Telethon Institute for Genetics and Medicine, Via Olgettina 58, 20132 Milano, Italy
| | - Luigi Naldini
- San Raffaele Scientific Institute and Vita-Salute University, Via Olgettina 58, 20132 Milano, Italy
- TIGET, Telethon Institute for Genetics and Medicine, Via Olgettina 58, 20132 Milano, Italy
| | - Fabio Benfenati
- Department of Neuroscience and Brain Technologies, The Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy
- Department of Experimental Medicine, Section of Physiology, University of Genoa and National Institute of Neuroscience, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Flavia Valtorta
- San Raffaele Scientific Institute and Vita-Salute University, Via Olgettina 58, 20132 Milano, Italy
| |
Collapse
|
13
|
Pützer BM, Schmidt A. Vector Technology and Cell Targeting: Peptide-Tagged Adenoviral Vectors as a Powerful Tool for Cell Specific Targeting. Regen Med 2011. [DOI: 10.1007/978-90-481-9075-1_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
14
|
Xynos A, Corbella P, Belmonte N, Zini R, Manfredini R, Ferrari G. Bone marrow-derived hematopoietic cells undergo myogenic differentiation following a Pax-7 independent pathway. Stem Cells 2010; 28:965-73. [PMID: 20333749 DOI: 10.1002/stem.418] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Several reports showed that hematopoietic stem cells (HSCs) participate in muscle regeneration, raising hope for their therapeutic potential for degenerative muscle diseases. However, proof that HSCs are able to reprogram their fate and enter a myogenic pathway, remains elusive. We demonstrate that murine bone marrow (BM)-derived hematopoietic cells, carrying reporter genes controlled by muscle-specific regulatory elements from the Myf5, myosin light chain (MLC3F), or MCK genes, are induced by myoblasts to activate muscle-specific genes. This potential resides in the more undifferentiated progenitors, expressing surface markers typical of HSCs. Comparative gene expression profiling of CD45(+)/Sca1(+) cells isolated from muscle or BM shows that hematopoietic cells participate to muscle regeneration, by undergoing a profound although incomplete myogenic reprogramming on interaction with the muscle microenviroment. These cells undergo specification and differentiation independently from Pax7 and MyoD, and lack Pax7-associated properties, such as self-renewal and proliferation, distinguishing from satellite cells. Our findings indicate that hematopoietic cells, on seeding in the muscle, become a distinct cell population endowed with myogenic potential.
Collapse
Affiliation(s)
- Alexandros Xynos
- San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | | | | |
Collapse
|
15
|
Toscano MG, Benabdellah K, Muñoz P, Frecha C, Cobo M, Martín F. Was cDNA sequences modulate transgene expression of was promoter-driven lentiviral vectors. Hum Gene Ther 2010; 20:1279-90. [PMID: 19630517 DOI: 10.1089/hum.2009.118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Abstract The development of vectors that express a therapeutic transgene efficiently and specifically in hematopoietic cells (HCs) is an important goal for gene therapy of hematological disorders. We have previously shown that a 500-bp fragment from the proximal Was gene promoter in a lentiviral vector (LV) was sufficient to achieve more than 100-fold higher levels of Wiskott-Aldrich syndrome protein in HCs than in nonhematopoietic cells (non-HCs). We show now that this differential was reduced up to 10 times when the enhanced green fluorescent protein gene (eGFP) was expressed instead of Was in the same LV backbone. Insertion of Was cDNA sequences downstream of eGFP in these LVs had a negative effect on transgene expression. This effect varied in different cell types but, overall, Was cDNA sequences increased the hematopoietic specificity of Was promoter-driven LV. We have characterized the minimal fragment required to increase hematopoietic specificity and have demonstrated that the mechanism involves Was promoter regulation and RNA processing. In addition, we have shown that Was cDNA sequences interfere with the enhancer activity of the woodchuck posttranscriptional regulatory element. These results represent the first data showing the role of Was intragenic sequences in gene regulation.
Collapse
Affiliation(s)
- Miguel G Toscano
- Immunology and Cell Biology Department, Institute of Parasitology and Biomedicine López Neyra-CSIC, Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | | | | | | | | | | |
Collapse
|
16
|
Salozhin SV, Bol'shakov AP. Transfection of nerve cells. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2010; 40:269-77. [PMID: 20146014 DOI: 10.1007/s11055-010-9254-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Accepted: 06/09/2008] [Indexed: 11/29/2022]
Abstract
Transfection is a method of transforming cells based on the introduction into living cells of plasmids encoding a particular protein or RNA. This review describes the main methods of transfection and considers their advantages and disadvantages. Most attention is paid to lentivirus transduction as one of the most efficient methods for transforming nerve cells. The development of current transfection systems based on lentivirus vectors is described and a brief review of studies performed using in vivo and in vitro lentivirus transfection of nerve cells is presented.
Collapse
Affiliation(s)
- S V Salozhin
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia.
| | | |
Collapse
|
17
|
Subramanya S, Kim SS, Manjunath N, Shankar P. RNA interference-based therapeutics for human immunodeficiency virus HIV-1 treatment: synthetic siRNA or vector-based shRNA? Expert Opin Biol Ther 2010; 10:201-13. [PMID: 20088715 PMCID: PMC3745298 DOI: 10.1517/14712590903448158] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
IMPORTANCE OF THE FIELD Despite the clinical benefits of highly active antiretroviral therapy (HAART), the prospect of life-long antiretroviral treatment poses significant problems, which has spurred interest in developing new drugs and strategies to treat HIV infection and eliminate persistent viral reservoirs. RNAi has emerged as a therapeutic possibility for HIV. AREAS COVERED IN THIS REVIEW We discuss progress in overcoming hurdles to translating transient and stable RNAi enabling technologies to clinical application for HIV; covering the past 2 - 3 years. WHAT THE READER WILL GAIN HIV inhibition can be achieved by transfection of chemically or enzymatically synthesized siRNAs or by DNA-based vector systems expressing short hairpin RNAs (shRNAs) that are processed intracellularly into siRNA. We compare these approaches, focusing on technical and safety issues that will guide the choice of strategy for clinical use. TAKE HOME MESSAGE Introduction of synthetic siRNA into cells or its stable endogenous production using vector-driven shRNA have been shown to suppress HIV replication in vitro and, in some instances, in vivo. Each method has advantages and limitations in terms of ease of delivery, duration of silencing, emergence of escape mutants and potential toxicity. Both appear to have potential as future therapeutics for HIV, once the technical and safety issues of each approach are overcome.
Collapse
Affiliation(s)
- Sandesh Subramanya
- Department of Biomedical Sciences, Center of Excellence for Infectious Diseases, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905
| | - Sang-Soo Kim
- Department of Biomedical Sciences, Center of Excellence for Infectious Diseases, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905
| | - N Manjunath
- Department of Biomedical Sciences, Center of Excellence for Infectious Diseases, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905
| | - Premlata Shankar
- Department of Biomedical Sciences, Center of Excellence for Infectious Diseases, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905
| |
Collapse
|
18
|
Efficient downregulation of multiple mRNA targets with a single shRNA-expressing lentiviral vector. Plasmid 2010; 63:143-9. [PMID: 20064551 DOI: 10.1016/j.plasmid.2009.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 12/19/2009] [Accepted: 12/27/2009] [Indexed: 01/15/2023]
Abstract
Gene silencing based on RNA interference is widely used in fundamental research and in practical applications. However, a commonly incomplete functional suppression represents a serious drawback of this technology. We describe a series of lentiviral vectors each containing a single or multiple shRNA-expression cassette(s) driven by a RNA-polymerase III specific promoter and localized within the 3'-LTR of the lentiviral DNA backbone. The vectors also contain an antibiotic-resistance gene that allows positive selection of recipient cells. The combined expression of three different shRNAs specific to a single mRNA was shown to improve dramatically the level of mRNA inhibition, while the use of three different RNA-polymerase III specific promoters avoids the loss of shRNA-expression cassettes through the homologous recombination. The vector system was used for successful simultaneous suppression of three related SESN1, SESN2 and SESN3 genes, which suggests its particular value for testing phenotypes of functionally redundant genes.
Collapse
|
19
|
Dong Z, Nör JE. Transcriptional targeting of tumor endothelial cells for gene therapy. Adv Drug Deliv Rev 2009; 61:542-53. [PMID: 19393703 DOI: 10.1016/j.addr.2009.02.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 02/05/2009] [Indexed: 12/21/2022]
Abstract
It is well known that angiogenesis plays a critical role in the pathobiology of tumors. Recent clinical trials have shown that inhibition of angiogenesis can be an effective therapeutic strategy for patients with cancer. However, one of the outstanding issues in anti-angiogenic treatment for cancer is the development of toxicities related to off-target effects of drugs. Transcriptional targeting of tumor endothelial cells involves the use of specific promoters for selective expression of therapeutic genes in the endothelial cells lining the blood vessels of tumors. Recently, several genes that are expressed specifically in tumor-associated endothelial cells have been identified and characterized. These discoveries have enhanced the prospectus of transcriptionally targeting tumor endothelial cells for cancer gene therapy. In this manuscript, we review the promoters, vectors, and therapeutic genes that have been used for transcriptional targeting of tumor endothelial cells, and discuss the prospects of such approaches for cancer gene therapy.
Collapse
Affiliation(s)
- Zhihong Dong
- Angiogenesis Research Laboratory, Department of Restorative Sciences, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
20
|
Urbinati F, Arumugam P, Higashimoto T, Perumbeti A, Mitts K, Xia P, Malik P. Mechanism of reduction in titers from lentivirus vectors carrying large inserts in the 3'LTR. Mol Ther 2009; 17:1527-36. [PMID: 19384292 DOI: 10.1038/mt.2009.89] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Self-inactivating (SIN) lentiviruses flanked by the 1.2-kb chicken hypersensitive site-4 (cHS4) insulator element provide consistent, improved expression of transgenes, but have significantly lower titers. The mechanism by which this occurs is unknown. Lengthening the lentiviral (LV) vector transgene cassette by an additional 1.2 kb by an internal cassette caused no further reduction in titers. However, when cHS4 sequences or inert DNA spacers of increasing size were placed in the 3'-long terminal repeat (LTR), infectious titers decreased proportional to the length of the insert. The stage of vector life cycle affected by vectors carrying the large cHS4 3'LTR insert was compared to a control vector: there was no increase in read-through transcription with insertion of the 1.2-kb cHS4 in the 3'LTR. Equal amount of full-length viral mRNA was produced in packaging cells and viral assembly/packaging was unaffected, resulting in comparable amounts of intact vector particles produced by either vectors. However, LV vectors carrying cHS4 in the 3'LTR were inefficiently processed following target-cell entry, with reduced reverse transcription and integration efficiency, and hence lower transduction titers. Therefore, vectors with large insertions in the 3'LTR are transcribed and packaged efficiently, but the LTR insert hinders viral-RNA (vRNA) processing and transduction of target cells. These studies have important implications in design of integrating vectors.
Collapse
Affiliation(s)
- Fabrizia Urbinati
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio 45229-3039, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Felice B, Cattoglio C, Cittaro D, Testa A, Miccio A, Ferrari G, Luzi L, Recchia A, Mavilio F. Transcription factor binding sites are genetic determinants of retroviral integration in the human genome. PLoS One 2009; 4:e4571. [PMID: 19238208 PMCID: PMC2642719 DOI: 10.1371/journal.pone.0004571] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 01/16/2009] [Indexed: 01/10/2023] Open
Abstract
Gamma-retroviruses and lentiviruses integrate non-randomly in mammalian genomes, with specific preferences for active chromatin, promoters and regulatory regions. Gene transfer vectors derived from gamma-retroviruses target at high frequency genes involved in the control of growth, development and differentiation of the target cell, and may induce insertional tumors or pre-neoplastic clonal expansions in patients treated by gene therapy. The gene expression program of the target cell is apparently instrumental in directing gamma-retroviral integration, although the molecular basis of this phenomenon is poorly understood. We report a bioinformatic analysis of the distribution of transcription factor binding sites (TFBSs) flanking >4,000 integrated proviruses in human hematopoietic and non-hematopoietic cells. We show that gamma-retroviral, but not lentiviral vectors, integrate in genomic regions enriched in cell-type specific subsets of TFBSs, independently from their relative position with respect to genes and transcription start sites. Analysis of sequences flanking the integration sites of Moloney leukemia virus (MLV)- and human immunodeficiency virus (HIV)-derived vectors carrying mutations in their long terminal repeats (LTRs), and of HIV vectors packaged with an MLV integrase, indicates that the MLV integrase and LTR enhancer are the viral determinants of the selection of TFBS-rich regions in the genome. This study identifies TFBSs as differential genomic determinants of retroviral target site selection in the human genome, and suggests that transcription factors binding the LTR enhancer may synergize with the integrase in tethering retroviral pre-integration complexes to transcriptionally active regulatory regions. Our data indicate that gamma-retroviruses and lentiviruses have evolved dramatically different strategies to interact with the host cell chromatin, and predict a higher risk in using gamma-retroviral vs. lentiviral vectors for human gene therapy applications.
Collapse
Affiliation(s)
- Barbara Felice
- IFOM, FIRC Institute of Molecular Oncology Foundation, Milan, Italy
| | - Claudia Cattoglio
- IIT Unit of Molecular Neuroscience, Istituto Scientifico H. San Raffaele, Milan, Italy
| | - Davide Cittaro
- Cogentech, Consortium for Genomic Technologies, Milan, Italy
| | - Anna Testa
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Giuliana Ferrari
- HSR-Telethon Institute of Gene Therapy, Milan, Italy
- Vita-Salute University, Milan, Italy
| | - Lucilla Luzi
- IFOM, FIRC Institute of Molecular Oncology Foundation, Milan, Italy
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Alessandra Recchia
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Fulvio Mavilio
- IIT Unit of Molecular Neuroscience, Istituto Scientifico H. San Raffaele, Milan, Italy
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy
- * E-mail:
| |
Collapse
|
22
|
Di Nunzio F, Maruggi G, Ferrari S, Di Iorio E, Poletti V, Garcia M, Del Rio M, De Luca M, Larcher F, Pellegrini G, Mavilio F. Correction of laminin-5 deficiency in human epidermal stem cells by transcriptionally targeted lentiviral vectors. Mol Ther 2008; 16:1977-85. [PMID: 18813277 DOI: 10.1038/mt.2008.204] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Deficiency of the basement membrane component laminin-5 (LAM5) causes junctional epidermolysis bullosa (JEB), a severe and often fatal skin adhesion defect. Autologous transplantation of epidermal stem cells genetically corrected with a Moloney leukemia virus (MLV)-derived retroviral vector reconstitutes LAM5 synthesis, and corrects the adhesion defect in JEB patients. However, MLV-derived vectors have genotoxic characteristics, and are unable to reproduce the physiological, basal layer-restricted expression of LAM5 chains. We have developed an alternative gene transfer strategy based on self-inactivating (SIN) or long terminal repeat (LTR)-modified lentiviral vectors, in which transgene expression is under the control of different combinations of promoter-enhancer elements derived from the keratin-14 (K14) gene. Analysis in human keratinocyte cultures and in fully differentiated skin regenerated onto immunodeficient mice showed that gene expression directed by K14 enhancers is tissue-specific and restricted to the basal layer of the epidermis. Transcriptionally targeted lentiviral vectors efficiently transduced clonogenic stem/progenitor cells derived from a skin biopsy of a JEB patient, restored normal synthesis of LAM5 in cultured keratinocytes, and reconstituted normal adhesion properties in human skin equivalents transplanted onto immunodeficient mice. These vectors are therefore an effective, and potentially more safe, alternative to MLV-based retroviral vectors in gene therapy of JEB.Molecular Therapy (2008) 16 12, 1977-1985 doi:10.1038/mt.2008.204.
Collapse
Affiliation(s)
- Francesca Di Nunzio
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
In vivo selection of genetically modified erythroblastic progenitors leads to long-term correction of beta-thalassemia. Proc Natl Acad Sci U S A 2008; 105:10547-52. [PMID: 18650378 DOI: 10.1073/pnas.0711666105] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Gene therapy for beta-thalassemia requires stable transfer of a beta-globin gene into hematopoietic stem cells (HSCs) and high and regulated hemoglobin expression in the erythroblastic progeny. We developed an erythroid-specific lentiviral vector driving the expression of the human beta-globin gene from a minimal promoter/enhancer element containing two hypersensitive sites from the beta-globin locus control region. Transplantation of transduced HSCs into thalassemic mice leads to stable and long-term correction of anemia with all red blood cells expressing the transgene. A frequency of 30-50% of transduced HSCs, harboring an average vector copy number per cell of 1, was sufficient to fully correct the thalassemic phenotype. In the mouse model of Cooley's anemia transplantation of transduced cells rescues lethality, leading to either a normal or a thalassemia intermedia phenotype. We show that genetically corrected erythroblasts undergo in vivo selection with preferential survival of progenitors harboring proviral integrations in genome sites more favorable to high levels of vector-derived expression. These data provide a rationale for a gene therapy approach to beta-thalassemia based on partially myeloablative transplantation protocols.
Collapse
|
24
|
Bobisse S, Zanovello P, Rosato A. T-cell receptor gene transfer by lentiviral vectors in adoptive cell therapy. Expert Opin Biol Ther 2007; 7:893-906. [PMID: 17555374 DOI: 10.1517/14712598.7.6.893] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Adoptive cell therapy can be envisioned as a promising strategy for tumour immunotherapy. However, existing protocols of adoptive cell therapy still require optimisation as many factors, such as specificity, avidity, level of differentiation and amount of transferred T lymphocytes, can influence their immunocompetence and in vivo functionality. In particular, the need to reduce the in vitro expansion phase and to obtain large numbers of tumour-reactive T cells, as a favourable condition for cancer regression, make TCR gene transfer a potentially ideal tool to overcome the limits of adoptive cell therapy strategies. Here, the authors review the state-of-the-art and recent advances in TCR transfer with particular emphasis on lentiviral vector systems. Initial data from preclinical models and recent clinical trials encourage optimisation of a safe, simplified and stable transfer system. In this regard, HIV-based vectors are emerging as good alternative candidates over the most widely used oncoretroviral vectors due to their peculiar molecular features that fit the ideal conditions for donor T cell in vitro manipulation.
Collapse
Affiliation(s)
- Sara Bobisse
- University of Padova, Department of Oncology and Surgical Sciences, Padova, Italy
| | | | | |
Collapse
|
25
|
Bonanomi D, Menegon A, Miccio A, Ferrari G, Corradi A, Kao HT, Benfenati F, Valtorta F. Phosphorylation of synapsin I by cAMP-dependent protein kinase controls synaptic vesicle dynamics in developing neurons. J Neurosci 2006; 25:7299-308. [PMID: 16093379 PMCID: PMC6725302 DOI: 10.1523/jneurosci.1573-05.2005] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In developing neurons, synaptic vesicles (SVs) undergo cycles of exo-endocytosis along isolated axons. However, it is currently unknown whether SV exocytosis is regulated before synaptogenesis. Here, we show that cAMP-dependent pathways affect SV distribution and recycling in the axonal growth cone and that these effects are mediated by the SV-associated phosphoprotein synapsin I. The presence of synapsin I on SVs is necessary for the correct localization of the vesicles in the central portion of the growth cone. Phosphorylation of synapsin I by cAMP-dependent protein kinase (protein kinase A) causes the dissociation of the protein from the SV membrane, allowing diffusion of the vesicles to the periphery of the growth cone and enhancing their rate of recycling. These results provide new clues as to the bases of the well known activity of synapsin I in synapse maturation and indicate that molecular mechanisms similar to those operating at mature nerve terminals are active in developing neurons to regulate the SV life cycle before synaptogenesis.
Collapse
Affiliation(s)
- Dario Bonanomi
- Department of Neuroscience, San Raffaele Scientific Institute, Vita-Salute University, 20132 Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Loewen N, Poeschla EM. Lentiviral vectors. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2005; 99:169-91. [PMID: 16568892 DOI: 10.1007/10_007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We review the use of lentiviral vectors in current human gene therapy applications that involve genetic modification of nondividing tissues with integrated transgenes. Safety issues, including insertional mutagenesis and replication-competent retroviruses, are discussed. Innate cellular defenses against retroviruses and their implications for human gene therapy with different lentiviral vectors are also addressed.
Collapse
Affiliation(s)
- Nils Loewen
- Molecular Medicine Program, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | |
Collapse
|
27
|
Strauss BE, Bajgelman MC, Costanzi-Strauss E. A novel gene transfer strategy that combines promoter and transgene activities for improved tumor cell inhibition. Cancer Gene Ther 2005; 12:935-46. [PMID: 15905860 DOI: 10.1038/sj.cgt.7700846] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Indexed: 11/09/2022]
Abstract
Typically, gene transfer strategies utilize a promoter/transgene arrangement that treat these elements independently and do not offer any interplay between them. Our goal was to establish a promoter/transgene combination that would result in improvement in both expression and therapeutic effect by utilizing the transcriptional properties of p53 to drive its own expression as well as act as a tumor suppressor. The pCL retroviral system was modified in the U3 region of the 3' LTR by the addition of a p53-responsive sequence (the PG element), creating the pCLPG system. Upon reverse transcription, the 5' LTR is converted, as shown here, to a p53-dependent promoter. We also show, using a temperature-sensitive model, that the pCLPG system could be driven by p53 encoded within the virus construct and expression was modulated depending on the p53 phenotype, demonstrating a regulatory feedback loop. Moreover, the pCLPG system was shown to express the transgene at a higher level and to inhibit tumor cell proliferation more robustly than the original pCL system. This novel system employs the transgene to serve two purposes, drive viral expression and inhibit tumor cell proliferation. The pCLPG vectors represent a new gene transfer strategy of synergizing the promoter and transgene activities.
Collapse
Affiliation(s)
- Bryan E Strauss
- Heart Institute, InCor, University of São Paulo School of Medicine, Av. De Eneas de Carvalho Aguiar 44, Building II 10th Floor, São Paulo (SP), CEP 05403-000 Brazil.
| | | | | |
Collapse
|
28
|
Sinn PL, Sauter SL, McCray PB. Gene therapy progress and prospects: development of improved lentiviral and retroviral vectors--design, biosafety, and production. Gene Ther 2005; 12:1089-98. [PMID: 16003340 DOI: 10.1038/sj.gt.3302570] [Citation(s) in RCA: 219] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Replication defective vectors derived from simple retroviruses or the more complex genomes of lentiviruses continue to offer the advantages of long-term expression, cell and tissue specific tropism, and large packaging capacity for the delivery of therapeutic genes. The occurrence of adverse events caused by insertional mutagenesis in three patients in a gene therapy trial for X-linked SCID emphasizes the potential for problems in translating this approach to the clinic. Several genome-wide studies of retroviral integration are now providing novel insights into the integration site preferences of different vector classes. We review recent developments in vector design, integration, biosafety, and production.
Collapse
Affiliation(s)
- P L Sinn
- Program in Gene Therapy, Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
29
|
Terskikh AV, Ershler MA, Drize NJ, Nifontova IN, Chertkov JL. Long-term persistence of a nonintegrated lentiviral vector in mouse hematopoietic stem cells. Exp Hematol 2005; 33:873-82. [PMID: 16038779 DOI: 10.1016/j.exphem.2005.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Revised: 05/05/2005] [Accepted: 05/06/2005] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Lentiviral transduction is an established method for efficiently modifying the gene expression program of primary cells, but the ability of the introduced construct to persist as an episome has not been well studied. MATERIAL AND METHODS Here we investigated this issue in lethally irradiated female mice injected with 300 or 3000 doubly sorted male lin(neg), Sca-1(high), c-kit(high), Thy-1.1(low) mouse bone marrow cells that had been exposed in vitro to self-inactivating lentivirus vector encoding a green fluorescence protein (GFP) cDNA. Seven to sixteen months later, bone marrow cells from primary mice were injected into secondary female recipients and another 8 months later into tertiary female recipients. Integration study was performed on individual spleen colonies by Southern blot analysis. Inverse polymerase chain reaction (PCR) and sequence of amplified vector-derived DNA was used to verify Southern blot results. RESULTS Spleen colony-forming cell study revealed that a small fraction of the spleen colonies contained integrated provirus as shown by Southern blot analysis. Unexpectedly, many spleen colonies were found to contain a nonintegrated episomal form of the provirus, which was confirmed by an inverse PCR analysis. In some of the spleen colonies containing only the episomal form, GFP-expressing cells were also detected. Lentiviral sequences were present in hematopoietic tissues of primary mice but not in other tissues. CONCLUSIONS These results demonstrate that lentiviral vectors produce episomal circles in hematopoietic stem cells that can be transferred through many cell generations and expressed in their progeny.
Collapse
|
30
|
Urbinati F, Lotti F, Facchini G, Montanari M, Ferrari G, Mavilio F, Grande A. Competitive engraftment of hematopoietic stem cells genetically modified with a truncated erythropoietin receptor. Hum Gene Ther 2005; 16:594-608. [PMID: 15916484 DOI: 10.1089/hum.2005.16.594] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Transplantation of genetically modified hematopoietic stem cells (HSCs) has therapeutic potential for a variety of blood genetic disorders. Engraftment of HSCs, however, requires toxic myeloablative treatments, which render this approach questionable for non-life-threatening disorders. A potential alternative is the use of transgenes, which allows positive selection of HSCs in vivo. We used retroviral vectors to express a truncated derivative of the erythropoietin receptor (tEpoR) in murine and human hematopoietic cells. Murine HSCs expressing tEpoR at different levels (1500 to 13,000 receptors/cell) acquire a competitive repopulation capacity in vivo upon transplantation into fully or partially myeloablated co-isogenic mouse recipients. Long-term analysis of transplanted mice showed that expression of tEpoR at paraphysiological levels (approximately 1500 receptors/cell) has no effect on steady-state hematopoiesis and induces no further expansion of transduced cells after the engraftment period. Human cord blood-derived CD34+ stem/progenitor cells transduced with a lentiviral vector expressing tEpoR expand their clonogenic capacity in vitro, and significantly increase their marrow repopulation capacity upon xenotransplantation into sublethally irradiated NOD-SCID mice, with no alteration in their phenotype, survival, and differentiation properties. These data indicate that expression of tEpoR is an effective strategy to promote selective engraftment of genetically modified HSCs upon transplantation in both myeloablative and nonmyeloablative conditions, without the use of toxic drugs for selection.
Collapse
Affiliation(s)
- Fabrizia Urbinati
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, 41100 Modena, Italy
| | | | | | | | | | | | | |
Collapse
|
31
|
Lucke S, Grunwald T, Uberla K. Reduced mobilization of Rev-responsive element-deficient lentiviral vectors. J Virol 2005; 79:9359-62. [PMID: 15994835 PMCID: PMC1168721 DOI: 10.1128/jvi.79.14.9359-9362.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection of cells transduced with a lentiviral vector by human immunodeficiency virus (HIV) could lead to packaging of the lentiviral vector RNA into HIV particles and unintended transfer of the vector. To prevent this, the Rev-responsive element (RRE) of an HIV-1 vector was functionally replaced by a heterologous RNA element (MS2). Providing Rev fused to an MS2 binding protein allowed efficient vector production. Mobilization of the vector from infected target cells was below the level of detection and at least 10(3)- to 10(4)-fold lower than for the RRE-containing vector. Thus, RRE-deficient lentiviral vectors provide a novel approach to reduce the risk of vector mobilization.
Collapse
Affiliation(s)
- Susann Lucke
- Department of Molecular and Medical Virology, Ruhr University Bochum, D-44780 Bochum, Germany
| | | | | |
Collapse
|
32
|
Vigna E, Amendola M, Benedicenti F, Simmons AD, Follenzi A, Naldini L. Efficient Tet-Dependent Expression of Human Factor IX in Vivo by a New Self-Regulating Lentiviral Vector. Mol Ther 2005; 11:763-75. [PMID: 15851015 DOI: 10.1016/j.ymthe.2004.11.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Accepted: 11/24/2004] [Indexed: 11/30/2022] Open
Abstract
Regulation of gene expression represents a long-sought goal of gene therapy. However, most viral vectors pose constraints on the incorporation of drug-dependent transcriptional regulatory systems. Here, by optimizing the design of self-regulating lentiviral vectors based on the tetracycline system, we have been able to overcome the limitations of previously reported constructs and to reach both robust expression and efficient regulation from a single vector. The improved performance allows us to report for the first time effective long-term in vivo regulation of a human clotting Factor IX (hF.IX) transgene upon systemic administration of a single vector to SCID mice. We showed that hF.IX expression in the plasma could be expressed to therapeutically significant concentrations, adjusted to different set levels by varying the tetracycline dose, rapidly turned off and on, and completely recovered after each treatment cycle. The new vector design was versatile, as it successfully incorporated a tissue-specific promoter that selectively targeted regulated expression to hepatocytes. Robust transgene expression in the systemic circulation coupled to the ability to switch off and even adjust the expression level may open the way to safer gene-based delivery of therapeutics.
Collapse
Affiliation(s)
- Elisa Vigna
- Institute for Cancer Research and Treatment, University of Torino Medical School, Strada Provinciale 142, 10060 Candiolo, Turin, Italy
| | | | | | | | | | | |
Collapse
|
33
|
Beutelspacher SC, Ardjomand N, Tan PH, Patton GS, Larkin DFP, George AJT, McClure MO. Comparison of HIV-1 and EIAV-based lentiviral vectors in corneal transduction. Exp Eye Res 2005; 80:787-94. [PMID: 15939034 DOI: 10.1016/j.exer.2004.12.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Revised: 11/12/2004] [Accepted: 12/08/2004] [Indexed: 10/25/2022]
Abstract
In this study we compare the ability of self-inactivating Human Immunodeficiency Virus 1 (HIV-1) and Equine Infectious Anaemia Virus (EIAV)-based vectors to mediate gene transfer to rabbit and human corneas and to a murine corneal endothelial cell line. Both vectors were pseudotyped with vesicular stomatitis virus-G (VSV-G) envelope and contained marker transgenes under the control of an internal CMV promoter. For specificity of action, the heterologous promoter in the EIAV-vector was exchanged for an inducible E-Selectin promoter, previously shown to regulate gene-expression in a plasmid system. We show that EIAV is more efficient than HIV in transducing human and rabbit corneal endothelial cells. Rabbit corneal endothelial cells are transduced in higher quantity than human corneal endothelial cells. In the inducible system, however, we detected impairment between the vector and its internal E-Selectin promoter. Instead of controlled transgene expression or silencing of promoter activity, the U3-modified long-terminal-repeats (LTR) impaired the conditional activity of the E-Selectin promoter. Significant transgene expression was seen without stimulation of the inducible promoter. We show efficient transduction by lentiviruses of a corneal endothelial cell line and of full thickness corneas from different species, confirming that those vectors would be appropriate tools for gene therapy of selected corneal diseases. However, the modification within the U3-LTR did not adequately allow regulated transgene expression. These findings have important implications for vector design for diagnostic or therapeutic opportunities.
Collapse
Affiliation(s)
- Sven Christoph Beutelspacher
- Jefferiss Research Trust Laboratories, Wright-Fleming Institute, Faculty of Medicine, Division of Medicine, Department of GU Medicine, St Mary's Campus Medicine, Imperial College London, Norfolk Place, London W2 1PG, UK.
| | | | | | | | | | | | | |
Collapse
|
34
|
Dupré L, Trifari S, Follenzi A, Marangoni F, Lain de Lera T, Bernad A, Martino S, Tsuchiya S, Bordignon C, Naldini L, Aiuti A, Roncarolo MG. Lentiviral Vector-Mediated Gene Transfer in T Cells from Wiskott–Aldrich Syndrome Patients Leads to Functional Correction. Mol Ther 2004; 10:903-15. [PMID: 15509508 DOI: 10.1016/j.ymthe.2004.08.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2004] [Accepted: 08/12/2004] [Indexed: 10/26/2022] Open
Abstract
Wiskott-Aldrich syndrome (WAS) is an X-linked primary immunodeficiency with a median survival below the age of 20 due to infections, severe hemorrhage, and lymphomas. Transplantation of hematopoietic stem cells from HLA-identical sibling donors is a resolutive treatment, but is available for a minority of patients. Transplantation of genetically corrected autologous hematopoietic stem cells or T cells could represent an alternative treatment applicable to all patients. We investigated whether WAS gene transfer with MMLV-based oncoretroviral and HIV-based lentiviral vectors could restore normal functions of patients' T cells. T cells transduced either with lentiviral vectors expressing the WAS protein (WASP) from the ubiquitous PGK promoter or the tissue-specific WASP promoter or with an oncoretroviral vector expressing WASP from the LTR, reached normal levels of WASP with correction of functional defects, including proliferation, IL-2 production, and lipid raft upregulation. Lentiviral vectors transduced T cells from WAS patients at higher rates, compared to oncoretroviral vectors, and efficiently transduced both activated and naive WAS T cells. Furthermore, a selective growth advantage of T cells corrected with the lentiviral vectors was demonstrated. The observation that lentiviral vector-mediated gene transfer results in correction of T cell defects in vitro supports their application for gene therapy in WAS patients.
Collapse
Affiliation(s)
- Loïc Dupré
- San Raffaele Telethon Institute for Gene Therapy, 20132 Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Davis BM, Humeau L, Slepushkin V, Binder G, Korshalla L, Ni Y, Ogunjimi EO, Chang LF, Lu X, Dropulic B. ABC transporter inhibitors that are substrates enhance lentiviral vector transduction into primitive hematopoietic progenitor cells. Blood 2004; 104:364-73. [PMID: 15059841 DOI: 10.1182/blood-2003-07-2363] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
High gene transfer efficiencies have been difficult to achieve in hematopoietic progenitor cells (HPCs) but are important to therapeutic success of HPC gene therapy. Efficient gene transfer is especially challenging with use of column-purified vector for clinical application, as opposed to centrifuged vector commonly used for research. We investigated novel approaches to increase transduction by using a clinically applicable protocol and quantities of column-purified lentiviral vector. Recognizing the association of adenosine 5′-triphosphate (ATP)-binding cassette (ABC) transporters with HPC biology, we investigated the effect of transporter inhibitors on transduction. We found the ABC transporter inhibitor verapamil improved transduction efficiency 2- to 6-fold into CD34+ cells isolated from mobilized peripheral blood, bone marrow, and cord blood. Verapamil also improved transduction in human SCID (severe combined immunodeficient) repopulating cell (SRC) transduction 3- to 4-fold, resulting in 80% to 90% transduction levels in mice receiving primary and secondary transplants without alterations in multilineage reconstitution. Additional ABC transporter substrate inhibitors like quinidine, diltiazem, and ritonavir also enhanced transduction 2- to 3-fold, although ABC transporter inhibitors that are not substrates did not. Enhanced transduction was not observed in mature hematopoietic cells, neurospheres, mesenchymal stem cells, or hepatocytes. Enhancement of transduction in HPCs was observed with vesicular stomatitis virus-G (VSV-G)-pseudotyped lentiviral vector but not with vector pseudotyped with RD114. Thus, we present a new approach for efficient delivery to primitive HPCs by VSV-G-pseudotyped lentiviral vectors. (Blood. 2004;104:364-373)
Collapse
Affiliation(s)
- Brian M Davis
- VIRxSYS Corp, 200 Perry Pky, Ste 1A, Gaithersburg, MD 20877, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Testa A, Lotti F, Cairns L, Grande A, Ottolenghi S, Ferrari G, Ronchi A. Deletion of a Negatively Acting Sequence in a Chimeric GATA-1 Enhancer-Long Terminal Repeat Greatly Increases Retrovirally Mediated Erythroid Expression. J Biol Chem 2004; 279:10523-31. [PMID: 14701820 DOI: 10.1074/jbc.m313638200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The locus control region of the beta-globin gene cluster has been used previously to direct erythroid expression of globin genes from retroviral vectors for the purpose of gene therapy. Short erythroid regulatory elements represent a potentially valuable alternative to the locus control region. Among them, the GATA-1 enhancer HS2 was used to replace the retroviral enhancer within the 3'-long terminal repeat (LTR) of the retroviral vector SFCM, converting it into an erythroid-specific regulatory element. In this work, we have functionally studied an additional GATA-1 enhancer, HS1. HS1 participates in the transcriptional autoregulation of GATA-1 through an essential GATA-binding site that is footprinted in vivo. In this work we identified within HS1 a new in vivo footprinted region, and we showed that this sequence indeed binds a nuclear protein in vitro. Addition of HS1 to HS2 within the LTR of SFCM significantly improves the expression of a reporter gene. The deletion of the newly identified footprinted sequence in the retroviral construct further increases expression up to a level almost equal to that of the wild type retroviral LTR, without loss of erythroid specificity, suggesting that this sequence may act as a negative regulatory element. An improved vector backbone, MDeltaN, allows even better expression from the new GATA cassette. These results suggest that substantial improvement of overall expression can be achieved by the combination of multiple changes in both regulatory elements and vectors.
Collapse
Affiliation(s)
- Anna Testa
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, 20126 Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
37
|
|
38
|
Abstract
Two well-established determinants of retroviral tropism are envelope sequences that regulate entry and LTR sequences that can regulate viral expression in a cell-specific manner. Studies with human immunodeficiency virus-1 (HIV-1) have demonstrated that tropism of this virus maps primarily to variable envelope sequences. Studies have demonstrated that T cell and macrophage-specific transcription factor binding motifs exist in the upstream region of the LTR U3; however, the ability of the core enhancer/promoter proximal elements (two NF-kappaB and three Sp1 sites) to function well in macrophages and T cells have led many to conclude that HIV LTR sequences are not primary determinants of HIV tropism. To determine if cellular specificity could be imparted to HIV by the core enhancer elements, the enhancer/promoter proximal region of the HIV LTR was substituted with motifs that control gene expression in a myeloid-specific manner. The enhancer region from equine infectious anemia virus (EIAV) when substituted for the HIV enhancer/promoter proximal region was found to drive expression in a macrophage-specific manner and was responsive to HIV Tat. The addition of a 5' methylation-dependent binding site (MDBP) and a promoter proximal Sp1 motif increased expression without altering cellular specificity. Spacing between the promoter proximal region and the TATA box was also found to influence LTR activity. Infectivity studies using chimeric LTRs within the context of a dual-tropic infectious molecular clone established that these LTRs directed HIV replication and production of infectious virions in macrophages but not primary T cells or T cell lines. This investigation demonstrates that cellular specificity can be imparted onto HIV-1 replication at the level of viral transcription and not entry.
Collapse
Affiliation(s)
- Edward Reed-Inderbitzin
- Division of Basic Biomedical Sciences, University of South Dakota, Vermillion, SD 57069, USA
| | | |
Collapse
|
39
|
De Palma M, Venneri MA, Naldini L. In vivo targeting of tumor endothelial cells by systemic delivery of lentiviral vectors. Hum Gene Ther 2003; 14:1193-206. [PMID: 12908970 DOI: 10.1089/104303403322168028] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Tumor angiogenesis is a rate-limiting factor for tumor growth, and the endothelial cells of tumor vessels display specific features that can be exploited for the selective delivery of cancer therapeutics. To specifically target exogenous genes to angiogenic tumor vessels, we generated a panel of vesicular stomatitis virus-pseudotyped lentiviral vectors (LVs) engineered for endothelial cell (EC)-specific expression. We cloned a wide repertoire of transcription regulatory sequences from genes preferentially expressed in ECs (Tie1, Tie2, Flk-1, VE-Cad, and ICAM-2) into self-inactivating LVs to drive expression of the marker gene encoding green fluorescent protein (GFP) or of the conditionally toxic gene encoding nitroreductase, and compared them with the ubiquitously expressing phosphoglycerate kinase (PGK) and cytomegalovirus (CMV) promoters. We evaluated the efficiency and specificity of vector expression in vitro in a panel of human primary cultures, including ECs, fibroblasts, neurons, lymphocytes, and hematopoietic progenitors, and in tumor cell lines. We found that vectors containing promoter and enhancer sequences from the Tie2 gene achieved remarkable specificity of expression in ECs in vitro and in vivo. On intravenous delivery into tumor-bearing mice, the Tie2 vector targeted expression to the ECs of tumor vessels. In contrast, LVs carrying the PGK or CMV promoter gave widespread GFP marking in ECs and non-ECs of tumors and other organs. The previously reported upregulation of the Tie2 gene in ECs activated for angiogenesis may explain the remarkable selectivity of expression of the Tie2 vector in ECs of tumor vessels. The new vector provides the means for selective delivery of gene therapy to tumor sites in vivo.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Endothelium/metabolism
- Genetic Vectors/administration & dosage
- Humans
- Injections, Intravenous
- Lentivirus/genetics
- Mice
- Microscopy, Fluorescence
- Microscopy, Phase-Contrast
- Neoplasm Proteins/genetics
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/therapy
- Proto-Oncogene Proteins
- Receptor, TIE-2
- Regulatory Sequences, Nucleic Acid
- Swine
- Transcription, Genetic
- Transduction, Genetic
- Tumor Cells, Cultured
- Vascular Endothelial Growth Factor Receptor-2/genetics
- Vesicular stomatitis Indiana virus/genetics
Collapse
Affiliation(s)
- Michele De Palma
- Laboratory for Gene Transfer and Therapy, IRCC, Institute for Cancer Research and Treatment, University of Turin Medical School, 10060 Candiolo (Turin), Italy
| | | | | |
Collapse
|
40
|
Yu X, Zhan X, D'Costa J, Tanavde VM, Ye Z, Peng T, Malehorn MT, Yang X, Civin CI, Cheng L. Lentiviral vectors with two independent internal promoters transfer high-level expression of multiple transgenes to human hematopoietic stem-progenitor cells. Mol Ther 2003; 7:827-38. [PMID: 12788657 DOI: 10.1016/s1525-0016(03)00104-7] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Lentiviral vectors (LVs) offer several advantages over traditional oncoretroviral vectors. LVs efficiently transduce slowly dividing cells, including hematopoietic stem-progenitor cells (HSCs), resulting in stable gene transfer and expression. Additionally, recently developed self-inactivating (SIN) LVs allow promoter-specific transgene expression. For many gene transfer applications, transduction of more than one gene is needed. We obtained inconsistent results in our attempts to coexpress two transgenes linked by an internal ribosomal entry site (IRES) element in a single bicistronic LV transcript. In more than six bicistronic LVs we constructed containing a gene of interest followed by an IRES and the GFP reporter gene, GFP fluorescence was undetectable in transduced cells. We therefore investigated how to achieve consistent and efficient coexpression of two transgenes by LVs. In a SIN LV containing the elongation factor 1alpha promoter, we included a second promoter from cytomegalovirus, the phosphoglycerate kinase gene, or the HLA-DRalpha gene. Using a single LV containing two constitutive promoters, we achieved strong and sustained expression of both transgenes in transduced engrafting CD34(+) HSCs and their progeny, as well as in other human cell types. Thus, such dual-promoter LVs can coexpress multiple transgenes efficiently in a single target cell and will enable many gene transfer applications.
Collapse
Affiliation(s)
- Xiaobing Yu
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Baltimore, Maryland 21231, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Sadat MA, Pech N, Saulnier S, Leroy BA, Hossle JP, Grez M, Dinauer MC. Long-term high-level reconstitution of NADPH oxidase activity in murine X-linked chronic granulomatous disease using a bicistronic vector expressing gp91phox and a Delta LNGFR cell surface marker. Hum Gene Ther 2003; 14:651-66. [PMID: 12804147 DOI: 10.1089/104303403321618164] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A murine model of X-linked chronic granulomatous disease (X-CGD), an inherited immune deficiency with absent phagocyte NADPH oxidase activity caused by defects in the gp91(phox) gene, was used to evaluate a bicistronic retroviral vector in which expression of human gp91(phox) and a linked gene for Delta LNGFR, a truncated form of human low-affinity nerve growth factor receptor, are under the control of a spleen focus-forming virus long-terminal repeat (LTR). Four independent cohorts of 11-Gy irradiated X-CGD mice (total, 22 mice) were transplanted with or without preselection of transduced X-CGD bone marrow (BM). Transplanted mice had high-level correction of neutrophil gp91(phox) expression and reconstitution of NADPH oxidase activity. Expression lasted for at least 14 months in primary transplants, and persisted in secondary and tertiary transplants. Both gp91(phox) and Delta LNGFR were detected on circulating granulocytes, lymphocytes, lymphoid, and (for Delta LNGFR) red blood cells. Mice receiving transduced bone marrow [BM] preselected ex vivo for Delta LNGFR expression had high-level (= 80%) reconstitution with transduced cells, with an improved fraction of oxidase-corrected neutrophils posttransplant. Analysis of secondary and tertiary CFU-S showed that silencing of individual provirus integrants can occur even after preselection for Delta LNGFR prior to transplantation, and that persistent provirus expression was associated with multiple integration sites in most cases. No obvious adverse consequences of transgenic protein expression were observed.
Collapse
Affiliation(s)
- Mohammed A Sadat
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics (Hematology/Oncology), James Whitcomb Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Gene therapy has been applied in a variety of experimental models of autoimmunity with some success. In this article, we outline recent developments in gene therapy vectors, discuss advantages and disadvantages of each, and highlight their recent applications in autoimmune models. We also consider progress in vector targeting and components for regulating transgene expression, which will both improve gene therapy safety and empower gene therapy to fullfil its potential as a therapeutic modality. In conclusion, we consider candidate vectors that satisfy requirements for application in the principal therapeutic strategies in which gene therapy will be applied to autoimmune conditions.
Collapse
Affiliation(s)
- D J Gould
- 1Bone & Joint Research Unit, Barts & The London, Queen Mary's Medical School, University of London, London, UK
| | | |
Collapse
|