1
|
Beaudry MS, Bhuiyan MIU, Glenn TC. Enriching the future of public health microbiology with hybridization bait capture. Clin Microbiol Rev 2024; 37:e0006822. [PMID: 39545729 PMCID: PMC11629615 DOI: 10.1128/cmr.00068-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024] Open
Abstract
SUMMARYPublic health microbiology focuses on microorganisms and infectious agents that impact human health. For years, this field has relied on culture or molecular methods to investigate complex samples of public health importance. However, with the increase in accuracy and decrease in sequencing cost over the last decade, there has been a transition to the use of next-generation sequencing in public health microbiology. Nevertheless, many available sequencing methods (e.g., shotgun metagenomics and amplicon sequencing) do not work well in complex sample types, require deep sequencing, or have inherent biases associated with them. Hybridization bait capture, also known as target enrichment, brings in solutions for such limitations. It is an increasingly popular technique to simultaneously characterize many thousands of genetic elements while reducing the amount of sequencing needed (thereby reducing the sequencing costs). Here, we summarize the concept of hybridization bait capture for public health, reviewing a total of 35 bait sets designed in six key topic areas for public health microbiology [i.e., antimicrobial resistance (AMR), bacteria, fungi, parasites, vectors, and viruses], and compare hybridization bait capture to previously relied upon methods. Furthermore, we provide an in-depth comparison of the three most popular bait sets designed for AMR by evaluating each of them against three major AMR databases: Comprehensive Antibiotic Resistance Database, Microbial Ecology Group Antimicrobial Resistance Database, and Pathogenicity Island Database. Thus, this article provides a review of hybridization bait capture for public health microbiologists.
Collapse
Affiliation(s)
- Megan S. Beaudry
- Department of Environmental Health Science, University of Georgia, Athens, Georgia, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, USA
| | | | - Travis C. Glenn
- Department of Environmental Health Science, University of Georgia, Athens, Georgia, USA
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
2
|
Amich J. The many roles of sulfur in the fungal-host interaction. Curr Opin Microbiol 2024; 79:102489. [PMID: 38754292 DOI: 10.1016/j.mib.2024.102489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/18/2024]
Abstract
Sulfur is an essential macronutrient for life, and consequently, all living organisms must acquire it from external sources to thrive and grow. Sulfur is a constituent of a multitude of crucial molecules, such as the S-containing proteinogenic amino acids cysteine and methionine; cofactors and prosthetic groups, such as coenzyme-A and iron-sulfur (Fe-S) clusters; and other essential organic molecules, such as glutathione or S-adenosylmethionine. Additionally, sulfur in cysteine thiols is an active redox group that plays paramount roles in protein stability, enzyme catalysis, and redox homeostasis. Furthermore, H2S is gaining more attention as a crucial signaling molecule that influences metabolism and physiological functions. Given its importance, it is not surprising that sulfur plays key roles in the host-pathogen interaction. However, in contrast to its well-recognized involvement in the plant-pathogen interaction, the specific contributions of sulfur to the human-fungal interaction are much less understood. In this short review, I highlight some of the most important known mechanisms and propose directions for further research.
Collapse
Affiliation(s)
- Jorge Amich
- Mycology Reference Laboratory (Laboratorio de Referencia e Investigación en Micología [LRIM]), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain.
| |
Collapse
|
3
|
Wakade RS, Wellington M, Krysan DJ. Temporal dynamics of Candida albicans morphogenesis and gene expression reveals distinctions between in vitro and in vivo filamentation. mSphere 2024; 9:e0011024. [PMID: 38501830 PMCID: PMC11036811 DOI: 10.1128/msphere.00110-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 02/29/2024] [Indexed: 03/20/2024] Open
Abstract
Candida albicans is a common human fungal pathogen that is also a commensal of the oral cavity and gastrointestinal tract. C. albicans pathogenesis is linked to its transition from budding yeast to filamentous morphologies including hyphae and pseudohyphae. The centrality of this virulence trait to C. albicans pathobiology has resulted in extensive characterization of a wide range of factors associated with filamentation with a strong focus on transcriptional regulation. The vast majority of these experiments have used in vitro conditions to induce the yeast-to-filament transition. Taking advantage of in vivo approaches to quantitatively characterize both morphology and gene expression during filamentation during mammalian infection, we have investigated the dynamics of these two aspects of filamentation in vivo and compared them to in vitro filament induction with "host-like" tissue culture media supplemented with serum at mammalian body temperature. Although filamentation shares many common features in the two conditions, we have found two significant differences. First, alternative carbon metabolism genes are expressed early during in vitro filamentation and late in vivo, suggesting significant differences in glucose availability. Second, C. albicans begins a hyphae-to-yeast transition after 4-h incubation while we find little evidence of hyphae-to-yeast transition in vivo up to 24 h post-infection. We show that the low rate of in vivo hyphae-to-yeast transition is likely due to the very low expression of PES1, a key driver of lateral yeast in vitro and that heterologous expression of PES1 is sufficient to trigger lateral yeast formation in vivo.IMPORTANCECandida albicans filamentation is correlated with virulence and is an intensively studied aspect of C. albicans biology. The vast majority of studies on C. albicans filamentation are based on in vitro induction of hyphae and pseudohyphae. Here we used an in vivo filamentation assay and in vivo expression profiling to compare the tempo of morphogenesis and gene expression between in vitro and in vivo filamentation. Although the hyphal gene expression profile is induced rapidly in both conditions, it remains stably expressed over a 12-h time course in vivo while it peaks after 4 h in vitro and is reduced. This reduced hyphal gene expression in vitro correlates with reduced hyphae and increased hyphae-to-yeast transition. By contrast, there is little evidence of hyphae-to-yeast transition in vivo.
Collapse
Affiliation(s)
- Rohan S. Wakade
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Melanie Wellington
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Damian J. Krysan
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
4
|
Khan A, Alves-Ferreira EVC, Vogel H, Botchie S, Ayi I, Pawlowic MC, Robinson G, Chalmers RM, Lorenzi H, Grigg ME. Phylogenomic reconstruction of Cryptosporidium spp. captured directly from clinical samples reveals extensive genetic diversity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.17.589752. [PMID: 38659886 PMCID: PMC11042339 DOI: 10.1101/2024.04.17.589752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Cryptosporidium is a leading cause of severe diarrhea and mortality in young children and infants in Africa and southern Asia. More than twenty Cryptosporidium species infect humans, of which C. parvum and C. hominis are the major agents causing moderate to severe diarrhea. Relatively few genetic markers are typically applied to genotype and/or diagnose Cryptosporidium. Most infections produce limited oocysts making it difficult to perform whole genome sequencing (WGS) directly from stool samples. Hence, there is an immediate need to apply WGS strategies to 1) develop high-resolution genetic markers to genotype these parasites more precisely, 2) to investigate endemic regions and detect the prevalence of different genotypes, and the role of mixed infections in generating genetic diversity, and 3) to investigate zoonotic transmission and evolution. To understand Cryptosporidium global population genetic structure, we applied Capture Enrichment Sequencing (CES-Seq) using 74,973 RNA-based 120 nucleotide baits that cover ~92% of the genome of C. parvum. CES-Seq is sensitive and successfully sequenced Cryptosporidium genomic DNA diluted up to 0.005% in human stool DNA. It also resolved mixed strain infections and captured new species of Cryptosporidium directly from clinical/field samples to promote genome-wide phylogenomic analyses and prospective GWAS studies.
Collapse
Affiliation(s)
- A Khan
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, National institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - E V C Alves-Ferreira
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, National institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - H Vogel
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, National institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Comparative Biomedical Scientist Training Program, National Institutes of Health, Bethesda, MD, 20892, USA
| | - S Botchie
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - I Ayi
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - M C Pawlowic
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, DD1 5EH, Scotland, UK
| | - G Robinson
- Cryptosporidium Reference Unit, Public Health Wales, Microbiology and Health Protection, Singleton Hospital, Swansea, SA2 8QA, UK
- Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK
| | - R M Chalmers
- Cryptosporidium Reference Unit, Public Health Wales, Microbiology and Health Protection, Singleton Hospital, Swansea, SA2 8QA, UK
- Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK
| | - H Lorenzi
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - M E Grigg
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, National institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Quek ZBR, Ng SH. Hybrid-Capture Target Enrichment in Human Pathogens: Identification, Evolution, Biosurveillance, and Genomic Epidemiology. Pathogens 2024; 13:275. [PMID: 38668230 PMCID: PMC11054155 DOI: 10.3390/pathogens13040275] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/11/2024] [Accepted: 03/18/2024] [Indexed: 04/29/2024] Open
Abstract
High-throughput sequencing (HTS) has revolutionised the field of pathogen genomics, enabling the direct recovery of pathogen genomes from clinical and environmental samples. However, pathogen nucleic acids are often overwhelmed by those of the host, requiring deep metagenomic sequencing to recover sufficient sequences for downstream analyses (e.g., identification and genome characterisation). To circumvent this, hybrid-capture target enrichment (HC) is able to enrich pathogen nucleic acids across multiple scales of divergences and taxa, depending on the panel used. In this review, we outline the applications of HC in human pathogens-bacteria, fungi, parasites and viruses-including identification, genomic epidemiology, antimicrobial resistance genotyping, and evolution. Importantly, we explored the applicability of HC to clinical metagenomics, which ultimately requires more work before it is a reliable and accurate tool for clinical diagnosis. Relatedly, the utility of HC was exemplified by COVID-19, which was used as a case study to illustrate the maturity of HC for recovering pathogen sequences. As we unravel the origins of COVID-19, zoonoses remain more relevant than ever. Therefore, the role of HC in biosurveillance studies is also highlighted in this review, which is critical in preparing us for the next pandemic. We also found that while HC is a popular tool to study viruses, it remains underutilised in parasites and fungi and, to a lesser extent, bacteria. Finally, weevaluated the future of HC with respect to bait design in the eukaryotic groups and the prospect of combining HC with long-read HTS.
Collapse
Affiliation(s)
- Z. B. Randolph Quek
- Defence Medical & Environmental Research Institute, DSO National Laboratories, Singapore 117510, Singapore
| | | |
Collapse
|
6
|
Hefny ZA, Ji B, Elsemman IE, Nielsen J, Van Dijck P. Transcriptomic meta-analysis to identify potential antifungal targets in Candida albicans. BMC Microbiol 2024; 24:66. [PMID: 38413885 PMCID: PMC10898158 DOI: 10.1186/s12866-024-03213-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/06/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Candida albicans is a fungal pathogen causing human infections. Here we investigated differential gene expression patterns and functional enrichment in C. albicans strains grown under different conditions. METHODS A systematic GEO database search identified 239 "Candida albicans" datasets, of which 14 were selected after rigorous criteria application. Retrieval of raw sequencing data from the ENA database was accompanied by essential metadata extraction from dataset descriptions and original articles. Pre-processing via the tailored nf-core pipeline for C. albicans involved alignment, gene/transcript quantification, and diverse quality control measures. Quality assessment via PCA and DESeq2 identified significant genes (FDR < = 0.05, log2-fold change > = 1 or <= -1), while topGO conducted GO term enrichment analysis. Exclusions were made based on data quality and strain relevance, resulting in the selection of seven datasets from the SC5314 strain background for in-depth investigation. RESULTS The meta-analysis of seven selected studies unveiled a substantial number of genes exhibiting significant up-regulation (24,689) and down-regulation (18,074). These differentially expressed genes were further categorized into 2,497 significantly up-regulated and 2,573 significantly down-regulated Gene Ontology (GO) IDs. GO term enrichment analysis clustered these terms into distinct groups, providing insights into the functional implications. Three target gene lists were compiled based on previous studies, focusing on central metabolism, ion homeostasis, and pathogenicity. Frequency analysis revealed genes with higher occurrence within the identified GO clusters, suggesting their potential as antifungal targets. Notably, the genes TPS2, TPS1, RIM21, PRA1, SAP4, and SAP6 exhibited higher frequencies within the clusters. Through frequency analysis within the GO clusters, several key genes emerged as potential targets for antifungal therapies. These include RSP5, GLC7, SOD2, SOD5, SOD1, SOD6, SOD4, SOD3, and RIM101 which exhibited higher occurrence within the identified clusters. CONCLUSION This comprehensive study significantly advances our understanding of the dynamic nature of gene expression in C. albicans. The identification of genes with enhanced potential as antifungal drug targets underpins their value for future interventions. The highlighted genes, including TPS2, TPS1, RIM21, PRA1, SAP4, SAP6, RSP5, GLC7, SOD2, SOD5, SOD1, SOD6, SOD4, SOD3, and RIM101, hold promise for the development of targeted antifungal therapies.
Collapse
Affiliation(s)
- Zeinab Abdelmoghis Hefny
- Laboratory of Molecular Cell Biology, Department of Biology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 31, Leuven, B-3001, Belgium
| | - Boyang Ji
- BioInnovation Institute, Ole Maaløes Vej 3, Copenhagen, DK2200, Denmark
| | - Ibrahim E Elsemman
- Department of Information Systems, Faculty of Computers and Information, Assiut University, Assiut, 2071515, Egypt
| | - Jens Nielsen
- BioInnovation Institute, Ole Maaløes Vej 3, Copenhagen, DK2200, Denmark.
- Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, SE41296, Gothenburg, SE41296, Sweden.
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Department of Biology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 31, Leuven, B-3001, Belgium.
| |
Collapse
|
7
|
Lin M, Huang Y, Orihara K, Chibana H, Kajiwara S, Chen X. A Putative NADPH Oxidase Gene in Unicellular Pathogenic Candida glabrata Is Required for Fungal ROS Production and Oxidative Stress Response. J Fungi (Basel) 2023; 10:16. [PMID: 38248926 PMCID: PMC10817436 DOI: 10.3390/jof10010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Most previous studies on fungal NADPH oxidases (Nox) focused on multicellular fungi and highlighted the important roles of Nox-derived reactive oxygen species (ROS) in cellular differentiation and signaling communication. However, there are few reports about Nox in unicellular fungi. A novel NOX ortholog, CAGL0K05863g (named CgNOX1), in Candida glabrata was investigated in this study. Deletion of CgNOX1 led to a decrease in both intracellular and extracellular ROS production. In addition, the Cgnox1∆ mutant exhibited hypersensitivity to hydrogen peroxide and menadione. Also, the wild-type strain showed higher levels of both CgNOX1 mRNA expression and ROS production under oxidative stress. Moreover, the absence of CgNOX1 resulted in impaired ferric reductase activity. Although there was no effect on in vitro biofilm formation, the CgNOX1 mutant did not produce hepatic apoptosis, which might be mediated by fungal Nox-derived ROS during co-incubation. Together, these results indicated that the novel NOX gene plays important roles in unicellular pathogenic C. glabrata and its interaction with host cells.
Collapse
Affiliation(s)
- Maoyi Lin
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan; (M.L.); (Y.H.); (K.O.); (S.K.)
| | - Yao Huang
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan; (M.L.); (Y.H.); (K.O.); (S.K.)
| | - Kanami Orihara
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan; (M.L.); (Y.H.); (K.O.); (S.K.)
| | - Hiroji Chibana
- Medical Mycology Research Center, Chiba University, Chiba 263-8522, Japan;
| | - Susumu Kajiwara
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan; (M.L.); (Y.H.); (K.O.); (S.K.)
| | - Xinyue Chen
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan; (M.L.); (Y.H.); (K.O.); (S.K.)
| |
Collapse
|
8
|
Fletcher J, O’Connor-Moneley J, Frawley D, Flanagan PR, Alaalm L, Menendez-Manjon P, Estevez SV, Hendricks S, Woodruff AL, Buscaino A, Anderson MZ, Sullivan DJ, Moran GP. Deletion of the Candida albicans TLO gene family using CRISPR-Cas9 mutagenesis allows characterisation of functional differences in α-, β- and γ- TLO gene function. PLoS Genet 2023; 19:e1011082. [PMID: 38048294 PMCID: PMC10721199 DOI: 10.1371/journal.pgen.1011082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 12/14/2023] [Accepted: 11/22/2023] [Indexed: 12/06/2023] Open
Abstract
The Candida albicans genome contains between ten and fifteen distinct TLO genes that all encode a Med2 subunit of Mediator. In order to investigate the biological role of Med2/Tlo in C. albicans we deleted all fourteen TLO genes using CRISPR-Cas9 mutagenesis. ChIP-seq analysis showed that RNAP II localized to 55% fewer genes in the tloΔ mutant strain compared to the parent, while RNA-seq analysis showed that the tloΔ mutant exhibited differential expression of genes required for carbohydrate metabolism, stress responses, white-opaque switching and filamentous growth. Consequently, the tloΔ mutant grows poorly in glucose- and galactose-containing media, is unable to grow as true hyphae, is more sensitive to oxidative stress and is less virulent in the wax worm infection model. Reintegration of genes representative of the α-, β- and γ-TLO clades resulted in the complementation of the mutant phenotypes, but to different degrees. TLOα1 could restore phenotypes and gene expression patterns similar to wild-type and was the strongest activator of glycolytic and Tye7-regulated gene expression. In contrast, the two γ-TLO genes examined (i.e., TLOγ5 and TLOγ11) had a far lower impact on complementing phenotypic and transcriptomic changes. Uniquely, expression of TLOβ2 in the tloΔ mutant stimulated filamentous growth in YEPD medium and this phenotype was enhanced when Tloβ2 expression was increased to levels far in excess of Med3. In contrast, expression of reintegrated TLO genes in a tloΔ/med3Δ double mutant background failed to restore any of the phenotypes tested, suggesting that complementation of these Tlo-regulated processes requires a functional Mediator tail module. Together, these data confirm the importance of Med2/Tlo in a wide range of C. albicans cellular activities and demonstrate functional diversity within the gene family which may contribute to the success of this yeast as a coloniser and pathogen of humans.
Collapse
Affiliation(s)
- Jessica Fletcher
- Division of Oral Biosciences, Dublin Dental University Hospital, & University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - James O’Connor-Moneley
- Division of Oral Biosciences, Dublin Dental University Hospital, & University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - Dean Frawley
- Division of Oral Biosciences, Dublin Dental University Hospital, & University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - Peter R. Flanagan
- Division of Oral Biosciences, Dublin Dental University Hospital, & University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - Leenah Alaalm
- Division of Oral Biosciences, Dublin Dental University Hospital, & University of Dublin, Trinity College Dublin, Dublin, Ireland
| | | | | | - Shane Hendricks
- Department of Microbiology, The Ohio State University, Columbus, Ohio, United States of America
| | - Andrew L. Woodruff
- Department of Microbiology, The Ohio State University, Columbus, Ohio, United States of America
| | - Alessia Buscaino
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Matthew Z. Anderson
- Department of Microbiology, The Ohio State University, Columbus, Ohio, United States of America
| | - Derek J. Sullivan
- Division of Oral Biosciences, Dublin Dental University Hospital, & University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - Gary P. Moran
- Division of Oral Biosciences, Dublin Dental University Hospital, & University of Dublin, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
9
|
Wakade RS, Krysan DJ. Comparative dynamics of gene expression during in vitro and in vivo Candida albicans filamentation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.21.558874. [PMID: 37790536 PMCID: PMC10542175 DOI: 10.1101/2023.09.21.558874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Candida albicans is one of them most common causes of fungal disease in humans and is a commensal member of the human microbiome. The ability of C. albicans to cause disease is tightly correlated with its ability to undergo a morphological transition from budding yeast to a filamentous form (hyphae and pseudohyphae). This morphological transition is accompanied by the induction of a set of well characterized hyphae-associated genes and transcriptional regulators. To date, the vast majority of data regarding this process has been based on in vitro studies of filamentation using a range of inducing conditions. Recently, we developed an in vivo imaging approach that allows the direct characterization of morphological transition during mammalian infection. Here, we couple this imaging assay with in vivo expression profiling to characterize the time course of in vivo filamentation and the accompanying changes in gene expression. We also compare in vivo observations to in vitro filamentation using a medium (RPMI 1640 tissue culture medium with 10% bovine calf serum) widely used to mimic host conditions. From these data, we make the following conclusions regarding in vivo and in vitro filamentation. First, the transcriptional programs regulating filamentation are rapidly induced in vitro and in vivo. Second, the tempo of filamentation in vivo is prolonged relative to in vitro filamentation and the period of high expression of genes associated with that process is also prolonged. Third, hyphae are adapting to changing infection environments after filamentation has reached steady-state.
Collapse
Affiliation(s)
- Rohan S. Wakade
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City IA
| | - Damian J. Krysan
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City IA
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City IA
| |
Collapse
|
10
|
Li X, Yang H, Duan X, Cui M, Xing W, Zheng S. Synergistic effect of eravacycline combined with fluconazole against resistant Candida albicans in vitro and in vivo. Expert Rev Anti Infect Ther 2023; 21:1259-1267. [PMID: 37818633 DOI: 10.1080/14787210.2023.2270160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 09/29/2023] [Indexed: 10/12/2023]
Abstract
BACKGROUND The limited availability of antifungal drugs for candidiasis and the persistent problem of drug resistance, necessitates the urgent development of new antifungal drugs and alternative treatment options. RESEARCH DESIGN AND METHODS This study examined the synergistic antifungal activity of the combination of eravacycline (ERV) and fluconazole (FLC) both in vitro by microdilution checkerboard assay and in vivo by Galleria mellonella model. The underlying synergistic mechanisms of this drug combination was investigated using RNA-sequencing and qPCR. RESULTS ERV (2 μg/mL) + FLC (0.25-0.5 μg/mL) had strong synergistic antifungal activity against resistant Candida albicans (C. albicans) in vitro, as evidenced by a fractional inhibitory concentration index of 0.0044-0.0088. In vivo experiments in Galleria mellonella larvae infected with resistant C. albicans revealed that ERV (2 μg/larva) + FLC (1 μg/larva) improved survival rates and reduced fungal burden. The results of RNA-sequencing and qPCR showed that the mechanism of synergistic inhibition on resistant C. albicans was related to the inhibition of DNA replication and cell meiosis. CONCLUSIONS These results indicate that the combination of ERV and FLC effectively inhibits resistant C. albicans both in vitro and in vivo and lay the foundation for a potential novel treatment option for candidiasis.
Collapse
Affiliation(s)
- Xiuyun Li
- Maternal and Child Health Development Research Center, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong Province, P.R, China
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, P.R, China
| | - Huijun Yang
- Reproductive Medicine Center, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong Province, P.R, China
| | - Ximeng Duan
- Maternal and Child Health Development Research Center, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong Province, P.R, China
| | - Min Cui
- Maternal and Child Health Development Research Center, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong Province, P.R, China
| | - Wenlan Xing
- Maternal and Child Health Development Research Center, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong Province, P.R, China
| | - Shicun Zheng
- Maternal and Child Health Development Research Center, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong Province, P.R, China
| |
Collapse
|
11
|
Hovhannisyan H, Rodríguez A, Saus E, Vaneechoutte M, Gabaldón T. Multiplexed target enrichment of coding and non-coding transcriptomes enables studying Candida spp. infections from human derived samples. Front Cell Infect Microbiol 2023; 13:1093178. [PMID: 36761895 PMCID: PMC9902369 DOI: 10.3389/fcimb.2023.1093178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/03/2023] [Indexed: 01/26/2023] Open
Abstract
The study of transcriptomic interactions between host and pathogens in in vivo conditions is challenged by the low relative amounts of the pathogen RNA. Yeast opportunistic pathogens of the genus Candida can cause life-threatening systemic infections in immunocompromised patients, and are of growing medical concern. Four phylogenetically diverse species account for over 90% of Candida infections, and their specific interactions with various human tissues are still poorly understood. To enable in vivo transcriptomic analysis in these species, we designed and validated pan-Candida target capture probes to enrich protein-coding and non-coding transcriptomes. The probe-based enrichment approach outperformed enrichment based on differential lysis of host cells, and showed similar enrichment performance as an existing capture design, yet achieving better fidelity of expression levels, enabling species multiplexing and capturing of lncRNAs. In addition, we show that our probe-based enrichment strategy allows robust genotype-based identification of the infecting strain present in the sample.
Collapse
Affiliation(s)
- Hrant Hovhannisyan
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Spain,Mechanisms of Disease Department, Institute for Research in Biomedicine (IRB), Barcelona, Spain
| | - Antonio Rodríguez
- Laboratory Bacteriology Research, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Ester Saus
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Spain,Mechanisms of Disease Department, Institute for Research in Biomedicine (IRB), Barcelona, Spain
| | - Mario Vaneechoutte
- Laboratory Bacteriology Research, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Toni Gabaldón
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Spain,Mechanisms of Disease Department, Institute for Research in Biomedicine (IRB), Barcelona, Spain,Department of Biomedicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain,Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona, Spain,*Correspondence: Toni Gabaldón,
| |
Collapse
|
12
|
De Cesare GB, Hafez A, Stead D, Llorens C, Munro CA. Biomarkers of caspofungin resistance in Candida albicans isolates: A proteomic approach. Virulence 2022; 13:1005-1018. [PMID: 35730400 PMCID: PMC9225221 DOI: 10.1080/21505594.2022.2081291] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/17/2022] [Accepted: 05/19/2022] [Indexed: 02/06/2023] Open
Abstract
Candida albicans is a clinically important polymorphic fungal pathogen that causes life-threatening invasive infections in immunocompromised patients. Antifungal therapy failure is a substantial clinical problem, due to the emergence of an increasing number of drug-resistant isolates. Caspofungin is a common antifungal drug, often used as first-line therapy that inhibits cell wall β-(1,3)-glucan synthesis. In this work, the cell surface of different echinocandin-resistant C. albicans clinical isolates was compared with sensitive isolates and their responses to echinocandin treatment analyzed. Proteomic analysis detected changes in the repertoire of proteins involved in cell wall organization and maintenance, in drug-resistant strains compared to susceptible isolates and after incubation with caspofungin. Moreover, an interaction network was created from the differential expression results. Our findings suggest drug resistance may involve not only a different cell wall architecture, but also a different response to drugs.
Collapse
Affiliation(s)
- Giuseppe Buda De Cesare
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, UK
| | - Ahmed Hafez
- Biotechvana, Parc Científic Universitat de València, Valencia, Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Faculty of Computer and Information, Minia University, Minia, Egypt
| | - David Stead
- Aberdeen Proteomics, Rowett Institute ofNutrition and Health, University of Aberdeen, Foresterhill, UK
| | - Carlos Llorens
- Biotechvana, Parc Científic Universitat de València, Valencia, Spain
| | - Carol A. Munro
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, UK
| |
Collapse
|
13
|
Andrawes N, Weissman Z, Pinsky M, Moshe S, Berman J, Kornitzer D. Regulation of heme utilization and homeostasis in Candida albicans. PLoS Genet 2022; 18:e1010390. [PMID: 36084128 PMCID: PMC9491583 DOI: 10.1371/journal.pgen.1010390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/21/2022] [Accepted: 08/22/2022] [Indexed: 11/19/2022] Open
Abstract
Heme (iron-protoporphyrin IX) is an essential but potentially toxic cellular cofactor. While most organisms are heme prototrophs, many microorganisms can utilize environmental heme as iron source. The pathogenic yeast Candida albicans can utilize host heme in the iron-poor host environment, using an extracellular cascade of soluble and anchored hemophores, and plasma membrane ferric reductase-like proteins. To gain additional insight into the C. albicans heme uptake pathway, we performed an unbiased genetic selection for mutants resistant to the toxic heme analog Ga3+-protoporphyrin IX at neutral pH, and a secondary screen for inability to utilize heme as iron source. Among the mutants isolated were the genes of the pH-responsive RIM pathway, and a zinc finger transcription factor related to S. cerevisiae HAP1. In the presence of hemin in the medium, C. albicans HAP1 is induced, the Hap1 protein is stabilized and Hap1-GFP localizes to the nucleus. In the hap1 mutant, cytoplasmic heme levels are elevated, while influx of extracellular heme is lower. Gene expression analysis indicated that in the presence of extracellular hemin, Hap1 activates the heme oxygenase HMX1, which breaks down excess cytoplasmic heme, while at the same time it also activates all the known heme uptake genes. These results indicate that Hap1 is a heme-responsive transcription factor that plays a role both in cytoplasmic heme homeostasis and in utilization of extracellular heme. The induction of heme uptake genes by C. albicans Hap1 under iron satiety indicates that preferential utilization of host heme can be a dietary strategy in a heme prototroph.
Collapse
Affiliation(s)
- Natalie Andrawes
- Department of Molecular Microbiology, B. Rappaport Faculty of Medicine, Technion–I.I.T., Haifa, Israel
| | - Ziva Weissman
- Department of Molecular Microbiology, B. Rappaport Faculty of Medicine, Technion–I.I.T., Haifa, Israel
| | - Mariel Pinsky
- Department of Molecular Microbiology, B. Rappaport Faculty of Medicine, Technion–I.I.T., Haifa, Israel
| | - Shilat Moshe
- Department of Molecular Microbiology, B. Rappaport Faculty of Medicine, Technion–I.I.T., Haifa, Israel
| | - Judith Berman
- School of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Daniel Kornitzer
- Department of Molecular Microbiology, B. Rappaport Faculty of Medicine, Technion–I.I.T., Haifa, Israel
| |
Collapse
|
14
|
Munyuza C, Ji H, Lee ER. Probe Capture Enrichment Methods for HIV and HCV Genome Sequencing and Drug Resistance Genotyping. Pathogens 2022; 11:693. [PMID: 35745547 PMCID: PMC9228464 DOI: 10.3390/pathogens11060693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 01/01/2023] Open
Abstract
Human immunodeficiency virus (HIV) infections remain a significant public health concern worldwide. Over the years, sophisticated sequencing technologies such as next-generation sequencing (NGS) have emerged and been utilized to monitor the spread of HIV drug resistance (HIVDR), identify HIV drug resistance mutations, and characterize transmission dynamics. Similar applications also apply to the Hepatitis C virus (HCV), another bloodborne viral pathogen with significant intra-host genetic diversity. Several advantages to using NGS over conventional Sanger sequencing include increased data throughput, scalability, cost-effectiveness when batched sample testing is performed, and sensitivity for quantitative detection of minority resistant variants. However, NGS alone may fail to detect genomes from pathogens present in low copy numbers. As with all sequencing platforms, the primary determinant in achieving quality sequencing data is the quality and quantity of the initial template input. Samples containing degraded RNA/DNA and/or low copy number have been a consistent sequencing challenge. To overcome this limitation probe capture enrichment is a method that has recently been employed to target, enrich, and sequence the genome of a pathogen present in low copies, and for compromised specimens that contain poor quality nucleic acids. It involves the hybridization of sequence-specific DNA or RNA probes to a target sequence, which is followed by an enrichment step via PCR to increase the number of copies of the targeted sequences after which the samples are subjected to NGS procedures. This method has been performed on pathogens such as bacteria, fungus, and viruses and allows for the sequencing of complete genomes, with high coverage. Post NGS, data analysis can be performed through various bioinformatics pipelines which can provide information on genetic diversity, genotype, virulence, and drug resistance. This article reviews how probe capture enrichment helps to increase the likelihood of sequencing HIV and HCV samples that contain low viral loads and/or are compromised.
Collapse
Affiliation(s)
- Chantal Munyuza
- National HIV and Retrovirology Laboratories, National Microbiology Laboratory at JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (C.M.); (H.J.)
| | - Hezhao Ji
- National HIV and Retrovirology Laboratories, National Microbiology Laboratory at JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (C.M.); (H.J.)
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Emma R. Lee
- National HIV and Retrovirology Laboratories, National Microbiology Laboratory at JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (C.M.); (H.J.)
| |
Collapse
|
15
|
Curtis A, Binder U, Kavanagh K. Galleria mellonella Larvae as a Model for Investigating Fungal-Host Interactions. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:893494. [PMID: 37746216 PMCID: PMC10512315 DOI: 10.3389/ffunb.2022.893494] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/01/2022] [Indexed: 09/26/2023]
Abstract
Galleria mellonella larvae have become a widely accepted and utilised infection model due to the functional homology displayed between their immune response to infection and that observed in the mammalian innate immune response. Due to these similarities, comparable results to murine studies can be obtained using G. mellonella larvae in assessing the virulence of fungal pathogens and the in vivo toxicity or efficacy of anti-fungal agents. This coupled with their low cost, rapid generation of results, and lack of ethical/legal considerations make this model very attractive for analysis of host-pathogen interactions. The larvae of G. mellonella have successfully been utilised to analyse various fungal virulence factors including toxin and enzyme production in vivo providing in depth analysis of the processes involved in the establishment and progression of fungal pathogens (e.g., Candida spps, Aspergillus spp., Madurella mycetomatis, Mucormycetes, and Cryptococcus neoformans). A variety of experimental endpoints can be employed including analysis of fungal burdens, alterations in haemocyte density or sub-populations, melanisation, and characterisation of infection progression using proteomic, histological or imaging techniques. Proteomic analysis can provide insights into both sides of the host-pathogen interaction with each respective proteome being analysed independently following infection and extraction of haemolymph from the larvae. G. mellonella can also be employed for assessing the efficacy and toxicity of antifungal strategies at concentrations comparable to those used in mammals allowing for early stage investigation of novel compounds and combinations of established therapeutic agents. These numerous applications validate the model for examination of fungal infection and development of therapeutic approaches in vivo in compliance with the need to reduce animal models in biological research.
Collapse
Affiliation(s)
- Aaron Curtis
- Department of Biology, Maynooth University, Maynooth, Ireland
| | - Ulrike Binder
- Institute of Hygiene and Medical Microbiology, Medical University Innsbruck, Innsbruck, Austria
| | - Kevin Kavanagh
- Department of Biology, Maynooth University, Maynooth, Ireland
| |
Collapse
|
16
|
Lemberg C, Martinez de San Vicente K, Fróis-Martins R, Altmeier S, Tran VDT, Mertens S, Amorim-Vaz S, Rai LS, d’Enfert C, Pagni M, Sanglard D, LeibundGut-Landmann S. Candida albicans commensalism in the oral mucosa is favoured by limited virulence and metabolic adaptation. PLoS Pathog 2022; 18:e1010012. [PMID: 35404986 PMCID: PMC9041809 DOI: 10.1371/journal.ppat.1010012] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 04/26/2022] [Accepted: 03/17/2022] [Indexed: 12/19/2022] Open
Abstract
As part of the human microbiota, the fungus Candida albicans colonizes the oral cavity and other mucosal surfaces of the human body. Commensalism is tightly controlled by complex interactions of the fungus and the host to preclude fungal elimination but also fungal overgrowth and invasion, which can result in disease. As such, defects in antifungal T cell immunity render individuals susceptible to oral thrush due to interrupted immunosurveillance of the oral mucosa. The factors that promote commensalism and ensure persistence of C. albicans in a fully immunocompetent host remain less clear. Using an experimental model of C. albicans oral colonization in mice we explored fungal determinants of commensalism in the oral cavity. Transcript profiling of the oral isolate 101 in the murine tongue tissue revealed a characteristic metabolic profile tailored to the nutrient poor conditions in the stratum corneum of the epithelium where the fungus resides. Metabolic adaptation of isolate 101 was also reflected in enhanced nutrient acquisition when grown on oral mucosa substrates. Persistent colonization of the oral mucosa by C. albicans also correlated inversely with the capacity of the fungus to induce epithelial cell damage and to elicit an inflammatory response. Here we show that these immune evasive properties of isolate 101 are explained by a strong attenuation of a number of virulence genes, including those linked to filamentation. De-repression of the hyphal program by deletion or conditional repression of NRG1 abolished the commensal behaviour of isolate 101, thereby establishing a central role of this factor in the commensal lifestyle of C. albicans in the oral niche of the host. The oral microbiota represents an important part of the human microbiota and includes several hundreds to several thousands of bacterial and fungal species. One of the most prominent fungus colonizing the oral cavity is the yeast Candida albicans. While the presence of C. albicans usually remains unnoticed, the fungus can under certain circumstances cause lesions on the lining of the mouth referred to as oral thrush or contribute to other common oral diseases such as caries. Maintaining C. albicans commensalism in the oral mucosa is therefore of utmost importance for oral health and overall wellbeing. While overt fungal growth and disease is limited by immunosurveillance mechanisms during homeostasis, C. albicans strives to survive and evades elimination from the host. Here, we show that while commensalism in the oral cavity is characterized by a restricted fungal virulence and hyphal program, enforcing filamentation in a commensal isolate is sufficient for driving pathogenicity and fungus-induced inflammation in the oral mucosa thwarting persistent colonization. Our results further support a critical role for specialized nutrient acquisition allowing the fungus to thrive in the nutrient poor environment of the squamous epithelium. Together, this work revealed key determinants of C. albicans commensalism in the oral niche.
Collapse
Affiliation(s)
- Christina Lemberg
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Kontxi Martinez de San Vicente
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Ricardo Fróis-Martins
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Simon Altmeier
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Van Du T. Tran
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sarah Mertens
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Sara Amorim-Vaz
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland
| | - Laxmi Shanker Rai
- Institut Pasteur, Université de Paris, INRAE, USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Christophe d’Enfert
- Institut Pasteur, Université de Paris, INRAE, USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Marco Pagni
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Dominique Sanglard
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland
| | - Salomé LeibundGut-Landmann
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
- * E-mail:
| |
Collapse
|
17
|
Yang M, Solis NV, Marshall M, Garleb R, Zhou T, Wang D, Swidergall M, Pearlman E, Filler SG, Liu H. Control of β-glucan exposure by the endo-1,3-glucanase Eng1 in Candida albicans modulates virulence. PLoS Pathog 2022; 18:e1010192. [PMID: 34995333 PMCID: PMC8775328 DOI: 10.1371/journal.ppat.1010192] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/20/2022] [Accepted: 12/13/2021] [Indexed: 01/09/2023] Open
Abstract
Candida albicans is a major opportunistic pathogen of humans. It can grow as morphologically distinct yeast, pseudohyphae and hyphae, and the ability to switch reversibly among different forms is critical for its virulence. The relationship between morphogenesis and innate immune recognition is not quite clear. Dectin-1 is a major C-type lectin receptor that recognizes β-glucan in the fungal cell wall. C. albicans β-glucan is usually masked by the outer mannan layer of the cell wall. Whether and how β-glucan masking is differentially regulated during hyphal morphogenesis is not fully understood. Here we show that the endo-1,3-glucanase Eng1 is differentially expressed in yeast, and together with Yeast Wall Protein 1 (Ywp1), regulates β-glucan exposure and Dectin-1-dependent immune activation of macrophage by yeast cells. ENG1 deletion results in enhanced Dectin-1 binding at the septa of yeast cells; while eng1 ywp1 yeast cells show strong overall Dectin-1 binding similar to hyphae of wild-type and eng1 mutants. Correlatively, hyphae of wild-type and eng1 induced similar levels of cytokines in macrophage. ENG1 expression and Eng1-mediated β-glucan trimming are also regulated by antifungal drugs, lactate and N-acetylglucosamine. Deletion of ENG1 modulates virulence in the mouse model of hematogenously disseminated candidiasis in a Dectin-1-dependent manner. The eng1 mutant exhibited attenuated lethality in male mice, but enhanced lethality in female mice, which was associated with a stronger renal immune response and lower fungal burden. Thus, Eng1-regulated β-glucan exposure in yeast cells modulates the balance between immune protection and immunopathogenesis during disseminated candidiasis.
Collapse
Affiliation(s)
- Mengli Yang
- Department of Biological Chemistry, University of California, Irvine, California, United States of America
- School of Pharmacy & Pharmaceutical Sciences, University of California, Irvine, California, United States of America
| | - Norma V. Solis
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Michaela Marshall
- Department of Physiology and Biophysics, University of California, Irvine, California, United States of America
| | - Rachel Garleb
- Department of Biological Chemistry, University of California, Irvine, California, United States of America
| | - Tingting Zhou
- Department of Biological Chemistry, University of California, Irvine, California, United States of America
| | - Daidong Wang
- Amgen Inc. Thousand Oaks, California, United States of America
| | - Marc Swidergall
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
- David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Eric Pearlman
- Department of Physiology and Biophysics, University of California, Irvine, California, United States of America
- Institute of Immunology, University of California, Irvine, California, United States of America
| | - Scott G. Filler
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
- David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Haoping Liu
- Department of Biological Chemistry, University of California, Irvine, California, United States of America
- School of Pharmacy & Pharmaceutical Sciences, University of California, Irvine, California, United States of America
- Institute of Immunology, University of California, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
18
|
Bauer I, Graessle S. Fungal Lysine Deacetylases in Virulence, Resistance, and Production of Small Bioactive Compounds. Genes (Basel) 2021; 12:1470. [PMID: 34680865 PMCID: PMC8535771 DOI: 10.3390/genes12101470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/20/2021] [Indexed: 12/13/2022] Open
Abstract
The growing number of immunocompromised patients begs for efficient therapy strategies against invasive fungal infections. As conventional antifungal treatment is increasingly hampered by resistance to commonly used antifungals, development of novel therapy regimens is required. On the other hand, numerous fungal species are industrially exploited as cell factories of enzymes and chemicals or as producers of medically relevant pharmaceuticals. Consequently, there is immense interest in tapping the almost inexhaustible fungal portfolio of natural products for potential medical and industrial applications. Both the pathogenicity and production of those small metabolites are significantly dependent on the acetylation status of distinct regulatory proteins. Thus, classical lysine deacetylases (KDACs) are crucial virulence determinants and important regulators of natural products of fungi. In this review, we present an overview of the members of classical KDACs and their complexes in filamentous fungi. Further, we discuss the impact of the genetic manipulation of KDACs on the pathogenicity and production of bioactive molecules. Special consideration is given to inhibitors of these enzymes and their role as potential new antifungals and emerging tools for the discovery of novel pharmaceutical drugs and antibiotics in fungal producer strains.
Collapse
Affiliation(s)
| | - Stefan Graessle
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| |
Collapse
|
19
|
Schmid-Siegert E, Richard S, Luraschi A, Mühlethaler K, Pagni M, Hauser PM. Expression Pattern of the Pneumocystis jirovecii Major Surface Glycoprotein Superfamily in Patients with Pneumonia. J Infect Dis 2021; 223:310-318. [PMID: 32561915 DOI: 10.1093/infdis/jiaa342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/11/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The human pathogen Pneumocystis jirovecii harbors 6 families of major surface glycoproteins (MSGs) encoded by a single gene superfamily. MSGs are presumably responsible for antigenic variation and adhesion to host cells. The genomic organization suggests that a single member of family I is expressed at a given time per cell, whereas members of the other families are simultaneously expressed. METHODS We analyzed RNA sequences expressed in several clinical samples, using specific weighted profiles for sorting of reads and calling of single-nucleotide variants to estimate the diversity of the expressed genes. RESULTS A number of different isoforms of at least 4 MSG families were expressed simultaneously, including isoforms of family I, for which confirmation was obtained in the wet laboratory. CONCLUSION These observations suggest that every single P. jirovecii population is made of individual cells with distinct surface properties. Our results enhance our understanding of the unique antigenic variation system and cell surface structure of P. jirovecii.
Collapse
Affiliation(s)
| | - Sophie Richard
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Amanda Luraschi
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Konrad Mühlethaler
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Marco Pagni
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Philippe M Hauser
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
20
|
Pekmezovic M, Hovhannisyan H, Gresnigt MS, Iracane E, Oliveira-Pacheco J, Siscar-Lewin S, Seemann E, Qualmann B, Kalkreuter T, Müller S, Kamradt T, Mogavero S, Brunke S, Butler G, Gabaldón T, Hube B. Candida pathogens induce protective mitochondria-associated type I interferon signalling and a damage-driven response in vaginal epithelial cells. Nat Microbiol 2021; 6:643-657. [PMID: 33753919 DOI: 10.1038/s41564-021-00875-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 02/01/2021] [Indexed: 02/07/2023]
Abstract
Vaginal candidiasis is an extremely common disease predominantly caused by four phylogenetically diverse species: Candida albicans; Candida glabrata; Candida parapsilosis; and Candida tropicalis. Using a time course infection model of vaginal epithelial cells and dual RNA sequencing, we show that these species exhibit distinct pathogenicity patterns, which are defined by highly species-specific transcriptional profiles during infection of vaginal epithelial cells. In contrast, host cells exhibit a homogeneous response to all species at the early stages of infection, which is characterized by sublethal mitochondrial signalling inducing a protective type I interferon response. At the later stages, the transcriptional response of the host diverges in a species-dependent manner. This divergence is primarily driven by the extent of epithelial damage elicited by species-specific mechanisms, such as secretion of the toxin candidalysin by C. albicans. Our results uncover a dynamic, biphasic response of vaginal epithelial cells to Candida species, which is characterized by protective mitochondria-associated type I interferon signalling and a species-specific damage-driven response.
Collapse
Affiliation(s)
- Marina Pekmezovic
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Hrant Hovhannisyan
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,Life Sciences Department, Barcelona Supercomputing Center, Barcelona, Spain.,Mechanisms of Disease Department, Institute for Research in Biomedicine, Barcelona, Spain
| | - Mark S Gresnigt
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Elise Iracane
- School of Biomedical and Biomolecular Science and UCD Conway Institute of Biomolecular and Biomedical Research, Conway Institute, University College Dublin, Dublin, Ireland
| | - João Oliveira-Pacheco
- School of Biomedical and Biomolecular Science and UCD Conway Institute of Biomolecular and Biomedical Research, Conway Institute, University College Dublin, Dublin, Ireland
| | - Sofía Siscar-Lewin
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Eric Seemann
- Institute for Biochemistry I, Jena University Hospital-Friedrich Schiller University, Jena, Germany
| | - Britta Qualmann
- Institute for Biochemistry I, Jena University Hospital-Friedrich Schiller University, Jena, Germany
| | - Till Kalkreuter
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Sylvia Müller
- Institute of Immunology, Universitätsklinikum Jena, Jena, Germany
| | - Thomas Kamradt
- Institute of Immunology, Universitätsklinikum Jena, Jena, Germany
| | - Selene Mogavero
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Geraldine Butler
- School of Biomedical and Biomolecular Science and UCD Conway Institute of Biomolecular and Biomedical Research, Conway Institute, University College Dublin, Dublin, Ireland
| | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain. .,Universitat Pompeu Fabra, Barcelona, Spain. .,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain. .,Life Sciences Department, Barcelona Supercomputing Center, Barcelona, Spain. .,Mechanisms of Disease Department, Institute for Research in Biomedicine, Barcelona, Spain.
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany. .,Institute of Microbiology, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
21
|
Chung M, Bruno VM, Rasko DA, Cuomo CA, Muñoz JF, Livny J, Shetty AC, Mahurkar A, Dunning Hotopp JC. Best practices on the differential expression analysis of multi-species RNA-seq. Genome Biol 2021; 22:121. [PMID: 33926528 PMCID: PMC8082843 DOI: 10.1186/s13059-021-02337-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 04/01/2021] [Indexed: 02/07/2023] Open
Abstract
Advances in transcriptome sequencing allow for simultaneous interrogation of differentially expressed genes from multiple species originating from a single RNA sample, termed dual or multi-species transcriptomics. Compared to single-species differential expression analysis, the design of multi-species differential expression experiments must account for the relative abundances of each organism of interest within the sample, often requiring enrichment methods and yielding differences in total read counts across samples. The analysis of multi-species transcriptomics datasets requires modifications to the alignment, quantification, and downstream analysis steps compared to the single-species analysis pipelines. We describe best practices for multi-species transcriptomics and differential gene expression.
Collapse
Affiliation(s)
- Matthew Chung
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201 USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Vincent M. Bruno
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201 USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - David A. Rasko
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201 USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Christina A. Cuomo
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA 02142 USA
| | - José F. Muñoz
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA 02142 USA
| | - Jonathan Livny
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA 02142 USA
| | - Amol C. Shetty
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Anup Mahurkar
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Julie C. Dunning Hotopp
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201 USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201 USA
- Greenebaum Cancer Center, University of Maryland, Baltimore, MD 21201 USA
| |
Collapse
|
22
|
Wang JM, Woodruff AL, Dunn MJ, Fillinger RJ, Bennett RJ, Anderson MZ. Intraspecies Transcriptional Profiling Reveals Key Regulators of Candida albicans Pathogenic Traits. mBio 2021; 12:e00586-21. [PMID: 33879584 PMCID: PMC8092256 DOI: 10.1128/mbio.00586-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/17/2021] [Indexed: 12/27/2022] Open
Abstract
The human commensal and opportunistic fungal pathogen Candida albicans displays extensive genetic and phenotypic variation across clinical isolates. Here, we performed RNA sequencing on 21 well-characterized isolates to examine how genetic variation contributes to gene expression differences and to link these differences to phenotypic traits. C. albicans adapts primarily through clonal evolution, and yet hierarchical clustering of gene expression profiles in this set of isolates did not reproduce their phylogenetic relationship. Strikingly, strain-specific gene expression was prevalent in some strain backgrounds. Association of gene expression with phenotypic data by differential analysis, linear correlation, and assembly of gene networks connected both previously characterized and novel genes with 23 C. albicans traits. Construction of de novo gene modules produced a gene atlas incorporating 67% of C. albicans genes and revealed correlations between expression modules and important phenotypes such as systemic virulence. Furthermore, targeted investigation of two modules that have novel roles in growth and filamentation supported our bioinformatic predictions. Together, these studies reveal widespread transcriptional variation across C. albicans isolates and identify genetic and epigenetic links to phenotypic variation based on coexpression network analysis.IMPORTANCE Infectious fungal species are often treated uniformly despite clear evidence of genotypic and phenotypic heterogeneity being widespread across strains. Identifying the genetic basis for this phenotypic diversity is extremely challenging because of the tens or hundreds of thousands of variants that may distinguish two strains. Here, we use transcriptional profiling to determine differences in gene expression that can be linked to phenotypic variation among a set of 21 Candida albicans isolates. Analysis of this transcriptional data set uncovered clear trends in gene expression characteristics for this species and new genes and pathways that were associated with variation in pathogenic processes. Direct investigation confirmed functional predictions for a number of new regulators associated with growth and filamentation, demonstrating the utility of these approaches in linking genes to important phenotypes.
Collapse
Affiliation(s)
- Joshua M Wang
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Andrew L Woodruff
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Matthew J Dunn
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Robert J Fillinger
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Richard J Bennett
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Matthew Z Anderson
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
23
|
Amorim-Vaz S, Coste AT, Tran VDT, Pagni M, Sanglard D. Function Analysis of MBF1, a Factor Involved in the Response to Amino Acid Starvation and Virulence in Candida albicans. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:658899. [PMID: 37744106 PMCID: PMC10512259 DOI: 10.3389/ffunb.2021.658899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 02/15/2021] [Indexed: 09/26/2023]
Abstract
Candida albicans is a commensal of human mucosae, but also one of the most common fungal pathogens of humans. Systemic infections caused by this fungus, mostly affecting immunocompromised patients, are associated to fatality rates as high as 50% despite the available treatments. In order to improve this situation, it is necessary to fully understand how C. albicans is able to cause disease and how it copes with the host defenses. Our previous studies have revealed the importance of the C. albicans gene MBF1 in virulence and ability to colonize internal organs of mammalian and insect hosts. MBF1 encodes a putative transcriptional regulator, and as such it likely has an impact in the regulation of C. albicans gene expression during host infection. Here, recent advances in RNA-seq technologies were used to obtain a detailed analysis of the impact of MBF1 on C. albicans gene expression both in vitro and during infection. MBF1 was involved in the regulation of several genes with a role in glycolysis and response to stress, particularly to nutritional stress. We also investigated whether an interaction existed between MBF1 and GCN4, a master regulator of response to starvation, and found that both genes were needed for resistance to amino acid starvation, suggesting some level of interaction between the two. Reinforcing this idea, we showed that the proteins encoded by both genes could interact. Consistent with the role of MBF1 in virulence, we also established that GCN4 was necessary for virulence in the mouse model of systemic infection as well as in the Galleria mellonella infection model.
Collapse
Affiliation(s)
- Sara Amorim-Vaz
- Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Alix T. Coste
- Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Van Du T. Tran
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Marco Pagni
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Dominique Sanglard
- Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
24
|
Wylezich C, Calvelage S, Schlottau K, Ziegler U, Pohlmann A, Höper D, Beer M. Next-generation diagnostics: virus capture facilitates a sensitive viral diagnosis for epizootic and zoonotic pathogens including SARS-CoV-2. MICROBIOME 2021; 9:51. [PMID: 33610182 DOI: 10.1186/s40168-020-00973-z/figures/4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 12/07/2020] [Indexed: 05/18/2023]
Abstract
BACKGROUND The detection of pathogens in clinical and environmental samples using high-throughput sequencing (HTS) is often hampered by large amounts of background information, which is especially true for viruses with small genomes. Enormous sequencing depth can be necessary to compile sufficient information for identification of a certain pathogen. Generic HTS combining with in-solution capture enrichment can markedly increase the sensitivity for virus detection in complex diagnostic samples. METHODS A virus panel based on the principle of biotinylated RNA baits was developed for specific capture enrichment of epizootic and zoonotic viruses (VirBaits). The VirBaits set was supplemented by a SARS-CoV-2 predesigned bait set for testing recent SARS-CoV-2-positive samples. Libraries generated from complex samples were sequenced via generic HTS (without enrichment) and afterwards enriched with the VirBaits set. For validation, an internal proficiency test for emerging epizootic and zoonotic viruses (African swine fever virus, Ebolavirus, Marburgvirus, Nipah henipavirus, Rift Valley fever virus) was conducted. RESULTS The VirBaits set consists of 177,471 RNA baits (80-mer) based on about 18,800 complete viral genomes targeting 35 epizootic and zoonotic viruses. In all tested samples, viruses with both DNA and RNA genomes were clearly enriched ranging from about 10-fold to 10,000-fold for viruses including distantly related viruses with at least 72% overall identity to viruses represented in the bait set. Viruses showing a lower overall identity (38% and 46%) to them were not enriched but could nonetheless be detected based on capturing conserved genome regions. The internal proficiency test supports the improved virus detection using the combination of HTS plus targeted enrichment but also points to the risk of cross-contamination between samples. CONCLUSIONS The VirBaits approach showed a high diagnostic performance, also for distantly related viruses. The bait set is modular and expandable according to the favored diagnostics, health sector, or research question. The risk of cross-contamination needs to be taken into consideration. The application of the RNA-baits principle turned out to be user friendly, and even non-experts can easily use the VirBaits workflow. The rapid extension of the established VirBaits set adapted to actual outbreak events is possible as shown for SARS-CoV-2. Video abstract.
Collapse
Affiliation(s)
- Claudia Wylezich
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany.
| | - Sten Calvelage
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Kore Schlottau
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Ute Ziegler
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Anne Pohlmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Dirk Höper
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| |
Collapse
|
25
|
Wylezich C, Calvelage S, Schlottau K, Ziegler U, Pohlmann A, Höper D, Beer M. Next-generation diagnostics: virus capture facilitates a sensitive viral diagnosis for epizootic and zoonotic pathogens including SARS-CoV-2. MICROBIOME 2021; 9:51. [PMID: 33610182 PMCID: PMC7896545 DOI: 10.1186/s40168-020-00973-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 12/07/2020] [Indexed: 05/15/2023]
Abstract
BACKGROUND The detection of pathogens in clinical and environmental samples using high-throughput sequencing (HTS) is often hampered by large amounts of background information, which is especially true for viruses with small genomes. Enormous sequencing depth can be necessary to compile sufficient information for identification of a certain pathogen. Generic HTS combining with in-solution capture enrichment can markedly increase the sensitivity for virus detection in complex diagnostic samples. METHODS A virus panel based on the principle of biotinylated RNA baits was developed for specific capture enrichment of epizootic and zoonotic viruses (VirBaits). The VirBaits set was supplemented by a SARS-CoV-2 predesigned bait set for testing recent SARS-CoV-2-positive samples. Libraries generated from complex samples were sequenced via generic HTS (without enrichment) and afterwards enriched with the VirBaits set. For validation, an internal proficiency test for emerging epizootic and zoonotic viruses (African swine fever virus, Ebolavirus, Marburgvirus, Nipah henipavirus, Rift Valley fever virus) was conducted. RESULTS The VirBaits set consists of 177,471 RNA baits (80-mer) based on about 18,800 complete viral genomes targeting 35 epizootic and zoonotic viruses. In all tested samples, viruses with both DNA and RNA genomes were clearly enriched ranging from about 10-fold to 10,000-fold for viruses including distantly related viruses with at least 72% overall identity to viruses represented in the bait set. Viruses showing a lower overall identity (38% and 46%) to them were not enriched but could nonetheless be detected based on capturing conserved genome regions. The internal proficiency test supports the improved virus detection using the combination of HTS plus targeted enrichment but also points to the risk of cross-contamination between samples. CONCLUSIONS The VirBaits approach showed a high diagnostic performance, also for distantly related viruses. The bait set is modular and expandable according to the favored diagnostics, health sector, or research question. The risk of cross-contamination needs to be taken into consideration. The application of the RNA-baits principle turned out to be user friendly, and even non-experts can easily use the VirBaits workflow. The rapid extension of the established VirBaits set adapted to actual outbreak events is possible as shown for SARS-CoV-2. Video abstract.
Collapse
Affiliation(s)
- Claudia Wylezich
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany.
| | - Sten Calvelage
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Kore Schlottau
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Ute Ziegler
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Anne Pohlmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Dirk Höper
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| |
Collapse
|
26
|
Aruanno M, Gozel S, Mouyna I, Parker JE, Bachmann D, Flamant P, Coste AT, Sanglard D, Lamoth F. Insights in the molecular mechanisms of an azole stress adapted laboratory-generated Aspergillus fumigatus strain. Med Mycol 2021; 59:763-772. [PMID: 33550403 DOI: 10.1093/mmy/myaa118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/26/2020] [Accepted: 01/18/2021] [Indexed: 12/13/2022] Open
Abstract
Aspergillus fumigatus is the main cause of invasive aspergillosis, for which azole drugs are the first-line therapy. Emergence of pan-azole resistance among A. fumigatus is concerning and has been mainly attributed to mutations in the target gene (cyp51A). However, azole resistance may also result from other mutations (hmg1, hapE) or other adaptive mechanisms. We performed microevolution experiment exposing an A. fumigatus azole-susceptible strain (Ku80) to sub-minimal inhibitory concentration of voriconazole to analyze emergence of azole resistance. We obtained a strain with pan-azole resistance (Ku80R), which was partially reversible after drug relief, and without mutations in cyp51A, hmg1, and hapE. Transcriptomic analyses revealed overexpression of the transcription factor asg1, several ATP-binding cassette (ABC) and major facilitator superfamily transporters and genes of the ergosterol biosynthesis pathway in Ku80R. Sterol analysis showed a significant decrease of the ergosterol mass under voriconazole exposure in Ku80, but not in Ku80R. However, the proportion of the sterol compounds was similar between both strains. To further assess the role of transporters, we used the ABC transporter inhibitor milbemycine oxime (MLB). MLB inhibited transporter activity in both Ku80 and Ku80R and demonstrated some potentiating effect on azole activity. Criteria for synergism were reached for MLB and posaconazole against Ku80. Finally, deletion of asg1 revealed some role of this transcription factor in controlling drug transporter expression, but had no impact on azole susceptibility.This work provides further insight in mechanisms of azole stress adaptation and suggests that drug transporters inhibition may represent a novel therapeutic target. LAY SUMMARY A pan-azole-resistant strain was generated in vitro, in which drug transporter overexpression was a major trait. Analyses suggested a role of the transporter inhibitor milbemycin oxime in inhibiting drug transporters and potentiating azole activity.
Collapse
Affiliation(s)
- Marion Aruanno
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland.,Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - Samantha Gozel
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - Isabelle Mouyna
- Unité des Aspergillus, Institut Pasteur, 75015 Paris, France
| | - Josie E Parker
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, Swansea University Medical School, Swansea SA2 8PP, UK
| | - Daniel Bachmann
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | | | - Alix T Coste
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - Dominique Sanglard
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - Frederic Lamoth
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland.,Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| |
Collapse
|
27
|
Paulson AR, O’Callaghan M, Zhang XX, Rainey PB, Hurst MRH. In vivo transcriptome analysis provides insights into host-dependent expression of virulence factors by Yersinia entomophaga MH96, during infection of Galleria mellonella. G3 (BETHESDA, MD.) 2021; 11:jkaa024. [PMID: 33561230 PMCID: PMC7849909 DOI: 10.1093/g3journal/jkaa024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/19/2020] [Indexed: 12/31/2022]
Abstract
The function of microbes can be inferred from knowledge of genes specifically expressed in natural environments. Here, we report the in vivo transcriptome of the entomopathogenic bacterium Yersinia entomophaga MH96, captured during initial, septicemic, and pre-cadaveric stages of intrahemocoelic infection in Galleria mellonella. A total of 1285 genes were significantly upregulated by MH96 during infection; 829 genes responded to in vivo conditions during at least one stage of infection, 289 responded during two stages of infection, and 167 transcripts responded throughout all three stages of infection compared to in vitro conditions at equivalent cell densities. Genes upregulated during the earliest infection stage included components of the insecticidal toxin complex Yen-TC (chi1, chi2, and yenC1), genes for rearrangement hotspot element containing protein yenC3, cytolethal distending toxin cdtAB, and vegetative insecticidal toxin vip2. Genes more highly expressed throughout the infection cycle included the putative heat-stable enterotoxin yenT and three adhesins (usher-chaperone fimbria, filamentous hemagglutinin, and an AidA-like secreted adhesin). Clustering and functional enrichment of gene expression data also revealed expression of genes encoding type III and VI secretion system-associated effectors. Together these data provide insight into the pathobiology of MH96 and serve as an important resource supporting efforts to identify novel insecticidal agents.
Collapse
Affiliation(s)
- Amber R Paulson
- Forage Science, AgResearch Ltd., Lincoln 8140, New Zealand
- New Zealand Institute for Advanced Study, Massey University, Auckland 0745, New Zealand
- Department of Biology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | | | - Xue-Xian Zhang
- School of Natural and Computational Sciences, Massey University, Auckland 0745, New Zealand
| | - Paul B Rainey
- New Zealand Institute for Advanced Study, Massey University, Auckland 0745, New Zealand
- Laboratoire de Génétique de l’Evolution CBI, ESPCI Paris, Université PSL, CNRS, Paris 75005, France
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | - Mark R H Hurst
- Forage Science, AgResearch Ltd., Lincoln 8140, New Zealand
| |
Collapse
|
28
|
Li Y, Baptista RP, Sateriale A, Striepen B, Kissinger JC. Analysis of Long Non-Coding RNA in Cryptosporidium parvum Reveals Significant Stage-Specific Antisense Transcription. Front Cell Infect Microbiol 2021; 10:608298. [PMID: 33520737 PMCID: PMC7840661 DOI: 10.3389/fcimb.2020.608298] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
Cryptosporidium is a protist parasite that has been identified as the second leading cause of moderate to severe diarrhea in children younger than two and a significant cause of mortality worldwide. Cryptosporidium has a complex, obligate, intracellular but extra cytoplasmic lifecycle in a single host. How genes are regulated in this parasite remains largely unknown. Long non-coding RNAs (lncRNAs) play critical regulatory roles, including gene expression across a broad range of organisms. Cryptosporidium lncRNAs have been reported to enter the host cell nucleus and affect the host response. However, no systematic study of lncRNAs in Cryptosporidium has been conducted to identify additional lncRNAs. In this study, we analyzed a C. parvum in vitro strand-specific RNA-seq developmental time series covering both asexual and sexual stages to identify lncRNAs associated with parasite development. In total, we identified 396 novel lncRNAs, mostly antisense, with 86% being differentially expressed. Surprisingly, nearly 10% of annotated mRNAs have an antisense transcript. lncRNAs occur most often at the 3' end of their corresponding sense mRNA. Putative lncRNA regulatory regions were identified and many appear to encode bidirectional promoters. A positive correlation between lncRNA and upstream mRNA expression was observed. Evolutionary conservation and expression of lncRNA candidates was observed between C. parvum, C. hominis and C. baileyi. Ten C. parvum protein-encoding genes with antisense transcripts have P. falciparum orthologs that also have antisense transcripts. Three C. parvum lncRNAs with exceptional properties (e.g., intron splicing) were experimentally validated using RT-PCR and RT-qPCR. This initial characterization of the C. parvum non-coding transcriptome facilitates further investigations into the roles of lncRNAs in parasite development and host-pathogen interactions.
Collapse
Affiliation(s)
- Yiran Li
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States
| | - Rodrigo P. Baptista
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
| | - Adam Sateriale
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jessica C. Kissinger
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
- Department of Genetics, University of Georgia, Athens, GA, United States
| |
Collapse
|
29
|
Curion F, Handel AE, Attar M, Gallone G, Bowden R, Cader MZ, Clark MB. Targeted RNA sequencing enhances gene expression profiling of ultra-low input samples. RNA Biol 2020; 17:1741-1753. [PMID: 32597303 PMCID: PMC7746246 DOI: 10.1080/15476286.2020.1777768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/16/2020] [Accepted: 04/20/2020] [Indexed: 12/22/2022] Open
Abstract
RNA-seq is the standard method for profiling gene expression in many biological systems. Due to the wide dynamic range and complex nature of the transcriptome, RNA-seq provides an incomplete characterization, especially of lowly expressed genes and transcripts. Targeted RNA sequencing (RNA CaptureSeq) focuses sequencing on genes of interest, providing exquisite sensitivity for transcript detection and quantification. However, uses of CaptureSeq have focused on bulk samples and its performance on very small populations of cells is unknown. Here we show CaptureSeq greatly enhances transcriptomic profiling of target genes in ultra-low-input samples and provides equivalent performance to that on bulk samples. We validate the performance of CaptureSeq using multiple probe sets on samples of iPSC-derived cortical neurons. We demonstrate up to 275-fold enrichment for target genes, the detection of 10% additional genes and a greater than 5-fold increase in identified gene isoforms. Analysis of spike-in controls demonstrated CaptureSeq improved both detection sensitivity and expression quantification. Comparison to the CORTECON database of cerebral cortex development revealed CaptureSeq enhanced the identification of sample differentiation stage. CaptureSeq provides sensitive, reliable and quantitative expression measurements on hundreds-to-thousands of target genes from ultra-low-input samples and has the potential to greatly enhance transcriptomic profiling when samples are limiting.
Collapse
Affiliation(s)
- Fabiola Curion
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Adam E Handel
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Translational Molecular Neuroscience Group, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Moustafa Attar
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Giuseppe Gallone
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
| | - Rory Bowden
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - M. Zameel Cader
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Translational Molecular Neuroscience Group, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Michael B Clark
- Department of Psychiatry, University of Oxford, Oxford, UK
- Centre for Stem Cell Systems, Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Australia
| |
Collapse
|
30
|
Delarze E, Brandt L, Trachsel E, Patxot M, Pralong C, Maranzano F, Chauvel M, Legrand M, Znaidi S, Bougnoux ME, d’Enfert C, Sanglard D. Identification and Characterization of Mediators of Fluconazole Tolerance in Candida albicans. Front Microbiol 2020; 11:591140. [PMID: 33262748 PMCID: PMC7686038 DOI: 10.3389/fmicb.2020.591140] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022] Open
Abstract
Candida albicans is an important human pathogen and a major concern in intensive care units around the world. C. albicans infections are associated with a high mortality despite the use of antifungal treatments. One of the causes of therapeutic failures is the acquisition of antifungal resistance by mutations in the C. albicans genome. Fluconazole (FLC) is one of the most widely used antifungal and mechanisms of FLC resistance occurring by mutations have been extensively investigated. However, some clinical isolates are known to be able to survive at high FLC concentrations without acquiring resistance mutations, a phenotype known as tolerance. Mechanisms behind FLC tolerance are not well studied, mainly due to the lack of a proper way to identify and quantify tolerance in clinical isolates. We proposed here culture conditions to investigate FLC tolerance as well as an easy and efficient method to identity and quantify tolerance to FLC. The screening of C. albicans strain collections revealed that FLC tolerance is pH- and strain-dependent, suggesting the involvement of multiple mechanisms. Here, we addressed the identification of FLC tolerance mediators in C. albicans by an overexpression strategy focusing on 572 C. albicans genes. This strategy led to the identification of two transcription factors, CRZ1 and GZF3. CRZ1 is a C2H2-type transcription factor that is part of the calcineurin-dependent pathway in C. albicans, while GZF3 is a GATA-type transcription factor of unknown function in C. albicans. Overexpression of each gene resulted in an increase of FLC tolerance, however, only the deletion of CRZ1 in clinical FLC-tolerant strains consistently decreased their FLC tolerance. Transcription profiling of clinical isolates with variable levels of FLC tolerance confirmed a calcineurin-dependent signature in these isolates when exposed to FLC.
Collapse
Affiliation(s)
- Eric Delarze
- Department of Laboratory, Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Ludivine Brandt
- Department of Laboratory, Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Emilie Trachsel
- Department of Laboratory, Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Marion Patxot
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Claire Pralong
- Department of Laboratory, Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Fabio Maranzano
- Department of Laboratory, Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Murielle Chauvel
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, Paris, France
| | - Mélanie Legrand
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, Paris, France
| | - Sadri Znaidi
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, Paris, France
| | - Marie-Elisabeth Bougnoux
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, Paris, France
- Unité de Parasitologie-Mycologie, Service de Microbiologie Clinique, Hôpital Necker-Enfants-Malades, Assistance Publique des Hôpitaux de Paris (APHP), Paris, France
- Université de Paris, Paris, France
| | - Christophe d’Enfert
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, Paris, France
| | - Dominique Sanglard
- Department of Laboratory, Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
31
|
Survival Strategies of Pathogenic Candida Species in Human Blood Show Independent and Specific Adaptations. mBio 2020; 11:mBio.02435-20. [PMID: 33024045 PMCID: PMC7542370 DOI: 10.1128/mbio.02435-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
To ensure their survival, pathogens have to adapt immediately to new environments in their hosts, for example, during the transition from the gut to the bloodstream. Here, we investigated the basis of this adaptation in a group of fungal species which are among the most common causes of hospital-acquired infections, the Candida species. On the basis of a human whole-blood infection model, we studied which genes and processes are active over the course of an infection in both the host and four different Candida pathogens. Remarkably, we found that, while the human host response during the early phase of infection is predominantly uniform, the pathogens pursue largely individual strategies and each one regulates genes involved in largely disparate processes in the blood. Our results reveal that C. albicans, C. glabrata, C. parapsilosis, and C. tropicalis all have developed individual strategies for survival in the host. This indicates that their pathogenicity in humans has evolved several times independently and that genes which are central for survival in the host for one species may be irrelevant in another. Only four species, Candida albicans, C. glabrata, C. parapsilosis, and C. tropicalis, together account for about 90% of all Candida bloodstream infections and are among the most common causes of invasive fungal infections of humans. However, virulence potential varies among these species, and the phylogenetic tree reveals that their pathogenicity may have emerged several times independently during evolution. We therefore tested these four species in a human whole-blood infection model to determine, via comprehensive dual-species RNA-sequencing analyses, which fungal infection strategies are conserved and which are recent evolutionary developments. The ex vivo infection progressed from initial immune cell interactions to nearly complete killing of all fungal cells. During the course of infection, we characterized important parameters of pathogen-host interactions, such as fungal survival, types of interacting immune cells, and cytokine release. On the transcriptional level, we obtained a predominantly uniform and species-independent human response governed by a strong upregulation of proinflammatory processes, which was downregulated at later time points after most of the fungal cells were killed. In stark contrast, we observed that the different fungal species pursued predominantly individual strategies and showed significantly different global transcriptome patterns. Among other findings, our functional analyses revealed that the fungal species relied on different metabolic pathways and virulence factors to survive the host-imposed stress. These data show that adaptation of Candida species as a response to the host is not a phylogenetic trait, but rather has likely evolved independently as a prerequisite to cause human infections.
Collapse
|
32
|
Weerasinghe H, Traven A. Immunometabolism in fungal infections: the need to eat to compete. Curr Opin Microbiol 2020; 58:32-40. [PMID: 32781324 DOI: 10.1016/j.mib.2020.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 01/04/2023]
Abstract
Immune cells, including macrophages and monocytes, remodel their metabolism and have specific nutritional needs when dealing with microbial pathogens. While we are just beginning to understand immunometabolism in fungal infections, emerging themes include recognition of fungal cell surface molecule driving metabolic remodelling to increase glycolysis, the critical role of glycolysis in the production of antifungal cytokines and fungicidal effector molecules, and the need for maintaining host glucose homeostasis to defeat fungal infections. A crosstalk between host and pathogen metabolic pathways determines the fate of immune cells and fungi when they interact. Thus, immunometabolic interactions offer potential for innovation in antifungal treatments in the future. For this to become a reality, we must decipher the mechanisms by which diverse fungal pathogens activate and manipulate immunometabolism.
Collapse
Affiliation(s)
- Harshini Weerasinghe
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton (Melbourne), 3800 Victoria, Australia
| | - Ana Traven
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton (Melbourne), 3800 Victoria, Australia.
| |
Collapse
|
33
|
Soare AY, Watkins TN, Bruno VM. Understanding Mucormycoses in the Age of "omics". Front Genet 2020; 11:699. [PMID: 32695145 PMCID: PMC7339291 DOI: 10.3389/fgene.2020.00699] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022] Open
Abstract
Mucormycoses are deadly invasive infections caused by several fungal species belonging to the subphylum Mucoromycotina, order Mucorales. Hallmarks of disease progression include angioinvasion and tissue necrosis that aid in fungal dissemination through the blood stream, causing deeper infections and resulting in poor penetration of antifungal agents to the site of infection. In the absence of surgical removal of the infected focus, antifungal therapy alone is rarely curative. Even when surgical debridement is combined with high-dose antifungal therapy, the mortality associated with mucormycoses is >50%. The unacceptably high mortality rate, limited options for therapy and the extreme morbidity of highly disfiguring surgical therapy provide a clear mandate to understand the molecular mechanisms that govern pathogenesis with the hopes of developing alternative strategies to treat and prevent mucormycoses. In the absence of robust forward and reverse genetic systems available for this taxonomic group of fungi, unbiased next generation sequence (NGS)-based approaches have provided much needed insights into our understanding of many aspects of Mucormycoses, including genome structure, drug resistance, diagnostic development, and fungus-host interactions. Here, we will discuss the specific contributions that NGS-based approaches have made to the field and discuss open questions that can be addressed using similar approaches.
Collapse
Affiliation(s)
- Alexandra Y. Soare
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
- Institute of Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Tonya N. Watkins
- Institute of Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Vincent M. Bruno
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
- Institute of Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
34
|
Rodríguez A, Guillemyn B, Coucke P, Vaneechoutte M. Nucleic acids enrichment of fungal pathogens to study host-pathogen interactions. Sci Rep 2019; 9:18037. [PMID: 31792282 PMCID: PMC6889467 DOI: 10.1038/s41598-019-54608-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/15/2019] [Indexed: 12/11/2022] Open
Abstract
Fungal infections, ranging from superficial to life-threatening infections, represent a major public health problem that affects 25% of the worldwide population. In this context, the study of host-pathogen interactions within the host is crucial to advance antifungal therapy. However, since fungal cells are usually outnumbered by host cells, the fungal transcriptome frequently remains uncovered. We compared three different methods to selectively lyse human cells from in vitro mixes, composed of Candida cells and peripheral blood mononuclear cells. In order to prevent transcriptional modification, the mixes were stored in RNAlater. We evaluated the enrichment of fungal cells through cell counting using microscopy and aimed to further enrich fungal nucleic acids by centrifugation and by reducing contaminant nucleic acids from the host. We verified the enrichment of fungal DNA and RNA through qPCR and RT-qPCR respectively and confirmed that the resulting RNA has high integrity scores, suitable for downstream applications. The enrichment method provided here, i.e., lysis with Buffer RLT followed by centrifugation, may contribute to increase the proportion of nucleic acids from fungi in clinical samples, thus promoting more comprehensive analysis of fungal transcriptional profiles. Although we focused on C. albicans, the enrichment may be applicable to other fungal pathogens.
Collapse
Affiliation(s)
- Antonio Rodríguez
- Laboratory Bacteriology Research, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, 9000, Belgium.
| | - Brecht Guillemyn
- Center for Medical Genetics Ghent, Ghent University Hospital, Department of Biomolecular Medicine, Ghent, 9000, Belgium
| | - Paul Coucke
- Center for Medical Genetics Ghent, Ghent University Hospital, Department of Biomolecular Medicine, Ghent, 9000, Belgium
| | - Mario Vaneechoutte
- Laboratory Bacteriology Research, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, 9000, Belgium
| |
Collapse
|
35
|
Heme-iron acquisition in fungi. Curr Opin Microbiol 2019; 52:77-83. [DOI: 10.1016/j.mib.2019.05.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 01/09/2023]
|
36
|
Traven A, Naderer T. Central metabolic interactions of immune cells and microbes: prospects for defeating infections. EMBO Rep 2019; 20:e47995. [PMID: 31267653 PMCID: PMC6607010 DOI: 10.15252/embr.201947995] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/22/2019] [Accepted: 05/27/2019] [Indexed: 12/16/2022] Open
Abstract
Antimicrobial drug resistance is threatening to take us to the "pre-antibiotic era", where people are dying from preventable and treatable diseases and the risk of hospital-associated infections compromises the success of surgery and cancer treatments. Development of new antibiotics is slow, and alternative approaches to control infections have emerged based on insights into metabolic pathways in host-microbe interactions. Central carbon metabolism of immune cells is pivotal in mounting an effective response to invading pathogens, not only to meet energy requirements, but to directly activate antimicrobial responses. Microbes are not passive players here-they remodel their metabolism to survive and grow in host environments. Sometimes, microbes might even benefit from the metabolic reprogramming of immune cells, and pathogens such as Candida albicans, Salmonella Typhimurium and Staphylococcus aureus can compete with activated host cells for sugars that are needed for essential metabolic pathways linked to inflammatory processes. Here, we discuss how metabolic interactions between innate immune cells and microbes determine their survival during infection, and ways in which metabolism could be manipulated as a therapeutic strategy.
Collapse
Affiliation(s)
- Ana Traven
- Infection and Immunity Program and the Department of Biochemistry & Molecular BiologyBiomedicine Discovery InstituteMonash UniversityClaytonVic.Australia
| | - Thomas Naderer
- Infection and Immunity Program and the Department of Biochemistry & Molecular BiologyBiomedicine Discovery InstituteMonash UniversityClaytonVic.Australia
| |
Collapse
|
37
|
Link between Heat Shock Protein 90 and the Mitochondrial Respiratory Chain in the Caspofungin Stress Response of Aspergillus fumigatus. Antimicrob Agents Chemother 2019; 63:AAC.00208-19. [PMID: 31061164 DOI: 10.1128/aac.00208-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/12/2019] [Indexed: 12/12/2022] Open
Abstract
Aspergillus fumigatus is an opportunistic mold responsible for invasive aspergillosis. Triazoles (e.g., voriconazole) represent the first-line treatment, but emerging resistance is of concern. The echinocandin drug caspofungin is used as second-line treatment but has limited efficacy. The heat shock protein 90 (Hsp90) orchestrates the caspofungin stress response and is the trigger of an adaptive phenomenon called the paradoxical effect (growth recovery at increasing caspofungin concentrations). The aim of this study was to elucidate the Hsp90-dependent mechanisms of the caspofungin stress response. Transcriptomic profiles of the wild-type A. fumigatus strain (KU80) were compared to those of a mutant strain with substitution of the native hsp90 promoter by the thiA promoter (pthiA-hsp90), which lacks the caspofungin paradoxical effect. Caspofungin induced expression of the genes of the mitochondrial respiratory chain (MRC), in particular, NADH-ubiquinone oxidoreductases (complex I), in KU80 but not in the pthiA-hsp90 mutant. The caspofungin paradoxical effect could be abolished by rotenone (MRC complex I inhibitor) in KU80, supporting the role of MRC in the caspofungin stress response. Fluorescent staining of active mitochondria and measurement of oxygen consumption and ATP production confirmed the activation of the MRC in KU80 in response to caspofungin, but this activity was impaired in the pthiA-hsp90 mutant. Using a bioluminescent reporter for the measurement of intracellular calcium, we demonstrated that inhibition of Hsp90 by geldanamycin or MRC complex I by rotenone prevented the increase in intracellular calcium shown to be essential for the caspofungin paradoxical effect. In conclusion, our data support a role of the MRC in the caspofungin stress response which is dependent on Hsp90.
Collapse
|
38
|
Rodríguez A, Vaneechoutte M. Comparison of the efficiency of different cell lysis methods and different commercial methods for RNA extraction from Candida albicans stored in RNAlater. BMC Microbiol 2019; 19:94. [PMID: 31088364 PMCID: PMC6515685 DOI: 10.1186/s12866-019-1473-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/03/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Obtaining sufficient RNA yield and quality for comprehensive transcriptomic studies is cumbersome for clinical samples in which RNA from the pathogen is present in low numbers relative to the nucleic acids from the host, especially for pathogens, such as yeasts, with a solid cell wall. Therefore, yeast cell lysis including cell wall disruption constitutes an essential first step to maximize RNA yield. Moreover, during the last years, different methods for RNA extraction from yeasts have been developed, ranging from classic hot phenol methods to commercially available specific kits. They offer different RNA yield and quality, also depending on the original storage medium, such as RNAlater. RESULTS We observed that, for C. albicans cells stored in Tryptic Soy Broth with 15% glycerol, 10 min of bead beating in a horizontal position in RiboPure Lysis Buffer provided complete cell lysis. Cell lysis efficiency was decreased to 73.5% when cells were stored in RNAlater. In addition, the RiboPure Yeast Kit (Ambion) offered the highest RNA yield in comparison with the automated platform NucliSENS easyMAG total nucleic extraction (bioMérieux) and the RNeasy Mini Kit (Qiagen) according to NanoDrop and Fragment Analyzer. Moreover, we showed that, in spite of the decrease of cell lysis efficiency after RNAlater storage, as compared to storage in TSB + 15% glycerol, RNAlater increased RNA yield during RNA extraction with both RiboPure Yeast Kit and easyMAG, as confirmed by Fragment Analyzer analysis and by RT-qPCR of the RNA from the Internal Transcribed Spacer 2. CONCLUSIONS In our hands, the most efficient cell lysis and highest RNA yield from C. albicans cells stored in RNAlater was obtained by horizontal bead beating in RiboPure Lysis Buffer followed by RNA extraction with the RiboPure Yeast Kit.
Collapse
Affiliation(s)
- Antonio Rodríguez
- Laboratory Bacteriology Research, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000, Ghent, Belgium.
| | - Mario Vaneechoutte
- Laboratory Bacteriology Research, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000, Ghent, Belgium
| |
Collapse
|
39
|
Peterson EJ, Bailo R, Rothchild AC, Arrieta-Ortiz ML, Kaur A, Pan M, Mai D, Abidi AA, Cooper C, Aderem A, Bhatt A, Baliga NS. Path-seq identifies an essential mycolate remodeling program for mycobacterial host adaptation. Mol Syst Biol 2019; 15:e8584. [PMID: 30833303 PMCID: PMC6398593 DOI: 10.15252/msb.20188584] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 01/31/2019] [Accepted: 02/04/2019] [Indexed: 11/23/2022] Open
Abstract
The success of Mycobacterium tuberculosis (MTB) stems from its ability to remain hidden from the immune system within macrophages. Here, we report a new technology (Path-seq) to sequence miniscule amounts of MTB transcripts within up to million-fold excess host RNA Using Path-seq and regulatory network analyses, we have discovered a novel transcriptional program for in vivo mycobacterial cell wall remodeling when the pathogen infects alveolar macrophages in mice. We have discovered that MadR transcriptionally modulates two mycolic acid desaturases desA1/desA2 to initially promote cell wall remodeling upon in vitro macrophage infection and, subsequently, reduces mycolate biosynthesis upon entering dormancy. We demonstrate that disrupting MadR program is lethal to diverse mycobacteria making this evolutionarily conserved regulator a prime antitubercular target for both early and late stages of infection.
Collapse
Affiliation(s)
| | - Rebeca Bailo
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Alissa C Rothchild
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | | | | | - Min Pan
- Institute for Systems Biology, Seattle, WA, USA
| | - Dat Mai
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | | | - Charlotte Cooper
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Alan Aderem
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Apoorva Bhatt
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Nitin S Baliga
- Institute for Systems Biology, Seattle, WA, USA
- Molecular and Cellular Biology Program, Departments of Microbiology and Biology, University of Washington, Seattle, WA, USA
- Lawrence Berkeley National Laboratories, Berkeley, CA, USA
| |
Collapse
|
40
|
Kirchner FR, Littringer K, Altmeier S, Tran VDT, Schönherr F, Lemberg C, Pagni M, Sanglard D, Joller N, LeibundGut-Landmann S. Persistence of Candida albicans in the Oral Mucosa Induces a Curbed Inflammatory Host Response That Is Independent of Immunosuppression. Front Immunol 2019; 10:330. [PMID: 30873177 PMCID: PMC6400982 DOI: 10.3389/fimmu.2019.00330] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 02/08/2019] [Indexed: 11/13/2022] Open
Abstract
Controlled immune activation in response to commensal microbes is critical for the maintenance of stable colonization and prevention of microbial overgrowth on epithelial surfaces. Our understanding of the host mechanisms that regulate bacterial commensalism has increased substantially, however, much less data exist regarding host responses to members of the fungal microbiota on colonized surfaces. Using a murine model of oropharyngeal candidiasis, we have recently shown that differences in immune activation in response to diverse natural isolates of Candida albicans are associated with different outcomes of the host-fungal interaction. Here we applied a genome-wide transcriptomic approach to show that rapid induction of a strong inflammatory response characterized by neutrophil-associated genes upon C. albicans colonization inversely correlated with the ability of the fungus to persist in the oral mucosa. Surprisingly, persistent fungal isolates showed no signs of a compensatory regulatory immune response. By combining RNA-seq data, genetic mouse models, and co-infection experiments, we show that attenuation of the inflammatory response at the onset of infection with a persistent isolate is not a consequence of enhanced immunosuppression. Importantly, depletion of regulatory T cells or deletion of the immunoregulatory cytokine IL-10 did not alter host-protective type 17 immunity nor did it impair fungal survival in the oral mucosa, indicating that persistence of C. albicans in the oral mucosa is not a consequence of suppressed antifungal immunity.
Collapse
Affiliation(s)
- Florian R Kirchner
- Section of Immunology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | | | - Simon Altmeier
- Section of Immunology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Van Du T Tran
- Vital-IT Group, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Franziska Schönherr
- Section of Immunology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Christina Lemberg
- Section of Immunology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Marco Pagni
- Vital-IT Group, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Dominique Sanglard
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland
| | - Nicole Joller
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
41
|
Gaudin M, Desnues C. Hybrid Capture-Based Next Generation Sequencing and Its Application to Human Infectious Diseases. Front Microbiol 2018; 9:2924. [PMID: 30542340 PMCID: PMC6277869 DOI: 10.3389/fmicb.2018.02924] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/14/2018] [Indexed: 01/12/2023] Open
Abstract
This review describes target-enrichment approaches followed by next generation sequencing and their recent application to the research and diagnostic field of modern and past infectious human diseases caused by viruses, bacteria, parasites and fungi.
Collapse
Affiliation(s)
- Maxime Gaudin
- IRD 198, CNRS FRE2013, Assistance-Publique des Hôpitaux de Marseille, UMR Microbes, Evolution, Phylogeny and Infections (MEPHI), IHU Méditerranée Infection, Aix-Marseille Université, Marseille, France
| | - Christelle Desnues
- IRD 198, CNRS FRE2013, Assistance-Publique des Hôpitaux de Marseille, UMR Microbes, Evolution, Phylogeny and Infections (MEPHI), IHU Méditerranée Infection, Aix-Marseille Université, Marseille, France
| |
Collapse
|
42
|
Targeted enrichment outperforms other enrichment techniques and enables more multi-species RNA-Seq analyses. Sci Rep 2018; 8:13377. [PMID: 30190541 PMCID: PMC6127098 DOI: 10.1038/s41598-018-31420-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 08/17/2018] [Indexed: 11/30/2022] Open
Abstract
Enrichment methodologies enable the analysis of minor members in multi-species transcriptomic data. We compared the standard enrichment of bacterial and eukaryotic mRNA to a targeted enrichment using an Agilent SureSelect (AgSS) capture for Brugia malayi, Aspergillus fumigatus, and the Wolbachia endosymbiont of B. malayi (wBm). Without introducing significant systematic bias, the AgSS quantitatively enriched samples, resulting in more reads mapping to the target organism. The AgSS-enriched libraries consistently had a positive linear correlation with their unenriched counterparts (r2 = 0.559–0.867). Up to a 2,242-fold enrichment of RNA from the target organism was obtained following a power law (r2 = 0.90), with the greatest fold enrichment achieved in samples with the largest ratio difference between the major and minor members. While using a single total library for prokaryote and eukaryote enrichment from a single RNA sample could be beneficial for samples where RNA is limiting, we observed a decrease in reads mapping to protein coding genes and an increase in multi-mapping reads to rRNAs in AgSS enrichments from eukaryotic total RNA libraries compared to eukaryotic poly(A)-enriched libraries. Our results support a recommendation of using AgSS targeted enrichment on poly(A)-enriched libraries for eukaryotic captures, and total RNA libraries for prokaryotic captures, to increase the robustness of multi-species transcriptomic studies.
Collapse
|
43
|
Schatzman SS, Culotta VC. Chemical Warfare at the Microorganismal Level: A Closer Look at the Superoxide Dismutase Enzymes of Pathogens. ACS Infect Dis 2018. [PMID: 29517910 DOI: 10.1021/acsinfecdis.8b00026] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Superoxide anion radical is generated as a natural byproduct of aerobic metabolism but is also produced as part of the oxidative burst of the innate immune response design to kill pathogens. In living systems, superoxide is largely managed through superoxide dismutases (SODs), families of metalloenzymes that use Fe, Mn, Ni, or Cu cofactors to catalyze the disproportionation of superoxide to oxygen and hydrogen peroxide. Given the bursts of superoxide faced by microbial pathogens, it comes as no surprise that SOD enzymes play important roles in microbial survival and virulence. Interestingly, microbial SOD enzymes not only detoxify host superoxide but also may participate in signaling pathways that involve reactive oxygen species derived from the microbe itself, particularly in the case of eukaryotic pathogens. In this Review, we will discuss the chemistry of superoxide radicals and the role of diverse SOD metalloenzymes in bacterial, fungal, and protozoan pathogens. We will highlight the unique features of microbial SOD enzymes that have evolved to accommodate the harsh lifestyle at the host-pathogen interface. Lastly, we will discuss key non-SOD superoxide scavengers that specific pathogens employ for defense against host superoxide.
Collapse
Affiliation(s)
- Sabrina S. Schatzman
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Pubic Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, Maryland 21205, United States
| | - Valeria C. Culotta
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Pubic Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, Maryland 21205, United States
| |
Collapse
|
44
|
Lee HJ, Georgiadou A, Otto TD, Levin M, Coin LJ, Conway DJ, Cunnington AJ. Transcriptomic Studies of Malaria: a Paradigm for Investigation of Systemic Host-Pathogen Interactions. Microbiol Mol Biol Rev 2018; 82:e00071-17. [PMID: 29695497 PMCID: PMC5968457 DOI: 10.1128/mmbr.00071-17] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Transcriptomics, the analysis of genome-wide RNA expression, is a common approach to investigate host and pathogen processes in infectious diseases. Technical and bioinformatic advances have permitted increasingly thorough analyses of the association of RNA expression with fundamental biology, immunity, pathogenesis, diagnosis, and prognosis. Transcriptomic approaches can now be used to realize a previously unattainable goal, the simultaneous study of RNA expression in host and pathogen, in order to better understand their interactions. This exciting prospect is not without challenges, especially as focus moves from interactions in vitro under tightly controlled conditions to tissue- and systems-level interactions in animal models and natural and experimental infections in humans. Here we review the contribution of transcriptomic studies to the understanding of malaria, a parasitic disease which has exerted a major influence on human evolution and continues to cause a huge global burden of disease. We consider malaria a paradigm for the transcriptomic assessment of systemic host-pathogen interactions in humans, because much of the direct host-pathogen interaction occurs within the blood, a readily sampled compartment of the body. We illustrate lessons learned from transcriptomic studies of malaria and how these lessons may guide studies of host-pathogen interactions in other infectious diseases. We propose that the potential of transcriptomic studies to improve the understanding of malaria as a disease remains partly untapped because of limitations in study design rather than as a consequence of technological constraints. Further advances will require the integration of transcriptomic data with analytical approaches from other scientific disciplines, including epidemiology and mathematical modeling.
Collapse
Affiliation(s)
- Hyun Jae Lee
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | | | - Thomas D Otto
- Centre of Immunobiology, University of Glasgow, Glasgow, United Kingdom
| | - Michael Levin
- Section of Paediatrics, Imperial College, London, United Kingdom
| | - Lachlan J Coin
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - David J Conway
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | |
Collapse
|
45
|
Sekyere JO, Asante J. Emerging mechanisms of antimicrobial resistance in bacteria and fungi: advances in the era of genomics. Future Microbiol 2018; 13:241-262. [PMID: 29319341 DOI: 10.2217/fmb-2017-0172] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bacteria and fungi continue to develop new ways to adapt and survive the lethal or biostatic effects of antimicrobials through myriad mechanisms. Novel antibiotic resistance genes such as lsa(C), erm(44), VCC-1, mcr-1, mcr-2, mcr-3, mcr-4, bla KLUC-3 and bla KLUC-4 were discovered through comparative genomics and further functional studies. As well, mutations in genes that hitherto were unknown to confer resistance to antimicrobials, such as trm, PP2C, rpsJ, HSC82, FKS2 and Rv2887, were shown by genomics and transcomplementation assays to mediate antimicrobial resistance in Acinetobacter baumannii, Staphylococcus aureus, Enterococcus faecium, Saccharomyces cerevisae, Candida glabrata and Mycobacterium tuberculosis, respectively. Thus, genomics, transcriptomics and metagenomics, coupled with functional studies are the future of antimicrobial resistance research and novel drug discovery or design.
Collapse
Affiliation(s)
- John Osei Sekyere
- Faculty of Pharmacy & Pharmaceutical Sciences, Kwame Nkrumah University of Science & Technology, Kumasi, Ghana
| | - Jonathan Asante
- Faculty of Pharmacy & Pharmaceutical Sciences, Kwame Nkrumah University of Science & Technology, Kumasi, Ghana
| |
Collapse
|
46
|
Robinett NG, Peterson RL, Culotta VC. Eukaryotic copper-only superoxide dismutases (SODs): A new class of SOD enzymes and SOD-like protein domains. J Biol Chem 2017; 293:4636-4643. [PMID: 29259135 DOI: 10.1074/jbc.tm117.000182] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The copper-containing superoxide dismutases (SODs) represent a large family of enzymes that participate in the metabolism of reactive oxygen species by disproportionating superoxide anion radical to oxygen and hydrogen peroxide. Catalysis is driven by the redox-active copper ion, and in most cases, SODs also harbor a zinc at the active site that enhances copper catalysis and stabilizes the protein. Such bimetallic Cu,Zn-SODs are widespread, from the periplasm of bacteria to virtually every organelle in the human cell. However, a new class of copper-containing SODs has recently emerged that function without zinc. These copper-only enzymes serve as extracellular SODs in specific bacteria (i.e. Mycobacteria), throughout the fungal kingdom, and in the fungus-like oomycetes. The eukaryotic copper-only SODs are particularly unique in that they lack an electrostatic loop for substrate guidance and have an unusual open-access copper site, yet they can still react with superoxide at rates limited only by diffusion. Copper-only SOD sequences similar to those seen in fungi and oomycetes are also found in the animal kingdom, but rather than single-domain enzymes, they appear as tandem repeats in large polypeptides we refer to as CSRPs (copper-only SOD-repeat proteins). Here, we compare and contrast the Cu,Zn versus copper-only SODs and discuss the evolution of copper-only SOD protein domains in animals and fungi.
Collapse
Affiliation(s)
- Natalie G Robinett
- Department of Biochemistry and Molecular Biology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Ryan L Peterson
- Department of Biochemistry and Molecular Biology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Valeria C Culotta
- Department of Biochemistry and Molecular Biology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205.
| |
Collapse
|
47
|
Rossi DCP, Gleason JE, Sanchez H, Schatzman SS, Culbertson EM, Johnson CJ, McNees CA, Coelho C, Nett JE, Andes DR, Cormack BP, Culotta VC. Candida albicans FRE8 encodes a member of the NADPH oxidase family that produces a burst of ROS during fungal morphogenesis. PLoS Pathog 2017; 13:e1006763. [PMID: 29194441 PMCID: PMC5728582 DOI: 10.1371/journal.ppat.1006763] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 12/13/2017] [Accepted: 11/20/2017] [Indexed: 12/30/2022] Open
Abstract
Until recently, NADPH oxidase (NOX) enzymes were thought to be a property of multicellularity, where the reactive oxygen species (ROS) produced by NOX acts in signaling processes or in attacking invading microbes through oxidative damage. We demonstrate here that the unicellular yeast and opportunistic fungal pathogen Candida albicans is capable of a ROS burst using a member of the NOX enzyme family, which we identify as Fre8. C. albicans can exist in either a unicellular yeast-like budding form or as filamentous multicellular hyphae or pseudohyphae, and the ROS burst of Fre8 begins as cells transition to the hyphal state. Fre8 is induced during hyphal morphogenesis and specifically produces ROS at the growing tip of the polarized cell. The superoxide dismutase Sod5 is co-induced with Fre8 and our findings are consistent with a model in which extracellular Sod5 acts as partner for Fre8, converting Fre8-derived superoxide to the diffusible H2O2 molecule. Mutants of fre8Δ/Δ exhibit a morphogenesis defect in vitro and are specifically impaired in development or maintenance of elongated hyphae, a defect that is rescued by exogenous sources of H2O2. A fre8Δ/Δ deficiency in hyphal development was similarly observed in vivo during C. albicans invasion of the kidney in a mouse model for disseminated candidiasis. Moreover C. albicans fre8Δ/Δ mutants showed defects in a rat catheter model for biofilms. Together these studies demonstrate that like multicellular organisms, C. albicans expresses NOX to produce ROS and this ROS helps drive fungal morphogenesis in the animal host. We demonstrate here that the opportunistic human fungal pathogen Candida albicans uses a NADPH oxidase enzyme (NOX) and reactive oxygen species (ROS) to control morphogenesis in an animal host. C. albicans was not previously known to express NOX enzymes as these were thought to be a property of multicellular organisms, not unicellular yeasts. We describe here the identification of C. albicans Fre8 as the first NOX enzyme that can produce extracellular ROS in a unicellular yeast. C. albicans can exist as either a unicellular yeast or as multicellular elongated hyphae, and Fre8 is specially expressed during transition to the hyphal state where it works to produce ROS at the growing tip of the polarized cell. C. albicans cells lacking Fre8 exhibit a deficiency in elongated hyphae during fungal invasion of the kidney in a mouse model for systemic candidiasis. Moreover, Fre8 is required for fungal survival in a rodent model for catheter biofilms. These findings implicate a role for fungal derived ROS in controlling morphogenesis of this important fungal pathogen for public health.
Collapse
Affiliation(s)
- Diego C. P. Rossi
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Julie E. Gleason
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Hiram Sanchez
- Departments of Medicine and of Medical Microbiology and Immunology, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Sabrina S. Schatzman
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Edward M. Culbertson
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Chad J. Johnson
- Departments of Medicine and of Medical Microbiology and Immunology, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Christopher A. McNees
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Carolina Coelho
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Jeniel E. Nett
- Departments of Medicine and of Medical Microbiology and Immunology, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - David R. Andes
- Departments of Medicine and of Medical Microbiology and Immunology, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Brendan P. Cormack
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Valeria C. Culotta
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
48
|
Zaghloul HAH, Hice R, Arensburger P, Federici BA. Transcriptome Analysis of the Spodoptera frugiperda Ascovirus In Vivo Provides Insights into How Its Apoptosis Inhibitors and Caspase Promote Increased Synthesis of Viral Vesicles and Virion Progeny. J Virol 2017; 91:e00874-17. [PMID: 28956762 PMCID: PMC5686725 DOI: 10.1128/jvi.00874-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/31/2017] [Indexed: 11/20/2022] Open
Abstract
Ascoviruses are double-stranded DNA (dsDNA) viruses that attack caterpillars and differ from all other viruses by inducing nuclear lysis followed by cleavage of host cells into numerous anucleate vesicles in which virus replication continues as these grow in the blood. Ascoviruses are also unusual in that most encode a caspase or caspase-like proteins. A robust cell line to study the novel molecular biology of ascovirus replication in vitro is lacking. Therefore, we used strand-specific transcriptome sequencing (RNA-Seq) to study transcription in vivo in third instars of Spodoptera frugiperda infected with the type species, Spodoptera frugiperda ascovirus1a (SfAV-1a), sampling transcripts at different time points after infection. We targeted transcription of two types of SfAV-1a genes; first, 44 core genes that occur in several ascovirus species, and second, 26 genes predicted in silico to have metabolic functions likely involved in synthesizing viral vesicle membranes. Gene cluster analysis showed differences in temporal expression of SfAV-1a genes, enabling their assignment to three temporal classes: early, late, and very late. Inhibitors of apoptosis (IAP-like proteins; ORF016, ORF025, and ORF074) were expressed early, whereas its caspase (ORF073) was expressed very late, which correlated with apoptotic events leading to viral vesicle formation. Expression analysis revealed that a Diedel gene homolog (ORF121), the only known "virokine," was highly expressed, implying that this ascovirus protein helps evade innate host immunity. Lastly, single-nucleotide resolution of RNA-Seq data revealed 15 bicistronic and tricistronic messages along the genome, an unusual occurrence for large dsDNA viruses.IMPORTANCE Unlike all other DNA viruses, ascoviruses code for an executioner caspase, apparently involved in a novel cytopathology in which viral replication induces nuclear lysis followed by cell cleavage, yielding numerous large anucleate viral vesicles that continue to produce virions. Our transcriptome analysis of genome expression in vivo by the Spodoptera frugiperda ascovirus shows that inhibitors of apoptosis are expressed first, enabling viral replication to proceed, after which the SfAV-1a caspase is synthesized, leading to viral vesicle synthesis and subsequent extensive production of progeny virions. Moreover, we detected numerous bicistronic and tricistronic mRNA messages in the ascovirus transcriptome, implying that ascoviruses use other noncanonical translational mechanisms, such as internal ribosome entry sites (IRESs). These results provide the first insights into the molecular biology of a unique coordinated gene expression pattern in which cell architecture is markedly modified, more than in any other known eukaryotic virus, to promote viral reproduction and transmission.
Collapse
Affiliation(s)
- Heba A H Zaghloul
- Interdepartmental Graduate Program in Microbiology and Institute for Integrative Genome Biology, University of California, Riverside, Riverside, California, USA
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Robert Hice
- Interdepartmental Graduate Program in Microbiology and Institute for Integrative Genome Biology, University of California, Riverside, Riverside, California, USA
| | - Peter Arensburger
- California State Polytechnic University, Pomona, Department of Biological Sciences, Pomona, California, USA
| | - Brian A Federici
- Interdepartmental Graduate Program in Microbiology and Institute for Integrative Genome Biology, University of California, Riverside, Riverside, California, USA
- Department of Entomology, University of California, Riverside, Riverside, California, USA
| |
Collapse
|
49
|
Gervais J, Plissonneau C, Linglin J, Meyer M, Labadie K, Cruaud C, Fudal I, Rouxel T, Balesdent M. Different waves of effector genes with contrasted genomic location are expressed by Leptosphaeria maculans during cotyledon and stem colonization of oilseed rape. MOLECULAR PLANT PATHOLOGY 2017; 18:1113-1126. [PMID: 27474899 PMCID: PMC6638281 DOI: 10.1111/mpp.12464] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Leptosphaeria maculans, the causal agent of stem canker disease, colonizes oilseed rape (Brassica napus) in two stages: a short and early colonization stage corresponding to cotyledon or leaf colonization, and a late colonization stage during which the fungus colonizes systemically and symptomlessly the plant during several months before stem canker appears. To date, the determinants of the late colonization stage are poorly understood; L. maculans may either successfully escape plant defences, leading to stem canker development, or the plant may develop an 'adult-stage' resistance reducing canker incidence. To obtain an insight into these determinants, we performed an RNA-sequencing (RNA-seq) pilot project comparing fungal gene expression in infected cotyledons and in symptomless or necrotic stems. Despite the low fraction of fungal material in infected stems, sufficient fungal transcripts were detected and a large number of fungal genes were expressed, thus validating the feasibility of the approach. Our analysis showed that all avirulence genes previously identified are under-expressed during stem colonization compared with cotyledon colonization. A validation RNA-seq experiment was then performed to investigate the expression of candidate effector genes during systemic colonization. Three hundred and seven 'late' effector candidates, under-expressed in the early colonization stage and over-expressed in the infected stems, were identified. Finally, our analysis revealed a link between the regulation of expression of effectors and their genomic location: the 'late' effector candidates, putatively involved in systemic colonization, are located in gene-rich genomic regions, whereas the 'early' effector genes, over-expressed in the early colonization stage, are located in gene-poor regions of the genome.
Collapse
Affiliation(s)
- Julie Gervais
- UMR BIOGER, INRA, AgroParisTech, Université Paris‐Saclay, Avenue Lucien Brétignières, BP 01Thiverval‐GrignonF‐78850France
| | - Clémence Plissonneau
- UMR BIOGER, INRA, AgroParisTech, Université Paris‐Saclay, Avenue Lucien Brétignières, BP 01Thiverval‐GrignonF‐78850France
| | - Juliette Linglin
- UMR BIOGER, INRA, AgroParisTech, Université Paris‐Saclay, Avenue Lucien Brétignières, BP 01Thiverval‐GrignonF‐78850France
| | - Michel Meyer
- UMR BIOGER, INRA, AgroParisTech, Université Paris‐Saclay, Avenue Lucien Brétignières, BP 01Thiverval‐GrignonF‐78850France
| | - Karine Labadie
- CEA‐Institut de Génomique, GENOSCOPECentre National de SéquençageEvry CedexFrance
| | - Corinne Cruaud
- CEA‐Institut de Génomique, GENOSCOPECentre National de SéquençageEvry CedexFrance
| | - Isabelle Fudal
- UMR BIOGER, INRA, AgroParisTech, Université Paris‐Saclay, Avenue Lucien Brétignières, BP 01Thiverval‐GrignonF‐78850France
| | - Thierry Rouxel
- UMR BIOGER, INRA, AgroParisTech, Université Paris‐Saclay, Avenue Lucien Brétignières, BP 01Thiverval‐GrignonF‐78850France
| | - Marie‐Hélène Balesdent
- UMR BIOGER, INRA, AgroParisTech, Université Paris‐Saclay, Avenue Lucien Brétignières, BP 01Thiverval‐GrignonF‐78850France
| |
Collapse
|
50
|
Identification and Mode of Action of a Plant Natural Product Targeting Human Fungal Pathogens. Antimicrob Agents Chemother 2017; 61:AAC.00829-17. [PMID: 28674054 PMCID: PMC5571344 DOI: 10.1128/aac.00829-17] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/27/2017] [Indexed: 01/08/2023] Open
Abstract
Candida albicans is a major cause of fungal diseases in humans, and its resistance to available drugs is of concern. In an attempt to identify novel antifungal agents, we initiated a small-scale screening of a library of 199 natural plant compounds (i.e., natural products [NPs]). In vitro susceptibility profiling experiments identified 33 NPs with activity against C. albicans (MIC50s ≤ 32 μg/ml). Among the selected NPs, the sterol alkaloid tomatidine was further investigated. Tomatidine originates from the tomato (Solanum lycopersicum) and exhibited high levels of fungistatic activity against Candida species (MIC50s ≤ 1 μg/ml) but no cytotoxicity against mammalian cells. Genome-wide transcriptional analysis of tomatidine-treated C. albicans cells revealed a major alteration (upregulation) in the expression of ergosterol genes, suggesting that the ergosterol pathway is targeted by this NP. Consistent with this transcriptional response, analysis of the sterol content of tomatidine-treated cells showed not only inhibition of Erg6 (C-24 sterol methyltransferase) activity but also of Erg4 (C-24 sterol reductase) activity. A forward genetic approach in Saccharomyces cerevisiae coupled with whole-genome sequencing identified 2 nonsynonymous mutations in ERG6 (amino acids D249G and G132D) responsible for tomatidine resistance. Our results therefore unambiguously identified Erg6, a C-24 sterol methyltransferase absent in mammals, to be the main direct target of tomatidine. We tested the in vivo efficacy of tomatidine in a mouse model of C. albicans systemic infection. Treatment with a nanocrystal pharmacological formulation successfully decreased the fungal burden in infected kidneys compared to the fungal burden achieved by the use of placebo and thus confirmed the potential of tomatidine as a therapeutic agent.
Collapse
|