1
|
Huang X, Yin T, Yu M, Zhu G, Hu X, Yu H, Zhao W, Chen J, Du J, Wu Q, Zhang W, Liu L, Du M. Decidualization-associated recruitment of cytotoxic memory CD8 +T cells to the maternal-fetal interface for immune defense. Mucosal Immunol 2024:S1933-0219(24)00130-2. [PMID: 39675728 DOI: 10.1016/j.mucimm.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/07/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
Decidual CD8+T (dCD8+T) cells are pivotal in the maintenance of the delicate balance between immune tolerance towards the fetus and immune resistance against pathogens. The endometrium and decidua represent the uterine environments before and during pregnancy, respectively, yet the composition and phenotypic alterations of uterine CD8+T cells in these tissues remain unclear. Using flow cytometry and analysis of transcriptome profiles, we demonstrated that human dCD8+T and endometrial CD8+T (eCD8+T) cells exhibited similar T cell differentiation statuses and phenotypes of tissue infiltrating or residency, compared to peripheral CD8+T (pCD8+T) cells. However, dCD8+T cells showed decreased expression of coinhibitory marker (PD-1), chemotaxis marker (CXCR3), and tissue-resident markers (CD69 and CD103), along with increased expression of granzyme B and granulysin, compared to eCD8+T cells. In vitro cytotoxicity assays further demonstrated that dCD8+T cells had greater effector functions than eCD8+T cells. Additionally, both in vitro and in vivo chemotaxis assays confirmed the recruitment of non-resident effector memory T cell subsets to the pregnant decidua, contributing to the dCD8+T cell-mediated anti-infection mechanism at the maternal-fetal interface. This work demonstrates dCD8+T cells replenished from the circulation retain their cytotoxic capacity, which may serve as an enhanced defense mechanism against infection during pregnancy.
Collapse
Affiliation(s)
- Xixi Huang
- Laboratory for Reproductive Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Tingxuan Yin
- Laboratory for Reproductive Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Min Yu
- Laboratory for Reproductive Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Guohua Zhu
- Laboratory for Reproductive Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Xianyang Hu
- Laboratory for Reproductive Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Hailin Yu
- Laboratory for Reproductive Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Weijie Zhao
- Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, Longgang Maternity Child Institute of Shantou University Medical College, Shenzhen 518172, China
| | - Jiajia Chen
- Laboratory for Reproductive Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Jiangyuan Du
- Laboratory for Reproductive Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China
| | - Wei Zhang
- Laboratory for Reproductive Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Lu Liu
- Laboratory for Reproductive Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200032, China.
| | - Meirong Du
- Laboratory for Reproductive Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200032, China; Department of Obstetrics and Gynecology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University Shanghai, 200434, China.
| |
Collapse
|
2
|
Zeng X, Fan L, Qin Q, Zheng D, Wang H, Li M, Jiang Y, Wang H, Liu H, Liang S, Wu L, Liang S. Exogenous PD-L1 binds to PD-1 to alleviate and prevent autism-like behaviors in maternal immune activation-induced male offspring mice. Brain Behav Immun 2024; 122:527-546. [PMID: 39182588 DOI: 10.1016/j.bbi.2024.08.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024] Open
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder caused by the interaction of multiple pathogenic factors. Epidemiological studies and animal experiments indicate that maternal immune activation (MIA) is closely related to the development of ASD in offspring. A large number of pro-inflammatory cytokines are transferred from the placenta to the fetal brain during MIA, which impedes fetal neurodevelopment and is accompanied by activation of immune cells and microglia. Programmed cell death protein 1 (PD-1) can be highly expressed on the surface of various activated immune cells, when combined with programmed cell death-ligand 1 (PD-L1), it can activate the PD-1/PD-L1 pathway and exert powerful immunosuppressive effects, suggesting that this immune checkpoint may have the potential to treat MIA-induced ASD. This study combined bioinformatics analysis and experimental validation to explore the efficacy of Fc-fused PD-L1 (PD-L1-Fc) in treating MIA-induced ASD. Bioinformatics analysis results showed that in human placental inflammation, IL-6 was upregulated, T cells proliferated significantly, and the PD-1/PD-L1 pathway was significantly enriched. The experimental results showed that intraperitoneal injection of poly(I:C) induced MIA in pregnant mice resulted in significant expression of IL-6 in their serum, placenta, and fetal brain. At the same time, the expression of PD-1 and PD-L1 in the placenta and fetal brain increased, CD4+ T cells in the spleen were significantly activated, and PD-1 expression increased. Their offspring mice exhibited typical ASD-like behaviors. In vitro experiments on primary microglia of offspring mice have confirmed that the expression of IL-6, PD-1, and PD-L1 is significantly increased, and PD-L1-Fc effectively reduced their expression levels. In the prefrontal cortex of MIA offspring mice, there was an increase in the expression of IL-6, PD-1, and PD-L1; activation of microglial cells, and colocalization with PD-1. Then we administered brain stereotaxic injections of PD-L1-Fc to MIA offspring mice and intraperitoneal injections to MIA pregnant mice. The results indicated that PD-L1-Fc effectively suppressed neuroinflammation in the frontal cortex of offspring mice and partially ameliorated ASD-like behaviors; MIA in pregnant mice was significantly alleviated, and the offspring mice they produced did not exhibit neuroinflammation or ASD-like behaviors. In summary, we have demonstrated the therapeutic ability of PD-L1-Fc for MIA-induced ASD, aiming to provide new strategies and insights for the treatment of ASD.
Collapse
Affiliation(s)
- Xin Zeng
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Linlin Fan
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Qian Qin
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Danyang Zheng
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Han Wang
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Mengyue Li
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Yutong Jiang
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Hui Wang
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Hao Liu
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Shengjun Liang
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Lijie Wu
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China.
| | - Shuang Liang
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
3
|
Kraus V, Čižmárová B, Birková A. Listeria in Pregnancy-The Forgotten Culprit. Microorganisms 2024; 12:2102. [PMID: 39458411 PMCID: PMC11510352 DOI: 10.3390/microorganisms12102102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Listeria monocytogenes is a Gram-positive bacterium that causes listeriosis, a severe foodborne illness that is particularly dangerous during pregnancy. It thrives in diverse environments, including refrigerated conditions and food production facilities, due to its adaptability to varying temperatures, pH levels, and salt concentrations. Its virulence stems from the ability to invade host cells, particularly macrophages and epithelial cells, and avoid, or at least postpone, immune detection by utilizing virulence factors such as internalins, listeriolysin O, and actin assembly-inducing protein. This intracellular motility and biofilm formation make LM a persistent pathogen in food safety and public health. Pregnant women are at a much higher risk of listeriosis, which can result in serious fetal complications such as miscarriage, stillbirth, and preterm labor due to LM's affinity for placental tissues. The vertical transmission of LM from mother to fetus can lead to neonatal listeriosis, which can result in sepsis and meningitis, with high mortality rates if not promptly treated. Early diagnosis and treatment with antibiotics, such as ampicillin or gentamicin, are crucial for maternal and neonatal outcomes.
Collapse
Affiliation(s)
- Vladimír Kraus
- Department of Gyneacology and Obstetrics, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia;
| | - Beáta Čižmárová
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia;
| | - Anna Birková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia;
| |
Collapse
|
4
|
D'Aleo F, Tuscano A, Servello T, Tripodi M, Abramo C, Bonanno R, Gulino FA, Occhipinti S, Incognito GG, Principe L. Relevance of microbiological cultures of cord blood and placental swabs in the rapid diagnosis of preterm newborn infection due to Listeria monocytogenes: A case report. Case Rep Womens Health 2024; 43:e00638. [PMID: 39188762 PMCID: PMC11345304 DOI: 10.1016/j.crwh.2024.e00638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 08/28/2024] Open
Abstract
Listeria monocytogenes (Lm) is a Gram-positive bacterium causing listeriosis, a rare but severe foodborne infection, particularly impactful during pregnancy. Maternal-fetal transmission can lead to adverse fetal outcomes, yet symptoms in mothers may be nonspecific, delaying intervention. Despite the severity, the mechanisms of vertical transmission remain unclear. This report describes a case of rapid Lm diagnosis in a preterm newborn using cord blood and placental swabs. A 31-week pregnant woman presented with abdominal pain, diarrhea, and reduced fetal movements after consuming raw sushi. Laboratory findings indicated infection, and she vaginally delivered a live infant with placental and fetal abscesses. Cultures confirmed Lm, with swift diagnosis aided by molecular syndromic testing. The neonate received appropriate antibiotics and was asymptomatic by the end of treatment. This case underscores the need for the rapid diagnosis of maternal-fetal listeriosis, as it poses significant risks during pregnancy, including preterm birth and neonatal complications. Current diagnostic methods often delay treatment. This report emphasizes the use of innovative molecular techniques for early diagnosis, which is crucial in managing neonatal infections, especially in preterm newborns.
Collapse
Affiliation(s)
- Francesco D'Aleo
- U.O.C. of Microbiology and Virology, “Bianchi-Melacrino-Morelli” Hospital, Reggio Calabria, Italy
| | - Attilio Tuscano
- U.O.C. of Obstetrics and Gynaecology, “Bianchi-Melacrino-Morelli” Hospital, Reggio Calabria, Italy
| | - Tarcisio Servello
- U.O.C. of Obstetrics and Gynaecology, “Bianchi-Melacrino-Morelli” Hospital, Reggio Calabria, Italy
| | - Marcello Tripodi
- U.O.C. of Obstetrics and Gynaecology, “Bianchi-Melacrino-Morelli” Hospital, Reggio Calabria, Italy
| | - Carmela Abramo
- U.O.C. of Obstetrics and Gynaecology, “Bianchi-Melacrino-Morelli” Hospital, Reggio Calabria, Italy
| | - Roberta Bonanno
- U.O.C. of Obstetrics and Gynaecology, “Bianchi-Melacrino-Morelli” Hospital, Reggio Calabria, Italy
| | | | - Sara Occhipinti
- Department of General Surgery and Medical Surgical Specialties, University of Catania, Catania, Italy
| | - Giosuè Giordano Incognito
- Department of General Surgery and Medical Surgical Specialties, University of Catania, Catania, Italy
| | - Luigi Principe
- U.O.C. of Microbiology and Virology, “Bianchi-Melacrino-Morelli” Hospital, Reggio Calabria, Italy
| |
Collapse
|
5
|
González de Herrero E, Moreno V, Martín-Pena ML, Ruiz de Gopegui E. An unexpected cause of myopericarditis in an immunocompromised patient. ENFERMEDADES INFECCIOSAS Y MICROBIOLOGIA CLINICA (ENGLISH ED.) 2024; 42:331-332. [PMID: 38697869 DOI: 10.1016/j.eimce.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/31/2024] [Indexed: 05/05/2024]
Affiliation(s)
- Elisa González de Herrero
- Servicio de Microbiología, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain.
| | - Victoriano Moreno
- Servicio de Cardiología, Hospital Universitario Son Espases, Palma de Mallorca, Spain
| | - María Luisa Martín-Pena
- Servicio de Medicina Interna-Infecciosas, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Enrique Ruiz de Gopegui
- Servicio de Microbiología, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| |
Collapse
|
6
|
Li W, Yuan W, Huang S, Zou L, Zheng K, Xie D. Research progress on the mechanism of Treponema pallidum breaking through placental barrier. Microb Pathog 2023; 185:106392. [PMID: 37852552 DOI: 10.1016/j.micpath.2023.106392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023]
Abstract
Congenital syphilis, a significant cause of fetal mortality worldwide, is a congenital infectious disease instigated by the vertical transmission of Treponema pallidum during pregnancy. Clinical manifestations include preterm delivery, stillbirth, neonatal skin lesions, skeletal abnormalities, and central nervous system aberrations. The ongoing increase in the incidence of congenital syphilis, coupled with complexities in diagnosis, necessitates a detailed understanding of its pathogenesis for the development of improved diagnostic approaches, and to interrupt the route of vertical transmission. Drawing from the broader body of research associated with vertical transmission pathogens, we aim to clarify the potential mechanisms by which Treponema pallidum breaches the placental barrier to infect the fetus.
Collapse
Affiliation(s)
- Weiwei Li
- Department of Clinical Laboratory, The Second People's Hospital of Foshan, China
| | - Wei Yuan
- The Fourth Affiliated Hospital of Nanchang University, China
| | - Shaobin Huang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, Institution of Pathogenic Biology, University of South China, Hengyang, China
| | - Lin Zou
- Department of Clinical Laboratory, The Second People's Hospital of Foshan, China
| | - Kang Zheng
- Department of Clinical Laboratory, Hengyang Central Hospital, Hengyang, China.
| | - Dongde Xie
- Department of Clinical Laboratory, The Second People's Hospital of Foshan, China.
| |
Collapse
|
7
|
Hugon AM, Deblois CL, Simmons HA, Mejia A, Schotzo ML, Czuprynski CJ, Suen G, Golos TG. Listeria monocytogenes infection in pregnant macaques alters the maternal gut microbiome†. Biol Reprod 2023; 109:618-634. [PMID: 37665249 PMCID: PMC10651077 DOI: 10.1093/biolre/ioad104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023] Open
Abstract
OBJECTIVES The bacterium Listeria monocytogenes (Lm) is associated with adverse pregnancy outcomes. Infection occurs through consumption of contaminated food that is disseminated to the maternal-fetal interface. The influence on the gastrointestinal microbiome during Lm infection remains unexplored in pregnancy. The objective of this study was to determine the impact of listeriosis on the gut microbiota of pregnant macaques. METHODS A non-human primate model of listeriosis in pregnancy has been previously described. Both pregnant and non-pregnant cynomolgus macaques were inoculated with Lm and bacteremia and fecal shedding were monitored for 14 days. Non-pregnant animal tissues were collected at necropsy to determine bacterial burden, and fecal samples from both pregnant and non-pregnant animals were evaluated by 16S rRNA next-generation sequencing. RESULTS Unlike pregnant macaques, non-pregnant macaques did not exhibit bacteremia, fecal shedding, or tissue colonization by Lm. Dispersion of Lm during pregnancy was associated with a significant decrease in alpha diversity of the host gut microbiome, compared to non-pregnant counterparts. The combined effects of pregnancy and listeriosis were associated with a significant loss in microbial richness, although there were increases in some genera and decreases in others. CONCLUSIONS Although pregnancy alone is not associated with gut microbiome disruption, we observed dysbiosis with listeriosis during pregnancy. The macaque model may provide an understanding of the roles that pregnancy and the gut microbiota play in the ability of Lm to establish intestinal infection and disseminate throughout the host, thereby contributing to adverse pregnancy outcomes and risk to the developing fetus.
Collapse
Affiliation(s)
- Anna Marie Hugon
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison, Madison, WI, USA
| | - Courtney L Deblois
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin–Madison, Madison, WI, USA
| | - Heather A Simmons
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Andres Mejia
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Michele L Schotzo
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Charles J Czuprynski
- Department of Pathobiological Sciences, University of Wisconsin–Madison, Madison, WI, USA
| | - Garret Suen
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, USA
| | - Thaddeus G Golos
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
- Department of Comparative Biosciences, University of Wisconsin–Madison, Madison, WI, USA
- Department of Obstetrics and Gynecology, University of Wisconsin–Madison, Madison, WI, USA
| |
Collapse
|
8
|
Van der Merwe M, Pather S. Placental Listeriosis: Case Report and Literature Review. Am J Trop Med Hyg 2023; 109:584-586. [PMID: 37487564 PMCID: PMC10484256 DOI: 10.4269/ajtmh.23-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/13/2023] [Indexed: 07/26/2023] Open
Abstract
Listeria monocytogenes, a foodborne, facultative, intracellular gram-positive bacillus, is one of 17 species of the Listeria genus and was responsible for the world's largest outbreak of listeriosis in 2017-2018 in South Africa. Listeria monocytogenes tends to cause mild gastrointestinal symptoms in healthy individuals. However, pregnancy-associated listeriosis can be fatal to the fetus and can lead to serious adverse effects in the neonate. Listeria monocytogenes has an affinity for the placenta, as opposed to other nonreproductive organs. Herein, we present a case of placental listeriosis diagnosed in a 33-year-old female, parity 4, with unknown gestational age during the listeriosis outbreak in South Africa in 2017-2018. The patient presented with pregnancy-related complications and underwent a caesarean section. Morphological features demonstrated acute suppurative villitis and intervillositis with a heavy load of gram-positive bacilli, which is highly suggestive of placental listeriosis. Multiplex polymerase chain reaction confirmed the presence of L. monocytogenes.
Collapse
Affiliation(s)
- Marquerit Van der Merwe
- Anatomical Pathology, National Health Laboratory Service, Chris Hani Baragwanath Academic Hospital, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Sugeshnee Pather
- Anatomical Pathology, National Health Laboratory Service, Chris Hani Baragwanath Academic Hospital, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
9
|
Abstract
Listeria monocytogenes is a Gram-positive facultative intracellular pathogen that can cause severe invasive infections upon ingestion with contaminated food. Clinically, listerial disease, or listeriosis, most often presents as bacteremia, meningitis or meningoencephalitis, and pregnancy-associated infections manifesting as miscarriage or neonatal sepsis. Invasive listeriosis is life-threatening and a main cause of foodborne illness leading to hospital admissions in Western countries. Sources of contamination can be identified through international surveillance systems for foodborne bacteria and strains' genetic data sharing. Large-scale whole genome studies have increased our knowledge on the diversity and evolution of L. monocytogenes, while recent pathophysiological investigations have improved our mechanistic understanding of listeriosis. In this article, we present an overview of human listeriosis with particular focus on relevant features of the causative bacterium, epidemiology, risk groups, pathogenesis, clinical manifestations, and treatment and prevention.
Collapse
Affiliation(s)
- Merel M Koopmans
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Matthijs C Brouwer
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - José A Vázquez-Boland
- Infection Medicine, Edinburgh Medical School (Biomedical Sciences), University of Edinburgh, Edinburgh, United Kingdom
| | - Diederik van de Beek
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| |
Collapse
|
10
|
Covarrubias A, Aguilera-Olguín M, Carrasco-Wong I, Pardo F, Díaz-Astudillo P, Martín SS. Feto-placental Unit: From Development to Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1428:1-29. [PMID: 37466767 DOI: 10.1007/978-3-031-32554-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The placenta is an intriguing organ that allows us to survive intrauterine life. This essential organ connects both mother and fetus and plays a crucial role in maternal and fetal well-being. This chapter presents an overview of the morphological and functional aspects of human placental development. First, we describe early human placental development and the characterization of the cell types found in the human placenta. Second, the human placenta from the second trimester to the term of gestation is reviewed, focusing on the morphology and specific pathologies that affect the placenta. Finally, we focus on the placenta's primary functions, such as oxygen and nutrient transport, and their importance for placental development.
Collapse
Affiliation(s)
- Ambart Covarrubias
- Health Sciences Faculty, Universidad San Sebastián, Concepción, Chile
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile
| | - Macarena Aguilera-Olguín
- Biomedical Research Centre, School of Medicine, Universidad de Valparaíso, Viña del Mar, Chile
- Cellular Signalling and Differentiation Laboratory (CSDL), Medicine and Science Faculty, Universidad San Sebastián, Santiago, Chile
| | - Ivo Carrasco-Wong
- Cellular Signalling and Differentiation Laboratory (CSDL), School of Medical Technology, Medicine and Science Faculty, Universidad San Sebastián, Santiago, Chile
| | - Fabián Pardo
- Metabolic Diseases Research Laboratory, Interdisciplinary Centre of Territorial Health Research (CIISTe), Biomedical Research Center (CIB), San Felipe Campus, School of Medicine, Faculty of Medicine, Universidad de Valparaíso, San Felipe, Chile
| | - Pamela Díaz-Astudillo
- Biomedical Research Centre, School of Medicine, Universidad de Valparaíso, Viña del Mar, Chile
| | - Sebastián San Martín
- Biomedical Research Centre, School of Medicine, Universidad de Valparaíso, Viña del Mar, Chile.
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillan, Chile.
| |
Collapse
|
11
|
Kennedy KM, de Goffau MC, Perez-Muñoz ME, Arrieta MC, Bäckhed F, Bork P, Braun T, Bushman FD, Dore J, de Vos WM, Earl AM, Eisen JA, Elovitz MA, Ganal-Vonarburg SC, Gänzle MG, Garrett WS, Hall LJ, Hornef MW, Huttenhower C, Konnikova L, Lebeer S, Macpherson AJ, Massey RC, McHardy AC, Koren O, Lawley TD, Ley RE, O'Mahony L, O'Toole PW, Pamer EG, Parkhill J, Raes J, Rattei T, Salonen A, Segal E, Segata N, Shanahan F, Sloboda DM, Smith GCS, Sokol H, Spector TD, Surette MG, Tannock GW, Walker AW, Yassour M, Walter J. Questioning the fetal microbiome illustrates pitfalls of low-biomass microbial studies. Nature 2023; 613:639-649. [PMID: 36697862 PMCID: PMC11333990 DOI: 10.1038/s41586-022-05546-8] [Citation(s) in RCA: 162] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/09/2022] [Indexed: 01/26/2023]
Abstract
Whether the human fetus and the prenatal intrauterine environment (amniotic fluid and placenta) are stably colonized by microbial communities in a healthy pregnancy remains a subject of debate. Here we evaluate recent studies that characterized microbial populations in human fetuses from the perspectives of reproductive biology, microbial ecology, bioinformatics, immunology, clinical microbiology and gnotobiology, and assess possible mechanisms by which the fetus might interact with microorganisms. Our analysis indicates that the detected microbial signals are likely the result of contamination during the clinical procedures to obtain fetal samples or during DNA extraction and DNA sequencing. Furthermore, the existence of live and replicating microbial populations in healthy fetal tissues is not compatible with fundamental concepts of immunology, clinical microbiology and the derivation of germ-free mammals. These conclusions are important to our understanding of human immune development and illustrate common pitfalls in the microbial analyses of many other low-biomass environments. The pursuit of a fetal microbiome serves as a cautionary example of the challenges of sequence-based microbiome studies when biomass is low or absent, and emphasizes the need for a trans-disciplinary approach that goes beyond contamination controls by also incorporating biological, ecological and mechanistic concepts.
Collapse
Affiliation(s)
- Katherine M Kennedy
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Marcus C de Goffau
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Department of Vascular Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
- Wellcome Sanger Institute, Cambridge, UK
| | - Maria Elisa Perez-Muñoz
- Department of Agriculture, Food and Nutrition Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Marie-Claire Arrieta
- International Microbiome Center, University of Calgary, Calgary, Alberta, Canada
| | - Fredrik Bäckhed
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Physiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peer Bork
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Max Delbrück Centre for Molecular Medicine, Berlin, Germany
- Yonsei Frontier Lab (YFL), Yonsei University, Seoul, South Korea
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Thorsten Braun
- Department of Obstetrics and Experimental Obstetrics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Frederic D Bushman
- Department of Microbiology Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joel Dore
- Université Paris-Saclay, INRAE, MetaGenoPolis, AgroParisTech, MICALIS, Jouy-en-Josas, France
| | - Willem M de Vos
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Ashlee M Earl
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Boston, MA, USA
| | - Jonathan A Eisen
- Department of Evolution and Ecology, University of California, Davis, Davis, CA, USA
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, USA
- UC Davis Genome Center, University of California, Davis, Davis, CA, USA
| | - Michal A Elovitz
- Maternal and Child Health Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Stephanie C Ganal-Vonarburg
- Universitätsklinik für Viszerale Chirurgie und Medizin, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for Biomedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Michael G Gänzle
- Department of Agriculture, Food and Nutrition Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Wendy S Garrett
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Harvard T.H. Chan Microbiome in Public Health Center, Boston, MA, USA
- Department of Medicine and Division of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Lindsay J Hall
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
- Chair of Intestinal Microbiome, ZIEL-Institute for Food and Health, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Mathias W Hornef
- Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany
| | - Curtis Huttenhower
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Liza Konnikova
- Departments of Pediatrics and Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Sarah Lebeer
- Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Andrew J Macpherson
- Department for Biomedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Ruth C Massey
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Alice Carolyn McHardy
- Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Braunschweig, Germany
- German Center for Infection Research (DZIF), Hannover Braunschweig site, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Trevor D Lawley
- Department of Vascular Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Ruth E Ley
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Liam O'Mahony
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- Department of Medicine, University College Cork, Cork, Ireland
| | - Paul W O'Toole
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Eric G Pamer
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Jeroen Raes
- VIB Center for Microbiology, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Thomas Rattei
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Anne Salonen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Eran Segal
- Weizmann Institute of Science, Rehovot, Israel
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy
- European Institute of Oncology (IEO), IRCCS, Milan, Italy
| | - Fergus Shanahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Medicine, University College Cork, Cork, Ireland
| | - Deborah M Sloboda
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| | - Gordon C S Smith
- Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge, UK
- NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Harry Sokol
- Gastroenterology Department, AP-HP, Saint Antoine Hospital, Centre de Recherche Saint-Antoine, CRSA, INSERM and Sorbonne Université, Paris, France
- Paris Center for Microbiome Medicine (PaCeMM), Fédération Hospitalo-Universitaire, Paris, France
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy en Josas, France
| | - Tim D Spector
- Department of Twin Research, King's College London, London, UK
| | - Michael G Surette
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Gerald W Tannock
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Alan W Walker
- Gut Health Group, Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - Moran Yassour
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jens Walter
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- School of Microbiology, University College Cork, Cork, Ireland.
- Department of Medicine, University College Cork, Cork, Ireland.
| |
Collapse
|
12
|
Seiter DP, Nguyen SM, Morgan TK, Mao L, Dudley DM, O’connor DH, Murphy ME, Ludwig KD, Chen R, Dhyani A, Zhu A, Schotzko ML, Brunner KG, Shah DM, Johnson KM, Golos TG, Wieben O. Ferumoxytol dynamic contrast enhanced magnetic resonance imaging identifies altered placental cotyledon perfusion in rhesus macaques†. Biol Reprod 2022; 107:1517-1527. [PMID: 36018823 PMCID: PMC9752971 DOI: 10.1093/biolre/ioac168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/12/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Identification of placental dysfunction in early pregnancy with noninvasive imaging could be a valuable tool for assessing maternal and fetal risk. Dynamic contrast enhanced (DCE) magnetic resonance imaging (MRI) can be a powerful tool for interrogating placenta health. After inoculation with Zika virus or sham inoculation at gestation age (GA) 45 or 55 days, animals were imaged up to three times at GA65, GA100, and GA145. DCE MRI images were acquired at all imaging sessions using ferumoxytol, an iron nanoparticle-based contrast agent, and analyzed for placental intervillous blood flow, number of perfusion domains, and perfusion domain volume. Cesarean section was performed at GA155, and the placenta was photographed and dissected for histopathology. Photographs were used to align cotyledons with estimated perfusion domains from MRI, allowing comparison of estimated cotyledon volume to pathology. Monkeys were separated into high and low pathology groups based on the average number of pathologies present in the placenta. Perfusion domain flow, volume, and number increased through gestation, and total blood flow increased with gestation for both low pathology and high pathology groups. A statistically significant decrease in perfusion domain volume associated with pathology was detected at all gestational ages. Individual perfusion domain flow comparisons demonstrated a statistically significant decrease with pathology at GA100 and GA145, but not GA65. Since ferumoxytol is currently used to treat anemia during human pregnancy and as an off-label MRI contrast agent, future transition of this work to human pregnancy may be possible.
Collapse
Affiliation(s)
- Daniel P Seiter
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Sydney M Nguyen
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Obstetrics & Gynecology, University of Wisconsin-Madison, Madison, WI, USA
| | - Terry K Morgan
- Department of Pathology, Oregon Health & Science University, Portland, OR, USA
| | - Lu Mao
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Dawn M Dudley
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - David H O’connor
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Megan E Murphy
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Obstetrics & Gynecology, University of Wisconsin-Madison, Madison, WI, USA
| | - Kai D Ludwig
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Ruiming Chen
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Archana Dhyani
- Department of Computer Science, University of Wisconsin-Madison, Madison, WI, USA
| | - Ante Zhu
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Michele L Schotzko
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Kevin G Brunner
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Dinesh M Shah
- Department of Obstetrics & Gynecology, University of Wisconsin-Madison, Madison, WI, USA
| | - Kevin M Johnson
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Thaddeus G Golos
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Obstetrics & Gynecology, University of Wisconsin-Madison, Madison, WI, USA
| | - Oliver Wieben
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
13
|
Placental extracellular vesicles in maternal-fetal communication during pregnancy. Biochem Soc Trans 2022; 50:1785-1795. [DOI: 10.1042/bst20220734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022]
Abstract
For several years, a growing number of studies have highlighted the pivotal role of placental extracellular vesicles (EVs) throughout pregnancy. These membrane nanovesicles, heterogeneous in nature, composition and origin, are secreted by several trophoblastic cell types and are found in both the maternal and fetal compartments. They can be uptaken by recipient cells and drive a wide variety of physiological and pathological processes. In this review, we provide an overview of the different described roles of placental EVs in various aspects of normal pregnancy, from placenta establishment to maternal immune tolerance towards the fetus and protection against viral infections. In the second part, we present selected examples of pathological pregnancies in which placental EVs are involved, such as gestational diabetes mellitus, pre-eclampsia, and congenital infections. Since the abundance and/or composition of placental EVs is deregulated in maternal serum during pathological pregnancies, this makes them interesting candidates as non-invasive biomarkers for gestational diseases and opens a wide field of translational perspectives.
Collapse
|
14
|
Gao Y, Zhou M, Zhang W, Jiang J, Ouyang Z, Zhu Y, Li N. NLRP3 mediates trophoblastic inflammasome activation and protects against Listeria monocytogenes infection during pregnancy. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1202. [PMID: 36544643 PMCID: PMC9761141 DOI: 10.21037/atm-22-4120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/21/2022] [Indexed: 11/21/2022]
Abstract
Background Intrauterine Listeria monocytogenes (L. monocytogenes) infections pose a major threat during pregnancy via affecting placental immune responses. However, the underlying mechanisms of placental defense against this pathogen remain ill-defined. Therefore, this study aims to investigate the function and the mechanism of inflammasomes on against L. monocytogenes infection during pregnancy. Methods A listeriosis murine model and cell culture system was used to investigate the role of trophoblastic nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3 (NLRP3) in orchestrating innate immune responses to L. monocytogenes infection. Caspase-1 activity was determined using a caspase-1 activity colorimetric kit. NLRP3 and apoptosis-associated speck-like protein containing a CARD (ASC) in placental tissue was detected by immunohistochemistry. NLRP3 in HTR-8/SVneo cells was also detected by immunofluorescence. The expression of interleukin 1β (IL-1β), NLRP3, ASC, and caspase-1 was detected by Western blot. We characterized the NLRP3 inflammasome in trophoblast cells according to whether L. monocytogenes infection increased the activation of caspase-1 and the release of IL-1β. For human or mouse IL-1β in the culture supernatants and mouse tissue lysates were analyzed using ELISA Kits. Results Trophoblast cells constitutively expressed the components of the NLRP3 inflammasome. In vitro, L. monocytogenes triggers NLRP3 inflammasome activation in trophoblast cells by inducing caspase-1 activation, increasing the NLRP3 protein levels, IL-1β maturation and secretion in HTR-8/SVneo cells. In vivo, L. monocytogenes induces fetal resorption and IL-1β processing in pregnant mice. In addition, NLRP3-deficient mice were more prone to fetal loss than their wild-type counterparts following infection with L. monocytogenes at a lower infective dose. Conclusions We conclude that trophoblast cells respond to L. monocytogenes infection through the NLRP3 receptor, resulting in inflammasome activation and IL-1β production, which prevents listeriosis during pregnancy.
Collapse
Affiliation(s)
- Yu Gao
- Obstetrics and Gynecology, The Second Clinical Medical College (Shenzhen People’s Hospital), Jinan University, Shenzhen, China
| | - Min Zhou
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China;,School of Life Sciences, Tsinghua University, Beijing, China
| | - Wen Zhang
- Emergency Department, The Second Clinical Medical College (Shenzhen People’s Hospital), Jinan University, Shenzhen, China
| | - Jinxing Jiang
- Cytotherapy Laboratory, The Second Clinical Medical College (Shenzhen People’s Hospital), Jinan University, Shenzhen, China
| | - Zhibin Ouyang
- Cytotherapy Laboratory, The Second Clinical Medical College (Shenzhen People’s Hospital), Jinan University, Shenzhen, China
| | - Yuanfang Zhu
- Obstetrics and Gynecology, Shenzhen Bao’an Maternal and Child Health Hospital Affiliated to Jinan University, Jinan University, Shenzhen, China;,Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Ning Li
- Biotherapy Research Center, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China;,Biotherapy Research Center, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen, China
| |
Collapse
|
15
|
Listeria monocytogenes Infection Alters the Content and Function of Extracellular Vesicles Produced by Trophoblast Stem Cells. Infect Immun 2022; 90:e0034722. [PMID: 36154271 DOI: 10.1128/iai.00347-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Placental immunity is critical for fetal health during pregnancy, as invading pathogens spread from the parental blood to the fetus through this organ. However, inflammatory responses in the placenta can adversely affect both the fetus and the pregnant person, and the balance between protective placental immune response and detrimental inflammation is poorly understood. Extracellular vesicles (EVs) are membrane-enclosed vesicles that play a critical role in placental immunity. EVs produced by placental trophoblasts mediate immune tolerance to the fetus and to the placenta itself, but these EVs can also activate detrimental inflammatory responses. The regulation of these effects is not well characterized, and the role of trophoblast EVs (tEVs) in the response to infection has yet to be defined. The Gram-positive bacterial pathogen Listeria monocytogenes infects the placenta, serving as a model to study tEV function in this context. We investigated the effect of L. monocytogenes infection on the production and function of tEVs, using a trophoblast stem cell (TSC) model. We found that tEVs from infected TSCs can induce the production of the proinflammatory cytokine tumor necrosis factor alpha (TNF-α) in recipient cells. Surprisingly, this tEV treatment could confer increased susceptibility to subsequent L. monocytogenes infection, which has not been reported previously as an effect of EVs. Proteomic analysis and RNA sequencing revealed that tEVs from infected TSCs had altered cargo compared with those from uninfected TSCs. However, no L. monocytogenes proteins were detected in tEVs from infected TSCs. Together, these results suggest an immunomodulatory role for tEVs during prenatal infection.
Collapse
|
16
|
Bokhari SFH, Sattar H, Abid S, Jaffer SR, Sajid S. Listerial Meningitis and Brain Abscess With Coexisting COVID-19 Infection in a Young, Immunocompetent Male: A Case Report. Cureus 2022; 14:e29455. [PMID: 36299945 PMCID: PMC9587750 DOI: 10.7759/cureus.29455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2022] [Indexed: 11/20/2022] Open
Abstract
Listeria monocytogenes (LM) is a gram-positive intracellular pathogen that can cause central nervous system infections such as meningitis, meningoencephalitis, rhombencephalitis, or cerebritis. It rarely causes a brain abscess. Listerial meningitis and brain abscess most commonly occur in immunocompromised individuals, neonates, pregnant females, alcoholics, and the elderly. We present a unique case of a young immunocompetent male who presented with listerial meningitis and brain abscess. Coexisting coronavirus disease 2019 (COVID-19) infection was also present. Since LM was not included in the differentials, the standard antibiotic regimen started for the meningitis therapy was ineffective. Remdesivir was administered to treat the coexisting COVID-19 infection. When the lumbar tap polymerase chain reaction pointed out that the causative agent was Listeria, we shifted to ampicillin and gentamicin therapy, to which the patient responded very effectively.LM is an atypical cause of meningitis and brain abscesses. A high index of suspicion is therefore required for early detection and effective treatment of listerial meningitis and brain abscess.
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Climate change is the biggest public health threat of the twenty-first century but its impact on the perinatal period has only recently received attention. This review summarizes recent literature regarding the impacts of climate change and related environmental disasters on pregnancy health and provides recommendations to inform future adaptation and mitigation efforts. RECENT FINDINGS Accumulating evidence suggests that the changing climate affects pregnancy health directly via discrete environmental disasters (i.e., wildfire, extreme heat, hurricane, flood, and drought), and indirectly through changes in the natural and social environment. Although studies vary greatly in design, analytic methods, and assessment strategies, they generally converge to suggest that climate-related disasters are associated with increased risk of gestational complication, pregnancy loss, restricted fetal growth, low birthweight, preterm birth, and selected delivery/newborn complications. Window(s) of exposure with the highest sensitivity are not clear, but both acute and chronic exposures appear important. Furthermore, socioeconomically disadvantaged populations may be more vulnerable. Policy, clinical, and research strategies for adaptation and mitigation should be continued, strengthened, and expanded with cross-disciplinary efforts. Top priorities should include (a) reinforcing and expanding policies to further reduce emission, (b) increasing awareness and education resources for healthcare providers and the public, (c) facilitating access to quality population-based data in low-resource areas, and (d) research efforts to better understand mechanisms of effects, identify susceptible populations and windows of exposure, explore interactive impacts of multiple exposures, and develop novel methods to better quantify pregnancy health impacts.
Collapse
Affiliation(s)
- Sandie Ha
- Department of Public Health, School of Social Sciences, Humanities and Arts, Health Science Research Institute, University of California, Merced, 5200 N Lake Rd, Merced, CA, 95343, USA.
| |
Collapse
|
18
|
True H, Blanton M, Sureshchandra S, Messaoudi I. Monocytes and macrophages in pregnancy: The good, the bad, and the ugly. Immunol Rev 2022; 308:77-92. [PMID: 35451089 DOI: 10.1111/imr.13080] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/08/2022] [Indexed: 12/12/2022]
Abstract
A successful human pregnancy requires precisely timed adaptations by the maternal immune system to support fetal growth while simultaneously protecting mother and fetus against microbial challenges. The first trimester of pregnancy is characterized by a robust increase in innate immune activity that promotes successful implantation of the blastocyst and placental development. Moreover, early pregnancy is also a state of increased vulnerability to vertically transmitted pathogens notably, human immunodeficiency virus (HIV), Zika virus (ZIKV), SARS-CoV-2, and Listeria monocytogenes. As gestation progresses, the second trimester is marked by the establishment of an immunosuppressive environment that promotes fetal tolerance and growth while preventing preterm birth, spontaneous abortion, and other gestational complications. Finally, the period leading up to labor and parturition is characterized by the reinstatement of an inflammatory milieu triggering childbirth. These dynamic waves of carefully orchestrated changes have been dubbed the "immune clock of pregnancy." Monocytes in maternal circulation and tissue-resident macrophages at the maternal-fetal interface play a critical role in this delicate balance. This review will summarize the current data describing the longitudinal changes in the phenotype and function of monocyte and macrophage populations in healthy and complicated pregnancies.
Collapse
Affiliation(s)
- Heather True
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA.,Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky, USA
| | - Madison Blanton
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA.,Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky, USA
| | | | - Ilhem Messaoudi
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
19
|
Dong Q, Lu X, Gao B, Liu Y, Aslam MZ, Wang X, Li Z. Lactiplantibacillus plantarum subsp. plantarum and Fructooligosaccharides Combination Inhibits the Growth, Adhesion, Invasion, and Virulence of Listeria monocytogenes. Foods 2022; 11:170. [PMID: 35053902 PMCID: PMC8775058 DOI: 10.3390/foods11020170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/27/2021] [Accepted: 01/07/2022] [Indexed: 02/07/2023] Open
Abstract
Listeria monocytogenes is a foodborne pathogen responsible for many food outbreaks worldwide. This study aimed to investigate the single and combined effect of fructooligosaccharides (FOS) and Lactiplantibacillus plantarum subsp. plantarum CICC 6257 (L. plantarum) on the growth, adhesion, invasion, and virulence of gene expressions of Listeria monocytogenes 19112 serotype 4b (L. monocytogenes). Results showed that L. plantarum combined with 2% and 4% (w/v) FOS significantly (p < 0.05) inhibited the growth of L. monocytogenes (3-3.5 log10 CFU/mL reduction) at the incubation temperature of 10 °C and 25 °C. Under the same combination condition, the invasion rates of L. monocytogenes to Caco-2 and BeWo cells were reduced more than 90% compared to the result of the untreated group. After L. plantarum was combined with the 2% and 4% (w/v) FOS treatment, the gene expression of actin-based motility, sigma factor, internalin A, internalin B, positive regulatory factor A, and listeriolysin O significantly (p < 0.05) were reduced over 91%, 77%, 92%, 89%, 79%, and 79% compared to the result of the untreated group, respectively. The inhibition level of the L. plantarum and FOS combination against L. monocytogenes was higher than that of FOS or L. plantarum alone. Overall, these results indicated that the L. plantarum and FOS combination might be an effective formula against L. monocytogenes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhuosi Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Q.D.); (X.L.); (B.G.); (Y.L.); (M.Z.A.); (X.W.)
| |
Collapse
|
20
|
Bagatella S, Tavares-Gomes L, Oevermann A. Listeria monocytogenes at the interface between ruminants and humans: A comparative pathology and pathogenesis review. Vet Pathol 2021; 59:186-210. [PMID: 34856818 DOI: 10.1177/03009858211052659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The bacterium Listeria monocytogenes (Lm) is widely distributed in the environment as a saprophyte, but may turn into a lethal intracellular pathogen upon ingestion. Invasive infections occur in numerous species worldwide, but most commonly in humans and farmed ruminants, and manifest as distinct forms. Of those, neuroinfection is remarkably threatening due to its high mortality. Lm is widely studied not only as a pathogen but also as an essential model for intracellular infections and host-pathogen interactions. Many aspects of its ecology and pathogenesis, however, remain unclear and are rarely addressed in its natural hosts. This review highlights the heterogeneity and adaptability of Lm by summarizing its association with the environment, farm animals, and disease. It also provides current knowledge on key features of the pathology and (molecular) pathogenesis of various listeriosis forms in naturally susceptible species with a special focus on ruminants and on the neuroinvasive form of the disease. Moreover, knowledge gaps on pathomechanisms of listerial infections and relevant unexplored topics in Lm pathogenesis research are highlighted.
Collapse
Affiliation(s)
- Stefano Bagatella
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Leticia Tavares-Gomes
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Anna Oevermann
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
21
|
Quereda JJ, Morón-García A, Palacios-Gorba C, Dessaux C, García-del Portillo F, Pucciarelli MG, Ortega AD. Pathogenicity and virulence of Listeria monocytogenes: A trip from environmental to medical microbiology. Virulence 2021; 12:2509-2545. [PMID: 34612177 PMCID: PMC8496543 DOI: 10.1080/21505594.2021.1975526] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 01/02/2023] Open
Abstract
Listeria monocytogenes is a saprophytic gram-positive bacterium, and an opportunistic foodborne pathogen that can produce listeriosis in humans and animals. It has evolved an exceptional ability to adapt to stress conditions encountered in different environments, resulting in a ubiquitous distribution. Because some food preservation methods and disinfection protocols in food-processing environments cannot efficiently prevent contaminations, L. monocytogenes constitutes a threat to human health and a challenge to food safety. In the host, Listeria colonizes the gastrointestinal tract, crosses the intestinal barrier, and disseminates through the blood to target organs. In immunocompromised individuals, the elderly, and pregnant women, the pathogen can cross the blood-brain and placental barriers, leading to neurolisteriosis and materno-fetal listeriosis. Molecular and cell biology studies of infection have proven L. monocytogenes to be a versatile pathogen that deploys unique strategies to invade different cell types, survive and move inside the eukaryotic host cell, and spread from cell to cell. Here, we present the multifaceted Listeria life cycle from a comprehensive perspective. We discuss genetic features of pathogenic Listeria species, analyze factors involved in food contamination, and review bacterial strategies to tolerate stresses encountered both during food processing and along the host's gastrointestinal tract. Then we dissect host-pathogen interactions underlying listerial pathogenesis in mammals from a cell biology and systemic point of view. Finally, we summarize the epidemiology, pathophysiology, and clinical features of listeriosis in humans and animals. This work aims to gather information from different fields crucial for a comprehensive understanding of the pathogenesis of L. monocytogenes.
Collapse
Affiliation(s)
- Juan J. Quereda
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities. Valencia, Spain
| | - Alvaro Morón-García
- Departamento de Biología Celular. Facultad de Ciencias Biológicas, Universidad Complutense de Madrid. Madrid, Spain
| | - Carla Palacios-Gorba
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities. Valencia, Spain
| | - Charlotte Dessaux
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB)- Consejo Superior De Investigaciones Científicas (CSIC), Madrid, Spain
| | - Francisco García-del Portillo
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB)- Consejo Superior De Investigaciones Científicas (CSIC), Madrid, Spain
| | - M. Graciela Pucciarelli
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB)- Consejo Superior De Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Biología Molecular ‘Severo Ochoa’. Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid. Madrid, Spain
| | - Alvaro D. Ortega
- Departamento de Biología Celular. Facultad de Ciencias Biológicas, Universidad Complutense de Madrid. Madrid, Spain
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB)- Consejo Superior De Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
22
|
mDia1 Assembles a Linear F-Actin Coat at Membrane Invaginations To Drive Listeria monocytogenes Cell-to-Cell Spreading. mBio 2021; 12:e0293921. [PMID: 34781738 PMCID: PMC8593688 DOI: 10.1128/mbio.02939-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Direct cell-to-cell spreading of Listeria monocytogenes requires the bacteria to induce actin-based finger-like membrane protrusions in donor host cells that are endocytosed through caveolin-rich membrane invaginations by adjacent receiving cells. An actin shell surrounds these endocytic sites; however, its structure, composition, and functional significance remain elusive. Here, we show that the formin mDia1, but surprisingly not the Arp2/3 complex, is enriched at the membrane invaginations generated by L. monocytogenes during HeLa and Jeg-3 cell infections. Electron microscopy reveals a band of linear actin filaments that run along the longitudinal axis of the invagination membrane. Mechanistically, mDia1 expression is vital for the assembly of this F-actin shell. mDia1 is also required for the recruitment of Filamin A, a caveola-associated F-actin cross-linking protein, and caveolin-1 to the invaginations. Importantly, mixed-cell infection assays show that optimal caveolin-based L. monocytogenes cell-to-cell spreading correlates with the formation of the linear actin filament-containing shell by mDia1. IMPORTANCE Listeria monocytogenes spreads from one cell to another to colonize tissues. This cell-to-cell movement requires the propulsive force of an actin-rich comet tail behind the advancing bacterium, which ultimately distends the host plasma membrane into a slender bacterium-containing membrane protrusion. These membrane protrusions induce a corresponding invagination in the membrane of the adjacent host cell. The host cell that receives the protrusion utilizes caveolin-based endocytosis to internalize the structures, and filamentous actin lines these membrane invaginations. Here, we set out to determine the structure and function of this filamentous actin "shell." We demonstrate that the formin mDia1, but not the Arp2/3 complex, localizes to the invaginations. Morphologically, we show that this actin is organized into linear arrays and not branched dendritic networks. Mechanistically, we show that the actin shell is assembled by mDia1 and that mDia1 is required for efficient cell-to-cell transfer of L. monocytogenes.
Collapse
|
23
|
Kuang L, Lai Y, Gong Y. Analysis of listeriosis infection cases during pregnancy among 70 131 deliveries. J Obstet Gynaecol Res 2021; 48:66-72. [PMID: 34657360 DOI: 10.1111/jog.15063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 07/31/2021] [Accepted: 10/03/2021] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To provide evidence for the diagnosis of listeriosis through a retrospective study of clinical features and results of pregnant women infected with listeriosis. METHODS Twenty-nine pregnant women infected with listeriosis visiting West China Second University Hospital affiliated to Sichuan University from July 2010 to February 2019 were included in the retrospective analysis. Data like general information, clinical symptoms, laboratory results, and pathogen detection were analyzed to conclude clinical characteristics. RESULTS The median age of 29 patients was 28 (18.0-42.0). Nine individuals visited in the second trimester, while 20 in the last trimester. The median course before visiting was 3.4 (0.1-19) days. The main symptoms of the first attendance were fever (21/29), increased white blood cells (26/29), abdominal pain (16/29), and decreased or vanished fetal movements (7/29). Samples where listeria were identified were maternal blood (14 cases), excreta from birth canal (24 cases), placenta (one case), newborn blood (seven cases), newborn sputum (eight cases), newborn excreta from auditory meatus (three cases), cerebrospinal fluid (two cases) and ocular discharge (one case). Inflammation was detected in pathological examination of placenta in all subjects. Among them, three were diagnosed with mild chorioamnionitis; five with moderate chorioamnionitis; nine with moderate-to-severe chorioamnionitis and 12 with severe chorioamnionitis. Among 33 fetuses carried by 29 subjects, fetal outcomes include six miscarriages, nine stillbirths, four newborn deaths immediately after birth and four after treatment discontinuation, nine discharges after successful treatment in hospital, and one death after treatment. As for maternal outcomes, 29 pregnant women all recovered after delivery. CONCLUSION With the acute onset, high incidence of adverse pregnancy outcomes and low coverage of initial treatment, clinical physicians need to raise the awareness of listeriosis during pregnancy.
Collapse
Affiliation(s)
- Linghan Kuang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Yuyang Lai
- Department of Laboratory, Panzhihua City Maternal and Child Care Hospital, Panzhihua, China
| | - Yunhui Gong
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.,Department of Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
24
|
Hofbauer Cells Spread Listeria monocytogenes among Placental Cells and Undergo Pro-Inflammatory Reprogramming while Retaining Production of Tolerogenic Factors. mBio 2021; 12:e0184921. [PMID: 34399615 PMCID: PMC8406333 DOI: 10.1128/mbio.01849-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pregnant women are highly susceptible to infection by the bacterial pathogen Listeria monocytogenes, leading to miscarriage, premature birth, and neonatal infection. L. monocytogenes is thought to breach the placental barrier by infecting trophoblasts at the maternal/fetal interface. However, the fate of L. monocytogenes within chorionic villi and how infection reaches the fetus are unsettled. Hofbauer cells (HBCs) are fetal placental macrophages and the only leukocytes residing in healthy chorionic villi, forming a last immune barrier protecting fetal blood from infection. Little is known about the HBCs’ antimicrobial responses to pathogens. Here, we studied L. monocytogenes interaction with human primary HBCs. Remarkably, despite their M2 anti-inflammatory phenotype at basal state, HBCs phagocytose and kill non-pathogenic bacteria like Listeria innocua and display low susceptibility to infection by L. monocytogenes. However, L. monocytogenes can exploit HBCs to spread to surrounding placental cells. Transcriptomic analyses by RNA sequencing revealed that HBCs undergo pro-inflammatory reprogramming upon L. monocytogenes infection, similarly to macrophages stimulated by the potent M1-polarizing agents lipopolysaccharide (LPS)/interferon gamma (IFN-γ). Infected HBCs also express pro-inflammatory chemokines known to promote placental infiltration by maternal leukocytes. However, HBCs maintain the expression of a collection of tolerogenic genes and secretion of tolerogenic cytokines, consistent with their tissue homeostatic role in prevention of fetal rejection. In conclusion, we propose a previously unrecognized model in which HBCs promote the spreading of L. monocytogenes among placental cells and transition to a pro-inflammatory state likely to favor innate immune responses, while maintaining the expression of tolerogenic factors known to prevent maternal anti-fetal adaptive immunity.
Collapse
|
25
|
Johnson LJ, Azari S, Webb A, Zhang X, Gavrilin MA, Marshall JM, Rood K, Seveau S. Human Placental Trophoblasts Infected by Listeria monocytogenes Undergo a Pro-Inflammatory Switch Associated With Poor Pregnancy Outcomes. Front Immunol 2021; 12:709466. [PMID: 34367171 PMCID: PMC8346206 DOI: 10.3389/fimmu.2021.709466] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/05/2021] [Indexed: 12/21/2022] Open
Abstract
The placenta controls the growth of the fetus and ensures its immune protection. Key to these functions, the syncytiotrophoblast (SYN) is a syncytium formed by fusion of underlying mononuclear trophoblasts. The SYN covers the placental surface and is bathed in maternal blood to mediate nutritional and waste exchanges between the mother and fetus. The bacterial pathogen Listeria monocytogenes breaches the trophoblast barrier and infects the placental/fetal unit resulting in poor pregnancy outcomes. In this work, we analyzed the L. monocytogenes intracellular lifecycle in primary human trophoblasts. In accordance with previous studies, we found that the SYN is 20-fold more resistant to infection compared to mononuclear trophoblasts, forming a protective barrier to infection at the maternal interface. We show for the first time that this is due to a significant reduction in L. monocytogenes uptake by the SYN rather than inhibition of the bacterial intracellular division or motility. We here report the first transcriptomic analysis of L. monocytogenes-infected trophoblasts (RNA sequencing). Pathway analysis showed that infection upregulated TLR2, NOD-like, and cytosolic DNA sensing pathways, as well as downstream pro-inflammatory circuitry (NF-κB, AP-1, IRF4, IRF7) leading to the production of mediators known to elicit the recruitment and activation of maternal leukocytes (IL8, IL6, TNFα, MIP-1). Signature genes associated with poor pregnancy outcomes were also upregulated upon infection. Measuring the release of 54 inflammatory mediators confirmed the transcriptomic data and revealed sustained production of tolerogenic factors (IL-27, IL-10, IL-1RA, TSLP) despite infection. Both the SYN and mononuclear trophoblasts produced cytokines, but surprisingly, some cytokines were predominantly produced by the SYN (IL-8, IL-6) or by non-fused trophoblasts (TNFα). Collectively, our data support that trophoblasts act as placental gatekeepers that limit and detect L. monocytogenes infection resulting in a pro-inflammatory response, which may contribute to the poor pregnancy outcomes if the pathogen persists.
Collapse
Affiliation(s)
- Lauren J Johnson
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States.,Department of Microbiology, The Ohio State University, Columbus, OH, United States
| | - Siavash Azari
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States.,Department of Microbiology, The Ohio State University, Columbus, OH, United States
| | - Amy Webb
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, United States
| | - Xiaoli Zhang
- Department of Biomedical Informatics, Center for Biostatistics, The Ohio State University, Columbus, OH, United States
| | - Mikhail A Gavrilin
- Pulmonary, Critical Care and Sleep Medicine Division, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Joanna M Marshall
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Kara Rood
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, The Ohio State University, Columbus, OH, United States
| | - Stephanie Seveau
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States.,Department of Microbiology, The Ohio State University, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
26
|
Kitada T, Kadoba K, Watanabe R, Koyama T, Nakayama Y, Taki M, Yukawa S, Odani K, Morinobu A. Listeriosis presenting with fever, arthralgia, elevated liver enzymes, and hyperferritinaemia in pregnancy: a critical mimicker of adult-onset Still's disease. Scand J Rheumatol 2021; 51:78-80. [PMID: 34152237 DOI: 10.1080/03009742.2021.1923149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- T Kitada
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,These authors contributed equally to this work
| | - K Kadoba
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,These authors contributed equally to this work
| | - R Watanabe
- Department of Advanced Medicine for Rheumatic Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - T Koyama
- Department of Rheumatology and Clinical Immunology, Kyoto University Hospital, Kyoto, Japan.,Department of Infectious Diseases, Hyogo Prefectural Amagasaki General Medical Center, Hyogo, Japan
| | - Y Nakayama
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - M Taki
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - S Yukawa
- Department of Infection Control and Prevention, Kyoto University Hospital, Kyoto, Japan
| | - K Odani
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - A Morinobu
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
27
|
Ryan VE, Bailey TW, Liu D, Vemulapalli T, Cooper B, Cox AD, Bhunia AK. Listeria adhesion protein-expressing bioengineered probiotics prevent fetoplacental transmission of Listeria monocytogenes in a pregnant Guinea pig model. Microb Pathog 2021; 151:104752. [PMID: 33484805 DOI: 10.1016/j.micpath.2021.104752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/07/2021] [Accepted: 01/15/2021] [Indexed: 12/11/2022]
Abstract
Pregnancy is a high-risk factor for foodborne pathogen Listeria monocytogenes (Lm), which causes abortion, premature birth, or stillbirth. The primary route of Lm transmission is oral hence intestinal epithelial barrier crossing is a prerequisite for systemic spread. Intestinal barrier crossing, in part, is attributed to the interaction of Listeria adhesion protein (LAP) with its cognate receptor, Hsp60. In a recent study, we showed that oral-dosing of bioengineered Lactobacillus caseiprobiotic (BLP) expressing the LAP protected nonpregnant mice from lethal infection; however, its ability to prevent listeriosis during pregnancy is not known. Therefore, we investigated whether BLP could prevent fetoplacental transmission of Lm in a pregnant guinea pig model. After 14 consecutive days on probiotic (~109 CFU/ml in drinking water), pregnant guinea pigs (gestational days 24-28) were orally challenged with Lm (9 × 108-2.5 × 109 CFU/animal) and were euthanized 72 h post-infection. Maternal mesenteric lymph node (MLN), liver, spleen, lungs, blood, and placenta, and fetal liver were analyzed for the presence/absence of Lm. All tissues/organs from Lm-challenged naïve dams and fetuses were Lm positive. Similar tissue distribution was also seen in guinea pigs that received wild-type Lactobacillus casei (LbcWT). Remarkably, Lm was absent in the maternal blood, kidney, lungs, and placenta, and fetal liver from the BLP-fed group even though the Lm was present in the maternal liver, spleen, and MLN. BLP feeding also suppressed Lm-induced inflammatory response in mothers. These data highlight the potential for the prevention of fetoplacental transmission of Lm by LAP-expressing BLP during pregnancy.
Collapse
Affiliation(s)
- Valerie E Ryan
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, 47907, USA
| | - Taylor W Bailey
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, 47907, USA
| | - Dongqi Liu
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute of Inflammation, Immunology and Infectious Diseases (PI4D), Purdue University, West Lafayette, IN, 47907, USA
| | - Tracy Vemulapalli
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, 77843, USA
| | - Bruce Cooper
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Abigail D Cox
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, 47907, USA
| | - Arun K Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, 47907, USA; Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, 47907, USA; Purdue University Interdisciplinary Life Science Program (PULSe), Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute of Inflammation, Immunology and Infectious Diseases (PI4D), Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
28
|
Heidarzadeh S, Pourmand MR, Hasanvand S, Pirjani R, Afshar D, Noori M, Soltan Dallal MM. Antimicrobial Susceptibility, Serotyping, and Molecular Characterization of Antibiotic Resistance Genes in Listeria monocytogenes Isolated from Pregnant Women with a History of Abortion. IRANIAN JOURNAL OF PUBLIC HEALTH 2021; 50:170-179. [PMID: 34178776 PMCID: PMC8213617 DOI: 10.18502/ijph.v50i1.5084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background: Listeria monocytogenes show high mortality among pregnant women and newborns. This study aimed to detect L. monocytogenes in pregnant women with a history of abortion and assess the serotypes, antibiotic susceptibility patterns, and its resistance genes. Methods: Overall, 400 vaginal swabs were taken from pregnant women with a history of abortion in the past few years in a tertiary care hospital in Tehran, Iran, during 2015–2018. Antibiotics susceptibility to a panel of 10 antibiotics was determined using the standard disk diffusion method and the isolates serotyped by the agglutination method. The antimicrobial-resistant isolates were also screened for the presence of tetM, ermB and dfrD genes by PCR. Results: Overall, 22 L. monocytogenes isolates were identified. High rates of resistance were observed for trimethoprim (50%; n=11), sulphamethoxazole (50%; n=11), tetracycline (45.45%; n=10) and gentamicin (36.36%; n=8). From 22 L. monocytogenes isolates, 13 (59.10 %), 5 (22.73%), 3 (13.63%) and 1 (4.54%) belonged to serotypes 4b, 1/2a, 1/2b, and 3c, respectively. The genetic determinant tetM was detected in 70% of the tetracycline-resistant isolates. Out of 11 trimethoprim-resistant isolates, 27.27% isolates contained dfrD. Moreover, the ermB gene was found in 83.33% of the erythromycin-resistant isolates. Conclusion: Ampicillin and partly penicillin consider to be suitable antimicrobial agents to treat human listeriosis. Moreover, due to resistance against many antibiotics, it is necessary to continue monitoring and managing antimicrobial resistance.
Collapse
Affiliation(s)
- Siamak Heidarzadeh
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Department of Microbiology and Virology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohammad Reza Pourmand
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeedeh Hasanvand
- Department of Microbiology, Damghan Branch, Science and Research Islamic Azad University, Damghan, Iran
| | - Reyhaneh Pirjani
- Department of Obstetrics & Gynecology, Arash Women's Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Davoud Afshar
- Department of Microbiology and Virology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Matina Noori
- Department of Obstetrics & Gynecology, Arash Women's Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Soltan Dallal
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Why Are Some Listeria monocytogenes Genotypes More Likely To Cause Invasive (Brain, Placental) Infection? mBio 2020; 11:mBio.03126-20. [PMID: 33323519 PMCID: PMC7774001 DOI: 10.1128/mbio.03126-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Although all isolates of the foodborne pathogen Listeria monocytogenes are considered to be pathogenic, epidemiological evidence indicates that certain serovar 4b lineages are more likely to cause severe invasive (neuromeningeal, maternal-fetal) listeriosis. Recently described as L. monocytogenes “hypervirulent” clones, no distinctive bacterial trait has been identified so far that could account for the differential pathogenicity of these strains. Although all isolates of the foodborne pathogen Listeria monocytogenes are considered to be pathogenic, epidemiological evidence indicates that certain serovar 4b lineages are more likely to cause severe invasive (neuromeningeal, maternal-fetal) listeriosis. Recently described as L. monocytogenes “hypervirulent” clones, no distinctive bacterial trait has been identified so far that could account for the differential pathogenicity of these strains. Here, we discuss some preliminary observations in experimentally infected mice suggesting that serovar 4b hypervirulent strains may have a hitherto unrecognized capacity for prolonged in vivo survival. We propose the hypothesis that protracted survivability in primary infection foci in liver and spleen—the first target organs after intestinal translocation—may cause L. monocytogenes serovar 4b hypervirulent clones to have a higher probability of secondary dissemination to brain and placenta.
Collapse
|
30
|
Bouaziz MA, Bchir B, Chalbi H, Sebii H, Karra S, Smaoui S, Attia H, Besbes S. Techno-functional characterization and biological potential of Agave americana leaves: Impact on yoghurt qualities. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00632-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
Patas K, Mavridis T, Psarra K, Papadopoulos VE, Mandilara G, Tsirogianni A, Vassilopoulou S, Chatzipanagiotou S. Neurolisteriosis in a previously asymptomatic patient with serum IgM deficiency: a case report. BMC Neurol 2020; 20:323. [PMID: 32867717 PMCID: PMC7457472 DOI: 10.1186/s12883-020-01900-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/23/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Listeria monocytogenes is an opportunistic pathogen of the central nervous system commonly associated with impaired cell-mediated immunity. We hereby present a case of adult neurolisteriosis where the only immunological feature persistently present was serum IgM deficiency, suggesting that non-specific humoral immunity may also play a central role in the control of neuroinvasion by Listeria monocytogenes. CASE PRESENTATION A 62-year-old male who had never experienced severe infections presented with headache, nuchal rigidity and confusion. Neuroimaging was normal and lumbar puncture revealed pleiocytosis (760 leukocytes/mm3) and hypoglycorrhachia (34 mg/dL). The patient was treated empirically for bacterial meningitis. Indeed, further analysis of the CSF showed infection by Listeria monocytogenes, which was accompanied by reduced serum IgM levels that persisted well beyond the period of acute bacterial infection. Levels of IgG and IgA isotypes, along with peripheral blood counts of major leukocyte subsets, were at the same time largely preserved. Intriguingly, the absence of membrane-bound IgM on B cells was essentially complete in the acute post-infection period leading to a remarkable recovery after 12 months, suggesting that mechanisms other than defective membrane expression are underlying serum deficiency. CONCLUSIONS As far as we know, this is the first reported case of neurolisteriosis associated with IgM deficiency in an adult individual without a history of severe infections or other underlying conditions. A possible role of circulating IgM against invasive disease caused by Listeria monocytogenes, particularly in the early course of host-pathogen interaction, is discussed.
Collapse
Affiliation(s)
- Kostas Patas
- Department of Medical Biopathology, Eginition Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Theodoros Mavridis
- Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Katerina Psarra
- Department of Immunology and Histocompatibility, Evangelismos General Hospital, Athens, Greece
| | - Vassilis E Papadopoulos
- Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Georgia Mandilara
- National School of Public Health & Central Public Health Laboratory, Hellenic Centre of Disease Control and Prevention, Vari, Greece
| | - Alexandra Tsirogianni
- Department of Immunology and Histocompatibility, Evangelismos General Hospital, Athens, Greece
| | - Sophia Vassilopoulou
- Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Stylianos Chatzipanagiotou
- Department of Medical Biopathology, Eginition Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece.
- Department of Clinical Microbiology and Medical Biopathology, National and Kapodistrian University of Athens, Aeginition Hospital, Ave. Vassilissis Sophias 72-74, 115 28, Athens, Greece.
| |
Collapse
|
32
|
Worm-like appearance of Listeria monocytogenes brain abscess: presentation of three cases. Neuroradiology 2020; 62:1189-1193. [DOI: 10.1007/s00234-020-02441-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/16/2020] [Indexed: 10/24/2022]
|
33
|
Qian H, Li W, Guo L, Tan L, Liu H, Wang J, Pan Y, Zhao Y. Stress Response of Vibrio parahaemolyticus and Listeria monocytogenes Biofilms to Different Modified Atmospheres. Front Microbiol 2020; 11:23. [PMID: 32153513 PMCID: PMC7044124 DOI: 10.3389/fmicb.2020.00023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 01/07/2020] [Indexed: 12/11/2022] Open
Abstract
The sessile biofilms of Vibrio parahaemolyticus and Listeria monocytogenes have increasingly become a critical threat in seafood safety. This study aimed to evaluate the effects of modified atmospheres on the formation ability of V. parahaemolyticus and L. monocytogenes biofilms. The stress responses of bacterial biofilm formation to modified atmospheres including anaerobiosis (20% carbon dioxide, 80% nitrogen), micro-aerobiosis (20% oxygen, 80% nitrogen), and aerobiosis (60% oxygen, 40% nitrogen) were illuminated by determining the live cells, chemical composition analysis, textural parameter changes, expression of regulatory genes, etc. Results showed that the biofilm formation ability of V. parahaemolyticus was efficiently decreased, supported by the fact that the modified atmospheres significantly reduced the key chemical composition [extracellular DNA (eDNA) and extracellular proteins] of the extracellular polymeric substance (EPS) and negatively altered the textural parameters (biovolume, thickness, and bio-roughness) of biofilms during the physiological conversion from anaerobiosis to aerobiosis, while the modified atmosphere treatment increased the key chemical composition of EPS and the textural parameters of L. monocytogenes biofilms from anaerobiosis to aerobiosis. Meanwhile, the expression of biofilm formation genes (luxS, aphA, mshA, oxyR, and opaR), EPS production genes (cpsA, cpsC, and cpsR), and virulence genes (vopS, vopD1, vcrD1, vopP2β, and vcrD2β) of V. parahaemolyticus was downregulated. For the L. monocytogenes cells, the expression of biofilm formation genes (flgA, flgU, and degU), EPS production genes (Imo2554, Imo2504, inlA, rmlB), and virulence genes (vopS, vopD1, vcrD1, vopP2β, and vcrD2β) was upregulated during the physiological conversion. All these results indicated that the modified atmospheres possessed significantly different regulation on the biofilm formation of Gram-negative V. parahaemolyticus and Gram-positive L. monocytogenes, which will provide a novel insight to unlock the efficient control of Gram-negative and Gram-positive bacteria in modified-atmosphere packaged food.
Collapse
Affiliation(s)
- Hui Qian
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Wei Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Linxia Guo
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Ling Tan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Haiquan Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China.,Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai, China
| | - Jingjing Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China
| | - Yingjie Pan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China
| |
Collapse
|
34
|
Kaptchouang Tchatchouang CD, Fri J, De Santi M, Brandi G, Schiavano GF, Amagliani G, Ateba CN. Listeriosis Outbreak in South Africa: A Comparative Analysis with Previously Reported Cases Worldwide. Microorganisms 2020; 8:E135. [PMID: 31963542 PMCID: PMC7023107 DOI: 10.3390/microorganisms8010135] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/26/2019] [Accepted: 12/27/2019] [Indexed: 01/01/2023] Open
Abstract
Listeria species are Gram-positive, rod-shaped, facultative anaerobic bacteria, which do not produce endospores. The genus, Listeria, currently comprises 17 characterised species of which only two (L. monocytogenes and L. ivanovii) are known to be pathogenic to humans. Food products and related processing environments are commonly contaminated with pathogenic species. Outbreaks and sporadic cases of human infections resulted in considerable economic loss. South Africa witnessed the world's largest listeriosis outbreak, characterised by a progressive increase in cases of the disease from January 2017 to July 2018. Of the 1060 laboratory-confirmed cases of listeriosis reported by the National Institute of Communicable Diseases (NICD), 216 deaths were recorded. Epidemiological investigations indicated that ready-to-eat processed meat products from a food production facility contaminated with L. monocytogenes was responsible for the outbreak. Multilocus sequence typing (MLST) revealed that a large proportion (91%) of the isolates from patients were sequence type 6 (ST6). Recent studies revealed a recurrent occurrence of small outbreaks of listeriosis with more severe side-effects in humans. This review provides a comparative analysis of a recently reported and most severe outbreak of listeriosis in South Africa, with those previously encountered in other countries worldwide. The review focuses on the transmission of the pathogen, clinical symptoms of the disease and its pathogenicity. The review also focuses on the major outbreaks of listeriosis reported in different parts of the world, sources of contamination, morbidity, and mortality rates as well as cost implications. Based on data generated during the outbreak of the disease in South Africa, listeriosis was added to the South African list of mandatory notifiable medical conditions. Surveillance systems were strengthened in the South African food chain in order to assist in preventing and facilitating early detection of both sporadic cases and outbreaks of infections caused by these pathogens in humans.
Collapse
Affiliation(s)
| | - Justine Fri
- Department of Microbiology, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho 2735, South Africa; (C.-D.K.T.); (J.F.)
| | - Mauro De Santi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, via S. Chiara 27, 61029 Urbino (PU), Italy; (M.D.S.); (G.B.); (G.A.)
- Department of Humanities, University of Urbino Carlo Bo, via Bramante 17, 61029 Urbino (PU), Italy;
| | - Giorgio Brandi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, via S. Chiara 27, 61029 Urbino (PU), Italy; (M.D.S.); (G.B.); (G.A.)
- Department of Humanities, University of Urbino Carlo Bo, via Bramante 17, 61029 Urbino (PU), Italy;
| | | | - Giulia Amagliani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, via S. Chiara 27, 61029 Urbino (PU), Italy; (M.D.S.); (G.B.); (G.A.)
| | - Collins Njie Ateba
- Department of Microbiology, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho 2735, South Africa; (C.-D.K.T.); (J.F.)
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng Campus, Mmabatho, Mafikeng 2735, South Africa
| |
Collapse
|
35
|
Costa ML, de Moraes Nobrega G, Antolini-Tavares A. Key Infections in the Placenta. Obstet Gynecol Clin North Am 2019; 47:133-146. [PMID: 32008664 DOI: 10.1016/j.ogc.2019.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Congenital infections are an important cause of morbidity and mortality worldwide, especially in low-income settings. This review discusses the main pathways of infections and associated adverse maternal and fetal outcomes, considering the TORCH pathogens, including Zika virus; the acronym stands for Toxoplasma gondii infection, other (Listeria monocytogenes, Treponema pallidum, and parvovirus B19, among others, including Zika virus), rubella virus, cytomegalovirus, and herpes simplex viruses type 1 and type 2.
Collapse
Affiliation(s)
- Maria Laura Costa
- Department of Obstetrics and Gynecology, School of Medicine, University of Campinas, Rua Alexander Fleming 101, Campinas, São Paulo 13084-881, Brazil.
| | - Guilherme de Moraes Nobrega
- Department of Obstetrics and Gynecology, School of Medicine, University of Campinas, Rua Alexander Fleming 101, Campinas, São Paulo 13084-881, Brazil
| | - Arthur Antolini-Tavares
- Department of Pathological Anatomy, School of Medicine, University of Campinas, Rua Alexander Fleming 101, Campinas, São Paulo 13084-881, Brazil
| |
Collapse
|
36
|
Cardenas-Alvarez MX, Townsend Ramsett MK, Malekmohammadi S, Bergholz TM. Evidence of hypervirulence in Listeria monocytogenes clonal complex 14. J Med Microbiol 2019; 68:1677-1685. [PMID: 31524579 DOI: 10.1099/jmm.0.001076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Purpose. Listeria monocytogenes is a foodborne pathogen that causes central nervous system (CNS) and maternal-neonatal (MN) infections, bacteremia (BAC), and gastroenteritis in humans and ruminants. Specific clonal complexes (CC) have been associated with severe listeriosis cases, however, less is known about differences among subgroup virulence patterns. This study aimed to assess variation in virulence across different CC and clinical outcomes.Methodology. Galleria mellonella larvae were used to compare virulence phenotypes of 34 L. monocytogenes strains representing isolates from CC1, CC6 (from lineage I), and CC7, CC9, CC14, CC37 and CC204 (from lineage II) classified by clinical outcome: BAC, CNS and MN infection. Larvae survival, LD50, cytotoxicity, health index scores and bacterial concentrations post-infection were evaluated as quantifiable indicators of virulence.Results. Isolates belonging to CC14 and MN-associated infections are hypervirulent in G. mellonella as they led to lower G. mellonella survival rates and health index scores, as well as reduced cytotoxic effects when compared to other CC and clinical outcomes included here. CC14 isolates also showed increased bacterial concentrations at 8 and 24 h post-infection, indicating ability to survive the initial immune response and proliferate within G. mellonella larvae.Conclusion. Subgroups of L. monocytogenes possess different virulence phenotypes that may be associated with niche-specificity. While hypervirulent clones have been identified so far in lineage I, our data demonstrate that hypervirulent clones are not restricted to lineage I, as CC14 belongs to lineage II. Identification of subgroups with a higher ability to cause disease may facilitate surveillance and management of listeriosis.
Collapse
Affiliation(s)
| | | | - Sahar Malekmohammadi
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Teresa M Bergholz
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA
| |
Collapse
|
37
|
Wright RG, Macindoe C, Green P. Placental Abnormalities Associated With Childbirth. Acad Forensic Pathol 2019; 9:2-14. [PMID: 34394786 DOI: 10.1177/1925362119851113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/24/2018] [Indexed: 11/17/2022]
Abstract
Pathologists are faced with a variety of problems when considering placental tissue in cases of stillbirth. It is recognized that there are changes which occur following fetal demise and which can complicate the assessment and may coexist with other morphological changes. It is recognized that up to 25% of stillbirths may have a recognizable abnormality causing fetal demise. A systematic review of placental tissue allows many of these disorders to be identified. This review considers macroscopic and microscopic features of placental pathology in stillbirth together with clinicopathological correlation. Stillbirth definitions, general aspects of macroscopic assessment of placentas, placental changes after fetal demise, and some recognizable causes of fetal demise are considered.
Collapse
|
38
|
Phylogenetically Defined Isoforms of Listeria monocytogenes Invasion Factor InlB Differently Activate Intracellular Signaling Pathways and Interact with the Receptor gC1q-R. Int J Mol Sci 2019; 20:ijms20174138. [PMID: 31450632 PMCID: PMC6747193 DOI: 10.3390/ijms20174138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/10/2019] [Accepted: 08/15/2019] [Indexed: 01/19/2023] Open
Abstract
The pathogenic Gram-positive bacterium Listeria monocytogenes has been evolving into a few phylogenetic lineages. Phylogenetically defined substitutions were described in the L. monocytogenes virulence factor InlB, which mediates active invasion into mammalian cells via interactions with surface receptors c-Met and gC1q-R. InlB internalin domain (idInlB) is central to interactions with c-Met. Here we compared activity of purified recombinant idInlB isoforms characteristic for L. monocytogenes phylogenetic lineage I and II. Size exclusion chromatography and intrinsic fluorescence were used to characterize idInlBs. Western blotting was used to study activation of c-Met-dependent MAPK- and PI3K/Akt-pathways. Solid-phase microplate binding and competition assay was used to quantify interactions with gCq1-R. Isogenic recombinant L. monocytogenes strains were used to elucidate the input of idInlB isoforms in HEp-2 cell invasion. Physicochemical parameters of idInlB isoforms were similar but not identical. Kinetics of Erk1/2 and Akt phosphorylation in response to purified idInlBs was lineage specific. Lineage I but not lineage II idInlB specifically bound gC1q-R. Antibody against gC1q-R amino acids 221–249 inhibited invasion of L. monocytogenes carrying lineage I but not lineage II idInlB. Taken together, obtained results suggested that phylogenetically defined substitutions in idInlB provide functional distinctions and might be involved in phylogenetically determined differences in virulence potential.
Collapse
|
39
|
Drolia R, Bhunia AK. Crossing the Intestinal Barrier via Listeria Adhesion Protein and Internalin A. Trends Microbiol 2019; 27:408-425. [PMID: 30661918 DOI: 10.1016/j.tim.2018.12.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/11/2018] [Accepted: 12/14/2018] [Indexed: 12/24/2022]
Abstract
The intestinal epithelial cell lining provides the first line of defense, yet foodborne pathogens such as Listeria monocytogenes can overcome this barrier; however, the underlying mechanism is not well understood. Though the host M cells in Peyer's patch and the bacterial invasion protein internalin A (InlA) are involved, L. monocytogenes can cross the gut barrier in their absence. The interaction of Listeria adhesion protein (LAP) with the host cell receptor (heat shock protein 60) disrupts the epithelial barrier, promoting bacterial translocation. InlA aids L. monocytogenes transcytosis via interaction with the E-cadherin receptor, which is facilitated by epithelial cell extrusion and goblet cell exocytosis; however, LAP-induced cell junction opening may be an alternative bacterial strategy for InlA access to E-cadherin and its translocation. Here, we summarize the strategies that L. monocytogenes employs to circumvent the intestinal epithelial barrier and compare and contrast these strategies with other enteric bacterial pathogens. Additionally, we provide implications of recent findings for food safety regulations.
Collapse
Affiliation(s)
- Rishi Drolia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | - Arun K Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
40
|
Listeria monocytogenes Brain Abscess: Controversial Issues for the Treatment-Two Cases and Literature Review. Case Rep Infect Dis 2018; 2018:6549496. [PMID: 30140475 PMCID: PMC6081550 DOI: 10.1155/2018/6549496] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/11/2018] [Accepted: 07/08/2018] [Indexed: 02/05/2023] Open
Abstract
Listeria monocytogenes (LM) is an opportunistic pathogen, and the most common central nervous system manifestation is meningitis while listerial brain abscesses are rare. We describe 2 cases of brain abscess due to LM and a literature review. Only 73 cases were reported in the literature from 1968 to 2017. The mean age was 51.9, and the mortality rate was 27.3%. In 19% of cases, no risk factors for neurolisteriosis were identified. Blood cultures were positive in 79.5% while CSF or brain abscess biopsy material was positive in 50.8%. In 40% was started a monotherapy regimen while in 60% a combination therapy without substantial differences in mortality. Fifty-two percent underwent neurosurgery while 45.3% has been treated only with medical therapy. The mortality rates were, respectively, 13% and 38.2%. Only 25% of patients who were treated for ≤6 weeks underwent neurosurgery, while 80% of those who were treated for ≥8 weeks were operated. The mortality rates were, respectively, 12.5% and 0%, suggesting that a combined approach of surgery and prolonged medical therapy would have an impact on mortality. We believe that it is essential to carry out this review as brain abscesses are rare, and there are no definitive indications on the optimal management, type, and duration of therapy.
Collapse
|
41
|
Faralla C, Bastounis EE, Ortega FE, Light SH, Rizzuto G, Gao L, Marciano DK, Nocadello S, Anderson WF, Robbins JR, Theriot JA, Bakardjiev AI. Listeria monocytogenes InlP interacts with afadin and facilitates basement membrane crossing. PLoS Pathog 2018; 14:e1007094. [PMID: 29847585 PMCID: PMC6044554 DOI: 10.1371/journal.ppat.1007094] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 07/13/2018] [Accepted: 05/11/2018] [Indexed: 12/14/2022] Open
Abstract
During pregnancy, the placenta protects the fetus against the maternal immune response, as well as bacterial and viral pathogens. Bacterial pathogens that have evolved specific mechanisms of breaching this barrier, such as Listeria monocytogenes, present a unique opportunity for learning how the placenta carries out its protective function. We previously identified the L. monocytogenes protein Internalin P (InlP) as a secreted virulence factor critical for placental infection. Here, we show that InlP, but not the highly similar L. monocytogenes internalin Lmo2027, binds to human afadin (encoded by AF-6), a protein associated with cell-cell junctions. A crystal structure of InlP reveals several unique features, including an extended leucine-rich repeat (LRR) domain with a distinctive Ca2+-binding site. Despite afadin's involvement in the formation of cell-cell junctions, MDCK epithelial cells expressing InlP displayed a decrease in the magnitude of the traction stresses they could exert on deformable substrates, similar to the decrease in traction exhibited by AF-6 knock-out MDCK cells. L. monocytogenes ΔinlP mutants were deficient in their ability to form actin-rich protrusions from the basal face of polarized epithelial monolayers, a necessary step in the crossing of such monolayers (transcytosis). A similar phenotype was observed for bacteria expressing an internal in-frame deletion in inlP (inlP ΔLRR5) that specifically disrupts its interaction with afadin. However, afadin deletion in the host cells did not rescue the transcytosis defect. We conclude that secreted InlP targets cytosolic afadin to specifically promote L. monocytogenes transcytosis across the basal face of epithelial monolayers, which may contribute to the crossing of the basement membrane during placental infection.
Collapse
Affiliation(s)
- Cristina Faralla
- Benioff Children’s Hospital, University of California, San Francisco, San Francisco, California, United States of America
- Program in Microbial Pathogenesis and Host Defense, University of California, San Francisco, San Francisco, California, United States of America
| | - Effie E. Bastounis
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
| | - Fabian E. Ortega
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
| | - Samuel H. Light
- Center for Structural Genomics of Infectious Diseases and Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Gabrielle Rizzuto
- Benioff Children’s Hospital, University of California, San Francisco, San Francisco, California, United States of America
- Program in Microbial Pathogenesis and Host Defense, University of California, San Francisco, San Francisco, California, United States of America
- Department of Pathology, University of California, San Francisco, San Francisco, California, United States of America
| | - Lei Gao
- Department of Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Denise K. Marciano
- Department of Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Salvatore Nocadello
- Center for Structural Genomics of Infectious Diseases and Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Wayne F. Anderson
- Center for Structural Genomics of Infectious Diseases and Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Jennifer R. Robbins
- Department of Biology, Xavier University, Cincinnati, Ohio, United States of America
| | - Julie A. Theriot
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Anna I. Bakardjiev
- Benioff Children’s Hospital, University of California, San Francisco, San Francisco, California, United States of America
- Program in Microbial Pathogenesis and Host Defense, University of California, San Francisco, San Francisco, California, United States of America
| |
Collapse
|
42
|
Lu B, Wu J, Yang J, Cui Y. Listeriosis in two twin pregnancies after in vitro fertilization with differential outcome and literature review. J Matern Fetal Neonatal Med 2017; 32:1741-1746. [PMID: 29179588 DOI: 10.1080/14767058.2017.1410790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE In vitro fertilization (IVF) has become a very common procedure in the infertility practice due to its accessibility. The study is aiming at presenting two twin pregnancy-related infections caused by Listeria monocytogenes and reviewing the reported cases of listeriosis in multiple pregnancies. MATERIALS AND METHODS Two listeriosis cases with twin pregnancy after IVF were described and the literature on pregnancy-associated listeriosis was reviewed. RESULTS The risk of listeriosis should be underscored in pregnant women after IVF, and timely diagnosis and rational treatment might result in a better outcome. CONCLUSIONS The current study highlights that the infections due to L. monocytogenes should be noted in multiple pregnancies after IVF.
Collapse
Affiliation(s)
- Binghuai Lu
- a Department of Laboratory Medicine , Civil Aviation General Hospital, Peking University Civil Aviation School of Clinical Medicine , Beijing , China
| | - Jianning Wu
- b Department of Laboratory Medicine , Xiamen Maternal and Child Health Hospital , Xiamen , China
| | - Junwen Yang
- c Department of Laboratory Medicine , Zhengzhou Children's Hospital , Zhengzhou , China
| | - Yanchao Cui
- a Department of Laboratory Medicine , Civil Aviation General Hospital, Peking University Civil Aviation School of Clinical Medicine , Beijing , China
| |
Collapse
|
43
|
Cheng C, Jiang L, Ma T, Wang H, Han X, Sun J, Yang Y, Chen Z, Yu H, Hang Y, Liu F, Wang B, Fang W, Huang H, Fang C, Cai C, Freitag N, Song H. Carboxyl-Terminal Residues N478 and V479 Required for the Cytolytic Activity of Listeriolysin O Play a Critical Role in Listeria monocytogenes Pathogenicity. Front Immunol 2017; 8:1439. [PMID: 29163512 PMCID: PMC5671954 DOI: 10.3389/fimmu.2017.01439] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 10/17/2017] [Indexed: 11/24/2022] Open
Abstract
Listeria monocytogenes is a facultative intracellular pathogen that secretes the cytolysin listeriolysin O (LLO), which enables the bacteria to cross the phagosomal membrane. L. monocytogenes regulates LLO activity in the phagosome and minimizes its activity in the host cytosol. Mutants that fail to compartmentalize LLO activity are cytotoxic and have attenuated virulence. Here, we showed that residues N478 and V479 of LLO are required for LLO hemolytic activity and bacterial virulence. A single N478A mutation (LLON478A) significantly increased the hemolytic activity of LLO at a neutral pH, while no difference was observed at the optimum acidic pH, compared with wild-type LLO. Conversely, the mutant LLOV479A exhibited lower hemolytic activity at the acidic pH, but not at the neutral pH. The double mutant LLON478AV479A showed a greater decrease in hemolytic activity at both the acidic and neutral pHs. Interestingly, strains producing LLON478A or LLOV479A lysed erythrocytes similarly to the wild-type strain. Surprisingly, bacteria-secreting LLON478AV479A had barely detectable hemolytic activity, but exhibited host cell cytotoxicity, escaped from the phagosome, grew intracellularly, and spread cell-to-cell with the same efficiency as the wild-type strain, but were highly attenuated in virulence in mice. These data demonstrate that these two residues are required for LLO hemolytic activity and pathogenicity in mice, but not for escape from the phagosome and cell-to-cell spreading. The finding that the nearly non-hemolytic LLON478AV479A mutant grew intracellularly indicates that mutagenesis of a virulence determinant is a novel approach for the development of live vaccine strains.
Collapse
Affiliation(s)
- Changyong Cheng
- College of Animal Science and Technology of Zhejiang A&F University, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Lin'an, China
| | - Li Jiang
- College of Animal Science and Technology of Zhejiang A&F University, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Lin'an, China
| | - Tiantian Ma
- College of Animal Science and Technology of Zhejiang A&F University, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Lin'an, China
| | - Hang Wang
- College of Animal Science and Technology of Zhejiang A&F University, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Lin'an, China
| | - Xiao Han
- College of Animal Science and Technology of Zhejiang A&F University, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Lin'an, China
| | - Jing Sun
- College of Animal Science and Technology of Zhejiang A&F University, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Lin'an, China
| | - Yongchun Yang
- College of Animal Science and Technology of Zhejiang A&F University, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Lin'an, China
| | - Zhongwei Chen
- College of Animal Science and Technology of Zhejiang A&F University, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Lin'an, China
| | - Huifei Yu
- College of Animal Science and Technology of Zhejiang A&F University, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Lin'an, China
| | - Yi Hang
- College of Animal Science and Technology of Zhejiang A&F University, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Lin'an, China
| | - Fengdan Liu
- College of Animal Science and Technology of Zhejiang A&F University, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Lin'an, China
| | - Bosen Wang
- College of Animal Science and Technology of Zhejiang A&F University, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Lin'an, China
| | - Weihuan Fang
- College of Animal Science and Technology of Zhejiang A&F University, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Lin'an, China.,Zhejiang University Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| | - Huarong Huang
- College of Biological and Environmental Science, Institute of Developmental and Regenerative Biology, Hangzhou Normal University, Hangzhou, China
| | - Chun Fang
- College of Animal Science, Yangtze University, Hubei, China
| | - Chang Cai
- College of Animal Science and Technology of Zhejiang A&F University, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Lin'an, China.,School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
| | - Nancy Freitag
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, IL, United States
| | - Houhui Song
- College of Animal Science and Technology of Zhejiang A&F University, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Lin'an, China
| |
Collapse
|