1
|
Segura J, Ireland J, Zou Z, Roth G, Buchwald J, Shen TJ, Fischer E, Moir S, Chun TW, Sun PD. HIV-1 release requires Nef-induced caspase activation. PLoS One 2023; 18:e0281087. [PMID: 36780482 PMCID: PMC9925082 DOI: 10.1371/journal.pone.0281087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/17/2023] [Indexed: 02/15/2023] Open
Abstract
HIV infection remains incurable to date and there are no compounds targeted at the viral release. We show here HIV viral release is not spontaneous, rather requires caspases activation and shedding of its adhesion receptor, CD62L. Blocking the caspases activation caused virion tethering by CD62L and the release of deficient viruses. Not only productive experimental HIV infections require caspases activation for viral release, HIV release from both viremic and aviremic patient-derived CD4 T cells also require caspase activation, suggesting HIV release from cellular viral reservoirs depends on apoptotic shedding of the adhesion receptor. Further transcriptomic analysis of HIV infected CD4 T cells showed a direct contribution of HIV accessory gene Nef to apoptotic caspases activation. Current HIV cure focuses on the elimination of latent cellular HIV reservoirs that are resistant to infection-induced cell death. This has led to therapeutic strategies to stimulate T cell apoptosis in a "kick and kill" approach. Our current work has shifted the paradigm on HIV-induced apoptosis and suggests such approach would risk to induce HIV release and thus be counter-productive. Instead, our study supports targeting of viral reservoir release by inhibiting of caspases activation.
Collapse
Affiliation(s)
- Jason Segura
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Joanna Ireland
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Zhongcheng Zou
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Gwynne Roth
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Julianna Buchwald
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Thomas J. Shen
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Elizabeth Fischer
- Research Technology Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tae-Wook Chun
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Peter D. Sun
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- * E-mail:
| |
Collapse
|
2
|
Segura J, He B, Ireland J, Zou Z, Shen T, Roth G, Sun PD. The Role of L-Selectin in HIV Infection. Front Microbiol 2021; 12:725741. [PMID: 34659153 PMCID: PMC8511817 DOI: 10.3389/fmicb.2021.725741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/27/2021] [Indexed: 11/20/2022] Open
Abstract
HIV envelope glycoprotein is the most heavily glycosylated viral protein complex identified with over 20 glycans on its surface. This glycan canopy is thought to primarily shield the virus from host immune recognition as glycans are poor immunogens in general, however rare HIV neutralizing antibodies nevertheless potently recognize the glycan epitopes. While CD4 and chemokine receptors have been known as viral entry receptor and coreceptor, for many years the role of viral glycans in HIV entry was controversial. Recently, we showed that HIV envelope glycan binds to L-selectin in solution and on CD4 T lymphocytes. The viral glycan and L-selectin interaction functions to facilitate the viral adhesion and entry. Upon entry, infected CD4 T lymphocytes are stimulated to progressively shed L-selectin and suppressing this lectin receptor shedding greatly reduced HIV viral release and caused aggregation of diminutive virus-like particles within experimental infections and from infected primary T lymphocytes derived from both viremic and aviremic individuals. As shedding of L-selectin is mediated by ADAM metalloproteinases downstream of host-cell stimulation, these findings showed a novel mechanism for HIV viral release and offer a potential new class of anti-HIV compounds.
Collapse
Affiliation(s)
- Jason Segura
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Biao He
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Joanna Ireland
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Zhongcheng Zou
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Thomas Shen
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Gwynne Roth
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Peter D Sun
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| |
Collapse
|
3
|
McNamara RP, Dittmer DP. Extracellular vesicles in virus infection and pathogenesis. Curr Opin Virol 2020; 44:129-138. [PMID: 32846272 PMCID: PMC7755726 DOI: 10.1016/j.coviro.2020.07.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022]
Abstract
Viruses are obligate intracellular parasites that usurp cellular signaling networks to promote pathogen spread and disease progression. Signaling through extracellular vesicles (EVs) is an emerging field of study in the virus-host interaction network. EVs relay information both locally and distally through incorporated contents, typically without tripping innate immune sensors. Therefore, this extracellular signaling axis presents itself as a tantalizing target for promoting a favorable niche for the pathogen(s) takeover of the host, particularly for chronic infections. From the incorporation of virus-encoded molecules such as micro RNAs and proteins/enzymes to the envelopment of entire infectious particles, evolutionary distinct viruses have shown a remarkable ability to converge on this means of communication. In this review, we will cover the recent advances in this field and explore how EV can be used as potential biomarkers for chronic, persistent, or latent virus infections.
Collapse
Affiliation(s)
- Ryan P McNamara
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, United States; Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, United States
| | - Dirk P Dittmer
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, United States; Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, United States.
| |
Collapse
|
4
|
Acute-Phase CD4 + T Cell Responses Targeting Invariant Viral Regions Are Associated with Control of Live Attenuated Simian Immunodeficiency Virus. J Virol 2018; 92:JVI.00830-18. [PMID: 30111562 DOI: 10.1128/jvi.00830-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/29/2018] [Indexed: 12/14/2022] Open
Abstract
We manipulated SIVmac239Δnef, a model of major histocompatibility complex (MHC)-independent viral control, to evaluate characteristics of effective cellular responses mounted by Mauritian cynomolgus macaques (MCMs) that express the M3 MHC haplotype, which has been associated with poor control of pathogenic simian immunodeficiency virus (SIV). We created SIVΔnef-8x to test the hypothesis that effective SIV-specific T cell responses targeting invariant viral regions can emerge in the absence of immunodominant CD8+ T cell responses targeting variable epitopes and that control is achievable in individuals lacking known "protective" MHC alleles. Full-proteome gamma interferon (IFN-γ) enzyme-linked immunospot (ELISPOT) assays identified six newly targeted immunogenic regions following SIVΔnef-8x infection of M3/M3 MCMs. We deep sequenced circulating virus and found that four of the six newly targeted regions rarely accumulated mutations. Six animals infected with SIVΔnef-8x had T cell responses that targeted at least one of the four invariant regions and had a lower set point viral load than two animals that did not have T cell responses that targeted any invariant regions. We found that MHC class II molecules restricted all four of the invariant peptide regions, while the two variable regions were restricted by MHC class I molecules. Therefore, in the absence of immunodominant CD8+ T cell responses that target variable regions during SIVmac239Δnef infection, individuals without protective MHC alleles developed predominantly CD4+ T cell responses specific for invariant regions that may improve control of virus replication. Our results provide some evidence that antiviral CD4+ T cells during acute SIV infection can contribute to effective viral control and should be considered in strategies to combat HIV infection.IMPORTANCE Studies defining effective cellular immune responses to human immunodeficiency virus (HIV) and SIV have largely focused on a rare population that express specific MHC class I alleles and control virus replication in the absence of antiretroviral treatment. This leaves in question whether similar effective immune responses can be achieved in the larger population. The majority of HIV-infected individuals mount CD8+ T cell responses that target variable viral regions that accumulate high-frequency escape mutations. Limiting T cell responses to these variable regions and targeting invariant viral regions, similar to observations in rare "elite controllers," may provide an ideal strategy for the development of effective T cell responses in individuals with diverse MHC genetics. Therefore, it is of paramount importance to determine whether T cell responses can be redirected toward invariant viral regions in individuals without protective MHC alleles and if these responses improve control of virus replication.
Collapse
|
5
|
McNamara RP, Costantini LM, Myers TA, Schouest B, Maness NJ, Griffith JD, Damania BA, MacLean AG, Dittmer DP. Nef Secretion into Extracellular Vesicles or Exosomes Is Conserved across Human and Simian Immunodeficiency Viruses. mBio 2018; 9:e02344-17. [PMID: 29437924 PMCID: PMC5801467 DOI: 10.1128/mbio.02344-17] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/10/2018] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) or exosomes have been implicated in the pathophysiology of infections and cancer. The negative regulatory factor (Nef) encoded by simian immunodeficiency virus (SIV) and human immunodeficiency virus (HIV) plays a critical role in the progression to AIDS and impairs endosomal trafficking. Whether HIV-1 Nef can be loaded into EVs has been the subject of controversy, and nothing is known about the connection between SIV Nef and EVs. We find that both SIV and HIV-1 Nef proteins are present in affinity-purified EVs derived from cultured cells, as well as in EVs from SIV-infected macaques. Nef-positive EVs were functional, i.e., capable of membrane fusion and depositing their content into recipient cells. The EVs were able to transfer Nef into recipient cells. This suggests that Nef readily enters the exosome biogenesis pathway, whereas HIV virions are assembled at the plasma membrane. It suggests a novel mechanism by which lentiviruses can influence uninfected and uninfectable, i.e., CD4-negative, cells.IMPORTANCE Extracellular vesicles (EVs) transfer biologically active materials from one cell to another, either within the adjacent microenvironment or further removed. EVs also package viral RNAs, microRNAs, and proteins, which contributes to the pathophysiology of infection. In this report, we show that both human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) incorporate the virus-encoded Nef protein into EVs, including EVs circulating in the blood of SIV-infected macaques and that this presents a novel mechanism of Nef transfer to naive and even otherwise non-infectable cells. Nef is dispensable for viral replication but essential for AIDS progression in vivo Demonstrating that Nef incorporation into EVs is conserved across species implicates EVs as novel mediators of the pathophysiology of HIV. It could help explain the biological effects that HIV has on CD4-negative cells and EVs could become biomarkers of disease progression.
Collapse
Affiliation(s)
- Ryan P McNamara
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Lindsey M Costantini
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - T Alix Myers
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, USA
| | - Blake Schouest
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, USA
| | - Nicholas J Maness
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, USA
| | - Jack D Griffith
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Blossom A Damania
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Andrew G MacLean
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, USA
| | - Dirk P Dittmer
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
6
|
Pankrac J, Klein K, McKay PF, King DFL, Bain K, Knapp J, Biru T, Wijewardhana CN, Pawa R, Canaday DH, Gao Y, Fidler S, Shattock RJ, Arts EJ, Mann JFS. A heterogeneous human immunodeficiency virus-like particle (VLP) formulation produced by a novel vector system. NPJ Vaccines 2018; 3:2. [PMID: 29367885 PMCID: PMC5775397 DOI: 10.1038/s41541-017-0040-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 01/12/2023] Open
Abstract
First identified as the etiological agent behind Acquired Immunodeficiency Syndrome (AIDS) in the early 1980s, HIV-1 has continued to spread into a global pandemic and major public health concern. Despite the success of antiretroviral therapy at reducing HIV-1 viremia and preventing the dramatic CD4+ T-cell collapse, infected individuals remain HIV positive for life. Unfortunately, it is increasingly clear that natural immunity is not, and may never be, protective against this pathogen. Therefore, efficacious vaccine interventions, which can either prevent infection or eradicate the latent viral reservoir and effect cure, are a major medical priority. Here we describe the development of a safe vaccine platform, currently being utilized in on-going prophylactic and therapeutic preclinical studies and consisting of highly heterogeneous virus-like particle formulations that represent the virus diversity within infected individuals. These VLPs contain no 5'LTR, no functional integrase, and have a severely mutated stem loop 1-thereby preventing any potential reverse transcription, integration, and RNA packaging. Furthermore, we demonstrate that these VLPs are morphologically identical to wild-type virus with polyvalent Env in a functional form. Finally, we show that the VLPs are antigenic and capable of generating strong immune recall responses.
Collapse
Affiliation(s)
- Joshua Pankrac
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1 Canada
| | - Katja Klein
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1 Canada
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Paul F. McKay
- Division of Medicine, Department of Infectious Diseases, Imperial College London, Norfolk Place, London, W2 1PG UK
| | - Deborah F. L. King
- Division of Medicine, Department of Infectious Diseases, Imperial College London, Norfolk Place, London, W2 1PG UK
| | - Katie Bain
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1 Canada
| | - Jason Knapp
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1 Canada
| | - Tsigereda Biru
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Chanuka N. Wijewardhana
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1 Canada
| | - Rahul Pawa
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1 Canada
| | - David H. Canaday
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Yong Gao
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1 Canada
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Sarah Fidler
- Department of Medicine, Imperial College London, London, UK
| | - Robin J. Shattock
- Division of Medicine, Department of Infectious Diseases, Imperial College London, Norfolk Place, London, W2 1PG UK
| | - Eric J. Arts
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1 Canada
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Jamie F. S. Mann
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1 Canada
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106 USA
| |
Collapse
|
7
|
Abstract
Since the discovery of acquired immunodeficiency syndrome (AIDS) in 1981, it has been extremely difficult to develop an effective vaccine or a therapeutic cure despite over 36 years of global efforts. One of the major reasons is due to the lack of an immune-competent animal model that supports live human immunodeficiency virus (HIV) infection and disease progression such that vaccine-induced correlates of protection and efficacy can be determined clearly before human trials. Nevertheless, rhesus macaques infected with simian immunodeficiency virus (SIV) and chimeric simian human immunodeficiency virus (SHIV) have served as invaluable models not only for understanding AIDS pathogenesis but also for studying HIV vaccine and cure. In this chapter, therefore, we summarize major scientific evidence generated in these models since the beginning of the AIDS pandemic. Hopefully, the accumulated knowledge and lessons contributed by thousands of scientists will be useful in promoting the search of an ultimate solution to end HIV/AIDS.
Collapse
|
8
|
Das AT, Tenenbaum L, Berkhout B. Tet-On Systems For Doxycycline-inducible Gene Expression. Curr Gene Ther 2017; 16:156-67. [PMID: 27216914 PMCID: PMC5070417 DOI: 10.2174/1566523216666160524144041] [Citation(s) in RCA: 244] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 05/03/2016] [Accepted: 05/03/2016] [Indexed: 11/22/2022]
Abstract
The tetracycline-controlled Tet-Off and Tet-On gene expression systems are used to regulate the activity of genes in eukaryotic cells in diverse settings, varying from basic biological research to biotechnology and gene therapy applications. These systems are based on regulatory elements that control the activity of the tetracycline-resistance operon in bacteria. The Tet-Off system allows silencing of gene expression by administration of tetracycline (Tc) or tetracycline-derivatives like doxycycline (dox), whereas the Tet-On system allows activation of gene expression by dox. Since the initial design and construction of the original Tet-system, these bacterium-derived systems have been significantly improved for their function in eukaryotic cells. We here review how a dox-controlled HIV-1 variant was designed and used to greatly improve the activity and dox-sensitivity of the rtTA transcriptional activator component of the Tet-On system. These optimized rtTA variants require less dox for activation, which will reduce side effects and allow gene control in tissues where a relatively low dox level can be reached, such as the brain.
Collapse
Affiliation(s)
- Atze T Das
- Laboratory of Experimental Virology, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands.
| | | | | |
Collapse
|
9
|
van der Velden YU, Kleibeuker W, Harwig A, Klaver B, Siteur-van Rijnstra E, Frankin E, Berkhout B, Das AT. Construction of Nef-positive doxycycline-dependent HIV-1 variants using bicistronic expression elements. Virology 2015; 488:96-107. [PMID: 26615334 DOI: 10.1016/j.virol.2015.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/14/2015] [Accepted: 11/06/2015] [Indexed: 11/19/2022]
Abstract
Conditionally replicating HIV-1 variants that can be switched on and off at will are attractive tools for HIV research. We previously developed a genetically modified HIV-1 variant that replicates exclusively when doxycycline (dox) is administered. The nef gene in this HIV-rtTA variant was replaced with the gene encoding the dox-dependent rtTA transcriptional activator. Because loss of Nef expression compromises virus replication in primary cells and precludes studies on Nef function, we tested different approaches to restore Nef production in HIV-rtTA. Strategies that involved translation via an EMCV or synthetic internal ribosome entry site (IRES) failed because these elements were incompatible with efficient virus replication. Fusion protein approaches with the FMDV 2A peptide and human ubiquitin were successful and resulted in genetically-stable Nef-expressing HIV-rtTA strains that replicate more efficiently in primary T-cells and human immune system (HIS) mice than Nef-deficient variants, thus confirming the positive effect of Nef on in vivo virus replication.
Collapse
Affiliation(s)
- Yme U van der Velden
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Wendy Kleibeuker
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Alex Harwig
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Bep Klaver
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Esther Siteur-van Rijnstra
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Esmay Frankin
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Atze T Das
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
10
|
Conditionally replicating HIV and SIV variants. Virus Res 2015; 216:66-75. [PMID: 25982510 DOI: 10.1016/j.virusres.2015.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/04/2015] [Accepted: 05/05/2015] [Indexed: 01/11/2023]
Abstract
Conditionally replicating human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) variants that can be switched on and off at will are attractive tools for HIV and SIV research. We constructed HIV and SIV variants in which the natural transcription control mechanism was replaced by the doxycycline (dox)-inducible Tet-On gene expression mechanism. These HIV-rtTA and SIV-rtTA variants are fully replication-competent, but replication is critically dependent on dox administration. We here describe how the dox-dependent virus variants may improve the safety of live-attenuated virus vaccines and how they can be used to study the immune responses that correlate with vaccine-induced protection. Furthermore, we review how these variants were initially designed and subsequently optimized by spontaneous viral evolution. These efforts yielded efficiently replicating and tightly dox-controlled HIV-rtTA and SIV-rtTA variants that replicate in a variety of cell and tissue culture systems, and in human immune system (HIS) mice and macaques, respectively. These viruses can be used as a tool in HIV and SIV biology studies and in vaccine research. We review how HIV-rtTA and SIV-rtTA were used to study the role of the viral TAR and Tat elements in virus replication.
Collapse
|
11
|
Sopper S, Mätz-Rensing K, Mühl T, Heeney J, Stahl-Hennig C, Sauermann U. Host factors determine differential disease progression after infection with nef-deleted simian immunodeficiency virus. J Gen Virol 2014; 95:2273-2284. [PMID: 24928910 PMCID: PMC4165933 DOI: 10.1099/vir.0.066563-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Infection of macaques with live attenuated simian immunodeficiency virus (SIV) usually results in long-lasting efficient protection against infection with pathogenic immunodeficiency viruses. However, attenuation by deletion of regulatory genes such as nef is not complete, leading to a high viral load and fatal disease in some animals. To characterize immunological parameters and polymorphic host factors, we studied 17 rhesus macaques infected with attenuated SIVmac239ΔNU. Eight animals were able to control viral replication, whereas the remaining animals (non-controllers) displayed variable set-point viral loads. Peak viral load at 2 weeks post-infection (p.i.) correlated significantly with set-point viral load (P<0.0001). CD4(+) T-cell frequencies differed significantly soon after infection between controllers and non-controllers. Abnormal B-cell activation previously ascribed to Nef function could already be observed in non-controllers 8 weeks after infection despite the absence of Nef. Two non-controllers developed an AIDS-like disease within 102 weeks p.i. Virus from these animals transmitted to naïve animals replicated at low levels and the recipients did not develop immunodeficiency. This suggested that host factors determined differential viral load and subsequent disease course. Known Mhc class I alleles associated with disease progression in SIV WT infection only marginally influenced the viral load in Δnef-infected animals. Protection from SIVmac251 was associated with homozygosity for MHC class II in conjunction with a TLR7 polymorphism and showed a trend with initial viral replication. We speculated that host factors whose effects were usually masked by Nef were responsible for the different disease courses in individual animals upon infection with nef-deleted viruses.
Collapse
Affiliation(s)
- Sieghart Sopper
- Tumor Immunology Lab, Hematology and Oncology, Medical University Innsbruck and Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Kerstin Mätz-Rensing
- Pathology Unit, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
| | - Thorsten Mühl
- Unit of Infection Models, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Goettingen, Germany
| | - Jonathan Heeney
- Department of Veterinary Medicine, The University of Cambridge, Cambridge, UK
| | - Christiane Stahl-Hennig
- Unit of Infection Models, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Goettingen, Germany
| | - Ulrike Sauermann
- Unit of Infection Models, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Goettingen, Germany
| |
Collapse
|
12
|
|
13
|
Das AT, Berkhout B. HIV-1 evolution: frustrating therapies, but disclosing molecular mechanisms. Philos Trans R Soc Lond B Biol Sci 2010; 365:1965-73. [PMID: 20478891 PMCID: PMC2880118 DOI: 10.1098/rstb.2010.0072] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Replication of HIV-1 under selective pressure frequently results in the evolution of virus variants that replicate more efficiently under the applied conditions. For example, in patients on antiretroviral therapy, such evolution can result in variants that are resistant to the HIV-1 inhibitors, thus frustrating the therapy. On the other hand, virus evolution can help us to understand the molecular mechanisms that underlie HIV-1 replication. For example, evolution of a defective virus mutant can result in variants that overcome the introduced defect by restoration of the original sequence or by the introduction of additional mutations in the viral genome. Analysis of the evolution pathway can reveal the requirements of the element under study and help to understand its function. Analysis of the escape routes may generate new insight in the viral life cycle and result in the identification of unexpected biological mechanisms. We have developed in vitro HIV-1 evolution into a systematic research tool that allows the study of different aspects of the viral replication cycle. We will briefly review this method of forced virus evolution and provide several examples that illustrate the power of this approach.
Collapse
Affiliation(s)
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
14
|
Laguette N, Brégnard C, Benichou S, Basmaciogullari S. Human immunodeficiency virus (HIV) type-1, HIV-2 and simian immunodeficiency virus Nef proteins. Mol Aspects Med 2010; 31:418-33. [PMID: 20594957 DOI: 10.1016/j.mam.2010.05.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 05/26/2010] [Indexed: 11/19/2022]
Abstract
The genomes of all retroviruses encode the Gag Pol and Env structural proteins. Human and simian lentiviruses have acquired non-structural proteins among which Nef plays a major role in the evolution of viral infection towards an immunodeficiency syndrome. Indeed, in the absence of a functional nef gene, primate lentiviruses are far less pathogenic than their wild type counterparts. The multiple protein-protein interactions in which Nef is involved all contribute to explain the role played by Nef in HIV- and SIV-associated disease progression. This review summarizes common and distinct features among Nef proteins and how they contribute to increasing HIV and SIV fitness towards their respective hosts.
Collapse
Affiliation(s)
- Nadine Laguette
- Institut Cochin, CNRS UMR8104, Université Paris Descartes, Paris, France
| | | | | | | |
Collapse
|
15
|
Das AT, Jeeninga RE, Berkhout B. Possible applications for replicating HIV 1 vectors. ACTA ACUST UNITED AC 2010; 4:361-369. [PMID: 20582153 DOI: 10.2217/hiv.10.20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Since its discovery some 25 years ago, much has been learned about HIV type 1 and the molecular details of its replication cycle. This insight has been used to develop lentiviral vector systems that have advantages over conventional retroviral vector systems. For safety reasons, the lentiviral vector systems are replication incompetent and the risk of generating a replication competent virus has been minimized. Nevertheless, there may be certain applications for replication competent HIV based vector systems, and we will review our activities in this particular field. This includes the generation of a conditionally replicating HIV 1 variant as a safe live attenuated virus vaccine, the construction of mini HIV variants as cancer selective viruses for virotherapy against leukemia, and the use of a conditionally live anti HIV gene therapy vector. Although safety concerns will undoubtedly remain for the use of replication competent HIV based vector systems, some of the results in cell culture systems are very promising and warrant further testing in appropriate animal models.
Collapse
Affiliation(s)
- Atze T Das
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection & Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | | | | |
Collapse
|
16
|
Jesus da Costa L, Lopes Dos Santos A, Mandic R, Shaw K, Santana de Aguiar R, Tanuri A, Luciw PA, Peterlin BM. Interactions between SIVNef, SIVGagPol and Alix correlate with viral replication and progression to AIDS in rhesus macaques. Virology 2009; 394:47-56. [PMID: 19748111 DOI: 10.1016/j.virol.2009.08.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2009] [Revised: 05/26/2009] [Accepted: 08/12/2009] [Indexed: 11/25/2022]
Abstract
Infection with Simian Immunodeficiency Virus (SIV) leads to high viral loads and progression to Simian AIDS (SAIDS) in rhesus macaques. The viral accessory protein Nef is required for this phenotype in monkeys as well as in HIV-infected humans. Previously, we determined that HIVNef binds HIVGagPol and Alix for optimal viral replication in cells. In this study, we demonstrated that these interactions could correlate with high viral loads leading to SAIDS in the infected host. By infecting rhesus macaques with a mutant SIV(mac239), where sequences in the nef gene that are required for these interactions were mutated, we observed robust viral replication and disease in two out of four monkeys, where they reverted to the wild type genotype and phenotype. These two rhesus macaques also died of SAIDS. Two other monkeys did not progress to disease and continued to harbor mutant nef sequences. We conclude that interactions between Nef, GagPol and Alix contribute to optimal viral replication and progression to disease in the infected host.
Collapse
|
17
|
Laguette N, Benichou S, Basmaciogullari S. Human immunodeficiency virus type 1 Nef incorporation into virions does not increase infectivity. J Virol 2009; 83:1093-104. [PMID: 18987145 PMCID: PMC2612363 DOI: 10.1128/jvi.01633-08] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Accepted: 10/26/2008] [Indexed: 11/20/2022] Open
Abstract
The viral protein Nef contributes to the optimal infectivity of human and simian immunodeficiency viruses. The requirement for Nef during viral biogenesis particles suggests that Nef might play a role in this process. Alternatively, because Nef is incorporated into viruses, it might play a role when progeny virions reach target cells. We challenged these hypotheses by manipulating the amounts of Nef incorporated in viruses while keeping its expression level constant in producer cells. This was achieved by forcing the incorporation of Nef into viral particles by fusing a Vpr sequence to the C-terminal end of Nef. A cleavage site for the viral protease was introduced between Nef and Vpr to allow the release of Nef fragments from the fusion protein during virus maturation. We show that the resulting Nef-CS-Vpr fusion partially retains the ability of Nef to downregulate cell surface CD4 and that high amounts of Nef-CS-Vpr are incorporated into viral particles compared with what is seen for wild-type Nef. The fusion protein is processed during virion maturation and releases Nef fragments similar to those found in viruses produced in the presence of wild-type Nef. Unlike viruses produced in the presence of wild-type Nef, viruses produced in the presence of Nef-CS-Vpr do not have an increase in infectivity and are as poorly infectious as viruses produced in the absence of Nef. These findings demonstrate that the presence of Nef in viral particles is not sufficient to increase human immunodeficiency virus type 1 infectivity and suggest that Nef plays a role during the biogenesis of viral particles.
Collapse
Affiliation(s)
- Nadine Laguette
- Institut Cochin, CNRS UMR8104, Université Paris Descartes, Paris, France
| | | | | |
Collapse
|
18
|
Koff WC, Parks CL, Berkhout B, Ackland J, Noble S, Gust ID. Replicating viral vectors as HIV vaccines Summary Report from IAVI Sponsored Satellite Symposium, International AIDS Society Conference, July 22, 2007. Biologicals 2008; 36:277-86. [PMID: 18555698 DOI: 10.1016/j.biologicals.2008.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Accepted: 04/19/2008] [Indexed: 10/21/2022] Open
Abstract
At the International AIDS Society Conference on Pathogenesis, Treatment and Prevention held in Sydney, Australia, in July 2007, the International AIDS Vaccine Initiative (IAVI) convened a satellite symposium entitled 'Accelerating the Development of Replicating Viral Vectors for AIDS Vaccines.' Its purpose was to highlight the rationale for accelerating the development of replicating viral vectors for use as vaccines against HIV-1, and to bring together vaccine scientists, regulatory officials, and public health specialists from industrialized and developing nations to discuss the major issues facing the development and testing of replicating viral vector-based vaccines.
Collapse
Affiliation(s)
- W C Koff
- International AIDS Vaccine Initiative, New York, NY, USA
| | | | | | | | | | | |
Collapse
|
19
|
Das AT, Klaver B, Centlivre M, Harwig A, Ooms M, Page M, Almond N, Yuan F, Piatak M, Lifson JD, Berkhout B. Optimization of the doxycycline-dependent simian immunodeficiency virus through in vitro evolution. Retrovirology 2008; 5:44. [PMID: 18533993 PMCID: PMC2443169 DOI: 10.1186/1742-4690-5-44] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Accepted: 06/05/2008] [Indexed: 12/04/2022] Open
Abstract
Background Vaccination of macaques with live attenuated simian immunodeficiency virus (SIV) provides significant protection against the wild-type virus. The use of a live attenuated human immunodeficiency virus (HIV) as AIDS vaccine in humans is however considered unsafe because of the risk that the attenuated virus may accumulate genetic changes during persistence and evolve to a pathogenic variant. We earlier presented a conditionally live HIV-1 variant that replicates exclusively in the presence of doxycycline (dox). Replication of this vaccine strain can be limited to the time that is needed to provide full protection through transient dox administration. Since the effectiveness and safety of such a conditionally live virus vaccine should be tested in macaques, we constructed a similar dox-dependent SIV variant. The Tat-TAR transcription control mechanism in this virus was inactivated through mutation and functionally replaced by the dox-inducible Tet-On regulatory system. This SIV-rtTA variant replicated in a dox-dependent manner in T cell lines, but not as efficiently as the parental SIVmac239 strain. Since macaque studies will likely require an efficiently replicating variant, we set out to optimize SIV-rtTA through in vitro viral evolution. Results Upon long-term culturing of SIV-rtTA, additional nucleotide substitutions were observed in TAR that affect the structure of this RNA element but that do not restore Tat binding. We demonstrate that the bulge and loop mutations that we had introduced in the TAR element of SIV-rtTA to inactivate the Tat-TAR mechanism, shifted the equilibrium between two alternative conformations of TAR. The additional TAR mutations observed in the evolved variants partially or completely restored this equilibrium, which suggests that the balance between the two TAR conformations is important for efficient viral replication. Moreover, SIV-rtTA acquired mutations in the U3 promoter region. We demonstrate that these TAR and U3 changes improve viral replication in T-cell lines and macaque peripheral blood mononuclear cells (PBMC) but do not affect dox-control. Conclusion The dox-dependent SIV-rtTA variant was optimized by viral evolution, yielding variants that can be used to test the conditionally live virus vaccine approach and as a tool in SIV biology studies and vaccine research.
Collapse
Affiliation(s)
- Atze T Das
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Broad antiretroviral activity and resistance profile of the novel human immunodeficiency virus integrase inhibitor elvitegravir (JTK-303/GS-9137). J Virol 2007; 82:764-74. [PMID: 17977962 DOI: 10.1128/jvi.01534-07] [Citation(s) in RCA: 279] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Integrase (IN), an essential enzyme of human immunodeficiency virus (HIV), is an attractive antiretroviral drug target. The antiviral activity and resistance profile in vitro of a novel IN inhibitor, elvitegravir (EVG) (also known as JTK-303/GS-9137), currently being developed for the treatment of HIV-1 infection are described. EVG blocked the integration of HIV-1 cDNA through the inhibition of DNA strand transfer. EVG inhibited the replication of HIV-1, including various subtypes and multiple-drug-resistant clinical isolates, and HIV-2 strains with a 50% effective concentration in the subnanomolar to nanomolar range. EVG-resistant variants were selected in two independent inductions, and a total of 8 amino acid substitutions in the catalytic core domain of IN were observed. Among the observed IN mutations, T66I and E92Q substitutions mainly contributed to EVG resistance. These two primary resistance mutations are located in the active site, and other secondary mutations identified are proximal to these primary mutations. The EVG-selected IN mutations, some of which represent novel IN inhibitor resistance mutations, conferred reduced susceptibility to other IN inhibitors, suggesting that a common mechanism is involved in resistance and potential cross-resistance. The replication capacity of EVG-resistant variants was significantly reduced relative to both wild-type virus and other IN inhibitor-resistant variants selected by L-870,810. EVG and L-870,810 both inhibited the replication of murine leukemia virus and simian immunodeficiency virus, suggesting that IN inhibitors bind to a conformationally conserved region of various retroviral IN enzymes and are an ideal drug for a range of retroviral infections.
Collapse
|
21
|
Das AT, Klaver B, Harwig A, Vink M, Ooms M, Centlivre M, Berkhout B. Construction of a doxycycline-dependent simian immunodeficiency virus reveals a nontranscriptional function of tat in viral replication. J Virol 2007; 81:11159-69. [PMID: 17670816 PMCID: PMC2045552 DOI: 10.1128/jvi.01354-07] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the quest for an effective vaccine against human immunodeficiency virus (HIV), live attenuated virus vaccines have proven to be very effective in the experimental model system of simian immunodeficiency virus (SIV) in macaques. However, live attenuated HIV vaccines are considered unsafe for use in humans because the attenuated virus may accumulate genetic changes during persistence and evolve to a pathogenic variant. As an alternative approach, we earlier presented a conditionally live HIV-1 variant that replicates exclusively in the presence of doxycycline (DOX). Replication of this vaccine strain can be limited to the time that is needed to provide full protection through transient DOX administration. Since the effectiveness and safety of such a conditionally live AIDS vaccine should be tested in macaques, we constructed a similar DOX-dependent SIVmac239 variant in which the Tat-TAR (trans-acting responsive) transcription control mechanism was functionally replaced by the DOX-inducible Tet-On regulatory mechanism. Moreover, this virus can be used as a tool in SIV biology studies and vaccine research because both the level and duration of replication can be controlled by DOX administration. Unexpectedly, the new SIV variant required a wild-type Tat protein for replication, although gene expression was fully controlled by the incorporated Tet-On system. This result suggests that Tat has a second function in SIV replication in addition to its role in the activation of transcription.
Collapse
Affiliation(s)
- Atze T Das
- Laboratory of Experimental Virology, Academic Medical Center, Room K3-106, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
22
|
Zhou X, Vink M, Berkhout B, Das AT. Modification of the Tet-On regulatory system prevents the conditional-live HIV-1 variant from losing doxycycline-control. Retrovirology 2006; 3:82. [PMID: 17094796 PMCID: PMC1637113 DOI: 10.1186/1742-4690-3-82] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Accepted: 11/09/2006] [Indexed: 12/03/2022] Open
Abstract
Background We have previously constructed a doxycycline (dox)-dependent HIV-1 variant by incorporating the Tet-On gene regulatory system into the viral genome. Replication of this HIV-rtTA virus is driven by the dox-inducible transactivator protein rtTA, and can be switched on and off at will. We proposed this conditional-live virus as a novel vaccine approach against HIV-1. Upon vaccination, replication of HIV-rtTA can be temporarily activated by transient dox administration and controlled to the extent needed for optimal induction of the immune system. However, subsequent dox-withdrawal may impose a selection for virus variants with reduced dox-dependence. Results We simulated this on/off switching of virus replication in multiple, independent cultures and could indeed select for HIV-rtTA variants that replicated without dox. Nearly all evolved variants had acquired a typical amino acid substitution at position 56 in the rtTA protein. We developed a novel rtTA variant that blocks this undesired evolutionary route and thus prevents HIV-rtTA from losing dox-control. Conclusion The loss of dox-control observed upon evolution of the dox-dependent HIV-1 variant was effectively blocked by modification of the Tet-On regulatory system.
Collapse
Affiliation(s)
- Xue Zhou
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Monique Vink
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Atze T Das
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
23
|
Baliga CS, van Maanen M, Chastain M, Sutton RE. Vaccination of mice with replication-defective human immunodeficiency virus induces cellular and humoral immunity and protects against vaccinia virus-gag challenge. Mol Ther 2006; 14:432-41. [PMID: 16713742 DOI: 10.1016/j.ymthe.2006.02.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2005] [Revised: 02/07/2006] [Accepted: 02/23/2006] [Indexed: 10/24/2022] Open
Abstract
Here we describe as a potential vaccine candidate a replication-defective HIV that encodes multiple viral genes in addition to a cassette that includes both truncated cyclin T1 and an autofluorescent protein. After confirming functionality of the cyclin T1, we immunized mice intramuscularly once or twice with the replication-defective HIV vector pseudotyped with vesicular stomatitis virus (VSV) G protein (RD HIV), a plasmid encoding CMV-driven gag (gag DNA), or adenovirus gag (Ad5-gag). Capsid-specific antibody titers following RD HIV immunization were >10(6)/ml and approximately equivalent to those induced by gag DNA and Ad5-gag. Antibodies against the autofluorescent protein and VSV G were also detected. After RD HIV immunization ELISpot assays demonstrated Gag-specific interferon-gamma (IFN-gamma) SFU equivalent to that of Ad5-gag and fourfold greater than that of gag DNA. HIV polymerase-specific IFN-gamma SFU values were similar, and boosting increased both antibody titers and the IFN-gamma response. Challenge using vaccinia virus (VV)-gag demonstrated significantly lower recoverable VV for RD HIV-immunized mice compared to controls. No significant differences were observed in vaccinated mice challenged with wild-type VV. This study demonstrates the efficacy of RD HIV in conferring HIV-specific immunity and protection in mice and suggests its potential use in humans as either a prophylactic or a therapeutic vaccine.
Collapse
Affiliation(s)
- Christopher S Baliga
- Department of Pediatrics, Section of Allergy and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
24
|
Amara RR, Patel K, Niedziela G, Nigam P, Sharma S, Staprans SI, Montefiori DC, Chenareddi L, Herndon JG, Robinson HL, McClure HM, Novembre FJ. A combination DNA and attenuated simian immunodeficiency virus vaccine strategy provides enhanced protection from simian/human immunodeficiency virus-induced disease. J Virol 2005; 79:15356-67. [PMID: 16306607 PMCID: PMC1315994 DOI: 10.1128/jvi.79.24.15356-15367.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Accepted: 09/15/2005] [Indexed: 11/20/2022] Open
Abstract
Among the most effective vaccine candidates tested in the simian immunodeficiency virus (SIV)/macaque system, live attenuated viruses have been shown to provide the best protection from challenge. To investigate if preimmunization would increase the level of protection afforded by live attenuated SIVmac239Deltanef (Deltanef), macaques were given two priming immunizations of DNA encoding SIV Gag and Pol proteins, with control macaques receiving vector DNA immunizations. In macaques receiving the SIV DNA inoculation, SIV-specific cellular but not humoral responses were readily detectable 2 weeks after the second DNA inoculation. Following boosting with live attenuated virus, control of Deltanef replication was superior in SIV-DNA-primed macaques versus vector-DNA-primed macaques and was correlated with higher levels of CD8+/gamma-interferon-positive and/or interleukin-2-positive cells. Challenge with an intravenous inoculation of simian/human immunodeficiency virus (SHIV) strain SHIV89.6p resulted in infection of all animals. However, macaques receiving SIV DNA as the priming immunizations had statistically lower viral loads than control animals and did not develop signs of disease, whereas three of seven macaques receiving vector DNA showed severe CD4+ T-cell decline, with development of AIDS in one of these animals. No correlation of immune responses to protection from disease could be derived from our analyses. These results demonstrate that addition of a DNA prime to a live attenuated virus provided better protection from disease following challenge than live attenuated virus alone.
Collapse
Affiliation(s)
- Rama Rao Amara
- Divisions of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, 954 N. Gatewood Rd., Atlanta, GA 30329, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Since the discovery of simian immunodeficiency viruses (SIV) causing AIDS-like diseases in Asian macaques, non-human primates (NHP) have played an important role in AIDS vaccine research. A multitude of vaccines and immunization approaches have been evaluated, including live attenuated viruses, DNA vaccines, viral and bacterial vectors, subunit proteins, and combinations thereof. Depending on the particular vaccine and model used, varying degrees of protection have been achieved, including prevention of infection, reduction of viral load, and amelioration of disease. In a few instances, potential safety concerns and vaccine-enhanced pathogenicity have also been noted. In the past decade, sophisticated methodologies have been developed to define the mechanisms of protective immunity. However, a clear road map for HIV vaccine development has yet to emerge. This is in part because of the intrinsic nature of the surrogate model and in part because of the improbability of any single model to fully capture the complex interactions of natural HIV infection in humans. The lack of standardization, the limited models available, and the incomplete understanding of the immunobiology of NHP contribute to the difficulty to extrapolate findings from such models to HIV vaccine development. Until efficacy data become available from studies of parallel vaccine concepts in humans and macaques, the predictive value of any NHP model remains unknown. Towards this end, greater appreciation of the utility and limitations of the NHP model and further developments to better mimic HIV infection in humans will likely help inform future AIDS vaccine efforts.
Collapse
Affiliation(s)
- Shiu-Lok Hu
- Department of Pharmaceutics and Washington National Primate Research Center, University of Washington, Seattle, 98121, USA.
| |
Collapse
|
26
|
Kim EY, Busch M, Abel K, Fritts L, Bustamante P, Stanton J, Lu D, Wu S, Glowczwskie J, Rourke T, Bogdan D, Piatak M, Lifson JD, Desrosiers RC, Wolinsky S, Miller CJ. Retroviral recombination in vivo: viral replication patterns and genetic structure of simian immunodeficiency virus (SIV) populations in rhesus macaques after simultaneous or sequential intravaginal inoculation with SIVmac239Deltavpx/Deltavpr and SIVmac239Deltanef. J Virol 2005; 79:4886-95. [PMID: 15795274 PMCID: PMC1069535 DOI: 10.1128/jvi.79.8.4886-4895.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To characterize the occurrence, frequency, and kinetics of retroviral recombination in vivo, we intravaginally inoculated rhesus macaques, either simultaneously or sequentially, with attenuated simian immunodeficiency virus (SIV) strains having complementary deletions in their accessory genes and various degrees of replication impairment. In monkeys inoculated simultaneously with SIVmac239Deltavpx/Deltavpr and SIVmac239Deltanef, recombinant wild-type (wt) virus and wild-type levels of plasma viral RNA (vRNA) were detected in blood by 2 weeks postinoculation. In monkeys inoculated first with SIVmac239Deltavpx/Deltavpr and then with SIVmac239Deltanef, recombination occurred but was associated with lower plasma vRNA levels than plasma vRNA levels seen for monkeys inoculated intravaginally with wt SIVmac239. In one monkey, recombination occurred 6 weeks after the challenge with SIVmac239Deltanef when plasma SIVmac239Deltavpx/Deltavpr RNA levels were undetectable. In monkeys inoculated first with the more highly replicating strain, SIVmac239Deltanef, and then with SIVmac239Deltavpx/Deltavpr, wild-type recombinant virus was not detected in blood or tissues. Instead, a virus that had repaired the deletion in the nef gene by a compensatory mutation was found in one animal. Overall, recombinant SIV was eventually found in four of six animals intravaginally inoculated with the two SIVmac239 deletion mutants. These findings show that recombination can occur readily in vivo after mucosal SIV exposure and thus contributes to the generation of viral genetic diversity and enhancement of viral fitness.
Collapse
Affiliation(s)
- Eun-Young Kim
- Division of Infectious Diseases, The Feinberg School of Medicine at Northwestern University, Chicago, Illinois, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ho Tsong Fang R, Khatissian E, Monceaux V, Cumont MC, Beq S, Ameisen JC, Aubertin AM, Israël N, Estaquier J, Hurtrel B. Disease progression in macaques with low SIV replication levels: on the relevance of TREC counts. AIDS 2005; 19:663-73. [PMID: 15821392 DOI: 10.1097/01.aids.0000166089.93574.5a] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND An attenuated immunodeficiency virus has been long considered innocuous. Nevertheless, converging data suggest that low levels of viral replication can still provoke AIDS. Pathogenesis of these attenuated infections is not understood. OBJECTIVES To determine the pathogenicity of a long-term attenuated infection and to delineate T-cell dynamics during such an infection. METHODS This is a cross-sectional study of 12 rhesus macaques infected with SIV Delta nef for 8 years. We evaluated apoptosis (annexin V), activation (HLA-DR, Ki67), and newly generated T cells (TCR excision circle: TREC). RESULTS Infection with SIV Delta nef induced pathological CD4 T-cell depletion after 8 years of infection. Virus replication and CD8 T-cell activation positively correlated with the rate of disease progression. The frequency of TREC within CD8+CD45RA+ cells increased in SIV Delta nef-infected animals compared to age-matched non-infected controls. Moreover, in the cohort of infected animals, TREC+CD45RA+CD4+ T-cell counts correlated strongly with non-progression to AIDS. The animal with the lowest rate of disease progression exhibited a 115-fold increase in TREC+CD45RA+CD4+ T-cell counts compared to age-matched non-infected controls. In contrast, the animal showing the fastest rate of progression to AIDS displayed 600-fold lower TREC+CD45RA+CD4+ T-cell counts compared to age-matched non-infected controls. CONCLUSIONS Our results suggest that the thymus plays a major role in the pathogenesis of an attenuated SIV infection and that a sustained thymic output could maintain CD4 T-cell homeostasis in the context of low viral loads.
Collapse
Affiliation(s)
- Raphaël Ho Tsong Fang
- Unité de Physiopathologie des Infections Lentivirales, Institut Pasteur, Paris, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Pistello M, Bonci F, Isola P, Mazzetti P, Merico A, Zaccaro L, Matteucci D, Bendinelli M. Evaluation of feline immunodeficiency virus ORF-A mutants as candidate attenuated vaccine. Virology 2005; 332:676-90. [PMID: 15680433 DOI: 10.1016/j.virol.2004.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2004] [Revised: 11/19/2004] [Accepted: 12/04/2004] [Indexed: 11/17/2022]
Abstract
Feline immunodeficiency virus (FIV) made defective in the accessory gene ORF-A were previously shown to be greatly attenuated in its ability to replicate in lymphocytes but to grow normally or near normally in other cell types. Here, we examined whether FIV thus mutated could protect specific pathogen-free cats against challenge with ex vivo fully virulent homologous virus. No reversion of the vaccinating infections to wild type ORF-A was noted over 22 months of in vivo infection. Following challenge, 6/6 unvaccinated control cats became readily and heavily infected. In contrast, 3/9 vaccinees showed no evidence of the challenge virus over a 15-month observation period. In the other vaccinees, the challenge virus was predominant for various periods of time, but pre-existing viral loads and CD4 lymphocyte counts were either unaffected or altered only marginally and transiently. These findings show that ORF-A-defective FIV should be further examined as a candidate live attenuated vaccine.
Collapse
Affiliation(s)
- M Pistello
- Department of Experimental Pathology, Retrovirus Center and Virology Section, University of Pisa, Via San Zeno, 37, Pisa, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Marozsan AJ, Fraundorf E, Abraha A, Baird H, Moore D, Troyer R, Nankja I, Arts EJ. Relationships between infectious titer, capsid protein levels, and reverse transcriptase activities of diverse human immunodeficiency virus type 1 isolates. J Virol 2004; 78:11130-41. [PMID: 15452233 PMCID: PMC521859 DOI: 10.1128/jvi.78.20.11130-11141.2004] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Most studies on human immunodeficiency virus type 1 (HIV-1) replication kinetics or fitness must rely on a particular assay to initially standardize inocula from virus stocks. The most accurate measure of infectious HIV-1 titers involves a limiting dilution-infection assay and a calculation of the dose required for 50% infectivity of susceptible cells in tissue culture (TCID(50)). Surrogate assays are now commonly used to measure the amount of p24 capsid, the endogenous reverse transcriptase (RT) activity, or the amount of viral genomic RNA in virus particles. However, a direct comparison of these surrogate assays and actual infectious HIV-1 titers from TCID(50) assays has not been performed with even the most conserved laboratory strains, let alone the highly divergent primary HIV-1 isolates of different subtypes. This study indicates that endogenous RT activity, not p24 content or viral RNA load, is the best surrogate measure of infectious HIV-1 titer in both cell-free supernatants and viruses purified on sucrose cushions. Sequence variation between HIV-1 subtypes did not appear to affect the function or activity of the RT enzyme in this endogenous assay but did affect the detection of p24 capsid by both enzyme immunoassays and Western blots. Clear groupings of non-syncytium-inducing (NSI), CCR5-tropic (R5), and SI/CXCR4-tropic (X4) HIV-1 isolates were observed when we compared the slopes derived from correlations of RT activity with infectious titers. Finally, the replication efficiency or fitness of both the NSI/R5 and SI/X4 HIV-1 isolates was not linked to the titers of the virus stocks.
Collapse
Affiliation(s)
- Andre J Marozsan
- Division of Infectious Diseases, BRB 1029, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Costa LJ, Zheng YH, Sabotic J, Mak J, Fackler OT, Peterlin BM. Nef binds p6* in GagPol during replication of human immunodeficiency virus type 1. J Virol 2004; 78:5311-23. [PMID: 15137387 PMCID: PMC400368 DOI: 10.1128/jvi.78.10.5311-5323.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The atypical Nef protein (NefF12) from human immunodeficiency virus type 1 strain F12 (HIV-1(F12)) interferes with virion production and infectivity via a mysterious mechanism. The correlation of these effects with the unusual perinuclear subcellular localization of NefF12 suggested that the wild-type Nef protein could bind to assembly intermediates in late stages of viral replication. To test this hypothesis, Nef from HIV-1(NL4-3) was fused to an endoplasmic reticulum (ER) retention signal (NefKKXX). This mutant NefKKXX protein recapitulated fully the effects of NefF12 on on Gag processing and virion production, either alone or as a CD8 fusion protein. Importantly, the mutant NefKKXX protein also localized to the intermediate compartment, between the ER and the trans-Golgi network. Furthermore, Nef bound the GagPol polyprotein in vitro and in vivo. This binding mapped to the C-terminal flexible loop in Nef and the transframe p6* protein in GagPol. The significance of this interaction was demonstrated by a genetic assay in which the release of a mutant HIV-1 provirus lacking the PTAP motif in the late domain that no longer binds Tsg101 was rescued by a Nef.Tsg101 chimera. Importantly, this rescue as well as incorporation of Nef into HIV-1 virions correlated with the ability of Nef to interact with GagPol. Our data demonstrate that the retention of Nef in the intermediate compartment interferes with viral replication and suggest a new role for Nef in the production of HIV-1.
Collapse
Affiliation(s)
- Luciana J Costa
- Department of Medicine, University of California-San Francisco, UCSF-Mt. Zion Cancer Center, 2340 Sutter Street, San Francisco, CA 94115, USA
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW When simian immunodeficiency virus (SIV) deleted in the nef gene caused no disease in macaques and provided protection against wild-type SIV challenge, hopes were high that the removal of nef would convert a pathogenic immunodeficiency virus into a live attenuated vaccine. We seek to highlight recent studies focused on several major issues regarding live attenuated AIDS viruses as vaccine candidates: (1). safety, (2). efficacy, (3). the correlates of immune protection, and (4) the molecular determinants for lentiviral virulence or attenuation. RECENT FINDINGS Nef-deletion mutants have retained virulence; compared with wild-type SIV, disease progression was slowed but not abrogated. After long-term observation, all adult macaques given SIVmac239delta3 exhibited immune dysfunction; over 50% had T-cell depletion, and 18% developed AIDS. Vaccine efficacy has been disappointing, with limited or no cross-protection and no protection against homologous virus challenge years after initial vaccination. To date, the correlates of protective immunity have defied precise definition; no dominant mechanism has yet emerged. Data from passive serum transfer and CD8+ T-cell depletion studies have raised the possibility that alternate mechanism of protection may be operative. Due to relentless viral replication and continuous selective pressure, initially benign viruses can generate virulent progeny with unpredictable genotypes. SUMMARY Neither safety nor efficacy of the current live attenuated primate immunodeficiency virus vaccines has withstood the test of time. However, such viruses are invaluable tools to address two key questions: (1). what are the correlates of protection, and (2). what are the molecular determinants of viral immunopathogenesis?
Collapse
Affiliation(s)
- James B Whitney
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
32
|
Blancou P, Chenciner N, Ho Tsong Fang R, Monceaux V, Cumont MC, Guétard D, Hurtrel B, Wain-Hobson S. Simian immunodeficiency virus promoter exchange results in a highly attenuated strain that protects against uncloned challenge virus. J Virol 2004; 78:1080-92. [PMID: 14722263 PMCID: PMC321388 DOI: 10.1128/jvi.78.3.1080-1092.2004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Among the many simian immunodeficiency virus (SIV) immunogens, only live attenuated viral vaccines have afforded strong protection to a natural pathogenic isolate. Since the promoter is crucial to the tempo of viral replication in general, it was reasoned that promoter exchange might confer a novel means of attenuating SIV. The core enhancer and promoter sequences of the SIV macaque 239nefstop strain (NF-kappaB/Sp1 region from -114 bp to mRNA start) have been exchanged for those of the human cytomegalovirus immediate-early promoter (CMV-IE; from -525 bp to mRNA start). During culture of the resulting virus, referred to as SIVmegalo, on CEMx174 or rhesus macaque peripheral blood mononuclear cells, deletions arose in distal regions of the CMV-IE sequences that stabilized after 1 or 2 months of culture. However, when the undeleted form of SIVmegalo was inoculated into rhesus macaques, animals showed highly controlled viremia during primary and persistent infection. Compared to parental virus infection in macaques, primary viremia was reduced by >1,000-fold to undetectable levels, with little sign of an increase of cycling cells in lymph nodes, CD4(+) depletion, or altered T-cell activation markers in peripheral blood. Moreover, in contrast to wild-type infection in most infected animals, the nef stop mutation did not revert to the wild-type codon, indicating yet again that replication was dramatically curtailed. Despite such drastic attenuation, antibody titers and enzyme-linked immunospot reactivity to SIV peptides, although slower to appear, were comparable to those seen in a parental virus infection. When animals were challenged intravenously at 4 or 6 months with the uncloned pathogenic SIVmac251 strain, viremia was curtailed by approximately 1,000-fold at peak height without any sign of hyperactivation in CD4(+)- or CD8(+)-T-cell compartment or increase in lymph node cell cycling. To date, there has been a general inverse correlation between attenuation and protection; however, these findings show that promoter exchange constitutes a novel means to highly attenuate SIV while retaining the capacity to protect against challenge virus.
Collapse
Affiliation(s)
- Philippe Blancou
- Unité de Rétrovirologie Moléculaire. Unité de Physiopathologie des Infections Lentivirales, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Das AT, Verhoef K, Berkhout B. A Conditionally Replicating Virus as a Novel Approach Toward an HIV Vaccine. Methods Enzymol 2004; 388:359-79. [PMID: 15289083 DOI: 10.1016/s0076-6879(04)88028-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Atze T Das
- Department of Human Retrovirology, Academic Medical Center, Amsterdam, The Netherlands
| | | | | |
Collapse
|
34
|
Casartelli N, Di Matteo G, Potestà M, Rossi P, Doria M. CD4 and major histocompatibility complex class I downregulation by the human immunodeficiency virus type 1 nef protein in pediatric AIDS progression. J Virol 2003; 77:11536-45. [PMID: 14557639 PMCID: PMC229262 DOI: 10.1128/jvi.77.21.11536-11545.2003] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2003] [Accepted: 07/29/2003] [Indexed: 11/20/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) nef gene is a crucial determinant in AIDS disease progression. Although several in vitro activities have been attributed to the Nef protein, identifying the one critical for in vivo pathogenicity remains elusive. In this study, we examined a large number of nef alleles derived at various time points from 13 perinatally infected children showing different progression rates: six nonprogressors (NPs), three slow progressors (SPs), and four rapid progressors (RPs). The patient-derived nef alleles were analyzed for their steady-state expression of a Nef protein, for their relative ability to downregulate cell surface expression of CD4 and major histocompatibility complex class I (MHC-I) and for their capacity to bind the clathrin adaptor AP-1 complex. We found that NP-derived nef alleles, compared to nef alleles isolated from SPs and RPs, had reduced CD4 and MHC-I downregulation activities. In contrast, SP- and RP-derived nef alleles did not differ and efficiently downregulated both CD4 and MHC-I. AP-1 binding was a conserved function of primary nef alleles not correlated with clinical progression. Defective Nef proteins from NPs, rather than sharing common specific changes in their sequences, accumulated various amino acid substitutions, mainly located outside the conserved domains previously associated with Nef biological properties. Our data indicate that Nef-mediated downregulation of cell surface CD4 and MHC-I significantly contributes to the expression of the pathogenic potential of HIV-1.
Collapse
Affiliation(s)
- Nicoletta Casartelli
- Division of Immunology and Infectious Disease, Children's Hospital Bambino Gesù, Rome, Italy
| | | | | | | | | |
Collapse
|
35
|
Abstract
HIV produces structural, regulatory, and accessory proteins during viral replication in host cells. The accessory proteins include Nef, viral infectivity factor (Vif), viral protein R, and viral protein U or viral protein X. Although these accessory proteins are generally dispensable for viral replication in vitro, they are essential for viral pathogenesis in vivo. Consequently, there has been much interest in understanding how these accessory proteins function because this research may yield new antiviral targets to curb HIV pathogenesis in vivo. Therefore, this review highlights recent advances in understanding the HIV accessory proteins and emphasizes breakthrough insights into the elusive Vif protein and potential new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Jenny L. Anderson
- Department of Microbiology and Immunology, The University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | |
Collapse
|