1
|
Chen J, Li G, Shao Y, Cheng Z, Wan F, Wu D, Wei D, Liu P, Du F, Liu Y. Clinical, phenotypic characterization and genomic analysis of the mucoid Acinetobacter baumannii from a teaching hospital. Microb Pathog 2024; 196:106929. [PMID: 39270758 DOI: 10.1016/j.micpath.2024.106929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Acinetobacter baumannii (A. baumannii) has become a significant nosocomial pathogen globally over the past decade due to the increasing prevalence of antibiotic-resistant isolates. The formation of the mucoid phenotype is a crucial adaptive defense response to external pressure, but the clinical, phenotypic and genotypic characteristics and their relationship with sequence types (ST) and K locus (KL) types remain unclear. METHODS In this study, we screened a total of 736 A. baumannii isolates, from which we identified and characterized 13 mucoid isolates. The study explored the clinical characteristics of patients with mucoid isolates, investigated the mucoid phenotype, performed capsule observation, quantified capsule production, and assessed antimicrobial susceptibility. Subsequently, whole-genome sequencing (WGS) was used to analyze the sequence types (ST), loci for capsular polysaccharide (KL), antibiotic resistance genes, virulence genes, and core-genome single-nucleotide polymorphisms (SNPs). Additionally, the virulence of all mucoid strains was evaluated through serum resistance assay, biofilm-forming assay, and Galleria mellonella survival assay. RESULTS All mucoid A. baumannii isolates were found to be encapsulated and extremely drug-resistant. Among patients infected with these isolates, 92.3 % had pulmonary infections, and the 30-day mortality rate was 61.5 %. The analysis revealed that not all strains are highly virulent. Whole-genome sequencing (WGS) identified the sequence types as ST136, ST208, ST381, ST195, and ST281, and the capsular types as KL77, KL7, KL33, KL2, and KL3. The ST208 and KL7 isolates exhibited higher virulence and greater biofilm formation, with KL7 isolates also showing higher capsule production. Despite these differences, no significant variations in virulence genes were observed among the mucoid isolates, except for biofilm-associated and quorum-sensing genes. The highly virulent ST208/KL7 strains (AB276, AB313, and AB552) lacked biofilm-associated genes (csuA/BABCDE), indicating these genes do not directly cause differences in biofilm formation. CONCLUSION The mucoid A. baumannii isolates were extensively drug-resistant, and infections caused by these isolates could lead to higher mortality. However, not all strains had high virulence, with variations likely related to specific sequence types (ST) and K locus (KL) types.
Collapse
Affiliation(s)
- Jiao Chen
- School of Laboratory Medicine, Nanchang Medical College, PR China
| | - Guanghui Li
- School of Information Engineering, East China Jiaotong University, PR China
| | - Yanting Shao
- School of Laboratory Medicine, Nanchang Medical College, PR China
| | - Zhibin Cheng
- School of Laboratory Medicine, Nanchang Medical College, PR China
| | - Fen Wan
- School of Laboratory Medicine, Nanchang Medical College, PR China
| | - Danqin Wu
- Neurology ICU, The First Affiliated Hospital of Nanchang University, PR China
| | - Dandan Wei
- Department of Clinical Microbiology, The First Affiliated Hospital of Nanchang University, PR China; Clinical Laboratory, China-Japan Friendship JiangXi Hospital, PR China
| | - Peng Liu
- Department of Clinical Microbiology, The First Affiliated Hospital of Nanchang University, PR China
| | - Fangling Du
- Department of Clinical Microbiology, The First Affiliated Hospital of Nanchang University, PR China
| | - Yang Liu
- Department of Clinical Microbiology, The First Affiliated Hospital of Nanchang University, PR China; Clinical Laboratory, China-Japan Friendship JiangXi Hospital, PR China.
| |
Collapse
|
2
|
Sommerfield AG, Wang M, Mamana J, Darwin AJ. In vivo and in vitro analyses of the role of the Prc protease in inducing mucoidy in Pseudomonas aeruginosa. J Bacteriol 2024; 206:e0022224. [PMID: 39287400 PMCID: PMC11500579 DOI: 10.1128/jb.00222-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
In Pseudomonas aeruginosa, alginate biosynthesis gene expression is inhibited by the transmembrane anti-sigma factor MucA, which sequesters the AlgU sigma factor. Cell envelope stress initiates cleavage of the MucA periplasmic domain by site-1 protease AlgW, followed by further MucA degradation to release AlgU. However, after colonizing the lungs of people with cystic fibrosis, P. aeruginosa converts to a mucoid form that produces alginate constitutively. Mucoid isolates often have mucA mutations, with the most common being mucA22, which truncates the periplasmic domain. MucA22 is degraded constitutively, and genetic studies suggested that the Prc protease is responsible. Some studies also suggested that Prc contributes to induction in strains with wild-type MucA, whereas others suggested the opposite. However, missing from all previous studies is a demonstration that Prc cleaves any protein directly, which leaves open the possibility that the effect of a prc null mutation is indirect. To address the ambiguities and shortfalls, we reevaluated the roles of AlgW and Prc as MucA and MucA22 site-1 proteases. In vivo analyses using three different assays and two different inducing conditions all suggested that AlgW is the only site-1 protease for wild-type MucA in any condition. In contrast, genetics suggested that AlgW or Prc act as MucA22 site-1 proteases in inducing conditions, whereas Prc is the only MucA22 site-1 protease in non-inducing conditions. For the first time, we also show that Prc is unable to degrade the periplasmic domain of wild-type MucA but does degrade the mutated periplasmic domain of MucA22 directly. IMPORTANCE After colonizing the lungs of individuals with cystic fibrosis, Pseudomonas aeruginosa undergoes mutagenic conversion to a mucoid form, worsening the prognosis. Most mucoid isolates have a truncated negative regulatory protein MucA, which leads to constitutive production of the extracellular polysaccharide alginate. The protease Prc has been implicated, but not shown, to degrade the most common MucA variant, MucA22, to trigger alginate production. This work provides the first demonstration that the molecular mechanism of Prc involvement is direct degradation of the MucA22 periplasmic domain and perhaps other truncated MucA variants as well. MucA truncation and degradation by Prc might be the predominant mechanism of mucoid conversion in cystic fibrosis infections, suggesting that Prc activity could be a useful therapeutic target.
Collapse
Affiliation(s)
- Alexis G. Sommerfield
- Department of Microbiology, NYU Grossman School of Medicine, New York, New York, USA
| | - Michelle Wang
- Department of Microbiology, NYU Grossman School of Medicine, New York, New York, USA
| | - Julia Mamana
- Department of Microbiology, NYU Grossman School of Medicine, New York, New York, USA
| | - Andrew J. Darwin
- Department of Microbiology, NYU Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
3
|
Liu D, Liu J, Ran L, Yang Z, He Y, Yang H, Yu Y, Fu L, Zhu M, Chen H. Oleanolic Acid Promotes the Formation of Probiotic Escherichia coli Nissle 1917 (EcN) Biofilm by Inhibiting Bacterial Motility. Microorganisms 2024; 12:1097. [PMID: 38930479 PMCID: PMC11205495 DOI: 10.3390/microorganisms12061097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Probiotic biofilms have been beneficial in the fight against infections, restoring the equilibrium of the host's gut microbiota, and enhancing host health. They are considered a novel strategy for probiotic gut colonization. In this case, we evaluated the effects of various active substances from traditional Chinese medicine on Escherichia coli Nissle 1917 (EcN) to determine if they promote biofilm formation. It was shown that 8-64 μg/mL of oleanolic acid increased the development of EcN biofilm. Additionally, we observed that oleanolic acid can effectively suppress biofilm formation in pathogenic bacteria such as Salmonella and Staphylococcus aureus. Next, we assessed the amount of EcN extracellular polysaccharides, the number of live bacteria, their metabolic activity, the hydrophobicity of their surface, and the shape of their biofilms using laser confocal microscopy. Through transcriptome analysis, a total of 349 differentially expressed genes were identified, comprising 134 upregulated and 215 downregulated genes. GO functional enrichment analysis and KEGG pathway enrichment analysis revealed that oleanolic acid functions are through the regulation of bacterial motility, the iron absorption system, the two-component system, and adhesion pathways. These findings suggest that the main effects of oleanolic acid are to prevent bacterial motility, increase initial adhesion, and encourage the development of EcN biofilms. In addition, oleanolic acid interacts with iron absorption to cooperatively control the production of EcN biofilms within an optimal concentration range. Taking these results together, this study suggests that oleanolic acid may enhance probiotic biofilm formation in the intestines, presenting new avenues for probiotic product development.
Collapse
Affiliation(s)
- Dan Liu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (D.L.); (J.L.); (L.R.); (Z.Y.); (Y.H.); (H.Y.)
| | - Jingjing Liu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (D.L.); (J.L.); (L.R.); (Z.Y.); (Y.H.); (H.Y.)
| | - Lei Ran
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (D.L.); (J.L.); (L.R.); (Z.Y.); (Y.H.); (H.Y.)
| | - Zhuo Yang
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (D.L.); (J.L.); (L.R.); (Z.Y.); (Y.H.); (H.Y.)
| | - Yuzhang He
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (D.L.); (J.L.); (L.R.); (Z.Y.); (Y.H.); (H.Y.)
| | - Hongzao Yang
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (D.L.); (J.L.); (L.R.); (Z.Y.); (Y.H.); (H.Y.)
- National Center of Technology Innovation for Pigs, Chongqing 402460, China; (Y.Y.); (L.F.); (M.Z.)
| | - Yuandi Yu
- National Center of Technology Innovation for Pigs, Chongqing 402460, China; (Y.Y.); (L.F.); (M.Z.)
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
| | - Lizhi Fu
- National Center of Technology Innovation for Pigs, Chongqing 402460, China; (Y.Y.); (L.F.); (M.Z.)
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
| | - Maixun Zhu
- National Center of Technology Innovation for Pigs, Chongqing 402460, China; (Y.Y.); (L.F.); (M.Z.)
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
| | - Hongwei Chen
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (D.L.); (J.L.); (L.R.); (Z.Y.); (Y.H.); (H.Y.)
- National Center of Technology Innovation for Pigs, Chongqing 402460, China; (Y.Y.); (L.F.); (M.Z.)
- Traditional Chinese Veterinary Research Institute, Southwest University, Chongqing 402460, China
| |
Collapse
|
4
|
Sommerfield AG, Wang M, Mamana J, Darwin AJ. In vivo and in vitro analysis of the role of the Prc protease in inducing mucoidy in Pseudomonas aeruginosa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596254. [PMID: 38854061 PMCID: PMC11160602 DOI: 10.1101/2024.05.28.596254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
In Pseudomonas aeruginosa, alginate biosynthesis gene expression is inhibited by the transmembrane anti-sigma factor MucA, which sequesters the AlgU sigma factor. Cell envelope stress initiates cleavage of the MucA periplasmic domain by site-1 protease AlgW, followed by further MucA degradation to release AlgU. However, after colonizing the lungs of people with cystic fibrosis, P. aeruginosa converts to a mucoid form that produces alginate constitutively. Mucoid isolates often have mucA mutations, with the most common being mucA22 , which truncates the periplasmic domain. MucA22 is degraded constitutively, and genetic studies suggested that the Prc protease is responsible. Some studies also suggested that Prc contributes to induction in strains with wild type MucA, whereas others suggested the opposite. However, missing from all previous studies is a demonstration that Prc cleaves any protein directly, which leaves open the possibility that the effect of a prc null mutation is indirect. To address the ambiguities and shortfalls, we reevaluated the roles of AlgW and Prc as MucA and MucA22 site-1 proteases. In vivo analyses using three different assays, and two different inducing conditions, all suggested that AlgW is the only site-1 protease for wild type MucA in any condition. In contrast, genetics suggested that AlgW or Prc act as MucA22 site-1 proteases in inducing conditions, whereas Prc is the only MucA22 site-1 protease in non-inducing conditions. For the first time, we also show that Prc is unable to degrade the periplasmic domain of wild type MucA, but does degrade the mutated periplasmic domain of MucA22 directly. IMPORTANCE After colonizing the lungs of individuals with cystic fibrosis, P. aeruginosa undergoes mutagenic conversion to a mucoid form, worsening the prognosis. Most mucoid isolates have a truncated negative regulatory protein MucA, which leads to constitutive production of the extracellular polysaccharide alginate. The protease Prc has been implicated, but not shown, to degrade the most common MucA variant, MucA22, to trigger alginate production. This work provides the first demonstration that the molecular mechanism of Prc involvement is direct degradation of the MucA22 periplasmic domain, and perhaps other truncated MucA variants as well. MucA truncation and degradation by Prc might be the predominant mechanism of mucoid conversion in cystic fibrosis infections, suggesting that Prc activity could be a useful therapeutic target.
Collapse
|
5
|
Neff SL, Doing G, Reiter T, Hampton TH, Greene CS, Hogan DA. Pseudomonas aeruginosa transcriptome analysis of metal restriction in ex vivo cystic fibrosis sputum. Microbiol Spectr 2024; 12:e0315723. [PMID: 38385740 PMCID: PMC10986534 DOI: 10.1128/spectrum.03157-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
Chronic Pseudomonas aeruginosa lung infections are a feature of cystic fibrosis (CF) that many patients experience even with the advent of highly effective modulator therapies. Identifying factors that impact P. aeruginosa in the CF lung could yield novel strategies to eradicate infection or otherwise improve outcomes. To complement published P. aeruginosa studies using laboratory models or RNA isolated from sputum, we analyzed transcripts of strain PAO1 after incubation in sputum from different CF donors prior to RNA extraction. We compared PAO1 gene expression in this "spike-in" sputum model to that for P. aeruginosa grown in synthetic cystic fibrosis sputum medium to determine key genes, which are among the most differentially expressed or most highly expressed. Using the key genes, gene sets with correlated expression were determined using the gene expression analysis tool eADAGE. Gene sets were used to analyze the activity of specific pathways in P. aeruginosa grown in sputum from different individuals. Gene sets that we found to be more active in sputum showed similar activation in published data that included P. aeruginosa RNA isolated from sputum relative to corresponding in vitro reference cultures. In the ex vivo samples, P. aeruginosa had increased levels of genes related to zinc and iron acquisition which were suppressed by metal amendment of sputum. We also found a significant correlation between expression of the H1-type VI secretion system and CFTR corrector use by the sputum donor. An ex vivo sputum model or synthetic sputum medium formulation that imposes metal restriction may enhance future CF-related studies.IMPORTANCEIdentifying the gene expression programs used by Pseudomonas aeruginosa to colonize the lungs of people with cystic fibrosis (CF) will illuminate new therapeutic strategies. To capture these transcriptional programs, we cultured the common P. aeruginosa laboratory strain PAO1 in expectorated sputum from CF patient donors. Through bioinformatic analysis, we defined sets of genes that are more transcriptionally active in real CF sputum compared to a synthetic cystic fibrosis sputum medium. Many of the most differentially active gene sets contained genes related to metal acquisition, suggesting that these gene sets play an active role in scavenging for metals in the CF lung environment which may be inadequately represented in some models. Future studies of P. aeruginosa transcript abundance in CF may benefit from the use of an expectorated sputum model or media supplemented with factors that induce metal restriction.
Collapse
Affiliation(s)
- Samuel L. Neff
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Georgia Doing
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Taylor Reiter
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Thomas H. Hampton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Casey S. Greene
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Deborah A. Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
6
|
Neff SL, Doing G, Reiter T, Hampton TH, Greene CS, Hogan DA. Analysis of Pseudomonas aeruginosa transcription in an ex vivo cystic fibrosis sputum model identifies metal restriction as a gene expression stimulus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.21.554169. [PMID: 37662412 PMCID: PMC10473638 DOI: 10.1101/2023.08.21.554169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Chronic Pseudomonas aeruginosa lung infections are a distinctive feature of cystic fibrosis (CF) pathology, that challenge adults with CF even with the advent of highly effective modulator therapies. Characterizing P. aeruginosa transcription in the CF lung and identifying factors that drive gene expression could yield novel strategies to eradicate infection or otherwise improve outcomes. To complement published P. aeruginosa gene expression studies in laboratory culture models designed to model the CF lung environment, we employed an ex vivo sputum model in which laboratory strain PAO1 was incubated in sputum from different CF donors. As part of the analysis, we compared PAO1 gene expression in this "spike-in" sputum model to that for P. aeruginosa grown in artificial sputum medium (ASM). Analyses focused on genes that were differentially expressed between sputum and ASM and genes that were most highly expressed in sputum. We present a new approach that used sets of genes with correlated expression, identified by the gene expression analysis tool eADAGE, to analyze the differential activity of pathways in P. aeruginosa grown in CF sputum from different individuals. A key characteristic of P. aeruginosa grown in expectorated CF sputum was related to zinc and iron acquisition, but this signal varied by donor sputum. In addition, a significant correlation between P. aeruginosa expression of the H1-type VI secretion system and corrector use by the sputum donor was observed. These methods may be broadly useful in looking for variable signals across clinical samples.
Collapse
Affiliation(s)
- Samuel L. Neff
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Georgia Doing
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Taylor Reiter
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Thomas H. Hampton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Casey S. Greene
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Deborah A. Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| |
Collapse
|
7
|
Zhao A, Sun J, Liu Y. Understanding bacterial biofilms: From definition to treatment strategies. Front Cell Infect Microbiol 2023; 13:1137947. [PMID: 37091673 PMCID: PMC10117668 DOI: 10.3389/fcimb.2023.1137947] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/09/2023] [Indexed: 04/08/2023] Open
Abstract
Bacterial biofilms are complex microbial communities encased in extracellular polymeric substances. Their formation is a multi-step process. Biofilms are a significant problem in treating bacterial infections and are one of the main reasons for the persistence of infections. They can exhibit increased resistance to classical antibiotics and cause disease through device-related and non-device (tissue) -associated infections, posing a severe threat to global health issues. Therefore, early detection and search for new and alternative treatments are essential for treating and suppressing biofilm-associated infections. In this paper, we systematically reviewed the formation of bacterial biofilms, associated infections, detection methods, and potential treatment strategies, aiming to provide researchers with the latest progress in the detection and treatment of bacterial biofilms.
Collapse
Affiliation(s)
- Ailing Zhao
- Department of Gastroenterology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Jiazheng Sun
- Department of Vasculocardiology, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Yipin Liu
- Department of Gastroenterology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
- *Correspondence: Yipin Liu,
| |
Collapse
|
8
|
Liu X, Jia M, Wang J, Cheng H, Cai Z, Yu Z, Liu Y, Ma LZ, Zhang L, Zhang Y, Yang L. Cell division factor ZapE regulates Pseudomonas aeruginosa biofilm formation by impacting the pqs quorum sensing system. MLIFE 2023; 2:28-42. [PMID: 38818333 PMCID: PMC10989928 DOI: 10.1002/mlf2.12059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 06/01/2024]
Abstract
Pseudomonas aeruginosa is one of the leading nosocomial pathogens that causes both severe acute and chronic infections. The strong capacity of P. aeruginosa to form biofilms can dramatically increase its antibiotic resistance and lead to treatment failure. The biofilm resident bacterial cells display distinct gene expression profiles and phenotypes compared to their free-living counterparts. Elucidating the genetic determinants of biofilm formation is crucial for the development of antibiofilm drugs. In this study, a high-throughput transposon-insertion site sequencing (Tn-seq) approach was employed to identify novel P. aeruginosa biofilm genetic determinants. When analyzing the novel biofilm regulatory genes, we found that the cell division factor ZapE (PA4438) controls the P. aeruginosa pqs quorum sensing system. The ∆zapE mutant lost fitness against the wild-type PAO1 strain in biofilms and its production of 2-heptyl-3-hydroxy-4(1H)-quinolone (PQS) had been reduced. Further biochemical analysis showed that ZapE interacts with PqsH, which encodes the synthase that converts 2-heptyl-4-quinolone (HHQ) to PQS. In addition, site-directed mutagenesis of the ATPase active site of ZapE (K72A) abolished the positive regulation of ZapE on PQS signaling. As ZapE is highly conserved among the Pseudomonas group, our study suggests that it is a potential drug target for the control of Pseudomonas infections.
Collapse
Affiliation(s)
- Xi Liu
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- Key University Laboratory of Metabolism and Health of Guangdong, School of MedicineSouthern University of Science and TechnologyShenzhenChina
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CenterSouth China Agricultural UniversityGuangzhouChina
| | - Minlu Jia
- Key University Laboratory of Metabolism and Health of Guangdong, School of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Jing Wang
- Key University Laboratory of Metabolism and Health of Guangdong, School of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Hang Cheng
- Key University Laboratory of Metabolism and Health of Guangdong, School of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Zhao Cai
- Key University Laboratory of Metabolism and Health of Guangdong, School of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Zhaoxiao Yu
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Yang Liu
- Medical Research CenterSouthern University of Science and Technology HospitalShenzhenChina
| | - Luyan Z. Ma
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Lianhui Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CenterSouth China Agricultural UniversityGuangzhouChina
| | - Yingdan Zhang
- Key University Laboratory of Metabolism and Health of Guangdong, School of MedicineSouthern University of Science and TechnologyShenzhenChina
- Shenzhen Third People's Hospital, National Clinical Research Center for Infectious DiseaseThe Second Affiliated Hospital of Southern University of Science and TechnologyShenzhenChina
| | - Liang Yang
- Key University Laboratory of Metabolism and Health of Guangdong, School of MedicineSouthern University of Science and TechnologyShenzhenChina
- Shenzhen Third People's Hospital, National Clinical Research Center for Infectious DiseaseThe Second Affiliated Hospital of Southern University of Science and TechnologyShenzhenChina
| |
Collapse
|
9
|
Ma X, Liu Q, Song F, Huang Y. Differentially Expressed Genes of Pseudomonas aeruginosa Isolates from Eyes with Keratitis and Healthy Conjunctival Sacs. Infect Drug Resist 2022; 15:4495-4506. [PMID: 35983295 PMCID: PMC9380828 DOI: 10.2147/idr.s374335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/06/2022] [Indexed: 11/23/2022] Open
Abstract
Background Pseudomonas aeruginosa (P. aeruginosa) is the second-most common commensal bacterium in healthy conjunctival sacs. When the corneal epithelial barrier is damaged, P. aeruginosa in a healthy conjunctival sac can cause infectious keratitis, which can result in the loss of vision. This study was designed to investigate the differentially expressed genes (DEGs) of P. aeruginosa isolates from eyes with keratitis and from healthy conjunctival sacs to predict their functions and pathways through Illumina high-throughput RNA sequencing (RNA-seq). Methods P. aeruginosa isolates from keratitis and healthy conjunctival sacs were obtained. The transcriptome profile of P. aeruginosa was characterized by a high throughput RNA-seq strategy using the Illumina HiSeq 2500 platform. The DEGs were analyzed with DESeq and validated through quantitative real-time polymerase chain reaction (PCR) and with experimental mice. GO enrichment and the KEGG pathway were also analyzed. Results In genome-wide transcriptional analysis, 557 genes (332 upregulated and 225 downregulated) were found to be differentially expressed (fold change ≥ 2, p ≤ 0.05) in the strains from keratitis. GO enrichment analysis suggested that DEGs tended to be associated with cellular and metabolic processes. KEGG pathway analysis revealed the DEGs were typically associated with the pathways of the bacterial secretion system and pyoverdine metabolism. Eleven DEGs were validated using quantitative reverse-transcription PCR and verified with experimental mice. The results were consistent with those obtained in RNA-seq. Conclusion The DEGs related to pilin, T2SS, T3SS, and pyoverdine metabolisms were significantly altered in the strains from keratitis. The findings may be helpful for further investigations on genes or pathways related to the pathogenesis of and therapeutic targets for P. aeruginosa keratitis.
Collapse
Affiliation(s)
- Xiubin Ma
- Department of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, Qingdao, People's Republic of China.,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Qingdao, People's Republic of China.,Department of Ophthalmology, School of Ophthalmology, Shandong First Medical University, Qingdao, People's Republic of China
| | - Qing Liu
- Department of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, Qingdao, People's Republic of China.,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Qingdao, People's Republic of China.,Department of Ophthalmology, School of Ophthalmology, Shandong First Medical University, Qingdao, People's Republic of China
| | - Fangying Song
- Department of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, Qingdao, People's Republic of China.,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Qingdao, People's Republic of China.,Department of Ophthalmology, School of Ophthalmology, Shandong First Medical University, Qingdao, People's Republic of China
| | - Yusen Huang
- Department of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, Qingdao, People's Republic of China.,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Qingdao, People's Republic of China.,Department of Ophthalmology, School of Ophthalmology, Shandong First Medical University, Qingdao, People's Republic of China
| |
Collapse
|
10
|
Insights into mucoid Acinetobacter baumannii: A review of microbiological characteristics, virulence, and pathogenic mechanisms in a threatening nosocomial pathogen. Microbiol Res 2022; 261:127057. [DOI: 10.1016/j.micres.2022.127057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 01/25/2023]
|
11
|
Zhang Y, Gallant É, Park JD, Seyedsayamdost MR. The Small-Molecule Language of Dynamic Microbial Interactions. Annu Rev Microbiol 2022; 76:641-660. [PMID: 35679616 PMCID: PMC10171915 DOI: 10.1146/annurev-micro-042722-091052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although microbes are routinely grown in monocultures in the laboratory, they are almost never encountered as single species in the wild. Our ability to detect and identify new microorganisms has advanced significantly in recent years, but our understanding of the mechanisms that mediate microbial interactions has lagged behind. What makes this task more challenging is that microbial alliances can be dynamic, consisting of multiple phases. The transitions between phases, and the interactions in general, are often mediated by a chemical language consisting of small molecules, also referred to as secondary metabolites or natural products. In this microbial lexicon, the molecules are like words and through their effects on recipient cells they convey meaning. The current review highlights three dynamic microbial interactions in which some of the words and their meanings have been characterized, especially those that mediate transitions in selected multiphasic associations. These systems provide insights into the principles that govern microbial symbioses and a playbook for interrogating similar associations in diverse ecological niches. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA; ,
| | - Étienne Gallant
- Department of Chemistry, Princeton University, Princeton, New Jersey, USA; ,
| | - Jong-Duk Park
- Department of Chemistry, Princeton University, Princeton, New Jersey, USA; ,
| | - Mohammad R Seyedsayamdost
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA; , .,Department of Chemistry, Princeton University, Princeton, New Jersey, USA; ,
| |
Collapse
|
12
|
Barzkar N, Sheng R, Sohail M, Jahromi ST, Babich O, Sukhikh S, Nahavandi R. Alginate Lyases from Marine Bacteria: An Enzyme Ocean for Sustainable Future. Molecules 2022; 27:3375. [PMID: 35684316 PMCID: PMC9181867 DOI: 10.3390/molecules27113375] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 12/13/2022] Open
Abstract
The cell wall of brown algae contains alginate as a major constituent. This anionic polymer is a composite of β-d-mannuronate (M) and α-l-guluronate (G). Alginate can be degraded into oligosaccharides; both the polymer and its products exhibit antioxidative, antimicrobial, and immunomodulatory activities and, hence, find many commercial applications. Alginate is attacked by various enzymes, collectively termed alginate lyases, that degrade glycosidic bonds through β-elimination. Considering the abundance of brown algae in marine ecosystems, alginate is an important source of nutrients for marine organisms, and therefore, alginate lyases play a significant role in marine carbon recycling. Various marine microorganisms, particularly those that thrive in association with brown algae, have been reported as producers of alginate lyases. Conceivably, the marine-derived alginate lyases demonstrate salt tolerance, and many are activated in the presence of salts and, therefore, find applications in the food industry. Therefore, this review summarizes the structural and biochemical features of marine bacterial alginate lyases along with their applications. This comprehensive information can aid in the expansion of future prospects of alginate lyases.
Collapse
Affiliation(s)
- Noora Barzkar
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas 3995, Iran
| | - Ruilong Sheng
- CQM—Centro de Química da Madeira, Campus da Penteada, Universidade da Madeira, 9000-390 Funchal, Portugal;
- Department of Radiology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Muhammad Sohail
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan;
| | - Saeid Tamadoni Jahromi
- Persian Gulf and Oman Sea Ecology Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas 9145, Iran;
| | - Olga Babich
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, Kaliningrad 236016, Russia; (O.B.); (S.S.)
| | - Stanislav Sukhikh
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, Kaliningrad 236016, Russia; (O.B.); (S.S.)
| | - Reza Nahavandi
- Animal Science Research Institute of Iran (ASRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj 8361, Iran;
| |
Collapse
|
13
|
Upmanyu K, Haq QMR, Singh R. Factors mediating Acinetobacter baumannii biofilm formation: Opportunities for developing therapeutics. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100131. [PMID: 35909621 PMCID: PMC9325880 DOI: 10.1016/j.crmicr.2022.100131] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Acinetobacter baumannii has notably become a superbug due to its mounting risk of infection and escalating rates of antimicrobial resistance, including colistin, the last-resort antibiotic. Its propensity to form biofilm on biotic and abiotic surfaces has contributed to the majority of nosocomial infections. Bacterial cells in biofilms are resistant to antibiotics and host immune response, and pose challenges in treatment. Therefore current scenario urgently requires the development of novel therapeutic strategies for successful treatment outcomes. This article provides a holistic understanding of sequential events and regulatory mechanisms directing A. baumannii biofilm formation. Understanding the key factors functioning and regulating the biofilm machinery of A. baumannii will provide us insight to develop novel approaches to combat A. baumannii infections. Further, the review article deliberates promising strategies for the prevention of biofilm formation on medically relevant substances and potential therapeutic strategies for the eradication of preformed biofilms which can help tackle biofilm-associated A. baumannii infections. Advances in emerging therapeutic opportunities such as phage therapy, nanoparticle therapy and photodynamic therapy are also discussed to comprehend the current scenario and future outlook for the development of successful treatment against biofilm-associated A. baumannii infections.
Collapse
Affiliation(s)
- Kirti Upmanyu
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | | | - Ruchi Singh
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India
| |
Collapse
|
14
|
Cao S, Li Q, Xu Y, Tang T, Ning L, Zhu B. Evolving strategies for marine enzyme engineering: recent advances on the molecular modification of alginate lyase. MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:106-116. [PMID: 37073348 PMCID: PMC10077200 DOI: 10.1007/s42995-021-00122-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/14/2021] [Indexed: 05/03/2023]
Abstract
Alginate, an acidic polysaccharide, is formed by β-d-mannuronate (M) and α-l-guluronate (G). As a type of polysaccharide lyase, alginate lyase can efficiently degrade alginate into alginate oligosaccharides, having potential applications in the food, medicine, and agriculture fields. However, the application of alginate lyase has been limited due to its low catalytic efficiency and poor temperature stability. In recent years, various structural features of alginate lyase have been determined, resulting in modification strategies that can increase the applicability of alginate lyase, making it important to summarize and discuss the current evidence. In this review, we summarized the structural features and catalytic mechanisms of alginate lyase. Molecular modification strategies, such as rational design, directed evolution, conserved domain recombination, and non-catalytic domain truncation, are also described in detail. Lastly, the application of alginate lyase is discussed. This comprehensive summary can inform future applications of alginate lyases.
Collapse
Affiliation(s)
- Shengsheng Cao
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816 China
| | - Qian Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816 China
| | - Yinxiao Xu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816 China
| | - Tiancheng Tang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816 China
| | - Limin Ning
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Benwei Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816 China
| |
Collapse
|
15
|
Ghio AJ, Pavlisko EN, Roggli VL, Todd NW, Sangani RG. Cigarette Smoke Particle-Induced Lung Injury and Iron Homeostasis. Int J Chron Obstruct Pulmon Dis 2022; 17:117-140. [PMID: 35046648 PMCID: PMC8763205 DOI: 10.2147/copd.s337354] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/06/2021] [Indexed: 11/23/2022] Open
Abstract
It is proposed that the mechanistic basis for non-neoplastic lung injury with cigarette smoking is a disruption of iron homeostasis in cells after exposure to cigarette smoke particle (CSP). Following the complexation and sequestration of intracellular iron by CSP, the host response (eg, inflammation, mucus production, and fibrosis) attempts to reverse a functional metal deficiency. Clinical manifestations of this response can present as respiratory bronchiolitis, desquamative interstitial pneumonitis, pulmonary Langerhans’ cell histiocytosis, asthma, pulmonary hypertension, chronic bronchitis, and pulmonary fibrosis. If the response is unsuccessful, the functional deficiency of iron progresses to irreversible cell death evident in emphysema and bronchiectasis. The subsequent clinical and pathological presentation is a continuum of lung injuries, which overlap and coexist with one another. Designating these non-neoplastic lung injuries after smoking as distinct disease processes fails to recognize shared relationships to each other and ultimately to CSP, as well as the common mechanistic pathway (ie, disruption of iron homeostasis).
Collapse
Affiliation(s)
- Andrew J Ghio
- Human Studies Facility, US Environmental Protection Agency, Chapel Hill, NC, 27514, USA
- Correspondence: Andrew J Ghio Human Studies Facility, US Environmental Protection Agency, 104 Mason Farm Road, Chapel Hill, NC, USA Email
| | | | | | - Nevins W Todd
- Department of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Rahul G Sangani
- Department of Medicine, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
16
|
Secor PR, Michaels LA, Bublitz DC, Jennings LK, Singh PK. The Depletion Mechanism Actuates Bacterial Aggregation by Exopolysaccharides and Determines Species Distribution & Composition in Bacterial Aggregates. Front Cell Infect Microbiol 2022; 12:869736. [PMID: 35782109 PMCID: PMC9243289 DOI: 10.3389/fcimb.2022.869736] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Bacteria in natural environments and infections are often found in cell aggregates suspended in polymer-rich solutions, and aggregation can promote bacterial survival and stress resistance. One aggregation mechanism, called depletion aggregation, is driven by physical forces between bacteria and high concentrations of polymers in the environment rather than bacterial activity per se. As such, bacteria aggregated by the depletion mechanism will disperse when polymer concentrations fall unless other adhesion mechanisms supervene. Here we investigated whether the depletion mechanism can actuate the aggregating effects of Pseudomonas aeruginosa exopolysaccharides for suspended (i.e. not surface attached) bacteria, and how depletion affects bacterial inter-species interactions. We found that cells overexpressing the exopolysaccharides Pel and Psl remained aggregated after short periods of depletion aggregation whereas wild-type and mucoid P. aeruginosa did not. In co-culture, depletion aggregation had contrasting effects on P. aeruginosa's interactions with coccus- and rod-shaped bacteria. Depletion caused S. aureus (cocci) and P. aeruginosa (rods) to segregate from each other and S. aureus to resist secreted P. aeruginosa antimicrobial factors resulting in species co-existence. In contrast, depletion aggregation caused P. aeruginosa and Burkholderia sp. (both rods) to intermix, enhancing type VI secretion inhibition of Burkholderia by P. aeruginosa, leading to P. aeruginosa dominance. These results show that in addition to being a primary cause of aggregation in polymer-rich suspensions, physical forces inherent to the depletion mechanism can promote aggregation by some self-produced exopolysaccharides and determine species distribution and composition of bacterial communities.
Collapse
Affiliation(s)
- Patrick R Secor
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Lia A Michaels
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - DeAnna C Bublitz
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Laura K Jennings
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Pradeep K Singh
- Department of Microbiology, University of Washington, Seattle, WA, United States
| |
Collapse
|
17
|
Extracellular haem utilization by the opportunistic pathogen Pseudomonas aeruginosa and its role in virulence and pathogenesis. Adv Microb Physiol 2021; 79:89-132. [PMID: 34836613 DOI: 10.1016/bs.ampbs.2021.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Iron is an essential micronutrient for all bacteria but presents a significant challenge given its limited bioavailability. Furthermore, iron's toxicity combined with the need to maintain iron levels within a narrow physiological range requires integrated systems to sense, regulate and transport a variety of iron complexes. Most bacteria encode systems to chelate and transport ferric iron (Fe3+) via siderophore receptor mediated uptake or via cytoplasmic energy dependent transport systems. Pathogenic bacteria have further lowered the barrier to iron acquisition by employing systems to utilize haem as a source of iron. Haem, a lipophilic and toxic molecule, presents a significant challenge for transport into the cell. As such pathogenic bacteria have evolved sophisticated cell surface signaling (CSS) and transport systems to sense and obtain haem from the host. Once internalized haem is cleaved by both oxidative and non-oxidative mechanisms to release iron. Herein we summarize our current understanding of the mechanism of haem sensing, uptake and utilization in Pseudomonas aeruginosa, its role in pathogenesis and virulence, and the potential of these systems as antimicrobial targets.
Collapse
|
18
|
Van den Bossche S, De Broe E, Coenye T, Van Braeckel E, Crabbé A. The cystic fibrosis lung microenvironment alters antibiotic activity: causes and effects. Eur Respir Rev 2021; 30:30/161/210055. [PMID: 34526313 DOI: 10.1183/16000617.0055-2021] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/23/2021] [Indexed: 01/08/2023] Open
Abstract
Chronic airway colonisation by Pseudomonas aeruginosa, a hallmark of cystic fibrosis (CF) lung disease, is associated with increased morbidity and mortality and despite aggressive antibiotic treatment, P. aeruginosa is able to persist in CF airways. In vitro antibiotic susceptibility assays are poor predictors of antibiotic efficacy to treat respiratory tract infections in the CF patient population and the selection of the antibiotic(s) is often made on an empirical base. In the current review, we discuss the factors that are responsible for the discrepancies between antibiotic activity in vitro and clinical efficacy in vivo We describe how the CF lung microenvironment, shaped by host factors (such as iron, mucus, immune mediators and oxygen availability) and the microbiota, influences antibiotic activity and varies widely between patients. A better understanding of the CF microenvironment and population diversity may thus help improve in vitro antibiotic susceptibility testing and clinical decision making, in turn increasing the success rate of antibiotic treatment.
Collapse
Affiliation(s)
| | - Emma De Broe
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Eva Van Braeckel
- Dept of Respiratory Medicine, Cystic Fibrosis Reference Centre, Ghent University Hospital, Ghent, Belgium.,Dept of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
19
|
Klebba PE, Newton SMC, Six DA, Kumar A, Yang T, Nairn BL, Munger C, Chakravorty S. Iron Acquisition Systems of Gram-negative Bacterial Pathogens Define TonB-Dependent Pathways to Novel Antibiotics. Chem Rev 2021; 121:5193-5239. [PMID: 33724814 PMCID: PMC8687107 DOI: 10.1021/acs.chemrev.0c01005] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Iron is an indispensable metabolic cofactor in both pro- and eukaryotes, which engenders a natural competition for the metal between bacterial pathogens and their human or animal hosts. Bacteria secrete siderophores that extract Fe3+ from tissues, fluids, cells, and proteins; the ligand gated porins of the Gram-negative bacterial outer membrane actively acquire the resulting ferric siderophores, as well as other iron-containing molecules like heme. Conversely, eukaryotic hosts combat bacterial iron scavenging by sequestering Fe3+ in binding proteins and ferritin. The variety of iron uptake systems in Gram-negative bacterial pathogens illustrates a range of chemical and biochemical mechanisms that facilitate microbial pathogenesis. This document attempts to summarize and understand these processes, to guide discovery of immunological or chemical interventions that may thwart infectious disease.
Collapse
Affiliation(s)
- Phillip E Klebba
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Salete M C Newton
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - David A Six
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Ashish Kumar
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Taihao Yang
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Brittany L Nairn
- Department of Biological Sciences, Bethel University, 3900 Bethel Drive, St. Paul, Minnesota 55112, United States
| | - Colton Munger
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Somnath Chakravorty
- Jacobs School of Medicine and Biomedical Sciences, SUNY Buffalo, Buffalo, New York 14203, United States
| |
Collapse
|
20
|
Hemmati F, Rezaee MA, Ebrahimzadeh S, Yousefi L, Nouri R, Kafil HS, Gholizadeh P. Novel Strategies to Combat Bacterial Biofilms. Mol Biotechnol 2021; 63:569-586. [PMID: 33914260 DOI: 10.1007/s12033-021-00325-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/09/2021] [Indexed: 12/15/2022]
Abstract
Biofilms are considered as a severe problem in the treatment of bacterial infections; their development causes some noticeable resistance to antibacterial agents. Biofilms are responsible for at least two-thirds of all infections, displaying promoted resistance to classical antibiotic treatments. Therefore, finding new alternative therapeutic approaches is essential for the treatment and inhibition of biofilm-related infections. Therefore, this review aims to describe the potential therapeutic strategies that can inhibit bacterial biofilm development; these include the usage of antiadhesion agents, AMPs, bacteriophages, QSIs, aptamers, NPs and PNAs, which can prevent or eradicate the formation of biofilms. These antibiofilm agents represent a promising therapeutic target in the treatment of biofilm infections and development of a strong capability to interfere with different phases of the biofilm development, including adherence, polysaccharide intercellular adhesion (PIA), quorum sensing molecules and cell-to-cell connection, bacterial aggregation, planktonic bacteria killing and host-immune response modulation. In addition, these components, in combination with antibiotics, can lead to the development of some kind of powerful combined therapy against bacterial biofilm-related infections.
Collapse
Affiliation(s)
- Fatemeh Hemmati
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Saba Ebrahimzadeh
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, Urmia University, Urmia, Iran
| | - Leila Yousefi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roghayeh Nouri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pourya Gholizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
21
|
King M, Kubo A, Kafer L, Braga R, McLeod D, Khanam S, Conway T, Patrauchan MA. Calcium-Regulated Protein CarP Responds to Multiple Host Signals and Mediates Regulation of Pseudomonas aeruginosa Virulence by Calcium. Appl Environ Microbiol 2021; 87:e00061-21. [PMID: 33674436 PMCID: PMC8117776 DOI: 10.1128/aem.00061-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/27/2021] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen causing life-threatening infections. Previously, we showed that elevated calcium (Ca2+) levels increase the production of virulence factors in P. aeruginosa In an effort to characterize the Ca2+ regulatory network, we identified a Ca2+-regulated β-propeller protein, CarP, and showed that expression of the encoding gene is controlled by the Ca2+-regulated two-component system CarSR. Here, by using a Galleria melonella model, we showed that CarP plays a role in regulating P. aeruginosa virulence. By using transcriptome sequencing (RNA-Seq), reverse transcription (RT)-PCR, quantitative RT-PCR (RT-qPCR), and promoter fusions, we determined that carP is transcribed into at least two transcripts and regulated by several bacterial and host factors. The transcription of carP is elevated in response to Ca2+ in P. aeruginosa cystic fibrosis isolates and PAO1 laboratory strain. Elevated Fe2+ also induces carP The simultaneous addition of Ca2+ and Fe2+ increased the carP promoter activity synergistically, which requires the presence of CarR. In silico analysis of the intergenic sequence upstream of carP predicted recognition sites of RhlR/LasR, OxyR, and LexA, suggesting regulation by quorum sensing (QS) and oxidative stress. In agreement, the carP promoter was activated in response to stationary-phase PAO1 supernatant and required the presence of elevated Ca2+ and CarR but remained silent in the triple mutant lacking rhlI, lasI, and pqsA synthases. We also showed that carP transcription is regulated by oxidative stress and that CarP contributes to P. aeruginosa Ca2+-dependent H2O2 tolerance. The multifactorial regulation of carP suggests that CarP plays an important role in P. aeruginosa adaptations to host environments.IMPORTANCEP. aeruginosa is a human pathogen causing life-threatening infections. It is particularly notorious for its ability to adapt to diverse environments within the host. Understanding the signals and the signaling pathways enabling P. aeruginosa adaptation is imperative for developing effective therapies to treat infections caused by this organism. One host signal of particular importance is calcium. Previously, we identified a component of the P. aeruginosa calcium-signaling network, CarP, whose expression is induced by elevated levels of calcium. Here, we show that carP plays an important role in P. aeruginosa virulence and is upregulated in P. aeruginosa strains isolated from sputa of patients with cystic fibrosis. We also identified several bacterial and host factors that regulate the transcription of carP Such multifactorial regulation highlights the interconnectedness between regulatory circuits and, together with the pleotropic effect of CarP on virulence, suggests the importance of this protein in P. aeruginosa adaptations to the host.
Collapse
Affiliation(s)
- Michelle King
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Aya Kubo
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Leah Kafer
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Reygan Braga
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Daniel McLeod
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Sharmily Khanam
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Tyrrell Conway
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Marianna A Patrauchan
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
22
|
Brandenburg KS, Weaver AJ, Karna SLR, Leung KP. The impact of simultaneous inoculation of Pseudomonas aeruginosa, Staphylococcus aureus, and Candida albicans on rodent burn wounds. Burns 2021; 47:1818-1832. [PMID: 33771422 DOI: 10.1016/j.burns.2021.02.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/13/2021] [Accepted: 02/18/2021] [Indexed: 12/27/2022]
Abstract
Burn wound infection often involves a diverse combination of bacterial and fungal pathogens. In this study, we characterize the mixed species burn wound infection by inoculating the burn surface with 1 × 103/4/5 CFU of Pseudomonas aeruginosa, Staphylococcus aureus, and Candida albicans in a 1:1:1 ratio. Using the revised Walker-Mason scald burn rat model, 168 male Sprague-Dawley rats (350-450 g) subject to ∼10% TBSA burn injury, with or without inoculation, were evaluated for 11 days after burn. In the wound, P. aeruginosa and S. aureus formed robust biofilms as determined by the bacterial tissue load, ∼1 × 109 CFU/g, and expression of key biofilm genes. Interestingly, within 3 days C. albicans achieved tissue loads of ∼1 × 106 CFU/g, but its numbers were significantly reduced beyond the limit of detection in the burn wound by day 7 in partial-thickness injuries and by day 11 in full-thickness injuries. The pathogenic biofilms contributed to burn depth progression, increased release of HMGB-1 into circulation from injured tissue, and significantly elevated the numbers of circulating innate immune cells (Neutrophils, Monocytes, and Basophils). This robust model of multi-species burn wound infection will serve as the basis for the development of new antimicrobials for combating biofilm-based wound infections.
Collapse
Affiliation(s)
- Kenneth S Brandenburg
- Division of Combat Wound Repair, US Army Institute of Surgical Research, JBSA Fort Sam Houston, TX 78234, USA.
| | - Alan J Weaver
- Division of Combat Wound Repair, US Army Institute of Surgical Research, JBSA Fort Sam Houston, TX 78234, USA.
| | - S L Rajasekhar Karna
- Division of Combat Wound Repair, US Army Institute of Surgical Research, JBSA Fort Sam Houston, TX 78234, USA.
| | - Kai P Leung
- Division of Combat Wound Repair, US Army Institute of Surgical Research, JBSA Fort Sam Houston, TX 78234, USA.
| |
Collapse
|
23
|
Wongkaewkhiaw S, Taweechaisupapong S, Thanaviratananich S, Bolscher JGM, Nazmi K, Anutrakunchai C, Chareonsudjai S, Kanthawong S. D-LL-31 enhances biofilm-eradicating effect of currently used antibiotics for chronic rhinosinusitis and its immunomodulatory activity on human lung epithelial cells. PLoS One 2020; 15:e0243315. [PMID: 33326455 PMCID: PMC7743948 DOI: 10.1371/journal.pone.0243315] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/18/2020] [Indexed: 02/05/2023] Open
Abstract
Chronic rhinosinusitis (CRS) is a chronic disease that involves long-term inflammation of the nasal cavity and paranasal sinuses. Bacterial biofilms present on the sinus mucosa of certain patients reportedly exhibit resistance against traditional antibiotics, as evidenced by relapse, resulting in severe disease. The aim of this study was to determine the killing activity of human cathelicidin antimicrobial peptides (LL-37, LL-31) and their D-enantiomers (D-LL-37, D-LL-31), alone and in combination with conventional antibiotics (amoxicillin; AMX and tobramycin; TOB), against bacteria grown as biofilm, and to investigate the biological activities of the peptides on human lung epithelial cells. D-LL-31 was the most effective peptide against bacteria under biofilm-stimulating conditions based on IC50 values. The synergistic effect of D-LL-31 with AMX and TOB decreased the IC50 values of antibiotics by 16-fold and could eliminate the biofilm matrix in all tested bacterial strains. D-LL-31 did not cause cytotoxic effects in A549 cells at 25 μM after 24 h of incubation. Moreover, a cytokine array indicated that there was no significant induction of the cytokines involving in immunopathogenesis of CRS in the presence of D-LL-31. However, a tissue-remodeling-associated protein was observed that may prevent the progression of nasal polyposis in CRS patients. Therefore, a combination of D-LL-31 with AMX or TOB may improve the efficacy of currently used antibiotics to kill biofilm-embedded bacteria and eliminate the biofilm matrix. This combination might be clinically applicable for treatment of patients with biofilm-associated CRS.
Collapse
Affiliation(s)
- Saharut Wongkaewkhiaw
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | | | - Jan G. M. Bolscher
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Kamran Nazmi
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Sorujsiri Chareonsudjai
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Biofilm Research Group, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand
| | - Sakawrat Kanthawong
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Biofilm Research Group, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
24
|
Static Growth Promotes PrrF and 2-Alkyl-4(1 H)-Quinolone Regulation of Type VI Secretion Protein Expression in Pseudomonas aeruginosa. J Bacteriol 2020; 202:JB.00416-20. [PMID: 33020221 DOI: 10.1128/jb.00416-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/29/2020] [Indexed: 12/21/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that is frequently associated with both acute and chronic infections. P. aeruginosa possesses a complex regulatory network that modulates nutrient acquisition and virulence, but our knowledge of these networks is largely based on studies with shaking cultures, which are not likely representative of conditions during infection. Here, we provide proteomic, metabolic, and genetic evidence that regulation by iron, a critical metallonutrient, is altered in static P. aeruginosa cultures. Specifically, we observed a loss of iron-induced expression of proteins for oxidative phosphorylation, tricarboxylic acid (TCA) cycle metabolism under static conditions. Moreover, we identified type VI secretion as a target of iron regulation in P. aeruginosa cells under static but not shaking conditions, and we present evidence that this regulation occurs via PrrF small regulatory RNA (sRNA)-dependent production of 2-alkyl-4(1H)-quinolone metabolites. These results yield new iron regulation paradigms in an important opportunistic pathogen and highlight the need to redefine iron homeostasis in static microbial communities.IMPORTANCE Host-mediated iron starvation is a broadly conserved signal for microbial pathogens to upregulate expression of virulence traits required for successful infection. Historically, global iron regulatory studies in microorganisms have been conducted in shaking cultures to ensure culture homogeneity, yet these conditions are likely not reflective of growth during infection. Pseudomonas aeruginosa is a well-studied opportunistic pathogen and model organism for iron regulatory studies. Iron homeostasis is maintained through the Fur protein and PrrF small regulatory sRNAs, the functions of which are highly conserved in many other bacterial species. In the current study, we examined how static growth affects the known iron and PrrF regulons of P. aeruginosa, leading to the discovery of novel PrrF-regulated virulence processes. This study demonstrates how the utilization of distinct growth models can enhance our understanding of basic physiological processes that may also affect pathogenesis.
Collapse
|
25
|
Singh M, De Silva PM, Al-Saadi Y, Switala J, Loewen PC, Hausner G, Chen W, Hernandez I, Castillo-Ramirez S, Kumar A. Characterization of Extremely Drug-Resistant and Hypervirulent Acinetobacter baumannii AB030. Antibiotics (Basel) 2020; 9:antibiotics9060328. [PMID: 32560407 PMCID: PMC7345994 DOI: 10.3390/antibiotics9060328] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 12/21/2022] Open
Abstract
Acinetobacter baumannii is an important nosocomial bacterial pathogen. Multidrug-resistant isolates of A. baumannii are reported worldwide. Some A. baumannii isolates display resistance to nearly all antibiotics, making treatment of infections very challenging. As the need for new and effective antibiotics against A. baumannii becomes increasingly urgent, there is a need to understand the mechanisms of antibiotic resistance and virulence in this organism. In this work, comparative genomics was used to understand the mechanisms of antibiotic resistance and virulence in AB030, an extremely drug-resistant and hypervirulent strain of A. baumannii that is a representative of a recently emerged lineage of A. baumannii International Clone V. In order to characterize AB030, we carried out a genomic and phenotypic comparison with LAC-4, a previously described hyper-resistant and hypervirulent isolate. AB030 contains a number of antibiotic resistance- and virulence-associated genes that are not present in LAC-4. A number of these genes are present on mobile elements. This work shows the importance of characterizing the members of new lineages of A. baumannii in order to determine the development of antibiotic resistance and virulence in this organism.
Collapse
Affiliation(s)
- Manu Singh
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (M.S.); (P.M.D.S.); (Y.A.-S.); (J.S.); (P.C.L.); (G.H.)
| | - P. Malaka De Silva
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (M.S.); (P.M.D.S.); (Y.A.-S.); (J.S.); (P.C.L.); (G.H.)
| | - Yasser Al-Saadi
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (M.S.); (P.M.D.S.); (Y.A.-S.); (J.S.); (P.C.L.); (G.H.)
| | - Jacek Switala
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (M.S.); (P.M.D.S.); (Y.A.-S.); (J.S.); (P.C.L.); (G.H.)
| | - Peter C. Loewen
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (M.S.); (P.M.D.S.); (Y.A.-S.); (J.S.); (P.C.L.); (G.H.)
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (M.S.); (P.M.D.S.); (Y.A.-S.); (J.S.); (P.C.L.); (G.H.)
| | - Wangxue Chen
- Human Health Therapeutics, National Research Council Canada, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada;
| | - Ismael Hernandez
- Programa de Genómica Evolutiva, Centro de Ciencias Génomicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; (I.H.); (S.C.-R.)
| | - Santiago Castillo-Ramirez
- Programa de Genómica Evolutiva, Centro de Ciencias Génomicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; (I.H.); (S.C.-R.)
| | - Ayush Kumar
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (M.S.); (P.M.D.S.); (Y.A.-S.); (J.S.); (P.C.L.); (G.H.)
- Correspondence:
| |
Collapse
|
26
|
Anti-Pathogenic Functions of Non-Digestible Oligosaccharides In Vitro. Nutrients 2020; 12:nu12061789. [PMID: 32560186 PMCID: PMC7353314 DOI: 10.3390/nu12061789] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 12/11/2022] Open
Abstract
Non-digestible oligosaccharides (NDOs), complex carbohydrates that resist hydrolysis by salivary and intestinal digestive enzymes, fulfill a diversity of important biological roles. A lot of NDOs are known for their prebiotic properties by stimulating beneficial bacteria in the intestinal microbiota. Human milk oligosaccharides (HMOs) represent the first prebiotics that humans encounter in life. Inspired by these HMO structures, chemically-produced NDO structures (e.g., galacto-oligosaccharides and chito-oligosaccharides) have been recognized as valuable food additives and exert promising health effects. Besides their apparent ability to stimulate beneficial microbial species, oligosaccharides have shown to be important inhibitors of the development of pathogenic infections. Depending on the type and structural characteristics, oligosaccharides can exert a number of anti-pathogenic effects. The most described effect is their ability to act as a decoy receptor, thereby inhibiting adhesion of pathogens. Other ways of pathogenic inhibition, such as interference with pathogenic cell membrane and biofilm integrity and DNA transcription, are less investigated, but could be equally impactful. In this review, a comprehensive overview of In vitro anti-pathogenic properties of different NDOs and associated pathways are discussed. A framework is created categorizing all anti-pathogenic effects and providing insight into structural necessities for an oligosaccharide to exert one of these effects.
Collapse
|
27
|
Khan F, Pham DTN, Oloketuyi SF, Kim YM. Antibiotics Application Strategies to Control Biofilm Formation in Pathogenic Bacteria. Curr Pharm Biotechnol 2020; 21:270-286. [PMID: 31721708 DOI: 10.2174/1389201020666191112155905] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/09/2019] [Accepted: 10/31/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND The establishment of a biofilm by most pathogenic bacteria has been known as one of the resistance mechanisms against antibiotics. A biofilm is a structural component where the bacterial community adheres to the biotic or abiotic surfaces by the help of Extracellular Polymeric Substances (EPS) produced by bacterial cells. The biofilm matrix possesses the ability to resist several adverse environmental factors, including the effect of antibiotics. Therefore, the resistance of bacterial biofilm-forming cells could be increased up to 1000 times than the planktonic cells, hence requiring a significantly high concentration of antibiotics for treatment. METHODS Up to the present, several methodologies employing antibiotics as an anti-biofilm, antivirulence or quorum quenching agent have been developed for biofilm inhibition and eradication of a pre-formed mature biofilm. RESULTS Among the anti-biofilm strategies being tested, the sub-minimal inhibitory concentration of several antibiotics either alone or in combination has been shown to inhibit biofilm formation and down-regulate the production of virulence factors. The combinatorial strategies include (1) combination of multiple antibiotics, (2) combination of antibiotics with non-antibiotic agents and (3) loading of antibiotics onto a carrier. CONCLUSION The present review paper describes the role of several antibiotics as biofilm inhibitors and also the alternative strategies adopted for applications in eradicating and inhibiting the formation of biofilm by pathogenic bacteria.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, Korea.,Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201306, U.P., India
| | - Dung T N Pham
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea
| | - Sandra F Oloketuyi
- Laboratory for Environmental and Life Sciences, University of Nova Gorica 5000, Nova Gorica, Slovenia
| | - Young-Mog Kim
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, Korea.,Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea
| |
Collapse
|
28
|
Brandenburg KS, Weaver AJ, Qian L, You T, Chen P, Karna SLR, Fourcaudot AB, Sebastian EA, Abercrombie JJ, Pineda U, Hong J, Wienandt NA, Leung KP. Development of Pseudomonas aeruginosa Biofilms in Partial-Thickness Burn Wounds Using a Sprague-Dawley Rat Model. J Burn Care Res 2020; 40:44-57. [PMID: 30137429 PMCID: PMC6300396 DOI: 10.1093/jbcr/iry043] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We used a modified Walker–Mason scald burn rat model to demonstrate that Pseudomonas aeruginosa, a common opportunistic pathogen in the burn ward and notable biofilm former, establishes biofilms within deep partial-thickness burn wounds in rats. Deep partial-thickness burn wounds, ~10% of the TBSA, were created in anesthetized male Sprague-Dawley rats (350–450 g; n = 84). Immediately post-burn, 100 µl of P. aeruginosa in phosphate-buffered saline at 1 × 103, 1 × 104, or 1 × 105 cells/wound was spread over the burn surface . At 1, 3, 7, and 11 days post-burn, animals were euthanized and blood and tissue were collected for complete blood counts, colony-forming unit (CFU) counts, biofilm gene expression, histology, scanning electron microscopy (SEM), and myeloperoxidase activity in the burn eschar. P. aeruginosa developed robust biofilm wound infections, plateauing at ~1 × 109 CFU/g burn tissue within 7 days regardless of inoculum size. Expression of Pseudomonas alginate genes and other virulence factors in the infected wound indicated formation of mature P. aeruginosa biofilm within the burn eschar. Compared to un-inoculated wounds, P. aeruginosa infection caused both local and systemic immune responses demonstrated by changes in systemic neutrophil counts, histology, and myeloperoxidase activity within the burn wound. Additionally, SEM showed P. aeruginosa enmeshed within an extracellular matrix on the burn surface as well as penetrating 500–600 µm deep into the eschar. P. aeruginosa establishes biofilms within deep partial-thickness burn wounds and invades deep into the burned tissue. This new in vivo biofilm infection model is valuable for testing novel anti-biofilm agents to advance burn care.
Collapse
Affiliation(s)
- Kenneth S Brandenburg
- Dental and Craniofacial Trauma Research and Tissue Regeneration Directorate (DCTRTRD), U.S. Army Institute of Surgical Research (USAISR), JBSA-Fort Sam Houston, San Antonio, Texas
| | - Alan J Weaver
- Dental and Craniofacial Trauma Research and Tissue Regeneration Directorate (DCTRTRD), U.S. Army Institute of Surgical Research (USAISR), JBSA-Fort Sam Houston, San Antonio, Texas
| | - Liwu Qian
- Dental and Craniofacial Trauma Research and Tissue Regeneration Directorate (DCTRTRD), U.S. Army Institute of Surgical Research (USAISR), JBSA-Fort Sam Houston, San Antonio, Texas
| | - Tao You
- Dental and Craniofacial Trauma Research and Tissue Regeneration Directorate (DCTRTRD), U.S. Army Institute of Surgical Research (USAISR), JBSA-Fort Sam Houston, San Antonio, Texas
| | - Ping Chen
- Dental and Craniofacial Trauma Research and Tissue Regeneration Directorate (DCTRTRD), U.S. Army Institute of Surgical Research (USAISR), JBSA-Fort Sam Houston, San Antonio, Texas
| | - S L Rajasekhar Karna
- Dental and Craniofacial Trauma Research and Tissue Regeneration Directorate (DCTRTRD), U.S. Army Institute of Surgical Research (USAISR), JBSA-Fort Sam Houston, San Antonio, Texas
| | - Andrea B Fourcaudot
- Dental and Craniofacial Trauma Research and Tissue Regeneration Directorate (DCTRTRD), U.S. Army Institute of Surgical Research (USAISR), JBSA-Fort Sam Houston, San Antonio, Texas
| | - Eliza A Sebastian
- Dental and Craniofacial Trauma Research and Tissue Regeneration Directorate (DCTRTRD), U.S. Army Institute of Surgical Research (USAISR), JBSA-Fort Sam Houston, San Antonio, Texas
| | - Johnathan J Abercrombie
- Dental and Craniofacial Trauma Research and Tissue Regeneration Directorate (DCTRTRD), U.S. Army Institute of Surgical Research (USAISR), JBSA-Fort Sam Houston, San Antonio, Texas
| | - Uzziel Pineda
- Dental and Craniofacial Trauma Research and Tissue Regeneration Directorate (DCTRTRD), U.S. Army Institute of Surgical Research (USAISR), JBSA-Fort Sam Houston, San Antonio, Texas
| | - Jinson Hong
- Dental and Craniofacial Trauma Research and Tissue Regeneration Directorate (DCTRTRD), U.S. Army Institute of Surgical Research (USAISR), JBSA-Fort Sam Houston, San Antonio, Texas.,Armed Forces Busan Hospital, Republic of Korea Army
| | | | - Kai P Leung
- Dental and Craniofacial Trauma Research and Tissue Regeneration Directorate (DCTRTRD), U.S. Army Institute of Surgical Research (USAISR), JBSA-Fort Sam Houston, San Antonio, Texas
| |
Collapse
|
29
|
Wan B, Zhu Y, Tao J, Zhu F, Chen J, Li L, Zhao J, Wang L, Sun S, Yang Y, Zhang X, Zhang Y. Alginate Lyase Guided Silver Nanocomposites for Eradicating Pseudomonas aeruginosa from Lungs. ACS APPLIED MATERIALS & INTERFACES 2020; 12:9050-9061. [PMID: 32024363 DOI: 10.1021/acsami.9b21815] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) infections lead to a high mortality rate for cystic fibrosis or immunocompromised patients. The alginate of the biofilm was believed to be the key factor disabling immune therapy and antibiotic treatments. A silver nanocomposite consisting of silver nanoparticles and a mesoporous organosilica layer was created to deliver two pharmaceutical compounds (alginate lyase and ceftazidime) to degrade the alginate and eradicate P. aeruginosa from the lungs. The introduction of thioether-bridged mesoporous organosilica into the nanocomposites greatly benefited the conjunction of foreign functional molecules such as alginate lyase and increased their hemocompatibility and drug-loading capacity. Silver nanocomposites with a uniform diameter (∼39 nm) exhibited a high dispersity, good biocompatibility, and high ceftazidime-loading capacity (380.96 mg/g). Notably, the silver nanocomposites displayed a low pH-dependent drug release and degradation profiles (pH 6.4), guaranteeing the targeted release of the drugs in the acidic niches of the P. aeruginosa biofilm. Indeed, particles loaded with alginate lyase and ceftazidime exhibited high inhibitory and degradation effects on the biofilm of P. aeruginosa PAO1 based on the specific catalytic activity of the enzyme to the alginate and antibacterial function of their loaded ceftazidime and silver ions. It should be noted that the enzyme-decorated nanocomposites succeeded in eradicating P. aeruginosa PAO1 from the mouse lungs and decreasing the lung injuries. No deaths or serious side effects were observed during the experiments. We believe that the silver nanocomposites with high biocompatibility and organic group-incorporated framework have the potential to be used to deliver multiple functional molecules for antibacterial therapy in clinical application.
Collapse
Affiliation(s)
- Bing Wan
- Department of Respiratory and Critical Care Medicine , The Affiliated Jiangning Hospital of Nanjing Medical University , Nanjing 211100 , P. R. China
| | - Ying Zhu
- Department of Respiratory and Critical Care Medicine , The Affiliated Jiangning Hospital of Nanjing Medical University , Nanjing 211100 , P. R. China
| | - Jun Tao
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , 9 Wenyuan Road , Nanjing 210023 , P. R. China
| | - Feipeng Zhu
- Department of Radiology , The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital , Nanjing 210000 , P. R. China
| | - Jianquan Chen
- Central Laboratory, Translational Medicine Research Center , The Affiliated Jiangning Hospital with Nanjing Medical University , Nanjing 211100 , P. R. China
| | - Li Li
- Department of Respiratory and Critical Care Medicine , The Affiliated Jiangning Hospital of Nanjing Medical University , Nanjing 211100 , P. R. China
| | - Jianfeng Zhao
- Department of Respiratory and Critical Care Medicine , The Affiliated Jiangning Hospital of Nanjing Medical University , Nanjing 211100 , P. R. China
| | - Li Wang
- Department of Respiratory and Critical Care Medicine , The Affiliated Jiangning Hospital of Nanjing Medical University , Nanjing 211100 , P. R. China
| | - Shuangshuang Sun
- Department of Respiratory and Critical Care Medicine , The Affiliated Jiangning Hospital of Nanjing Medical University , Nanjing 211100 , P. R. China
| | - Yang Yang
- Department of Respiratory and Critical Care Medicine , The Affiliated Jiangning Hospital of Nanjing Medical University , Nanjing 211100 , P. R. China
| | - Xiuwei Zhang
- Department of Respiratory and Critical Care Medicine , The Affiliated Jiangning Hospital of Nanjing Medical University , Nanjing 211100 , P. R. China
| | - Yunlei Zhang
- Department of Respiratory and Critical Care Medicine , The Affiliated Jiangning Hospital of Nanjing Medical University , Nanjing 211100 , P. R. China
- Department of Medical Imaging, Jinling Hospital, School of Medicine , Nanjing University , Nanjing 210002 , P. R. China
- Central Laboratory, Translational Medicine Research Center , The Affiliated Jiangning Hospital with Nanjing Medical University , Nanjing 211100 , P. R. China
| |
Collapse
|
30
|
Morabe ML, McCarter LL. Vibrio parahaemolyticus FcrX, a Fur-controlled regulator that inhibits repression by Fur. Mol Microbiol 2020; 114:77-92. [PMID: 32096286 DOI: 10.1111/mmi.14497] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 02/20/2020] [Accepted: 02/23/2020] [Indexed: 12/15/2022]
Abstract
Iron is an essential nutrient for most organisms, but its limited availability and inherent toxicity necessitate the strict regulation of iron homeostasis. In bacteria, iron starvation affects a broad range of phenotypes including virulence, motility and biofilm formation. For Vibrio parahaemolyticus, a marine bacterium and pathogen, iron limitation is a signal modulating swarmer cell differentiation. In this work, we show the iron regulation of swarming works through the ferric uptake regulator protein Fur. We identified a new Fur-controlled regulator that is upregulated upon iron starvation. FcrX is a 144-amino acid protein containing a domain of unknown function (DUF2753) with three tetratricopeptide repeats. We found that overexpressing fcrX+ was sufficient to induce swarming, luminescence and iron uptake gene expression in multiple Vibrio species; furthermore, ectopic expression increased the transcription of a Fur-controlled gene in Escherichia coli. FcrX production increased intracellular iron. Thus, the overexpression of fcrX+ phenocopied a fur mutant and may prove a generally useful tool to ectopically derepress the Fur regulon. Both V. parahaemolyticus and E. coli Fur interacted with FcrX, and this interaction was altered by iron availability. These data support a model in which this new regulator of iron homeostasis limits the repressive action of Fur.
Collapse
Affiliation(s)
- Maria L Morabe
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Linda L McCarter
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
31
|
Chen T, Dong G, Zhang S, Zhang X, Zhao Y, Cao J, Zhou T, Wu Q. Effects of iron on the growth, biofilm formation and virulence of Klebsiella pneumoniae causing liver abscess. BMC Microbiol 2020; 20:36. [PMID: 32070273 PMCID: PMC7027070 DOI: 10.1186/s12866-020-01727-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 02/13/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Klebsiella pneumoniae is considered the most clinically relevant species of Enterobacteriaceae, known to cause severe infections including liver abscesses. To the best of our knowledge, a large proportion of iron in the human body is accumulated and stored in the liver. We hypothesize that increased iron availability is an important factor driving liver abscess formation and we therefore aim to understand the effects of iron on K. pneumoniae causing liver abscesses. RESULTS All tested K. pneumoniae clinical isolates, including those isolated from liver abscesses and other abdominal invasive infection sites, grew optimally when cultured in LB broth supplemented with 50 μM iron and exhibited the strongest biofilm formation ability under those conditions. Decreased growth and biofilm formation ability were observed in all tested strains when cultured with an iron chelator (P < 0.05). The infection model of G. mellonella larvae indicated the virulence of liver abscess-causing K. pneumoniae (2/3) cultured in LB broth with additional iron was significantly higher than those under iron-restricted conditions (P < 0.05). The relative expression levels of the four siderophore genes (iucB, iroB, irp1, entB) in K. pneumoniae strains isolated from liver abscesses cultured with additional iron were lower than those under iron-restricted conditions (P < 0.05). CONCLUSIONS It is suggested by our research that iron in the environment can promote growth, biofilm formation and enhance virulence of K. pneumoniae causing liver abscesses. A lower expression of siderophore genes correlates with increased virulence of liver abscess-causing K. pneumoniae. Further deeper evaluation of these phenomena is warranted.
Collapse
Affiliation(s)
- Tao Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Guofeng Dong
- Xiangyang NO.1. People Hospital, Affiliated Hospital of Hubei University of Medicine, Xiangyang, Hubei Province, China
| | - Siqin Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiucai Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yajie Zhao
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jianming Cao
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Qing Wu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
32
|
Hu L, Shi Y, Xu Q, Zhang L, He J, Jiang Y, Liu L, Leptihn S, Yu Y, Hua X, Zhou Z. Capsule Thickness, Not Biofilm Formation, Gives Rise to Mucoid Acinetobacter baumannii Phenotypes That are More Prevalent in Long-Term Infections: A Study of Clinical Isolates from a Hospital in China. Infect Drug Resist 2020; 13:99-109. [PMID: 32021324 PMCID: PMC6957007 DOI: 10.2147/idr.s230178] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 12/17/2019] [Indexed: 12/30/2022] Open
Abstract
Background Acinetobacter baumannii is a nosocomial pathogen of critical importance due to the increasing numbers of antibiotic-resistant isolates. Colonies can have a smooth or matt appearance, but also exhibit slimy, mucoid growth, with the latter being increasingly isolated in patients in recent years. Methods We isolated 60 A. baumannii strains from altogether 56 patients and found that all patients were infected by mucoid strains, with four patients having also matt phenotypes in addition to the mucoid ones. The morphology of the colonies and capsules was observed. The antibiotics susceptibilities were tested, and the biofilm formation ability was determined by crystal violet staining. The whole-genome sequencing (WGS) was performed on all the strains, and then the core genome multilocus sequence typing (cgMLST) and drug resistance gene analysis were performed. Finally, a part of isolates were selected to test virulence in a Galleria mellonella model. Results We observed much larger capsules in the mucoid strains compared to the matt isolates. But the mucoid phenotype did not correlate with the amount of biofilm produced by the strain. Almost all mucus-type A. baumannii were multi-drug resistant isolates, containing various antibiotic resistance genes. The main ST types of mucoid-type A.baumannii were ST191 and ST195, of which ST191 isolates were more virulence, while ST195 isolates were weaker. Conclusion The mucoid A. baumannii had resistance to most antibiotics and some strains had high virulence, which should be paid attention in clinical.
Collapse
Affiliation(s)
- Lihua Hu
- Department of Critical Care Medicine, Hangzhou General Hospital of Chinese People's Armed Police, Hangzhou, People's Republic of China
| | - Yue Shi
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China
| | - Qingye Xu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China
| | - Linghong Zhang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China
| | - Jintao He
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China
| | - Lilin Liu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China
| | - Sebastian Leptihn
- Zhejiang-University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining, People's Republic of China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China
| | - Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China
| | - Zhihui Zhou
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China
| |
Collapse
|
33
|
Nogales J, Mueller J, Gudmundsson S, Canalejo FJ, Duque E, Monk J, Feist AM, Ramos JL, Niu W, Palsson BO. High-quality genome-scale metabolic modelling of Pseudomonas putida highlights its broad metabolic capabilities. Environ Microbiol 2019; 22:255-269. [PMID: 31657101 PMCID: PMC7078882 DOI: 10.1111/1462-2920.14843] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/27/2019] [Accepted: 10/23/2019] [Indexed: 12/19/2022]
Abstract
Genome-scale reconstructions of metabolism are computational species-specific knowledge bases able to compute systemic metabolic properties. We present a comprehensive and validated reconstruction of the biotechnologically relevant bacterium Pseudomonas putida KT2440 that greatly expands computable predictions of its metabolic states. The reconstruction represents a significant reactome expansion over available reconstructed bacterial metabolic networks. Specifically, iJN1462 (i) incorporates several hundred additional genes and associated reactions resulting in new predictive capabilities, including new nutrients supporting growth; (ii) was validated by in vivo growth screens that included previously untested carbon (48) and nitrogen (41) sources; (iii) yielded gene essentiality predictions showing large accuracy when compared with a knock-out library and Bar-seq data; and (iv) allowed mapping of its network to 82 P. putida sequenced strains revealing functional core that reflect the large metabolic versatility of this species, including aromatic compounds derived from lignin. Thus, this study provides a thoroughly updated metabolic reconstruction and new computable phenotypes for P. putida, which can be leveraged as a first step toward understanding the pan metabolic capabilities of Pseudomonas.
Collapse
Affiliation(s)
- Juan Nogales
- Department of Systems Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.,Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Joshua Mueller
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.,Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Francisco J Canalejo
- Department of Systems Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Estrella Duque
- Department of Environmental Protection, Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - Jonathan Monk
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Adam M Feist
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Juan Luis Ramos
- Department of Environmental Protection, Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - Wei Niu
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
34
|
Noirot-Gros MF, Forrester S, Malato G, Larsen PE, Noirot P. CRISPR interference to interrogate genes that control biofilm formation in Pseudomonas fluorescens. Sci Rep 2019; 9:15954. [PMID: 31685917 PMCID: PMC6828691 DOI: 10.1038/s41598-019-52400-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 10/12/2019] [Indexed: 12/11/2022] Open
Abstract
Bacterial biofilm formation involves signaling and regulatory pathways that control the transition from motile to sessile lifestyle, production of extracellular polymeric matrix, and maturation of the biofilm 3D structure. Biofilms are extensively studied because of their importance in biomedical, ecological and industrial settings. Gene inactivation is a powerful approach for functional studies but it is often labor intensive, limiting systematic gene surveys to the most tractable bacterial hosts. Here, we adapted the CRISPR interference (CRISPRi) system for use in diverse strain isolates of P. fluorescens, SBW25, WH6 and Pf0-1. We found that CRISPRi is applicable to study complex phenotypes such as cell morphology, motility and biofilm formation over extended periods of time. In SBW25, CRISPRi-mediated silencing of genes encoding the GacA/S two-component system and regulatory proteins associated with the cylic di-GMP signaling messenger produced swarming and biofilm phenotypes similar to those obtained after gene inactivation. Combined with detailed confocal microscopy of biofilms, our study also revealed novel phenotypes associated with extracellular matrix biosynthesis as well as the potent inhibition of SBW25 biofilm formation mediated by the PFLU1114 operon. We conclude that CRISPRi is a reliable and scalable approach to investigate gene networks in the diverse P. fluorescens group.
Collapse
Affiliation(s)
| | - Sara Forrester
- Biosciences Division, Argonne National Laboratory, Lemont, IL60439, United States
| | - Grace Malato
- Biosciences Division, Argonne National Laboratory, Lemont, IL60439, United States
| | - Peter E Larsen
- Biosciences Division, Argonne National Laboratory, Lemont, IL60439, United States.,Department of Bioengineering, University of Illinois Chicago, Chicago, IL60607, United States
| | - Philippe Noirot
- Biosciences Division, Argonne National Laboratory, Lemont, IL60439, United States
| |
Collapse
|
35
|
Brandenburg KS, Weaver AJ, Karna SLR, You T, Chen P, Stryk SV, Qian L, Pineda U, Abercrombie JJ, Leung KP. Formation of Pseudomonas aeruginosa Biofilms in Full-thickness Scald Burn Wounds in Rats. Sci Rep 2019; 9:13627. [PMID: 31541159 PMCID: PMC6754504 DOI: 10.1038/s41598-019-50003-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/31/2019] [Indexed: 12/14/2022] Open
Abstract
Using Sprague-Dawley rats (350-450 g; n = 61) and the recently updated Walker-Mason rat scald burn model, we demonstrated that Pseudomonas aeruginosa readily formed biofilms within full-thickness burn wounds. Following the burn, wounds were surface-inoculated with P. aeruginosa in phosphate-buffered saline (PBS), while sterile PBS was used for controls. On post-burn days 1, 3, 7, and 11, animals were euthanized and samples collected for quantitative bacteriology, bacterial gene expression, complete blood cell counts, histology, and myeloperoxidase activity. Robust biofilm infections developed in the full-thickness burn wounds inoculated with 1 × 104 CFU of P. aeruginosa. Both histology and scanning electron microscopy showed the pathogen throughout the histologic cross-sections of burned skin. Quantigene analysis revealed significant upregulation of alginate and pellicle biofilm matrix genes of P. aeruginosa within the burn eschar. Additionally, expression of P. aeruginosa proteases and siderophores increased significantly in the burn wound environment. Interestingly, the host's neutrophil response to the pathogen was not elevated in either the eschar or circulating blood when compared to the control burn. This new full-thickness burn biofilm infection model will be used to test new anti-biofilm therapies that may be deployed with soldiers in combat for immediate use at the site of burn injury on the battlefield.
Collapse
Affiliation(s)
- Kenneth S Brandenburg
- Dental and Craniofacial Trauma Research and Tissue Regeneration Department, United States Army Institute of Surgical Research, 3650 Chambers Pass, Bldg 3610, JBSA Fort Sam, Houston, Texas, 78234, USA
| | - Alan J Weaver
- Dental and Craniofacial Trauma Research and Tissue Regeneration Department, United States Army Institute of Surgical Research, 3650 Chambers Pass, Bldg 3610, JBSA Fort Sam, Houston, Texas, 78234, USA
| | - S L Rajasekhar Karna
- Dental and Craniofacial Trauma Research and Tissue Regeneration Department, United States Army Institute of Surgical Research, 3650 Chambers Pass, Bldg 3610, JBSA Fort Sam, Houston, Texas, 78234, USA
| | - Tao You
- Dental and Craniofacial Trauma Research and Tissue Regeneration Department, United States Army Institute of Surgical Research, 3650 Chambers Pass, Bldg 3610, JBSA Fort Sam, Houston, Texas, 78234, USA
| | - Ping Chen
- Dental and Craniofacial Trauma Research and Tissue Regeneration Department, United States Army Institute of Surgical Research, 3650 Chambers Pass, Bldg 3610, JBSA Fort Sam, Houston, Texas, 78234, USA
| | - Shaina Van Stryk
- Dental and Craniofacial Trauma Research and Tissue Regeneration Department, United States Army Institute of Surgical Research, 3650 Chambers Pass, Bldg 3610, JBSA Fort Sam, Houston, Texas, 78234, USA
| | - Liwu Qian
- Dental and Craniofacial Trauma Research and Tissue Regeneration Department, United States Army Institute of Surgical Research, 3650 Chambers Pass, Bldg 3610, JBSA Fort Sam, Houston, Texas, 78234, USA
| | - Uzziel Pineda
- Dental and Craniofacial Trauma Research and Tissue Regeneration Department, United States Army Institute of Surgical Research, 3650 Chambers Pass, Bldg 3610, JBSA Fort Sam, Houston, Texas, 78234, USA
| | - Johnathan J Abercrombie
- Dental and Craniofacial Trauma Research and Tissue Regeneration Department, United States Army Institute of Surgical Research, 3650 Chambers Pass, Bldg 3610, JBSA Fort Sam, Houston, Texas, 78234, USA
| | - Kai P Leung
- Dental and Craniofacial Trauma Research and Tissue Regeneration Department, United States Army Institute of Surgical Research, 3650 Chambers Pass, Bldg 3610, JBSA Fort Sam, Houston, Texas, 78234, USA.
| |
Collapse
|
36
|
Advances in research on signal molecules regulating biofilms. World J Microbiol Biotechnol 2019; 35:130. [PMID: 31385043 DOI: 10.1007/s11274-019-2706-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/01/2019] [Indexed: 10/26/2022]
Abstract
Bacterial biofilms (BFs) are membrane-like structures formed by the secretion of extracellular polymeric substances (EPS) by bacteria. The formation of BFs contributes to bacterial survival and drug resistance. When bacteria proliferate, they produce secondary metabolites that act as signaling molecules in bacterial communities that regulate intracellular and cell-to-cell communication. This communication can directly affect the physiological behavior of bacteria, including the production and emission of light (bioluminescence), the expression of virulence factors, the resistance to antibiotics, and the shift between planktonic and biofilm lifestyles. We review the major signaling molecules that regulate BF formation, with a focus on quorum-sensing systems (QS), cyclic diguanylate (c-di-GMP), two-component systems (TCS), and small RNA (sRNA). Understanding these processes will lead to new approaches for treating chronic diseases and preventing bacterial resistance.
Collapse
|
37
|
El-Helow ER, Atalla RG, Sabra WA, Lotfy WA. Kinetic studies on the expression of alginate and extracellular proteins by Pseudomonas aeruginosa FRD1 and PAO1. J GEN APPL MICROBIOL 2019; 66:15-23. [PMID: 31366850 DOI: 10.2323/jgam.2019.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Pseudomonas aeruginosa is characterized by its capability to produce extracellular virulence proteins and to establish biofilm-based infections that do not respond easily to conventional treatments. However, the physiological conditions that decrease the fitness of such a persistent pathogen would assist the host to defend itself and reduce the infection prevalence. Therefore, developing treatments against P. aeruginosa requires a quantitative understanding of the relationship between bacterial growth kinetics and secretion of alginate and proteins, in addition to the ecological factors that control their synthesis. For this purpose, we examined various environmental factors that affect the specific product yield coefficients (expressed as g product/OD600) of alginate and extracellular proteins using a mucoid (FRD1) and a non-mucoid (PAO1) clinical isolate of P. aeruginosa, respectively. The results suggested magnesium sulfate, trace elements and hydrogen peroxide as significant variables that positively affect alginate synthesis by the FRD1 cells. However, the production of extracellular proteins by PAO1 was negatively affected by the concentration of ferrous sulfate. For understanding the kinetics of expressing alginate and extracellular proteins by the cells, a well-controlled 5 L tank bioreactor was used. The results suggested that under the bioreactor controlled conditions, both alginate and extracellular proteins are expressed parallel to biomass increase in the cells of P. aeruginosa.
Collapse
Affiliation(s)
- Ehab R El-Helow
- Department of Botany and Microbiology, Faculty of Science, Alexandria University
| | - Ramy G Atalla
- Department of Botany and Microbiology, Faculty of Science, Alexandria University
| | - Wael A Sabra
- Department of Botany and Microbiology, Faculty of Science, Alexandria University
| | - Walid A Lotfy
- Microbiology Department, Faculty of Dentistry, Pharos University in Alexandria
| |
Collapse
|
38
|
Martínez-Carranza E, Ponce-Soto GY, Servín-González L, Alcaraz LD, Soberón-Chávez G. Evolution of bacteria seen through their essential genes: the case of Pseudomonas aeruginosa and Azotobacter vinelandii. MICROBIOLOGY-SGM 2019; 165:976-984. [PMID: 31274400 DOI: 10.1099/mic.0.000833] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pseudomonas aeruginosa is a metabolically versatile bacterium and also an important opportunistic pathogen. It has a remarkable genomic structure since the genetic information encoding its pathogenicity-related traits belongs to its core-genome while both environmental and clinical isolates are part of the same population with a highly conserved genomic sequence. Unexpectedly, considering the high level of sequence identity and homologue gene number shared between different P. aeruginosa isolates, the presence of specific essential genes of the two type strains PAO1 and PA14 has been reported to be highly variable. Here we report the detailed bioinformatics analysis of the essential genes of P. aeruginosa PAO1 and PA14 that have been previously experimentally identified and show that the reported gene variability was owed to sequencing and annotation inconsistencies, but that in fact they are highly conserved. This bioinformatics analysis led us to the definition of 348 P. aeruginosa general essential genes. In addition we show that 342 of these 348 essential genes are conserved in Azotobacter vinelandii, a nitrogen-fixing, cyst-forming, soil bacterium. These results support the hypothesis of A. vinelandii having a polyphyletic origin with a Pseudomonads genomic backbone, and are a challenge to the accepted theory of bacterial evolution.
Collapse
Affiliation(s)
- Enrique Martínez-Carranza
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apdo. Postal 70228, C. P. 04510, CDMX, Mexico
| | - Gabriel-Yaxal Ponce-Soto
- Institute for Bio- and Geosciences (IBG-2: Plant Sciences), Forschungszentrum Jülich, Wilhelm Johnen Straße, Jülich, Germany
| | - Luis Servín-González
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apdo. Postal 70228, C. P. 04510, CDMX, Mexico
| | - Luis David Alcaraz
- Facultad de Ciencias, Universidad Nacional Autónoma de México, C.P. 04510, CDMX, Mexico
| | - Gloria Soberón-Chávez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apdo. Postal 70228, C. P. 04510, CDMX, Mexico
| |
Collapse
|
39
|
Rossi GA, Morelli P, Galietta LJ, Colin AA. Airway microenvironment alterations and pathogen growth in cystic fibrosis. Pediatr Pulmonol 2019; 54:497-506. [PMID: 30620146 DOI: 10.1002/ppul.24246] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 11/30/2018] [Indexed: 12/18/2022]
Abstract
Cystic Fibrosis Transmembrane Regulator (CFTR) dysfunction is associated with epithelial cell vulnerability and with dysregulation of the local inflammatory responses resulting in excessive airway neutrophilic inflammation and pathogen growth. In combination with impaired mucociliary clearance, and dysregulation of defense function, bacterial infection follows with eventual airway damage and remodeling. Because of these inherent vulnerabilities, viral infections are also more severe and prolonged and appear to render the airway even more prone to bacterial infection. Airway acidity, deficient nitric oxide production and increased iron concentrations, further enhance the airway milieu's susceptibility to infection. Novel diagnostic techniques of the airway microbiome elucidate the coexistence of an array of non-virulent taxa beyond the recognized virulent organisms, predominantly Pseudomonas aeruginosa. The complex interplay between these two bacterial populations, including upregulation of virulence genes and utilization of mucin as a nutrient source, modulates the action of pathogens, modifies the CF airway milieu and contributes to the processes leading to airway derangement. The review provides an update on recent advances of the complex mechanisms that render the CF airway vulnerable to inflammation, infection and ultimately structural damage, the key pathogenetic elements of CF. The recent contributions on CF pathogenesis will hopefully help in identifying new prophylactic measures and therapeutic targets for this highly destructive disorder.
Collapse
Affiliation(s)
- Giovanni A Rossi
- Department of Pediatrics, Pulmonary and Allergy Disease Unit and Cystic Fibrosis Center, Genoa, Italy
| | - Patrizia Morelli
- Microbiology Laboratory, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Luis J Galietta
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Andrew A Colin
- Division of Pediatric Pulmonology, Miller School of Medicine, University of Miami, Miami, FL
| |
Collapse
|
40
|
Richard KL, Kelley BR, Johnson JG. Heme Uptake and Utilization by Gram-Negative Bacterial Pathogens. Front Cell Infect Microbiol 2019; 9:81. [PMID: 30984629 PMCID: PMC6449446 DOI: 10.3389/fcimb.2019.00081] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/08/2019] [Indexed: 02/06/2023] Open
Abstract
Iron is a transition metal utilized by nearly all forms of life for essential cellular processes, such as DNA synthesis and cellular respiration. During infection by bacterial pathogens, the host utilizes various strategies to sequester iron in a process termed, nutritional immunity. To circumvent these defenses, Gram-negative pathogens have evolved numerous mechanisms to obtain iron from heme. In this review we outline the systems that exist in several Gram-negative pathogens that are associated with heme transport and utilization, beginning with hemolysis and concluding with heme degradation. In addition, Gram-negative pathogens must also closely regulate the intracellular concentrations of iron and heme, since high levels of iron can lead to the generation of toxic reactive oxygen species. As such, we also provide several examples of regulatory pathways that control heme utilization, showing that co-regulation with other cellular processes is complex and often not completely understood.
Collapse
Affiliation(s)
- Kaylie L Richard
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| | - Brittni R Kelley
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| | - Jeremiah G Johnson
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
41
|
Eze EC, Chenia HY, El Zowalaty ME. Acinetobacter baumannii biofilms: effects of physicochemical factors, virulence, antibiotic resistance determinants, gene regulation, and future antimicrobial treatments. Infect Drug Resist 2018; 11:2277-2299. [PMID: 30532562 PMCID: PMC6245380 DOI: 10.2147/idr.s169894] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Acinetobacter baumannii is a leading cause of nosocomial infections due to its increased antibiotic resistance and virulence. The ability of A. baumannii to form biofilms contributes to its survival in adverse environmental conditions including hospital environments and medical devices. A. baumannii has undoubtedly propelled the interest of biomedical researchers due to its broad range of associated infections especially in hospital intensive care units. The interplay among microbial physicochemistry, alterations in the phenotype and genotypic determinants, and the impact of existing ecological niche and the chemistry of antimicrobial agents has led to enhanced biofilm formation resulting in limited access of drugs to their specific targets. Understanding the triggers to biofilm formation is a step towards limiting and containing biofilm-associated infections and development of biofilm-specific countermeasures. The present review therefore focused on explaining the impact of environmental factors, antimicrobial resistance, gene alteration and regulation, and the prevailing microbial ecology in A. baumannii biofilm formation and gives insights into prospective anti-infective treatments.
Collapse
Affiliation(s)
- Emmanuel C Eze
- Virology and Microbiology Research Group, School of Health Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa,
| | - Hafizah Y Chenia
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Mohamed E El Zowalaty
- Virology and Microbiology Research Group, School of Health Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa,
| |
Collapse
|
42
|
Qiao J, Purro M, Liu Z, Xiong MP. Terpyridine-Micelles for Inhibiting Bacterial Biofilm Development. ACS Infect Dis 2018; 4:1346-1354. [PMID: 29974746 DOI: 10.1021/acsinfecdis.8b00091] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Iron plays a critical role in bacterial infections and is especially critical for supporting biofilm formation. Until recently, Fe(III) was assumed to be the most relevant form of iron to chelate in therapeutic antimicrobial strategies due to its natural abundance under normal oxygen and physiologic conditions. Recent clinical data obtained from cystic fibrosis (CF) patients found that there is actually quite an abundance of Fe(II) present in sputum and that there exists a significant relationship between sputum Fe(II) concentration and severity of the disease. A biocompatible mixed micelle formed from the self-assembly of poly(lactic- co-glycolic acid)- block-methoxy poly(ethylene glycol) (PLGA- b-mPEG) and poly(lactic- co-glycolic acid)- block-poly(terpyridine)5 [PLGA- b-p(Tpy)5] polymers was prepared to chelate Fe(II) (Tpy-micelle). Tpy-micelles showed high selectivity for Fe(II) over Fe(III), decreased biofilm mass more effectively under anaerobic conditions at >4 μM Tpy-micelles, reduced bacteria growth in biofilms by >99.9% at 128 μM Tpy-micelles, effectively penetrated throughout a 1-day old biofilm, and inhibited biofilm development in a concentration-dependent manner. This study reveals that Fe(II) chelating Tpy-micelles are a promising addition to Fe(III) chelating strategies to inhibit biofilm formation in CF lung infections.
Collapse
Affiliation(s)
- Jing Qiao
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, 250 W. Green Street, Athens, Georgia 30602-2352, United States
| | - Max Purro
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, 250 W. Green Street, Athens, Georgia 30602-2352, United States
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin−Madison, 777 Highland Avenue, Madison, Wisconsin 53705-2222, United States
| | - Zhi Liu
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, 250 W. Green Street, Athens, Georgia 30602-2352, United States
| | - May P. Xiong
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, 250 W. Green Street, Athens, Georgia 30602-2352, United States
| |
Collapse
|
43
|
Anderson AJ, McLean JE, Jacobson AR, Britt DW. CuO and ZnO Nanoparticles Modify Interkingdom Cell Signaling Processes Relevant to Crop Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6513-6524. [PMID: 28481096 DOI: 10.1021/acs.jafc.7b01302] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
As the world population increases, strategies for sustainable agriculture are needed to fulfill the global need for plants for food and other commercial products. Nanoparticle formulations are likely to be part of the developing strategies. CuO and ZnO nanoparticles (NPs) offer potential as fertilizers, as they provide bioavailable essential metals, and as pesticides, because of dose-dependent toxicity. Effects of these metal oxide NPs on rhizosphere functions are the focus of this review. These NPs at doses of ≥10 mg metal/kg change the production of key metabolites involved in plant protection in a root-associated microbe, Pseudomonas chlororaphis O6. Altered synthesis occurs in the microbe for phenazines, which function in plant resistance to pathogens, the pyoverdine-like siderophore that enhances Fe bioavailability in the rhizosphere and indole-3-acetic acid affecting plant growth. In wheat seedlings, reprogramming of root morphology involves increases in root hair proliferation (CuO NPs) and lateral root formation (ZnO NPs). Systemic changes in wheat shoot gene expression point to altered regulation for metal stress resilience as well as the potential for enhanced survival under stress commonly encountered in the field. These responses to the NPs cross kingdoms involving the bacteria, fungi, and plants in the rhizosphere. Our challenge is to learn how to understand the value of these potential changes and successfully formulate the NPs for optimal activity in the rhizosphere of crop plants. These formulations may be integrated into developing practices to ensure the sustainability of crop production.
Collapse
Affiliation(s)
- Anne J Anderson
- Department of Biology , Utah State University , Logan , Utah 84322-5305 , United States
| | - Joan E McLean
- Department of Civil and Environmental Engineering, Utah Water Research Laboratory , Utah State University , Logan , Utah 84322-8200 , United States
| | - Astrid R Jacobson
- Department of Plants, Soils and Climate , Utah State University , Logan , Utah 84322-4820 , United States
| | - David W Britt
- Department of Bioengineering , Utah State University , Logan , Utah 84322-4105 , United States
| |
Collapse
|
44
|
Wilkinson HN, Iveson S, Catherall P, Hardman MJ. A Novel Silver Bioactive Glass Elicits Antimicrobial Efficacy Against Pseudomonas aeruginosa and Staphylococcus aureus in an ex Vivo Skin Wound Biofilm Model. Front Microbiol 2018; 9:1450. [PMID: 30018606 PMCID: PMC6037725 DOI: 10.3389/fmicb.2018.01450] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 06/11/2018] [Indexed: 11/28/2022] Open
Abstract
Biofilm infection is now understood to be a potent contributor to the recalcitrant nature of chronic wounds. Bacterial biofilms evade the host immune response and show increased resistance to antibiotics. Along with improvements in antibiotic stewardship, effective new anti-biofilm therapies are urgently needed for effective wound management. Previous studies have shown that bioactive glass (Bg) is able to promote healing with moderate bactericidal activity. Here we tested the antimicrobial efficacy of a novel BG incorporating silver (BgAg), against both planktonic and biofilm forms of the wound-relevant bacteria Pseudomonas aeruginosa and Staphylococcus aureus. BgAg was stable, long lasting, and potently effective against planktonic bacteria in time-kill assays (6-log reduction in bacterial viability within 2 h) and in agar diffusion assays. BgAg reduced bacterial load in a physiologically relevant ex vivo porcine wound biofilm model; P. aeruginosa (2-log reduction) and S. aureus (3-log reduction). BgAg also conferred strong effects against P. aeruginosa biofilm virulence, reducing both protease activity and virulence gene expression. Co-culture biofilms appeared more resistant to BgAg, where a selective reduction in S. aureus was observed. Finally, BgAg was shown to benefit the host response to biofilm infection, directly reducing host tissue cell death. Taken together, the findings provide evidence that BgAg elicits potent antimicrobial effects against planktonic and single-species biofilms, with beneficial effects on the host tissue response. Further investigations are required to elucidate the specific consequences of BG administration on polymicrobial biofilms, and further explore the effects on host-microbe interactions.
Collapse
Affiliation(s)
| | - Sammi Iveson
- School of Life Sciences, University of Hull, Hull, United Kingdom
| | | | | |
Collapse
|
45
|
Powell LC, Pritchard MF, Ferguson EL, Powell KA, Patel SU, Rye PD, Sakellakou SM, Buurma NJ, Brilliant CD, Copping JM, Menzies GE, Lewis PD, Hill KE, Thomas DW. Targeted disruption of the extracellular polymeric network of Pseudomonas aeruginosa biofilms by alginate oligosaccharides. NPJ Biofilms Microbiomes 2018; 4:13. [PMID: 29977590 PMCID: PMC6026129 DOI: 10.1038/s41522-018-0056-3] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 05/20/2018] [Accepted: 06/06/2018] [Indexed: 11/29/2022] Open
Abstract
Acquisition of a mucoid phenotype by Pseudomonas sp. in the lungs of cystic fibrosis (CF) patients, with subsequent over-production of extracellular polymeric substance (EPS), plays an important role in mediating the persistence of multi-drug resistant (MDR) infections. The ability of a low molecular weight (Mn = 3200 g mol−1) alginate oligomer (OligoG CF-5/20) to modify biofilm structure of mucoid Pseudomonas aeruginosa (NH57388A) was studied in vitro using scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM) with Texas Red (TxRd®)-labelled OligoG and EPS histochemical staining. Structural changes in treated biofilms were quantified using COMSTAT image-analysis software of CLSM z-stack images, and nanoparticle diffusion. Interactions between the oligomers, Ca2+ and DNA were studied using molecular dynamics (MD) simulations, Fourier transform infrared spectroscopy (FTIR) and isothermal titration calorimetry (ITC). Imaging demonstrated that OligoG treatment (≥0.5%) inhibited biofilm formation, revealing a significant reduction in both biomass and biofilm height (P < 0.05). TxRd®-labelled oligomers readily diffused into established (24 h) biofilms. OligoG treatment (≥2%) induced alterations in the EPS of established biofilms; significantly reducing the structural quantities of EPS polysaccharides, and extracellular (e)DNA (P < 0.05) with a corresponding increase in nanoparticle diffusion (P < 0.05) and antibiotic efficacy against established biofilms. ITC demonstrated an absence of rapid complex formation between DNA and OligoG and confirmed the interactions of OligoG with Ca2+ evident in FTIR and MD modelling. The ability of OligoG to diffuse into biofilms, potentiate antibiotic activity, disrupt DNA-Ca2+-DNA bridges and biofilm EPS matrix highlights its potential for the treatment of biofilm-related infections. Small carbohydrate molecules derived from marine algae show potential for inhibiting biofilm formation in multi-drug resistant infections. A research team led by Lydia Powell at Cardiff University, UK, investigated the action of carbohydrates called alginate oligosaccharides, composed of a small number of linked sugar molecules. The oligosaccharides modified and disrupted the structure of cultured biofilms of Pseudomonas aeruginosa, the cause of many serious drug resistant infections. This effect significantly inhibited the formation and maintenance of the biofilm state, which is known to be a crucial factor allowing the bacteria to resist drug treatment. Antibiotics proved more effective following the oligosaccharide intervention. The researchers uncovered key molecular details involved in the ability of the oligosaccharides to diffuse into and disrupt biofilms. The therapeutic potential of these small carbohydrates is currently being investigated in clinical trials.
Collapse
Affiliation(s)
- Lydia C Powell
- 1Advanced Therapies Group, Cardiff University School of Dentistry, Heath Park, Cardiff, CF14 4XY UK
| | - Manon F Pritchard
- 1Advanced Therapies Group, Cardiff University School of Dentistry, Heath Park, Cardiff, CF14 4XY UK
| | - Elaine L Ferguson
- 1Advanced Therapies Group, Cardiff University School of Dentistry, Heath Park, Cardiff, CF14 4XY UK
| | - Kate A Powell
- 1Advanced Therapies Group, Cardiff University School of Dentistry, Heath Park, Cardiff, CF14 4XY UK
| | - Shree U Patel
- 1Advanced Therapies Group, Cardiff University School of Dentistry, Heath Park, Cardiff, CF14 4XY UK
| | | | | | - Niklaas J Buurma
- 3Physical Organic Chemistry Centre, School of Chemistry, Cardiff University, Cardiff, UK
| | | | - Jack M Copping
- 4Respiratory Diagnostics Group, Swansea University, Swansea, UK
| | | | - Paul D Lewis
- 4Respiratory Diagnostics Group, Swansea University, Swansea, UK
| | - Katja E Hill
- 1Advanced Therapies Group, Cardiff University School of Dentistry, Heath Park, Cardiff, CF14 4XY UK
| | - David W Thomas
- 1Advanced Therapies Group, Cardiff University School of Dentistry, Heath Park, Cardiff, CF14 4XY UK
| |
Collapse
|
46
|
The Pseudomonas aeruginosa PrrF1 and PrrF2 Small Regulatory RNAs Promote 2-Alkyl-4-Quinolone Production through Redundant Regulation of the antR mRNA. J Bacteriol 2018; 200:JB.00704-17. [PMID: 29507088 DOI: 10.1128/jb.00704-17] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/01/2018] [Indexed: 01/10/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen that requires iron for growth and virulence. Under low-iron conditions, P. aeruginosa transcribes two highly identical (95%) small regulatory RNAs (sRNAs), PrrF1 and PrrF2, which are required for virulence in acute murine lung infection models. The PrrF sRNAs promote the production of 2-akyl-4(1H)-quinolone metabolites (AQs) that mediate a range of biological activities, including quorum sensing and polymicrobial interactions. Here, we show that the PrrF1 and PrrF2 sRNAs promote AQ production by redundantly inhibiting translation of antR, which encodes a transcriptional activator of the anthranilate degradation genes. A combination of genetic and biophysical analyses was used to define the sequence requirements for PrrF regulation of antR, demonstrating that the PrrF sRNAs interact with the antR 5' untranslated region (UTR) at sequences overlapping the translational start site of this mRNA. The P. aeruginosa Hfq protein interacted with UA-rich sequences in both PrrF sRNAs (Kd [dissociation constant] = 50 nM and 70 nM). Hfq bound with lower affinity to the antR mRNA (0.3 μM), and PrrF was able to bind to antR mRNA in the absence of Hfq. Nevertheless, Hfq increased the rate of PrrF annealing to the antR UTR by 10-fold. These studies provide a mechanistic description of how the PrrF1 and PrrF2 sRNAs mediate virulence traits, such as AQ production, in P. aeruginosaIMPORTANCE The iron-responsive PrrF sRNAs play a central role in regulating P. aeruginosa iron homeostasis and pathogenesis, yet the molecular mechanisms by which PrrF regulates gene expression are largely unknown. In this study, we used genetic and biophysical analyses to define the interactions of the PrrF sRNAs with Hfq, an RNA annealer, and the antR mRNA, which has downstream effects on quorum sensing and virulence factor production. These studies provide a comprehensive mechanistic analysis of how the PrrF sRNAs regulate virulence trait production through a key mRNA target in P. aeruginosa.
Collapse
|
47
|
Anupama R, Sajitha Lulu S, Mukherjee A, Babu S. Cross-regulatory network in Pseudomonas aeruginosa biofilm genes and TiO 2 anatase induced molecular perturbations in key proteins unraveled by a systems biology approach. Gene 2018; 647:289-296. [DOI: 10.1016/j.gene.2018.01.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 12/25/2017] [Accepted: 01/10/2018] [Indexed: 12/22/2022]
|
48
|
Little AS, Okkotsu Y, Reinhart AA, Damron FH, Barbier M, Barrett B, Oglesby-Sherrouse AG, Goldberg JB, Cody WL, Schurr MJ, Vasil ML, Schurr MJ. Pseudomonas aeruginosa AlgR Phosphorylation Status Differentially Regulates Pyocyanin and Pyoverdine Production. mBio 2018; 9:e02318-17. [PMID: 29382736 PMCID: PMC5790918 DOI: 10.1128/mbio.02318-17] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 12/31/2022] Open
Abstract
Pseudomonas aeruginosa employs numerous, complex regulatory elements to control expression of its many virulence systems. The P. aeruginosa AlgZR two-component regulatory system controls the expression of several crucial virulence phenotypes. We recently determined, through transcriptomic profiling of a PAO1 ΔalgR mutant strain compared to wild-type PAO1, that algZR and hemCD are cotranscribed and show differential iron-dependent gene expression. Previous expression profiling was performed in strains without algR and revealed that AlgR acts as either an activator or repressor, depending on the gene. Thus, examination of P. aeruginosa gene expression from cells locked into different AlgR phosphorylation states reveals greater physiological relevance. Therefore, gene expression from strains carrying algR alleles encoding a phosphomimetic (AlgR D54E) or a phosphoablative (AlgR D54N) form were compared by microarray to PAO1. Transcriptome analyses of these strains revealed 25 differentially expressed genes associated with iron siderophore biosynthesis or heme acquisition or production. The PAO1 algR D54N mutant produced lower levels of pyoverdine but increased expression of the small RNAs prrf1 and prrf2 compared to PAO1. In contrast, the algR D54N mutant produced more pyocyanin than wild-type PAO1. On the other hand, the PAO1 algR D54E mutant produced higher levels of pyoverdine, likely due to increased expression of an iron-regulated gene encoding the sigma factor pvdS, but it had decreased pyocyanin production. AlgR specifically bound to the prrf2 and pvdS promoters in vitro AlgR-dependent pyoverdine production was additionally influenced by carbon source rather than the extracellular iron concentration per se AlgR phosphorylation effects were also examined in a Drosophila melanogaster feeding, murine acute pneumonia, and punch wound infection models. Abrogation of AlgR phosphorylation attenuated P. aeruginosa virulence in these infection models. These results show that the AlgR phosphorylation state can directly, as well as indirectly, modulate the expression of iron acquisition genes that may ultimately impact the ability of P. aeruginosa to establish and maintain an infection.IMPORTANCE Pyoverdine and pyocyanin production are well-known P. aeruginosa virulence factors that obtain extracellular iron from the environment and from host proteins in different manners. Here, we show that the AlgR phosphorylation state inversely controls pyoverdine and pyocyanin production and that this control is carbon source dependent. P. aeruginosa expressing AlgR D54N, mimicking the constitutively unphosphorylated state, produced more pyocyanin than cells expressing wild-type AlgR. In contrast, a strain expressing an AlgR phosphomimetic (AlgR D54E) produced higher levels of pyoverdine. Pyoverdine production was directly controlled through the prrf2 small regulatory RNA and the pyoverdine sigma factor, PvdS. Abrogating pyoverdine or pyocyanin gene expression has been shown to attenuate virulence in a variety of models. Moreover, the inability to phosphorylate AlgR attenuates virulence in three different models, a Drosophila melanogaster feeding model, a murine acute pneumonia model, and a wound infection model. Interestingly, AlgR-dependent pyoverdine production was responsive to carbon source, indicating that this regulation has additional complexities that merit further study.
Collapse
Affiliation(s)
- Alexander S. Little
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Yuta Okkotsu
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Alexandria A. Reinhart
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - F. Heath Damron
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Mariette Barbier
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Brandon Barrett
- Department of Biology, University of Dallas, Irving, Texas, USA
| | - Amanda G. Oglesby-Sherrouse
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Joanna B. Goldberg
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Center for Cystic Fibrosis and Airways Disease Research, Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - William L. Cody
- Department of Biology, University of Dallas, Irving, Texas, USA
| | - Michael J. Schurr
- Department of Surgery, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Michael L. Vasil
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Michael J. Schurr
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
49
|
Skariyachan S, Sridhar VS, Packirisamy S, Kumargowda ST, Challapilli SB. Recent perspectives on the molecular basis of biofilm formation by Pseudomonas aeruginosa and approaches for treatment and biofilm dispersal. Folia Microbiol (Praha) 2018; 63:413-432. [PMID: 29352409 DOI: 10.1007/s12223-018-0585-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 01/12/2018] [Indexed: 12/25/2022]
Abstract
Pseudomonas aeruginosa, a Gram-negative, rod-shaped bacterium causes widespread diseases in humans. This bacterium is frequently related to nosocomial infections such as pneumonia, urinary tract infections (UTIs) and bacteriaemia especially in immunocompromised patients. The current review focuses on the recent perspectives on biofilms formation by these bacteria. Biofilms are communities of microorganisms in which cells stick to each other and often adhere to a surface. These adherent cells are usually embedded within a self-produced matrix of extracellular polymeric substance (EPS). Pel, psl and alg operons present in P. aeruginosa are responsible for the biosynthesis of extracellular polysaccharide which plays an important role in cell surface interactions during biofilm formation. Recent studies suggested that cAMP signalling pathway, quorum-sensing pathway, Gac/Rsm pathway and c-di-GMP signalling pathway are the main mechanism that leads to the biofilm formation. Understanding the bacterial virulence depends on a number of cell-associated and extracellular factors and is very essential for the development of potential drug targets. Thus, the review focuses on the major genes involved in the biofilm formation, the state of art update on the biofilm treatment and the dispersal approaches such as targeting adhesion and maturation, targeting virulence factors and other strategies such as small molecule-based inhibitors, phytochemicals, bacteriophage therapy, photodynamic therapy, antimicrobial peptides and natural therapies and vaccines to curtail the biofilm formation by P. aeruginosa.
Collapse
Affiliation(s)
- Sinosh Skariyachan
- Department of Biotechnology, R & D Centre, Dayananda Sagar College of Engineering, Bangalore, Karnataka, 560 078, India.
| | - Vaishnavi Sneha Sridhar
- Department of Biotechnology, R & D Centre, Dayananda Sagar College of Engineering, Bangalore, Karnataka, 560 078, India
| | - Swathi Packirisamy
- Department of Biotechnology, R & D Centre, Dayananda Sagar College of Engineering, Bangalore, Karnataka, 560 078, India
| | - Supreetha Toplar Kumargowda
- Department of Biotechnology, R & D Centre, Dayananda Sagar College of Engineering, Bangalore, Karnataka, 560 078, India
| | - Sneha Basavaraj Challapilli
- Department of Biotechnology, R & D Centre, Dayananda Sagar College of Engineering, Bangalore, Karnataka, 560 078, India
| |
Collapse
|
50
|
Ferric Uptake Regulator Fur Is Conditionally Essential in Pseudomonas aeruginosa. J Bacteriol 2017; 199:JB.00472-17. [PMID: 28847923 DOI: 10.1128/jb.00472-17] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 08/23/2017] [Indexed: 12/13/2022] Open
Abstract
In Pseudomonas aeruginosa, the ferric uptake regulator (Fur) protein controls both metabolism and virulence in response to iron availability. Differently from other bacteria, attempts to obtain fur deletion mutants of P. aeruginosa failed, leading to the assumption that Fur is an essential protein in this bacterium. By investigating a P. aeruginosa conditional fur mutant, we demonstrate that Fur is not essential for P. aeruginosa growth in liquid media, biofilm formation, and pathogenicity in an insect model of infection. Conversely, Fur is essential for growth on solid media since Fur-depleted cells are severely impaired in colony formation. Transposon-mediated random mutagenesis experiments identified pyochelin siderophore biosynthesis as a major cause of the colony growth defect of the conditional fur mutant, and deletion mutagenesis confirmed this evidence. Impaired colony growth of pyochelin-proficient Fur-depleted cells does not depend on oxidative stress, since Fur-depleted cells do not accumulate higher levels of reactive oxygen species (ROS) and are not rescued by antioxidant agents or overexpression of ROS-detoxifying enzymes. Ectopic expression of pch genes revealed that pyochelin production has no inhibitory effects on a fur deletion mutant of Pseudomonas syringae pv. tabaci, suggesting that the toxicity of the pch locus in Fur-depleted cells involves a P. aeruginosa-specific pathway(s).IMPORTANCE Members of the ferric uptake regulator (Fur) protein family are bacterial transcriptional repressors that control iron uptake and storage in response to iron availability, thereby playing a crucial role in the maintenance of iron homeostasis. While fur null mutants of many bacteria have been obtained, Fur appears to be essential in Pseudomonas aeruginosa for still unknown reasons. We obtained Fur-depleted P. aeruginosa cells by conditional mutagenesis and showed that Fur is dispensable for planktonic growth, while it is required for colony formation. This is because Fur protects P. aeruginosa colonies from toxicity exerted by the pyochelin siderophore. This work provides a functional basis to the essentiality of Fur in P. aeruginosa and highlights unique properties of the Fur regulon in this species.
Collapse
|