1
|
Prajapat B, Sharma A, Kumar S, Sharma D. Deciphering Rickettsia conorii metabolic pathways: A treasure map to therapeutic targets. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2024; 6:1-9. [PMID: 39722831 PMCID: PMC11667008 DOI: 10.1016/j.biotno.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024]
Abstract
Indian tick typhus is an infectious disease caused by intracellular gram-negative bacteria Rickettsia conorii (R. conorii). The bacterium is transmitted to humans through bite of infected ticks and sometimes by lice, fleas or mites. The disease is restricted to some areas with few cases but in last decade it is re-emerging with large number of cases from different areas of India. The insight in to genetic makeup of bacterial pathogens can be derived from their metabolic pathways. In the current study 18 metabolic pathways were found to be unique to the pathogen (R. conorii). A comprehensive analysis revealed 163 proteins implicated in 18 unique metabolic pathways of R. conorii. 140 proteins were reported to be essential for the bacterial survival, 46 were found virulent and 10 were found involved in resistance which can enhance the bacterial pathogenesis. The functional analysis of unique metabolic pathway proteins showed the abundance of plasmid conjugal transfer TrbL/VirB6, aliphatic acid kinase short chain, signal transduction response regulator receiver and components of type IV transporter system domains. The proteins were classified into six broad categories on the basis of predicted domains, i.e., metabolism, transport, gene expression and regulation, antimicrobial resistance, cell signalling and proteolysis. Further, in silico analysis showed that 88 proteins were suitable therapeutic targets which do not showed homology with host proteins. The 43 proteins showed hits with the DrugBank database showing their druggable nature and remaining 45 proteins were classified as novel drug targets that require further validation. The study will help to provide the better understanding of pathogens survival and embark on the development of successful therapies for the management of Indian tick typhus.
Collapse
Affiliation(s)
- Brijesh Prajapat
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, India, 176206
| | - Ankita Sharma
- Dr. Ambedkar Centre of Excellence, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, 176215, India
| | - Sunil Kumar
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, India, 176206
| | - Dixit Sharma
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, India, 176206
| |
Collapse
|
2
|
Sanchez SE, Chiarelli TJ, Park MA, Carlyon JA. Orientia tsutsugamushi infection reduces host gluconeogenic but not glycolytic substrates. Infect Immun 2024; 92:e0028424. [PMID: 39324805 PMCID: PMC11556148 DOI: 10.1128/iai.00284-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/20/2024] [Indexed: 09/27/2024] Open
Abstract
Orientia tsutsugamushi a causal agent of scrub typhus, is an obligate intracellular bacterium that, akin to other rickettsiae, is dependent on host cell-derived nutrients for survival and thus pathogenesis. Based on limited experimental evidence and genome-based in silico predictions, O. tsutsugamushi is hypothesized to parasitize host central carbon metabolism (CCM). Here, we (re-)evaluated O. tsutsugamushi dependency on host cell CCM as initiated by glucose and glutamine. Orientia infection had no effect on host glucose and glutamine consumption or lactate accumulation, indicating no change in overall flux through CCM. However, host cell mitochondrial activity and ATP levels were reduced during infection and correspond with lower intracellular glutamine and glutamate pools. To further probe the essentiality of host CCM in O. tsutsugamushi proliferation, we developed a minimal medium for host cell cultivation and paired it with chemical inhibitors to restrict the intermediates and processes related to glucose and glutamine metabolism. These conditions failed to negatively impact O. tsutsugamushi intracellular growth, suggesting the bacterium is adept at scavenging from host CCM. Accordingly, untargeted metabolomics was utilized to evaluate minor changes in host CCM metabolic intermediates across O. tsutsugamushi infection and revealed that pathogen proliferation corresponds with reductions in critical CCM building blocks, including amino acids and TCA cycle intermediates, as well as increases in lipid catabolism. This study directly correlates O. tsutsugamushi proliferation to alterations in host CCM and identifies metabolic intermediates that are likely critical for pathogen fitness.IMPORTANCEObligate intracellular bacterial pathogens have evolved strategies to reside and proliferate within the eukaryotic intracellular environment. At the crux of this parasitism is the balance between host and pathogen metabolic requirements. The physiological basis driving O. tsutsugamushi dependency on its mammalian host remains undefined. By evaluating alterations in host metabolism during O. tsutsugamushi proliferation, we discovered that bacterial growth is independent of the host's nutritional environment but appears dependent on host gluconeogenic substrates, including amino acids. Given that O. tsutsugamushi replication is essential for its virulence, this study provides experimental evidence for the first time in the post-genomic era of metabolic intermediates potentially parasitized by a scrub typhus agent.
Collapse
Affiliation(s)
- Savannah E. Sanchez
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Travis J. Chiarelli
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Margaret A. Park
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida, USA
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, Florida, USA
| | - Jason A. Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
3
|
Maitre A, Kratou M, Corona-Guerrero I, Abuin-Denis L, Mateos-Hernández L, Mosqueda J, Almazan C, Said MB, Piloto-Sardiñas E, Obregon D, Cabezas-Cruz A. Differential interactions of Rickettsia species with tick microbiota in Rh. sanguineus and Rh. turanicus. Sci Rep 2024; 14:20674. [PMID: 39237587 PMCID: PMC11377539 DOI: 10.1038/s41598-024-71539-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024] Open
Abstract
Tick-borne rickettsioses, caused by Gram-negative bacteria of the Rickettsia genus, pose a growing global threat, with various arthropod vectors contributing to their transmission. Understanding the complex interactions within tick microbiota, including the role of Rickettsia species, is crucial for elucidating the dynamics of rickettsial diseases. Here, we investigate the taxonomic profiles and co-occurrence networks of Rickettsia in Rh. sanguineus sensus lato (s.l.) and Rh. turanicus ticks, revealing significant differences in community composition and local connectivity of Rickettsia species. While the microbiota of both tick species share common taxa, distinct differences in relative abundance and network topology suggest unique ecological niches. Moreover, robustness analysis demonstrates varying resilience to perturbations, indicating different strategies for network organization. Our findings also highlight metabolic differences between tick species, suggesting potential implications for Rickettsia interactions. Overall, this study provides insights into the intricate microbial landscape within ticks, shedding light on the functional redundancy and metabolic pathways associated with Rickettsia, thus advancing our understanding of tick-borne diseases.
Collapse
Affiliation(s)
- Apolline Maitre
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
- INRAE, UR 0045 Laboratoire de Recherches sur le Développement de l'Elevage (SELMET-LRDE), 20250, Corte, France
- EA 7310, Laboratoire de Virologie, Université de Corse, Corte, France
| | - Myriam Kratou
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, 2010, Manouba, Tunisia
| | - Ivan Corona-Guerrero
- Immunology and Vaccines Laboratory, C. A. Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Queretaro, Mexico
- C.A. Salud Animal y Microbiologia Ambiental. Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Queretaro, Mexico
| | - Lianet Abuin-Denis
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology, Avenue 31 between 158 and 190, P.O. Box 6162, 10600, Havana, Cuba
| | - Lourdes Mateos-Hernández
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Juan Mosqueda
- Immunology and Vaccines Laboratory, C. A. Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Queretaro, Mexico
- C.A. Salud Animal y Microbiologia Ambiental. Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Queretaro, Mexico
| | - Consuelo Almazan
- Immunology and Vaccines Laboratory, C. A. Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Queretaro, Mexico
- C.A. Salud Animal y Microbiologia Ambiental. Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Queretaro, Mexico
| | - Mourad Ben Said
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, 2010, Manouba, Tunisia
- Department of Basic Sciences, Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, 2010, Manouba, Tunisia
| | - Elianne Piloto-Sardiñas
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
- Direction of Animal Health, National Center for Animal and Plant Health, Carretera de Tapaste y Autopista Nacional, Apartado Postal 10, 32700, San José de Las Lajas, Mayabeque, Cuba
| | - Dasiel Obregon
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada.
| | - Alejandro Cabezas-Cruz
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France.
| |
Collapse
|
4
|
Samaddar S, Rolandelli A, O'Neal AJ, Laukaitis-Yousey HJ, Marnin L, Singh N, Wang X, Butler LR, Rangghran P, Kitsou C, Cabrera Paz FE, Valencia L, R Ferraz C, Munderloh UG, Khoo B, Cull B, Rosche KL, Shaw DK, Oliver J, Narasimhan S, Fikrig E, Pal U, Fiskum GM, Polster BM, Pedra JHF. Bacterial reprogramming of tick metabolism impacts vector fitness and susceptibility to infection. Nat Microbiol 2024; 9:2278-2291. [PMID: 38997520 DOI: 10.1038/s41564-024-01756-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/11/2024] [Indexed: 07/14/2024]
Abstract
Arthropod-borne pathogens are responsible for hundreds of millions of infections in humans each year. The blacklegged tick, Ixodes scapularis, is the predominant arthropod vector in the United States and is responsible for transmitting several human pathogens, including the Lyme disease spirochete Borrelia burgdorferi and the obligate intracellular rickettsial bacterium Anaplasma phagocytophilum, which causes human granulocytic anaplasmosis. However, tick metabolic response to microbes and whether metabolite allocation occurs upon infection remain unknown. Here we investigated metabolic reprogramming in the tick ectoparasite I. scapularis and determined that the rickettsial bacterium A. phagocytophilum and the spirochete B. burgdorferi induced glycolysis in tick cells. Surprisingly, the endosymbiont Rickettsia buchneri had a minimal effect on bioenergetics. An unbiased metabolomics approach following A. phagocytophilum infection of tick cells showed alterations in carbohydrate, lipid, nucleotide and protein metabolism, including elevated levels of the pleiotropic metabolite β-aminoisobutyric acid. We manipulated the expression of genes associated with β-aminoisobutyric acid metabolism in I. scapularis, resulting in feeding impairment, diminished survival and reduced bacterial acquisition post haematophagy. Collectively, we discovered that metabolic reprogramming affects interspecies relationships and fitness in the clinically relevant tick I. scapularis.
Collapse
Affiliation(s)
- Sourabh Samaddar
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Agustin Rolandelli
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Anya J O'Neal
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD, USA
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hanna J Laukaitis-Yousey
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Liron Marnin
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Nisha Singh
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD, USA
- Department of Biotechnology, School of Energy Technology, Pandit Deendayal Energy University; Knowledge Corridor, Gandhinagar, India
| | - Xiaowei Wang
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD, USA
- MP Biomedicals, Solon, OH, USA
| | - L Rainer Butler
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Parisa Rangghran
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Chrysoula Kitsou
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Francy E Cabrera Paz
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Luisa Valencia
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Camila R Ferraz
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | | | - Benedict Khoo
- Division of Environmental Health Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Benjamin Cull
- Department of Entomology, University of Minnesota, Saint Paul, MN, USA
| | - Kristin L Rosche
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Dana K Shaw
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Jonathan Oliver
- Division of Environmental Health Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Sukanya Narasimhan
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Erol Fikrig
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Gary M Fiskum
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Brian M Polster
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Joao H F Pedra
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
5
|
Wang J, Du LF, Zhang MZ, Wei W, Chen ZY, Zhang X, Xiong T, Wang ZF, Xia LY, Jiang JF, Li WJ, Zhu DY, Jia N, Cao WC. Stomach as the target organ of Rickettsia heilongjiangensis infection in C57BL/6 mice identified by click chemistry. Commun Biol 2024; 7:784. [PMID: 38951577 PMCID: PMC11217389 DOI: 10.1038/s42003-024-06468-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/19/2024] [Indexed: 07/03/2024] Open
Abstract
Spotted fever group rickettsiae (SFGR) are obligate intracellular bacteria that cause spotted fever. The limitations of gene manipulation pose great challenges to studying the infection mechanisms of Rickettsia. By combining bioorthogonal metabolism and click chemistry, we developed a method to label R. heilongjiangensis via azide moieties and achieved rapid pathogen localization without complex procedures. Moreover, we constructed a C57BL/6 mice infection model by simulating tick bites and discovered that the stomach is the target organ of R. heilongjiangensis infection through in vivo imaging systems, which explained the occurrence of gastrointestinal symptoms following R. heilongjiangensis infection in some cases. This study offers a unique perspective for subsequent investigations into the pathogenic mechanisms of SFGR and identifies a potential target organ for R. heilongjiangensis.
Collapse
Affiliation(s)
- Juan Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, 341000, Jiangxi, P. R. China
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, P.R. China
| | - Li-Feng Du
- Institute of EcoHealth, School of Public Health, Shandong University, 44 Wenhuaxi Street, Jinan, 250012, Shandong, P.R. China
| | - Ming-Zhu Zhang
- Institute of EcoHealth, School of Public Health, Shandong University, 44 Wenhuaxi Street, Jinan, 250012, Shandong, P.R. China
| | - Wei Wei
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, P.R. China
| | - Zi-Yun Chen
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, P.R. China
- School of Public Health, Fujian Medical University, Fuzhou, Fujian, 350122, China
| | - Xu Zhang
- Guangdong Key Laboratory of Nanomedicine CAS-HK Joint Lab of Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations Shenzhen Institute of Advanced Technology (SIAT) Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Tao Xiong
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, P.R. China
| | - Zhen-Fei Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Luo-Yuan Xia
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, P.R. China
- Institute of EcoHealth, School of Public Health, Shandong University, 44 Wenhuaxi Street, Jinan, 250012, Shandong, P.R. China
| | - Jia-Fu Jiang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, P.R. China.
| | - Wen-Jun Li
- Guangdong Key Laboratory of Nanomedicine CAS-HK Joint Lab of Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations Shenzhen Institute of Advanced Technology (SIAT) Chinese Academy of Sciences, Shenzhen, 518055, P. R. China.
| | - Dai-Yun Zhu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, P.R. China.
| | - Na Jia
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, P.R. China.
| | - Wu-Chun Cao
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, P.R. China.
| |
Collapse
|
6
|
Li YH, Peng J, Wu QJ, Sun JC, Zhang PJ, Qiu BL. Transcriptome data reveal beneficial effects of Rickettsia (Rickettsiales: Rickettsiaceae) on Bemisia tabaci(Hemiptera: Aleyrodidae) through nutritional factors and defense mechanisms. JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:817-824. [PMID: 38603566 DOI: 10.1093/jee/toae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/09/2024] [Accepted: 03/29/2024] [Indexed: 04/13/2024]
Abstract
Whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) is a destructive insect pest of many crops. Rickettsia infection in different cryptic species of B. tabaci has been observed worldwide. Understanding the interactions between these 2 organisms is critical to developing Rickettsia-based strategies to control B. tabaci and thereby reduce the transmission of related vector-borne viruses. In this study, we investigated the effects of Rickettsia infection on the biological characteristics of the Middle East Asia Minor 1 (MEAM1) strain of B. tabaci through biological analysis of infected and uninfected individuals. The results of this study suggest that Rickettsia may confer fitness benefits. These benefits include increased fertility, improved survival rates, accelerated development, and resulted in female bias. We also investigated the transcriptomics impact of Rickettsia infection on B. tabaci by performing a comparative RNA-seq analysis of nymphs and adult females, both with and without the infection. Our analysis revealed 218 significant differentially expressed genes (DEGs) in infected nymphs compared to uninfected ones and 748 significant DEGs in infected female adults compared to their uninfected whiteflies. Pathway analysis further revealed that Rickettsia can affect many important metabolic pathways in whiteflies. The results suggest that Rickettsia plays an essential role in energy metabolism, and nutrient synthesis in the B. tabaci MEAM1, and depends on metabolites obtained from the host to ensure its survival. Overall, our findings suggest that Rickettsia has beneficial effects on B. tabaci and offered insights into the potential molecular mechanisms governing the interactions between Rickettsia and B. tabaci MEAM1.
Collapse
Affiliation(s)
- Yi-Han Li
- Engineering Research Center of Biocontrol, South China Agricultural University, Ministry of Education Guangdong Province, Guangzhou 510640, China
- Engineering Research Center of Biotechnology for Active Substances, Chongqing Normal University, Ministry of Education, Chongqing 401331, China
| | - Jing Peng
- Engineering Research Center of Biocontrol, South China Agricultural University, Ministry of Education Guangdong Province, Guangzhou 510640, China
| | - Qing-Jun Wu
- Institute of Vegetables & Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing-Chen Sun
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Peng-Jun Zhang
- Department of Biological Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Bao-Li Qiu
- Engineering Research Center of Biotechnology for Active Substances, Chongqing Normal University, Ministry of Education, Chongqing 401331, China
| |
Collapse
|
7
|
Voss OH, Moin I, Gaytan H, Ullah S, Sadik M, Azad AF, Rahman MS. Pathogenic rickettsiae utilize the phosphatidylserine binding receptor CD300f on macrophages for host invasion and pathogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593542. [PMID: 38766217 PMCID: PMC11100818 DOI: 10.1101/2024.05.10.593542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Some arthropod-borne obligate intracellular rickettsiae are among the most virulent human pathogens. Upon entry, Rickettsia species modulate immune (e.g., macrophages; MΦ) and non-immune cell (e.g., endothelial cells) responses to create a habitable environment for host colonization. In particular, MΦ play a crucial role in either terminating an infection at an early stage or succumbing to bacterial replication and colonization. However, our understanding on how Rickettsia species modulate crucial cellular processes within MΦ, including phagocytosis, and host cell defenses, to establish an intracytosolic replication niche, remain poorly defined. In this study, we describe a previously unappreciated mechanism, in which pathogenic rickettsiae infection is mediated by the phosphatidylserine (PS)-binding receptor, CD300f. We found that CD300f -/- mice but not wild-type (WT) C57BL/6J mice were protected against R. typhi - or R. rickettsii [ Shelia Smith ]-induced fatal rickettsiosis. Adoptative transfer studies further revealed that CD300f-expressing bone marrow-derived macrophages (BMDMΦ) are important mediators to control rickettsiosis in WT mice. Mechanistical analysis, using WT or CD300f -/- BMDMΦ, showed that CD300f facilitates the engulfment of both pathogenic R. typhi and R. rickettsii species, likely via a PS-mediated mechanism. Furthermore, CD300f was involved in the intracytosolic replication of both pathogenic rickettsiae by differentially modulating the anti-inflammatory Interleukin (IL)-10 and anti-rickettsial IL-1α and IL-1β cytokine responses. Collectively, our findings describe a previously unappreciated role for the efferocytic receptor, CD300f, to facilitate engulfment and the intracellular survival of pathogenic rickettsiae within the host. Significance Statement Vector-borne diseases, which are transmitted by hematophagous arthropods, like ticks and fleas, present a perilous threat to public health. In fact, tick- and flea-borne rickettsial diseases are on the rise globally and our current inadequate understanding on how Rickettsia interacts with their mammalian host has significantly impaired the development of effective interventions against pathogenic rickettsial infections. Here, we identified the phosphatidylserine (PS)-receptor, CD300f, as an important mediator of pathogenic rickettsiae infection in vivo and in vitro . Specifically, we showed that CD300f-expressing macrophages facilitate rickettsial infection by differentially modulating anti-inflammatory Interleukin (IL)-10 and anti-rickettsial IL-1α and IL-1β cytokine responses. In sum, our data described CD300f as an important regulator of rickettsial infection and may present a target for therapeutic intervention.
Collapse
|
8
|
Ohdera AH, Mansbridge M, Wang M, Naydenkov P, Kamel B, Goentoro L. The microbiome of a Pacific moon jellyfish Aurelia coerulea. PLoS One 2024; 19:e0298002. [PMID: 38635587 PMCID: PMC11025843 DOI: 10.1371/journal.pone.0298002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/16/2024] [Indexed: 04/20/2024] Open
Abstract
The impact of microbiome in animal physiology is well appreciated, but characterization of animal-microbe symbiosis in marine environments remains a growing need. This study characterizes the microbial communities associated with the moon jellyfish Aurelia coerulea, first isolated from the East Pacific Ocean and has since been utilized as an experimental system. We find that the microbiome of this Pacific Aurelia culture is dominated by two taxa, a Mollicutes and Rickettsiales. The microbiome is stable across life stages, although composition varies. Mining the host sequencing data, we assembled the bacterial metagenome-assembled genomes (MAGs). The bacterial MAGs are highly reduced, and predict a high metabolic dependence on the host. Analysis using multiple metrics suggest that both bacteria are likely new species. We therefore propose the names Ca. Mariplasma lunae (Mollicutes) and Ca. Marinirickettsia aquamalans (Rickettsiales). Finally, comparison with studies of Aurelia from other geographical populations suggests the association with Ca. Mariplasma lunae occurs in Aurelia from multiple geographical locations. The low-diversity microbiome of Aurelia provides a relatively simple system to study host-microbe interactions.
Collapse
Affiliation(s)
- Aki H. Ohdera
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States of America
- National Museum of Natural History, Smithsonian Institute, Washington, D.C., United States of America
| | | | - Matthew Wang
- Flintridge Preparatory School, La Cañada Flintridge, CA, United States of America
| | - Paulina Naydenkov
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States of America
| | - Bishoy Kamel
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America
| | - Lea Goentoro
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States of America
| |
Collapse
|
9
|
de Crécy-Lagard V, Hutinet G, Cediel-Becerra JDD, Yuan Y, Zallot R, Chevrette MG, Ratnayake RMMN, Jaroch M, Quaiyum S, Bruner S. Biosynthesis and function of 7-deazaguanine derivatives in bacteria and phages. Microbiol Mol Biol Rev 2024; 88:e0019923. [PMID: 38421302 PMCID: PMC10966956 DOI: 10.1128/mmbr.00199-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
SUMMARYDeazaguanine modifications play multifaceted roles in the molecular biology of DNA and tRNA, shaping diverse yet essential biological processes, including the nuanced fine-tuning of translation efficiency and the intricate modulation of codon-anticodon interactions. Beyond their roles in translation, deazaguanine modifications contribute to cellular stress resistance, self-nonself discrimination mechanisms, and host evasion defenses, directly modulating the adaptability of living organisms. Deazaguanine moieties extend beyond nucleic acid modifications, manifesting in the structural diversity of biologically active natural products. Their roles in fundamental cellular processes and their presence in biologically active natural products underscore their versatility and pivotal contributions to the intricate web of molecular interactions within living organisms. Here, we discuss the current understanding of the biosynthesis and multifaceted functions of deazaguanines, shedding light on their diverse and dynamic roles in the molecular landscape of life.
Collapse
Affiliation(s)
- Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
- University of Florida Genetics Institute, Gainesville, Florida, USA
| | - Geoffrey Hutinet
- Department of Biology, Haverford College, Haverford, Pennsylvania, USA
| | | | - Yifeng Yuan
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Rémi Zallot
- Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Marc G. Chevrette
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | | | - Marshall Jaroch
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Samia Quaiyum
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Steven Bruner
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
10
|
Mandel CG, Sanchez SE, Monahan CC, Phuklia W, Omsland A. Metabolism and physiology of pathogenic bacterial obligate intracellular parasites. Front Cell Infect Microbiol 2024; 14:1284701. [PMID: 38585652 PMCID: PMC10995303 DOI: 10.3389/fcimb.2024.1284701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/01/2024] [Indexed: 04/09/2024] Open
Abstract
Bacterial obligate intracellular parasites (BOIPs) represent an exclusive group of bacterial pathogens that all depend on invasion of a eukaryotic host cell to reproduce. BOIPs are characterized by extensive adaptation to their respective replication niches, regardless of whether they replicate within the host cell cytoplasm or within specialized replication vacuoles. Genome reduction is also a hallmark of BOIPs that likely reflects streamlining of metabolic processes to reduce the need for de novo biosynthesis of energetically costly metabolic intermediates. Despite shared characteristics in lifestyle, BOIPs show considerable diversity in nutrient requirements, metabolic capabilities, and general physiology. In this review, we compare metabolic and physiological processes of prominent pathogenic BOIPs with special emphasis on carbon, energy, and amino acid metabolism. Recent advances are discussed in the context of historical views and opportunities for discovery.
Collapse
Affiliation(s)
- Cameron G. Mandel
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Savannah E. Sanchez
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Colleen C. Monahan
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Weerawat Phuklia
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao People’s Democratic Republic
| | - Anders Omsland
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| |
Collapse
|
11
|
Lanza A, Kimura S, Hirono I, Yoshitake K, Kinoshita S, Asakawa S. Transcriptome analysis of Edwardsiella piscicida during intracellular infection reveals excludons are involved with the activation of a mitochondrion-like energy generation program. mBio 2024; 15:e0352623. [PMID: 38349189 PMCID: PMC10936155 DOI: 10.1128/mbio.03526-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 01/10/2024] [Indexed: 03/14/2024] Open
Abstract
Phylogenetic evidence suggests a shared ancestry between mitochondria and modern Proteobacteria, a phylum including several genera of intracellular pathogens. Studying these diverse pathogens, particularly during intracellular infection of their hosts, can reveal characteristics potentially representative of the mitochondrial-Proteobacterial ancestor by identifying traits shared with mitochondria. While transcriptomic approaches can provide global insights into intracellular acclimatization by pathogens, they are often limited by excess host RNAs in extracts. Here, we developed a method employing magnetic nanoparticles to enrich RNA from an intracellular Gammaproteobacterium, Edwardsiella piscicida, within zebrafish, Danio rerio, fin fibroblasts, enabling comprehensive exploration of the bacterial transcriptome. Our findings revealed that the intracellular E. piscicida transcriptome reflects a mitochondrion-like energy generation program characterized by the suppression of glycolysis and sugar transport, coupled with upregulation of the tricarboxylic acid (TCA) cycle and alternative import of simple organic acids that directly flux into TCA cycle intermediates or electron transport chain donors. Additionally, genes predicted to be members of excludons, loci of gene pairs antagonistically co-regulated by overlapping antisense transcription, are significantly enriched in the set of all genes with perturbed sense and antisense transcription, suggesting a general but important involvement of excludons with intracellular acclimatization. Notably, genes involved with the activation of the mitochondrion-like energy generation program, specifically with metabolite import and glycolysis, are also members of predicted excludons. Other intracellular Proteobacterial pathogens appear to employ a similar mitochondrion-like energy generation program, suggesting a potentially conserved mechanism for optimized energy acquisition from hosts centered around the TCA cycle.IMPORTANCEPhylogenetic evidence suggests that mitochondria and Proteobacteria, a phylum encompassing various intracellular pathogens, share a common ancestral lineage. In this study, we developed a novel method employing magnetic nanoparticles to explore the transcriptome of an aquatic Gammaproteobacterium, Edwardsiella piscicida, during intracellular infection of host cells. We show that the strategy E. piscicida uses to generate energy strikingly mirrors the function of mitochondria-energy generators devoid of glycolytic processes. Notably, several implicated genes are members of excludons-gene pairs antagonistically co-regulated by overlapping antisense transcription. Other intracellular Proteobacterial pathogens appear to adopt a similar mitochondrion-like energy generation program, indicating a possibly conserved strategy for optimized energy acquisition from hosts centered around the tricarboxylic acid cycle.
Collapse
Affiliation(s)
- Andre Lanza
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Satoshi Kimura
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ikuo Hirono
- Department of Marine Biosciences, Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Kazutoshi Yoshitake
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shigeharu Kinoshita
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shuichi Asakawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
12
|
Yang H, Verhoeve VI, Chandler CE, Nallar S, Snyder GA, Ernst RK, Gillespie JJ. Structural determination of Rickettsia lipid A without chemical extraction confirms shorter acyl chains in later-evolving spotted fever group pathogens. mSphere 2024; 9:e0060923. [PMID: 38259062 PMCID: PMC10900879 DOI: 10.1128/msphere.00609-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
Rickettsiae are Gram-negative obligate intracellular parasites of numerous eukaryotes. Human pathogens of the transitional group (TRG), typhus group (TG), and spotted fever group (SFG) rickettsiae infect blood-feeding arthropods, have dissimilar clinical manifestations, and possess unique genomic and morphological attributes. Lacking glycolysis, rickettsiae pilfer numerous metabolites from the host cytosol to synthesize peptidoglycan and lipopolysaccharide (LPS). For LPS, O-antigen immunogenicity varies between SFG and TG pathogens; however, lipid A proinflammatory potential is unknown. We previously demonstrated that Rickettsia akari (TRG), Rickettsia typhi (TG), and Rickettsia montanensis (SFG) produce lipid A with long 2' secondary acyl chains (C16 or C18) compared to short 2' secondary acyl chains (C12) in Rickettsia rickettsii (SFG) lipid A. To further probe this structural heterogeneity and estimate a time point when shorter 2' secondary acyl chains originated, we generated lipid A structures for two additional SFG rickettsiae (Rickettsia rhipicephali and Rickettsia parkeri) utilizing fast lipid analysis technique adopted for use with tandem mass spectrometry (FLATn). FLATn allowed analysis of lipid A structure directly from host cell-purified bacteria, providing a substantial improvement over lipid A chemical extraction. FLATn-derived structures indicate SFG rickettsiae diverging after R. rhipicephali evolved shorter 2' secondary acyl chains. While 2' secondary acyl chain lengths do not distinguish Rickettsia pathogens from non-pathogens, in silico analyses of Rickettsia LpxL late acyltransferases revealed discrete active sites and hydrocarbon rulers for long versus short 2' secondary acyl chain addition. Our collective data warrant determining Rickettsia lipid A inflammatory potential and how structural heterogeneity impacts lipid A-host receptor interactions.IMPORTANCEDeforestation, urbanization, and homelessness lead to spikes in Rickettsioses. Vector-borne human pathogens of transitional group (TRG), typhus group (TG), and spotted fever group (SFG) rickettsiae differ by clinical manifestations, immunopathology, genome composition, and morphology. We previously showed that lipid A (or endotoxin), the membrane anchor of Gram-negative bacterial lipopolysaccharide (LPS), structurally differs in Rickettsia rickettsii (later-evolving SFG) relative to Rickettsia montanensis (basal SFG), Rickettsia typhi (TG), and Rickettsia akari (TRG). As lipid A structure influences recognition potential in vertebrate LPS sensors, further assessment of Rickettsia lipid A structural heterogeneity is needed. Here, we sidestepped the difficulty of ex vivo lipid A chemical extraction by utilizing fast lipid analysis technique adopted for use with tandem mass spectrometry, a new procedure for generating lipid A structures directly from host cell-purified bacteria. These data confirm that later-evolving SFG pathogens synthesize structurally distinct lipid A. Our findings impact interpreting immune responses to different Rickettsia pathogens and utilizing lipid A adjuvant or anti-inflammatory properties in vaccinology.
Collapse
Affiliation(s)
- Hyojik Yang
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, Maryland, USA
| | - Victoria I. Verhoeve
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Courtney E. Chandler
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, Maryland, USA
| | - Shreeram Nallar
- Division of Vaccine Research, Institute of Human Virology, University of Maryland, Baltimore, Maryland, USA
| | - Greg A. Snyder
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
- Division of Vaccine Research, Institute of Human Virology, University of Maryland, Baltimore, Maryland, USA
| | - Robert K. Ernst
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, Maryland, USA
| | - Joseph J. Gillespie
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| |
Collapse
|
13
|
Sit B, Lamason RL. Pathogenic Rickettsia spp. as emerging models for bacterial biology. J Bacteriol 2024; 206:e0040423. [PMID: 38315013 PMCID: PMC10883807 DOI: 10.1128/jb.00404-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
Our understanding of free-living bacterial models like Escherichia coli far outpaces that of obligate intracellular bacteria, which cannot be cultured axenically. All obligate intracellular bacteria are host-associated, and many cause serious human diseases. Their constant exposure to the distinct biochemical niche of the host has driven the evolution of numerous specialized bacteriological and genetic adaptations, as well as innovative molecular mechanisms of infection. Here, we review the history and use of pathogenic Rickettsia species, which cause an array of vector-borne vascular illnesses, as model systems to probe microbial biology. Although many challenges remain in our studies of these organisms, the rich pathogenic and biological diversity of Rickettsia spp. constitutes a unique backdrop to investigate how microbes survive and thrive in host and vector cells. We take a bacterial-focused perspective and highlight emerging insights that relate to new host-pathogen interactions, bacterial physiology, and evolution. The transformation of Rickettsia spp. from pathogens to models demonstrates how recalcitrant microbes may be leveraged in the lab to tap unmined bacterial diversity for new discoveries. Rickettsia spp. hold great promise as model systems not only to understand other obligate intracellular pathogens but also to discover new biology across and beyond bacteria.
Collapse
Affiliation(s)
- Brandon Sit
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Rebecca L. Lamason
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
14
|
Castelli M, Nardi T, Gammuto L, Bellinzona G, Sabaneyeva E, Potekhin A, Serra V, Petroni G, Sassera D. Host association and intracellularity evolved multiple times independently in the Rickettsiales. Nat Commun 2024; 15:1093. [PMID: 38321113 PMCID: PMC10847448 DOI: 10.1038/s41467-024-45351-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/18/2024] [Indexed: 02/08/2024] Open
Abstract
The order Rickettsiales (Alphaproteobacteria) encompasses multiple diverse lineages of host-associated bacteria, including pathogens, reproductive manipulators, and mutualists. Here, in order to understand how intracellularity and host association originated in this order, and whether they are ancestral or convergently evolved characteristics, we built a large and phylogenetically-balanced dataset that includes de novo sequenced genomes and a selection of published genomic and metagenomic assemblies. We perform detailed functional reconstructions that clearly indicates "late" and parallel evolution of obligate host-association in different Rickettsiales lineages. According to the depicted scenario, multiple independent horizontal acquisitions of transporters led to the progressive loss of biosynthesis of nucleotides, amino acids and other metabolites, producing distinct conditions of host-dependence. Each clade experienced a different pattern of evolution of the ancestral arsenal of interaction apparatuses, including development of specialised effectors involved in the lineage-specific mechanisms of host cell adhesion and/or invasion.
Collapse
Affiliation(s)
- Michele Castelli
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Tiago Nardi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | - Greta Bellinzona
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Elena Sabaneyeva
- Department of Cytology and Histology, Saint Petersburg State University, Petersburg, Russia
| | - Alexey Potekhin
- Department of Microbiology, Saint Petersburg State University, Petersburg, Russia
- Research Department for Limnology, University of Innsbruck, Mondsee, Austria
| | | | | | - Davide Sassera
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
- IRCCS Policlinico San Matteo, Pavia, Italy.
| |
Collapse
|
15
|
Giovannini M, Petroni G, Castelli M. Novel evolutionary insights on the interactions of the Holosporales (Alphaproteobacteria) with eukaryotic hosts from comparative genomics. Environ Microbiol 2024; 26:e16562. [PMID: 38173299 DOI: 10.1111/1462-2920.16562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024]
Abstract
Holosporales are an alphaproteobacterial order engaging in obligate and complex associations with eukaryotes, in particular protists. The functional and evolutionary features of those interactions are still largely undisclosed. Here, we sequenced the genomes of two members of the species Bealeia paramacronuclearis (Holosporales, Holosporaceae) intracellularly associated with the ciliate protist Paramecium, which resulted in high correspondence. Consistent with the short-branched early-divergent phylogenetic position, Bealeia presents a larger functional repertoire than other Holosporaceae, comparable to those of other Holosporales families, particularly for energy metabolism and motility. Our analyses indicate that different Holosporales likely experienced at least partly autonomous genome reduction and adaptation to host interactions, for example regarding dependence on host biotin driven by multiple independent horizontal acquisitions of transporters. Among Alphaproteobacteria, this is reminiscent of the convergently evolved Rickettsiales, which however appear more diverse, possibly due to a probably more ancient origin. We identified in Bealeia and other Holosporales the plasmid-encoded putative genetic determinants of R-bodies, which may be involved in a killer trait towards symbiont-free hosts. While it is not clear whether these genes are ancestral or recently horizontally acquired, an intriguing and peculiar role of R-bodies is suggested in the evolution of the interactions of multiple Holosporales with their hosts.
Collapse
Affiliation(s)
| | | | - Michele Castelli
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| |
Collapse
|
16
|
Gwynne PJ, Stocks KLK, Karozichian ES, Pandit A, Hu LT. Metabolic modeling predicts unique drug targets in Borrelia burgdorferi. mSystems 2023; 8:e0083523. [PMID: 37855615 PMCID: PMC10734484 DOI: 10.1128/msystems.00835-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 08/22/2023] [Indexed: 10/20/2023] Open
Abstract
IMPORTANCE Lyme disease is often treated using long courses of antibiotics, which can cause side effects for patients and risks the evolution of antimicrobial resistance. Narrow-spectrum antimicrobials would reduce these risks, but their development has been slow because the Lyme disease bacterium, Borrelia burgdorferi, is difficult to work with in the laboratory. To accelerate the drug discovery pipeline, we developed a computational model of B. burgdorferi's metabolism and used it to predict essential enzymatic reactions whose inhibition prevented growth in silico. These predictions were validated using small-molecule enzyme inhibitors, several of which were shown to have specific activity against B. burgdorferi. Although the specific compounds used are not suitable for clinical use, we aim to use them as lead compounds to develop optimized drugs targeting the pathways discovered here.
Collapse
Affiliation(s)
- Peter J. Gwynne
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
- Tufts Lyme Disease Initiative, Tufts University, Boston, Massachusetts, USA
| | - Kee-Lee K. Stocks
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
- Tufts Lyme Disease Initiative, Tufts University, Boston, Massachusetts, USA
| | - Elysse S. Karozichian
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
- Tufts Lyme Disease Initiative, Tufts University, Boston, Massachusetts, USA
| | - Aarya Pandit
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
- Tufts Lyme Disease Initiative, Tufts University, Boston, Massachusetts, USA
| | - Linden T. Hu
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
- Tufts Lyme Disease Initiative, Tufts University, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Kolasa M, Kajtoch Ł, Michalik A, Maryańska-Nadachowska A, Łukasik P. Till evolution do us part: The diversity of symbiotic associations across populations of Philaenus spittlebugs. Environ Microbiol 2023; 25:2431-2446. [PMID: 37525959 DOI: 10.1111/1462-2920.16473] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 07/15/2023] [Indexed: 08/02/2023]
Abstract
Symbiotic bacteria have played crucial roles in the evolution of sap-feeding insects and can strongly affect host function. However, their diversity and distribution within species are not well understood; we do not know to what extent environmental factors or associations with other species may affect microbial community profiles. We addressed this question in Philaenus spittlebugs by surveying both insect and bacterial marker gene amplicons across multiple host populations. Host mitochondrial sequence data confirmed morphology-based identification of six species and revealed two divergent clades of Philaenus spumarius. All of them hosted the primary symbiont Sulcia that was almost always accompanied by Sodalis. Interestingly, populations and individuals often differed in the presence of Sodalis sequence variants, suggestive of intra-genome 16S rRNA variant polymorphism combined with rapid genome evolution and/or recent additional infections or replacements of the co-primary symbiont. The prevalence of facultative endosymbionts, including Wolbachia, Rickettsia, and Spiroplasma, varied among populations. Notably, cytochrome I oxidase (COI) amplicon data also showed that nearly a quarter of P. spumarius were infected by parasitoid flies (Verralia aucta). One of the Wolbachia operational taxonomic units (OTUs) was exclusively present in Verralia-parasitized specimens, suggestive of parasitoids as their source and highlighting the utility of host gene amplicon sequencing in microbiome studies.
Collapse
Affiliation(s)
- Michał Kolasa
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Krakow, Poland
| | - Łukasz Kajtoch
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Krakow, Poland
| | - Anna Michalik
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | | | - Piotr Łukasik
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
18
|
Blanton LS. Murine Typhus: A Review of a Reemerging Flea-Borne Rickettsiosis with Potential for Neurologic Manifestations and Sequalae. Infect Dis Rep 2023; 15:700-716. [PMID: 37987401 PMCID: PMC10660532 DOI: 10.3390/idr15060063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/22/2023] Open
Abstract
Murine typhus is an acute febrile illness caused by Rickettsia typhi, an obligately intracellular Gram-negative coccobacillus. Rats (Rattus species) and their fleas (Xenopsylla cheopis) serve as the reservoir and vector of R. typhi, respectively. Humans become infected when R. typhi-infected flea feces are rubbed into flea bite wounds or onto mucous membranes. The disease is endemic throughout much of the world, especially in tropical and subtropical seaboard regions where rats are common. Murine typhus is reemerging as an important cause of febrile illness in Texas and Southern California, where an alternate transmission cycle likely involves opossums (Didelphis virginiana) and cat fleas (Ctenocephalides felis). Although primarily an undifferentiated febrile illness, a range of neurologic manifestations may occur, especially when treatment is delayed. Serology is the mainstay of diagnostic testing, but confirmation usually requires demonstrating seroconversion or a fourfold increase in antibody titer from acute- and convalescent-phase sera (antibodies are seldom detectable in the first week of illness). Thus, early empiric treatment with doxycycline, the drug of choice, is imperative. The purpose of this review is to highlight murine typhus as an important emerging and reemerging infectious disease, review its neurologic manifestations, and discuss areas in need of further study.
Collapse
Affiliation(s)
- Lucas S Blanton
- Department Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
19
|
Pei PT, Liu L, Jing XL, Liu XL, Sun LY, Gao C, Cui XH, Wang J, Ma ZL, Song SY, Sun ZH, Wang CY. Meta-analysis reveals variations in microbial communities from diverse stony coral taxa at different geographical distances. Front Microbiol 2023; 14:1087750. [PMID: 37520377 PMCID: PMC10374221 DOI: 10.3389/fmicb.2023.1087750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 06/28/2023] [Indexed: 08/01/2023] Open
Abstract
Coral-associated microbial communities play a vital role in underpinning the health and resilience of reef ecosystems. Previous studies have demonstrated that the microbial communities of corals are affected by multiple factors, mainly focusing on host species and geolocation. However, up-to-date, insight into how the coral microbiota is structured by vast geographic distance with rich taxa is deficient. In the present study, the coral microbiota in six stony coral species collected from the coastal area of three countries, including United States of America (USA), Australia and Fiji, was used for analysis. It was found that the geographic influence on the coral microbiota was stronger than the coral host influence, even though both were significant. Interestingly, the contribution of the deterministic process to bacterial community composition increased as geographical distance grew. A total of 65 differentially abundant features of functions in coral microbial communities were identified to be associated with three geolocations. While in the same coastal area of USA, the similar relationship of coral microbiota was consistent with the phylogenetic relationship of coral hosts. In contrast to the phylum Proteobacteria, which was most abundant in other coral species in USA, Cyanobacteria was the most abundant phylum in Orbicella faveolata. The above findings may help to better understand the multiple natural driving forces shaping the coral microbial community to contribute to defining the healthy baseline of the coral microbiome.
Collapse
Affiliation(s)
- Peng-Tao Pei
- Key Laboratory of Marine Drugs, The Ministry of Education of China, Institute of Evolution and Marine Biodiversity, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- School of Pharmacy, Fujian Health College, Fuzhou, China
- Single-Cell Center, Chinese Academy of Science Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Lu Liu
- School of Pharmacy, Fujian Health College, Fuzhou, China
- Single-Cell Center, Chinese Academy of Science Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Li Jing
- High Performance Computing and System Simulation Platform, National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Xiao-Lu Liu
- Single-Cell Center, Chinese Academy of Science Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lu-Yang Sun
- Single-Cell Center, Chinese Academy of Science Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chen Gao
- Single-Cell Center, Chinese Academy of Science Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Xiao-Han Cui
- Single-Cell Center, Chinese Academy of Science Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- Single-Cell Center, Chinese Academy of Science Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Department of Mathematics, Ocean University of China, Qingdao, China
| | - Zhong-Lian Ma
- Key Laboratory of Marine Drugs, The Ministry of Education of China, Institute of Evolution and Marine Biodiversity, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Shu-Yue Song
- Key Laboratory of Marine Drugs, The Ministry of Education of China, Institute of Evolution and Marine Biodiversity, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Zhi-Hua Sun
- Department of Mathematics, Ocean University of China, Qingdao, China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, Institute of Evolution and Marine Biodiversity, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| |
Collapse
|
20
|
Yang H, Verhoeve VI, Chandler CE, Nallar S, Snyder GA, Ernst RK, Gillespie JJ. Structural determination of Rickettsia lipid A without chemical extraction confirms shorter acyl chains in later-evolving Spotted Fever Group pathogens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.06.547954. [PMID: 37461656 PMCID: PMC10350050 DOI: 10.1101/2023.07.06.547954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Rickettsiae are Gram-negative obligate intracellular parasites of numerous eukaryotes. Human pathogens of the Transitional Group (TRG), Typhus Group (TG), and Spotted Fever Group (SFG) rickettsiae infect blood-feeding arthropods, have dissimilar clinical manifestations, and possess unique genomic and morphological attributes. Lacking glycolysis, rickettsiae pilfer numerous metabolites from host cytosol to synthesize peptidoglycan and lipopolysaccharide (LPS). For LPS, O-antigen immunogenicity varies between SFG and TG pathogens; however, lipid A proinflammatory potential is unknown. We previously demonstrated that R. akari (TRG), R. typhi (TG), and R. montanensis (SFG) produce lipid A with long 2' secondary acyl chains (C16 or C18) compared to short 2' secondary acyl chains (C12) in R. rickettsii (SFG) lipid A. To further probe this structural heterogeneity and estimate a time point when shorter 2' secondary acyl chains originated, we generated lipid A structures for two additional SFG rickettsiae ( R. rhipicephali and R. parkeri ) utilizing Fast Lipid Analysis Technique adopted for use with tandem mass spectrometry (FLAT n ). FLAT n allowed analysis of lipid A structure directly from host cell-purified bacteria, providing substantial improvement over lipid A chemical extraction. FLAT n -derived structures indicate SFG rickettsiae diverging after R. rhipicephali evolved shorter 2' secondary acyl chains. Bioinformatics analysis of Rickettsia LpxL late acyltransferases revealed discrete active sites and hydrocarbon rulers for long versus short 2' secondary acyl chain addition. While the significance of different lipid A structures for diverse Rickettsia pathogens is unknown, our success using FLAT n will facilitate determining how structural heterogeneity impacts interactions with host lipid A receptors and overall inflammatory potential. IMPORTANCE Deforestation, urbanization, and homelessness lead to spikes in Rickettsioses. Vector-borne human pathogens of Transitional Group (TRG), Typhus Group (TG), and Spotted Fever Group (SFG) rickettsiae differ by clinical manifestations, immunopathology, genome composition, and morphology. We previously showed that lipid A (or endotoxin), the membrane anchor of Gram-negative bacterial lipopolysaccharide (LPS), structurally differs in R. rickettsii (later-evolving SFG) relative to R. montanensis (basal SFG), R. typhi (TG), and R. akari (TRG). As lipid A structure influences recognition potential in vertebrate LPS sensors, further assessment of Rickettsia lipid A structural heterogeneity is needed. Here, we sidestepped the difficulty of ex vivo lipid A chemical extraction by utilizing FLAT n , a new procedure for generating lipid A structures directly from host cell-purified bacteria. These data confirm later-evolving SFG pathogens synthesize structurally distinct lipid A. Our findings impact interpreting immune responses to different Rickettsia pathogens and utilizing lipid A adjuvant or anti-inflammatory properties in vaccinology.
Collapse
|
21
|
Fisher DJ, Beare PA. Recent advances in genetic systems in obligate intracellular human-pathogenic bacteria. Front Cell Infect Microbiol 2023; 13:1202245. [PMID: 37404720 PMCID: PMC10315504 DOI: 10.3389/fcimb.2023.1202245] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/22/2023] [Indexed: 07/06/2023] Open
Abstract
The ability to genetically manipulate a pathogen is fundamental to discovering factors governing host-pathogen interactions at the molecular level and is critical for devising treatment and prevention strategies. While the genetic "toolbox" for many important bacterial pathogens is extensive, approaches for modifying obligate intracellular bacterial pathogens were classically limited due in part to the uniqueness of their obligatory lifestyles. Many researchers have confronted these challenges over the past two and a half decades leading to the development of multiple approaches to construct plasmid-bearing recombinant strains and chromosomal gene inactivation and deletion mutants, along with gene-silencing methods enabling the study of essential genes. This review will highlight seminal genetic achievements and recent developments (past 5 years) for Anaplasma spp., Rickettsia spp., Chlamydia spp., and Coxiella burnetii including progress being made for the still intractable Orientia tsutsugamushi. Alongside commentary of the strengths and weaknesses of the various approaches, future research directions will be discussed to include methods for C. burnetii that should have utility in the other obligate intracellular bacteria. Collectively, the future appears bright for unraveling the molecular pathogenic mechanisms of these significant pathogens.
Collapse
Affiliation(s)
- Derek J. Fisher
- School of Biological Sciences, Southern Illinois University, Carbondale, IL, United States
| | - Paul A. Beare
- Rocky Mountain Laboratory, National Institute of Health, Hamilton, MT, United States
| |
Collapse
|
22
|
Fiutek N, Couger MB, Pirro S, Roy SW, de la Torre JR, Connor EF. Genomic Assessment of the Contribution of the Wolbachia Endosymbiont of Eurosta solidaginis to Gall Induction. Int J Mol Sci 2023; 24:ijms24119613. [PMID: 37298563 DOI: 10.3390/ijms24119613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/25/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
We explored the genome of the Wolbachia strain, wEsol, symbiotic with the plant-gall-inducing fly Eurosta solidaginis with the goal of determining if wEsol contributes to gall induction by its insect host. Gall induction by insects has been hypothesized to involve the secretion of the phytohormones cytokinin and auxin and/or proteinaceous effectors to stimulate cell division and growth in the host plant. We sequenced the metagenome of E. solidaginis and wEsol and assembled and annotated the genome of wEsol. The wEsol genome has an assembled length of 1.66 Mbp and contains 1878 protein-coding genes. The wEsol genome is replete with proteins encoded by mobile genetic elements and shows evidence of seven different prophages. We also detected evidence of multiple small insertions of wEsol genes into the genome of the host insect. Our characterization of the genome of wEsol indicates that it is compromised in the synthesis of dimethylallyl pyrophosphate (DMAPP) and S-adenosyl L-methionine (SAM), which are precursors required for the synthesis of cytokinins and methylthiolated cytokinins. wEsol is also incapable of synthesizing tryptophan, and its genome contains no enzymes in any of the known pathways for the synthesis of indole-3-acetic acid (IAA) from tryptophan. wEsol must steal DMAPP and L-methionine from its host and therefore is unlikely to provide cytokinin and auxin to its insect host for use in gall induction. Furthermore, in spite of its large repertoire of predicted Type IV secreted effector proteins, these effectors are more likely to contribute to the acquisition of nutrients and the manipulation of the host's cellular environment to contribute to growth and reproduction of wEsol than to aid E. solidaginis in manipulating its host plant. Combined with earlier work that shows that wEsol is absent from the salivary glands of E. solidaginis, our results suggest that wEsol does not contribute to gall induction by its host.
Collapse
Affiliation(s)
- Natalie Fiutek
- Department of Biology, San Francisco State University, San Francisco, CA 94112, USA
| | - Matthew B Couger
- Department of Thoracic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Stacy Pirro
- Iridian Genomes Inc., Bethesda, MD 20817, USA
| | - Scott W Roy
- Department of Biology, San Francisco State University, San Francisco, CA 94112, USA
| | - José R de la Torre
- Department of Biology, San Francisco State University, San Francisco, CA 94112, USA
| | - Edward F Connor
- Department of Biology, San Francisco State University, San Francisco, CA 94112, USA
| |
Collapse
|
23
|
Figueroa-Cuilan WM, Irazoki O, Feeley M, Smith E, Nguyen T, Cava F, Goley ED. Quantitative analysis of morphogenesis and growth dynamics in an obligate intracellular bacterium. Mol Biol Cell 2023; 34:ar69. [PMID: 37017481 PMCID: PMC10295487 DOI: 10.1091/mbc.e23-01-0023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/06/2023] Open
Abstract
Obligate intracellular bacteria of the order Rickettsiales include important human pathogens. However, our understanding of the biology of Rickettsia species is limited by challenges imposed by their obligate intracellular lifestyle. To overcome this roadblock, we developed methods to assess cell wall composition, growth, and morphology of Rickettsia parkeri, a human pathogen in the spotted fever group of the Rickettsia genus. Analysis of the cell wall of R. parkeri revealed unique features that distinguish it from free-living alphaproteobacteria. Using a novel fluorescence microscopy approach, we quantified R. parkeri morphology in live host cells and found that the fraction of the population undergoing cell division decreased over the course of infection. We further demonstrated the feasibility of localizing fluorescence fusions, for example, to the cell division protein ZapA, in live R. parkeri for the first time. To evaluate population growth kinetics, we developed an imaging-based assay that improves on the throughput and resolution of other methods. Finally, we applied these tools to quantitatively demonstrate that the actin homologue MreB is required for R. parkeri growth and rod shape. Collectively, a toolkit was developed of high-throughput, quantitative tools to understand growth and morphogenesis of R. parkeri that is translatable to other obligate intracellular bacteria.
Collapse
Affiliation(s)
- Wanda M. Figueroa-Cuilan
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185
| | - Oihane Irazoki
- Laboratory for Molecular Infection Medicine, Umeå Center for Microbial Research, Department of Molecular Biology, Umeå University, SE-901 87, Umeå, Sweden
| | - Marissa Feeley
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185
| | - Erika Smith
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185
| | - Trung Nguyen
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine, Umeå Center for Microbial Research, Department of Molecular Biology, Umeå University, SE-901 87, Umeå, Sweden
| | - Erin D. Goley
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185
| |
Collapse
|
24
|
Samaddar S, O'Neal AJ, Marnin L, Rolandelli A, Singh N, Wang X, Butler LR, Rangghran P, Laukaitis HJ, Cabrera Paz FE, Fiskum GM, Polster BM, Pedra JHF. Metabolic disruption impacts tick fitness and microbial relationships. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.26.542501. [PMID: 37292783 PMCID: PMC10245996 DOI: 10.1101/2023.05.26.542501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Arthropod-borne microbes rely on the metabolic state of a host to cycle between evolutionarily distant species. For instance, arthropod tolerance to infection may be due to redistribution of metabolic resources, often leading to microbial transmission to mammals. Conversely, metabolic alterations aids in pathogen elimination in humans, who do not ordinarily harbor arthropod-borne microbes. To ascertain the effect of metabolism on interspecies relationships, we engineered a system to evaluate glycolysis and oxidative phosphorylation in the tick Ixodes scapularis. Using a metabolic flux assay, we determined that the rickettsial bacterium Anaplasma phagocytophilum and the Lyme disease spirochete Borrelia burgdorferi, which are transstadially transmitted in nature, induced glycolysis in ticks. On the other hand, the endosymbiont Rickettsia buchneri, which is transovarially maintained, had a minimal effect on I. scapularis bioenergetics. Importantly, the metabolite β-aminoisobutyric acid (BAIBA) was elevated during A. phagocytophilum infection of tick cells following an unbiased metabolomics approach. Thus, we manipulated the expression of genes associated with the catabolism and anabolism of BAIBA in I. scapularis and detected impaired feeding on mammals, reduced bacterial acquisition, and decreased tick survival. Collectively, we reveal the importance of metabolism for tick-microbe relationships and unveil a valuable metabolite for I. scapularis fitness.
Collapse
Affiliation(s)
- Sourabh Samaddar
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, USA
| | - Anya J O'Neal
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, USA
| | - Liron Marnin
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, USA
| | - Agustin Rolandelli
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, USA
| | - Nisha Singh
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, USA
| | - Xiaowei Wang
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, USA
| | - L Rainer Butler
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, USA
| | - Parisa Rangghran
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Hanna J Laukaitis
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, USA
| | - Francy E Cabrera Paz
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, USA
| | - Gary M Fiskum
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Brian M Polster
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Joao H F Pedra
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, USA
| |
Collapse
|
25
|
George EE, Barcytė D, Lax G, Livingston S, Tashyreva D, Husnik F, Lukeš J, Eliáš M, Keeling PJ. A single cryptomonad cell harbors a complex community of organelles, bacteria, a phage, and selfish elements. Curr Biol 2023; 33:1982-1996.e4. [PMID: 37116483 DOI: 10.1016/j.cub.2023.04.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/20/2023] [Accepted: 04/06/2023] [Indexed: 04/30/2023]
Abstract
Symbiosis between prokaryotes and microbial eukaryotes (protists) has broadly impacted both evolution and ecology. Endosymbiosis led to mitochondria and plastids, the latter spreading across the tree of eukaryotes by subsequent rounds of endosymbiosis. Present-day endosymbionts in protists remain both common and diverse, although what function they serve is often unknown. Here, we describe a highly complex community of endosymbionts and a bacteriophage (phage) within a single cryptomonad cell. Cryptomonads are a model for organelle evolution because their secondary plastid retains a relict endosymbiont nucleus, but only one previously unidentified Cryptomonas strain (SAG 25.80) is known to harbor bacterial endosymbionts. We carried out electron microscopy and FISH imaging as well as genomic sequencing on Cryptomonas SAG 25.80, which revealed a stable, complex community even after over 50 years in continuous cultivation. We identified the host strain as Cryptomonas gyropyrenoidosa, and sequenced genomes from its mitochondria, plastid, and nucleomorph (and partially its nucleus), as well as two symbionts, Megaira polyxenophila and Grellia numerosa, and one phage (MAnkyphage) infecting M. polyxenophila. Comparing closely related endosymbionts from other hosts revealed similar metabolic and genomic features, with the exception of abundant transposons and genome plasticity in M. polyxenophila from Cryptomonas. We found an abundance of eukaryote-interacting genes as well as many toxin-antitoxin systems, including in the MAnkyphage genome that also encodes several eukaryotic-like proteins. Overall, the Cryptomonas cell is an endosymbiotic conglomeration with seven distinct evolving genomes that all show evidence of inter-lineage conflict but nevertheless remain stable, even after more than 4,000 generations in culture.
Collapse
Affiliation(s)
- Emma E George
- University of British Columbia, Department of Botany, Vancouver V6T 1Z4, Canada.
| | - Dovilė Barcytė
- University of Ostrava, Faculty of Science, Department of Biology and Ecology, 701 00 Ostrava, Czech Republic; Okinawa Institute of Science and Technology, Okinawa, 904-0495, Japan
| | - Gordon Lax
- University of British Columbia, Department of Botany, Vancouver V6T 1Z4, Canada
| | - Sam Livingston
- University of British Columbia, Department of Botany, Vancouver V6T 1Z4, Canada
| | - Daria Tashyreva
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, 370 05 České Budějovice (Budweis), Czech Republic
| | - Filip Husnik
- Okinawa Institute of Science and Technology, Okinawa, 904-0495, Japan
| | - Julius Lukeš
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, 370 05 České Budějovice (Budweis), Czech Republic; University of South Bohemia, Faculty of Sciences, 370 05 České Budějovice (Budweis), Czech Republic
| | - Marek Eliáš
- University of Ostrava, Faculty of Science, Department of Biology and Ecology, 701 00 Ostrava, Czech Republic
| | - Patrick J Keeling
- University of British Columbia, Department of Botany, Vancouver V6T 1Z4, Canada
| |
Collapse
|
26
|
Gillespie JJ, Salje J. Orientia and Rickettsia: different flowers from the same garden. Curr Opin Microbiol 2023; 74:102318. [PMID: 37080115 DOI: 10.1016/j.mib.2023.102318] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 04/22/2023]
Abstract
Recent discoveries of basal extracellular Rickettsiales have illuminated divergent evolutionary paths to host dependency in later-evolving lineages. Family Rickettsiaceae, primarily comprised of numerous protist- and invertebrate-associated species, also includes human pathogens from two genera, Orientia and Rickettsia. Once considered sister taxa, these bacteria form distinct lineages with newly appreciated lifestyles and morphological traits. Contrasting other rickettsial human pathogens in Family Anaplasmataceae, Orientia and Rickettsia species do not reside in host-derived vacuoles and lack glycolytic potential. With only a few described mechanisms, strategies for commandeering host glycolysis to support cytosolic growth remain to be discovered. While regulatory systems for this unique mode of intracellular parasitism are unclear, conjugative transposons unique to Orientia and Rickettsia species provide insights that are critical for determining how these obligate intracellular pathogens overtake eukaryotic cytosol.
Collapse
Affiliation(s)
- Joseph J Gillespie
- Department of Microbiology and Immunology, School of Medicine, University of Maryland Baltimore, USA.
| | - Jeanne Salje
- Department of Biochemistry, Department of Pathology, and Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK.
| |
Collapse
|
27
|
Narra HP, Alsing J, Sahni A, Montini M, Zafar Y, Sahni SK. A Small Non-Coding RNA Mediates Transcript Stability and Expression of Cytochrome bd Ubiquinol Oxidase Subunit I in Rickettsia conorii. Int J Mol Sci 2023; 24:4008. [PMID: 36835430 PMCID: PMC9960880 DOI: 10.3390/ijms24044008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 02/19/2023] Open
Abstract
Small regulatory RNAs (sRNAs) are now widely recognized for their role in the post-transcriptional regulation of bacterial virulence and growth. We have previously demonstrated the biogenesis and differential expression of several sRNAs in Rickettsia conorii during interactions with the human host and arthropod vector, as well as the in vitro binding of Rickettsia conorii sRNA Rc_sR42 to bicistronic cytochrome bd ubiquinol oxidase subunits I and II (cydAB) mRNA. However, the mechanism of regulation and the effect of sRNA binding on the stability of the cydAB bicistronic transcript and the expression of the cydA and cydB genes are still unknown. In this study, we determined the expression dynamics of Rc_sR42 and its cognate target genes, cydA and cydB, in mouse lung and brain tissues during R. conorii infection in vivo and employed fluorescent and reporter assays to decode the role of sRNA in regulating cognate gene transcripts. Quantitative RT-PCR revealed significant changes in the expression of sRNA and its cognate target gene transcripts during R. conorii infection in vivo, and a greater abundance of these transcripts was observed in the lungs compared to brain tissue. Interestingly, while Rc_sR42 and cydA exhibited similar patterns of change in their expression, indicating the influence of sRNA on the mRNA target, the expression of cydB was independent of sRNA expression. Further, we constructed reporter plasmids of sRNA and cydAB bicistronic mRNA to decipher the role of sRNA on CydA and CydB expression. We observed increased expression of CydA in the presence of sRNA but detected no change in CydB expression in the presence or absence of sRNA. In sum, our results demonstrate that the binding of Rc_sR42 is required for the regulation of cydA but not cydB. Further studies on understanding the influence of this interaction on the mammalian host and tick vector during R. conorii infection are in progress.
Collapse
Affiliation(s)
- Hema P. Narra
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | | | | - Sanjeev K. Sahni
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
28
|
Mancini E, Sabatelli S, Hu Y, Frasca S, Di Giulio A, Audisio P, Brown CD, Russell JA, Trizzino M. Uncovering Active Bacterial Symbionts in Three Species of Pollen-feeding Beetles (Nitidulidae: Meligethinae). MICROBIAL ECOLOGY 2023; 85:335-339. [PMID: 35059821 DOI: 10.1007/s00248-022-01964-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Microbial symbionts enable many phytophagous insects to specialize on plant-based diets through a range of metabolic services. Pollen comprises one-plant tissue consumed by such herbivores. While rich in lipids and proteins, its nutrient content is often imbalanced and difficult-to-access due to a digestibly recalcitrant cell wall. Pollen quality can be further degraded by harmful allelochemicals. To identify microbes that may aid in palynivory, we performed cDNA-based 16S rRNA metabarcoding on three related pollen beetles (Nitidulidae: Meligethinae) exhibiting different dietary breadths: Brassicogethes aeneus, B. matronalis, and Meligethes atratus. Nine bacterial symbionts (i.e., 97% OTUs) exhibited high metabolic activity during active feeding. Subsequent PCR surveys revealed varying prevalence of those from three Rickettsialles genera-Lariskella, Rickettsia, and Wolbachia-within beetle populations. Our findings lay the groundwork for future studies on the influence of phylogeny and diet on palynivorous insect microbiomes, and roles of symbionts in the use of challenging diets.
Collapse
Affiliation(s)
- Emiliano Mancini
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Viale dell'Università 32, 00185, Rome, Italy.
| | - Simone Sabatelli
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Viale dell'Università 32, 00185, Rome, Italy
| | - Yi Hu
- Department of Biology, Drexel University, 3245 Chestnut St., Philadelphia, PA, 19104, USA
- State Key Laboratory of Earth Surface Process and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Sara Frasca
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Viale dell'Università 32, 00185, Rome, Italy
| | - Andrea Di Giulio
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146, Rome, Italy
| | - Paolo Audisio
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Viale dell'Università 32, 00185, Rome, Italy
| | - Christopher D Brown
- Department of Genetics, University of Pennsylvania, 538B 415, Curie Blvd, Philadelphia, PA, 19103, USA
| | - Jacob A Russell
- Department of Biology, Drexel University, 3245 Chestnut St., Philadelphia, PA, 19104, USA
| | - Marco Trizzino
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 S 10TH street, Philadelphia, PA, 19107, USA
| |
Collapse
|
29
|
Helminiak L, Mishra S, Keun Kim H. Pathogenicity and virulence of Rickettsia. Virulence 2022; 13:1752-1771. [PMID: 36208040 PMCID: PMC9553169 DOI: 10.1080/21505594.2022.2132047] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/16/2022] [Accepted: 09/29/2022] [Indexed: 12/24/2022] Open
Abstract
Rickettsiae include diverse Gram-negative microbial species that exhibit obligatory intracellular lifecycles between mammalian hosts and arthropod vectors. Human infections with arthropod-borne Rickettsia continue to cause significant morbidity and mortality as recent environmental changes foster the proliferation of arthropod vectors and increased exposure to humans. However, the technical difficulties in working with Rickettsia have delayed our progress in understanding the molecular mechanisms involved in rickettsial pathogenesis and disease transmission. Recent advances in developing genetic tools for Rickettsia have enabled investigators to identify virulence genes, uncover molecular functions, and characterize host responses to rickettsial determinants. Therefore, continued efforts to determine virulence genes and their biological functions will help us understand the underlying mechanisms associated with arthropod-borne rickettsioses.
Collapse
Affiliation(s)
| | | | - Hwan Keun Kim
- Center for Infectious Diseases, Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
30
|
Zorov DB, Andrianova NV, Babenko VA, Zorova LD, Zorov SD, Pevzner IB, Sukhikh GT, Silachev DN. Isn't It Time for Establishing Mitochondrial Nomenclature Breaking Mitochondrial Paradigm? BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1487-1497. [PMID: 36717442 DOI: 10.1134/s0006297922120069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In this work, we decided to initiate a discussion concerning heterogeneity of mitochondria, suggesting that it is time to build classification of mitochondria, like the one that exists for their progenitors, α-proteobacteria, proposing possible separation of mitochondrial strains and maybe species. We continue to adhere to the general line that mitochondria are friends and foes: on the one hand, they provide the cell and organism with the necessary energy and signaling molecules, and, on the other hand, participate in destruction of the cell and the organism. Current understanding that the activity of mitochondria is not only limited to energy production, but also that these alternative non-energetic functions are unique and irreplaceable in the cell, allowed us to speak about the strong subordination of the entire cellular metabolism to characteristic functional manifestations of mitochondria. Mitochondria are capable of producing not only ATP, but also iron-sulfur clusters, steroid hormones, heme, reactive oxygen and nitrogen species, participate in thermogenesis, regulate cell death, proliferation and differentiation, participate in detoxification, etc. They are a mandatory attribute of eukaryotic cells, and, so far, no eukaryotic cells performing a non-parasitic or non-symbiotic life style have been found that lack mitochondria. We believe that the structural-functional intracellular, intercellular, inter-organ, and interspecific diversity of mitochondria is large enough to provide grounds for creating a mitochondrial nomenclature. The arguments for this are given in this analytical work.
Collapse
Affiliation(s)
- Dmitry B Zorov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia. .,Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - Nadezda V Andrianova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Valentina A Babenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.,Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - Ljubava D Zorova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.,Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - Savva D Zorov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Irina B Pevzner
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.,Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - Gennady T Sukhikh
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - Denis N Silachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.,Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| |
Collapse
|
31
|
Abstract
Ticks are hematophagous ectoparasites capable of transmitting multiple human pathogens. Environmental changes have supported the expansion of ticks into new geographical areas that have become the epicenters of tick-borne diseases (TBDs). The spotted fever group (SFG) of Rickettsia frequently infects ticks and causes tick-transmitted rickettsioses in areas of endemicity where ixodid ticks support host transmission during blood feeding. Ticks also serve as a reservoir for SFG Rickettsia. Among the members of SFG Rickettsia, R. rickettsii causes Rocky Mountain spotted fever (RMSF), the most lethal TBD in the United States. Cases of RMSF have been reported for over a century in association with several species of ticks in the United States. However, the isolation of R. rickettsii from ticks has decreased, and recent serological and epidemiological studies suggest that novel species of SFG Rickettsia are responsible for the increased number of cases of RMSF-like rickettsioses in the United States. Recent analyses of rickettsial genomes and advances in genetic and molecular studies of Rickettsia provided insights into the biology of Rickettsia with the identification of conserved and unique putative virulence genes involved in the rickettsial life cycle. Thus, understanding Rickettsia-host-tick interactions mediating successful disease transmission and pathogenesis for SFG rickettsiae remains an active area of research. This review summarizes recent advances in understanding how SFG Rickettsia species coopt and manipulate ticks and mammalian hosts to cause rickettsioses, with a particular emphasis on newly described or emerging SFG Rickettsia species.
Collapse
|
32
|
Origin of rickettsial host dependency unravelled. Nat Microbiol 2022; 7:1110-1111. [PMID: 35918417 DOI: 10.1038/s41564-022-01187-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Brahim Belhaouari D, Pires De Souza GA, Lamb DC, Kelly SL, Goldstone JV, Stegeman JJ, Colson P, La Scola B, Aherfi S. Metabolic arsenal of giant viruses: Host hijack or self-use? eLife 2022; 11:e78674. [PMID: 35801640 PMCID: PMC9270025 DOI: 10.7554/elife.78674] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/22/2022] [Indexed: 12/11/2022] Open
Abstract
Viruses generally are defined as lacking the fundamental properties of living organisms in that they do not harbor an energy metabolism system or protein synthesis machinery. However, the discovery of giant viruses of amoeba has fundamentally challenged this view because of their exceptional genome properties, particle sizes and encoding of the enzyme machinery for some steps of protein synthesis. Although giant viruses are not able to replicate autonomously and still require a host for their multiplication, numerous metabolic genes involved in energy production have been recently detected in giant virus genomes from many environments. These findings have further blurred the boundaries that separate viruses and living organisms. Herein, we summarize information concerning genes and proteins involved in cellular metabolic pathways and their orthologues that have, surprisingly, been discovered in giant viruses. The remarkable diversity of metabolic genes described in giant viruses include genes encoding enzymes involved in glycolysis, gluconeogenesis, tricarboxylic acid cycle, photosynthesis, and β-oxidation. These viral genes are thought to have been acquired from diverse biological sources through lateral gene transfer early in the evolution of Nucleo-Cytoplasmic Large DNA Viruses, or in some cases more recently. It was assumed that viruses are capable of hijacking host metabolic networks. But the giant virus auxiliary metabolic genes also may represent another form of host metabolism manipulation, by expanding the catalytic capabilities of the host cells especially in harsh environments, providing the infected host cells with a selective evolutionary advantage compared to non-infected cells and hence favoring the viral replication. However, the mechanism of these genes' functionality remains unclear to date.
Collapse
Affiliation(s)
- Djamal Brahim Belhaouari
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), IHU Méditerranée Infection, Marseille, France, Aix-Marseille UniversitéMarseilleFrance
| | - Gabriel Augusto Pires De Souza
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), IHU Méditerranée Infection, Marseille, France, Aix-Marseille UniversitéMarseilleFrance
| | - David C Lamb
- Faculty of Medicine, Health and Life Sciences, Institute of Life Science, Swansea UniversitySwanseaUnited Kingdom
| | - Steven L Kelly
- Faculty of Medicine, Health and Life Sciences, Institute of Life Science, Swansea UniversitySwanseaUnited Kingdom
| | - Jared V Goldstone
- Biology Department, Woods Hole Oceanographic InstitutionWoods HoleUnited States
| | - John J Stegeman
- Biology Department, Woods Hole Oceanographic InstitutionWoods HoleUnited States
| | - Philippe Colson
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), IHU Méditerranée Infection, Marseille, France, Aix-Marseille UniversitéMarseilleFrance
- Assistance Publique - Hôpitaux de Marseille (AP-HM)MarseilleFrance
| | - Bernard La Scola
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), IHU Méditerranée Infection, Marseille, France, Aix-Marseille UniversitéMarseilleFrance
- Assistance Publique - Hôpitaux de Marseille (AP-HM)MarseilleFrance
| | - Sarah Aherfi
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), IHU Méditerranée Infection, Marseille, France, Aix-Marseille UniversitéMarseilleFrance
- Assistance Publique - Hôpitaux de Marseille (AP-HM)MarseilleFrance
| |
Collapse
|
34
|
Schön ME, Martijn J, Vosseberg J, Köstlbacher S, Ettema TJG. The evolutionary origin of host association in the Rickettsiales. Nat Microbiol 2022; 7:1189-1199. [PMID: 35798888 PMCID: PMC9352585 DOI: 10.1038/s41564-022-01169-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/30/2022] [Indexed: 12/14/2022]
Abstract
The evolution of obligate host-association of bacterial symbionts and pathogens remains poorly understood. The Rickettsiales are an alphaproteobacterial order of obligate endosymbionts and parasites that infect a wide variety of eukaryotic hosts, including humans, livestock, insects and protists. Induced by their host-associated lifestyle, Rickettsiales genomes have undergone reductive evolution, leading to small, AT-rich genomes with limited metabolic capacities. Here we uncover eleven deep-branching alphaproteobacterial metagenome assembled genomes from aquatic environments, including data from the Tara Oceans initiative and other publicly available datasets, distributed over three previously undescribed Rickettsiales-related clades. Phylogenomic analyses reveal that two of these clades, Mitibacteraceae and Athabascaceae, branch sister to all previously sampled Rickettsiales. The third clade, Gamibacteraceae, branch sister to the recently identified ectosymbiotic ‘Candidatus Deianiraea vastatrix’. Comparative analyses indicate that the gene complement of Mitibacteraceae and Athabascaceae is reminiscent of that of free-living and biofilm-associated bacteria. Ancestral genome content reconstruction across the Rickettsiales species tree further suggests that the evolution of host association in Rickettsiales was a gradual process that may have involved the repurposing of a type IV secretion system. Phylogenomic analyses reveal novel environmental clades of Rickettsiales providing insights into their evolution from free-living to host-associated lifestyle.
Collapse
Affiliation(s)
- Max E Schön
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Joran Martijn
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.,Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Julian Vosseberg
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.,Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Stephan Köstlbacher
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Thijs J G Ettema
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden. .,Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
35
|
The Ankyrin Repeat Protein RARP-1 Is a Periplasmic Factor That Supports Rickettsia parkeri Growth and Host Cell Invasion. J Bacteriol 2022; 204:e0018222. [PMID: 35727033 DOI: 10.1128/jb.00182-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rickettsia spp. are obligate intracellular bacterial pathogens that have evolved a variety of strategies to exploit their host cell niche. However, the bacterial factors that contribute to this intracellular lifestyle are poorly understood. Here, we show that the conserved ankyrin repeat protein RARP-1 supports Rickettsia parkeri infection. Specifically, RARP-1 promotes efficient host cell entry and growth within the host cytoplasm, but it is not necessary for cell-to-cell spread or evasion of host autophagy. We further demonstrate that RARP-1 is not secreted into the host cytoplasm by R. parkeri. Instead, RARP-1 resides in the periplasm, and we identify several binding partners that are predicted to work in concert with RARP-1 during infection. Altogether, our data reveal that RARP-1 plays a critical role in the rickettsial life cycle. IMPORTANCE Rickettsia spp. are obligate intracellular bacterial pathogens that pose a growing threat to human health. Nevertheless, their strict reliance on a host cell niche has hindered investigation of the molecular mechanisms driving rickettsial infection. This study yields much-needed insight into the Rickettsia ankyrin repeat protein RARP-1, which is conserved across the genus but has not yet been functionally characterized. Earlier work had suggested that RARP-1 is secreted into the host cytoplasm. However, the results from this work demonstrate that R. parkeri RARP-1 resides in the periplasm and is important both for invasion of host cells and for growth in the host cell cytoplasm. These results reveal RARP-1 as a novel regulator of the rickettsial life cycle.
Collapse
|
36
|
Davison HR, Pilgrim J, Wybouw N, Parker J, Pirro S, Hunter-Barnett S, Campbell PM, Blow F, Darby AC, Hurst GDD, Siozios S. Genomic diversity across the Rickettsia and 'Candidatus Megaira' genera and proposal of genus status for the Torix group. Nat Commun 2022; 13:2630. [PMID: 35551207 PMCID: PMC9098888 DOI: 10.1038/s41467-022-30385-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/29/2022] [Indexed: 11/09/2022] Open
Abstract
Members of the bacterial genus Rickettsia were originally identified as causative agents of vector-borne diseases in mammals. However, many Rickettsia species are arthropod symbionts and close relatives of 'Candidatus Megaira', which are symbiotic associates of microeukaryotes. Here, we clarify the evolutionary relationships between these organisms by assembling 26 genomes of Rickettsia species from understudied groups, including the Torix group, and two genomes of 'Ca. Megaira' from various insects and microeukaryotes. Our analyses of the new genomes, in comparison with previously described ones, indicate that the accessory genome diversity and broad host range of Torix Rickettsia are comparable to those of all other Rickettsia combined. Therefore, the Torix clade may play unrecognized roles in invertebrate biology and physiology. We argue this clade should be given its own genus status, for which we propose the name 'Candidatus Tisiphia'.
Collapse
Affiliation(s)
- Helen R Davison
- Institute of Infection, Veterinary and Ecological sciences, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Jack Pilgrim
- Institute of Infection, Veterinary and Ecological sciences, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Nicky Wybouw
- Terrestrial Ecology Unit, Department of Biology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Joseph Parker
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA, 91125, USA
| | | | - Simon Hunter-Barnett
- Institute of Infection, Veterinary and Ecological sciences, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Paul M Campbell
- Institute of Infection, Veterinary and Ecological sciences, University of Liverpool, Liverpool, L69 7ZB, UK
- School of Health and Life Sciences, Faculty of Biology Medicine and Health, the University of Manchester, Manchester, UK
| | - Frances Blow
- Institute of Infection, Veterinary and Ecological sciences, University of Liverpool, Liverpool, L69 7ZB, UK
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Alistair C Darby
- Institute of Infection, Veterinary and Ecological sciences, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Gregory D D Hurst
- Institute of Infection, Veterinary and Ecological sciences, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Stefanos Siozios
- Institute of Infection, Veterinary and Ecological sciences, University of Liverpool, Liverpool, L69 7ZB, UK.
| |
Collapse
|
37
|
Abstract
Yeast species in the Wickerhamiella and Starmerella genera (W/S clade) thrive in the sugar-rich floral niche. We have previously shown that species belonging to this clade harbor an unparalleled number of genes of bacterial origin, among which is the SUC2 gene, encoding a sucrose-hydrolyzing enzyme. In this study, we used complementary in silico and experimental approaches to examine sucrose utilization in a broader cohort of species representing extant diversity in the W/S clade. Distinct strategies and modes of sucrose assimilation were unveiled, involving either extracellular sucrose hydrolysis through secreted bacterial Suc2 or intracellular assimilation using broad-substrate-range α-glucoside/H+ symporters and α-glucosidases. The intracellular pathway is encoded in two types of gene clusters reminiscent of the MAL clusters in Saccharomyces cerevisiae, where they are involved in maltose utilization. The genes composing each of the two types of MAL clusters found in the W/S clade have disparate evolutionary histories, suggesting that they formed de novo. Both transporters and glucosidases were shown to be functional and additionally involved in the metabolization of other disaccharides, such as maltose and melezitose. In one Wickerhamiella species lacking the α-glucoside transporter, maltose assimilation is accomplished extracellularly, an attribute which has been rarely observed in fungi. Sucrose assimilation in Wickerhamiella generally escaped both glucose repression and the need for an activator and is thus essentially constitutive, which is consistent with the abundance of both glucose and sucrose in the floral niche. The notable plasticity associated with disaccharide utilization in the W/S clade is discussed in the context of ecological implications and energy metabolism. IMPORTANCE Microbes usually have flexible metabolic capabilities and are able to use different compounds to meet their needs. The yeasts belonging to the Wickerhamiella and Starmerella genera (forming the so-called W/S clade) are usually found in flowers or insects that visit flowers and are known for having acquired many genes from bacteria by a process called horizontal gene transfer. One such gene, dubbed SUC2, is used to assimilate sucrose, which is one of the most abundant sugars in floral nectar. Here, we show that different lineages within the W/S clade used different solutions for sucrose utilization that dispensed SUC2 and differed in their energy requirements, in their capacity to scavenge small amounts of sucrose from the environment, and in the potential for sharing this resource with other microbial species. We posit that this plasticity is possibly dictated by adaptation to the specific requirements of each species.
Collapse
|
38
|
Rivera-Lugo R, Light SH, Garelis NE, Portnoy DA. RibU is an essential determinant of Listeria pathogenesis that mediates acquisition of FMN and FAD during intracellular growth. Proc Natl Acad Sci U S A 2022; 119:e2122173119. [PMID: 35316134 PMCID: PMC9060500 DOI: 10.1073/pnas.2122173119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/15/2022] [Indexed: 11/18/2022] Open
Abstract
Flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) are essential riboflavin-derived cofactors involved in a myriad of redox reactions across all forms of life. Nevertheless, the basis of flavin acquisition strategies by riboflavin auxotrophic pathogens remains poorly defined. In this study, we examined how the facultative intracellular pathogen Listeria monocytogenes, a riboflavin auxotroph, acquires flavins during infection. A L. monocytogenes mutant lacking the putative riboflavin transporter (RibU) was completely avirulent in mice but had no detectable growth defect in nutrient-rich media. However, unlike wild type, the RibU mutant was unable to grow in defined media supplemented with FMN or FAD or to replicate in macrophages starved for riboflavin. Consistent with RibU functioning to scavenge FMN and FAD inside host cells, a mutant unable to convert riboflavin to FMN or FAD retained virulence and grew in cultured macrophages and in spleens and livers of infected mice. However, this FMN- and FAD-requiring strain was unable to grow in the gallbladder or intestines, where L. monocytogenes normally grows extracellularly, suggesting that these sites do not contain sufficient flavin cofactors to promote replication. Thus, by deleting genes required to synthesize FMN and FAD, we converted L. monocytogenes from a facultative to an obligate intracellular pathogen. Collectively, these data indicate that L. monocytogenes requires riboflavin to grow extracellularly in vivo but scavenges FMN and FAD to grow in host cells.
Collapse
Affiliation(s)
- Rafael Rivera-Lugo
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Samuel H. Light
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Nicholas E. Garelis
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Daniel A. Portnoy
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| |
Collapse
|
39
|
Ren H, Li Y, Ma X, Zhang C, Peng R, Ming L. Differential microRNA expression profile of Trichinella spiralis larvae after exposure to the host small intestinal milieu. Acta Trop 2022; 226:106174. [PMID: 34627754 DOI: 10.1016/j.actatropica.2021.106174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 08/20/2021] [Accepted: 09/27/2021] [Indexed: 11/19/2022]
Abstract
The process by which Trichinella spiralis muscle larvae are activated to infect the intestine after exposure to the host small intestinal milieu is crucial for the successful establishment of T. spiralis infection. However, the molecular mechanism underlying the invasion of intestinal epithelial cells by T. spiralis has not been elucidated. MicroRNAs are a class of small noncoding RNAs that participate in parasite growth and development, pathogenic processes, and host-parasite interactions. In the present study, the differential expression profile of miRNAs in T. spiralis after exposure to the mouse small intestinal milieu was analysed using Solexa high-throughput sequencing technology. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to analyse the functions of miRNA target genes, and dual-luciferase reporter assays were subsequently applied to test the regulatory effects of one significantly decreased miRNA (let-7) on its four predicted target genes. In total, 2,000 known miRNAs (930 upregulated and 1070 downregulated) and 43 novel miRNAs (22 upregulated and 21 downregulated) were found to be differentially expressed in intestinal larvae, compared with muscle larvae. The KEGG pathway analysis showed that the predicted target genes of differentially expressed miRNAs were involved in 299 different pathways, and the top 10 pathways were metabolic pathways, biosynthesis of secondary metabolites, neuroactive ligand-receptor interaction, lysosome, focal adhesion, purine metabolism, starch and sucrose metabolism, tight junction, carbohydrate digestion and absorption, and pathways in cancer. As one of the most widely studied miRNA families, the expression of let-7 was significantly decreased in T. spiralis after exposure to host small intestinal milieu. A dual-luciferase reporter assay revealed that neuropeptide Y receptor type 6 and carboxypeptidase E were direct target genes of let-7, and were downregulated by binding with their 3' UTR. GO function analysis showed that carboxypeptidase E had multiple enzymatic activities, suggesting that it might participate in cell membrane damage and larval invasion. These data suggest that the differentially expressed miRNAs in T. spiralis might have a regulatory role in the invasion of host intestinal epithelial cells. This study provides a new insight into the molecular mechanisms of invasion by T. spiralis and the regulatory functions of miRNAs in host-Trichinella interactions.
Collapse
Affiliation(s)
- Huijun Ren
- Department of Clinical Laboratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Clinical Laboratory of Henan Province, Zhengzhou 450052, China.
| | - Yi Li
- Department of Clinical Laboratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Clinical Laboratory of Henan Province, Zhengzhou 450052, China
| | - Xiaohan Ma
- Department of Clinical Laboratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Clinical Laboratory of Henan Province, Zhengzhou 450052, China
| | - Chunli Zhang
- Department of General Surgery, the People's Hospital of Zhengzhou, Zhengzhou 450003, China
| | - Ruoyu Peng
- Department of Clinical Laboratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Clinical Laboratory of Henan Province, Zhengzhou 450052, China
| | - Liang Ming
- Department of Clinical Laboratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Clinical Laboratory of Henan Province, Zhengzhou 450052, China
| |
Collapse
|
40
|
Castelli M, Lanzoni O, Giovannini M, Lebedeva N, Gammuto L, Sassera D, Melekhin M, Potekhin A, Fokin S, Petroni G. 'Candidatus Gromoviella agglomerans', a novel intracellular Holosporaceae parasite of the ciliate Paramecium showing marked genome reduction. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:34-49. [PMID: 34766443 DOI: 10.1111/1758-2229.13021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Holosporales are an alphaproteobacterial lineage encompassing bacteria obligatorily associated with multiple diverse eukaryotes. For most representatives, little is known on the interactions with their hosts. In this study, we characterized a novel Holosporales symbiont of the ciliate Paramecium polycaryum. This bacterium inhabits the host cytoplasm, frequently forming quite large aggregates. Possibly due to such aggregates, host cells sometimes displayed lethal division defects. The symbiont was also able to experimentally stably infect another Paramecium polycaryum strain. The bacterium is phylogenetically related with symbionts of other ciliates and diplonemids, forming a putatively fast-evolving clade within the family Holosporaceae. Similarly to many close relatives, it presents a very small genome (<600 kbp), and, accordingly, a limited predicted metabolism, implying a heavy dependence on Paramecium, thanks also to some specialized membrane transporters. Characterized features, including the presence of specific secretion systems, are overall suggestive of a mild parasitic effect on the host. From an evolutionary perspective, a potential ancestral trend towards pronounced genome reduction and possibly linked to parasitism could be inferred, at least among fast-evolving Holosporaceae, with some lineage-specific traits. Interestingly, similar convergent features could be observed in other host-associated lineages, in particular Rickettsiales among Alphaproteobacteria.
Collapse
Affiliation(s)
- Michele Castelli
- Dipartimento di Biologia e Biotecnologie, Università degli studi di Pavia, Pavia, Italy
| | - Olivia Lanzoni
- Dipartimento di Biologia, Università di Pisa, Pisa, Italy
- Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| | | | - Natalia Lebedeva
- Centre of Core Facilities "Culture Collections of Microorganisms", Saint Petersburg State University, Saint Petersburg, Russia
| | | | - Davide Sassera
- Dipartimento di Biologia e Biotecnologie, Università degli studi di Pavia, Pavia, Italy
| | - Maksim Melekhin
- Department of Microbiology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
- Laboratory of Cellular and Molecular Protistology, Zoological Institute RAS, Saint Petersburg, Russia
| | - Alexey Potekhin
- Department of Microbiology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
- Laboratory of Cellular and Molecular Protistology, Zoological Institute RAS, Saint Petersburg, Russia
| | - Sergei Fokin
- Dipartimento di Biologia, Università di Pisa, Pisa, Italy
- Department of Invertebrate Zoology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Giulio Petroni
- Dipartimento di Biologia, Università di Pisa, Pisa, Italy
| |
Collapse
|
41
|
The Retropepsin-Type Protease APRc as a Novel Ig-Binding Protein and Moonlighting Immune Evasion Factor of Rickettsia. mBio 2021; 12:e0305921. [PMID: 34872352 PMCID: PMC8649778 DOI: 10.1128/mbio.03059-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Rickettsiae are obligate intracellular Gram-negative bacteria transmitted by arthropod vectors. Despite their reduced genomes, the function(s) of the majority of rickettsial proteins remains to be uncovered. APRc is a highly conserved retropepsin-type protease, suggested to act as a modulator of other rickettsial surface proteins with a role in adhesion/invasion. However, APRc’s function(s) in bacterial pathogenesis and virulence remains unknown. This study demonstrates that APRc targets host serum components, combining nonimmune immunoglobulin (Ig)-binding activity with resistance to complement-mediated killing. We confirmed nonimmune human IgG binding in extracts of different rickettsial species and intact bacteria. Our results revealed that the soluble domain of APRc is capable of binding to human (h), mouse, and rabbit IgG and different classes of human Ig (IgG, IgM, and IgA) in a concentration-dependent manner. APRc-hIgG interaction was confirmed with total hIgG and normal human serum. APRc-hIgG displayed a binding affinity in the micromolar range. We provided evidence of interaction preferentially through the Fab region and confirmed that binding is independent of catalytic activity. Mapping the APRc region responsible for binding revealed the segment between amino acids 157 and 166 as one of the interacting regions. Furthermore, we demonstrated that expression of the full-length protease in Escherichia coli is sufficient to promote resistance to complement-mediated killing and that interaction with IgG contributes to serum resistance. Our findings position APRc as a novel Ig-binding protein and a novel moonlighting immune evasion factor of Rickettsia, contributing to the arsenal of virulence factors utilized by these intracellular pathogens to aid in host colonization.
Collapse
|
42
|
Ras TA, Strauss E, Botes A. Evaluating the Genetic Capacity of Mycoplasmas for Coenzyme A Biosynthesis in a Search for New Anti-mycoplasma Targets. Front Microbiol 2021; 12:791756. [PMID: 34987490 PMCID: PMC8721197 DOI: 10.3389/fmicb.2021.791756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/22/2021] [Indexed: 12/15/2022] Open
Abstract
Mycoplasmas are responsible for a wide range of disease states in both humans and animals, in which their parasitic lifestyle has allowed them to reduce their genome sizes and curtail their biosynthetic capabilities. The subsequent dependence on their host offers a unique opportunity to explore pathways for obtaining and producing cofactors - such as coenzyme A (CoA) - as possible targets for the development of new anti-mycoplasma agents. CoA plays an essential role in energy and fatty acid metabolism and is required for membrane synthesis. However, our current lack of knowledge of the relevance and importance of the CoA biosynthesis pathway in mycoplasmas, and whether it could be bypassed within their pathogenic context, prevents further exploration of the potential of this pathway. In the universal, canonical CoA biosynthesis pathway, five enzymes are responsible for the production of CoA. Given the inconsistent presence of the genes that code for these enzymes across Mycoplasma genomes, this study set out to establish the genetic capacity of mycoplasmas to synthesize their own CoA de novo. Existing functional annotations and sequence, family, motif, and domain analysis of protein products were used to determine the existence of relevant genes in Mycoplasma genomes. We found that most Mycoplasma species do have the genetic capacity to synthesize CoA, but there was a differentiated prevalence of these genes across species. Phylogenetic analysis indicated that the phylogenetic position of a species could not be used to predict its enzyme-encoding gene combinations. Despite this, the final enzyme in the biosynthesis pathway - dephospho-coenzyme A kinase (DPCK) - was found to be the most common among the studied species, suggesting that it has the most potential as a target in the search for new broad-spectrum anti-mycoplasma agents.
Collapse
Affiliation(s)
| | | | - Annelise Botes
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
43
|
Abstract
Rickettsia rickettsii, the causative agent of Rocky Mountain spotted fever, is an enzootic, obligate, intracellular bacterial pathogen. Nitric oxide (NO) synthesized by the inducible NO synthase (iNOS) is a potent antimicrobial component of innate immunity and has been implicated in the control of virulent Rickettsia spp. in diverse cell types. In this study, we examined the antibacterial role of NO on R. rickettsii. Our results indicate that NO challenge dramatically reduces R. rickettsii adhesion through the disruption of bacterial energetics. Additionally, NO-treated R. rickettsii cells were unable to synthesize protein or replicate in permissive cells. Activated, NO-producing macrophages restricted R. rickettsii infections, but inhibition of iNOS ablated the inhibition of bacterial growth. These data indicate that NO is a potent antirickettsial effector of innate immunity that targets energy generation in these pathogenic bacteria to prevent growth and subversion of infected host cells.
Collapse
|
44
|
Novel Symbiotic Genome-Scale Model Reveals Wolbachia's Arboviral Pathogen Blocking Mechanism in Aedes aegypti. mBio 2021; 12:e0156321. [PMID: 34634928 PMCID: PMC8515829 DOI: 10.1128/mbio.01563-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Wolbachia are endosymbiont bacteria known to infect arthropods causing different effects, such as cytoplasmic incompatibility and pathogen blocking in Aedes aegypti. Although several Wolbachia strains have been studied, there is little knowledge regarding the relationship between this bacterium and their hosts, particularly on their obligate endosymbiont nature and its pathogen blocking ability. Motivated by the potential applications on disease control, we developed a genome-scale model of two Wolbachia strains: wMel and the strongest Dengue blocking strain known to date: wMelPop. The obtained metabolic reconstructions exhibit an energy metabolism relying mainly on amino acids and lipid transport to support cell growth that is consistent with altered lipid and cholesterol metabolism in Wolbachia-infected mosquitoes. The obtained metabolic reconstruction was then coupled with a reconstructed mosquito model to retrieve a symbiotic genome-scale model accounting for 1,636 genes and 6,408 reactions of the Aedes aegypti-Wolbachia interaction system. Simulation of an arboviral infection in the obtained novel symbiotic model represents a metabolic scenario characterized by pathogen blocking in higher titer Wolbachia strains, showing that pathogen blocking by Wolbachia infection is consistent with competition for lipid and amino acid resources between arbovirus and this endosymbiotic bacteria.
Collapse
|
45
|
Allen PE, Noland RC, Martinez JJ. Rickettsia conorii survival in THP-1 macrophages involves host lipid droplet alterations and active rickettsial protein production. Cell Microbiol 2021; 23:e13390. [PMID: 34464019 DOI: 10.1111/cmi.13390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 12/29/2022]
Abstract
Rickettsia conorii is a Gram-negative, cytosolic intracellular bacterium that has classically been investigated in terms of endothelial cell infection. However, R. conorii and other human pathogenic Rickettsia species have evolved mechanisms to grow in various cell types, including macrophages, during mammalian infection. During infection of these phagocytes, R. conorii shifts the host cell's overall metabolism towards an anti-inflammatory M2 response, metabolically defined by an increase in host lipid metabolism and oxidative phosphorylation. Lipid metabolism has more recently been identified as a key regulator of host homeostasis through modulation of immune signalling and metabolism. Intracellular pathogens have adapted mechanisms of hijacking host metabolic pathways including host lipid catabolic pathways for various functions required for growth and survival. In the present study, we hypothesised that alterations of host lipid droplets initiated by lipid catabolic pathways during R. conorii infection is important for bacterial survival in macrophages. Herein, we determined that host lipid droplet modulation is initiated early during R. conorii infection, and these alterations rely on active bacteria and lipid catabolic pathways. We also find that these lipid catabolic pathways are essential for efficient bacterial survival. Unlike the mechanisms used by other intracellular pathogens, the catabolism of lipid droplets induced by R. conorii infection is independent of upstream host peroxisome proliferator-activated receptor-alpha (PPARα) signalling. Inhibition of PPARɣ signalling and lipid droplet accumulation in host cells cause a significant decrease in R. conorii survival suggesting a negative correlation with lipid droplet production and R. conorii survival. Together, these results strongly suggest that the modulation of lipid droplets in macrophage cells infected by R. conorii is an important and underappreciated aspect of the infection process. TAKE AWAYS: Host lipid droplets are differentially altered in early and replicative stages of THP-1 macrophage infection with R. conorii. Lipid droplet alterations are initiated in a bacterial-dependent manner and do not require host peroxisome proliferator-activated receptors α or ɣ activation. Pharmacological inhibition of host lipid catabolic processes during R. conorii infection indicates a requirement of lipid catabolism for bacterial survival and initiation of lipid droplet modulation. A significant increase in host lipid droplets during infection has a negative impact on R. conorii survival in THP-1 macrophages.
Collapse
Affiliation(s)
- Paige E Allen
- Vector Borne Disease Laboratories, Department of Pathobiological Sciences, LSU School of Veterinary Medicine, Baton Rouge, Louisiana, USA
| | - Robert C Noland
- Skeletal Muscle Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Juan J Martinez
- Vector Borne Disease Laboratories, Department of Pathobiological Sciences, LSU School of Veterinary Medicine, Baton Rouge, Louisiana, USA
| |
Collapse
|
46
|
Discovery of a Diverse Set of Bacteria That Build Their Cell Walls without the Canonical Peptidoglycan Polymerase aPBP. mBio 2021; 12:e0134221. [PMID: 34311584 PMCID: PMC8406291 DOI: 10.1128/mbio.01342-21] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Peptidoglycan (PG) is a highly cross-linked peptide-glycan mesh that confers structural rigidity and shape to most bacterial cells. Polymerization of new PG is usually achieved by the concerted activity of two membrane-bound machineries, class-A penicillin binding proteins (aPBPs) and class-B penicillin binding proteins (bPBPs) in complex with shape, elongation, division, and sporulation (SEDS) proteins. Here, we have identified four phylogenetically distinct groups of bacteria that lack any identifiable aPBPs. We performed experiments on a panel of species within one of these groups, the Rickettsiales, and found that bacteria lacking aPBPs build a PG-like cell wall with minimal abundance and rigidity relative to cell walls of aPBP-containing bacteria. This reduced cell wall may have evolved to minimize the activation of host responses to pathogens and endosymbionts while retaining the minimal PG-biosynthesis machinery required for cell elongation and division. We term these “peptidoglycan-intermediate” bacteria, a cohort of host-associated species that includes some human pathogens.
Collapse
|
47
|
Sanchez SE, Omsland A. Conditional impairment of Coxiella burnetii by glucose-6P dehydrogenase activity. Pathog Dis 2021; 79:6321164. [PMID: 34259815 PMCID: PMC8292140 DOI: 10.1093/femspd/ftab034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 07/06/2021] [Indexed: 11/12/2022] Open
Abstract
Coxiella burnetii is a bacterial obligate intracellular parasite and the etiological agent of query (Q) fever. While the C. burnetii genome has been reduced to ∼2 Mb as a likely consequence of genome streamlining in response to parasitism, enzymes for a nearly complete central metabolic machinery are encoded by the genome. However, lack of a canonical hexokinase for phosphorylation of glucose and an apparent absence of the oxidative branch of the pentose phosphate pathway, a major mechanism for regeneration of the reducing equivalent nicotinamide adenine dinucleotide phosphate (NADPH), have been noted as potential metabolic limitations of C. burnetii. By complementing C. burnetii with the gene zwf encoding the glucose-6-phosphate-consuming and NADPH-producing enzyme glucose-6-phosphate dehydrogenase (G6PD), we demonstrate a severe metabolic fitness defect for C. burnetii under conditions of glucose limitation. Supplementation of the medium with the gluconeogenic carbon source glutamate did not rescue the growth defect of bacteria complemented with zwf. Absence of G6PD in C. burnetii therefore likely relates to the negative effect of its activity under conditions of glucose limitation. Coxiella burnetii central metabolism with emphasis on glucose, NAD+, NADP+ and NADPH is discussed in a broader perspective, including comparisons with other bacterial obligate intracellular parasites.
Collapse
Affiliation(s)
- Savannah E Sanchez
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA 99164, USA.,School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | - Anders Omsland
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
48
|
Unpacking the intricacies of Rickettsia-vector interactions. Trends Parasitol 2021; 37:734-746. [PMID: 34162522 DOI: 10.1016/j.pt.2021.05.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/27/2021] [Accepted: 05/20/2021] [Indexed: 12/19/2022]
Abstract
Although Rickettsia species are molecularly detected among a wide range of arthropods, vector competence becomes an imperative aspect of understanding the ecoepidemiology of these vector-borne diseases. The synergy between vector homeostasis and rickettsial invasion, replication, and release initiated within hours (insects) and days (ticks) permits successful transmission of rickettsiae. Uncovering the molecular interplay between rickettsiae and their vectors necessitates examining the multifaceted nature of rickettsial virulence and vector infection tolerance. Here, we highlight the biological differences between tick- and insect-borne rickettsiae and the factors facilitating the incidence of rickettsioses. Untangling the complex relationship between rickettsial genetics, vector biology, and microbial interactions is crucial in understanding the intricate association between rickettsiae and their vectors.
Collapse
|
49
|
Abstract
Spikes in rickettsioses occur as deforestation, urbanization, and homelessness increase human exposure to blood-feeding arthropods. Still, effective Rickettsia vaccines remain elusive. Species of Rickettsia (Alphaproteobacteria: Rickettsiales) are obligate intracellular parasites of a wide range of eukaryotes, with recognized arthropod-borne human pathogens belonging to the transitional group (TRG), typhus group (TG), and spotted fever group (SFG) rickettsiae. Growing in the host cytosol, rickettsiae pilfer numerous metabolites to make a typical Gram-negative bacterial cell envelope. The O-antigen of rickettsial lipopolysaccharide (LPS) is immunogenic and has been shown to tether the S-layer to the rickettsial surface; however, little is known about the structure and immunogenicity of the Rickettsia lipid A moiety. The structure of lipid A, the membrane anchor of LPS, affects the ability of this molecule to interact with components of the host innate immune system, specifically the MD-2/TLR4 receptor complex. To dissect the host responses that can occur during Rickettsia in vitro and in vivo infection, structural analysis of Rickettsia lipid A is needed. Lipid A was extracted from four Rickettsia species and structurally analyzed. R. akari (TRG), R. typhi (TG), and R. montanensis (SFG) produced a similar structure, whereas R. rickettsii (SFG) altered the length of a secondary acyl group. While all structures have longer acyl chains than known highly inflammatory hexa-acylated lipid A structures, the R. rickettsii modification should differentially alter interactions with the hydrophobic internal pocket in MD2. The significance of these characteristics toward inflammatory potential as well as membrane dynamics between arthropod and vertebrate cellular environments warrants further investigation. Our work adds lipid A to the secretome and O-antigen as variable factors possibly correlating with phenotypically diverse rickettsioses. IMPORTANCE Spikes in rickettsioses occur as deforestation, urbanization, and homelessness increase human exposure to blood-feeding arthropods. Still, effective Rickettsia vaccines remain elusive. Recent studies have determined that Rickettsia lipopolysaccharide anchors the protective S-layer to the bacterial surface and elicits bactericidal antibodies. Furthermore, growing immunological evidence suggests vertebrate sensors (MD-2/TLR4 and noncanonical inflammasome) typically triggered by the lipid A portion of lipopolysaccharide are activated during Rickettsia infection. However, the immunopotency of Rickettsia lipid A is unknown due to poor appreciation for its structure. We determined lipid A structures for four distinct rickettsiae, revealing longer acyl chains relative to highly inflammatory bacterial lipid A. Surprisingly, lipid A of the Rocky Mountain spotted fever agent deviates in structure from other rickettsiae. Thus, lipid A divergence may contribute to variable disease phenotypes, sounding an alarm for determining its immunopotency and possible utility (i.e., as an adjuvant or anti-inflammatory) for development of more prudent rickettsiacidal therapies.
Collapse
|
50
|
Microbiome reduction and endosymbiont gain from a switch in sea urchin life history. Proc Natl Acad Sci U S A 2021; 118:2022023118. [PMID: 33853946 DOI: 10.1073/pnas.2022023118] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Animal gastrointestinal tracts harbor a microbiome that is integral to host function, yet species from diverse phyla have evolved a reduced digestive system or lost it completely. Whether such changes are associated with alterations in the diversity and/or abundance of the microbiome remains an untested hypothesis in evolutionary symbiosis. Here, using the life history transition from planktotrophy (feeding) to lecithotrophy (nonfeeding) in the sea urchin Heliocidaris, we demonstrate that the lack of a functional gut corresponds with a reduction in microbial community diversity and abundance as well as the association with a diet-specific microbiome. We also determine that the lecithotroph vertically transmits a Rickettsiales that may complement host nutrition through amino acid biosynthesis and influence host reproduction. Our results indicate that the evolutionary loss of a functional gut correlates with a reduction in the microbiome and the association with an endosymbiont. Symbiotic transitions can therefore accompany life history transitions in the evolution of developmental strategies.
Collapse
|