1
|
Raouf YA, Wadsworth J, Bin‐Tarif A, Gray AR, Habiela M, Almutalb AA, Yousif H, Ragab M, Alfouz W, Ahmed NH, Ibrahim I, Hassan AM, Tibbo M, Almajali AM, van Maanen C, Lyons NA, King DP, Knowles NJ. Genotyping of foot-and-mouth disease viruses collected in Sudan between 2009 and 2018. Transbound Emerg Dis 2022; 69:e1393-e1406. [PMID: 35150073 PMCID: PMC9790298 DOI: 10.1111/tbed.14472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/25/2021] [Accepted: 02/09/2022] [Indexed: 12/30/2022]
Abstract
Foot-and-mouth disease (FMD) is widely distributed in Sudan where outbreaks occur on an annual basis especially during the winter months (December-February). This study aimed to increase our understanding of the epidemiological patterns of FMD in Sudan and connections to neighbouring countries by characterizing the genetic sequences of FMD viruses (FMDV) collected from samples collected in 10 Sudanese states over a 10-year period (between 2009 and 2018). FMDV was detected in 91 of the 265 samples using an antigen-detection ELISA. Three serotypes were detected: O (46.2%), A (34.0%), and SAT 2 (19.8%). Fifty-two of these samples were submitted for sequence analyses, generating sequences that were characterized as belonging to O/EA-3 (n = 17), A/AFRICA/G-IV (n = 23) and SAT 2/VII/Alx-12 (n = 12) viral lineages. Phylogenetic analyses provided evidence that FMDV lineages were maintained within Sudan, and also highlighted epidemiological connections to FMD outbreaks reported in neighbouring countries in East and North Africa (such as Ethiopia and Egypt). This study motivates continued FMD surveillance in Sudan to monitor the circulating viral lineages and broader initiatives to improve our understanding of the epidemiological risks in the region.
Collapse
Affiliation(s)
- Yazeed A. Raouf
- Foot‐and‐Mouth‐Disease DepartmentCentral Veterinary Research Laboratory (CVRL), Soba, Al AmaratKhartoumSudan
| | - Jemma Wadsworth
- FAO World Reference Laboratory for FMD (WRLFMD)The Pirbright Institute, WokingSurreyUK
| | - Abdelghani Bin‐Tarif
- FAO World Reference Laboratory for FMD (WRLFMD)The Pirbright Institute, WokingSurreyUK
| | - Ashley R. Gray
- FAO World Reference Laboratory for FMD (WRLFMD)The Pirbright Institute, WokingSurreyUK
| | - Mohammed Habiela
- Foot‐and‐Mouth‐Disease DepartmentCentral Veterinary Research Laboratory (CVRL), Soba, Al AmaratKhartoumSudan
| | - Ameera A. Almutalb
- Foot‐and‐Mouth‐Disease DepartmentCentral Veterinary Research Laboratory (CVRL), Soba, Al AmaratKhartoumSudan
| | - Hanan Yousif
- Foot‐and‐Mouth‐Disease DepartmentCentral Veterinary Research Laboratory (CVRL), Soba, Al AmaratKhartoumSudan
| | - Maysa Ragab
- Foot‐and‐Mouth‐Disease DepartmentCentral Veterinary Research Laboratory (CVRL), Soba, Al AmaratKhartoumSudan
| | - Wefag Alfouz
- Foot‐and‐Mouth‐Disease DepartmentCentral Veterinary Research Laboratory (CVRL), Soba, Al AmaratKhartoumSudan
| | - Nussiba H. Ahmed
- Foot‐and‐Mouth‐Disease DepartmentCentral Veterinary Research Laboratory (CVRL), Soba, Al AmaratKhartoumSudan
| | - Inas Ibrahim
- Foot‐and‐Mouth‐Disease DepartmentCentral Veterinary Research Laboratory (CVRL), Soba, Al AmaratKhartoumSudan
| | - Ahmed M. Hassan
- Foot‐and‐Mouth‐Disease DepartmentCentral Veterinary Research Laboratory (CVRL), Soba, Al AmaratKhartoumSudan
| | - Markos Tibbo
- Food and Agriculture Organization of the United Nations (FAO)Subregional Office for the Gulf Cooperation Council States and YemenAbu DhabiUnited Arab Emirates
| | - Ahmad M. Almajali
- Food and Agriculture Organization of the United Nations (FAO)Subregional Office for the Gulf Cooperation Council States and YemenAbu DhabiUnited Arab Emirates,Faculty of Veterinary MedicineDepartment of Veterinary Clinical SciencesJordan University of Science and TechnologyIrbidJordan
| | - Cornelis van Maanen
- The European Commission for the Control of Foot‐and‐Mouth Disease (EuFMD)Food and Agriculture Organization of the United Nations (FAO)RomeItaly
| | - Nicholas A. Lyons
- FAO World Reference Laboratory for FMD (WRLFMD)The Pirbright Institute, WokingSurreyUK,The European Commission for the Control of Foot‐and‐Mouth Disease (EuFMD)Food and Agriculture Organization of the United Nations (FAO)RomeItaly
| | - Donald P. King
- FAO World Reference Laboratory for FMD (WRLFMD)The Pirbright Institute, WokingSurreyUK
| | - Nick J. Knowles
- FAO World Reference Laboratory for FMD (WRLFMD)The Pirbright Institute, WokingSurreyUK
| |
Collapse
|
2
|
A/Raouf Y, Ibrahim I. Diversity of SAT2 foot-and-mouth disease virus in Sudan: implication for diagnosis and control. Vet Res Commun 2022; 46:789-798. [PMID: 35233700 DOI: 10.1007/s11259-022-09899-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 02/03/2022] [Indexed: 11/29/2022]
Abstract
Like other East African countries, Sudan experienced circulation of more than one topotype of SAT2 foot-and-mouth disease virus (FMDV). In Sudan, topotype XIII of SAT2 virus was recorded in 1977 and 2008 and topotype VII in 2007, 2010, 2013, 2014 and 2017. This work evaluated the impact of such diversity on diagnosis and control. After one or three doses of a vaccine derived from a Sudanese SAT2 virus of topotype VII originated in 2010, heterologous neutralizing antibody titres with Sudanese SAT2 viruses in 2008 were ≤ 1.2 log 10, not consistent with likely protection. Simultaneously, homologous titres were 1.65 (after one dose) or 1.95 and 2.55 log10 (after 3 doses). When r1 values between the vaccine virus and the SAT2 viruses isolated in 2008, whilst topotype XIII was circulating, were derived, values (≈ 0.00) suggested similarly poor antigenic relationship and unlikely cross protection. Concurrently, SAT2 positive field sera from Sudan in 2016 were not unvaryingly identified by virus neutralization tests (VNT) employing SAT2 viruses from 2010 and 2008. Proportions of positive sera by SAT2 virus from 2010 were always higher than those by viruses from 2008; consistent with the more frequent and recent circulation of topotype VII prior to 2016. Proportions by SAT2 virus from 2010 were 0.68 (± 0.1) in one location (n = 72), 0.39 (± 0.1) in another one (n = 94) and 0.52 (± 0.1) in the whole test group (n = 166). Corresponding values by viruses of 2008 were 0.53 (± 0.1), 0.27 (± 0.1) and 0.38 (± 0.1). In the whole test group, differences were statistically significant (p = .02339). Like post-vaccination sera, field sera (natural immunity) showed no considerable cross neutralization between topotype VII and presumably XIII; almost 45% (43/96) of SAT2 positive field sera were positive to one topotype but not to the other. Experimental and surveillance findings emphasized the implication of SAT2 diversity in Sudan. It is concluded that it is difficult to control SAT2 infection in Sudan using a monovalent vaccine. Beside a prophylactic vaccine from topotype VII, stockpiling of antigens from topotype XIII and enhanced virological surveillance with rapid genotyping and matching studies are necessary approaches. When more frequent circulation of more than one SAT2 topotype occurs, retrospective diagnosis by serological surveys could be problematic or imprecise.
Collapse
Affiliation(s)
- Yazeed A/Raouf
- Department of Foot-and-Mouth Disease, Central Veterinary Research Laboratory (CVRL), Soba, P.O. Box 8067, Al Amarat, Khartoum, Sudan.
| | - Inas Ibrahim
- Department of Foot-and-Mouth Disease, Central Veterinary Research Laboratory (CVRL), Soba, P.O. Box 8067, Al Amarat, Khartoum, Sudan
| |
Collapse
|
3
|
Glud HA, George S, Skovgaard K, Larsen LE. Zoonotic and reverse zoonotic transmission of viruses between humans and pigs. APMIS 2021; 129:675-693. [PMID: 34586648 PMCID: PMC9297979 DOI: 10.1111/apm.13178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/28/2021] [Indexed: 12/30/2022]
Abstract
Humans and pigs share a close contact relationship, similar biological traits, and one of the highest estimated number of viruses compared to other mammalian species. The contribution and directionality of viral exchange between humans and pigs remain unclear for some of these viruses, but their transmission routes are important to characterize in order to prevent outbreaks of disease in both host species. This review collects and assesses the evidence to determine the likely transmission route of 27 viruses between humans and pigs.
Collapse
Affiliation(s)
- Helena Aagaard Glud
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Sophie George
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kerstin Skovgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Lars Erik Larsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Di Nardo A, Ferretti L, Wadsworth J, Mioulet V, Gelman B, Karniely S, Scherbakov A, Ziay G, Özyörük F, Parlak Ü, Tuncer‐Göktuna P, Hassanzadeh R, Khalaj M, Dastoor SM, Abdollahi D, Khan EUH, Afzal M, Hussain M, Knowles NJ, King DP. Evolutionary and Ecological Drivers Shape the Emergence and Extinction of Foot-and-Mouth Disease Virus Lineages. Mol Biol Evol 2021; 38:4346-4361. [PMID: 34115138 PMCID: PMC8476141 DOI: 10.1093/molbev/msab172] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Livestock farming across the world is constantly threatened by the evolutionary turnover of foot-and-mouth disease virus (FMDV) strains in endemic systems, the underlying dynamics of which remain to be elucidated. Here, we map the eco-evolutionary landscape of cocirculating FMDV lineages within an important endemic virus pool encompassing Western, Central, and parts of Southern Asia, reconstructing the evolutionary history and spatial dynamics over the last 20 years that shape the current epidemiological situation. We demonstrate that new FMDV variants periodically emerge from Southern Asia, precipitating waves of virus incursions that systematically travel in a westerly direction. We evidence how metapopulation dynamics drive the emergence and extinction of spatially structured virus populations, and how transmission in different host species regulates the evolutionary space of virus serotypes. Our work provides the first integrative framework that defines coevolutionary signatures of FMDV in regional contexts to help understand the complex interplay between virus phenotypes, host characteristics, and key epidemiological determinants of transmission that drive FMDV evolution in endemic settings.
Collapse
Affiliation(s)
- Antonello Di Nardo
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, United Kingdom
| | - Luca Ferretti
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jemma Wadsworth
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, United Kingdom
| | - Valerie Mioulet
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, United Kingdom
| | - Boris Gelman
- Division of Virology, Kimron Veterinary Institute, Beit Dagan, Israel
| | - Sharon Karniely
- Division of Virology, Kimron Veterinary Institute, Beit Dagan, Israel
| | - Alexey Scherbakov
- Federal Governmental Budgetary Institution “Federal Centre for Animal Health” (FGBI “ARRIAH”), Yur’evets, Vladimir, Russia
| | - Ghulam Ziay
- Central Veterinary Diagnostic and Research Laboratory, Kabul, Afghanistan
| | - Fuat Özyörük
- Faculty of Veterinary Medicine, Harran University, Sanliurfa, Turkey
| | - Ünal Parlak
- Foot and Mouth Disease (ŞAP) Institute, Ankara, Turkey
| | | | - Reza Hassanzadeh
- Iran Veterinary Organization, Ministry of Jihad-e-Agriculture, Tehran, Iran
| | - Mehdi Khalaj
- Iran Veterinary Organization, Ministry of Jihad-e-Agriculture, Tehran, Iran
| | | | - Darab Abdollahi
- Iran Veterinary Organization, Ministry of Jihad-e-Agriculture, Tehran, Iran
| | - Ehtisham-ul-Haq Khan
- Livestock and Dairy Development Department, Government of Punjab, Rawalpindi, Pakistan
| | - Muhammad Afzal
- Food and Agriculture Organization of the United Nations, Pakistan Office, Islamabad Pakistan
| | - Manzoor Hussain
- Food and Agriculture Organization of the United Nations, Pakistan Office, Islamabad Pakistan
| | - Nick J Knowles
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, United Kingdom
| | - Donald P King
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, United Kingdom
| |
Collapse
|
5
|
The rescue and selection of thermally stable type O vaccine candidate strains of foot-and-mouth disease virus. Arch Virol 2021; 166:2131-2140. [PMID: 34003358 DOI: 10.1007/s00705-021-05100-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 03/26/2021] [Indexed: 10/21/2022]
Abstract
Inactivated foot-and-mouth disease virus (FMDV) vaccines have been used widely to control foot-and-mouth disease (FMD). However, the virions (146S) of this virus are easily dissociated into pentamer subunits (12S), which limits the immune protective efficacy of inactivated vaccines when the temperature is higher than 30 °C. A cold-chain system can maintain the quality of the vaccines, but such systems are usually not reliable in limited-resource settings. Thus, it is imperative to improve the thermostability of vaccine strains to guarantee the quality of the vaccines. In this study, four recombinant FMDV strains containing single or multiple amino acid substitutions in the structural proteins were rescued using a previously constructed FMDV type O full-length infectious clone (pO/DY-VP1). We found that single or multiple amino acid substitutions in the structural proteins affected viral replication to different degrees. Furthermore, the heat and acid stability of the recombinant viruses was significantly increased when compared with the parental virus. Three thermally stable recombinant viruses (rHN/DY-VP1Y2098F, rHN/DY-VP1V2090A-S2093H, and rHN/DY-VP1V2090A-S2093H-Y2098F) were prepared as inactivated vaccines to immunize pigs. Blood samples were collected every week to prepare sera, and a virus neutralization test showed that the substitutions S2093H and Y2098F, separately or in combination, did not affect the immunogenicity of the virus, but the Y2098F mutation increased the thermostability significantly (p < 0.05). Therefore, the rHN/DY-VP1Y2098F mutant should be considered for use in future vaccines.
Collapse
|
6
|
Harvey WT, Mulatti P, Fusaro A, Scolamacchia F, Zecchin B, Monne I, Marangon S. Spatiotemporal reconstruction and transmission dynamics during the 2016-17 H5N8 highly pathogenic avian influenza epidemic in Italy. Transbound Emerg Dis 2021; 68:37-50. [PMID: 31788978 PMCID: PMC8048528 DOI: 10.1111/tbed.13420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/03/2019] [Accepted: 10/29/2019] [Indexed: 11/29/2022]
Abstract
Effective control of avian diseases in domestic populations requires understanding of the transmission dynamics facilitating viral emergence and spread. In 2016-17, Italy experienced a significant avian influenza epidemic caused by a highly pathogenic A(H5N8) virus, which affected domestic premises housing around 2.7 million birds, primarily in the north-eastern regions with the highest density of poultry farms (Lombardy, Emilia-Romagna and Veneto). We perform integrated analyses of genetic, spatiotemporal and host data within a Bayesian phylogenetic framework. Using continuous and discrete phylogeography, we estimate the locations of movements responsible for the spread and persistence of the epidemic. The information derived from these analyses on rates of transmission between regions through time can be used to assess the success of control measures. Using an approach based on phylogenetic-temporal distances between domestic cases, we infer the presence of cryptic wild bird-mediated transmission, information that can be used to complement existing epidemiological methods for distinguishing transmission within the domestic population from incursions across the wildlife-domestic interface, a common challenge in veterinary epidemiology. Spatiotemporal reconstruction of the epidemic reveals a highly skewed distribution of virus movements with a high proportion of shorter distance local movements interspersed with occasional long-distance dispersal events associated with wild birds. We also show how such inference be used to identify possible instances of human-mediated movements where distances between phylogenetically linked domestic cases are unusually high.
Collapse
Affiliation(s)
- William T. Harvey
- Boyd Orr Centre for Population and Ecosystem HealthInstitute of Biodiversity, Animal Health and Comparative MedicineCollege of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Paolo Mulatti
- Istituto Zooprofilattico Sperimentale delle VenezieLegnaro (Padua)Italy
| | - Alice Fusaro
- Istituto Zooprofilattico Sperimentale delle VenezieLegnaro (Padua)Italy
| | | | - Bianca Zecchin
- Istituto Zooprofilattico Sperimentale delle VenezieLegnaro (Padua)Italy
| | - Isabella Monne
- Istituto Zooprofilattico Sperimentale delle VenezieLegnaro (Padua)Italy
| | - Stefano Marangon
- Istituto Zooprofilattico Sperimentale delle VenezieLegnaro (Padua)Italy
| |
Collapse
|
7
|
Early origin and global colonisation of foot-and-mouth disease virus. Sci Rep 2020; 10:15268. [PMID: 32943727 PMCID: PMC7498456 DOI: 10.1038/s41598-020-72246-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 08/26/2020] [Indexed: 11/09/2022] Open
Abstract
In this study, we compiled 84-year worth (1934-2017) of genomic and epidemiological data of foot-and-mouth disease virus (FMDV), and performed comprehensive analyses to determine its early origin and transmission route. We found that recombination is a key feature of FMDV, and that the genomic regions coding for structural and non-structural proteins have markedly different evolutionary histories, and evolve at different rates. Despite all of these differences, analyses of both structural and non-structural protein coding regions consistently suggested that the most recent common ancestor of FMDV could be dated back to the Middle Age, ~ 200 to 300 years earlier than previously thought. The ancestors of the Euro-Asiatic and SAT strains could be dated back to the mid-seventeenth century, and to the mid-fifteenth to mid-sixteenth century, respectively. Our results implicated Mediterranean counties as an early geographical origin of FMDV before spreading to Europe and subsequently to Asia and South America.
Collapse
|
8
|
Maake L, Harvey WT, Rotherham L, Opperman P, Theron J, Reeve R, Maree FF. Genetic Basis of Antigenic Variation of SAT3 Foot-And-Mouth Disease Viruses in Southern Africa. Front Vet Sci 2020; 7:568. [PMID: 33102544 PMCID: PMC7506032 DOI: 10.3389/fvets.2020.00568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/16/2020] [Indexed: 11/13/2022] Open
Abstract
Foot-and-mouth disease (FMD) continues to be a major burden for livestock owners in endemic countries and a continuous threat to FMD-free countries. The epidemiology and control of FMD in Africa is complicated by the presence of five clinically indistinguishable serotypes. Of these the Southern African Territories (SAT) type 3 has received limited attention, likely due to its restricted distribution and it being less frequently detected. We investigated the intratypic genetic variation of the complete P1 capsid-coding region of 22 SAT3 viruses and confirmed the geographical distribution of five of the six SAT3 topotypes. The antigenic cross-reactivity of 12 SAT3 viruses against reference antisera was assessed by performing virus neutralization assays and calculating the r1-values, which is a ratio of the heterologous neutralizing titer to the homologous neutralizing titer. Interestingly, cross-reactivity between the SAT3 reference antisera and many SAT3 viruses was notably high (r1-values >0.3). Moreover, some of the SAT3 viruses reacted more strongly to the reference sera compared to the homologous virus (r1-values >1). An increase in the avidity of the reference antisera to the heterologous viruses could explain some of the higher neutralization titers observed. Subsequently, we used the antigenic variability data and corresponding genetic and structural data to predict naturally occurring amino acid positions that correlate with antigenic changes. We identified four unique residues within the VP1, VP2, and VP3 proteins, associated with a change in cross-reactivity, with two sites that change simultaneously. The analysis of antigenic variation in the context of sequence differences is critical for both surveillance-informed selection of effective vaccines and the rational design of vaccine antigens tailored for specific geographic localities, using reverse genetics.
Collapse
Affiliation(s)
- Lorens Maake
- Vaccine and Diagnostic Development Programme, Onderstepoort Veterinary Institute, Agricultural Research Council, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, Faculty of Agricultural and Natural Sciences, University of Pretoria, Pretoria, South Africa
| | - William T Harvey
- Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Lia Rotherham
- Vaccine and Diagnostic Development Programme, Onderstepoort Veterinary Institute, Agricultural Research Council, Pretoria, South Africa
| | - Pamela Opperman
- Vaccine and Diagnostic Development Programme, Onderstepoort Veterinary Institute, Agricultural Research Council, Pretoria, South Africa
- Department of Animal Production Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Jacques Theron
- Department of Biochemistry, Genetics and Microbiology, Faculty of Agricultural and Natural Sciences, University of Pretoria, Pretoria, South Africa
| | - Richard Reeve
- Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Francois F Maree
- Vaccine and Diagnostic Development Programme, Onderstepoort Veterinary Institute, Agricultural Research Council, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, Faculty of Agricultural and Natural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
9
|
Blignaut B, van Heerden J, Reininghaus B, Fosgate GT, Heath L. Characterization of SAT2 foot-and-mouth disease 2013/2014 outbreak viruses at the wildlife-livestock interface in South Africa. Transbound Emerg Dis 2020; 67:1595-1606. [PMID: 31984622 DOI: 10.1111/tbed.13493] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 12/12/2019] [Accepted: 01/20/2020] [Indexed: 11/30/2022]
Abstract
The Southern African Territories (SAT)-type foot-and-mouth disease viruses (FMDV) are endemic to the greater Kruger National Park (KNP) area in South Africa, where they are maintained through persistent infections in African buffalo. The occurrence of FMDV within the Greater KNP area constitutes a continual threat to the livestock industry. To expand on knowledge of FMDV diversity, the genetic and antigenic relatedness of SAT2-type viruses isolated from cattle during a FMD outbreak in Mpumalanga Province in 2013 and 2014 were investigated. Cattle from twelve diptanks tested positive on polymerase chain reaction (PCR), and molecular epidemiological relationships of the viruses were determined by VP1 sequencing. Phylogenetic analysis of the SAT2 viruses from the FMD outbreak in Mpumalanga in 2013/2014 revealed their genetic relatedness to other SAT2 isolates from topotype I (South Africa, Zimbabwe and Mozambique), albeit genetically distinct from previous South African outbreak viruses (2011 and 2012) from the same topotype. The fifteen SAT2 field isolates clustered into a novel genotype with ≥98.7% nucleotide identity. High neutralization antibody titres were observed for four 2013/2014 outbreak viruses tested against the SAT2 reference antisera representative of viruses isolated from cattle and buffalo from South Africa (topotype I) and Zimbabwe (topotype II). Comparison of the antigenic relationship (r1 values) of the outbreak viruses with reference antisera indicated a good vaccine match with 90% of r1 values > 0.3. The r1 values for the 2013/2014 outbreak viruses were 0.4 and above for the three South African vaccine/reference strains. These results confirm the presence of genetic and antigenic variability in SAT2 viruses and suggest the emergence of new variants at the wildlife-livestock interface in South Africa. Continuous characterization of field viruses should be performed to identify new virus strains as epidemiological surveillance to improve vaccination efforts.
Collapse
Affiliation(s)
- Belinda Blignaut
- Transboundary Animal Diseases, Onderstepoort Veterinary Research, Agricultural Research Council, Onderstepoort, South Africa.,Mpumalanga Veterinary Services, Department of Agriculture, Rural Development, Land and Environmental Affairs, Thulamahashe, South Africa
| | - Juanita van Heerden
- Transboundary Animal Diseases, Onderstepoort Veterinary Research, Agricultural Research Council, Onderstepoort, South Africa
| | - Björn Reininghaus
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Geoffrey T Fosgate
- Mpumalanga Veterinary Services, Department of Agriculture, Rural Development, Land and Environmental Affairs, Thulamahashe, South Africa
| | - Livio Heath
- Transboundary Animal Diseases, Onderstepoort Veterinary Research, Agricultural Research Council, Onderstepoort, South Africa
| |
Collapse
|
10
|
Duchatel F, Bronsvoort BMDC, Lycett S. Phylogeographic Analysis and Identification of Factors Impacting the Diffusion of Foot-and-Mouth Disease Virus in Africa. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00371] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
11
|
Omondi G, Alkhamis MA, Obanda V, Gakuya F, Sangula A, Pauszek S, Perez A, Ngulu S, van Aardt R, Arzt J, VanderWaal K. Phylogeographical and cross-species transmission dynamics of SAT1 and SAT2 foot-and-mouth disease virus in Eastern Africa. Mol Ecol 2019; 28:2903-2916. [PMID: 31074125 DOI: 10.1111/mec.15125] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/28/2019] [Accepted: 04/29/2019] [Indexed: 12/15/2022]
Abstract
Understanding the dynamics of foot-and-mouth disease virus (FMDV), an endemic and economically constraining disease, is critical in designing control programmes in Africa. This study investigates the evolutionary epidemiology of SAT1 and SAT2 FMDV in Eastern Africa, as well as between cattle and wild African buffalo. Bayesian phylodynamic models were used to analyse SAT1 and SAT2 VP1 gene segments collected between 1975 and 2016, focusing on the SAT1 and SAT2 viruses currently circulating in Eastern Africa. The root state posterior probabilities inferred from our analyses suggest Zimbabwe as the ancestral location for SAT1 currently circulating in Eastern Africa (p = 0.67). For the SAT2 clade, Kenya is inferred to be the ancestral location for introduction of the virus into other countries in Eastern Africa (p = 0.72). Salient (Bayes factor >10) viral dispersal routes were inferred from Tanzania to Kenya, and from Kenya to Uganda for SAT1 and SAT2, respectively. Results suggest that cattle are the source of the SAT1 and SAT2 clades currently circulating in Eastern Africa. In addition, our results suggest that the majority of SAT1 and SAT2 in livestock come from other livestock rather than wildlife, with limited evidence that buffalo serve as reservoirs for cattle. Insights from the present study highlight the role of cattle movements and anthropogenic activities in shaping the evolutionary history of SAT1 and SAT2 in Eastern Africa. While the results may be affected by inherent limitations of imperfect surveillance, our analysis elucidates the dynamics between host species in this region, which is key to guiding disease intervention activities.
Collapse
Affiliation(s)
- George Omondi
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota
| | - Moh A Alkhamis
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota.,Department of Epidemiology and Biostatistics, Faculty of Public Health, Health Sciences Center, Kuwait University, Kuwait, Kuwait
| | - Vincent Obanda
- Veterinary Services Department, Kenya Wildlife Service, Nairobi, Kenya
| | - Francis Gakuya
- Veterinary Services Department, Kenya Wildlife Service, Nairobi, Kenya
| | | | - Steven Pauszek
- Plum Island Animal Disease Center, Foreign Animal Disease Research Unit, USDA, Orient Point, New York
| | - Andres Perez
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota
| | | | | | - Jonathan Arzt
- Plum Island Animal Disease Center, Foreign Animal Disease Research Unit, USDA, Orient Point, New York
| | - Kim VanderWaal
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota
| |
Collapse
|
12
|
Lycett S, Tanya VN, Hall M, King DP, Mazeri S, Mioulet V, Knowles NJ, Wadsworth J, Bachanek-Bankowska K, Ngu Ngwa V, Morgan KL, Bronsvoort BMDC. The evolution and phylodynamics of serotype A and SAT2 foot-and-mouth disease viruses in endemic regions of Africa. Sci Rep 2019; 9:5614. [PMID: 30948742 PMCID: PMC6449503 DOI: 10.1038/s41598-019-41995-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 03/20/2019] [Indexed: 11/09/2022] Open
Abstract
Foot-and-mouth disease (FMD) is a major livestock disease with direct clinical impacts as well as indirect trade implications. Control through vaccination and stamping-out has successfully reduced or eradicated the disease from Europe and large parts of South America. However, sub-Saharan Africa remains endemically affected with 5/7 serotypes currently known to be circulating across the continent. This has significant implications both locally for livestock production and poverty reduction but also globally as it represents a major reservoir of viruses, which could spark new epidemics in disease free countries or vaccination zones. This paper describes the phylodynamics of serotypes A and SAT2 in Africa including recent isolates from Cameroon in Central Africa. We estimated the most recent common ancestor for serotype A was an East African virus from the 1930s (median 1937; HPD 1922-1950) compared to SAT2 which has a much older common ancestor from the early 1700s (median 1709; HPD 1502-1814). Detailed analysis of the different clades shows clearly that different clades are evolving and diffusing across the landscape at different rates with both serotypes having a particularly recent clade that is evolving and spreading more rapidly than other clades within their serotype. However, the lack of detailed sequence data available for Africa seriously limits our understanding of FMD epidemiology across the continent. A comprehensive view of the evolutionary history and dynamics of FMD viruses is essential to understand many basic epidemiological aspects of FMD in Africa such as the scale of persistence and the role of wildlife and thus the opportunities and scale at which vaccination and other controls could be applied. Finally we ask endemic countries to join the OIE/FAO supported regional networks and take advantage of new cheap technologies being rolled out to collect isolates and submit them to the World Reference Laboratory.
Collapse
Affiliation(s)
- S Lycett
- The Roslin Institute at The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Epidemiology Economics and Risk Assessment Group, Roslin, Midlothian, EH25 9RG, UK
| | - V N Tanya
- Cameroon Academy of Sciences, P.O. Box 1457, Yaoundé, Cameroon
| | - M Hall
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, EH9 3JR, United Kingdom
| | - D P King
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, UK
| | - S Mazeri
- The Roslin Institute at The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Epidemiology Economics and Risk Assessment Group, Roslin, Midlothian, EH25 9RG, UK
| | - V Mioulet
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, UK
| | - N J Knowles
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, UK
| | - J Wadsworth
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, UK
| | | | - Victor Ngu Ngwa
- School of Veterinary Medicine and Sciences, B.P. 454, University of Ngaoundere, Ngaoundere, Cameroon
| | - K L Morgan
- Institute of Ageing and Chronic Disease and School of Veterinary Science, University of Liverpool, Leahurst Campus, Neston, Wirral, CH64 7TE, UK
| | - B M de C Bronsvoort
- The Roslin Institute at The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Epidemiology Economics and Risk Assessment Group, Roslin, Midlothian, EH25 9RG, UK.
| |
Collapse
|
13
|
Bertram MR, Bravo de Rueda C, Garabed R, Dickmu Jumbo S, Moritz M, Pauszek S, Abdoulkadiri S, Rodriguez LL, Arzt J. Molecular Epidemiology of Foot-and-Mouth Disease Virus in the Context of Transboundary Animal Movement in the Far North Region of Cameroon. Front Vet Sci 2018; 5:320. [PMID: 30619901 PMCID: PMC6301994 DOI: 10.3389/fvets.2018.00320] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/30/2018] [Indexed: 11/13/2022] Open
Abstract
Transboundary movement of animals is an important mechanism for foot-and-mouth disease virus (FMDV) spread in endemic regions, such as Cameroon. Several transboundary animal trade routes cross the Far North Region of Cameroon, and cattle moved on foot along these routes often come in contact with native (sedentary and transhumant) herds. The purpose of this study was to investigate the role of transboundary trade cattle in the epidemiology of FMDV in the Far North Region of Cameroon. A total of 582 oropharyngeal fluid (OPF) samples were collected from asymptomatic transboundary trade cattle at official border check points and 57 vesicle epithelial tissues were collected from clinically affected native cattle in the Far North Region of Cameroon during 2010-2014. Viral protein 1 (VP1) coding sequences were obtained from 6 OPF samples from transboundary cattle (4 serotype O, 2 serotype SAT2) and 19 epithelial tissue samples from native cattle (7 serotype O, 3 serotype SAT2, 9 serotype A). FMDV serotype O viruses belonged to two topotypes (East Africa-3 and West Africa), and phylogenetic analyses suggested a pattern of continuous transmission in the region. Serotype SAT2 viruses belonged to a single topotype (VII), and phylogenetic analysis suggested a pattern of repeated introductions of different SAT2 lineages in the region. Serotype A viruses belonged to topotype AFRICA/G-IV, and the pattern of transmission was unclear. Spearman rank correlation analysis of VP1 coding sequences obtained in this study from transboundary and native cattle showed a positive correlation between genetic distance and time for serotype O (ρ = 0.71, p = 0.003) and between genetic distance and geographic distance for serotype SAT2 (ρ = 0.54, p = 0.1). These data suggest that transboundary trade cattle participate in the transmission of FMDV in the Far North Region of Cameroon, however the dynamics and direction of transmission could not be determined in this study. Results of this study contribute to the understanding of transboundary FMDV epidemiology in Central Africa and will help to inform control programs in Cameroon and in the region.
Collapse
Affiliation(s)
- Miranda R. Bertram
- Foreign Animal Disease Research Unit, Agricultural Research Service, Department of Agriculture, Plum Island Animal Disease Center (PIADC), Greenport, NY, United States
- Research Participation Program, Plum Island Animal Disease Center, Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Carla Bravo de Rueda
- Foreign Animal Disease Research Unit, Agricultural Research Service, Department of Agriculture, Plum Island Animal Disease Center (PIADC), Greenport, NY, United States
- Research Participation Program, Plum Island Animal Disease Center, Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Rebecca Garabed
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, United States
| | | | - Mark Moritz
- Department of Anthropology, The Ohio State University, Columbus, OH, United States
| | - Steven Pauszek
- Foreign Animal Disease Research Unit, Agricultural Research Service, Department of Agriculture, Plum Island Animal Disease Center (PIADC), Greenport, NY, United States
| | | | - Luis L. Rodriguez
- Foreign Animal Disease Research Unit, Agricultural Research Service, Department of Agriculture, Plum Island Animal Disease Center (PIADC), Greenport, NY, United States
| | - Jonathan Arzt
- Foreign Animal Disease Research Unit, Agricultural Research Service, Department of Agriculture, Plum Island Animal Disease Center (PIADC), Greenport, NY, United States
| |
Collapse
|
14
|
Warimwe GM, Purushotham J, Perry BD, Hill AV, Gilbert SC, Dungu B, Charleston B. Tackling human and animal health threats through innovative vaccinology in Africa. AAS Open Res 2018; 1:18. [PMID: 32259020 PMCID: PMC7118973 DOI: 10.12688/aasopenres.12877.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2018] [Indexed: 07/27/2023] Open
Abstract
Africa bears the brunt of many of the world's most devastating human and animal infectious diseases, a good number of which have no licensed or effective vaccines available. The continent's potential to generate novel interventions against these global health threats is however largely untapped. Strengthening Africa's vaccine research and development (R&D) sector could accelerate discovery, development and deployment of effective countermeasures against locally prevalent infectious diseases, many of which are neglected and have the capacity to spread to new geographical settings. Here, we review Africa's human and veterinary vaccine R&D sectors and identify key areas that should be prioritized for investment, and synergies that could be exploited from Africa's veterinary vaccine industry, which is surprisingly strong and has close parallels with human vaccine R&D.
Collapse
Affiliation(s)
- George M. Warimwe
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- The Pirbright Institute, Woking, GU24 0NF, UK
| | | | - Brian D. Perry
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
| | | | | | | | | |
Collapse
|
15
|
Warimwe GM, Purushotham J, Perry BD, Hill AVS, Gilbert SC, Dungu B, Charleston B. Tackling human and animal health threats through innovative vaccinology in Africa. AAS Open Res 2018; 1:18. [PMID: 32259020 PMCID: PMC7118973 DOI: 10.12688/aasopenres.12877.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2018] [Indexed: 11/20/2022] Open
Abstract
Africa bears the brunt of many of the world's most devastating human and animal infectious diseases, a good number of which have no licensed or effective vaccines available. The continent's potential to generate novel interventions against these global health threats is however largely untapped. Strengthening Africa's vaccine research and development (R&D) sector could accelerate discovery, development and deployment of effective countermeasures against locally prevalent infectious diseases, many of which are neglected and have the capacity to spread to new geographical settings. Here, we review Africa's human and veterinary vaccine R&D sectors and identify key areas that should be prioritized for investment, and synergies that could be exploited from Africa's veterinary vaccine industry, which is surprisingly strong and has close parallels with human vaccine R&D.
Collapse
Affiliation(s)
- George M Warimwe
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya.,The Pirbright Institute, Woking, GU24 0NF, UK
| | | | - Brian D Perry
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
| | - Adrian V S Hill
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
| | - Sarah C Gilbert
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
| | | | | |
Collapse
|
16
|
Lasecka-Dykes L, Wright CF, Di Nardo A, Logan G, Mioulet V, Jackson T, Tuthill TJ, Knowles NJ, King DP. Full Genome Sequencing Reveals New Southern African Territories Genotypes Bringing Us Closer to Understanding True Variability of Foot-and-Mouth Disease Virus in Africa. Viruses 2018; 10:E192. [PMID: 29652800 PMCID: PMC5923486 DOI: 10.3390/v10040192] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/06/2018] [Accepted: 04/08/2018] [Indexed: 01/09/2023] Open
Abstract
Foot-and-mouth disease virus (FMDV) causes a highly contagious disease of cloven-hooved animals that poses a constant burden on farmers in endemic regions and threatens the livestock industries in disease-free countries. Despite the increased number of publicly available whole genome sequences, FMDV data are biased by the opportunistic nature of sampling. Since whole genomic sequences of Southern African Territories (SAT) are particularly underrepresented, this study sequenced 34 isolates from eastern and southern Africa. Phylogenetic analyses revealed two novel genotypes (that comprised 8/34 of these SAT isolates) which contained unusual 5′ untranslated and non-structural encoding regions. While recombination has occurred between these sequences, phylogeny violation analyses indicated that the high degree of sequence diversity for the novel SAT genotypes has not solely arisen from recombination events. Based on estimates of the timing of ancestral divergence, these data are interpreted as being representative of un-sampled FMDV isolates that have been subjected to geographical isolation within Africa by the effects of the Great African Rinderpest Pandemic (1887–1897), which caused a mass die-out of FMDV-susceptible hosts. These findings demonstrate that further sequencing of African FMDV isolates is likely to reveal more unusual genotypes and will allow for better understanding of natural variability and evolution of FMDV.
Collapse
Affiliation(s)
| | - Caroline F Wright
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK.
| | - Antonello Di Nardo
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK.
| | - Grace Logan
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK.
| | - Valerie Mioulet
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK.
| | - Terry Jackson
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK.
| | - Tobias J Tuthill
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK.
| | - Nick J Knowles
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK.
| | - Donald P King
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK.
| |
Collapse
|
17
|
Abstract
Transmissibility is the defining characteristic of infectious diseases. Quantifying transmission matters for understanding infectious disease epidemiology and designing evidence-based disease control programs. Tracing individual transmission events can be achieved by epidemiological investigation coupled with pathogen typing or genome sequencing. Individual infectiousness can be estimated by measuring pathogen loads, but few studies have directly estimated the ability of infected hosts to transmit to uninfected hosts. Individuals' opportunities to transmit infection are dependent on behavioral and other risk factors relevant given the transmission route of the pathogen concerned. Transmission at the population level can be quantified through knowledge of risk factors in the population or phylogeographic analysis of pathogen sequence data. Mathematical model-based approaches require estimation of the per capita transmission rate and basic reproduction number, obtained by fitting models to case data and/or analysis of pathogen sequence data. Heterogeneities in infectiousness, contact behavior, and susceptibility can have substantial effects on the epidemiology of an infectious disease, so estimates of only mean values may be insufficient. For some pathogens, super-shedders (infected individuals who are highly infectious) and super-spreaders (individuals with more opportunities to transmit infection) may be important. Future work on quantifying transmission should involve integrated analyses of multiple data sources.
Collapse
|
18
|
Understanding the transmission of foot-and-mouth disease virus at different scales. Curr Opin Virol 2017; 28:85-91. [PMID: 29245054 DOI: 10.1016/j.coviro.2017.11.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 11/23/2017] [Accepted: 11/28/2017] [Indexed: 12/23/2022]
Abstract
Foot-and-mouth disease (FMD) is highly infectious, but despite the large quantities of FMD virus released into the environment and the extreme susceptibility of host species to infection, transmission is not always predictable. Whereas virus spread in endemic settings is characterised by frequent direct and indirect animal contacts, incursions into FMD-free countries may be seeded by low-probability events such as fomite or wind-borne aerosol routes. There remains a void between data generated from small-scale experimental studies and our ability to reliably reconstruct transmission routes at different scales between farms, countries and regions. This review outlines recent transmission studies in susceptible host species, and considers new approaches that integrate virus genomics and epidemiological data to recreate and understand the spread of FMD.
Collapse
|
19
|
Samy AM, Peterson AT, Hall M. Phylogeography of Rift Valley Fever Virus in Africa and the Arabian Peninsula. PLoS Negl Trop Dis 2017; 11:e0005226. [PMID: 28068340 PMCID: PMC5221768 DOI: 10.1371/journal.pntd.0005226] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 12/01/2016] [Indexed: 01/31/2023] Open
Abstract
Rift Valley Fever is an acute zoonotic viral disease caused by Rift Valley Fever virus (RVFV) that affects ruminants and humans in Sub-Saharan Africa and the Arabian Peninsula. We used phylogenetic analyses to understand the demographic history of RVFV populations, using sequence data from the three minigenomic segments of the virus. We used phylogeographic approaches to infer RVFV historical movement patterns across its geographic range, and to reconstruct transitions among host species. Results revealed broad circulation of the virus in East Africa, with many lineages originating in Kenya. Arrival of RVFV in Madagascar resulted from three major waves of virus introduction: the first from Zimbabwe, and the second and third from Kenya. The two major outbreaks in Egypt since 1977 possibly resulted from a long-distance introduction from Zimbabwe during the 1970s, and a single introduction took RVFV from Kenya to Saudi Arabia. Movement of the virus between Kenya and Sudan, and CAR and Zimbabwe, was in both directions. Viral populations in West Africa appear to have resulted from a single introduction from Central African Republic. The overall picture of RVFV history is thus one of considerable mobility, and dynamic evolution and biogeography, emphasizing its invasive potential, potentially more broadly than its current distributional limits. Rift Valley Fever is an acute zoonotic viral disease caused by Rift Valley Fever virus (RVFV) that affects ruminants and humans in Sub-Saharan Africa and the Arabian Peninsula. We used phylogenetic approaches that take sampling date into account to understand the demographic history of RVFV populations, using sequence data from the three minigenomic segments of the virus. We found evidence of broad circulation of the virus in East Africa, with many lineages originating in Kenya, with single and multiple introductions of RVFV among countries. The overall picture of RVFV history is thus one of considerable mobility, and dynamic evolution and biogeography, emphasizing its invasive potential, potentially more broadly than its current distributional limits.
Collapse
Affiliation(s)
- Abdallah M. Samy
- Biodiversity Institute, University of Kansas, Lawrence, Kansas, United States of America
- Entomology Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt
- * E-mail: ,
| | - A. Townsend Peterson
- Biodiversity Institute, University of Kansas, Lawrence, Kansas, United States of America
| | - Matthew Hall
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| |
Collapse
|
20
|
Foot-and-mouth disease (FMD) in the Maghreb and its threat to southern European countries. Trop Anim Health Prod 2016; 49:423-425. [DOI: 10.1007/s11250-016-1176-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 10/12/2016] [Indexed: 10/20/2022]
|
21
|
Identification of source and sink populations for the emergence and global spread of the East-Asia clone of community-associated MRSA. Genome Biol 2016; 17:160. [PMID: 27459968 PMCID: PMC4962458 DOI: 10.1186/s13059-016-1022-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 07/08/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Our understanding of the factors influencing the emergence, dissemination and global distribution of epidemic clones of bacteria is limited. ST59 is a major epidemic clone of community-associated MRSA in East Asia, responsible for extensive morbidity and mortality, but has a much lower prevalence in other parts of the world. The geographic origin of ST59 and its international routes of dissemination are unclear and disputed in the literature. RESULTS To investigate the origin and spread of the ST59 clone, we obtained whole genome sequences of isolates from four continents, sampled over more than a decade, and carried out a time-scaled phylogeographic analysis. We discover that two distinct ST59 clades emerged concurrently, in East Asia and the USA, but underwent clonal expansion at different times. The East Asia clade was strongly enriched for gene determinants associated with antibiotic resistance, consistent with regional differences in antibiotic usage. Both clones spread independently to Australia and Europe, and we found evidence of the persistence of multi-drug resistance following export from East Asia. Direct transfer of strains between Taiwan and the USA was not observed in either direction, consistent with geographic niche exclusion. CONCLUSIONS Our results resolve a longstanding controversy regarding the origin of the ST59 clone, revealing the major global source and sink populations and routes for the spread of multi-drug resistant clones. Additionally, our findings indicate that diversification of the accessory genome of epidemic clones partly reflects region-specific patterns of antibiotic usage, which may influence bacterial fitness after transmission to different geographic locations.
Collapse
|
22
|
Knight-Jones TJD, Robinson L, Charleston B, Rodriguez LL, Gay CG, Sumption KJ, Vosloo W. Global Foot-and-Mouth Disease Research Update and Gap Analysis: 2 - Epidemiology, Wildlife and Economics. Transbound Emerg Dis 2016; 63 Suppl 1:14-29. [DOI: 10.1111/tbed.12522] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | - L. L. Rodriguez
- Plum Island Animal Disease Center; ARS; USDA; Greenport New York USA
| | - C. G. Gay
- Agricultural Research Service; USDA; National Program 103-Animal Health; Beltsville MD USA
| | - K. J. Sumption
- European Commission for the Control of FMD (EuFMD); FAO; Rome Italy
| | - W. Vosloo
- Australian Animal Health Laboratory; CSIRO-Biosecurity Flagship; Geelong Vic Australia
| |
Collapse
|
23
|
Differential Persistence of Foot-and-Mouth Disease Virus in African Buffalo Is Related to Virus Virulence. J Virol 2016; 90:5132-5140. [PMID: 26962214 DOI: 10.1128/jvi.00166-16] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/07/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Foot-and-mouth disease (FMD) virus (FMDV) circulates as multiple serotypes and strains in many regions of endemicity. In particular, the three Southern African Territories (SAT) serotypes are maintained effectively in their wildlife reservoir, the African buffalo, and individuals may harbor multiple SAT serotypes for extended periods in the pharyngeal region. However, the exact site and mechanism for persistence remain unclear. FMD in buffaloes offers a unique opportunity to study FMDV persistence, as transmission from carrier ruminants has convincingly been demonstrated for only this species. Following coinfection of naive African buffaloes with isolates of three SAT serotypes from field buffaloes, palatine tonsil swabs were the sample of choice for recovering infectious FMDV up to 400 days postinfection (dpi). Postmortem examination identified infectious virus for up to 185 dpi and viral genomes for up to 400 dpi in lymphoid tissues of the head and neck, focused mainly in germinal centers. Interestingly, viral persistence in vivo was not homogenous, and the SAT-1 isolate persisted longer than the SAT-2 and SAT-3 isolates. Coinfection and passage of these SAT isolates in goat and buffalo cell lines demonstrated a direct correlation between persistence and cell-killing capacity. These data suggest that FMDV persistence occurs in the germinal centers of lymphoid tissue but that the duration of persistence is related to virus replication and cell-killing capacity. IMPORTANCE Foot-and-mouth disease virus (FMDV) causes a highly contagious acute vesicular disease in domestic livestock and wildlife species. African buffaloes (Syncerus caffer) are the primary carrier hosts of FMDV in African savannah ecosystems, where the disease is endemic. We have shown that the virus persists for up to 400 days in buffaloes and that there is competition between viruses during mixed infections. There was similar competition in cell culture: viruses that killed cells quickly persisted more efficiently in passaged cell cultures. These results may provide a mechanism for the dominance of particular viruses in an ecosystem.
Collapse
|
24
|
Brito BP, Jori F, Dwarka R, Maree FF, Heath L, Perez AM. Transmission of Foot-and-Mouth Disease SAT2 Viruses at the Wildlife-Livestock Interface of Two Major Transfrontier Conservation Areas in Southern Africa. Front Microbiol 2016; 7:528. [PMID: 27148217 DOI: 10.3389/fmicb.2016.00528] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 03/31/2016] [Indexed: 11/13/2022] Open
Abstract
Over a decade ago, foot-and-mouth disease (FMD) re-emerged in Southern Africa specifically in beef exporting countries that had successfully maintained disease-free areas in the past. FMD virus (FMDV) serotype SAT2 has been responsible for a majority of these outbreaks. Epidemiological studies have revealed the importance of the African buffalo as the major wildlife FMD reservoir in the region. We used phylogeographic analysis to study dynamics of FMD transmission between buffalo and domestic cattle at the interface of the major wildlife protected areas in the region currently encompassing two largest Transfrontier conservation areas: Kavango-Zambezi (KAZA) and Great Limpopo (GL). Results of this study showed restricted local occurrence of each FMDV SAT2 topotypes I, II, and III, with occasional virus migration from KAZA to GL. Origins of outbreaks in livestock are frequently attributed to wild buffalo, but our results suggest that transmission from cattle to buffalo also occurs. We used coalescent Bayesian skyline analysis to study the genetic variation of the virus in cattle and buffalo, and discussed the association of these genetic changes in the virus and relevant epidemiological events that occurred in this area. Our results show that the genetic diversity of FMDV SAT2 has decreased in buffalo and cattle population during the last decade. This study contributes to understand the major dynamics of transmission and genetic variation of FMDV SAT2 in Southern Africa, which will could ultimately help in designing efficient strategies for the control of FMD at a local and regional level.
Collapse
Affiliation(s)
- Barbara P Brito
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, United States Department of Agriculture/Agricultural Research ServiceGreenport, NY, USA; Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de ChileSantiago, Chile
| | - Ferran Jori
- Unité Propre de Recherche Animal et Gestion Intégrée des Risques, French Agricultural Research Center for International Development (CIRAD)Montpellier, France; Department of Zoology and Entomology, University of PretoriaPretoria, South Africa; Department of Animal Science and Production, Botswana College of AgricultureGaborone, Botswana
| | - Rahana Dwarka
- Transboundary Animal Diseases Programme, Ondesterpoort Veterinary Institute Onderstepoort, South Africa
| | - Francois F Maree
- Department of Zoology and Entomology, University of PretoriaPretoria, South Africa; Transboundary Animal Diseases Programme, Ondesterpoort Veterinary InstituteOnderstepoort, South Africa
| | - Livio Heath
- Transboundary Animal Diseases Programme, Ondesterpoort Veterinary Institute Onderstepoort, South Africa
| | - Andres M Perez
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota Minneapolis, MN, USA
| |
Collapse
|
25
|
Hall MD, Woolhouse MEJ, Rambaut A. The effects of sampling strategy on the quality of reconstruction of viral population dynamics using Bayesian skyline family coalescent methods: A simulation study. Virus Evol 2016; 2:vew003. [PMID: 27774296 PMCID: PMC4989886 DOI: 10.1093/ve/vew003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The ongoing large-scale increase in the total amount of genetic data for viruses and other pathogens has led to a situation in which it is often not possible to include every available sequence in a phylogenetic analysis and expect the procedure to complete in reasonable computational time. This raises questions about how a set of sequences should be selected for analysis, particularly if the data are used to infer more than just the phylogenetic tree itself. The design of sampling strategies for molecular epidemiology has been a neglected field of research. This article describes a large-scale simulation exercise that was undertaken to select an appropriate strategy when using the GMRF skygrid, one of the Bayesian skyline family of coalescent methods, in order to reconstruct past population dynamics. The simulated scenarios were intended to represent sampling for the population of an endemic virus across multiple geographical locations. Large phylogenies were simulated under a coalescent or structured coalescent model and sequences simulated from these trees; the resulting datasets were then downsampled for analyses according to a variety of schemes. Variation in results between different replicates of the same scheme was not insignificant, and as a result, we recommend that where possible analyses are repeated with different datasets in order to establish that elements of a reconstruction are not simply the result of the particular set of samples selected. We show that an individual stochastic choice of sequences can introduce spurious behaviour in the median line of the skygrid plot and that even marginal likelihood estimation can suggest complicated dynamics that were not in fact present. We recommend that the median line should not be used to infer historical events on its own. Sampling sequences with uniform probability with respect to both time and spatial location (deme) never performed worse than sampling with probability proportional to the effective population size at that time and in that location and frequently was superior. As a result, we recommend this approach in the design of future studies. We also confirm that the inclusion of many recent sequences from a single geographical location in an analysis tends to result in a spurious bottleneck effect in the reconstruction and caution against interpreting this as genuine.
Collapse
Affiliation(s)
- Matthew D Hall
- Institute of Evolutionary Biology, University of Edinburgh EH9 3FL, Edinburgh, UK,; Centre for Immunity, Infection and Evolution, University of Edinburgh EH9 3FL, Edinburgh, UK and
| | - Mark E J Woolhouse
- Institute of Evolutionary Biology, University of Edinburgh EH9 3FL, Edinburgh, UK,; Centre for Immunity, Infection and Evolution, University of Edinburgh EH9 3FL, Edinburgh, UK and
| | - Andrew Rambaut
- Institute of Evolutionary Biology, University of Edinburgh EH9 3FL, Edinburgh, UK,; Centre for Immunity, Infection and Evolution, University of Edinburgh EH9 3FL, Edinburgh, UK and; Fogarty International Center, National Institutes of Health, Bethesda, MD 20892-2220, USA
| |
Collapse
|
26
|
Pedersen CET, Frandsen P, Wekesa SN, Heller R, Sangula AK, Wadsworth J, Knowles NJ, Muwanika VB, Siegismund HR. Time Clustered Sampling Can Inflate the Inferred Substitution Rate in Foot-And-Mouth Disease Virus Analyses. PLoS One 2015; 10:e0143605. [PMID: 26630483 PMCID: PMC4667911 DOI: 10.1371/journal.pone.0143605] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/06/2015] [Indexed: 11/24/2022] Open
Abstract
With the emergence of analytical software for the inference of viral evolution, a number of studies have focused on estimating important parameters such as the substitution rate and the time to the most recent common ancestor (tMRCA) for rapidly evolving viruses. Coupled with an increasing abundance of sequence data sampled under widely different schemes, an effort to keep results consistent and comparable is needed. This study emphasizes commonly disregarded problems in the inference of evolutionary rates in viral sequence data when sampling is unevenly distributed on a temporal scale through a study of the foot-and-mouth (FMD) disease virus serotypes SAT 1 and SAT 2. Our study shows that clustered temporal sampling in phylogenetic analyses of FMD viruses will strongly bias the inferences of substitution rates and tMRCA because the inferred rates in such data sets reflect a rate closer to the mutation rate rather than the substitution rate. Estimating evolutionary parameters from viral sequences should be performed with due consideration of the differences in short-term and longer-term evolutionary processes occurring within sets of temporally sampled viruses, and studies should carefully consider how samples are combined.
Collapse
Affiliation(s)
| | - Peter Frandsen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Rasmus Heller
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Jemma Wadsworth
- The Pirbright Institute, Ash Road, Pirbright, United Kingdom
| | - Nick J. Knowles
- The Pirbright Institute, Ash Road, Pirbright, United Kingdom
| | - Vincent B. Muwanika
- Department of Environmental Management, College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
| | | |
Collapse
|
27
|
Kotecha A, Seago J, Scott K, Burman A, Loureiro S, Ren J, Porta C, Ginn HM, Jackson T, Perez-Martin E, Siebert CA, Paul G, Huiskonen JT, Jones IM, Esnouf RM, Fry EE, Maree FF, Charleston B, Stuart DI. Structure-based energetics of protein interfaces guides foot-and-mouth disease virus vaccine design. Nat Struct Mol Biol 2015; 22:788-94. [PMID: 26389739 PMCID: PMC5985953 DOI: 10.1038/nsmb.3096] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 08/26/2015] [Indexed: 11/08/2022]
Abstract
Virus capsids are primed for disassembly, yet capsid integrity is key to generating a protective immune response. Foot-and-mouth disease virus (FMDV) capsids comprise identical pentameric protein subunits held together by tenuous noncovalent interactions and are often unstable. Chemically inactivated or recombinant empty capsids, which could form the basis of future vaccines, are even less stable than live virus. Here we devised a computational method to assess the relative stability of protein-protein interfaces and used it to design improved candidate vaccines for two poorly stable, but globally important, serotypes of FMDV: O and SAT2. We used a restrained molecular dynamics strategy to rank mutations predicted to strengthen the pentamer interfaces and applied the results to produce stabilized capsids. Structural analyses and stability assays confirmed the predictions, and vaccinated animals generated improved neutralizing-antibody responses to stabilized particles compared to parental viruses and wild-type capsids.
Collapse
Affiliation(s)
- Abhay Kotecha
- Division of Structural Biology, University of Oxford, Oxford, UK
| | | | - Katherine Scott
- Transboundary Animal Disease Programme, Agricultural Research Council-Onderstepoort Veterinary Institute, Onderstepoort, South Africa
| | | | - Silvia Loureiro
- Animal and Microbial Sciences, University of Reading, Reading, UK
| | - Jingshan Ren
- Division of Structural Biology, University of Oxford, Oxford, UK
| | - Claudine Porta
- Division of Structural Biology, University of Oxford, Oxford, UK
- The Pirbright Institute, Pirbright, UK
| | - Helen M. Ginn
- Division of Structural Biology, University of Oxford, Oxford, UK
| | | | | | | | - Guntram Paul
- Merck Sharp & Dohme Animal Health, Cologne, Germany
| | | | - Ian M. Jones
- Animal and Microbial Sciences, University of Reading, Reading, UK
| | - Robert M. Esnouf
- Division of Structural Biology, University of Oxford, Oxford, UK
| | - Elizabeth E. Fry
- Division of Structural Biology, University of Oxford, Oxford, UK
| | - Francois F. Maree
- Transboundary Animal Disease Programme, Agricultural Research Council-Onderstepoort Veterinary Institute, Onderstepoort, South Africa
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa
| | | | - David I. Stuart
- Division of Structural Biology, University of Oxford, Oxford, UK
- Life Science Division, Diamond Light Source, Didcot, UK
| |
Collapse
|
28
|
Morioka K, Fukai K, Yoshida K, Kitano R, Yamazoe R, Yamada M, Nishi T, Kanno T. Development and Evaluation of a Rapid Antigen Detection and Serotyping Lateral Flow Antigen Detection System for Foot-and-Mouth Disease Virus. PLoS One 2015; 10:e0134931. [PMID: 26270053 PMCID: PMC4535846 DOI: 10.1371/journal.pone.0134931] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 07/16/2015] [Indexed: 11/19/2022] Open
Abstract
We developed a lateral flow strip using monoclonal antibodies (MAbs) which allows for rapid antigen detection and serotyping of foot-and-mouth disease virus (FMDV). This FMDV serotyping strip was able to detect all 7 serotypes and distinguish serotypes O, A, C and Asia1. Its sensitivities ranged from 103 to 104 of a 50% tissue culture infectious dose of each FMDV stain; this is equal to those of the commercial product Svanodip (Boehringer Ingelheim Svanova, Uppsala, Sweden), which can detect all seven serotypes of FMDV, but does not distinguish them. Our evaluation of the FMDV serotyping strip using a total of 118 clinical samples (vesicular fluids, vesicular epithelial emulsions and oral and/or nasal swabs) showed highly sensitive antigen detection and accuracy in serotyping in accordance with ELISA or RT-PCR. To the best of our knowledge, this is the first report on any FMDV serotyping strip that provides both rapid antigen detection and serotyping of FMDV at the same time on one strip without extra devices. This method will be useful in both FMD-free countries and FMD-infected countries, especially where laboratory diagnosis cannot be carried out.
Collapse
Affiliation(s)
- Kazuki Morioka
- Exotic Disease Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, Tokyo, Japan
| | - Katsuhiko Fukai
- Exotic Disease Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, Tokyo, Japan
| | - Kazuo Yoshida
- Exotic Disease Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, Tokyo, Japan
| | - Rie Kitano
- Exotic Disease Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, Tokyo, Japan
| | - Reiko Yamazoe
- Exotic Disease Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, Tokyo, Japan
| | - Manabu Yamada
- Exotic Disease Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, Tokyo, Japan
| | - Tatsuya Nishi
- Exotic Disease Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, Tokyo, Japan
| | - Toru Kanno
- Exotic Disease Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, Tokyo, Japan
- * E-mail:
| |
Collapse
|
29
|
Di Nardo A, Libeau G, Chardonnet B, Chardonnet P, Kock RA, Parekh K, Hamblin P, Li Y, Parida S, Sumption KJ. Serological profile of foot-and-mouth disease in wildlife populations of West and Central Africa with special reference to Syncerus caffer subspecies. Vet Res 2015; 46:77. [PMID: 26156024 PMCID: PMC4495843 DOI: 10.1186/s13567-015-0213-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 06/09/2015] [Indexed: 12/04/2022] Open
Abstract
The role which West and Central African wildlife populations might play in the transmission dynamics of FMD is not known nor have studies been performed in order to assess the distribution and prevalence of FMD in wild animal species inhabiting those specific regions of Africa. This study reports the FMD serological profile extracted from samples (n = 696) collected from wildlife of West and Central Africa between 1999 and 2003. An overall prevalence of FMDV NSP reactive sera of 31.0% (216/696) was estimated, where a significant difference in seropositivity (p = 0.000) was reported for buffalo (64.8%) as opposed to other wild animal species tested (17.8%). Different levels of exposure to the FMDV resulted for each of the buffalo subspecies sampled (p = 0.031): 68.4%, 50.0% and 0% for Nile Buffalo, West African Buffalo and African Forest Buffalo, respectively. The characterisation of the FMDV serotypes tested for buffalo found presence of antibodies against all the six FMDV serotypes tested, although high estimates for type O and SAT 3 were reported for Central Africa. Different patterns of reaction to the six FMDV serotypes tested were recorded, from sera only positive for a single serotype to multiple reactivities. The results confirmed that FMDV circulates in wild ruminants populating both West and Central Africa rangelands and in particular in buffalo, also suggesting that multiple FMDV serotypes might be involved with type O, SAT 2 and SAT 1 being dominant. Differences in serotype and spill-over risk between wildlife and livestock likely reflect regional geography, historical circulation and differing trade and livestock systems.
Collapse
Affiliation(s)
- Antonello Di Nardo
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. .,The Pirbright Institute, Pirbright, Surrey, Woking, United Kingdom.
| | - Geneviève Libeau
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR Contrôle des Maladies, Campus International de Baillarguet, Montpellier, France.
| | | | - Philippe Chardonnet
- International Foundation for the Conservation of Wildlife (IGF), Paris, France.
| | - Richard A Kock
- Royal Veterinary College (RVC), Hatfield, United Kingdom.
| | - Krupali Parekh
- The Pirbright Institute, Pirbright, Surrey, Woking, United Kingdom.
| | - Pip Hamblin
- The Pirbright Institute, Pirbright, Surrey, Woking, United Kingdom.
| | - Yanmin Li
- The Pirbright Institute, Pirbright, Surrey, Woking, United Kingdom. .,Present address: Boehringer Ingelheim GmbH, Shanghai, China.
| | - Satya Parida
- The Pirbright Institute, Pirbright, Surrey, Woking, United Kingdom.
| | - Keith J Sumption
- European Commission for the Control of Foot-and-Mouth Disease (EuFMD), Food and Agriculture Organisation of the United Nations (FAO), Rome, Italy.
| |
Collapse
|
30
|
Epidemiological analysis of an outbreak of foot-and-mouth disease (serotype SAT2) on a large dairy farm in Kenya using regular vaccination. Acta Trop 2015; 143:103-11. [PMID: 25447264 DOI: 10.1016/j.actatropica.2014.09.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/15/2014] [Accepted: 09/19/2014] [Indexed: 11/22/2022]
Abstract
During August-September 2012, an outbreak of Foot-and-mouth Disease (FMD) due to serotype Southern African Territories-2 (SAT2) occurred on a large, extensively grazed dairy farm in Nakuru County, Kenya. Over 29 days, 400/644 (62.1%) cattle were recorded as displaying clinical signs consistent with FMD. Out of the 18 management groups present, 17 had clinical cases (weighted mean incidence rate 3.5 per 100 cattle-days, 95% CI 2.4, 5.1; range 0.064-10.9). Transmission may have been encouraged when an infected group was moved to a designated isolation paddock. A four to five day minimum incubation period was apparent in five groups for which a point source exposure was evident. Further transmission was associated with the movement of individual animals incubating infection, use of a common dip and milking parlour, and grazing of susceptible groups in paddocks neighbouring to infectious cases. Animals over 18 months old appeared to be at highest risk of disease possibly due to milder clinical signs seen among younger animals resulting in reduced transmission or cases not being recorded. Cows with a breeding pedigree containing a greater proportion of zebu appeared to be at lower risk of disease. The outbreak occurred despite regular vaccination (three times per year) last performed approximately three months before the index case. Incidence risk by the lifetime number of doses received indicated limited or no vaccine effectiveness against clinical disease. Reasons for poor vaccine effectiveness are discussed with antigenic diversity of the SAT2 serotype and poor match between the field and vaccine strain as a likely explanation. Detailed field-derived epidemiological data based on individual animals are rarely presented in the literature for FMD, particularly in East-Africa and with the SAT2 serotype. This study provides a detailed account and therefore provides a greater understanding of FMD outbreaks in this setting. Additionally, this is the first study to provide field-derived evidence of poor vaccine effectiveness using a SAT2 vaccine. Further field-based measures of vaccine effectiveness in line with evaluation of human vaccines are needed to inform FMD control policy which has previously relied heavily upon experimental data and anecdotal experience.
Collapse
|
31
|
Wekesa SN, Sangula AK, Belsham GJ, Tjornehoj K, Muwanika VB, Gakuya F, Mijele D, Siegismund HR. Characterisation of recent foot-and-mouth disease viruses from African buffalo (Syncerus caffer) and cattle in Kenya is consistent with independent virus populations. BMC Vet Res 2015; 11:17. [PMID: 25644407 PMCID: PMC4334418 DOI: 10.1186/s12917-015-0333-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 01/22/2015] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Understanding the epidemiology of foot-and-mouth disease (FMD), including roles played by different hosts, is essential for improving disease control. The African buffalo (Syncerus caffer) is a reservoir for the SAT serotypes of FMD virus (FMDV). Large buffalo populations commonly intermingle with livestock in Kenya, yet earlier studies have focused on FMD in the domestic livestock, hence the contribution of buffalo to disease in livestock is largely unknown. This study analysed 47 epithelia collected from FMD outbreaks in Kenyan cattle between 2008 and 2012, and 102 probang and serum samples collected from buffalo in three different Kenyan ecosystems; Maasai-Mara (MME) (n = 40), Tsavo (TSE) (n = 33), and Meru (ME) (n = 29). RESULTS Antibodies against FMDV non-structural proteins were found in 65 of 102 (64%) sera from buffalo with 44/102 and 53/102 also having neutralising antibodies directed against FMDV SAT 1 and SAT 2, respectively. FMDV RNA was detected in 42% of the buffalo probang samples by RT-qPCR (Cycle Threshold (Ct) ≤32). Two buffalo probang samples were positive by VI and were identified as FMDV SAT 1 and SAT 2 by Ag-ELISA, while the latter assay detected serotypes O (1), A (20), SAT 1 (7) and SAT 2 (19) in the 47 cattle epithelia. VP1 coding sequences were generated for two buffalo and 21 cattle samples. Phylogenetic analyses revealed SAT 1 and SAT 2 virus lineages within buffalo that were distinct from those detected in cattle. CONCLUSIONS We found that FMDV serotypes O, A, SAT 1 and SAT 2 were circulating among cattle in Kenya and cause disease, but only SAT 1 and SAT 2 viruses were successfully isolated from clinically normal buffalo. The buffalo isolates were genetically distinct from isolates obtained from cattle. Control efforts should focus primarily on reducing FMDV circulation among livestock and limiting interaction with buffalo. Comprehensive studies incorporating additional buffalo viruses are recommended.
Collapse
Affiliation(s)
- Sabenzia Nabalayo Wekesa
- Foot-and-Mouth Disease Laboratory, Embakasi, P. O. Box 18021, 00500, Nairobi, Kenya.
- Department of Environmental Management, College of Agricultural and Environmental Sciences, Makerere University, P. O. Box 7062/7298, Kampala, Uganda.
| | | | - Graham J Belsham
- National Veterinary Institute, Technical University of Denmark, Lindholm, DK-4771, Kalvehave, Denmark.
| | - Kirsten Tjornehoj
- National Veterinary Institute, Technical University of Denmark, Lindholm, DK-4771, Kalvehave, Denmark.
| | - Vincent B Muwanika
- Department of Environmental Management, College of Agricultural and Environmental Sciences, Makerere University, P. O. Box 7062/7298, Kampala, Uganda.
| | - Francis Gakuya
- Kenya Wildlife Service, Veterinary Services Department, P.O Box 40241 (00100), Nairobi, Kenya.
| | - Dominic Mijele
- Kenya Wildlife Service, Veterinary Services Department, P.O Box 40241 (00100), Nairobi, Kenya.
| | - Hans Redlef Siegismund
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen, Denmark.
| |
Collapse
|
32
|
Ward MJ, Gibbons CL, McAdam PR, van Bunnik BAD, Girvan EK, Edwards GF, Fitzgerald JR, Woolhouse MEJ. Time-Scaled Evolutionary Analysis of the Transmission and Antibiotic Resistance Dynamics of Staphylococcus aureus Clonal Complex 398. Appl Environ Microbiol 2014; 80:7275-82. [PMID: 25239891 PMCID: PMC4249192 DOI: 10.1128/aem.01777-14] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 09/11/2014] [Indexed: 12/20/2022] Open
Abstract
Staphylococcus aureus clonal complex 398 (CC398) is associated with disease in humans and livestock, and its origins and transmission have generated considerable interest. We performed a time-scaled phylogenetic analysis of CC398, including sequenced isolates from the United Kingdom (Scotland), along with publicly available genomes. Using state-of-the-art methods for mapping traits onto phylogenies, we quantified transitions between host species to identify sink and source populations for CC398 and employed a novel approach to investigate the gain and loss of antibiotic resistance in CC398 over time. We identified distinct human- and livestock-associated CC398 clades and observed multiple transmissions of CC398 from livestock to humans and between countries, lending quantitative support to previous reports. Of note, we identified a subclade within the livestock-associated clade comprised of isolates from hospital environments and newborn babies, suggesting that livestock-associated CC398 is capable of onward transmission in hospitals. In addition, our analysis revealed significant differences in the dynamics of resistance to methicillin and tetracycline related to contrasting historical patterns of antibiotic usage between the livestock industry and human medicine. We also identified significant differences in patterns of gain and loss of different tetracycline resistance determinants, which we ascribe to epistatic interactions between the resistance genes and/or differences in the modes of inheritance of the resistance determinants.
Collapse
Affiliation(s)
- M J Ward
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - C L Gibbons
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - P R McAdam
- The Roslin Institute and Edinburgh Infectious Diseases, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - B A D van Bunnik
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - E K Girvan
- Scottish MRSA Reference Laboratory, National Health Service Greater Glasgow and Clyde, Glasgow Royal Infirmary, Glasgow, United Kingdom
| | - G F Edwards
- Scottish MRSA Reference Laboratory, National Health Service Greater Glasgow and Clyde, Glasgow Royal Infirmary, Glasgow, United Kingdom
| | - J R Fitzgerald
- The Roslin Institute and Edinburgh Infectious Diseases, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - M E J Woolhouse
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
33
|
Maree FF, Kasanga CJ, Scott KA, Opperman PA, Melanie C, Sangula AK, Raphael S, Yona S, Wambura PN, King DP, Paton DJ, Rweyemamu MM. Challenges and prospects for the control of foot-and-mouth disease: an African perspective. VETERINARY MEDICINE-RESEARCH AND REPORTS 2014; 5:119-138. [PMID: 32670853 PMCID: PMC7337166 DOI: 10.2147/vmrr.s62607] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/23/2014] [Indexed: 11/23/2022]
Abstract
The epidemiology of foot-and-mouth disease (FMD) in Africa is unique in the sense that six of the seven serotypes of FMD viruses (Southern African Territories [SAT] 1, SAT2, SAT3, A, O, and C), with the exception of Asia-1, have occurred in the last decade. Due to underreporting of FMD, the current strains circulating throughout sub-Saharan Africa are in many cases unknown. For SAT1, SAT2, and serotype A viruses, the genetic diversity is reflected in antigenic variation, and indications are that vaccine strains may be needed for each topotype. This has serious implications for control using vaccines and for choice of strains to include in regional antigen banks. The epidemiology is further complicated by the fact that SAT1, SAT2, and SAT3 viruses are maintained and spread by wildlife, persistently infecting African buffalo in particular. Although the precise mechanism of transmission of FMD from buffalo to cattle is not well understood, it is facilitated by direct contact between these two species. Once cattle are infected they may maintain SAT infections without the further involvement of buffalo. No single strategy for control of FMD in Africa is applicable. Decision on the most effective regional control strategy should focus on an ecosystem approach, identification of primary endemic areas, animal husbandry practices, climate, and animal movement. Within each ecosystem, human behavior could be integrated in disease control planning. Different regions in sub-Saharan Africa are at different developmental stages and are thus facing unique challenges and priorities in terms of veterinary disease control. Many science-based options targeting improved vaccinology, diagnostics, and other control measures have been described. This review therefore aims to emphasize, on one hand, the progress that has been achieved in the development of new technologies, including research towards improved tailored vaccines, appropriate vaccine strain selection, vaccine potency, and diagnostics, and how it relates to the conditions in Africa. On the other hand, we focus on the unique epidemiological, ecological, livestock farming and marketing, socioeconomic, and governance issues that constrain effective FMD control. Any such new technologies should have the availability of safe livestock products for trade as the ultimate goal.
Collapse
Affiliation(s)
- Francois F Maree
- Transboundary Animal Diseases Programme, Onderstepoort Veterinary Institute, Agricultural Research Council, Onderstepoort, Pretoria, South Africa.,Department of Microbiology and Plant Pathology, Faculty of Agricultural and Natural Sciences, University of Pretoria, Pretoria, South Africa
| | - Christopher J Kasanga
- Southern African Centre for Infectious Diseases Surveillance, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Katherine A Scott
- Transboundary Animal Diseases Programme, Onderstepoort Veterinary Institute, Agricultural Research Council, Onderstepoort, Pretoria, South Africa
| | - Pamela A Opperman
- Transboundary Animal Diseases Programme, Onderstepoort Veterinary Institute, Agricultural Research Council, Onderstepoort, Pretoria, South Africa.,Department of Microbiology and Plant Pathology, Faculty of Agricultural and Natural Sciences, University of Pretoria, Pretoria, South Africa
| | - Chitray Melanie
- Transboundary Animal Diseases Programme, Onderstepoort Veterinary Institute, Agricultural Research Council, Onderstepoort, Pretoria, South Africa.,Department of Microbiology and Plant Pathology, Faculty of Agricultural and Natural Sciences, University of Pretoria, Pretoria, South Africa
| | | | - Sallu Raphael
- Southern African Centre for Infectious Diseases Surveillance, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Sinkala Yona
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Philemon N Wambura
- Southern African Centre for Infectious Diseases Surveillance, Sokoine University of Agriculture, Morogoro, Tanzania
| | | | | | - Mark M Rweyemamu
- Southern African Centre for Infectious Diseases Surveillance, Sokoine University of Agriculture, Morogoro, Tanzania
| |
Collapse
|
34
|
Elhaig MM, Elsheery MN. Molecular investigation of foot-and-mouth disease virus in domestic bovids from Gharbia, Egypt. Trop Anim Health Prod 2014; 46:1455-62. [PMID: 25187028 DOI: 10.1007/s11250-014-0665-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 08/19/2014] [Indexed: 11/30/2022]
Abstract
An outbreak of foot-and-mouth disease (FMD) affecting cattle and water buffalo (Bubalus bubalis) occurred in Egypt during 2012/2013. The present study was undertaken to determine the current strains of the FMD virus (FMDV) and the prevalence of FMD among cattle and buffalo in Gharbia, Egypt. The diagnostic sensitivity of two RT-PCR assays for the detection of FMDV was evaluated. The results revealed that SAT2 was the causative agent. The percentage of infected of animals varied with the detection method, ranging from 62.5 % by the untranslated region (UTR) RT-PCR to 75.6 % by SAT2 RT-PCR. The overall prevalence and mortality rates were 100 and 21 %, respectively. The mortality was higher in buffalo (23.3 %) than it was in cattle (17 %). A partial sequence of SAT2 was identical (90-100 %) to Egyptian isolates and was close in similarity to sequences from Sudan and Libya. In conclusion, FMD in Egypt is caused by SAT2. No other serotypes were detected. The results of this study provided the valuable data regarding the epidemiology of SAT2 in cattle and water buffalo from Egypt, which strengthens the need to change the strategies of both control and prevention that help to prevent the spread of the disease.
Collapse
Affiliation(s)
- Mahmoud Mohey Elhaig
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt,
| | | |
Collapse
|
35
|
Challenges and economic implications in the control of foot and mouth disease in sub-saharan Africa: lessons from the zambian experience. Vet Med Int 2014; 2014:373921. [PMID: 25276472 PMCID: PMC4158296 DOI: 10.1155/2014/373921] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 07/27/2014] [Accepted: 07/28/2014] [Indexed: 11/17/2022] Open
Abstract
Foot and mouth disease is one of the world's most important livestock diseases for trade. FMD infections are complex in nature and there are many epidemiological factors needing clarification. Key questions relate to the control challenges and economic impact of the disease for resource-poor FMD endemic countries like Zambia. A review of the control challenges and economic impact of FMD outbreaks in Zambia was made. Information was collected from peer-reviewed journals articles, conference proceedings, unpublished scientific reports, and personal communication with scientists and personal field experiences. The challenges of controlling FMD using mainly vaccination and movement control are discussed. Impacts include losses in income of over US$ 1.6 billion from exports of beef and sable antelopes and an annual cost of over US$ 2.7 million on preventive measures. Further impacts included unquantified losses in production and low investment in agriculture resulting in slow economic growth. FMD persistence may be a result of inadequate epidemiological understanding of the disease and ineffectiveness of the control measures that are being applied. The identified gaps may be considered in the annual appraisal of the FMD national control strategy in order to advance on the progressive control pathway.
Collapse
|
36
|
Tekleghiorghis T, Moormann RJM, Weerdmeester K, Dekker A. Foot-and-mouth Disease Transmission in Africa: Implications for Control, a Review. Transbound Emerg Dis 2014; 63:136-51. [PMID: 25052411 DOI: 10.1111/tbed.12248] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Indexed: 11/30/2022]
Abstract
In Africa, for the control of foot-and-mouth disease (FMD), more information is needed on the spread of the disease at local, regional and inter-regional level. The aim of this review is to identify the role that animal husbandry, trade and wildlife have on the transmission of FMD and to provide a scientific basis for different FMD control measures in Africa. Review of literature, published reports and databases shows that there is more long distance spread of FMD virus serotypes within North, West, Central and East Africa than in southern Africa. In North, West, Central and East Africa migratory animal husbandry systems often related with search for grazing and water as well as trade are practiced to a greater extent than in southern Africa. In southern Africa, the role of African buffalo (Syncerus caffer) is more extensively studied than in the other parts of Africa, but based on the densities of African buffalo in Central and East Africa, one would assume that buffalo should also play a role in the epidemiology of FMD in this part of Africa. More sampling of buffalo is necessary in West, Central and East Africa. The genetic analysis of virus strains has proven to be valuable to increase our understanding in the spread of FMD in Africa. This review shows that there is a difference in FMD occurrence between southern Africa and the rest of the continent; this distinction is most likely based on differences in animal husbandry and trade systems. Insufficient data on FMD in wildlife outside southern Africa is limiting our understanding on the role wildlife plays in the transmission of FMD in the other buffalo inhabited areas of Africa.
Collapse
Affiliation(s)
- T Tekleghiorghis
- Central Veterinary Institute, part of Wageningen UR, Lelystad, the Netherlands.,National Veterinary Laboratory, Ministry of Agriculture, Asmara, Eritrea
| | - R J M Moormann
- Central Veterinary Institute, part of Wageningen UR, Lelystad, the Netherlands.,Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - K Weerdmeester
- Central Veterinary Institute, part of Wageningen UR, Lelystad, the Netherlands
| | - A Dekker
- Central Veterinary Institute, part of Wageningen UR, Lelystad, the Netherlands
| |
Collapse
|