1
|
Wang J, Qiao H, Wang Z, Zhao W, Chen T, Li B, Zhu L, Chen S, Gu L, Wu Y, Zhang Z, Bi L, Chen P. Rational Design and Acoustic Assembly of Human Cerebral Cortex-Like Microtissues from hiPSC-Derived Neural Progenitors and Neurons. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210631. [PMID: 37170683 DOI: 10.1002/adma.202210631] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/02/2023] [Indexed: 05/13/2023]
Abstract
Development of biologically relevant and clinically relevant human cerebral cortex models is demanded by mechanistic studies of human cerebral cortex-associated neurological diseases and discovery of preclinical neurological drug candidates. Here, rational design of human-sourced brain-like cortical tissue models is demonstrated by reverse engineering and bionic design. To implement this design, the acoustic assembly technique is employed to assemble hiPSC-derived neural progenitors and neurons separately in a label-free and contact-free manner followed by subsequent neural differentiation and culture. The generated microtissues encapsulate the neuronal microanatomy of human cerebral-cortex tissue that contains six-layered neuronal architecture, a 400-µm interlayer distance, synaptic connections between interlayers, and neuroelectrophysiological transmission. Furthermore, these microtissues are infected with herpes simplex virus type I (HSV-1) virus, and the HSV-induced pathogenesis associated with Alzheimer's disease is determined, including neuron loss and the expression of Aβ. Overall, a high-fidelity human-relevant in vitro histotypic model is provided for the cerebral cortex, which will facilitate wide applications in probing the mechanisms of neurodegenerative diseases and screening the candidates for neuroprotective agents.
Collapse
Affiliation(s)
- Jibo Wang
- Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
| | - Haowen Qiao
- Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
| | - Zhenyan Wang
- Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
| | - Wen Zhao
- Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
| | - Tao Chen
- Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
| | - Bin Li
- Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
| | - Lili Zhu
- Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
| | - Sihan Chen
- Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
| | - Longjun Gu
- Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
| | - Ying Wu
- State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei, 430072, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Linlin Bi
- Department of Pathology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
| | - Pu Chen
- Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
2
|
Vezzani G, Pimazzoni S, Ferranti R, Calò S, Monda G, Amendola D, Frigimelica E, Maione D, Cortese M, Merola M. Human immunoglobulins are transported to HCMV viral envelope by viral Fc gamma receptors-dependent and independent mechanisms. Front Microbiol 2023; 13:1106401. [PMID: 36726564 PMCID: PMC9885202 DOI: 10.3389/fmicb.2022.1106401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/20/2022] [Indexed: 01/18/2023] Open
Abstract
Human cytomegaloviruses (HCMVs) employ many different mechanisms to escape and subvert the host immune system, including expression of the viral IgG Fcγ receptors (vFcγRs) RL11 (gp34), RL12 (gp95), RL13 (gpRL13), and UL119 (gp68) gene products. The role of vFcγRs in HCMV pathogenesis has been reported to operate in infected cells by interfering with IgG-mediated effector functions. We found that gp34 and gp68 are envelope proteins that bind and internalize human IgGs on the surface of infected cells. Internalized IgGs are then transported on the envelope of viral particles in a vFcR-dependent mechanism. This mechanism is also responsible for the incorporation on the virions of the anti-gH neutralizing antibody MSL-109. Intriguingly, we show that gp68 is responsible for MSL-109 incorporation, but it is dispensable for other anti-HCMV antibodies that do not need this function to be transported on mature virions. HCMV-infected cells grown in presence of anti-HCMV monoclonal antibodies generate a viral progeny still infective and possible to be neutralized. This is the first example of a virus carrying neutralizing IgGs on its surface and their possible role is discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Mirko Cortese
- GSK, Siena, Italy,Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta, Italy,Mirko Cortese, ✉
| | - Marcello Merola
- GSK, Siena, Italy,Department of Biology, University of Naples Federico II, Naples, Italy,*Correspondence: Marcello Merola, ✉
| |
Collapse
|
3
|
Abstract
Two of the most prevalent human viruses worldwide, herpes simplex virus type 1 and type 2 (HSV-1 and HSV-2, respectively), cause a variety of diseases, including cold sores, genital herpes, herpes stromal keratitis, meningitis and encephalitis. The intrinsic, innate and adaptive immune responses are key to control HSV, and the virus has developed mechanisms to evade them. The immune response can also contribute to pathogenesis, as observed in stromal keratitis and encephalitis. The fact that certain individuals are more prone than others to suffer severe disease upon HSV infection can be partially explained by the existence of genetic polymorphisms in humans. Like all herpesviruses, HSV has two replication cycles: lytic and latent. During lytic replication HSV produces infectious viral particles to infect other cells and organisms, while during latency there is limited gene expression and lack of infectious virus particles. HSV establishes latency in neurons and can cause disease both during primary infection and upon reactivation. The mechanisms leading to latency and reactivation and which are the viral and host factors controlling these processes are not completely understood. Here we review the HSV life cycle, the interaction of HSV with the immune system and three of the best-studied pathologies: Herpes stromal keratitis, herpes simplex encephalitis and genital herpes. We also discuss the potential association between HSV-1 infection and Alzheimer's disease.
Collapse
Affiliation(s)
- Shuyong Zhu
- Institute of Virology, Hannover Medical School, Cluster of Excellence RESIST (Exc 2155), Hannover Medical School, Hannover, Germany
| | - Abel Viejo-Borbolla
- Institute of Virology, Hannover Medical School, Cluster of Excellence RESIST (Exc 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
4
|
DuRaine G, Johnson DC. Anterograde transport of α-herpesviruses in neuronal axons. Virology 2021; 559:65-73. [PMID: 33836340 DOI: 10.1016/j.virol.2021.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/08/2021] [Accepted: 02/19/2021] [Indexed: 02/04/2023]
Abstract
α-herpesviruses have been very successful, principally because they establish lifelong latency in sensory ganglia. An essential piece of the lifecycle of α-herpesviruses involves the capacity to travel from sensory neurons to epithelial tissues following virus reactivation from latency, a process known as anterograde transport. Virus particles formed in neuron cell bodies hitchhike on kinesin motors that run along microtubules, the length of axons. Herpes simplex virus (HSV) and pseudorabies virus (PRV) have been intensely studied to elucidate anterograde axonal transport. Both viruses use similar strategies for anterograde transport, although there are significant differences in the form of virus particles transported in axons, the identity of the kinesins that transport viruses, and how certain viral membrane proteins, gE/gI and US9, participate in this process. This review compares the older models for HSV and PRV anterograde transport with recent results, which are casting a new light on several aspects of this process.
Collapse
Affiliation(s)
- Grayson DuRaine
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - David C Johnson
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
5
|
Dogrammatzis C, Waisner H, Kalamvoki M. "Non-Essential" Proteins of HSV-1 with Essential Roles In Vivo: A Comprehensive Review. Viruses 2020; 13:E17. [PMID: 33374862 PMCID: PMC7824580 DOI: 10.3390/v13010017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022] Open
Abstract
Viruses encode for structural proteins that participate in virion formation and include capsid and envelope proteins. In addition, viruses encode for an array of non-structural accessory proteins important for replication, spread, and immune evasion in the host and are often linked to virus pathogenesis. Most virus accessory proteins are non-essential for growth in cell culture because of the simplicity of the infection barriers or because they have roles only during a state of the infection that does not exist in cell cultures (i.e., tissue-specific functions), or finally because host factors in cell culture can complement their absence. For these reasons, the study of most nonessential viral factors is more complex and requires development of suitable cell culture systems and in vivo models. Approximately half of the proteins encoded by the herpes simplex virus 1 (HSV-1) genome have been classified as non-essential. These proteins have essential roles in vivo in counteracting antiviral responses, facilitating the spread of the virus from the sites of initial infection to the peripheral nervous system, where it establishes lifelong reservoirs, virus pathogenesis, and other regulatory roles during infection. Understanding the functions of the non-essential proteins of herpesviruses is important to understand mechanisms of viral pathogenesis but also to harness properties of these viruses for therapeutic purposes. Here, we have provided a comprehensive summary of the functions of HSV-1 non-essential proteins.
Collapse
Affiliation(s)
| | | | - Maria Kalamvoki
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (C.D.); (H.W.)
| |
Collapse
|
6
|
Naik S, Shreya AB, Raychaudhuri R, Pandey A, Lewis SA, Hazarika M, Bhandary SV, Rao BSS, Mutalik S. Small interfering RNAs (siRNAs) based gene silencing strategies for the treatment of glaucoma: Recent advancements and future perspectives. Life Sci 2020; 264:118712. [PMID: 33159955 DOI: 10.1016/j.lfs.2020.118712] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/28/2020] [Accepted: 10/31/2020] [Indexed: 01/22/2023]
Abstract
RNA-interference-based mechanisms, especially the use of small interfering RNAs (siRNAs), have been under investigation for the treatment of several ailments and have shown promising results for ocular diseases including glaucoma. The eye, being a confined compartment, serves as a good target for the delivery of siRNAs. This review focuses on siRNA-based strategies for gene silencing to treat glaucoma. We have discussed the ocular structures and barriers to gene therapy (tear film, corneal, conjunctival, vitreous, and blood ocular barriers), methods of administration for ocular gene delivery (topical instillation, periocular, intracameral, intravitreal, subretinal, and suprachoroidal routes) and various viral and non-viral vectors in siRNA-based therapy for glaucoma. The components and mechanism of siRNA-based gene silencing have been mentioned briefly followed by the basic strategies and challenges faced during siRNA therapeutics development. We have emphasized different therapeutic targets for glaucoma which have been under research by scientists and the current siRNA-based drugs used in glaucoma treatment. We also mention briefly strategies for siRNA-based treatment after glaucoma surgery.
Collapse
Affiliation(s)
- Santoshi Naik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Ajjappla Basavaraj Shreya
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Ruchira Raychaudhuri
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Shaila A Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Manali Hazarika
- Department of Ophthalmology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Sulatha V Bhandary
- Department of Ophthalmology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Bola Sadashiva Satish Rao
- Director - Research, Directorte of Research, Manipal Academy of Higher Education, Manipal and School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India.
| |
Collapse
|
7
|
Induction of Rod-Shaped Structures by Herpes Simplex Virus Glycoprotein I. J Virol 2020; 94:JVI.00231-20. [PMID: 32581097 DOI: 10.1128/jvi.00231-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/15/2020] [Indexed: 02/05/2023] Open
Abstract
The envelope glycoprotein I (gI) of herpes simplex virus 1 (HSV-1) is a critical mediator of virus-induced cell-to-cell spread and cell-cell fusion. Here, we report a previously unrecognized property of this molecule. In transfected cells, the HSV-1 gI was discovered to induce rod-shaped structures that were uniform in width but variable in length. Moreover, the gI within these structures was conformationally different from the typical form of gI, as a previously used monoclonal antibody mAb3104 and a newly made peptide antibody to the gI extracellular domain (ECD) (amino acids [aa] 110 to 202) both failed to stain the long rod-shaped structures, suggesting the formation of a higher-order form. Consistent with this observation, we found that gI could self-interact and that the rod-shaped structures failed to recognize glycoprotein E, the well-known binding partner of gI. Further analyses by deletion mutagenesis and construction of chimeric mutants between gI and gD revealed that the gI ECD is the critical determinant, whereas the transmembrane domain served merely as an anchor. The critical amino acids were subsequently mapped to proline residues 184 and 188 within a conserved PXXXP motif. Reverse genetics analyses showed that the ability to induce a rod-shaped structure was not required for viral replication and spread in cell culture but rather correlated positively with the capability of the virus to induce cell fusion in the UL24syn background. Together, this work discovered a novel feature of HSV-1 gI that may have important implications in understanding gI function in viral spread and pathogenesis.IMPORTANCE The HSV-1 gI is required for viral cell-to-cell spread within the host, but the molecular mechanisms of how gI exactly works have remained poorly understood. Here, we report a novel property of this molecule, namely, induction of rod-shaped structures, which appeared to represent a higher-order form of gI. We further mapped the critical residues and showed that the ability of gI to induce rod-shaped structures correlated well with the capability of HSV-1 to induce cell fusion in the UL24syn background, suggesting that the two events may have an intrinsic link. Our results shed light on the biological properties of HSV-1 gI and may have important implications in understanding viral pathogenesis.
Collapse
|
8
|
Molecular association of herpes simplex virus type 1 glycoprotein E with membrane protein Us9. Arch Virol 2016; 161:3203-13. [PMID: 27568015 DOI: 10.1007/s00705-016-3028-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 08/22/2016] [Indexed: 01/20/2023]
Abstract
Herpes simplex virus type 1 (HSV-1) glycoprotein E (gE), glycoprotein I (gI), and Us9 promote efficient anterograde axonal transport of virus from the neuron cytoplasm to the axon terminus. HSV-1 and PRV gE and gI form a heterodimer that is required for anterograde transport, but an association that includes Us9 has not been demonstrated. NS-gE380 is an HSV-1 mutant that has five amino acids inserted after gE residue 380, rendering it defective in anterograde axonal transport. We demonstrated that gE, gI and Us9 form a trimolecular complex in Vero cells infected with NS-gE380 virus in which gE binds to both Us9 and gI. We detected the complex using immunoprecipitation with anti-gE or anti-gI monoclonal antibodies in the presence of ionic detergents. Under these conditions, Us9 did not associate with gE in cells infected with wild-type HSV-1; however, using a nonionic detergent, TritonX-100, an association between Us9 and gE was detected in immunoprecipitates of both wild-type and NS-gE380-infected cells. The results suggest that the interaction between Us9 and gE is weak and disrupted by ionic detergents in wild-type infected cells. We postulate that the tight interaction between Us9 and gE leads to the anterograde spread defect in the NS-gE380 virus.
Collapse
|
9
|
Elevation of intraocular pressure in rodents using viral vectors targeting the trabecular meshwork. Exp Eye Res 2015; 141:33-41. [PMID: 26025608 DOI: 10.1016/j.exer.2015.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/20/2015] [Accepted: 04/05/2015] [Indexed: 01/30/2023]
Abstract
Rodents are increasingly being used as glaucoma models to study ocular hypertension, optic neuropathy, and retinopathy. A number of different techniques are used to elevate intraocular pressure in rodent eyes by artificially obstructing the aqueous outflow pathway. Another successful technique to induce ocular hypertension is to transduce the trabecular meshwork of rodent eyes with viral vectors expressing glaucoma associated transgenes to provide more relevant models of glaucomatous damage to the trabecular meshwork. This technique has been used to validate newly discovered glaucoma pathogenesis pathways as well as to develop rodent models of primary open angle glaucoma. Ocular hypertension has successfully been induced by adenovirus 5 mediated delivery of mutant MYOC, bioactivated TGFβ2, SFRP1, DKK1, GREM1, and CD44. Advantages of this approach are: selective tropism for the trabecular meshwork, the ability to use numerous mouse strains, and the relatively rapid onset of IOP elevation. Disadvantages include mild-to-moderate ocular inflammation induced by the Ad5 vector and sometimes transient transgene expression. Current efforts are focused at discovering less immunogenic viral vectors that have tropism for the trabecular meshwork and drive sufficient transgene expression to induce ocular hypertension. This viral vector approach allows rapid proof of concept studies to study glaucomatous damage to the trabecular meshwork without the expensive and time-consuming generation of transgenic mouse lines.
Collapse
|
10
|
Awasthi S, Huang J, Shaw C, Friedman HM. Blocking herpes simplex virus 2 glycoprotein E immune evasion as an approach to enhance efficacy of a trivalent subunit antigen vaccine for genital herpes. J Virol 2014; 88:8421-8432. [PMID: 24829358 PMCID: PMC4135967 DOI: 10.1128/jvi.01130-14] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 05/07/2014] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Herpes simplex virus 2 (HSV-2) subunit antigen vaccines targeting virus entry molecules have failed to prevent genital herpes in human trials. Our approach is to include a virus entry molecule and add antigens that block HSV-2 immune evasion. HSV-2 glycoprotein C (gC2) is an immune evasion molecule that inhibits complement. We previously reported that adding gC2 to gD2 improved vaccine efficacy compared to the efficacy of either antigen alone in mice and guinea pigs. Here we demonstrate that HSV-2 glycoprotein E (gE2) functions as an immune evasion molecule by binding the IgG Fc domain. HSV-2 gE2 is synergistic with gC2 in protecting the virus from antibody and complement neutralization. Antibodies produced by immunization with gE2 blocked gE2-mediated IgG Fc binding and cell-to-cell spread. Mice immunized with gE2 were only partially protected against HSV-2 vaginal challenge in mice; however, when gE2 was added to gC2/gD2 to form a trivalent vaccine, neutralizing antibody titers with and without complement were significantly higher than those produced by gD2 alone. Importantly, the trivalent vaccine protected the dorsal root ganglia (DRG) of 32/33 (97%) mice between days 2 and 7 postchallenge, compared with 27/33 (82%) in the gD2 group. The HSV-2 DNA copy number was significantly lower in mice immunized with the trivalent vaccine than in those immunized with gD2 alone. The extent of DRG protection using the trivalent vaccine was better than what we previously reported for gC2/gD2 immunization. Therefore, gE2 is a candidate antigen for inclusion in a multivalent subunit vaccine that attempts to block HSV-2 immune evasion. IMPORTANCE Herpes simplex virus is the most common cause of genital ulcer disease worldwide. Infection results in emotional distress for infected individuals and their partners, is life threatening for infants exposed to herpes during childbirth, and greatly increases the risk of individuals acquiring and transmitting HIV infection. A vaccine that prevents genital herpes infection will have major public health benefits. Our vaccine approach includes strategies to prevent the virus from evading immune attack. Mice were immunized with a trivalent vaccine containing an antigen that induces antibodies to block virus entry and two antigens that induce antibodies that block immune evasion from antibody and complement. Immunized mice demonstrated no genital disease, and 32/33 (97%) animals had no evidence of infection of dorsal root ganglia, suggesting that the vaccine may prevent the establishment of latency and recurrent infections.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/blood
- Antibodies, Viral/blood
- DNA, Viral/analysis
- DNA, Viral/genetics
- Disease Models, Animal
- Female
- Herpes Genitalis/immunology
- Herpes Genitalis/prevention & control
- Herpesvirus 2, Human/immunology
- Herpesvirus Vaccines/administration & dosage
- Herpesvirus Vaccines/genetics
- Herpesvirus Vaccines/immunology
- Immune Evasion
- Mice
- Mice, Inbred BALB C
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Viral Envelope Proteins/immunology
- Viral Envelope Proteins/metabolism
- Viral Load
Collapse
Affiliation(s)
- Sita Awasthi
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jialing Huang
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Carolyn Shaw
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Harvey M Friedman
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
Awasthi S, Belshe RB, Friedman HM. Better neutralization of herpes simplex virus type 1 (HSV-1) than HSV-2 by antibody from recipients of GlaxoSmithKline HSV-2 glycoprotein D2 subunit vaccine. J Infect Dis 2014; 210:571-5. [PMID: 24652496 DOI: 10.1093/infdis/jiu177] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The Herpevac Trial evaluated a herpes simplex virus type 2 (HSV-2) glycoprotein D (gD2) subunit vaccine to prevent genital herpes. Unexpectedly, the vaccine protected against genital HSV-1 infection but not genital HSV-2 infection. We evaluated sera from 30 women seronegative for HSV-1 and HSV-2 who were immunized with gD2 in the Herpevac Trial. Neutralizing antibody titers to HSV-1 were 3.5-fold higher than those to HSV-2 (P < .001). HSV-2 gC2 and gE2 on the virus blocked neutralization by gD2 antibody, while HSV-1 gC1 and gE1 did not block neutralization by gD2 antibody. The higher neutralizing antibody titers to HSV-1 offer an explanation for the Herpevac results, and shielding neutralizing domains provides a potential mechanism.
Collapse
Affiliation(s)
- Sita Awasthi
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Robert B Belshe
- Division of Infectious Disease, Allergy, and Immunology, Saint Louis University, Missouri
| | - Harvey M Friedman
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| |
Collapse
|
12
|
Elucidation of the block to herpes simplex virus egress in the absence of tegument protein UL16 reveals a novel interaction with VP22. J Virol 2013; 88:110-9. [PMID: 24131716 DOI: 10.1128/jvi.02555-13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
UL16 is a tegument protein of herpes simplex virus (HSV) that is conserved among all members of the Herpesviridae, but its function is poorly understood. Previous studies revealed that UL16 is associated with capsids in the cytoplasm and interacts with the membrane protein UL11, which suggested a "bridging" function during cytoplasmic envelopment, but this conjecture has not been tested. To gain further insight, cells infected with UL16-null mutants were examined by electron microscopy. No defects in the transport of capsids to cytoplasmic membranes were observed, but the wrapping of capsids with membranes was delayed. Moreover, clusters of cytoplasmic capsids were often observed, but only near membranes, where they were wrapped to produce multiple capsids within a single envelope. Normal virion production was restored when UL16 was expressed either by complementing cells or from a novel position in the HSV genome. When the composition of the UL16-null viruses was analyzed, a reduction in the packaging of glycoprotein E (gE) was observed, which was not surprising, since it has been reported that UL16 interacts with this glycoprotein. However, levels of the tegument protein VP22 were also dramatically reduced in virions, even though this gE-binding protein has been shown not to depend on its membrane partner for packaging. Cotransfection experiments revealed that UL16 and VP22 can interact in the absence of other viral proteins. These results extend the UL16 interaction network beyond its previously identified binding partners to include VP22 and provide evidence that UL16 plays an important function at the membrane during virion production.
Collapse
|
13
|
Draper JM, Huang G, Stephenson GS, Bertke AS, Cortez DA, LaVail JH. Delivery of herpes simplex virus to retinal ganglion cell axon is dependent on viral protein Us9. Invest Ophthalmol Vis Sci 2013; 54:962-7. [PMID: 23322573 DOI: 10.1167/iovs.12-11274] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
PURPOSE How herpes simplex virus (HSV) is transported from the infected neuron cell body to the axon terminal is poorly understood. Several viral proteins are candidates for regulating the process, but the evidence is controversial. We compared the results of Us9 deletions in two HSV strains (F and NS) using a novel quantitative assay to test the hypothesis that the viral protein Us9 regulates the delivery of viral DNA to the distal axon of retinal ganglion cells in vivo. We also deleted a nine-amino acid motif in the Us9 protein of F strain (Us9-30) to define the role of this domain in DNA delivery. METHODS The vitreous chambers of murine eyes were infected with equivalent amounts of F or NS strains of HSV. At 3, 4, or 5 days post infection (dpi), both optic tracts (OT) were dissected and viral genome was quantified by qPCR. RESULTS At 3 dpi, the F strain Us9- and Us9-30 mutants delivered less than 10% and 1%, respectively, of the viral DNA delivered after infection with the Us9R (control) strain. By 4 and 5 dpi, delivery of viral DNA had only partially recovered. Deletion of Us9 in NS-infected mice has a less obvious effect on delivery of new viral DNA to the distal OT. By 3 dpi the NS Us9-strain delivered 22% of the DNA that was delivered by the NS wt, and by 4 and 5 dpi the amount of Us9-viral DNA was 96% and 81%, respectively. CONCLUSIONS A highly conserved acidic cluster within the Us9 protein plays a critical role for genome transport to the distal axon. The transport is less dependent on Us9 expression in the NS than in the F strain virus. This assay can be used to compare transport efficiency in other neurotropic viral strains.
Collapse
Affiliation(s)
- Jolene M Draper
- Department of Anatomy, University of California, San Francisco, USA
| | | | | | | | | | | |
Collapse
|
14
|
Krummenacher C, Carfí A, Eisenberg RJ, Cohen GH. Entry of herpesviruses into cells: the enigma variations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 790:178-95. [PMID: 23884592 DOI: 10.1007/978-1-4614-7651-1_10] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The entry of herpesviruses into their target cells is complex at many levels. Virus entry proceeds by a succession of interactions between viral envelope glycoproteins and molecules on the cell membrane. The process is divided into distinct steps: attachment to the cell surface, interaction with a specific entry receptor, internalization of the particle (optional and cell specific), and membrane fusion. Several viral envelope glycoproteins are involved in one or several of these steps. The most conserved entry glycoproteins in the herpesvirus family (gB, gH/gL) are involved in membrane fusion. Around this functional core, herpesviruses have a variety of receptor binding glycoproteins, which interact with cell surface proteins often from different families. This interaction activates and controls the actual fusion machinery. Interactions with cellular receptors and between viral glycoproteins have to be tightly coordinated and regulated to guarantee successful entry. Although additional entry receptors for herpesviruses continue to be identified, the molecular interactions between viral glycoproteins remain mostly enigmatic. This chapter will review our current understanding of the molecular interactions that occur during herpesvirus entry from attachment to fusion. Particular emphasis will be placed on structure-based representation of receptor binding as a trigger of fusion during herpes simplex virus entry.
Collapse
Affiliation(s)
- Claude Krummenacher
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA, USA.
| | | | | | | |
Collapse
|
15
|
Cortese M, Calò S, D'Aurizio R, Lilja A, Pacchiani N, Merola M. Recombinant human cytomegalovirus (HCMV) RL13 binds human immunoglobulin G Fc. PLoS One 2012; 7:e50166. [PMID: 23226246 PMCID: PMC3511460 DOI: 10.1371/journal.pone.0050166] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 10/22/2012] [Indexed: 01/05/2023] Open
Abstract
The human cytomegalovirus (HCMV) protein RL13 has recently been described to be present in all primary isolates but rapidly mutated in culture adapted viruses. Although these data suggest a crucial role for this gene product in HCMV primary infection, no function has so far been assigned to this protein. Working with RL13 expressed in isolation in transfected human epithelial cells, we demonstrated that recombinant RL13 from the clinical HCMV isolates TR and Merlin have selective human immunoglobulin (Ig)-binding properties towards IgG1 and IgG2 subtypes. An additional Fc binding protein, RL12, was also identified as an IgG1 and IgG2 binding protein but not further characterized. The glycoprotein RL13 trafficked to the plasma membrane where it bound and internalized exogenous IgG or its constant fragment (Fcγ). Analysis of RL13 ectodomain mutants suggested that the RL13 Ig-like domain is responsible for the Fc binding activity. Ligand-dependent internalization relied on a YxxL endocytic motif located in the C-terminal tail of RL13. Additionally, we showed that the tyrosine residue could be replaced by phenylalanine but not by alanine, indicating that the internalization signal was independent from phosphorylation events. In sum, RL13 binds human IgG and may contribute to HCMV immune evasion in the infected host, but this function does not readily explain the instability of the RL13 gene during viral propagation in cultured cells.
Collapse
Affiliation(s)
| | | | | | - Anders Lilja
- Novartis Vaccines and Diagnostics, Cambridge, Massachusetts, United States of America
| | | | - Marcello Merola
- Novartis Vaccines and Diagnostics, Siena, Italy
- Department of Structural and Functional Biology, University of Naples “Federico II”, Naples, Italy
- * E-mail:
| |
Collapse
|
16
|
Function of glycoprotein E of herpes simplex virus requires coordinated assembly of three tegument proteins on its cytoplasmic tail. Proc Natl Acad Sci U S A 2012; 109:19798-803. [PMID: 23150560 DOI: 10.1073/pnas.1212900109] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Glycoprotein E (gE) of HSV plays a key role in cell-to-cell spread and virus-induced cell fusion. Here, we report that this function of gE requires the cooperation of tegument proteins UL11, UL16, and UL21. We found that the four proteins come together with very high efficiency to form a complex in transfected cells and in a manner that is regulated and coordinated. In particular, the inefficient interaction of UL16 with each membrane protein (UL11 and gE) observed in pairwise transfections became efficient when other binding partners were present. The significance of these interactions was revealed in studies of viral mutants, which showed that each of these tegument proteins is critical for processing, transport, and biological activity of gE. These findings provide insights into the mechanisms of how gE executes its function and also have implications in understanding HSV assembly and budding.
Collapse
|
17
|
Herpes simplex virus membrane proteins gE/gI and US9 act cooperatively to promote transport of capsids and glycoproteins from neuron cell bodies into initial axon segments. J Virol 2012; 87:403-14. [PMID: 23077321 DOI: 10.1128/jvi.02465-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Herpes simplex virus (HSV) and other alphaherpesviruses must move from sites of latency in ganglia to peripheral epithelial cells. How HSV navigates in neuronal axons is not well understood. Two HSV membrane proteins, gE/gI and US9, are key to understanding the processes by which viral glycoproteins, unenveloped capsids, and enveloped virions are transported toward axon tips. Whether gE/gI and US9 function to promote the loading of viral proteins onto microtubule motors in neuron cell bodies or to tether viral proteins onto microtubule motors within axons is not clear. One impediment to understanding how HSV gE/gI and US9 function in axonal transport relates to observations that gE(-), gI(-), or US9(-) mutants are not absolutely blocked in axonal transport. Mutants are significantly reduced in numbers of capsids and glycoproteins in distal axons, but there are less extensive effects in proximal axons. We constructed HSV recombinants lacking both gE and US9 that transported no detectable capsids and glycoproteins to distal axons and failed to spread from axon tips to adjacent cells. Live-cell imaging of a gE(-)/US9(-) double mutant that expressed fluorescent capsids and gB demonstrated >90% diminished capsids and gB in medial axons and no evidence for decreased rates of transport, stalling, or increased retrograde transport. Instead, capsids, gB, and enveloped virions failed to enter proximal axons. We concluded that gE/gI and US9 function in neuron cell bodies, in a cooperative fashion, to promote the loading of HSV capsids and vesicles containing glycoproteins and enveloped virions onto microtubule motors or their transport into proximal axons.
Collapse
|
18
|
Bearer EL. HSV, axonal transport and Alzheimer's disease: in vitro and in vivo evidence for causal relationships. Future Virol 2012; 7:885-899. [PMID: 23335944 DOI: 10.2217/fvl.12.81] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
HSV, a neurotropic virus, travels within neuronal processes by fast axonal transport. During neuronal infection HSV travels retrograde from the sensory nerve terminus to the neuronal cell body, where it replicates or enters latency. During replication HSV travels anterograde from the cell body to the nerve terminus. Postmortem studies find a high frequency of HSV DNA in the trigeminal ganglia as well as the brain. Studies correlating HSV with Alzheimer's disease (AD) have been controversial. Here we review clinical evidence supporting such a link. Furthermore, the author describes experimental data showing physical interactions between nascent HSV particles and host transport machinery implicated in AD. The author concludes that the complexity of this relationship has been insufficiently explored, although the relative ease and nontoxicity of a potential anti-HSV treatment for AD demands further study.
Collapse
Affiliation(s)
- Elaine L Bearer
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 81131, USA
| |
Collapse
|
19
|
Replication of herpes simplex virus: egress of progeny virus at specialized cell membrane sites. J Virol 2012; 86:7084-97. [PMID: 22532674 DOI: 10.1128/jvi.00463-12] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In the final stages of the herpes simplex virus 1 (HSV-1) life cycle, a viral nucleocapsid buds into a vesicle of trans-Golgi network (TGN)/endosome origin, acquiring an envelope and an outer vesicular membrane. The virus-containing vesicle then traffics to the plasma membrane where it fuses, exposing a mature virion. Although the process of directed egress has been studied in polarized epithelial cell lines, less work has been done in nonpolarized cell types. In this report, we describe a study of HSV-1 egress as it occurs in nonpolarized cells. The examination of infected Vero cells by electron, confocal, and total internal reflection fluorescence (TIRF) microscopy revealed that HSV-1 was released at specific pocket-like areas of the plasma membrane that were found along the substrate-adherent surface and cell-cell-adherent contacts. Both the membrane composition and cytoskeletal structure of egress sites were found to be modified by infection. The plasma membrane at virion release sites was heavily enriched in viral glycoproteins. Small glycoprotein patches formed early in infection, and virus became associated with these areas as they expanded. Glycoprotein-rich areas formed independently from virion trafficking as confirmed by the use of a UL25 mutant with a defect in capsid nuclear egress. The depolymerization of the cytoskeleton indicated that microtubules were important for the trafficking of virions and glycoproteins to release sites. In addition, the actin cytoskeleton was found to be necessary for maintaining the integrity of egress sites. When actin was depolymerized, the glycoprotein concentrations dispersed across the membrane, as did the surface-associated virus. Lastly, viral glycoprotein E appeared to function in a different manner in nonpolarized cells compared to previous studies of egress in polarized epithelial cells; the total amount of virus released at egress sites was slightly increased in infected Vero cells when gE was absent. However, gE was important for egress site formation, as Vero cells infected with gE deletion mutants formed glycoprotein patches that were significantly reduced in size. The results of this study are interpreted to indicate that the egress of HSV-1 in Vero cells is directed to virally induced, specialized egress sites that form along specific areas of the cell membrane.
Collapse
|
20
|
Kobayashi M, Kim JY, Camarena V, Roehm PC, Chao MV, Wilson AC, Mohr I. A primary neuron culture system for the study of herpes simplex virus latency and reactivation. J Vis Exp 2012:3823. [PMID: 22491318 DOI: 10.3791/3823] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Herpes simplex virus type-1 (HSV-1) establishes a life-long latent infection in peripheral neurons. This latent reservoir is the source of recurrent reactivation events that ensure transmission and contribute to clinical disease. Current antivirals do not impact the latent reservoir and there are no vaccines. While the molecular details of lytic replication are well-characterized, mechanisms controlling latency in neurons remain elusive. Our present understanding of latency is derived from in vivo studies using small animal models, which have been indispensable for defining viral gene requirements and the role of immune responses. However, it is impossible to distinguish specific effects on the virus-neuron relationship from more general consequences of infection mediated by immune or non-neuronal support cells in live animals. In addition, animal experimentation is costly, time-consuming, and limited in terms of available options for manipulating host processes. To overcome these limitations, a neuron-only system is desperately needed that reproduces the in vivo characteristics of latency and reactivation but offers the benefits of tissue culture in terms of homogeneity and accessibility. Here we present an in vitro model utilizing cultured primary sympathetic neurons from rat superior cervical ganglia (SCG) (Figure 1) to study HSV-1 latency and reactivation that fits most if not all of the desired criteria. After eliminating non-neuronal cells, near-homogeneous TrkA(+) neuron cultures are infected with HSV-1 in the presence of acyclovir (ACV) to suppress lytic replication. Following ACV removal, non-productive HSV-1 infections that faithfully exhibit accepted hallmarks of latency are efficiently established. Notably, lytic mRNAs, proteins, and infectious virus become undetectable, even in the absence of selection, but latency-associated transcript (LAT) expression persists in neuronal nuclei. Viral genomes are maintained at an average copy number of 25 per neuron and can be induced to productively replicate by interfering with PI3-Kinase / Akt signaling or the simple withdrawal of nerve growth factor(1). A recombinant HSV-1 encoding EGFP fused to the viral lytic protein Us11 provides a functional, real-time marker for replication resulting from reactivation that is readily quantified. In addition to chemical treatments, genetic methodologies such as RNA-interference or gene delivery via lentiviral vectors can be successfully applied to the system permitting mechanistic studies that are very difficult, if not impossible, in animals. In summary, the SCG-based HSV-1 latency / reactivation system provides a powerful, necessary tool to unravel the molecular mechanisms controlling HSV1 latency and reactivation in neurons, a long standing puzzle in virology whose solution may offer fresh insights into developing new therapies that target the latent herpesvirus reservoir.
Collapse
Affiliation(s)
- Mariko Kobayashi
- Department of Microbiology, New York University School of Medicine, NY, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Cheng SB, Ferland P, Webster P, Bearer EL. Herpes simplex virus dances with amyloid precursor protein while exiting the cell. PLoS One 2011; 6:e17966. [PMID: 21483850 PMCID: PMC3069030 DOI: 10.1371/journal.pone.0017966] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Accepted: 02/19/2011] [Indexed: 11/18/2022] Open
Abstract
Herpes simplex type 1 (HSV1) replicates in epithelial cells and secondarily enters local sensory neuronal processes, traveling retrograde to the neuronal nucleus to enter latency. Upon reawakening newly synthesized viral particles travel anterograde back to the epithelial cells of the lip, causing the recurrent cold sore. HSV1 co-purifies with amyloid precursor protein (APP), a cellular transmembrane glycoprotein and receptor for anterograde transport machinery that when proteolyzed produces A-beta, the major component of senile plaques. Here we focus on transport inside epithelial cells of newly synthesized virus during its transit to the cell surface. We hypothesize that HSV1 recruits cellular APP during transport. We explore this with quantitative immuno-fluorescence, immuno-gold electron-microscopy and live cell confocal imaging. After synchronous infection most nascent VP26-GFP-labeled viral particles in the cytoplasm co-localize with APP (72.8+/−6.7%) and travel together with APP inside living cells (81.1+/−28.9%). This interaction has functional consequences: HSV1 infection decreases the average velocity of APP particles (from 1.1+/−0.2 to 0.3+/−0.1 µm/s) and results in APP mal-distribution in infected cells, while interplay with APP-particles increases the frequency (from 10% to 81% motile) and velocity (from 0.3+/−0.1 to 0.4+/−0.1 µm/s) of VP26-GFP transport. In cells infected with HSV1 lacking the viral Fc receptor, gE, an envelope glycoprotein also involved in viral axonal transport, APP-capsid interactions are preserved while the distribution and dynamics of dual-label particles differ from wild-type by both immuno-fluorescence and live imaging. Knock-down of APP with siRNA eliminates APP staining, confirming specificity. Our results indicate that most intracellular HSV1 particles undergo frequent dynamic interplay with APP in a manner that facilitates viral transport and interferes with normal APP transport and distribution. Such dynamic interactions between APP and HSV1 suggest a mechanistic basis for the observed clinical relationship between HSV1 seropositivity and risk of Alzheimer's disease.
Collapse
Affiliation(s)
- Shi-Bin Cheng
- Department of Pathology and Laboratory Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Paulette Ferland
- Department of Pathology and Laboratory Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Paul Webster
- House Ear Institute, Los Angeles, California, United States of America
| | - Elaine L. Bearer
- Department of Pathology and Laboratory Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
- Departments of Pathology and of Neurosurgery, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
22
|
Mutagenesis of varicella-zoster virus glycoprotein I (gI) identifies a cysteine residue critical for gE/gI heterodimer formation, gI structure, and virulence in skin cells. J Virol 2011; 85:4095-110. [PMID: 21345964 DOI: 10.1128/jvi.02596-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Varicella-zoster virus (VZV) is the alphaherpesvirus that causes chicken pox (varicella) and shingles (zoster). The two VZV glycoproteins gE and gI form a heterodimer that mediates efficient cell-to-cell spread. Deletion of gI yields a small-plaque-phenotype virus, ΔgI virus, which is avirulent in human skin using the xenograft model of VZV pathogenesis. In the present study, 10 mutant viruses were generated to determine which residues were required for the typical function of gI. Three phosphorylation sites in the cytoplasmic domain of gI were not required for VZV virulence in vivo. Two deletion mutants mapped a gE binding region in gI to residues 105 to 125. A glycosylation site, N116, in this region did not affect virulence. Substitution of four cysteine residues highly conserved in the Alphaherpesvirinae established that C95 is required for gE/gI heterodimer formation. The C95A and Δ105-125 (with residues 105 to 125 deleted) viruses had small-plaque phenotypes with reduced replication kinetics in vitro similar to those of the ΔgI virus. The Δ105-125 virus was avirulent for human skin in vivo. In contrast, the C95A mutant replicated in vivo but with significantly reduced kinetics compared to those of the wild-type virus. In addition to abolished gE/gI heterodimer formation, gI from the C95A or the Δ105-125 mutant was not recognized by monoclonal antibodies that detect the canonical conformation of gI, demonstrating structural disruption of gI in these viruses. This alteration prevented gI incorporation into virus particles. Thus, residues C95 and 105 to 125 are critical for gI structure required for gE/gI heterodimer formation, virion incorporation, and ultimately, effective viral spread in human skin.
Collapse
|
23
|
The herpes simplex virus 1 IgG fc receptor blocks antibody-mediated complement activation and antibody-dependent cellular cytotoxicity in vivo. J Virol 2011; 85:3239-49. [PMID: 21228231 DOI: 10.1128/jvi.02509-10] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Herpes simplex virus 1 (HSV-1) glycoprotein E (gE) mediates cell-to-cell spread and functions as an IgG Fc receptor (FcγR) that blocks the Fc domain of antibody targeting the virus or infected cell. Efforts to assess the functions of the HSV-1 FcγR in vivo have been hampered by difficulties in preparing an FcγR-negative strain that is relatively intact for spread. Here we report the FcγR and spread phenotypes of NS-gE264, which is a mutant strain that has four amino acids inserted after gE residue 264. The virus is defective in IgG Fc binding yet causes zosteriform disease in the mouse flank model that is only minimally reduced compared with wild-type and the rescue strains. The presence of zosteriform disease suggests that NS-gE264 spread functions are well maintained. The HSV-1 FcγR binds the Fc domain of human, but not murine IgG; therefore, to assess FcγR functions in vivo, mice were passively immunized with human IgG antibody to HSV. When antibody was inoculated intraperitoneally 20 h prior to infection or shortly after virus reached the dorsal root ganglia, disease severity was significantly reduced in mice infected with NS-gE264, but not in mice infected with wild-type or rescue virus. Studies of C3 knockout mice and natural killer cell-depleted mice demonstrated that the HSV-1 FcγR blocked both IgG Fc-mediated complement activation and antibody-dependent cellular cytotoxicity. Therefore, the HSV-1 FcγR promotes immune evasion from IgG Fc-mediated activities and likely contributes to virulence at times when antibody is present, such as during recurrent infections.
Collapse
|
24
|
A bovine herpesvirus type 1 mutant virus with truncated glycoprotein E cytoplasmic tail has defective anterograde neuronal transport in rabbit dorsal root ganglia primary neuronal cultures in a microfluidic chamber system. J Neurovirol 2010; 16:457-65. [PMID: 21080783 DOI: 10.1007/bf03210851] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bovine herpesvirus type 1 (BHV-1) is an important component of the bovine respiratory disease complex (BRDC) in cattle. Following primary intranasal and ocular infection of cattle, BHV-1 establishes lifelong latent infection in trigeminal ganglia (TG). Upon reactivation from latency, the virus is transported from neuronal cell bodies in the TG to projected nerve endings in nose and cornea of latently infected cattle where the virus shedding occurs. This property of BHV-1 plays a significant role in the pathogenesis of BRDC and maintenance of BHV-1 in the cattle population. Recently, we have reported that a glycoprotein E (gE) cytoplasmic tail-truncated BHV-1 (BHV-1 gEAm453) did not reactivate from latency and was not shed in the nasal and ocular secretions of calves and rabbits. Here we describe the methods to establish rabbit primary dorsal root ganglia (DRG) neuron cultures in a microfluidic chamber system and to characterize in vitro anterograde and retrograde axonal transport properties of BHV-1 gE-deleted and BHV-1 cytoplasmic tail-truncated gEAm453 mutant viruses relative to BHV-1 gEAm453-rescued/wild-type viruses. The results clearly demonstrated that whereas the BHV-1 gE-deleted, BHV-1 gEAm453, and BHV-1 gEAm453-rescued/wild-type viruses were transported equally efficiently in the retrograde direction, only the BHV-1 gEAm453-rescued/wild-type virus was transported anterogradely. Therefore, we have concluded that sequences within the BHV-1 gE cytoplasmic tail are essential for anterograde axonal transport and that primary rabbit DRG neuronal cultures in the microfluidic chambers are suitable for BHV-1 neuronal transport studies.
Collapse
|
25
|
Huang J, Lazear HM, Friedman HM. Completely assembled virus particles detected by transmission electron microscopy in proximal and mid-axons of neurons infected with herpes simplex virus type 1, herpes simplex virus type 2 and pseudorabies virus. Virology 2010; 409:12-6. [PMID: 21036381 DOI: 10.1016/j.virol.2010.10.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 09/27/2010] [Accepted: 10/06/2010] [Indexed: 12/23/2022]
Abstract
The morphology of alphaherpesviruses during anterograde axonal transport from the neuron cell body towards the axon terminus is controversial. Reports suggest that transport of herpes simplex virus type 1 (HSV-1) nucleocapsids and envelope proteins occurs in separate compartments and that complete virions form at varicosities or axon termini (subassembly transport model), while transport of a related alphaherpesvirus, pseudorabies virus (PRV) occurs as enveloped capsids in vesicles (assembled transport model). Transmission electron microscopy of proximal and mid-axons of primary superior cervical ganglion (SCG) neurons was used to compare anterograde axonal transport of HSV-1, HSV-2 and PRV. SCG cell bodies were infected with HSV-1 NS and 17, HSV-2 2.12 and PRV Becker. Fully assembled virus particles were detected intracellularly within vesicles in proximal and mid-axons adjacent to microtubules after infection with each virus, indicating that assembled virions are transported anterograde within axons for all three alphaherpesviruses.
Collapse
Affiliation(s)
- Jialing Huang
- Department of Medicine, Division of Infectious Diseases, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6073, USA.
| | | | | |
Collapse
|
26
|
Varicella-zoster virus glycoprotein E is a critical determinant of virulence in the SCID mouse-human model of neuropathogenesis. J Virol 2010; 85:98-111. [PMID: 20962081 DOI: 10.1128/jvi.01902-10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Varicella-zoster virus (VZV) is a neurotropic alphaherpesvirus. VZV infection of human dorsal root ganglion (DRG) xenografts in immunodeficient mice models the infection of sensory ganglia. We examined DRG infection with recombinant VZV (recombinant Oka [rOka]) and the following gE mutants: gEΔ27-90, gEΔCys, gE-AYRV, and gE-SSTT. gEΔ27-90, which lacks the gE domain that interacts with a putative receptor insulin-degrading enzyme (IDE), replicated as extensively as rOka, producing infectious virions and significant cytopathic effects within 14 days of inoculation. Since neural cells express IDE, the gE/IDE interaction was dispensable for VZV neurotropism. In contrast, gEΔCys, which lacks gE/gI heterodimer formation, was significantly impaired at early times postinfection; viral genome copy numbers increased slowly, and infectious virus production was not detected until day 28. Delayed replication was associated with impaired cell-cell spread in ganglia, similar to the phenotype of a gI deletion mutant (rOkaΔgI). However, at later time points, infection of satellite cells and other supportive nonneuronal cells resulted in extensive DRG tissue damage and cell loss such that cytopathic changes observed at day 70 were more severe than those for rOka-infected DRG. The replication of gE-AYRV, which is impaired for trans-Golgi network (TGN) localization, and the replication of gE-SSTT, which contains mutations in an acidic cluster, were equivalent to that of rOka, causing significant cytopathic effects and infectious virus production by day 14; genome copy numbers were equivalent to those of rOka. These experiments suggest that the gE interaction with cellular IDE, gE targeting to TGN sites of virion envelopment, and phosphorylation at SSTT are dispensable for VZV DRG infection, whereas the gE/gI interaction is critical for VZV neurovirulence.
Collapse
|
27
|
Wang F, Zumbrun EE, Huang J, Si H, Makaroun L, Friedman HM. Herpes simplex virus type 2 glycoprotein E is required for efficient virus spread from epithelial cells to neurons and for targeting viral proteins from the neuron cell body into axons. Virology 2010; 405:269-79. [PMID: 20598729 DOI: 10.1016/j.virol.2010.06.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2009] [Revised: 05/16/2010] [Accepted: 06/02/2010] [Indexed: 12/17/2022]
Abstract
The HSV-2 lifecycle involves virus spread in a circuit from the inoculation site to dorsal root ganglia and return. We evaluated the role of gE-2 in the virus lifecycle by deleting amino acids 124-495 (gE2-del virus). In the mouse retina infection model, gE2-del virus does not spread to nuclei in the brain, indicating a defect in anterograde (pre-synaptic to post-synaptic neurons) and retrograde (post-synaptic to pre-synaptic neurons) spread. Infection of neuronal cells in vitro demonstrates that gE-2 is required for targeting viral proteins from neuron cell bodies into axons, and for efficient virus spread from epithelial cells to axons. The mouse flank model confirms that gE2-del virus is defective in spread from epithelial cells to neurons. Therefore, we defined two steps in the virus lifecycle that involve gE-2, including efficient spread from epithelial cells to axons and targeting viral components from neuron cell bodies into axons.
Collapse
Affiliation(s)
- Fushan Wang
- Division of Infectious Diseases, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6073, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Brum MCS, Coats C, Sangena RB, Doster A, Jones C, Chowdhury SI. Bovine herpesvirus type 1 (BoHV-1) anterograde neuronal transport from trigeminal ganglia to nose and eye requires glycoprotein E. J Neurovirol 2009; 15:196-201. [PMID: 19115127 DOI: 10.1080/13550280802549605] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The requirement of bovine herpesvirus type 1 (BoHV-1) envelope protein gE (Us8 homolog) for establishment of latency and reactivation in trigeminal ganglia (TG) was examined. Although BHV-1 gE-rescued and gE-deleted viruses were isolated from nasal or ocular swabs during primary infection, only the gE-rescued virus was isolated following dexamethasone-induced reactivation. Furthermore, gC protein expression, which requires viral DNA replication for its expression, was detected in TG of calves infected with either virus following reactivation. These studies suggest that gE is required for anterograde transport of BoHV-1 from neuronal cell bodies in the TG to their nerve processes.
Collapse
Affiliation(s)
- Mario C S Brum
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | | | | | | | | | | |
Collapse
|
29
|
Anterograde spread of herpes simplex virus type 1 requires glycoprotein E and glycoprotein I but not Us9. J Virol 2009; 83:8315-26. [PMID: 19570876 DOI: 10.1128/jvi.00633-09] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anterograde neuronal spread (i.e., spread from the neuron cell body toward the axon terminus) is a critical component of the alphaherpesvirus life cycle. Three viral proteins, gE, gI, and Us9, have been implicated in alphaherpesvirus anterograde spread in several animal models and neuron culture systems. We sought to better define the roles of gE, gI, and Us9 in herpes simplex virus type 1 (HSV-1) anterograde spread using a compartmentalized primary neuron culture system. We found that no anterograde spread occurred in the absence of gE or gI, indicating that these proteins are essential for HSV-1 anterograde spread. However, we did detect anterograde spread in the absence of Us9 using two independent Us9-deleted viruses. We confirmed the Us9 finding in different murine models of neuronal spread. We examined viral transport into the optic nerve and spread to the brain after retinal infection; the production of zosteriform disease after flank inoculation; and viral spread to the spinal cord after flank inoculation. In all models, anterograde spread occurred in the absence of Us9, although in some cases at reduced levels. This finding contrasts with gE- and gI-deleted viruses, which displayed no anterograde spread in any animal model. Thus, gE and gI are essential for HSV-1 anterograde spread, while Us9 is dispensable.
Collapse
|
30
|
Virion-incorporated glycoprotein B mediates transneuronal spread of pseudorabies virus. J Virol 2009; 83:7796-804. [PMID: 19494011 DOI: 10.1128/jvi.00745-09] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Transneuronal spread of pseudorabies virus (PRV) is a multistep process that requires several virally encoded proteins. Previous studies have shown that PRV glycoprotein B (gB), a component of the viral fusion machinery, is required for the transmission of infection to postsynaptic, second-order neurons. We sought to identify the gB-mediated step in viral transmission. We determined that gB is not required for the sorting of virions into axons of infected neurons, anterograde transport, or the release of virions from the axon. trans or cis expression of gB on the cell surface was not sufficient for transneuronal spread of the virus; instead, efficient incorporation of gB into virions was required. Additionally, neuron-to-cell spread of PRV most likely does not proceed through syncytial connections. We conclude that, upon gB-independent release of virions at the site of neuron-cell contacts, the virion-incorporated gB/gH/gL fusion complex mediates entry into the axonally contacted cell by fusion of the closely apposed membranes.
Collapse
|
31
|
Comparison of the pseudorabies virus Us9 protein with homologs from other veterinary and human alphaherpesviruses. J Virol 2009; 83:6978-86. [PMID: 19420087 DOI: 10.1128/jvi.00598-09] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Pseudorabies virus (PRV) Us9 is a small, tail-anchored (TA) membrane protein that is essential for axonal sorting of viral structural proteins and is highly conserved among other members of the alphaherpesvirus subfamily. We cloned the Us9 homologs from two human pathogens, varicella-zoster virus (VZV) and herpes simplex virus type 1 (HSV-1), as well as two veterinary pathogens, equine herpesvirus type 1 (EHV-1) and bovine herpesvirus type 1 (BHV-1), and fused them to enhanced green fluorescent protein to examine their subcellular localization and membrane topology. Akin to PRV Us9, all of the Us9 homologs localized to the trans-Golgi network and had a type II membrane topology (typical of TA proteins). Furthermore, we examined whether any of the Us9 homologs could compensate for the loss of PRV Us9 in anterograde, neuron-to-cell spread of infection in a compartmented chamber system. EHV-1 and BHV-1 Us9 were able to fully compensate for the loss of PRV Us9, whereas VZV and HSV-1 Us9 proteins were unable to functionally replace PRV Us9 when they were expressed in a PRV background.
Collapse
|
32
|
Lee JI, Sollars PJ, Baver SB, Pickard GE, Leelawong M, Smith GA. A herpesvirus encoded deubiquitinase is a novel neuroinvasive determinant. PLoS Pathog 2009; 5:e1000387. [PMID: 19381253 PMCID: PMC2663050 DOI: 10.1371/journal.ppat.1000387] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Accepted: 03/19/2009] [Indexed: 01/08/2023] Open
Abstract
The neuroinvasive property of several alpha-herpesviruses underlies an uncommon infectious process that includes the establishment of life-long latent infections in sensory neurons of the peripheral nervous system. Several herpesvirus proteins are required for replication and dissemination within the nervous system, indicating that exploiting the nervous system as a niche for productive infection requires a specialized set of functions encoded by the virus. Whether initial entry into the nervous system from peripheral tissues also requires specialized viral functions is not known. Here we show that a conserved deubiquitinase domain embedded within a pseudorabies virus structural protein, pUL36, is essential for initial neural invasion, but is subsequently dispensable for transmission within and between neurons of the mammalian nervous system. These findings indicate that the deubiquitinase contributes to neurovirulence by participating in a previously unrecognized initial step in neuroinvasion. Subsets of herpesviruses, such as herpes simplex virus and pseudorabies virus, are neuroinvasive pathogens. Upon infection, these viruses efficiently target peripheral nervous system tissue and establish a life-long infection for which there is no cure. Very few pathogens are known that invade the nervous system proficiently, and the mechanism by which herpesviruses achieve neuroinvasion is largely unknown. In this study, we demonstrate that a viral protease plays a critical and specific role allowing the virus to cross the threshold of the nervous system, but is dispensable for subsequent replication and encephalitic spread within the brain.
Collapse
Affiliation(s)
- Joy I. Lee
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Patricia J. Sollars
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Scott B. Baver
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Gary E. Pickard
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Mindy Leelawong
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Gregory A. Smith
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
33
|
Herpes simplex virus type 1 infection increases the carbohydrate binding activity and the secretion of cellular galectin-3. Arch Virol 2009; 154:609-18. [DOI: 10.1007/s00705-009-0351-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 02/27/2009] [Indexed: 01/08/2023]
|
34
|
Herpes simplex virus type 1 glycoprotein E mediates retrograde spread from epithelial cells to neurites. J Virol 2009; 83:4791-9. [PMID: 19279108 DOI: 10.1128/jvi.02341-08] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In animal models of infection, glycoprotein E (gE) is required for efficient herpes simplex virus type 1 (HSV-1) spread from the inoculation site to the cell bodies of innervating neurons (retrograde direction). Retrograde spread in vivo is a multistep process, in that HSV-1 first spreads between epithelial cells at the inoculation site, then infects neurites, and finally travels by retrograde axonal transport to the neuron cell body. To better understand the role of gE in retrograde spread, we used a compartmentalized neuron culture system, in which neurons were infected in the presence or absence of epithelial cells. We found that gE-deleted HSV-1 (NS-gEnull) retained retrograde axonal transport activity when added directly to neurites, in contrast to the retrograde spread defect of this virus in animals. To better mimic the in vivo milieu, we overlaid neurites with epithelial cells prior to infection. In this modified system, virus infects epithelial cells and then spreads to neurites, revealing a 100-fold retrograde spread defect for NS-gEnull. We measured the retrograde spread defect of NS-gEnull from a variety of epithelial cell lines and found that the magnitude of the spread defect from epithelial cells to neurons correlated with epithelial cell plaque size defect, indicating that gE plays a similar role in both types of spread. Therefore, gE-mediated spread between epithelial cells and neurites likely explains the retrograde spread defect of gE-deleted HSV-1 in vivo.
Collapse
|
35
|
Herpes simplex virus gE/gI and US9 proteins promote transport of both capsids and virion glycoproteins in neuronal axons. J Virol 2008; 82:10613-24. [PMID: 18753205 DOI: 10.1128/jvi.01241-08] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Following reactivation from latency, alphaherpesviruses replicate in sensory neurons and assemble capsids that are transported in the anterograde direction toward axon termini for spread to epithelial tissues. Two models currently describe this transport. The Separate model suggests that capsids are transported in axons independently from viral envelope glycoproteins. The Married model holds that fully assembled enveloped virions are transported in axons. The herpes simplex virus (HSV) membrane glycoprotein heterodimer gE/gI and the US9 protein are important for virus anterograde spread in the nervous systems of animal models. It was not clear whether gE/gI and US9 contribute to the axonal transport of HSV capsids, the transport of membrane proteins, or both. Here, we report that the efficient axonal transport of HSV requires both gE/gI and US9. The transport of both capsids and glycoproteins was dramatically reduced, especially in more distal regions of axons, with gE(-), gI(-), and US9-null mutants. An HSV mutant lacking just the gE cytoplasmic (CT) domain displayed an intermediate reduction in capsid and glycoprotein transport. We concluded that HSV gE/gI and US9 promote the separate transport of both capsids and glycoproteins. gE/gI was transported in association with other HSV glycoproteins, gB and gD, but not with capsids. In contrast, US9 colocalized with capsids and not with membrane glycoproteins. Our observations suggest that gE/gI and US9 function in the neuron cell body to promote the loading of capsids and glycoprotein-containing vesicles onto microtubule motors that ferry HSV structural components toward axon tips.
Collapse
|
36
|
Hook LM, Huang J, Jiang M, Hodinka R, Friedman HM. Blocking antibody access to neutralizing domains on glycoproteins involved in entry as a novel mechanism of immune evasion by herpes simplex virus type 1 glycoproteins C and E. J Virol 2008; 82:6935-6941. [PMID: 18480440 PMCID: PMC2446985 DOI: 10.1128/jvi.02599-07] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 05/07/2008] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) glycoprotein C (gC) blocks complement activation, and glycoprotein E (gE) interferes with IgG Fc-mediated activities. While evaluating gC- and gE-mediated immune evasion in human immunodeficiency virus (HIV)-HSV-1-coinfected subjects, we noted that antibody alone was more effective at neutralizing a strain with mutations in gC and gE (gC/gE) than a wild-type (WT) virus. This result was unexpected since gC and gE are postulated to interfere with complement-mediated neutralization. We used pooled human immunoglobulin G (IgG) from HIV-negative donors to confirm the results and evaluated mechanisms of the enhanced antibody neutralization. We demonstrated that differences in antibody neutralization cannot be attributed to the concentrations of HSV-1 glycoproteins on the two viruses or to the absence of an IgG Fc receptor on the gC/gE mutant virus or to enhanced neutralization of the mutant virus by antibodies that target only gB, gD, or gH/gL, which are the glycoproteins involved in virus entry. Since sera from HIV-infected subjects and pooled human IgG contain antibodies against multiple glycoproteins, we determined whether differences in neutralization become apparent when antibodies to gB, gD, or gH/gL are used in combination. Neutralization of the gC/gE mutant was greatly increased compared that of WT virus when any two of the antibodies against gB, gD, or gH/gL were used in combination. These results suggest that gC and gE on WT virus provide a shield against neutralizing antibodies that interfere with gB-gD, gB-gH/gL, or gD-gH/gL interactions and that one function of virus neutralization is to prevent interactions between these glycoproteins.
Collapse
Affiliation(s)
- Lauren M Hook
- Infectious Disease Division, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
37
|
A replication-competent, neuronal spread-defective, live attenuated herpes simplex virus type 1 vaccine. J Virol 2008; 82:8431-41. [PMID: 18562543 DOI: 10.1128/jvi.00551-08] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) produces oral lesions, encephalitis, keratitis, and severe infections in the immunocompromised host. HSV-1 is almost as common as HSV-2 in causing first episodes of genital herpes, a disease that is associated with an increased risk of human immunodeficiency virus acquisition and transmission. No approved vaccines are currently available to protect against HSV-1 or HSV-2 infection. We developed a novel HSV vaccine strategy that uses a replication-competent strain of HSV-1, NS-gEnull, which has a defect in anterograde and retrograde directional spread and cell-to-cell spread. Following scratch inoculation on the mouse flank, NS-gEnull replicated at the site of inoculation without causing disease. Importantly, the vaccine strain was not isolated from dorsal root ganglia (DRG). We used the flank model to challenge vaccinated mice and demonstrated that NS-gEnull was highly protective against wild-type HSV-1. The challenge virus replicated to low titers at the site of inoculation; therefore, the vaccine strain did not provide sterilizing immunity. Nevertheless, challenge by HSV-1 or HSV-2 resulted in less-severe disease at the inoculation site, and vaccinated mice were totally protected against zosteriform disease and death. After HSV-1 challenge, latent virus was recovered by DRG explant cocultures from <10% of vaccinated mice compared with 100% of mock-vaccinated mice. The vaccine provided protection against disease and death after intravaginal challenge and markedly lowered the titers of the challenge virus in the vagina. Therefore, the HSV-1 gEnull strain is an excellent candidate for further vaccine development.
Collapse
|
38
|
Lyman MG, Curanovic D, Enquist LW. Targeting of pseudorabies virus structural proteins to axons requires association of the viral Us9 protein with lipid rafts. PLoS Pathog 2008; 4:e1000065. [PMID: 18483549 PMCID: PMC2361720 DOI: 10.1371/journal.ppat.1000065] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 04/10/2008] [Indexed: 12/15/2022] Open
Abstract
The pseudorabies virus (PRV) Us9 protein plays a central role in targeting viral capsids and glycoproteins to axons of dissociated sympathetic neurons. As a result, Us9 null mutants are defective in anterograde transmission of infection in vivo. However, it is unclear how Us9 promotes axonal sorting of so many viral proteins. It is known that the glycoproteins gB, gC, gD and gE are associated with lipid raft microdomains on the surface of infected swine kidney cells and monocytes, and are directed into the axon in a Us9-dependent manner. In this report, we determined that Us9 is associated with lipid rafts, and that this association is critical to Us9-mediated sorting of viral structural proteins. We used infected non-polarized and polarized PC12 cells, a rat pheochromocytoma cell line that acquires many of the characteristics of sympathetic neurons in the presence of nerve growth factor (NGF). In these cells, Us9 is highly enriched in detergent-resistant membranes (DRMs). Moreover, reducing the affinity of Us9 for lipid rafts inhibited anterograde transmission of infection from sympathetic neurons to epithelial cells in vitro. We conclude that association of Us9 with lipid rafts is key for efficient targeting of structural proteins to axons and, as a consequence, for directional spread of PRV from pre-synaptic to post-synaptic neurons and cells of the mammalian nervous system.
Collapse
Affiliation(s)
- Mathew G. Lyman
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Dusica Curanovic
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Lynn W. Enquist
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
39
|
Diefenbach RJ, Miranda-Saksena M, Douglas MW, Cunningham AL. Transport and egress of herpes simplex virus in neurons. Rev Med Virol 2008; 18:35-51. [PMID: 17992661 DOI: 10.1002/rmv.560] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mechanisms of axonal transport of the alphaherpesviruses, HSV and pseudorabies virus (PrV), in neuronal axons are of fundamental interest, particularly in comparison with other viruses, and offer potential sites for antiviral intervention or development of gene therapy vectors. These herpesviruses are transported rapidly along microtubules (MTs) in the retrograde direction from the axon terminus to the dorsal root ganglion and then anterogradely in the opposite direction. Retrograde transport follows fusion and deenvelopment of the viral capsid at the axonal membrane followed by loss of most of the tegument proteins and then binding of the capsid via one or more viral proteins (VPs) to the retrograde molecular motor dynein. The HSV capsid protein pUL35 has been shown to bind to the dynein light chain Tctex1 but is likely to be accompanied by additional dynein binding of an inner tegument protein. The mechanism of anterograde transport is much more controversial with different processes being claimed for PrV and HSV: separate transport of HSV capsid/tegument and glycoproteins versus PrV transport as an enveloped virion. The controversy has not been resolved despite application, in several laboratories, of confocal microscopy (CFM), real-time fluorescence with viruses dual labelled on capsid and glycoprotein, electron microscopy in situ and immuno-electron microscopy. Different processes for each virus seem counterintuitive although they are the most divergent in the alphaherpesvirus subfamily. Current hypotheses suggest that unenveloped HSV capsids complete assembly in the axonal growth cones and varicosities, whereas with PrV unenveloped capsids are only found travelling in a retrograde direction.
Collapse
Affiliation(s)
- Russell J Diefenbach
- Centre for Virus Research, Westmead Millennium Institute, Westmead Hospital and the University of Sydney, Westmead, NSW 2145, Australia
| | | | | | | |
Collapse
|
40
|
Butchi NB, Jones C, Perez S, Doster A, Chowdhury SI. Envelope protein Us9 is required for the anterograde transport of bovine herpesvirus type 1 from trigeminal ganglia to nose and eye upon reactivation. J Neurovirol 2007; 13:384-8. [PMID: 17849322 DOI: 10.1080/13550280701375433] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In this study, the authors examined the role of bovine herpesvirus type 1 (BHV-1) Us9 in the anterograde transport of the virus from trigeminal ganglia (TG) to nose and eye upon reactivation from latency. During primary infection, both BHV-1 Us9-deleted and BHV-1 Us9-rescued viruses replicated efficiently in the nasal and ocular epithelium. However, upon reactivation from latency, only the BHV-1 Us9-rescued virus could be isolated in the nasal and ocular shedding. By real-time polymerase chain reaction, comparable DNA copy numbers were detected in the TGs during latency and reactivation for both the viruses. Therefore, Us9 is essential for reactivation of the virus in the TG and anterograde axonal transport from TG to nose and eye.
Collapse
Affiliation(s)
- N B Butchi
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | | | | | | | | |
Collapse
|
41
|
Al-Mubarak A, Simon J, Coats C, Okemba JD, Burton MD, Chowdhury SI. Glycoprotein E (gE) specified by bovine herpesvirus type 5 (BHV-5) enables trans-neuronal virus spread and neurovirulence without being a structural component of enveloped virions. Virology 2007; 365:398-409. [PMID: 17477950 DOI: 10.1016/j.virol.2007.03.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 02/26/2007] [Accepted: 03/21/2007] [Indexed: 11/29/2022]
Abstract
Bovine herpesvirus 5 (BHV-5) is a neurovirulent alpha-herpesvirus that causes fatal encephalitis in calves. We previously demonstrated that deletion of a glycine-rich epitope in the gE ectodomain dramatically reduced BHV-5 neurovirulence. To investigate the role of gE cytoplasmic tail sequences in the neuropathogenesis of BHV-5 in rabbits, we constructed a BHV-5gE recombinant virus with a short residual cytoplasmic domain lacking the YXXL motifs and the acidic (BHV-5gEAm480). In vitro, BHV-5gEAm480 produced on the average smaller plaques, compared with wild-type BHV-5, but it produced on the average substantially larger plaques than the gE ORF-deleted BHV-5. The truncated gE was not phosphorylated, and was not endocytosed from the cell surface. Importantly, the truncated gE was not incorporated into enveloped infectious virions, but its glycosylation and interaction with gI were not affected. In a rabbit model of infection, the BHV-5gEAm480 remained highly virulent, while the gE-null virus was avirulent. The gEAm480 mutant virus invaded most of the central nervous system (CNS) structures that are invaded by the wild-type BHV-5. The number of neurons infected by BHV-5gEAm480 was very similar to the number infected by BHV-5 wild-type and gEAm480-rescued viruses. Collectively, the results suggest that gE functions in transsynaptic transmission of BHV-5 and neurovirulence without being a structural component of the virion particle.
Collapse
Affiliation(s)
- A Al-Mubarak
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | | | | | |
Collapse
|
42
|
Sprague ER, Wang C, Baker D, Bjorkman PJ. Crystal structure of the HSV-1 Fc receptor bound to Fc reveals a mechanism for antibody bipolar bridging. PLoS Biol 2006; 4:e148. [PMID: 16646632 PMCID: PMC1450327 DOI: 10.1371/journal.pbio.0040148] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Accepted: 03/07/2006] [Indexed: 12/13/2022] Open
Abstract
Herpes simplex virus type-1 expresses a heterodimeric Fc receptor, gE-gI, on the surfaces of virions and infected cells that binds the Fc region of host immunoglobulin G and is implicated in the cell-to-cell spread of virus. gE-gI binds immunoglobulin G at the basic pH of the cell surface and releases it at the acidic pH of lysosomes, consistent with a role in facilitating the degradation of antiviral antibodies. Here we identify the C-terminal domain of the gE ectodomain (CgE) as the minimal Fc-binding domain and present a 1.78-angstroms CgE structure. A 5-angstroms gE-gI/Fc crystal structure, which was independently verified by a theoretical prediction method, reveals that CgE binds Fc at the C(H)2-C(H)3 interface, the binding site for several mammalian and bacterial Fc-binding proteins. The structure identifies interface histidines that may confer pH-dependent binding and regions of CgE implicated in cell-to-cell spread of virus. The ternary organization of the gE-gI/Fc complex is compatible with antibody bipolar bridging, which can interfere with the antiviral immune response.
Collapse
Affiliation(s)
- Elizabeth R Sprague
- 1Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - Chu Wang
- 2Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - David Baker
- 2Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- 3Howard Hughes Medical Institute, University of Washington, Seattle, Washington, United States of America
| | - Pamela J Bjorkman
- 1Division of Biology, California Institute of Technology, Pasadena, California, United States of America
- 4Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California United States of America
| |
Collapse
|
43
|
Farnsworth A, Johnson DC. Herpes simplex virus gE/gI must accumulate in the trans-Golgi network at early times and then redistribute to cell junctions to promote cell-cell spread. J Virol 2006; 80:3167-79. [PMID: 16537585 PMCID: PMC1440378 DOI: 10.1128/jvi.80.7.3167-3179.2006] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus (HSV) glycoprotein heterodimer gE/gI is necessary for virus spread in epithelial and neuronal tissues. Deletion of the relatively large gE cytoplasmic (CT) domain abrogates the ability of gE/gI to mediate HSV spread. The gE CT domain is required for the sorting of gE/gI to the trans-Golgi network (TGN) in early stages of virus infection, and there are several recognizable TGN sorting motifs grouped near the center of this domain. Late in HSV infection, gE/gI, other viral glycoproteins, and enveloped virions redistribute from the TGN to epithelial cell junctions, and the gE CT domain is also required for this process. Without the gE CT domain, newly enveloped virions are directed to apical surfaces instead of to cell junctions. We hypothesized that the gE CT domain promotes virus envelopment into TGN subdomains from which nascent enveloped virions are sorted to cell junctions, a process that enhances cell-to-cell spread. To characterize elements of the gE CT domain involved in intracellular trafficking and cell-to-cell spread, we constructed a panel of truncation mutants. Specifically, these mutants were used to address whether sorting to the TGN and redistribution to cell junctions are necessary, and sufficient, for gE/gI to promote cell-to-cell spread. gE-519, lacking 32 C-terminal residues, localized normally to the TGN early in infection and then trafficked to cell junctions at late times and mediated virus spread. By contrast, mutants gE-495 (lacking 56 C-terminal residues) and gE-470 (lacking 81 residues) accumulated in the TGN but did not traffic to cell junctions and did not mediate cell-to-cell spread. A fourth mutant, gE-448 (lacking most of the CT domain), did not localize to cell junctions and did not mediate virus spread. Therefore, the capacity of gE/gI to promote cell-cell spread requires early localization to the TGN, but this is not sufficient for virus spread. Additionally, gE CT sequences between residues 495 and 519, which contain no obvious cell sorting motifs, are required to promote gE/gI traffic to cell junctions and cell-to-cell spread.
Collapse
Affiliation(s)
- Aaron Farnsworth
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., Portland, OR 97239, USA
| | | |
Collapse
|