1
|
Zhou J, Liu J, Wang D, Ruan Y, Gong S, Gou J, Zou X. Fungal communities are more sensitive to mildew than bacterial communities during tobacco storage processes. Appl Microbiol Biotechnol 2024; 108:88. [PMID: 38194134 DOI: 10.1007/s00253-023-12882-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/09/2023] [Accepted: 12/14/2023] [Indexed: 01/10/2024]
Abstract
Mildew poses a significant threat to tobacco production; however, there is limited information on the structure of the abundant and rare microbial subcommunities in moldy tobacco leaves. In this study, we employed high-throughput sequencing technology to discern the disparities in the composition, diversity, and co-occurrence patterns of abundant and rare fungal and bacterial subcommunities between moldy and normal tobacco leaves collected from Guizhou, Shanghai, and Jilin provinces, China. Furthermore, we explored the correlation between microorganisms and metabolites by integrating the metabolic profiles of moldy and normal tobacco leaves. The results showed that the fungi are more sensitive to mildew than bacteria, and that the fungal abundant taxa exhibit greater resistance and environmental adaptability than the rare taxa. The loss of rare taxa results in irreversible changes in the diversity, richness, and composition of the fungal community. Moreover, rare fungal taxa and abundant bacterial taxa played crucial roles in maintaining the stability and functionality of the tobacco microecosystem. In moldy tobacco, however, the disappearance of rare taxa as key nodes resulted in reduced connectivity and stability within the fungal network. In addition, metabolomic analysis showed that the contents of indoles, pyridines, polyketones, phenols, and peptides were significantly enriched in the moldy tobacco leaves, while the contents of amino acids, carbohydrates, lipids, and other compounds were significantly reduced in these leaves. Most metabolites showed negative correlations with Dothideomycetes, Alphaproteobacteria, and Gammaproteobacteria, but showed positive correlations with Eurotiales and Bacilli. This study has demonstrated that abundant fungal taxa are the predominant biological agents responsible for tobacco mildew, while bacteria may indirectly contribute to this process through the production and degradation of metabolites. KEY POINTS: • Fungi exhibited greater sensitivity to mildew of tobacco leaf compared to bacteria • Rare fungal taxa underwent significant damage during the mildew process • Mildew may damage the defense system of the tobacco leaf microecosystem.
Collapse
Affiliation(s)
- Jiaxi Zhou
- Department of Ecology / Institute of Fungus Resources, College of Life Sciences, Guizhou University, Guiyang, China
- Postdoctoral Research Workstation of China Tobacco Guizhou Industrial Co. Ltd, Guiyang, China
- China Tobacco Guizhou Industrial Co. Ltd, Guiyang, China
| | - Jing Liu
- Guizhou Tobacco Company Zunyi Branch, Zunyi, China
| | - Dongfei Wang
- China Tobacco Guizhou Industrial Co. Ltd, Guiyang, China
| | - Yibin Ruan
- China Tobacco Guizhou Industrial Co. Ltd, Guiyang, China
| | - Shuang Gong
- China Tobacco Guizhou Industrial Co. Ltd, Guiyang, China
| | - Jianyu Gou
- Guizhou Tobacco Company Zunyi Branch, Zunyi, China
| | - Xiao Zou
- Department of Ecology / Institute of Fungus Resources, College of Life Sciences, Guizhou University, Guiyang, China.
| |
Collapse
|
2
|
Akumuntu A, Jho EH, Park SJ, Hong JK. Food waste biochar for sustainable agricultural use: Effects on soil enzymes, microbial community, lettuce, and earthworms. CHEMOSPHERE 2024; 366:143552. [PMID: 39419328 DOI: 10.1016/j.chemosphere.2024.143552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
This study investigates the effects of food waste biochar (FWB) on the biological properties of soil, including the microbial community structure, enzyme activities, lettuce growth, and earthworm ecotoxicity. This holistic assessment of various soil organisms was used to assess the potential of FWB as a soil amendment strategy. Pot experiments were carried out over a 28-d period using various FWB concentrations in soil (0-3% w/w). The presence of FWB enhanced the activity of alkaline phosphatase and beta-glucosidase in proportion to the FWB concentration. Similarly, the dehydrogenase activity after 28 d was positively correlated with the FWB concentration. Notably, the application of FWB improved the bacterial diversity in the soil, particularly among hydrocarbonoclastic bacteria, while also prompting a shift in the fungal community structure at the class level. Measures of lettuce growth, including total fresh weight, shoot length, and leaf number, also generally improved with the addition of FWB, particularly at higher concentrations. Importantly, FWB did not adversely affect the survival or weight of earthworms. Collectively, these findings suggest that FWB can enhance soil microbial enzyme activity and support plant growth-promoting rhizobacteria, potentially leading to increased crop yields. This highlights the potential of FWB as an eco-friendly soil amendment strategy.
Collapse
Affiliation(s)
- Athanasie Akumuntu
- Department of Agricultural and Biological Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Eun Hea Jho
- Department of Agricultural and Biological Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea; Center of SEBIS (Strategic Solutions for Environmental Blindspots in the Interest of Society), Seoul, 03760, Republic of Korea.
| | - Seong-Jik Park
- Department of Bioresources and Rural Systems Engineering, Hankyong National University, Anseong, 17579, Republic of Korea
| | - Jin-Kyung Hong
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, 26493, Republic of Korea.
| |
Collapse
|
3
|
Litchman E, Villéger S, Zinger L, Auguet JC, Thuiller W, Munoz F, Kraft NJB, Philippot L, Violle C. Refocusing the microbial rare biosphere concept through a functional lens. Trends Ecol Evol 2024; 39:923-936. [PMID: 38987022 DOI: 10.1016/j.tree.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 07/12/2024]
Abstract
The influential concept of the rare biosphere in microbial ecology has underscored the importance of taxa occurring at low abundances yet potentially playing key roles in communities and ecosystems. Here, we refocus the concept of rare biosphere through a functional trait-based lens and provide a framework to characterize microbial functional rarity, a combination of numerical scarcity across space or time and trait distinctiveness. We demonstrate how this novel interpretation of the rare biosphere, rooted in microbial functions, can enhance our mechanistic understanding of microbial community structure. It also sheds light on functionally distinct microbes, directing conservation efforts towards taxa harboring rare yet ecologically crucial functions.
Collapse
Affiliation(s)
- Elena Litchman
- Department of Global Ecology, Carnegie Institution for Science, Stanford, CA, USA; Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA.
| | | | - Lucie Zinger
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, Paris, France; Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), UMR 5300, CNRS, Institut de Recherche pour le Développement (IRD), Toulouse INP, Université Toulouse 3 Paul Sabatier, Toulouse, France
| | | | - Wilfried Thuiller
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, F-38000 Grenoble, France
| | - François Munoz
- Université Grenoble Alpes, CNRS, LIPhy, F-38000 Grenoble, France
| | - Nathan J B Kraft
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Laurent Philippot
- Université Bourgogne Franche-Comté, INRAE, Institut Agro Dijon, Agroecology, Dijon, France
| | - Cyrille Violle
- CEFE, Université Montpellier, CNRS, IRD, EPHE, Montpellier, France
| |
Collapse
|
4
|
Pereira H, Hoffman JI, Krüger O, Czirják GÁ, Rinaud T, Ottensmann M, Gladow KP, Caspers BA, Maraci Ö, Kaiser S, Chakarov N. The gut microbiota-immune-brain axis in a wild vertebrate: dynamic interactions and health impacts. Front Microbiol 2024; 15:1413976. [PMID: 39318435 PMCID: PMC11420037 DOI: 10.3389/fmicb.2024.1413976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/20/2024] [Indexed: 09/26/2024] Open
Abstract
The gut microbiota-immune-brain axis is a feedback network which influences diverse physiological processes and plays a pivotal role in overall health and wellbeing. Although research in humans and laboratory mice has shed light into the associations and mechanisms governing this communication network, evidence of such interactions in wild, especially in young animals, is lacking. We therefore investigated these interactions during early development in a population of common buzzards (Buteo buteo) and their effects on individual condition. In a longitudinal study, we used a multi-marker approach to establish potential links between the bacterial and eukaryotic gut microbiota, a panel of immune assays and feather corticosterone measurements as a proxy for long-term stress. Using Bayesian structural equation modeling, we found no support for feedback between gut microbial diversity and immune or stress parameters. However, we did find strong relationships in the feedback network. Immunity was negatively correlated with corticosterone levels, and microbial diversity was positively associated with nestling body condition. Furthermore, corticosterone levels and eukaryotic microbiota diversity decreased with age while immune activity increased. The absence of conclusive support for the microbiota-immune-brain axis in common buzzard nestlings, coupled with the evidence for stress mediated immunosuppression, suggests a dominating role of stress-dominated maturation of the immune system during early development. Confounding factors inherent to wild systems and developing animals might override associations known from adult laboratory model subjects. The positive association between microbial diversity and body condition indicates the potential health benefits of possessing a diverse and stable microbiota.
Collapse
Affiliation(s)
- Hugo Pereira
- Department of Animal Behaviour, Bielefeld University, Bielefeld, Germany
| | - Joseph I. Hoffman
- Department of Animal Behaviour, Bielefeld University, Bielefeld, Germany
- Department of Evolutionary Population Genetics, Bielefeld University, Bielefeld, Germany
- Joint Institute for Individualisation in a Changing Environment, Bielefeld University and University of Münster, Bielefeld, Germany
- British Antarctic Survey, Cambridge, United Kingdom
- Center for Biotechnology (CeBiTec), Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Oliver Krüger
- Department of Animal Behaviour, Bielefeld University, Bielefeld, Germany
- Joint Institute for Individualisation in a Changing Environment, Bielefeld University and University of Münster, Bielefeld, Germany
| | - Gábor Á. Czirják
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Tony Rinaud
- Department of Animal Behaviour, Bielefeld University, Bielefeld, Germany
| | - Meinolf Ottensmann
- Department of Animal Behaviour, Bielefeld University, Bielefeld, Germany
| | - Kai-Philipp Gladow
- Department of Animal Behaviour, Bielefeld University, Bielefeld, Germany
| | - Barbara A. Caspers
- Joint Institute for Individualisation in a Changing Environment, Bielefeld University and University of Münster, Bielefeld, Germany
- Department of Behavioural Ecology, Bielefeld University, Bielefeld, Germany
| | - Öncü Maraci
- Joint Institute for Individualisation in a Changing Environment, Bielefeld University and University of Münster, Bielefeld, Germany
- Department of Behavioural Ecology, Bielefeld University, Bielefeld, Germany
| | - Sylvia Kaiser
- Joint Institute for Individualisation in a Changing Environment, Bielefeld University and University of Münster, Bielefeld, Germany
- Department of Behavioural Biology, University of Münster, Münster, Germany
| | - Nayden Chakarov
- Department of Animal Behaviour, Bielefeld University, Bielefeld, Germany
- Joint Institute for Individualisation in a Changing Environment, Bielefeld University and University of Münster, Bielefeld, Germany
| |
Collapse
|
5
|
Zhang M, Li X, Oladeinde A, Rothrock M, Pokoo-Aikins A, Zock G. A Novel Slope-Matrix-Graph Algorithm to Analyze Compositional Microbiome Data. Microorganisms 2024; 12:1866. [PMID: 39338540 PMCID: PMC11434172 DOI: 10.3390/microorganisms12091866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
Networks are widely used to represent relationships between objects, including microorganisms within ecosystems, based on high-throughput sequencing data. However, challenges arise with appropriate statistical algorithms, handling of rare taxa, excess zeros in compositional data, and interpretation. This work introduces a novel Slope-Matrix-Graph (SMG) algorithm to identify microbiome correlations primarily based on slope-based distance calculations. SMG effectively handles any proportion of zeros in compositional data and involves: (1) searching for correlated relationships (e.g., positive and negative directions of changes) based on a "target of interest" within a setting, and (2) quantifying graph changes via slope-based distances between objects. Evaluations on simulated datasets demonstrated SMG's ability to accurately cluster microbes into distinct positive/negative correlation groups, outperforming methods like Bray-Curtis and SparCC in both sensitivity and specificity. Moreover, SMG demonstrated superior accuracy in detecting differential abundance (DA) compared to ZicoSeq and ANCOM-BC2, making it a robust tool for microbiome analysis. A key advantage is SMG's natural capacity to analyze zero-inflated compositional data without transformations. Overall, this simple yet powerful algorithm holds promise for diverse microbiome analysis applications.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Mathematics, University of North Georgia, 82 College Cir, Dahlonega, GA 30597, USA;
| | - Xiang Li
- U.S. National Poultry Research Center, Egg & Poultry Production Safety Research Unit, Agricultural Research Service, U.S. Department of Agriculture, 950 College Station Road, Athens, GA 30605, USA; (A.O.); (M.R.J.); (G.Z.)
| | - Adelumola Oladeinde
- U.S. National Poultry Research Center, Egg & Poultry Production Safety Research Unit, Agricultural Research Service, U.S. Department of Agriculture, 950 College Station Road, Athens, GA 30605, USA; (A.O.); (M.R.J.); (G.Z.)
| | - Michael Rothrock
- U.S. National Poultry Research Center, Egg & Poultry Production Safety Research Unit, Agricultural Research Service, U.S. Department of Agriculture, 950 College Station Road, Athens, GA 30605, USA; (A.O.); (M.R.J.); (G.Z.)
| | - Anthony Pokoo-Aikins
- U.S. National Poultry Research Center, Toxicology & Mycotoxin Research Unit, Agricultural Research Service, U.S. Department of Agriculture, 950 College Station Road, Athens, GA 30605, USA;
| | - Gregory Zock
- U.S. National Poultry Research Center, Egg & Poultry Production Safety Research Unit, Agricultural Research Service, U.S. Department of Agriculture, 950 College Station Road, Athens, GA 30605, USA; (A.O.); (M.R.J.); (G.Z.)
| |
Collapse
|
6
|
Ali A, Vishnivetskaya TA, Chauhan A. Comparative analysis of prokaryotic microbiomes in high-altitude active layer soils: insights from Ladakh and global analogues using In-Silico approaches. Braz J Microbiol 2024; 55:2437-2452. [PMID: 38758507 PMCID: PMC11405653 DOI: 10.1007/s42770-024-01365-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/08/2024] [Indexed: 05/18/2024] Open
Abstract
The active layer is the portion of soil overlaying the permafrost that freezes and thaws seasonally. It is a harsh habitat in which a varied and vigorous microbial population thrives. The high-altitude active layer soil in northern India is a unique and important cryo-ecosystem. However, its microbiology remains largely unexplored. It represents a unique reservoir for microbial communities with adaptability to harsh environmental conditions. In the Changthang region of Ladakh, the Tsokar area is a high-altitude permafrost-affected area situated in the southern part of Ladakh, at a height of 4530 m above sea level. Results of the comparison study with the QTP, Himalayan, Alaskan, Russian, Canadian and Polar active layers showed that the alpha diversity was significantly higher in the Ladakh and QTP active layers as the environmental condition of both the sites were similar. Moreover, the sampling site in the Ladakh region was in a thawing condition at the time of sampling which possibly provided nutrients and access to alternative nitrogen and carbon sources to the microorganisms thriving in it. Analysis of the samples suggested that the geochemical parameters and environmental conditions shape the microbial alpha diversity and community composition. Further analysis revealed that the cold-adapted methanogens were present in the Ladakh, Himalayan, Polar and Alaskan samples and absent in QTP, Russian and Canadian active layer samples. These methanogens could produce methane at slow rates in the active layer soils that could increase the atmospheric temperature owing to climate change.
Collapse
Affiliation(s)
- Ahmad Ali
- Department of Zoology, Panjab University, Sector 14, 160014, Chandigarh, India
| | | | - Archana Chauhan
- Department of Zoology, Panjab University, Sector 14, 160014, Chandigarh, India.
| |
Collapse
|
7
|
Gtari M, Maaoui R, Ghodhbane-Gtari F, Ben Slama K, Sbissi I. MAGs-centric crack: how long will, spore-positive Frankia and most Protofrankia, microsymbionts remain recalcitrant to axenic growth? Front Microbiol 2024; 15:1367490. [PMID: 39144212 PMCID: PMC11323853 DOI: 10.3389/fmicb.2024.1367490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/04/2024] [Indexed: 08/16/2024] Open
Abstract
Nearly 50 years after the ground-breaking isolation of the primary Comptonia peregrina microsymbiont under axenic conditions, efforts to isolate a substantial number of Protofrankia and Frankia strains continue with enduring challenges and complexities. This study aimed to streamline genomic insights through comparative and predictive tools to extract traits crucial for isolating specific Frankia in axenic conditions. Pangenome analysis unveiled significant genetic diversity, suggesting untapped potential for cultivation strategies. Shared metabolic strategies in cellular components, central metabolic pathways, and resource acquisition traits offered promising avenues for cultivation. Ecological trait extraction indicated that most uncultured strains exhibit no apparent barriers to axenic growth. Despite ongoing challenges, potential caveats, and errors that could bias predictive analyses, this study provides a nuanced perspective. It highlights potential breakthroughs and guides refined cultivation strategies for these yet-uncultured strains. We advocate for tailored media formulations enriched with simple carbon sources in aerobic environments, with atmospheric nitrogen optionally sufficient to minimize contamination risks. Temperature adjustments should align with strain preferences-28-29°C for Frankia and 32-35°C for Protofrankia-while maintaining an alkaline pH. Given potential extended incubation periods (predicted doubling times ranging from 3.26 to 9.60 days, possibly up to 21.98 days), patience and rigorous contamination monitoring are crucial for optimizing cultivation conditions.
Collapse
Affiliation(s)
- Maher Gtari
- Department of Biological and Chemical Engineering, USCR Molecular Bacteriology and Genomics, National Institute of Applied Sciences and Technology, University of Carthage, Tunis, Tunisia
| | - Radhi Maaoui
- Department of Biological and Chemical Engineering, USCR Molecular Bacteriology and Genomics, National Institute of Applied Sciences and Technology, University of Carthage, Tunis, Tunisia
| | - Faten Ghodhbane-Gtari
- Department of Biological and Chemical Engineering, USCR Molecular Bacteriology and Genomics, National Institute of Applied Sciences and Technology, University of Carthage, Tunis, Tunisia
- Higher Institute of Biotechnology Sidi Thabet, University of La Manouba, Tunisia
| | - Karim Ben Slama
- LR Bioresources, Environment, and Biotechnology (LR22ES04), Higher Institute of Applied Biological Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Imed Sbissi
- LR Pastoral Ecology, Arid Regions Institute, University of Gabes, Medenine, Tunisia
| |
Collapse
|
8
|
Baptista MS, Lee CK, Monteiro MR, Torgo L, Cary SC, Magalhães C. Soils of two Antarctic Dry Valleys exhibit unique microbial community structures in response to similar environmental disturbances. ENVIRONMENTAL MICROBIOME 2024; 19:52. [PMID: 39060935 PMCID: PMC11282855 DOI: 10.1186/s40793-024-00587-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 06/30/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Isolating the effects of deterministic variables (e.g., physicochemical conditions) on soil microbial communities from those of neutral processes (e.g., dispersal) remains a major challenge in microbial ecology. In this study, we disturbed soil microbial communities of two McMurdo Dry Valleys of Antarctica exhibiting distinct microbial biogeographic patterns, both devoid of aboveground biota and different in macro- and micro-physicochemical conditions. We modified the availability of water, nitrogen, carbon, copper ions, and sodium chloride salts in a laboratory-based experiment and monitored the microbial communities for up to two months. Our aim was to mimic a likely scenario in the near future, in which similar selective pressures will be applied to both valleys. We hypothesized that, given their unique microbial communities, the two valleys would select for different microbial populations when subjected to the same disturbances. RESULTS The two soil microbial communities, subjected to the same disturbances, did not respond similarly as reflected in both 16S rRNA genes and transcripts. Turnover of the two microbial communities showed a contrasting response to the same environmental disturbances and revealed different potentials for adaptation to change. These results suggest that the heterogeneity between these microbial communities, reflected in their strong biogeographic patterns, was maintained even when subjected to the same selective pressure and that the 'rare biosphere', at least in these samples, were deeply divergent and did not act as a reservoir for microbiota that enabled convergent responses to change in environmental conditions. CONCLUSIONS Our findings strongly support the occurrence of endemic microbial communities that show a structural resilience to environmental disturbances, spanning a wide range of physicochemical conditions. In the highly arid and nutrient-limited environment of the Dry Valleys, these results provide direct evidence of microbial biogeographic patterns that can shape the communities' response in the face of future environmental changes.
Collapse
Affiliation(s)
- Mafalda S Baptista
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
- International Centre for Terrestrial Antarctic Research, University of Waikato, Hamilton, New Zealand
| | - Charles K Lee
- International Centre for Terrestrial Antarctic Research, University of Waikato, Hamilton, New Zealand
- School of Science, University of Waikato, Hamilton, New Zealand
| | | | - Luís Torgo
- Faculty of Sciences, University of Porto, Porto, Portugal
- Ocean Frontier Institute, Dalhousie University, Halifax, NS, Canada
| | - S Craig Cary
- International Centre for Terrestrial Antarctic Research, University of Waikato, Hamilton, New Zealand
- School of Science, University of Waikato, Hamilton, New Zealand
| | - Catarina Magalhães
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal.
- Faculty of Sciences, University of Porto, Porto, Portugal.
- Ocean Frontier Institute, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
9
|
Bernardin JR, Gray SM, Bittleston LS. Arthropod prey type drives decomposition rates and microbial community processes. Appl Environ Microbiol 2024; 90:e0039424. [PMID: 38916291 PMCID: PMC11267907 DOI: 10.1128/aem.00394-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/03/2024] [Indexed: 06/26/2024] Open
Abstract
Microbial communities perform various functions, many of which contribute to ecosystem-level nutrient cycling via decomposition. Factors influencing leaf detrital decomposition are well understood in terrestrial and aquatic ecosystems, but much less is known about arthropod detrital inputs. Here, we sought to infer how differences in arthropod detritus affect microbial-driven decomposition and community function in a carnivorous pitcher plant, Sarracenia purpurea. Using sterile mesh bags filled with different types of sterile arthropod prey, we assessed if prey type influenced the rate of decomposition in pitcher plants over 7 weeks. Additionally, we measured microbial community composition and function, including hydrolytic enzyme activity and carbon substrate use. When comparing decomposition rates, we found that ant and beetle prey with higher exoskeleton content lost less mass compared with fly prey. We observed the highest protease activity in the fly treatment, which had the lowest exoskeleton content. Additionally, we saw differences in the pH of the pitcher fluid, driven by the ant treatment which had the lowest pH. According to our results from 16S rRNA gene metabarcoding, prey treatments with the highest bacterial amplicon sequence variant (ASV) richness (ant and beetle) were associated with prey that lost a lower proportion of mass over the 7 weeks. Overall, arthropod detritus provides unique nutrient sources to decomposer communities, with different prey influencing microbial hydrolytic enzyme activity and composition. IMPORTANCE Microbial communities play pivotal roles in nutrient cycling via decomposition and nutrient transformation; however, it is often unclear how different substrates influence microbial activity and community composition. Our study highlights how different types of insects influence decomposition and, in turn, microbial composition and function. We use the aquatic pools found in a carnivorous pitcher plant as small, discrete ecosystems that we can manipulate and study independently. We find that some insect prey (flies) breaks down faster than others (beetles or ants) likely because flies contain more things that are easy for microbes to eat and derive essential nutrients from. This is also reflected in higher enzyme activity in the microbes decomposing the flies. Our work bridges a knowledge gap about how different substrates affect microbial decomposition, contributing to the broader understanding of ecosystem function in a nutrient cycling context.
Collapse
Affiliation(s)
| | - Sarah M. Gray
- Department of Biology-Ecology and Evolution, University of Fribourg, Fribourg, Switzerland
| | | |
Collapse
|
10
|
Dannenmann M, Le Moigne A, Hofer C, Pernthaler J. Centimetre scale functional dispersal limitation of freshwater copiotrophs. Environ Microbiol 2024; 26:e16682. [PMID: 39128858 DOI: 10.1111/1462-2920.16682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024]
Abstract
The freshwater microbiome harbours numerous copiotrophic bacteria that rapidly respond to elevated substrate concentrations. We hypothesized that their high centimetre-scale beta diversity in lake water translates into pronounced metabolic variability, and that a large fraction of microbial 'metabolic potential' originates from point sources such as fragile organic aggregates. Three experiments were conducted in pre-alpine Lake Zurich over the course of a harmful cyanobacterial bloom: Spatially explicit 9 ml 'syringe' samples were collected in situ at centimetre distances along with equally sized 'mixed' samples drawn from pre-homogenized lake water and incubated in BIOLOG EcoPlate substrate arrays. Fewer compounds promoted bacterial growth in the syringe than in the mixed samples, in particular during the pre- and late bloom periods. Community analysis of enrichments on three frequently utilized substrates revealed both pronounced heterogeneity and functional redundancy. Bacterial consortia had higher richness in mixed than in syringe samples and differed in composition. Members of the Enterobacter cloacae complex dominated the EcoPlate assemblages during the mid-bloom period irrespective of treatment or substrate. We conclude that small-scale functional dispersal limitation among free-living copiotrophs in lake water reduces local biotransformation potential, and that lacustrine blooms of harmful cyanobacteria can be environmental reservoirs for metabolically versatile potential pathogens.
Collapse
Affiliation(s)
- Marie Dannenmann
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
- Institute of Geological Sciences, Department of Earth Sciences, Freie Universität Berlin, Berlin, Germany
| | - Alizée Le Moigne
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
- Centre Eau Terre Environnement, Institut National de la Recherche Scientifique, Québec, Canada
| | - Cyrill Hofer
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Jakob Pernthaler
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Xi M, Wang Y, Yang J, Bi X, Zhong S, Duan T, He Y, Tu T, Qian X. Spatial distribution and community composition of endophytic fungi within Mussaenda pubescens stems. Fungal Biol 2024; 128:1815-1826. [PMID: 38876534 DOI: 10.1016/j.funbio.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 06/16/2024]
Abstract
Endophytic fungi, pivotal in facilitating plant co-evolution, significantly enhance plant growth, stress resistance, and environmental adaptability. Despite their importance, the spatial distribution of stem endophytic fungi (SEF) within host plants remains poorly characterized. Here, we employed high-throughput sequencing to conduct a comparative analysis of SEF communities in Mussaenda pubescens on a regional scale. Our findings reveal that whole-SEF communities were overwhelmingly dominated by members of the phylum Ascomycota, accounting for 85.9 %, followed by Basidiomycota at 13.9 %, and that alpha diversity within the whole-SEF community of M. pubescens remains relatively consistent across sampling sites. However, significant variation was observed within conditionally abundant taxa (CAT), conditionally rare or abundant taxa (CRAT), and conditionally rare taxa (CRT). Climatic factors emerged as the primary influence on SEF community distribution, followed by spatial distance and stem chemical properties. Neutral community modeling results suggested that both stochastic and deterministic processes play a role in shaping whole-SEF communities, with deterministic processes having a stronger influence on CRT subcommunities. Furthermore, the CRT co-occurrence network exhibited a more complex structure, characterized by higher values of network betweenness and degree relative to CAT and CRAT subcommunities. These findings enhance our understanding of community assembly and ecological interactions between stem fungal endophytes, presenting opportunities for harnessing fungal resources for the benefit of humanity.
Collapse
Affiliation(s)
- Meijuan Xi
- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yonglong Wang
- Faculty of Biological Science and Technology, Baotou Teacher's College, Baotou, China
| | - Juanjuan Yang
- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaohui Bi
- Shangqiu Institute of Quality Inspection and Technical Research, Shangqiu, China
| | - Shengen Zhong
- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tingting Duan
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Yimin He
- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tieyao Tu
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
| | - Xin Qian
- Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
12
|
Marsh KJ, Bearhop S, Harrison XA. Linking microbiome temporal dynamics to host ecology in the wild. Trends Microbiol 2024:S0966-842X(24)00132-X. [PMID: 38797653 DOI: 10.1016/j.tim.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/29/2024]
Abstract
Ignoring the dynamic nature of microbial communities risks underestimating the power of microbes to impact the health of their hosts. Microbiomes are thought to be important for host fitness, yet the coarse temporal scale and population-level focus of many studies precludes the ability to investigate the importance of among-individual variation in stability and identify the ecological contexts in which this variation matters. Here we briefly summarise current knowledge of temporal dynamics in wild host-associated microbial communities. We then discuss the implications of among-individual variation in microbiota stability and suggest analytical approaches for understanding these patterns. One major requirement is for future studies to conduct individual-level longitudinal analyses, with some systems already well set up for answering these questions.
Collapse
Affiliation(s)
- Kirsty J Marsh
- College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Cornwall, UK.
| | - Stuart Bearhop
- College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Cornwall, UK
| | - Xavier A Harrison
- College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Cornwall, UK.
| |
Collapse
|
13
|
Liu Q, Dong D, Jin Y, Wang Q, Zhao F, Wu L, Wang J, Ren H. Quorum sensing bacteria improve microbial networks stability and complexity in wastewater treatment plants. ENVIRONMENT INTERNATIONAL 2024; 187:108659. [PMID: 38678933 DOI: 10.1016/j.envint.2024.108659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/29/2024] [Accepted: 04/12/2024] [Indexed: 05/01/2024]
Abstract
Quorum-sensing bacteria (QSB) are crucial factors for microbial communication, yet their ecological role in wastewater treatment plants (WWTPs) remains unclear. Here, we developed a method to identify QSB by comparing 16S rRNA gene sequences. QSB in 388 activated sludge samples collected from 130 WWTPs across China primarily were identified as rare taxa and conditionally rare taxa. A co-occurrence network shared by all sludge communities revealed that QSB exhibited higher average clustering coefficient (0.46) than non-QSB (0.15). Individual sludge networks demonstrated that quorum sensing microbiomes were positively correlated with network robustness and network complexity, including average clustering coefficient and link density. We confirmed that QSB keystones and QSB nodes have a positive impact on network complexity by influencing network modularity through a structural equation model. Meanwhile, QSB communities directly contributed to maintaining network robustness (r = 0.29, P < 0.05). Hence, QSB play an important role in promoting network complexity and stability. Furthermore, QSB communities were positively associated with the functional composition of activated sludge communities (r = 0.33, P < 0.01), especially the denitrification capacity (r = 0.45, P < 0.001). Overall, we elucidated the ecological significance of QSB and provided support for QS-based regulation of activated sludge microbial communities.
Collapse
Affiliation(s)
- Qiuju Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Deyuan Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Ying Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Qian Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Fuzheng Zhao
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Linwei Wu
- College of Urban and Environmental Sciences, Peking University, Peking 100871, China
| | - Jinfeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China.
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| |
Collapse
|
14
|
Okoye AU, Selvarajan R, Chikere CB, Okpokwasili GC, Mearns K. Characterization and identification of long-chain hydrocarbon-degrading bacterial communities in long-term chronically polluted soil in Ogoniland: an integrated approach using culture-dependent and independent methods. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:30867-30885. [PMID: 38622422 PMCID: PMC11096258 DOI: 10.1007/s11356-024-33326-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/11/2024] [Indexed: 04/17/2024]
Abstract
Escalating oil consumption has resulted in an increase in accidental spills of petroleum hydrocarbons, causing severe environmental degradation, notably in vulnerable regions like the Niger Delta. Complex mixture of these hydrocarbons particularly long-chain alkanes presents unique challenges in restoration of polluted environment due to their chemical properties. This study aimed to investigate the long-chain hydrocarbon-degrading bacterial communities within long-term chronically polluted soil in Ogoniland, by utilizing both traditional cultivation methods and modern culture-independent techniques. Results revealed that surface-polluted soil (SPS) and subsurface soil (SPSS) exhibit significantly higher total organic carbon (TOC) ranging from 5.64 to 5.06% and total petroleum hydrocarbons (TPH) levels ranging from 36,775 ppm to 14,087 ppm, compared to unpolluted soil (UPS) with 1.97% TOC and 479 ppm TPH, respectively. Analysis of carbon chain lengths reveals the prevalence of longer-chain alkanes (C20-28) in the surface soil. Culture-dependent methods, utilizing crude oil enrichment (COE) and paraffin wax enrichment (PWE), yield 47 bacterial isolates subjected to a long-chain alkane degradation assay. Twelve bacterial strains demonstrate significant degradation abilities across all enriched media. Three bacterial members, namely Pseudomonas sp. (almA), Marinomonas sp. (almA), and Alteromonas (ladA), exhibit genes responsible for long-chain alkane degradation, demonstrating efficiency between 50 and 80%. Culture-independent analysis reveals that surface SPS samples exhibit greater species richness and diversity compared to subsurface SPSS samples. Proteobacteria dominates as the phylum in both soil sample types, ranging from 22.23 to 82.61%, with Firmicutes (0.2-2.22%), Actinobacteria (0.4-3.02%), and Acidobacteria (0.1-3.53%) also prevalent. Bacterial profiles at genus level revealed that distinct variations among bacterial populations between SPS and SPSS samples comprising number of hydrocarbon degraders and the functional predictions also highlight the presence of potential catabolic genes (nahAa, adh2, and cpnA) in the polluted soil. However, culture-dependent analysis only captured a few of the dominant members found in culture-independent analysis, implying that more specialized media or environments are needed to isolate more bacterial members. The findings from this study contribute valuable information to ecological and biotechnological aspects, aiding in the development of more effective bioremediation applications for restoring oil-contaminated environments.
Collapse
Affiliation(s)
- Amara Ukamaka Okoye
- Department of Microbiology, Faculty of Science, University of Port Harcourt, Port Harcourt, 500272, Nigeria
| | - Ramganesh Selvarajan
- Department of Environmental Science, Florida Campus, University of South Africa, Roodepoort, 1709, South Africa.
- Laboratory of Extraterrestrial Ocean Systems (LEOS), Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China.
| | - Chioma Blaise Chikere
- Department of Microbiology, Faculty of Science, University of Port Harcourt, Port Harcourt, 500272, Nigeria
- Department of Environmental Science, Florida Campus, University of South Africa, Roodepoort, 1709, South Africa
| | | | - Kevin Mearns
- Department of Environmental Science, Florida Campus, University of South Africa, Roodepoort, 1709, South Africa
| |
Collapse
|
15
|
Liu S, Liu R, Zhang S, Shen Q, Chen J, Ma H, Ge C, Hao L, Zhang J, Shi S, Pang C. The Contributions of Sub-Communities to the Assembly Process and Ecological Mechanisms of Bacterial Communities along the Cotton Soil-Root Continuum Niche Gradient. Microorganisms 2024; 12:869. [PMID: 38792699 PMCID: PMC11123189 DOI: 10.3390/microorganisms12050869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 05/26/2024] Open
Abstract
Soil microbes are crucial in shaping the root-associated microbial communities. In this study, we analyzed the effect of the soil-root niche gradient on the diversity, composition, and assembly of the bacterial community and co-occurrence network of two cotton varieties. The results revealed that the bacterial communities in cotton soil-root compartment niches exhibited a skewed species abundance distribution, dominated by abundant taxa showing a strong spatial specificity. The assembly processes of the rhizosphere bacterial communities were mainly driven by stochastic processes, dominated by the enrichment pattern and supplemented by the depletion pattern to recruit bacteria from the bulk soil, resulting in a more stable bacterial community. The assembly processes of the endosphere bacterial communities were determined by processes dominated by the depletion pattern and supplemented by the enrichment pattern to recruit species from the rhizosphere, resulting in a decrease in the stability and complexity of the community co-occurrence network. The compartment niche shaped the diversity of the bacterial communities, and the cotton variety genotype was an important source of diversity in bacterial communities within the compartment niche. We suggest that the moderate taxa contribute to significantly more changes in the diversity of the bacterial community than the rare and abundant taxa during the succession of bacterial communities in the cotton root-soil continuum.
Collapse
Affiliation(s)
- Shaodong Liu
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Ruihua Liu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Siping Zhang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Qian Shen
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Jing Chen
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Huijuan Ma
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Changwei Ge
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Lidong Hao
- Postdoctoral Mobile Station, Lanzhou University, Lanzhou 730000, China
| | - Jinshan Zhang
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Shubing Shi
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Chaoyou Pang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
16
|
Zheng B, Dong P, Zhao T, Deng Y, Li J, Song L, Wang J, Zhou L, Shi J, Wu Z. Strategies for regulating the intensity of different cyanobacterial blooms: Insights from the dynamics and stability of bacterioplankton communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170707. [PMID: 38325489 DOI: 10.1016/j.scitotenv.2024.170707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
The occurrence of cyanobacterial blooms is increasing in frequency and magnitude due to climate change and human activities, which poses a direct threat to drinking water security. The impacts of abiotic and biotic factors on the development of blooms have been well studied; however, control strategies for different bloom intensities have rarely been explored from the perspective of the dynamics and stability of bacterioplankton communities. Here, a network analysis was used to investigate the interactions and stability of microbial communities during different periods of R. raciborskii bloom in an inland freshwater lake. The abundance and diversity of rare taxa were significantly higher than that of abundant taxa throughout the bloom cycle. At the pre-bloom (PB) stage, microbial interactions among the different bacterial groups were weak but strongly negatively correlated, indicating low robustness and weak disturbance resistance within the community. However, community stability was better, and microbial interactions became more complicated at the high-bloom (HB) and low-bloom (LB) stages. Interestingly, rare taxa were significantly responsible for community stability and connectivity despite their low relative abundance. The Mantel test revealed that Secchi depth (SD), orthophosphate (PO43--P), and dissolved oxygen (DO) were significantly positively correlated with abundant taxa, rare taxa and PB. DO was significantly positively correlated with HB, intermediate taxa, and rare taxa, while water temperature (WT), N/P and total nitrogen (TN) were significantly positively correlated with LB, abundant taxa, intermediate taxa, and rare taxa. These findings suggest that reducing the PO43--P concentration at the PB stage may be an effective approach to preventing the development of R. raciborskii blooms, while regulating rare taxa at the HB and LB stages may be a key factor in controlling R. raciborskii blooms.
Collapse
Affiliation(s)
- Baohai Zheng
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Peichang Dong
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Teng Zhao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yuting Deng
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jie Li
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha 410013, China
| | - Lirong Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jinna Wang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Ling Zhou
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Junqiong Shi
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Zhongxing Wu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
17
|
Gavillet H, Hatfield L, Jones A, Maitra A, Horsley A, Rivett D, van der Gast C. Ecological patterns and processes of temporal turnover within lung infection microbiota. MICROBIOME 2024; 12:63. [PMID: 38523273 PMCID: PMC10962200 DOI: 10.1186/s40168-024-01780-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/22/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND Chronic infection and consequent airway inflammation are the leading causes of morbidity and early mortality for people living with cystic fibrosis (CF). However, lower airway infections across a range of chronic respiratory diseases, including in CF, do not follow classical 'one microbe, one disease' concepts of infection pathogenesis. Instead, they are comprised of diverse and temporally dynamic lung infection microbiota. Consequently, temporal dynamics need to be considered when attempting to associate lung microbiota with changes in disease status. Set within an island biogeography framework, we aimed to determine the ecological patterns and processes of temporal turnover within the lung microbiota of 30 paediatric and adult CF patients prospectively sampled over a 3-year period. Moreover, we aimed to ascertain the contributions of constituent chronic and intermittent colonizers on turnover within the wider microbiota. RESULTS The lung microbiota within individual patients was partitioned into constituent chronic and intermittent colonizing groups using the Leeds criteria and visualised with persistence-abundance relationships. This revealed bacteria chronically infecting a patient were both persistent and common through time, whereas intermittently infecting taxa were infrequent and rare; respectively representing the resident and transient portions of the wider microbiota. It also indicated that the extent of chronic colonization was far greater than could be appreciated with microbiological culture alone. Using species-time relationships to measure temporal turnover and Vellend's rationalized ecological processes demonstrated turnover in the resident chronic infecting groups was conserved and underpinned principally by the deterministic process of homogenizing dispersal. Conversely, intermittent colonizing groups, representing newly arrived immigrants and transient species, drove turnover in the wider microbiota and were predominately underpinned by the stochastic process of drift. For adult patients, homogenizing dispersal and drift were found to be significantly associated with lung function. Where a greater frequency of homogenizing dispersal was observed with worsening lung function and conversely drift increased with better lung function. CONCLUSIONS Our work provides a novel ecological framework for understanding the temporal dynamics of polymicrobial infection in CF that has translational potential to guide and improve therapeutic targeting of lung microbiota in CF and across a range of chronic airway diseases. Video Abstract.
Collapse
Affiliation(s)
- Helen Gavillet
- Department of Applied Sciences, Northumbria University, Newcastle, UK
| | - Lauren Hatfield
- Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| | - Andrew Jones
- Manchester Adult Cystic Fibrosis Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Anirban Maitra
- Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Alexander Horsley
- Manchester Adult Cystic Fibrosis Centre, Manchester University NHS Foundation Trust, Manchester, UK
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, UK
| | - Damian Rivett
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK.
| | - Christopher van der Gast
- Department of Applied Sciences, Northumbria University, Newcastle, UK.
- Department of Respiratory Medicine, Northern Care Alliance NHS Foundation Trust, Salford, UK.
| |
Collapse
|
18
|
Argiroff WA, Carrell AA, Klingeman DM, Dove NC, Muchero W, Veach AM, Wahl T, Lebreux SJ, Webb AB, Peyton K, Schadt CW, Cregger MA. Seasonality and longer-term development generate temporal dynamics in the Populus microbiome. mSystems 2024; 9:e0088623. [PMID: 38421171 PMCID: PMC10949431 DOI: 10.1128/msystems.00886-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 02/08/2024] [Indexed: 03/02/2024] Open
Abstract
Temporal variation in community composition is central to our understanding of the assembly and functioning of microbial communities, yet the controls over temporal dynamics for microbiomes of long-lived plants, such as trees, remain unclear. Temporal variation in tree microbiomes could arise primarily from seasonal (i.e., intra-annual) fluctuations in community composition or from longer-term changes across years as host plants age. To test these alternatives, we experimentally isolated temporal variation in plant microbiome composition using a common garden and clonally propagated plants, and we used amplicon sequencing to characterize bacterial/archaeal and fungal communities in the leaf endosphere, root endosphere, and rhizosphere of two Populus spp. over four seasons across two consecutive years. Microbial community composition differed among seasons and years (which accounted for up to 21% of the variation in microbial community composition) and was correlated with seasonal dissimilarity in climatic conditions. However, microbial community dissimilarity was also positively correlated with time, reflecting longer-term compositional shifts as host trees aged. Together, our findings demonstrate that temporal patterns in tree microbiomes arise from both seasonal fluctuations and longer-term changes, which interact to generate unique seasonal patterns each year. In addition to shedding light on two important controls over the assembly of plant microbiomes, our results also suggest future studies of tree microbiomes should account for background temporal dynamics when testing the drivers of spatial patterns in microbial community composition and temporal responses of plant microbiomes to environmental change.IMPORTANCEMicrobiomes are integral to the health of host plants, but we have a limited understanding of the factors that control how the composition of plant microbiomes changes over time. Especially little is known about the microbiome of long-lived trees, relative to annual and non-woody plants. We tested how tree microbiomes changed between seasons and years in poplar (genus Populus), which are widespread and ecologically important tree species that also serve as important biofuel feedstocks. We found the composition of bacterial, archaeal, and fungal communities differed among seasons, but these seasonal differences depended on year. This dependence was driven by longer-term changes in microbial composition as host trees developed across consecutive years. Our findings suggest that temporal variation in tree microbiomes is driven by both seasonal fluctuations and longer-term (i.e., multiyear) development.
Collapse
Affiliation(s)
- William A. Argiroff
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Alyssa A. Carrell
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Dawn M. Klingeman
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Nicholas C. Dove
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Allison M. Veach
- Department of Integrative Biology, The University of Texas, San Antonio, Texas, USA
| | - Toni Wahl
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Steven J. Lebreux
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Amber B. Webb
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Kellie Peyton
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Christopher W. Schadt
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Melissa A. Cregger
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| |
Collapse
|
19
|
Li Y, Ma G, Xi Y, Wang S, Zeng X, Jia Y. Divergent adaptation strategies of abundant and rare bacteria to salinity stress and metal stress in polluted Jinzhou Bay. ENVIRONMENTAL RESEARCH 2024; 245:118030. [PMID: 38151148 DOI: 10.1016/j.envres.2023.118030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/16/2023] [Accepted: 12/22/2023] [Indexed: 12/29/2023]
Abstract
Understanding how abundant (AT) and rare (RT) taxa adapt to diverse environmental stresses is vital for assessing ecological processes, yet remains understudied. We collected sediment samples from Liaoning Province, China, representing rivers (upstream of wastewater outlet), estuaries (wastewater outlets), and Jinzhou Bay (downstream of wastewater outlets), to comprehensively evaluate AT and RT adaptation strategies to both natural stressors (salinity stress) and anthropogenic stressors (metal stress). Generally, RT displayed higher α- and β-diversities and taxonomic groups compared to AT. Metal and salinity stresses induced distinct α-diversity responses in AT and RT, while β-diversity remained consistent. Both subcommunities were dominated by Woeseia genus. Metal stress emerged as the primary driver of diversity and compositional discrepancies in AT and RT. Notably, AT responded more sensitively to salinity stress than RT. Stress increased topological parameters in the biotic network of AT subcommunities while decreasing values in RT subcommunities, concurrently loosening interactions of AT with other taxa and strengthening interactions of RT with others in biotic networks. RT generally exhibited greater diversity of metal resistance genes compared to AT. Greater numbers of genes related to salinity tolerance was observed for the RT than for AT. Compared to AT, RT demonstrated higher diversity of metal resistance genes and a greater abundance of genes associated with salinity tolerance. Additionally, deterministic processes governed AT community assembly, reinforced by salinity stress. However, the opposite trend was observed in the RT, where the importance of stochastic process gradually increased with metal stresses. The study is centered on exploring the adaptation strategies of both AT and RT to environmental stress. It underscores the importance of future research incorporating diverse ecosystems and a range of environmental stressors to draw broader and more reliable conclusions. This comprehensive approach is essential for gaining a thorough understanding of the adaptive mechanisms employed by these microorganisms.
Collapse
Affiliation(s)
- Yongbin Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Guoqing Ma
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yimei Xi
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
| | - Shaofeng Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Xiangfeng Zeng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China.
| | - Yongfeng Jia
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
| |
Collapse
|
20
|
Barnett SE, Shade A. Arrive and wait: Inactive bacterial taxa contribute to perceived soil microbiome resilience after a multidecadal press disturbance. Ecol Lett 2024; 27:e14393. [PMID: 38430049 DOI: 10.1111/ele.14393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 03/03/2024]
Abstract
Long-term (press) disturbances like the climate crisis and other anthropogenic pressures are fundamentally altering ecosystems and their functions. Many critical ecosystem functions, such as biogeochemical cycling, are facilitated by microbial communities. Understanding the functional consequences of microbiome responses to press disturbances requires ongoing observations of the active populations that contribute to functions. This study leverages a 7-year time series of a 60-year-old coal seam fire (Centralia, Pennsylvania, USA) to examine the resilience of soil bacterial microbiomes to a press disturbance. Using 16S rRNA and 16S rRNA gene amplicon sequencing, we assessed the interannual dynamics of the active subset and the 'whole' bacterial community. Contrary to our hypothesis, the whole communities demonstrated greater resilience than active subsets, suggesting that inactive members contributed to overall structural resilience. Thus, in addition to selection mechanisms of active populations, perceived microbiome resilience is also supported by mechanisms of dispersal, persistence, and revival from the local dormant pool.
Collapse
Affiliation(s)
- Samuel E Barnett
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, Michigan, USA
| | - Ashley Shade
- Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, Ecole Nationale Véterinaire de Lyon, Universite Claude Bernard Lyon 1, Villeurbanne, France
| |
Collapse
|
21
|
Bontemps Z, Moënne-Loccoz Y, Hugoni M. Stochastic and deterministic assembly processes of microbial communities in relation to natural attenuation of black stains in Lascaux Cave. mSystems 2024; 9:e0123323. [PMID: 38289092 PMCID: PMC10878041 DOI: 10.1128/msystems.01233-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/28/2023] [Indexed: 02/21/2024] Open
Abstract
Community assembly processes are complex and understanding them represents a challenge in microbial ecology. Here, we used Lascaux Cave as a stable, confined environment to quantify the importance of stochastic vs deterministic processes during microbial community dynamics across the three domains of life in relation to an anthropogenic disturbance that had resulted in the side-by-side occurrence of a resistant community (unstained limestone), an impacted community (present in black stains), and a resilient community (attenuated stains). Metabarcoding data showed that the microbial communities of attenuated stains, black stains, and unstained surfaces differed, with attenuated stains being in an intermediate position. We found four scenarios to explain community response to disturbance in stable conditions for the three domains of life. Specifically, we proposed the existence of a fourth, not-documented yet scenario that concerns the always-rare microbial taxa, where stochastic processes predominate even after disturbance but are replaced by deterministic processes during post-disturbance recovery. This suggests a major role of always-rare taxa in resilience, perhaps because they might provide key functions required for ecosystem recovery.IMPORTANCEThe importance of stochastic vs deterministic processes in cave microbial ecology has been a neglected topic so far, and this work provided an opportunity to do so in a context related to the dynamics of black-stain alterations in Lascaux, a UNESCO Paleolithic cave. Of particular significance was the discovery of a novel scenario for always-rare microbial taxa in relation to disturbance, in which stochastic processes are replaced later by deterministic processes during post-disturbance recovery, i.e., during attenuation of black stains.
Collapse
Affiliation(s)
- Zélia Bontemps
- UMR 5557 Ecologie Microbienne, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, Villeurbanne, France
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratories, Uppsala University, Uppsala, Sweden
| | - Yvan Moënne-Loccoz
- UMR 5557 Ecologie Microbienne, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, Villeurbanne, France
| | - Mylène Hugoni
- UMR 5557 Ecologie Microbienne, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, Villeurbanne, France
- UMR 5240 Microbiologie Adaptation et Pathogénie, INSA Lyon, CNRS, Université Claude Bernard Lyon 1, Villeurbanne, France
- Institut Universitaire de France (IUF), France
| |
Collapse
|
22
|
Siriarchawatana P, Harnpicharnchai P, Phithakrotchanakoon C, Kitikhun S, Mayteeworakoon S, Chunhametha S, Eurwilaichitr L, Ingsriswang S. Elucidating potential bioindicators from insights in the diversity and assembly processes of prokaryotic and eukaryotic communities in the Mekong River. ENVIRONMENTAL RESEARCH 2024; 243:117800. [PMID: 38056615 DOI: 10.1016/j.envres.2023.117800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 12/08/2023]
Abstract
Drivers for spatio-temporal distribution patterns of overall planktonic prokaryotes and eukaryotes in riverine ecosystems are generally not fully understood. This study employed amplicon metabarcoding to investigate the distributions and assembly mechanisms of bacterial and eukaryotic communities in the Mekong River. The prevailing bacteria taxa were found to be Betaproteobacteria, Actinobacteria, and Bacteroidetes, while the dominant eukaryotic organisms were cryptophytes, chlorophytes, and diatoms. The community assemblages were influenced by a combination of stochastic and deterministic processes. Drift (DR) and dispersal limitation (DL), signifying the stochastic mechanism, were the main processes shaping the overall prokaryotic and eukaryotic communities. However, homogeneous selection (HoS), indicating deterministic mechanism, played a major role in the assembly process of core prokaryotic communities, especially in the wet season. In contrast, the core eukaryotic communities including Opisthokonta, Sar, and Chlorophyta were dominated by stochastic processes. The significance of HoS within prokaryotic communities was also found to exhibit a decreasing trend from the upstream sampling sites (Chiang Saen and Chiang Khan, Nong Khai) towards the downstream sites (Mukdahan, and Khong Chiam) of the Mekong River. The environmental gradients resulting from the site-specific variations and the gradual decrease in elevation along the river may have a potential influence on the role of HoS in community assembly. Crucial environmental factors that shape the phylogenetic structure within distinct bins of the core prokaryotic communities including water depth, temperature, chloride, sodium, and sulphate were identified, as inferred by their correlation with the beta Net Relatedness Index (betaNRI) during the wet season. Overall, these findings enhance understanding of the complex mechanisms governing the spatio-temporal dynamics of prokaryotic and eukaryotic communities in the Mekong River. Finally, insights gained from this study could provide information on further use of specific core bacteria as microbial-based bioindicators that are effective for the assessment and conservation of the Mekong River ecosystem.
Collapse
Affiliation(s)
- Paopit Siriarchawatana
- Thailand Bioresource Research Center (TBRC), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Piyanun Harnpicharnchai
- Thailand Bioresource Research Center (TBRC), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Chitwadee Phithakrotchanakoon
- Thailand Bioresource Research Center (TBRC), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Supattra Kitikhun
- Thailand Bioresource Research Center (TBRC), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Sermsiri Mayteeworakoon
- Thailand Bioresource Research Center (TBRC), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Suwanee Chunhametha
- Thailand Bioresource Research Center (TBRC), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Lily Eurwilaichitr
- National Energy Technology Center (ENTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Supawadee Ingsriswang
- Thailand Bioresource Research Center (TBRC), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand.
| |
Collapse
|
23
|
Strickland AH, Murray SA, Vinasco J, Auvermann BW, Bush KJ, Sawyer JE, Scott HM, Norman KN. Comparative microbiome analysis of beef cattle, the feedyard environment, and airborne particulate matter as a function of probiotic and antibiotic use, and change in pen environment. Front Microbiol 2024; 15:1348171. [PMID: 38389541 PMCID: PMC10883649 DOI: 10.3389/fmicb.2024.1348171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
Introduction Intensive beef cattle production systems are frequently implicated as a source of bacteria that can be transferred to nearby humans and animals via effluent water, manure used as fertilizer, or airborne particulate matter. It is crucial to understand microbial population dynamics due to manure pack desiccation, antibiotic usage, and antibiotic alternatives within beef cattle and their associated feedyard environment. Understanding how bacterial communities change in the presence of antibiotics can also improve management practices for reducing the spread of foodborne bacteria. Methods In this study, we aimed to compare the microbiomes within cattle feces, the feedyard environment and artificially produced airborne particulate matter as a function of pen change and treatment with tylosin or probiotics. We utilized 16S rRNA sequencing to compare bacterial communities among sample types, study days, and treatment groups. Results Bacterial community diversity varied as a function of sampling day and pen change (old or new) within fecal and manure pack samples. Manure pack samples from old pens and new pens contained diverse communities of bacteria on days 0 and 84; however, by day 119 of the study these taxonomic differences were less evident. Particulate matter samples exhibited significant differences in community diversity and predominant bacterial taxa compared to the manure pack they originated from. Treatment with tylosin did not meaningfully impact bacterial communities among fecal, environmental, or particulate matter samples; however, minor differences in bacterial community structure were observed in feces from cattle treated with probiotics. Discussion This study was the first to characterize and compare microbial communities within feces, manure pack, and airborne particulate matter from the same location and as a function of tylosin and probiotic treatment, and pen change. Although fecal and environmental samples are commonly used in research studies and other monitoring programs to infer public health risk of bacteria and antimicrobial resistance determinants from feedyard environments, our study suggests that these samples may not be appropriate to infer public health risk associated with airborne particulate matter.
Collapse
Affiliation(s)
- A. H. Strickland
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| | - S. A. Murray
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| | - J. Vinasco
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| | - B. W. Auvermann
- Texas A&M AgriLife Research and Extension Center at Amarillo, Amarillo, TX, United States
| | - K. J. Bush
- Texas A&M AgriLife Research and Extension Center at Amarillo, Amarillo, TX, United States
| | - J. E. Sawyer
- Department of Animal Sciences, Texas A&M University, College Station, TX, United States
| | - H. M. Scott
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| | - K. N. Norman
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
24
|
Wang X, Zhou Z, Zijing L, Xia L, Song S, Meza JVG, Montes ML, Li J. Surge of native rare taxa in tailings soil induced by peat bacterial invasion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168596. [PMID: 37972774 DOI: 10.1016/j.scitotenv.2023.168596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/25/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
The pivotal role of the native bacterial community in maintaining soil health, particularly in degraded tailings environments, is often overlooked. This study utilized peat, rich in microorganisms, to investigate its impact on soil function and native bacteria response in copper tailings-soil. Through 16S rRNA gene sequencing, changes in nutrient cycling, organic matter decomposition, and microbial activity were assessed post one-year peat remediation. Results from FEAST and cluster analysis revealed that peat-derived species disproportionately influenced tailings microbial community remediation, supported by the microbial invasion theory. Tailings responded positively to these species, with optimal function achieved at 5 % peat dosage. Peat biomarkers (Actinobacteriota, Bacteroida, Chloroflexi, and Firmicutes) played key roles in heavy metal removal and nutrition fixation. The Random Forest model and co-occurrence network highlighted contributions from native rare species (Dependentiae and Latescibacterota) activated by peat addition. These insights underscore the resilience of rare taxa and provide a foundation for soil health restoration in tailings areas. By emphasizing the importance of peat as a potential exogenous solution for activating indigenous microbial functions, these findings offer valuable insights for developing effective and sustainable remediation strategies in mining-affected regions.
Collapse
Affiliation(s)
- Xizhuo Wang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, Hubei Province 430070, China
| | - Zhou Zhou
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, Hubei Province 430070, China
| | - Lu Zijing
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, Hubei Province 430070, China
| | - Ling Xia
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, Hubei Province 430070, China.
| | - Shaoxian Song
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, Hubei Province 430070, China
| | - J Viridiana García Meza
- Instituto de Física, Universidad Autonoma de San Luis Potosi, Av. Manuel Nava 6, Zona Universitaria, C.P., San Luis Potosí 78290, Mexico
| | | | - Jianbo Li
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, Hubei Province 430070, China; Instituto de Física, Universidad Autonoma de San Luis Potosi, Av. Manuel Nava 6, Zona Universitaria, C.P., San Luis Potosí 78290, Mexico.
| |
Collapse
|
25
|
Yan K, Lu DS, Ding CJ, Wang Y, Tian YR, Su XH, Dong YF, Wang YP. Rare and abundant bacterial communities in poplar rhizosphere soils respond differently to genetic effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168216. [PMID: 37923276 DOI: 10.1016/j.scitotenv.2023.168216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/27/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
Interactions between plants and soil microbes are important to plant hybrid breeding under global change. However, the relationship between host plants and rhizosphere soil microorganisms has not been fully elucidated. Understanding the rhizosphere microbial structure of parents and progenies would provide a deeper insight into how genetic effects modulate the relationship between plants and soil. In this study, two family groups of poplar trees (A: parents and their two progenies; B: parents and their one progeny) with different genetic backgrounds (including seven genotypes) were selected from a common garden, and their rhizobacterial communities were analyzed to explore parent-progeny relationships. Our results showed significant differences in phylogenetic diversity, the number of 16S genes and the structure of rhizosphere bacterial communities (Adonis: R2 = 0.166, P < 0.01) between different family groups. Rhizosphere bacterial community structure was significantly dominated by genetic effects. Compared with abundant taxa, genetic effects were more powerful drivers of rare taxa. In addition, bacterial communities of hybrid progenies were all significantly more similar to their parents compared to the other group of parents, especially among rare taxa. The two poplar family groups exhibited differences between their rhizosphere bacterial co-occurrence networks. Group B had a relatively complex network with 2380 edges and 468 nodes, while group A had 1829 edges and 304 nodes. Soil organic carbon and carbon to nitrogen ratio (C/N) also influenced the rhizosphere bacterial community assembly. This was especially true for soil C/N, which explained 23 % of the β-nearest taxon index (βNTI) variation in rare taxa. Our results reveal the relationship of rhizosphere microorganisms between parents and progenies. This can help facilitate an understanding of the combination of plant breeding with microbes resource utilization and provide a theoretical basis for scientific advancement to support the development of forestry industry.
Collapse
Affiliation(s)
- Kun Yan
- Key Laboratory of the State Forestry and Grassland Administration for the Cultivation of Forests in the Lower Reaches of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - De Shan Lu
- Key Laboratory of the State Forestry and Grassland Administration for the Cultivation of Forests in the Lower Reaches of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Chang Jun Ding
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Yan Wang
- Key Laboratory of the State Forestry and Grassland Administration for the Cultivation of Forests in the Lower Reaches of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Yong Ren Tian
- Key Laboratory of the State Forestry and Grassland Administration for the Cultivation of Forests in the Lower Reaches of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Xiao Hua Su
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | | | - Yan Ping Wang
- Key Laboratory of the State Forestry and Grassland Administration for the Cultivation of Forests in the Lower Reaches of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
26
|
Haider D, Hall MW, LaRoche J, Beiko RG. Mock microbial community meta-analysis using different trimming of amplicon read lengths. Environ Microbiol 2024; 26:e16566. [PMID: 38149467 DOI: 10.1111/1462-2920.16566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 12/12/2023] [Indexed: 12/28/2023]
Abstract
Trimming of sequencing reads is a pre-processing step that aims to discard sequence segments such as primers, adapters and low quality nucleotides that will interfere with clustering and classification steps. We evaluated the impact of trimming length of paired-end 16S and 18S rRNA amplicon reads on the ability to reconstruct the taxonomic composition and relative abundances of communities with a known composition in both even and uneven proportions. We found that maximizing read retention maximizes recall but reduces precision by increasing false positives. The presence of expected taxa was accurately predicted across broad trim length ranges but recovering original relative proportions remains a difficult challenge. We show that parameters that maximize taxonomic recovery do not simultaneously maximize relative abundance accuracy. Trim length represents one of several experimental parameters that have non-uniform impact across microbial clades, making it a difficult parameter to optimize. This study offers insights, guidelines, and helps researchers assess the significance of their decisions when trimming raw reads in a microbiome analysis based on overlapping or non-overlapping paired-end amplicons.
Collapse
Affiliation(s)
- Diana Haider
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada
- Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Michael W Hall
- Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada
- Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Julie LaRoche
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Robert G Beiko
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
27
|
Fang W, Fan T, Wang S, Yu X, Lu A, Wang X, Zhou W, Yuan H, Zhang L. Seasonal changes driving shifts in microbial community assembly and species coexistence in an urban river. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167027. [PMID: 37717779 DOI: 10.1016/j.scitotenv.2023.167027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/05/2023] [Accepted: 09/10/2023] [Indexed: 09/19/2023]
Abstract
Microbial communities play a vital role in urban river biogeochemical cycles. However, the seasonal variations in microbial community characteristics, particularly phylogenetic group-based community assembly and species coexistence, have not been extensively investigated. Here, we systematically explored the microbiome characteristics and assembly mechanisms of urban rivers in different seasons using 16S rRNA gene sequencing and multivariate statistical methods. The results indicated that the microbial community presented significant temporal heterogeneity in different seasons, and the diversity decreased from spring to winter. The phylogenetic group-based microbial community assembly was governed by dispersal limitation and drift in spring, summer, and autumn but was structured by homogeneous selection in winter. Moreover, the main functions of nitrification, denitrification, and methanol oxidation were susceptible to dispersal limitation and drift processes, whereas sulfate respiration and aromatic compound degradation were controlled by dispersal limitation and homogeneous selection. Network analyses indicated that network complexity decreased and then increased with seasonal changes, while network stability showed the opposite trend, suggesting that higher complexity and diversity reduced community stability. Temperature was determined to be the primary driver of microbial community structure and assembly processes in different seasons based on canonical correspondence analysis and linear regression analysis. In conclusion, seasonal variation drives the dynamics of microbial community assembly and species coexistence patterns in urban rivers. This study provides new insights into the generation and maintenance of microbial community diversity in urban rivers under seasonal change conditions.
Collapse
Affiliation(s)
- Wangkai Fang
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China; Anhui Engineering Laboratory for Comprehensive Utilization of Water and Soil Resources & Ecological Protection in Mining Area With High Groundwater Level, Huainan 232001, China
| | - Tingyu Fan
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China; Anhui Engineering Laboratory for Comprehensive Utilization of Water and Soil Resources & Ecological Protection in Mining Area With High Groundwater Level, Huainan 232001, China.
| | - Shun Wang
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China; Anhui Engineering Laboratory for Comprehensive Utilization of Water and Soil Resources & Ecological Protection in Mining Area With High Groundwater Level, Huainan 232001, China
| | - Xiaokun Yu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China; Anhui Engineering Laboratory for Comprehensive Utilization of Water and Soil Resources & Ecological Protection in Mining Area With High Groundwater Level, Huainan 232001, China
| | - Akang Lu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China; Anhui Engineering Laboratory for Comprehensive Utilization of Water and Soil Resources & Ecological Protection in Mining Area With High Groundwater Level, Huainan 232001, China
| | - Xingming Wang
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China; Anhui Engineering Laboratory for Comprehensive Utilization of Water and Soil Resources & Ecological Protection in Mining Area With High Groundwater Level, Huainan 232001, China
| | - Weimin Zhou
- Anhui Shuiyun Environmental Protection Co., Ltd, Wuhu 241000, China
| | - Hongjun Yuan
- Anhui Shuiyun Environmental Protection Co., Ltd, Wuhu 241000, China
| | - Lei Zhang
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou 239000, China
| |
Collapse
|
28
|
Meziti A, Smeti E, Daniilides D, Spatharis S, Tsirtsis G, Kormas KA. Increased contribution of parasites in microbial eukaryotic communities of different Aegean Sea coastal systems. PeerJ 2023; 11:e16655. [PMID: 38144191 PMCID: PMC10740597 DOI: 10.7717/peerj.16655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/21/2023] [Indexed: 12/26/2023] Open
Abstract
Background-Aim Protistan communities have a major contribution to biochemical processes and food webs in coastal ecosystems. However, related studies are scarce and usually limited in specific groups and/or sites. The present study examined the spatial structure of the entire protistan community in seven different gulfs and three different depths in a regional Mediterranean Sea, aiming to define taxa that are important for differences detected in the marine microbial network across the different gulfs studied as well as their trophic interactions. Methods Protistan community structure analysis was based on the diversity of the V2-V3 hypervariable region of the 18S rRNA gene. Operational taxonomic units (OTUs) were identified using a 97% sequence identity threshold and were characterized based on their taxonomy, trophic role, abundance and niche specialization level. The differentially abundant, between gulfs, OTUs were considered for all depths and interactions amongst them were calculated, with statistic and network analysis. Results It was shown that Dinophyceae, Bacillariophyta and Syndiniales were the most abundant groups, prevalent in all sites and depths. Gulfs separation was more striking at surface corroborating with changes in environmental factors, while it was less pronounced in higher depths. The study of differentially abundant, between gulfs, OTUs revealed that the strongest biotic interactions in all depths occurred between parasite species (mainly Syndiniales) and other trophic groups. Most of these species were generalists but not abundant highlighting the importance of rare species in protistan community assemblage. Conclusion Overall this study revealed the emergence of parasites as important contributors in protistan network regulation regardless of depth.
Collapse
Affiliation(s)
- Alexandra Meziti
- Department of Marine Sciences, University of the Aegean, Mytilene, Greece
| | - Evangelia Smeti
- Department of Marine Sciences, University of the Aegean, Mytilene, Greece
- Institute of Marine Biological Resources & Inland Waters, Hellenic Centre for Marine Research, Anavissos, Greece
| | - Daniil Daniilides
- Faculty of Biology, Department of Ecology and Systematics, University of Athens, Athens, Greece
| | - Sofie Spatharis
- School of Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - George Tsirtsis
- Department of Marine Sciences, University of the Aegean, Mytilene, Greece
| | | |
Collapse
|
29
|
Xue Y, Chen H, Xiao P, Jin L, Logares R, Yang J. Core taxa drive microeukaryotic community stability of a deep subtropical reservoir after complete mixing. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:769-782. [PMID: 37688478 PMCID: PMC10667671 DOI: 10.1111/1758-2229.13196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/17/2023] [Indexed: 09/11/2023]
Abstract
Microeukaryotes are key for predicting the change of ecosystem processes in the face of a disturbance. However, their vertical responses to multiple interconnected factors caused by water mixing remain unknown. Here, we conducted a 12-month high-frequency study to compare the impacts of mixing disturbances on microeukaryotic community structure and stability over different depths in a stratified reservoir. We demonstrate that core and satellite microeukaryotic compositions and interactions in surface waters were not resistant to water mixing, but significantly recovered. This was because the water temperature rebounded to the pre-mixing level. Core microeukaryotes maintained community stability in surface waters with high recovery capacity after water mixing. In contrast, the changes in water temperature, chlorophyll-a, and nutrients resulted in steep and prolonged variations in the bottom core and satellite microeukaryotic compositions and interactions. Under low environmental fluctuation, the recovery of microbial communities did not affect nutrient cycling in surface waters. Under high environmental fluctuation, core and satellite microeukaryotic compositions in bottom waters were significantly correlated with the multi-nutrient cycling index. Our findings shed light on different mechanisms of plankton community resilience in reservoir ecosystems to a major disturbance over depths, highlighting the role of bottom microeukaryotes in nutrient cycling.
Collapse
Affiliation(s)
- Yuanyuan Xue
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
| | - Huihuang Chen
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
- University of Chinese Academy of SciencesBeijingChina
| | - Peng Xiao
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
| | - Lei Jin
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
- University of Chinese Academy of SciencesBeijingChina
| | | | - Jun Yang
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
| |
Collapse
|
30
|
Rabotnick MH, Ehlinger J, Haidari A, Goodrich JM. Prenatal exposures to endocrine disrupting chemicals: The role of multi-omics in understanding toxicity. Mol Cell Endocrinol 2023; 578:112046. [PMID: 37598796 PMCID: PMC10592024 DOI: 10.1016/j.mce.2023.112046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/22/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are a diverse group of toxicants detected in populations globally. Prenatal EDC exposures impact birth and childhood outcomes. EDCs work through persistent changes at the molecular, cellular, and organ level. Molecular and biochemical signals or 'omics' can be measured at various functional levels - including the epigenome, transcriptome, proteome, metabolome, and the microbiome. In this narrative review, we introduce each omics and give examples of associations with prenatal EDC exposures. There is substantial research on epigenomic modifications in offspring exposed to EDCs during gestation, and a growing number of studies evaluating the transcriptome, proteome, metabolome, or microbiome in response to these exposures. Multi-omics, integrating data across omics layers, may improve understanding of disrupted function pathways related to early life exposures. We highlight several data integration methods to consider in multi-omics studies. Information from multi-omics can improve understanding of the biological processes and mechanisms underlying prenatal EDC toxicity.
Collapse
Affiliation(s)
- Margaret H Rabotnick
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Jessa Ehlinger
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Ariana Haidari
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Jaclyn M Goodrich
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
31
|
Xu Q, Wu W, Xiao Z, Sun X, Ma J, Ding J, Zhu Z, Li G. Responses of soil and collembolan (Folsomia candida) gut microbiomes to 6PPD-Q pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165810. [PMID: 37499813 DOI: 10.1016/j.scitotenv.2023.165810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
The potential risk of N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6PPD-Q) to soil organisms remains poorly understood. Here we showed that 6PPD-Q pollution inhibited the survival of collembolans (Folsomia candida) with the chronic median lethal concentration (LC50) of 16.31 μg kg-1 in a 28-day soil culture. The microbe-microbe interactions between abundant taxa in soil and collembolan gut helped alleviate the negative impact of 6PPD-Q on soil microbial community, while rare taxa contributed to maintaining microbial network complexity and stability under 6PPD-Q stresses. Gammaproteobacteria, Alphaproteobacteria and Actinobacteria in the gut of both adult and juvenile collembolans were identified as potential indicators for 6PPD-Q exposure. Such responses were accompanied by increases in the relative abundances of genes involved in nutrient cycles and their interactions between soil and collembolan gut microbiomes, which enhanced nitrogen and carbon turnover in 6PPD-Q polluted soil, potentially alleviating the stresses caused by 6PPD-Q. Overall, this study sheds new light on the toxicity of 6PPD-Q to soil organisms and links 6PPD-Q stresses to microbial responses and soil functions, thus highlighting the urgency of assessing its potential risk to the terrestrial ecosystem.
Collapse
Affiliation(s)
- Qiao Xu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Wei Wu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China; School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Zufei Xiao
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Sun
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Jun Ma
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Ding
- School of Environmental and Material Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, China
| | - Zhe Zhu
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Gang Li
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
32
|
Abbaszade G, Toumi M, Farkas R, Vajna B, Krett G, Dobosy P, Szabó C, Tóth E. Exploring the relationship between metal(loid) contamination rate, physicochemical conditions, and microbial community dynamics in industrially contaminated urban soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:166094. [PMID: 37582445 DOI: 10.1016/j.scitotenv.2023.166094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/04/2023] [Accepted: 08/04/2023] [Indexed: 08/17/2023]
Abstract
Increasing metal(loid) contamination in urban soils and its impact on soil microbial community have attracted considerable attention. In the present study, the physicochemical parameters and the effects of twelve metal(loid) pollution on soil microbial diversity, their ecotoxic effects, and human health risk assessment in urban soils with different industrial background were studied in comparison with an unpolluted forest soil sample. Results showed that urban soils were highly contaminated, and metal(loid) contamination significantly influenced structure of the soil microbial communities. In all samples the bacterial community was dominated by Proteobacteria, and on the level of phyla characteristic differences were not possible to observe between polluted and control sampling sites. However, clear differences emerged at class and genus level, where several rare taxa disappeared from contaminated urban soils. Simper test results showed that there is 71.6 % bacterial OTU and 9.5 % bacterial diversity dissimilarity between polluted and control samples. Ratio of Patescibacteria, Armatimonadetes, Chlamydiae, Fibrobacteres, and Gemmatimonadetes indicated a significant (p < 0.05) positive correlation with soil Zn, Cr, Pb, Sn, Cu, Mn content, suggest that metal(loid)s strongly influence the structure of microbial community. In contrast, the presence of metal(loid) contamination in urban soils has been found to significantly reduce the population of Archaeal communities. This can be attributed to the depletion of organic matter caused by contamination that reached a minimum of 0.5 m/m% for nitrate and 0.9 m/m% for total organic carbon. The values of urban soil pH were close to neutral, ranging from 5.9 to 8.3. The findings of ecotoxicology test are alarming, as all the studied urban soil sites were cytotoxic to soil microorganisms, and in one site metal(loid) contamination reached genotoxic level. Moreover, all the metal(loid) contaminated sites pose severe and persistent health risk to children, highlighting the urgent need for effective measures to mitigate metal(loid) pollution in urban areas.
Collapse
Affiliation(s)
- Gorkhmaz Abbaszade
- Department of Microbiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary; Lithosphere Fluid Research Lab, Institute of Geography and Earth Sciences, Eötvös Loránd University, Budapest, Hungary.
| | - Marwene Toumi
- Department of Microbiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Rózsa Farkas
- Department of Microbiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Balázs Vajna
- Department of Microbiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Gergely Krett
- Department of Microbiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Péter Dobosy
- Institute of Aquatic Ecology, Centre for Ecological Research, Budapest, Hungary
| | - Csaba Szabó
- Lithosphere Fluid Research Lab, Institute of Geography and Earth Sciences, Eötvös Loránd University, Budapest, Hungary
| | - Erika Tóth
- Department of Microbiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
33
|
Li H, Hong Y, Gao M, An X, Yang X, Zhu Y, Chen J, Su J. Distinct responses of airborne abundant and rare microbial communities to atmospheric changes associated with Chinese New Year. IMETA 2023; 2:e140. [PMID: 38868217 PMCID: PMC10989829 DOI: 10.1002/imt2.140] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 06/14/2024]
Abstract
Airborne microorganisms, including pathogens, would change with surrounding environments and become issues of global concern due to their threats to human health. Microbial communities typically contain a few abundant but many rare species. However, how the airborne abundant and rare microbial communities respond to environmental changes is still unclear, especially at hour scale. Here, we used a sequencing approach based on bacterial 16S rRNA genes and fungal ITS2 regions to investigate the high time-resolved dynamics of airborne bacteria and fungi and to explore the responses of abundant and rare microbes to the atmospheric changes. Our results showed that air pollutants and microbial communities were significantly affected by human activities related to the Chinese New Year (CNY). Before CNY, significant hour-scale changes in both abundant and rare subcommunities were observed, while only abundant bacterial subcommunity changed with hour time series during CNY. Air pollutants and meteorological parameters explained 61.5%-74.2% variations of abundant community but only 13.3%-21.6% variations of rare communities. These results suggested that abundant species were more sensitive to environmental changes than rare taxa. Stochastic processes predominated in the assembly of abundant communities, but deterministic processes determined the assembly of rare communities. Potential bacterial pathogens during CNY were the highest, suggesting an increased health risk of airborne microbes during CNY. Overall, our findings highlighted the "holiday effect" of CNY on airborne microbes and expanded the current understanding of the ecological mechanisms and health risks of microbes in a changing atmosphere.
Collapse
Affiliation(s)
- Hu Li
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
- University of Chinese Academy of SciencesBeijingChina
| | - You‐Wei Hong
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
- University of Chinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
| | - Meng‐Ke Gao
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
- College of Resource and Environmental ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Xin‐Li An
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xiao‐Ru Yang
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yong‐Guan Zhu
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
- University of Chinese Academy of SciencesBeijingChina
- State Key Lab of Urban and Regional Ecology, Research Center for Eco‐environmental SciencesChinese Academy of SciencesBeijingChina
| | - Jin‐Sheng Chen
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
- University of Chinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
| | - Jian‐Qiang Su
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
34
|
Raulo A, Rojas A, Kröger B, Laaksonen A, Orta CL, Nurmio S, Peltoniemi M, Lahti L, Žliobaitė I. What are patterns of rise and decline? ROYAL SOCIETY OPEN SCIENCE 2023; 10:230052. [PMID: 38026026 PMCID: PMC10646453 DOI: 10.1098/rsos.230052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023]
Abstract
The notions of change, such as birth, death, growth, evolution and longevity, extend across reality, including biological, cultural and societal phenomena. Patterns of change describe how success and composition of every entity, from species to societies, vary across time. Languages develop into new languages, music and fashion continuously evolve, economies rise and decline, ecological and societal crises come and go. A common way to perceive and analyse change processes is through patterns of rise and decline, the ubiquitous, often distinctively unimodal trajectories describing life histories of various entities. These patterns come in different shapes and are measured according to varying definitions. Depending on how they are measured, patterns of rise and decline can reveal, emphasize, mask or obscure important dynamics in natural and cultural phenomena. Importantly, the variations of how dynamics are measured can be vast, making it impossible to directly compare patterns of rise and decline across fields of science. Standardized analysis of these patterns has the potential to uncover important but overlooked commonalities across natural phenomena and potentially help us catch the onset of dramatic shifts in entities' state, from catastrophic crashes in success to gradual emergence of new entities. We provide a framework for standardized recognizing, characterizing and comparing patterns of change by combining understanding of dynamics across fields of science. Our toolkit aims at enhancing understanding of the most general tendencies of change, through two complementary perspectives: dynamics of emergence and dynamics of success. We gather comparable cases and data from different research fields and summarize open research questions that can help us understand the universal principles, perception-biases and field-specific tendencies in patterns of rise and decline of entities in nature.
Collapse
Affiliation(s)
- Aura Raulo
- Department of Computing, University of Turku, Turku, Finland
- Department of Biology, University of Oxford, Oxford OX1 3SZ, UK
| | - Alexis Rojas
- Department of Computer Science, University of Helsinki, Helsinki, Finland
| | - Björn Kröger
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Antti Laaksonen
- Department of Computer Science, University of Helsinki, Helsinki, Finland
| | - Carlos Lamuela Orta
- Mobility Research Group, VTT Technical Research Centre of Finland, Espoo, Uusimaa, Finland
| | - Silva Nurmio
- Department of Languages, University of Helsinki, Helsinki, Finland
| | - Mirva Peltoniemi
- Department of Industrial Engineering and Management, Tampere University, 33014 Tampere, Finland
| | - Leo Lahti
- Department of Computing, University of Turku, Turku, Finland
| | - Indrė Žliobaitė
- Department of Computer Science, University of Helsinki, Helsinki, Finland
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
- Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland
| |
Collapse
|
35
|
Wu P, Liu Y, Li C, Zheng Q, Hong Y, Wu J, Xu S, Lin L, Xiao Y, Wang T, Liu Y. Distribution and co-occurrence networks of the bacterial community in sediment cores from the subtropical Daya Bay, China. MARINE POLLUTION BULLETIN 2023; 196:115580. [PMID: 37801799 DOI: 10.1016/j.marpolbul.2023.115580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/01/2023] [Accepted: 09/21/2023] [Indexed: 10/08/2023]
Abstract
The bacterial community plays an important role in biogeochemical cycles in marine sediment. However, little is known about the vertical profiles and co-occurrence patterns of bacterial community in sediment cores from the marine environment. In this study, five sediment cores were taken from a subtropical bay in China, heavily impacted by anthropogenic activities. The bacterial composition in sediment cores was investigated by using high-throughput sequencing of the 16S rRNA gene. A principal coordinates analysis and an adonis analysis of the operational taxonomic unit (OTU) compositions showed that spatial variation, rather than vertical variation, determined the bacterial structure in sediment cores. The bacterial complexity varied greatly across the five sediment cores, and the rare taxa played an important role in supporting the stability of the bacterial network. This study revealed that sediment properties and anthropogenic activities may induce a shift in the bacterial composition in sediment cores of a subtropical bay.
Collapse
Affiliation(s)
- Peng Wu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, China; Scientific Observation and Research Station of Pearl River Estuary Ecosystem of Guangdong Province, Guangzhou 510300, China; Observation and Research Station of Xisha Island Reef Fishery Ecosystem of Hainan Province/Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province/Sanya Tropical Fisheries Research Institute, Sanya, Hainan 572018, China; Guangdong Provincial Key Laboratory of Fishery Ecology Environment, Guangzhou 510300, China; National Agricultural Experimental Station for Fishery Resources and Environment Dapeng, Shenzhen, China
| | - Yong Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, China; Scientific Observation and Research Station of Pearl River Estuary Ecosystem of Guangdong Province, Guangzhou 510300, China; Observation and Research Station of Xisha Island Reef Fishery Ecosystem of Hainan Province/Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province/Sanya Tropical Fisheries Research Institute, Sanya, Hainan 572018, China; Guangdong Provincial Key Laboratory of Fishery Ecology Environment, Guangzhou 510300, China; National Agricultural Experimental Station for Fishery Resources and Environment Dapeng, Shenzhen, China.
| | - Chunhou Li
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, China; Scientific Observation and Research Station of Pearl River Estuary Ecosystem of Guangdong Province, Guangzhou 510300, China; Observation and Research Station of Xisha Island Reef Fishery Ecosystem of Hainan Province/Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province/Sanya Tropical Fisheries Research Institute, Sanya, Hainan 572018, China; Guangdong Provincial Key Laboratory of Fishery Ecology Environment, Guangzhou 510300, China; National Agricultural Experimental Station for Fishery Resources and Environment Dapeng, Shenzhen, China.
| | - Qiushi Zheng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, China
| | - Yiguo Hong
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Jiapeng Wu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Shannan Xu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, China; Scientific Observation and Research Station of Pearl River Estuary Ecosystem of Guangdong Province, Guangzhou 510300, China; Observation and Research Station of Xisha Island Reef Fishery Ecosystem of Hainan Province/Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province/Sanya Tropical Fisheries Research Institute, Sanya, Hainan 572018, China; Guangdong Provincial Key Laboratory of Fishery Ecology Environment, Guangzhou 510300, China; National Agricultural Experimental Station for Fishery Resources and Environment Dapeng, Shenzhen, China
| | - Lin Lin
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, China; Scientific Observation and Research Station of Pearl River Estuary Ecosystem of Guangdong Province, Guangzhou 510300, China; Guangdong Provincial Key Laboratory of Fishery Ecology Environment, Guangzhou 510300, China; National Agricultural Experimental Station for Fishery Resources and Environment Dapeng, Shenzhen, China
| | - Yayuan Xiao
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, China; Scientific Observation and Research Station of Pearl River Estuary Ecosystem of Guangdong Province, Guangzhou 510300, China; Guangdong Provincial Key Laboratory of Fishery Ecology Environment, Guangzhou 510300, China; National Agricultural Experimental Station for Fishery Resources and Environment Dapeng, Shenzhen, China
| | - Teng Wang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, China; Scientific Observation and Research Station of Pearl River Estuary Ecosystem of Guangdong Province, Guangzhou 510300, China; Observation and Research Station of Xisha Island Reef Fishery Ecosystem of Hainan Province/Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province/Sanya Tropical Fisheries Research Institute, Sanya, Hainan 572018, China; Guangdong Provincial Key Laboratory of Fishery Ecology Environment, Guangzhou 510300, China; National Agricultural Experimental Station for Fishery Resources and Environment Dapeng, Shenzhen, China
| | - Yu Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, China; Scientific Observation and Research Station of Pearl River Estuary Ecosystem of Guangdong Province, Guangzhou 510300, China; Guangdong Provincial Key Laboratory of Fishery Ecology Environment, Guangzhou 510300, China; National Agricultural Experimental Station for Fishery Resources and Environment Dapeng, Shenzhen, China
| |
Collapse
|
36
|
Xue R, Liu S, Stirling E, Wang Y, Zhao K, Matsumoto H, Wang M, Xu J, Ma B. Core community drives phyllosphere bacterial diversity and function in multiple ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165187. [PMID: 37391143 DOI: 10.1016/j.scitotenv.2023.165187] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/12/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
The phyllosphere provides a habitat for a large sum of microorganisms which are modulated by numerous biotic and abiotic factors. While it is logical that host lineage must have some effect on the phyllosphere habitat, it is unclear if phyllospheres harbor similar microbial core communities across multiple ecosystems at the continental-scale. Here we collected 287 phyllosphere bacterial communities from seven ecosystems (including paddy field, dryland, urban area, protected agricultural land, forest, wetland, and grassland) in east-China to identify the regional core community and to characterize the importance of such communities in maintaining phyllosphere bacterial community structure and function. Despite significantly different bacterial richness and structure, the seven studied ecosystems contained a similar regional core community of 29 OTUs that comprised 44.9 % of the total bacterial abundance. The regional core community was less affected by environmental variables and less connected in the co-occurrence network compared with other non-core OTUs (the whole minus regional core community). Furthermore, the regional core community also had a large proportion (>50 %) of a constrained set of nutrient metabolism related functional potentials and less functional redundancy. This study suggests there is a robust regional core phyllosphere community regardless of ecosystem or spatial and environmental heterogeneity, and supports the argument that core communities are pivotal in maintaining microbial community structure and function.
Collapse
Affiliation(s)
- Ran Xue
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310058, China
| | - Shan Liu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Erinne Stirling
- CSIRO Agriculture and Food, Urrbrae 5064, Australia; Acid Sulfate Soils Centre, School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia
| | - Yiling Wang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Kankan Zhao
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Haruna Matsumoto
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs, Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| | - Mengcen Wang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs, Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| | - Jianming Xu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bin Ma
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
37
|
Bai F, Guo W, Li P, Qiao D, Du Z, Qi X. Different responses of abundant and rare bacterial composition to groundwater depth and reduced nitrogen application in summer maize field. Front Microbiol 2023; 14:1220731. [PMID: 37901810 PMCID: PMC10613034 DOI: 10.3389/fmicb.2023.1220731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/18/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction It is well known that reduced nitrogen application and groundwater depth can change soil microbial communities, but the associated difference in the response of abundant and rare bacterial composition to these local environmental changes remains unclear. Methods In this study a lysimeter experiment was carried out to examine the impact of reduced nitrogen and groundwater depth on the composition of abundant and rare bacteria. Results and discussion Our results demonstrated that the summer maize field soil species composition of rare bacterial sub-communities was significantly regulated by reduced nitrogen application, groundwater depth change and their interactions. However, only reduced nitrogen application had a significant influence on the species composition of abundant bacterial sub-communities. The structural equation model (SEM) indicated that reduced nitrogen application and groundwater depth change also could indirectly regulate the species composition of abundant and rare bacteria by altering soil attributes. The changes in soil pH and TSN had the most significant effects on the community composition of abundant and rare bacteria, respectively. More importantly, rare bacterial sub-communities were more sensitive to the changes in nitrogen input, groundwater depth and soil factors. Collectively, our study first demonstrated that abundant and rare microbial sub-communities responded differently to reduced nitrogen application and groundwater depth change. This study highlights that summer maize farmland production management should take nitrogen input and groundwater depth into consideration to maintain the compositional stability of soil rare microbial sub-communities.
Collapse
Affiliation(s)
- Fangfang Bai
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang, China
| | - Wei Guo
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang, China
- Water Environment Factor Risk Assessment Laboratory of Agricultural Products Quality and Safety, Ministry of Agriculture and Rural Affairs, Xinxiang, China
| | - Ping Li
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang, China
- Agricultural Water Soil Environmental Field Research Station of Xinxiang, Chinese Academy of Agricultural Sciences, Xinxiang, China
| | - Dongmei Qiao
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang, China
| | - Zhenjie Du
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang, China
- Water Environment Factor Risk Assessment Laboratory of Agricultural Products Quality and Safety, Ministry of Agriculture and Rural Affairs, Xinxiang, China
| | - Xuebin Qi
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang, China
- Water Environment Factor Risk Assessment Laboratory of Agricultural Products Quality and Safety, Ministry of Agriculture and Rural Affairs, Xinxiang, China
| |
Collapse
|
38
|
Rey-Velasco X, Deulofeu-Capo O, Sanz-Sáez I, Cardelús C, Ferrera I, Gasol JM, Sánchez O. Expanding success in the isolation of abundant marine bacteria after reduction in grazing and viral pressure and increase in nutrient availability. Microbiol Spectr 2023; 11:e0089023. [PMID: 37747249 PMCID: PMC10580928 DOI: 10.1128/spectrum.00890-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/03/2023] [Indexed: 09/26/2023] Open
Abstract
Isolation of microorganisms is a useful approach to gathering knowledge about their genomic properties, physiology, and ecology, in addition to allowing the characterization of novel taxa. We performed an extensive isolation effort on samples from seawater manipulation experiments that were carried out during the four astronomical seasons in a coastal site of the northwest Mediterranean to evaluate the impact of grazing, viral mortality, resource competition reduction, and light presence/absence on bacterioplankton growth. Isolates were retrieved using two growth media, and their full 16S rRNA gene was sequenced to assess their identity and calculate their culturability across seasons and experimental conditions. A total of 1,643 isolates were obtained, mainly affiliated to the classes Gammaproteobacteria (44%), Alphaproteobacteria (26%), and Bacteroidia (17%). Isolates pertaining to class Gammaproteobacteria were the most abundant in all experiments, while Bacteroidia were preferentially enriched in the treatments with reduced grazing. Sixty-one isolates had a similarity below 97% to cultured taxa and are thus putatively novel. Comparison of isolate sequences with 16S rRNA gene amplicon sequences from the same samples showed that the percentage of reads corresponding to isolates was 21.4% within the whole data set, with dramatic increases in the summer virus-reduced (71%) and diluted (47%) treatments. In fact, we were able to isolate the top 10 abundant taxa in several experiments and from the whole data set. We also show that top-down and bottom-up controls differentially affect taxa in terms of culturability. Our results indicate that culturing marine bacteria using agar plates can be successful in certain ecological situations. IMPORTANCE Bottom-up and top-down controls greatly influence marine microbial community composition and dynamics, which in turn have effects on their culturability. We isolated a high amount of heterotrophic bacterial strains from experiments where seawater environmental conditions had been manipulated and found that decreasing grazing and viral pressure as well as rising nutrient availability are key factors increasing the success in culturing marine bacteria. Our data hint at factors influencing culturability and underpin bacterial cultures as a powerful way to discover new taxa.
Collapse
Affiliation(s)
| | - Ona Deulofeu-Capo
- Institut de Ciències del Mar (ICM-CSIC), Barcelona, Catalonia, Spain
| | - Isabel Sanz-Sáez
- Institut de Ciències del Mar (ICM-CSIC), Barcelona, Catalonia, Spain
- Instituto de Diagnóstico Ambiental y Estudios del Agua (IDAEA-CSIC), Barcelona, Catalonia, Spain
| | - Clara Cardelús
- Institut de Ciències del Mar (ICM-CSIC), Barcelona, Catalonia, Spain
| | - Isabel Ferrera
- Institut de Ciències del Mar (ICM-CSIC), Barcelona, Catalonia, Spain
- Centro Oceanográfico de Málaga, Instituto Español de Oceanografía, (IEO-CSIC), Fuengirola, Málaga, Spain
| | - Josep M. Gasol
- Institut de Ciències del Mar (ICM-CSIC), Barcelona, Catalonia, Spain
| | - Olga Sánchez
- Departament de Genètica i Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
39
|
Li S, Chen J, Zhao J, Qi W, Liu H. The response of microbial compositions and functions to chronic single and multiple antibiotic exposure by batch experiment. ENVIRONMENT INTERNATIONAL 2023; 179:108181. [PMID: 37683505 DOI: 10.1016/j.envint.2023.108181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/23/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023]
Abstract
Understanding the response of the microbial community to external disturbances such as micropollutants is vital for ecological risk evaluation. In this study, the effect of chronic antibiotic exposure on community compositions and functions was investigated by two batch experiments. The first experiment investigated the effect of chronic sulfamethoxazole (SMX) exposure, while the second investigated the combined effect of dissolved organic matter (DOM) sources and multi-antibiotic exposure. The results showed that the community responses to chronic antibiotic exposure depended on the dynamic balance among community resistance, adaptation, recovery, and selection, leading to nonlinear composition diversity variations. The disturbance strength of chronic SMX exposure increased with concentration (0.5-50 μg/L). However, complex sources and structures of coexisting organic matter might delay the disturbance by elevating metabolic activity and generating functional redundancy. Especially, when nutrient was a limiting factor, the disturbance strength by DOM source was greater than that by chronic antibiotic exposure. The resistance of abundant taxa to external distributions resulted in a low explanation of community diversity, while rare taxa played key roles in response to community variation and thereby affected community assembly. Long-term SMX exposure reduced the number of key species and favored the deterministic assembly process by 21%. However, elevated community adaptability might weaken the influence of antibiotic selection. Chronic SMX exposure elevated the relative abundance of sulfonamide resistance genes (sul1, sul2) by a factor of 1.2-4.3, while that of nitrogen-fixing genes (nifH, nifK) and the metabolic pathways related to the toluene, ethylbenzene, and dioxin degradation decreased. However, the combined influence of DOM sources and multi-antibiotic exposure barely caused the difference in the genes linking to element metabolism and drug resistance of microbial communities between blank and exposed groups. This study suggested that more concern should be given to the chronic environmental effect of organic micropollutants.
Collapse
Affiliation(s)
- Siling Li
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Junwen Chen
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jian Zhao
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Weixiao Qi
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
40
|
Wu L, Yang Y, Ning D, Gao Q, Yin H, Xiao N, Zhou BY, Chen S, He Q, Zhou J. Assessing mechanisms for microbial taxa and community dynamics using process models. MLIFE 2023; 2:239-252. [PMID: 38817815 PMCID: PMC10989933 DOI: 10.1002/mlf2.12076] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/27/2023] [Accepted: 05/27/2023] [Indexed: 06/01/2024]
Abstract
Disentangling the assembly mechanisms controlling community composition, structure, distribution, functions, and dynamics is a central issue in ecology. Although various approaches have been proposed to examine community assembly mechanisms, quantitative characterization is challenging, particularly in microbial ecology. Here, we present a novel approach for quantitatively delineating community assembly mechanisms by combining the consumer-resource model with a neutral model in stochastic differential equations. Using time-series data from anaerobic bioreactors that target microbial 16S rRNA genes, we tested the applicability of three ecological models: the consumer-resource model, the neutral model, and the combined model. Our results revealed that model performances varied substantially as a function of population abundance and/or process conditions. The combined model performed best for abundant taxa in the treatment bioreactors where process conditions were manipulated. In contrast, the neutral model showed the best performance for rare taxa. Our analysis further indicated that immigration rates decreased with taxa abundance and competitions between taxa were strongly correlated with phylogeny, but within a certain phylogenetic distance only. The determinism underlying taxa and community dynamics were quantitatively assessed, showing greater determinism in the treatment bioreactors that aligned with the subsequent abnormal system functioning. Given its mechanistic basis, the framework developed here is expected to be potentially applicable beyond microbial ecology.
Collapse
Affiliation(s)
- Linwei Wu
- Institute of Ecology, Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental SciencesPeking UniversityBeijingChina
- Institute for Environmental GenomicsUniversity of OklahomaNormanOKUSA
- Department of Microbiology and Plant BiologyUniversity of OklahomaNormanOKUSA
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of EnvironmentTsinghua UniversityBeijingChina
| | - Daliang Ning
- Institute for Environmental GenomicsUniversity of OklahomaNormanOKUSA
- Department of Microbiology and Plant BiologyUniversity of OklahomaNormanOKUSA
| | - Qun Gao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of EnvironmentTsinghua UniversityBeijingChina
| | - Huaqun Yin
- School of Minerals Processing and BioengineeringCentral South UniversityChangshaChina
| | - Naija Xiao
- Institute for Environmental GenomicsUniversity of OklahomaNormanOKUSA
- Department of Microbiology and Plant BiologyUniversity of OklahomaNormanOKUSA
| | - Benjamin Y. Zhou
- Department of Mathematics, Lunt HallNorthwestern UniversityEvanstonIllinoisUSA
| | - Si Chen
- Department of Civil and Environmental EngineeringThe University of TennesseeKnoxvilleTennesseeUSA
- Institute for a Secure and Sustainable EnvironmentThe University of TennesseeKnoxvilleTennesseeUSA
| | - Qiang He
- Department of Civil and Environmental EngineeringThe University of TennesseeKnoxvilleTennesseeUSA
- Institute for a Secure and Sustainable EnvironmentThe University of TennesseeKnoxvilleTennesseeUSA
| | - Jizhong Zhou
- Institute for Environmental GenomicsUniversity of OklahomaNormanOKUSA
- Department of Microbiology and Plant BiologyUniversity of OklahomaNormanOKUSA
- School of Civil Engineering and Environmental SciencesUniversity of OklahomaNormanOklahomaUSA
- Earth and Environmental Sciences, Lawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
- School of Computer ScienceUniversity of OklahomaNormanOKUSA
| |
Collapse
|
41
|
Ren Y, Shao Q, Ge W, Li X, Wang H, Dong C, Zhang Y, Deshmukh SK, Han Y. Assembly Processes and Biogeographical Characteristics of Soil Bacterial Sub-communities of Different Habitats in Urban Green Spaces. Curr Microbiol 2023; 80:309. [PMID: 37535152 DOI: 10.1007/s00284-023-03428-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 07/23/2023] [Indexed: 08/04/2023]
Abstract
The process of urbanization is one of the most important human-driven activities that reshape the natural distribution of soil microorganisms. However, it is still unclear about the effects of urbanization on the different taxonomic soil bacterial community dynamics. In this study, we collected soil samples from highly urbanized the regions of Yangtze River Delta, Beijing-Tianjin-Hebei in China, to explore the bio-geographic patterns, assembly processes, and symbiotic patterns of abundant, moderate, and rare bacterial communities. We found that the number of moderate and rare taxa species were lower than that of abundant taxa, but their α-diversity index was higher than abundant taxa. Proteobacteria, Acidobacteria, Actinobacteria, Bacterioidetes, and Chloroflexi were the dominant phylum across all three sub-communities. And the β-diversity value of rare taxa was significantly higher than those of moderate and abundant taxa. Abundant, moderate, and rare sub-communities showed a weak distance-decay relationship, and the moderate taxa had the highest turnover rate of microbial geography in the context of urbanization. Diffusion limitation was the dominant process of soil bacterial community assembly. The co-occurrence networks of abundant, moderate, and rare taxa were dominated by positive correlations. The network of moderate taxa had the highest modularity, followed by abundant taxa. The main functions of the abundant, moderate, and rare taxa were related to Chemoheterotrophy and N transformations. Redundancy analysis showed that the dispersal limitation, climate, and soil properties were the main factors dominating bio-geographic differences in soil bacterial community diversity. We conclude that human-dominated urbanization processes have generated more uncertain survival pressures on soil bacteria, which resulted in a stronger linkage but weak bio-geographic variation for soil bacteria. In the future urban planning process, we suggest that such maintenance of native vegetation and soil types should be considered to maintain the long-term stability of local microbial ecosystem functions.
Collapse
Affiliation(s)
- Yulian Ren
- Institute of Fungus Resources, Department of Ecology, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Qiuyu Shao
- Institute of Fungus Resources, Department of Ecology, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Wei Ge
- Institute of Fungus Resources, Department of Ecology, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Xin Li
- Institute of Fungus Resources, Department of Ecology, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Haiyan Wang
- Institute of Fungus Resources, Department of Ecology, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Chunbo Dong
- Institute of Fungus Resources, Department of Ecology, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Yanwei Zhang
- School of Biological Sciences, Guizhou Education University, Guiyang, 550018, Guizhou, China
| | - Sunil Kumar Deshmukh
- TERI-Deakin Nano Biotechnology Centre, The Energy and Resources Institute, Darbari Seth Block, IHC Complex, Lodhi Road, New Delhi, 110003, India
| | - Yanfeng Han
- Institute of Fungus Resources, Department of Ecology, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
42
|
Zhong S, Hou B, Zhang J, Wang Y, Xu X, Li B, Ni J. Ecological differentiation and assembly processes of abundant and rare bacterial subcommunities in karst groundwater. Front Microbiol 2023; 14:1111383. [PMID: 37560528 PMCID: PMC10407230 DOI: 10.3389/fmicb.2023.1111383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 06/26/2023] [Indexed: 08/11/2023] Open
Abstract
The ecological health of karst groundwater has been of global concern due to increasing anthropogenic activities. Bacteria comprising a few abundant taxa (AT) and plentiful rare taxa (RT) play essential roles in maintaining ecosystem stability, yet limited information is known about their ecological differentiation and assembly processes in karst groundwater. Based on a metabarcoding analysis of 64 groundwater samples from typical karst regions in southwest China, we revealed the environmental drivers, ecological roles, and assembly mechanisms of abundant and rare bacterial communities. We found a relatively high abundance of potential functional groups associated with parasites and pathogens in karst groundwater, which might be linked to the frequent regional anthropogenic activities. Our study confirmed that AT was dominated by Proteobacteria and Campilobacterota, while Patescibacteria and Chloroflexi flourished more in the RT subcommunity. The node-level topological features of the co-occurrence network indicated that AT might share similar niches and play more important roles in maintaining bacterial community stability. RT in karst groundwater was less environmentally constrained and showed a wider environmental threshold response to various environmental factors than AT. Deterministic processes, especially homogeneous selection, tended to be more important in the community assembly of AT, whereas the community assembly of RT was mainly controlled by stochastic processes. This study expanded our knowledge of the karst groundwater microbiome and was of great significance to the assessment of ecological stability and drinking water safety in karst regions.
Collapse
Affiliation(s)
- Sining Zhong
- Fujian Provincial Key Laboratory of Soil Environment Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Environmental Sciences and Engineering, Peking University, Beijing, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Bowen Hou
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China
| | - Jinzheng Zhang
- Fujian Provincial Key Laboratory of Soil Environment Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yichu Wang
- College of Environmental Sciences and Engineering, Peking University, Beijing, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing, China
- College of Water Sciences, Beijing Normal University, Beijing, China
| | - Xuming Xu
- College of Environmental Sciences and Engineering, Peking University, Beijing, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Bin Li
- College of Environmental Sciences and Engineering, Peking University, Beijing, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Jinren Ni
- College of Environmental Sciences and Engineering, Peking University, Beijing, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| |
Collapse
|
43
|
Ramond P, Siano R, Sourisseau M, Logares R. Assembly processes and functional diversity of marine protists and their rare biosphere. ENVIRONMENTAL MICROBIOME 2023; 18:59. [PMID: 37443126 PMCID: PMC10347826 DOI: 10.1186/s40793-023-00513-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023]
Abstract
BACKGROUND The mechanisms shaping the rare microbial biosphere and its role in ecosystems remain unclear. We developed an approach to study ecological patterns in the rare biosphere and use it on a vast collection of marine microbiomes, sampled in coastal ecosystems at a regional scale. We study the assembly processes, and the ecological strategies constituting the rare protistan biosphere. Using the phylogeny and morpho-trophic traits of these protists, we also explore their functional potential. RESULTS Taxonomic community composition remained stable along rank abundance curves. Conditionally rare taxa, driven by selection processes, and transiently rare taxa, with stochastic distributions, were evidenced along the rank abundance curves of all size-fractions. Specific taxa within the divisions Sagenista, Picozoa, Telonemia, and Choanoflagellida were rare across time and space. The distribution of traits along rank abundance curves outlined a high functional redundancy between rare and abundant protists. Nevertheless, trophic traits illustrated an interplay between the trophic groups of different size-fractions. CONCLUSIONS Our results suggest that rare and abundant protists are evolutionary closely related, most notably due to the high microdiversity found in the rare biosphere. We evidenced a succession of assembly processes and strategies of rarity along rank abundance curves that we hypothesize to be common to most microbiomes at the regional scale. Despite high functional redundancy in the rare protistan biosphere, permanently rare protists were evidenced, and they could play critical functions as bacterivores and decomposers from within the rare biosphere. Finally, changes in the composition of the rare protistan biosphere could be influenced by the trophic regime of aquatic ecosystems. Our work contributes to understanding the role of rare protists in microbiomes.
Collapse
Affiliation(s)
- Pierre Ramond
- Institute of Marine Sciences (ICM), Department of Marine Biology and Oceanography, CSIC, Barcelona, Catalunya, 08003, Spain.
| | - Raffaele Siano
- DYNECO/Pelagos, Ifremer-Centre de Brest, Technopôle Brest Iroise, Plouzané, 29280, France
| | - Marc Sourisseau
- DYNECO/Pelagos, Ifremer-Centre de Brest, Technopôle Brest Iroise, Plouzané, 29280, France
| | - Ramiro Logares
- Institute of Marine Sciences (ICM), Department of Marine Biology and Oceanography, CSIC, Barcelona, Catalunya, 08003, Spain
| |
Collapse
|
44
|
Ontiveros VJ, Capitán JA, Casamayor EO, Alonso D. Colonization-persistence trade-offs in natural bacterial communities. Proc Biol Sci 2023; 290:20230709. [PMID: 37403500 PMCID: PMC10320335 DOI: 10.1098/rspb.2023.0709] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/05/2023] [Indexed: 07/06/2023] Open
Abstract
Fitness equalizing mechanisms, such as trade-offs, are recognized as one of the main factors promoting species coexistence in community ecology. However, they have rarely been explored in microbial communities. Although microbial communities are highly diverse, the coexistence of their multiple taxa is largely attributed to niche differences and high dispersal rates, following the principle 'everything is everywhere, but the environment selects'. We use a dynamical stochastic model based on the theory of island biogeography to study highly diverse bacterial communities over time across three different systems (soils, alpine lakes and shallow saline lakes). Assuming fitness equalization mechanisms, here we newly analytically derive colonization-persistence trade-offs, and report a signal of such trade-offs in natural bacterial communities. Moreover, we show that different subsets of species in the community drive this trade-off. Rare taxa, which are occasional and more likely to follow independent colonization/extinction dynamics, drive this trade-off in the aquatic communities, while the core sub-community did it in the soils. We conclude that equalizing mechanisms may be more important than previously recognized in bacterial communities. Our work also emphasizes the fundamental value of dynamical models for understanding temporal patterns and processes in highly diverse communities.
Collapse
Affiliation(s)
- Vicente J. Ontiveros
- Theoretical and Computational Ecology, Center for Advanced Studies of Blanes (CEAB-CSIC), Spanish Council for Scientific Research, Accés Cala St. Francesc 14, E-17300 Blanes, Spain
| | - José A. Capitán
- Theoretical and Computational Ecology, Center for Advanced Studies of Blanes (CEAB-CSIC), Spanish Council for Scientific Research, Accés Cala St. Francesc 14, E-17300 Blanes, Spain
- Complex Systems Group. Department of Applied Mathematics, Universidad Politécnica de Madrid. Av. Juan de Herrera, 6. E-28040 Madrid, Spain
| | - Emilio O. Casamayor
- Integrative Freshwater Ecology Group, Centre of Advanced Studies of Blanes (CEAB-CSIC), Spanish Council for Scientific Research, Accés Cala St. Francesc 14, E-17300 Blanes, Spain
| | - David Alonso
- Theoretical and Computational Ecology, Center for Advanced Studies of Blanes (CEAB-CSIC), Spanish Council for Scientific Research, Accés Cala St. Francesc 14, E-17300 Blanes, Spain
| |
Collapse
|
45
|
Meili CH, Jones AL, Arreola AX, Habel J, Pratt CJ, Hanafy RA, Wang Y, Yassin AS, TagElDein MA, Moon CD, Janssen PH, Shrestha M, Rajbhandari P, Nagler M, Vinzelj JM, Podmirseg SM, Stajich JE, Goetsch AL, Hayes J, Young D, Fliegerova K, Grilli DJ, Vodička R, Moniello G, Mattiello S, Kashef MT, Nagy YI, Edwards JA, Dagar SS, Foote AP, Youssef NH, Elshahed MS. Patterns and determinants of the global herbivorous mycobiome. Nat Commun 2023; 14:3798. [PMID: 37365172 PMCID: PMC10293281 DOI: 10.1038/s41467-023-39508-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 06/14/2023] [Indexed: 06/28/2023] Open
Abstract
Despite their role in host nutrition, the anaerobic gut fungal (AGF) component of the herbivorous gut microbiome remains poorly characterized. Here, to examine global patterns and determinants of AGF diversity, we generate and analyze an amplicon dataset from 661 fecal samples from 34 mammalian species, 9 families, and 6 continents. We identify 56 novel genera, greatly expanding AGF diversity beyond current estimates (31 genera and candidate genera). Community structure analysis indicates that host phylogenetic affiliation, not domestication status and biogeography, shapes the community rather than. Fungal-host associations are stronger and more specific in hindgut fermenters than in foregut fermenters. Transcriptomics-enabled phylogenomic and molecular clock analyses of 52 strains from 14 genera indicate that most genera with preferences for hindgut hosts evolved earlier (44-58 Mya) than those with preferences for foregut hosts (22-32 Mya). Our results greatly expand the documented scope of AGF diversity and provide an ecologically and evolutionary-grounded model to explain the observed patterns of AGF diversity in extant animal hosts.
Collapse
Affiliation(s)
- Casey H Meili
- Oklahoma State University, Department of Microbiology and Molecular Genetics, Stillwater, OK, USA
| | - Adrienne L Jones
- Oklahoma State University, Department of Microbiology and Molecular Genetics, Stillwater, OK, USA
| | - Alex X Arreola
- Oklahoma State University, Department of Microbiology and Molecular Genetics, Stillwater, OK, USA
| | - Jeffrey Habel
- Oklahoma State University, Department of Microbiology and Molecular Genetics, Stillwater, OK, USA
| | - Carrie J Pratt
- Oklahoma State University, Department of Microbiology and Molecular Genetics, Stillwater, OK, USA
| | - Radwa A Hanafy
- Oklahoma State University, Department of Microbiology and Molecular Genetics, Stillwater, OK, USA
| | - Yan Wang
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Aymen S Yassin
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Moustafa A TagElDein
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Christina D Moon
- AgResearch Ltd, Grasslands Research Centre, Palmerston North, New Zealand
| | - Peter H Janssen
- AgResearch Ltd, Grasslands Research Centre, Palmerston North, New Zealand
| | - Mitesh Shrestha
- Department of Applied Microbiology and Food Technology, Research Institute for Bioscience and Biotechnology (RIBB), Kathmandu, Nepal
| | - Prajwal Rajbhandari
- Department of Applied Microbiology and Food Technology, Research Institute for Bioscience and Biotechnology (RIBB), Kathmandu, Nepal
| | - Magdalena Nagler
- Universität Innsbruck, Faculty of Biology, Department of Microbiology, Innsbruck, Austria
| | - Julia M Vinzelj
- Universität Innsbruck, Faculty of Biology, Department of Microbiology, Innsbruck, Austria
| | - Sabine M Podmirseg
- Universität Innsbruck, Faculty of Biology, Department of Microbiology, Innsbruck, Austria
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, USA
| | | | | | - Diana Young
- Bavarian State Research Center for Agriculture, Freising, Germany
| | - Katerina Fliegerova
- Institute of Animal Physiology and Genetics Czech Academy of Sciences, Prague, Czechia
| | - Diego Javier Grilli
- Área de Microbiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | | | - Giuseppe Moniello
- Department of Veterinary Medicine, University of Sassari, Sardinia, Italy
| | - Silvana Mattiello
- University of Milan, Dept. of Agricultural and Environmental Sciences, Milan, Italy
| | - Mona T Kashef
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Yosra I Nagy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | | | | - Andrew P Foote
- Oklahoma State University, Department of Animal and Food Sciences, Stillwater, OK, USA
| | - Noha H Youssef
- Oklahoma State University, Department of Microbiology and Molecular Genetics, Stillwater, OK, USA.
| | - Mostafa S Elshahed
- Oklahoma State University, Department of Microbiology and Molecular Genetics, Stillwater, OK, USA.
| |
Collapse
|
46
|
Mohapatra M, Manu S, Kim JY, Rastogi G. Distinct community assembly processes and habitat specialization driving the biogeographic patterns of abundant and rare bacterioplankton in a brackish coastal lagoon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163109. [PMID: 36996988 DOI: 10.1016/j.scitotenv.2023.163109] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/07/2023] [Accepted: 03/23/2023] [Indexed: 05/17/2023]
Abstract
The ecological diversity patterns and community assembly processes along spatio-temporal scales are least studied in the bacterioplankton sub-communities of brackish coastal lagoons. We examined the biogeographic patterns and relative influences of different assembly processes in structuring the abundant and rare bacterioplankton sub-communities of Chilika, the largest brackish water coastal lagoon of India. Rare taxa demonstrated significantly higher α- and β-diversity and biogeochemical functions than abundant taxa in the high-throughput 16S rRNA gene sequence dataset. The majority of the abundant taxa (91.4 %) were habitat generalists with a wider niche breadth (niche breadth index, B = 11.5), whereas most of the rare taxa (95.2 %) were habitat specialists with a narrow niche breadth (B = 8.9). Abundant taxa exhibited a stronger distance-decay relationship and higher spatial turnover rate than rare taxa. β-diversity partitioning revealed that the contribution of species turnover (72.2-97.8 %) was greater than nestedness (2.2-27.8 %) in causing the spatial variation in both abundant and rare taxa. Null model analyses revealed that the distribution of abundant taxa was mostly structured by stochastic processes (62.8 %), whereas deterministic processes (54.1 %) played a greater role in the rare taxa. However, the balance of these two processes varied across spatio-temporal scales in the lagoon. Salinity was the key deterministic factor controlling the variation of both abundant and rare taxa. Potential interaction networks showed a higher influence of negative interactions, indicating that species exclusion and top-down processes played a greater role in the community assembly. Notably, abundant taxa emerged as keystone taxa across spatio-temporal scales, suggesting their greater influences on other bacterial co-occurrences and network stability. Overall, this study provided detailed mechanistic insights into biogeographic patterns and underlying community assembly processes of the abundant and rare bacterioplankton over spatio-temporal scales in a brackish lagoon.
Collapse
Affiliation(s)
- Madhusmita Mohapatra
- Wetland Research and Training Centre, Chilika Development Authority, Balugaon 752030, Odisha, India
| | - Shivakumara Manu
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500048, India
| | - Ji Yoon Kim
- Department of Biological Science, Kunsan National University, Gunsan 54150, Republic of Korea
| | - Gurdeep Rastogi
- Wetland Research and Training Centre, Chilika Development Authority, Balugaon 752030, Odisha, India.
| |
Collapse
|
47
|
Sun X, Sharon O, Sharon A. Distinct Features Based on Partitioning of the Endophytic Fungi of Cereals and Other Grasses. Microbiol Spectr 2023; 11:e0061123. [PMID: 37166321 PMCID: PMC10269846 DOI: 10.1128/spectrum.00611-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/18/2023] [Indexed: 05/12/2023] Open
Abstract
Endophytic fungi form a significant part of the plant mycobiome. Defining core members is crucial to understanding the assembly mechanism of fungal endophytic communities (FECs) and identifying functionally important community members. We conducted a meta-analysis of FECs in stems of wheat and five wild cereal species and generated a landscape of the fungal endophytic assemblages in this group of plants. The analysis revealed that several Ascomycota members and basidiomycetous yeasts formed an important compartment of the FECs in these plants. We observed a weak spatial autocorrelation at the regional scale and high intrahost variations in the FECs, suggesting a space-related heterogeneity. Accordingly, we propose that the heterogeneity among subcommunities should be a criterion to define the core endophytic members. Analysis of the subcommunities and meta-communities showed that the core and noncore members had distinct roles in various assembly processes, such as stochasticity, universal dynamics, and network characteristics, within each host. The distinct features identified between the community partitions of endophytes aid in understanding the principles that govern the assembly and function of natural communities. These findings can assist in designing synthetic microbiomes. IMPORTANCE This study proposes a novel method for diagnosing core microbiotas based on prevalence of community members in a meta-community, which could be determined and supported statistically. Using this approach, the study found stratification in community assembly processes within fungal endophyte communities (FECs) in the stems of wheat and cereal-related wild species. The core and noncore partitions of the FECs exhibited certain degrees of determinism from different aspects. Further analysis revealed abundant and consistent interactions between rare taxa, which might contribute to the determinism process in noncore partitions. Despite minor differences in FEC compositions, wheat FECs showed distinct patterns in community assembly processes compared to wild species, suggesting the effects of domestication on FECs. Overall, our study provided a new approach for identifying core microbiota and provides insights into the community assembly processes within FECs in wheat and related wild species.
Collapse
Affiliation(s)
- Xiang Sun
- School of Life Sciences, Hebei University, Baoding, Hebei, China
| | - Or Sharon
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Amir Sharon
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
48
|
Amato P, Mathonat F, Nuñez Lopez L, Péguilhan R, Bourhane Z, Rossi F, Vyskocil J, Joly M, Ervens B. The aeromicrobiome: the selective and dynamic outer-layer of the Earth's microbiome. Front Microbiol 2023; 14:1186847. [PMID: 37260685 PMCID: PMC10227452 DOI: 10.3389/fmicb.2023.1186847] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/24/2023] [Indexed: 06/02/2023] Open
Abstract
The atmosphere is an integral component of the Earth's microbiome. Abundance, viability, and diversity of microorganisms circulating in the air are determined by various factors including environmental physical variables and intrinsic and biological properties of microbes, all ranging over large scales. The aeromicrobiome is thus poorly understood and difficult to predict due to the high heterogeneity of the airborne microorganisms and their properties, spatially and temporally. The atmosphere acts as a highly selective dispersion means on large scales for microbial cells, exposing them to a multitude of physical and chemical atmospheric processes. We provide here a brief critical review of the current knowledge and propose future research directions aiming at improving our comprehension of the atmosphere as a biome.
Collapse
Affiliation(s)
- Pierre Amato
- Université Clermont Auvergne, CNRS, Institut de Chimie de Clermont-Ferrand (ICCF), Clermont-Ferrand, France
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Zhu M, Qi X, Yuan Y, Zhou H, Rong X, Dang Z, Yin H. Deciphering the distinct successional patterns and potential roles of abundant and rare microbial taxa of urban riverine plastisphere. JOURNAL OF HAZARDOUS MATERIALS 2023; 450:131080. [PMID: 36842200 DOI: 10.1016/j.jhazmat.2023.131080] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/01/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Microbial colonization on microplastics has provoked global concern; however, many studies have not considered the successional patterns and potential roles of abundant and rare taxa of the plastisphere during colonization. Hence, we investigate the taxonomic composition, assembly, interaction and function of abundant and rare taxa in the riverine plastisphere by conducting microcosm experiments. Results showed that rare taxa occupied significantly high community diversity and niche breadth than the abundant taxa, which implies that rare taxa are essential components in maintaining the community stability of the plastisphere. However, the abundant taxa played a major role in driving the succession of plastisphere communities during colonization. Both stochastic and deterministic processes signally affected the plastisphere community assemblies; while, the deterministic patterns (heterogeneous selection) were especially pronounced for rare biospheres. Plastisphere microbial networks were shaped by the enhancement of network modularity and reinforcement of positive interactions. Rare taxa played critical roles in shaping stable plastisphere by occupying the key status in microbial networks. The strong interaction of rare and non-rare taxa suggested that multi-species collaboration might be conducive to the formation and stability of the plastisphere. Both abundant and rare taxa were enriched with plentiful functional genes related to carbon, nitrogen, phosphorus and sulfur cycling; however, their potential metabolic functions were significantly discrepant, implying that the abundant and rare microbes may play different roles in ecosystems. Overall, this study strengthens our comprehending of the mechanisms regarding the formation and maintenance of the plastisphere.
Collapse
Affiliation(s)
- Minghan Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xin Qi
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yibo Yuan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Heyang Zhou
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xufa Rong
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China
| | - Hua Yin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China.
| |
Collapse
|
50
|
Zhang X, Zhao W, Kou Y, Fang K, Liu Y, He H, Liu Q. The contrasting responses of abundant and rare microbial community structures and co-occurrence networks to secondary forest succession in the subalpine region. Front Microbiol 2023; 14:1177239. [PMID: 37250033 PMCID: PMC10213230 DOI: 10.3389/fmicb.2023.1177239] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Knowledge of variations in abundant and rare soil microbial communities and interactions during secondary forest succession is lacking. Soil samples were gathered from different secondary successional stages (grassland, shrubland, and secondary forest) to study the responses of abundant and rare bacterial and fungal communities, interactions and driving factors to secondary forest succession by Illumina sequencing of the 16S and ITS rRNA genes. The results showed that the α-diversities (Shannon index) of abundant bacteria and fungi revealed no significant changes during secondary forest succession, but increased significantly for rare bacteria. The abundant and rare bacterial and fungal β-diversities changed significantly during secondary forest succession. Network analysis showed no obvious changes in the topological properties (nodes, links, and average degree) of abundant microbial networks during secondary forest succession. In contrast, these properties of the rare microbial networks in the secondary forest were higher than those in the grassland and shrubland, indicating that rare microbial networks are more responsive to secondary forest succession than abundant microorganisms. Additionally, rare microbial networks revealed more microbial interactions and greater network complexity than abundant microbial networks due to their higher numbers of nodes and links. The keystone species differed between the abundant and rare microbial networks and consisted of 1 and 48 keystone taxa in the abundant and rare microbial networks, respectively. Soil TP was the most important influencing factor of abundant and rare bacterial communities. Successional stages and plant richness had the most important influences on abundant and rare fungal communities, respectively. C:P, SM and N:P were mainly related to abundant and rare microbial network topological properties. Our study indicates that abundant and rare microbial communities, interactions and driving factors respond differently to secondary forest succession.
Collapse
Affiliation(s)
- Xiaoying Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenqiang Zhao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Yongping Kou
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Kai Fang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Yanjiao Liu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Heliang He
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
| | - Qing Liu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|