1
|
Shuster M, Lyu Z, Augenstreich J, Mathur S, Ganesh A, Ling J, Briken V. Salmonella Typhimurium infection inhibits macrophage IFNβ signaling in a TLR4-dependent manner. Infect Immun 2024; 92:e0009824. [PMID: 39269166 PMCID: PMC11475681 DOI: 10.1128/iai.00098-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/16/2024] [Indexed: 09/15/2024] Open
Abstract
Type I Interferons (IFNs) generally have a protective role during viral infections, but their function during bacterial infections is dependent on the bacterial species. Legionella pneumophila, Shigella sonnei and Mycobacterium tuberculosis can inhibit type I IFN signaling. Here we examined the role of type I IFN, specifically IFNβ, in the context of Salmonella enterica serovar Typhimurium (STm) macrophage infections and the capacity of STm to inhibit type I IFN signaling. We demonstrate that IFNβ has no effect on the intracellular growth of STm in infected bone marrow derived macrophages (BMDMs) derived from C57BL/6 mice. STm infection inhibits IFNβ signaling but not IFNγ signaling in a murine macrophage cell line. We show that this inhibition is independent of the type III and type VI secretion systems expressed by STm and is also independent of bacterial phagocytosis. The inhibition is Toll-like receptor 4 (TLR4)-dependent as the TLR4 ligand, lipopolysaccharide (LPS), alone is sufficient to inhibit IFNβ-mediated signaling. Cells downregulated their surface levels of IFNα/β receptor 1 (IFNAR1) in response to LPS, which may be mediating our observed inhibition. Lastly, we examined this inhibition in the context of TLR4-deficient BMDMs as well as TLR4 RNA interference and we observed a loss of inhibition with LPS stimulation as well as STm infection. In summary, we show that macrophages exposed to STm have reduced IFNβ signaling via crosstalk with TLR4 signaling, which may be mediated by reduced host cell surface IFNAR1, and that IFNβ signaling does not affect cell-autonomous host defense against STm.
Collapse
Affiliation(s)
- Michael Shuster
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Zhihui Lyu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Jacques Augenstreich
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Shrestha Mathur
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Akshaya Ganesh
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Jiqiang Ling
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Volker Briken
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
2
|
Sun L, Huang K, Huang X. Establishment of a STING-Deficient HepG2 Cell Line through CRISPR/Cas9 System and Evaluation of Its Effects on Salmonella Replication. J Pathog 2024; 2024:9615181. [PMID: 39301082 PMCID: PMC11412752 DOI: 10.1155/2024/9615181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/29/2024] [Accepted: 08/24/2024] [Indexed: 09/22/2024] Open
Abstract
Background Salmonella enterica serovar Typhimurium (Salmonella Typhimurium) is a common food-borne pathogen that causes gastroenteritis and can lead to life-threatening systemic disease when it spreads to vital organs, such as the liver. Stimulator of interferon genes (STING) is a crucial regulator of the host's innate immune response to viral infections, while its role in bacterial infections remains controversial. This study aims to establish a STING-deficient HepG2 cell line through the CRISPR/Cas9 system and evaluate its effects on Salmonella replication. Methods In this study, a STING knockout HepG2 cell line was constructed through the application of CRISPR/Cas9 technology. We assessed cell viability and proliferation using the CCK-8 assay. Subsequently, we investigated the effect of STING deletion on Salmonella replication and the expression of type I interferon-related genes. Results The STING knockout HepG2 cell line was successfully constructed using the CRISPR/Cas9 system. The proliferation capability was diminished in STING-deficient HepG2 cells, while Salmonella Typhimurium replication in these cells was augmented compared to the wild-type (WT) group. Following Salmonella infection, the transcriptional responses of type I interferon-related genes, such as IFNB1 and ISG15, were inhibited in STING-deficient HepG2 cells. Conclusions We successfully constructed a STING-deficient cell line. Our finding of increased Salmonella Typhimurium replication in STING-deficient HepG2 cells provides the basis for further studies on pathogen-host interactions.
Collapse
Affiliation(s)
- Lanqing Sun
- Department of Laboratory Medicine Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Kai Huang
- Orthopaedic Institute Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, China
| | - Xuan Huang
- Department of Laboratory Medicine Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
3
|
Shuster M, Lyu Z, Augenstreich J, Mathur S, Ganesh A, Ling J, Briken V. Salmonella Typhimurium infection inhibits macrophage IFNβ signaling in a TLR4-dependent manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.05.583530. [PMID: 38496427 PMCID: PMC10942315 DOI: 10.1101/2024.03.05.583530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Type I Interferons (IFNs) generally have a protective role during viral infections, but their function during bacterial infections is dependent on the bacterial species. Legionella pneumophila, Shigella sonnei and Mycobacterium tuberculosis can inhibit type I IFN signaling. Here we examined the role of type I IFN, specifically IFNβ, in the context of Salmonella enterica serovar Typhimurium (STm) macrophage infections and the capacity of STm to inhibit type I IFN signaling. We demonstrate that IFNβ has no effect on the intracellular growth of STm in infected bone marrow derived macrophages (BMDMs) derived from C57BL/6 mice. STm infection inhibits IFNβ signaling but not IFNγ signaling in a murine macrophage cell line. We show that this inhibition is independent of the type III and type VI secretion systems expressed by STm and is also independent of bacterial phagocytosis. The inhibition is Toll-like receptor 4 (TLR4)-dependent as the TLR4 ligand, lipopolysaccharide (LPS), alone is sufficient to inhibit IFNβ-mediated signaling and STm-infected, TLR4-deficient BMDMs do not exhibit inhibited IFNβ signaling. In summary, we show that macrophages exposed to STm have reduced IFNβ signaling via crosstalk with TLR4 signaling, and that IFNβ signaling does not affect cell autonomous host defense against STm.
Collapse
Affiliation(s)
- Michael Shuster
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Zhihui Lyu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Jacques Augenstreich
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Shrestha Mathur
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Akshaya Ganesh
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Jiqiang Ling
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Volker Briken
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| |
Collapse
|
4
|
Zaldívar-López S, Herrera-Uribe J, Bautista R, Jiménez Á, Moreno Á, Claros MG, Garrido JJ. Salmonella Typhimurium induces genome-wide expression and phosphorylation changes that modulate immune response, intracellular survival and vesicle transport in infected neutrophils. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 140:104597. [PMID: 36450302 DOI: 10.1016/j.dci.2022.104597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Salmonella Typhimurium is a food-borne pathogen that causes salmonellosis. When in contact with the host, neutrophils are rapidly recruited to act as first line of defense. To better understand the pathogenesis of this infection, we used an in vitro model of neutrophil infection to perform dual RNA-sequencing (both host and pathogen). In addition, and given that many pathogens interfere with kinase-mediated phosphorylation in host signaling, we performed a phosphoproteomic analysis. The immune response was overall diminished in infected neutrophils, mainly JAK/STAT and toll-like receptor signaling pathways. We found decreased expression of proinflammatory cytokine receptor genes and predicted downregulation of the mitogen-activated protein (MAPK) signaling pathway. Also, Salmonella infection inhibited interferons I and II signaling pathways by upregulation of SOCS3 and subsequent downregulation of STAT1 and STAT2. Additionally, phosphorylation of PSMC2 and PSMC4, proteasome regulatory proteins, was decreased in infected neutrophils. Cell viability and survival was increased by p53 signaling, cell cycle arrest and NFkB-proteasome pathways activation. Combined analysis of RNA-seq and phosphoproteomics also revealed inhibited vesicle transport mechanisms mediated by dynein/dynactin and exocyst complexes, involved in ER-to-Golgi transport and centripetal movement of lysosomes and endosomes. Among the overexpressed virulence genes from Salmonella we found potential effectors responsible of these dysregulations, such as spiC, sopD2, sifA or pipB2, all of them involved in intracellular replication. Our results suggest that Salmonella induces (through overexpression of virulence factors) transcriptional and phosphorylation changes that increases neutrophil survival and shuts down immune response to minimize host response, and impairing intracellular vesicle transport likely to keep nutrients for replication and Salmonella-containing vacuole formation and maintenance.
Collapse
Affiliation(s)
- Sara Zaldívar-López
- Grupo de Inmunogenómica y Patogénesis Molecular, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Departamento de Genética, Universidad de Córdoba, Córdoba, Spain; Maimónides Biomedical Research Institute of Córdoba (IMIBIC), GA-14 Research Group, Córdoba, Spain.
| | - Juber Herrera-Uribe
- Grupo de Inmunogenómica y Patogénesis Molecular, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Departamento de Genética, Universidad de Córdoba, Córdoba, Spain
| | - Rocío Bautista
- Plataforma Andaluza de Bioinformática, Universidad de Málaga, Málaga, Spain
| | - Ángeles Jiménez
- Grupo de Inmunogenómica y Patogénesis Molecular, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Departamento de Genética, Universidad de Córdoba, Córdoba, Spain
| | - Ángela Moreno
- Grupo de Inmunogenómica y Patogénesis Molecular, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Departamento de Genética, Universidad de Córdoba, Córdoba, Spain
| | - M Gonzalo Claros
- Plataforma Andaluza de Bioinformática, Universidad de Málaga, Málaga, Spain; Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Málaga, Spain
| | - Juan J Garrido
- Grupo de Inmunogenómica y Patogénesis Molecular, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Departamento de Genética, Universidad de Córdoba, Córdoba, Spain; Maimónides Biomedical Research Institute of Córdoba (IMIBIC), GA-14 Research Group, Córdoba, Spain
| |
Collapse
|
5
|
Qu M, Zhu H, Zhang X. Extracellular vesicle-mediated regulation of macrophage polarization in bacterial infections. Front Microbiol 2022; 13:1039040. [PMID: 36619996 PMCID: PMC9815515 DOI: 10.3389/fmicb.2022.1039040] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
Extracellular vesicles (EVs) are nanoscale membrane-enveloped vesicles secreted by prokaryotic and eukaryotic cells, which are commonly defined as membrane vesicles (MVs) and exosomes, respectively. They play critical roles in the bacteria-bacteria and bacteria-host interactions. In infectious diseases caused by bacteria, as the first line of defense against pathogens, the macrophage polarization mode commonly determines the success or failure of the host's response to pathogen aggression. M1-type macrophages secrete pro-inflammatory factors that support microbicidal activity, while alternative M2-type macrophages secrete anti-inflammatory factors that perform an antimicrobial immune response but partially allow pathogens to replicate and survive intracellularly. Membrane vesicles (MVs) released from bacteria as a distinctive secretion system can carry various components, including bacterial effectors, nucleic acids, or lipids to modulate macrophage polarization in host-pathogen interaction. Similar to MVs, bacteria-infected macrophages can secrete exosomes containing a variety of components to manipulate the phenotypic polarization of "bystander" macrophages nearby or long distance to differentiate into type M1 or M2 to regulate the course of inflammation. Exosomes can also repair tissue damage associated with the infection by upregulating the levels of anti-inflammatory factors, downregulating the pro-inflammatory factors, and regulating cellular biological behaviors. The study of the mechanisms by which EVs modulate macrophage polarization has opened new frontiers in delineating the molecular machinery involved in bacterial pathogenesis and challenges in providing new strategies for diagnosis and therapy.
Collapse
Affiliation(s)
- Mingjuan Qu
- School of Life Sciences, Ludong University, Yantai, China,Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, China
| | - Hongwei Zhu
- School of Life Sciences, Ludong University, Yantai, China,Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, China,Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Jinan, China
| | - Xingxiao Zhang
- School of Life Sciences, Ludong University, Yantai, China,Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, China,Shandong Breeding Environmental Control Engineering Laboratory, Yantai, China,*Correspondence: Xingxiao Zhang, ✉
| |
Collapse
|
6
|
Salmonella Induces the cGAS-STING-Dependent Type I Interferon Response in Murine Macrophages by Triggering mtDNA Release. mBio 2022; 13:e0363221. [PMID: 35604097 PMCID: PMC9239183 DOI: 10.1128/mbio.03632-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) elicited strong innate immune responses in macrophages. To activate innate immunity, pattern recognition receptors (PRRs) in host cells can recognize highly conserved pathogen-associated molecular patterns (PAMPs). Here, we showed that S. Typhimurium induced a robust type I interferon (IFN) response in murine macrophages. Exposure of macrophages to S. Typhimurium activated a Toll-like receptor 4 (TLR4)-dependent type I IFN response. Next, we showed that type I IFN and IFN-stimulated genes (ISGs) were elicited in a TBK1-IFN-dependent manner. Furthermore, cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS) and immune adaptor protein stimulator of interferon genes (STING) were also required for the induction of type I IFN response during infection. Intriguingly, S. Typhimurium infection triggered mitochondrial DNA (mtDNA) release into the cytosol to activate the type I IFN response. In addition, we also showed that bacterial DNA was enriched in cGAS during infection, which may contribute to cGAS activation. Finally, we showed that cGAS and STING deficient mice and cells were more susceptible to S. Typhimurium infection, signifying the critical role of the cGAS-STING pathway in host defense against S. Typhimurium infection. In conclusion, in addition to TLR4-dependent innate immune response, we demonstrated that S. Typhimurium induced the type I IFN response in a cGAS-STING-dependent manner and the S. Typhimurium-induced mtDNA release was important for the induction of type I IFN. This study elucidated a new mechanism by which bacterial pathogen activated the cGAS-STING pathway and also characterized the important role of cGAS-STING during S. Typhimurium infection.
Collapse
|
7
|
Wuryandari MRE, Atho'illah MF, Laili RD, Fatmawati S, Widodo N, Widjajanto E, Rifa'i M. Lactobacillus plantarum FNCC 0137 fermented red Moringa oleifera exhibits protective effects in mice challenged with Salmonella typhi via TLR3/TLR4 inhibition and down-regulation of proinflammatory cytokines. J Ayurveda Integr Med 2021; 13:100531. [PMID: 34903438 PMCID: PMC8728064 DOI: 10.1016/j.jaim.2021.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/02/2021] [Accepted: 10/22/2021] [Indexed: 02/07/2023] Open
Abstract
Background Salmonella typhi is a foodborne pathogenic bacterium that threatens health. S. typhi infection exacerbated the antibiotic resistance problem that needs alternative strategies. Moringa oleifera possesses anti-inflammatory and antimicrobial effects. However, there is a lack of information about the pharmacological value of red M. oleifera. The fermentation of red M. oleifera leaves extract (RMOL) is expected to add to its nutritional value. Objective The present study aimed to evaluate non-fermented RMOL (NRMOL) and fermented RMOL (FRMOL) effects on S. typhi infection in mice. Materials and methods Female Balb/C mice were randomly divided into eight groups. The treatment groups were orally administered with NRMOL or FRMOL at doses 14, 42, and 84 mg/kg BW during the 28 days experimental period. Then S. typhi was introduced to mice through intraperitoneal injection except in the healthy groups. The NRMOL or FRMOL administration was continued for the next seven days. Cells that expressed CD11b+ TLR3+, CD11b+TLR4+, CD11b+IL-6+, CD11b+IL-17+, CD11b+TNF-a+, and CD4+CD25+CD62L+ were assessed by flow cytometry. Results Our result suggested that NRMOL and FRMOL extracts significantly reduced (p < 0.05) the expression of CD11b+TLR3+, CD11b+TLR4+, CD11b+IL-6+, CD11b+IL-17+, and CD11b+TNF-α+ subsets. In contrast, NRMOL and FRMOL extracts significantly increased (p < 0.05) the expression of CD4+CD25+CD62L+ subsets. NRMOL at dose 14 and 42 mg/kg BW was more effective compared to FRMOL in reducing the expression of CD11b+TLR3+, CD11b+TLR4+, and CD11b+TNF-α+ subsets. Conclusion Our findings demonstrated that NRMOL and FRMOL extracts could be promising agents for protection against S. typhi infection via modulation of TLR3/TLR4, regulatory T cells, and proinflammatory cytokines.
Collapse
Affiliation(s)
- Mm Riyaniarti Estri Wuryandari
- Department of Biology, Faculty of Technology and Health Management, Institut Ilmu Kesehatan Bhakti Wiyata, 64114, Kediri, East Java, Indonesia.
| | - Mochammad Fitri Atho'illah
- Department of Biology, Faculty of Mathematics and Natural Sciences, Brawijaya University, 65145, Malang, East Java, Indonesia
| | - Rizky Dzariyani Laili
- Department of Nutrition, Sekolah Tinggi Ilmu Kesehatan Hang Tuah Surabaya, 60244, Surabaya, East Java, Indonesia
| | - Siti Fatmawati
- Department of Food Sciences and Technology, Faculty of Agricultural Technology, Brawijaya University, 65145, Malang, East Java, Indonesia
| | - Nashi Widodo
- Department of Biology, Faculty of Mathematics and Natural Sciences, Brawijaya University, 65145, Malang, East Java, Indonesia; Center of Biosystem Study, LPPM of Brawijaya University, 65145, Malang, East Java, Indonesia
| | - Edi Widjajanto
- Faculty of Medicine, Brawijaya University, 65145, Malang, East Java, Indonesia
| | - Muhaimin Rifa'i
- Department of Biology, Faculty of Mathematics and Natural Sciences, Brawijaya University, 65145, Malang, East Java, Indonesia; Center of Biosystem Study, LPPM of Brawijaya University, 65145, Malang, East Java, Indonesia.
| |
Collapse
|
8
|
Leiser OP, Hobbs EC, Sims AC, Korch GW, Taylor KL. Beyond the List: Bioagent-Agnostic Signatures Could Enable a More Flexible and Resilient Biodefense Posture Than an Approach Based on Priority Agent Lists Alone. Pathogens 2021; 10:1497. [PMID: 34832652 PMCID: PMC8623450 DOI: 10.3390/pathogens10111497] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 12/23/2022] Open
Abstract
As of 2021, the biothreat policy and research communities organize their efforts around lists of priority agents, which elides consideration of novel pathogens and biotoxins. For example, the Select Agents and Toxins list is composed of agents that historic biological warfare programs had weaponized or that have previously caused great harm during natural outbreaks. Similarly, lists of priority agents promulgated by the World Health Organization and the National Institute of Allergy and Infectious Diseases are composed of previously known pathogens and biotoxins. To fill this gap, we argue that the research/scientific and biodefense/biosecurity communities should categorize agents based on how they impact their hosts to augment current list-based paradigms. Specifically, we propose integrating the results of multi-omics studies to identify bioagent-agnostic signatures (BASs) of disease-namely, patterns of biomarkers that accurately and reproducibly predict the impacts of infection or intoxication without prior knowledge of the causative agent. Here, we highlight three pathways that investigators might exploit as sources of signals to construct BASs and their applicability to this framework. The research community will need to forge robust interdisciplinary teams to surmount substantial experimental, technical, and data analytic challenges that stand in the way of our long-term vision. However, if successful, our functionality-based BAS model could present a means to more effectively surveil for and treat known and novel agents alike.
Collapse
Affiliation(s)
- Owen P. Leiser
- Pacific Northwest National Laboratory, Seattle, WA 98109, USA; (O.P.L.); (E.C.H.)
| | - Errett C. Hobbs
- Pacific Northwest National Laboratory, Seattle, WA 98109, USA; (O.P.L.); (E.C.H.)
| | - Amy C. Sims
- Pacific Northwest National Laboratory, Richland, WA 99354, USA;
| | - George W. Korch
- Battelle National Biodefense Institute, LLC, Fort Detrick, MD 21072, USA;
| | - Karen L. Taylor
- Pacific Northwest National Laboratory, Seattle, WA 98109, USA; (O.P.L.); (E.C.H.)
| |
Collapse
|
9
|
Alphonse N, Dickenson RE, Odendall C. Interferons: Tug of War Between Bacteria and Their Host. Front Cell Infect Microbiol 2021; 11:624094. [PMID: 33777837 PMCID: PMC7988231 DOI: 10.3389/fcimb.2021.624094] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/05/2021] [Indexed: 12/30/2022] Open
Abstract
Type I and III interferons (IFNs) are archetypally antiviral cytokines that are induced in response to recognition of foreign material by pattern recognition receptors (PRRs). Though their roles in anti-viral immunity are well established, recent evidence suggests that they are also crucial mediators of inflammatory processes during bacterial infections. Type I and III IFNs restrict bacterial infection in vitro and in some in vivo contexts. IFNs mainly function through the induction of hundreds of IFN-stimulated genes (ISGs). These include PRRs and regulators of antimicrobial signaling pathways. Other ISGs directly restrict bacterial invasion or multiplication within host cells. As they regulate a diverse range of anti-bacterial host responses, IFNs are an attractive virulence target for bacterial pathogens. This review will discuss the current understanding of the bacterial effectors that manipulate the different stages of the host IFN response: IFN induction, downstream signaling pathways, and target ISGs.
Collapse
Affiliation(s)
- Noémie Alphonse
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
- Immunoregulation Laboratory, Francis Crick Institute, London, United Kingdom
| | - Ruth E. Dickenson
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Charlotte Odendall
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
10
|
Kaur K, Vaziri S, Romero-Reyes M, Paranjpe A, Jewett A. Phenotypic and Functional Alterations of Immune Effectors in Periodontitis; A Multifactorial and Complex Oral Disease. J Clin Med 2021; 10:jcm10040875. [PMID: 33672708 PMCID: PMC7924323 DOI: 10.3390/jcm10040875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 11/16/2022] Open
Abstract
Survival and function of immune subsets in the oral blood, peripheral blood and gingival tissues of patients with periodontal disease and healthy controls were assessed. NK and CD8 + T cells within the oral blood mononuclear cells (OBMCs) expressed significantly higher levels of CD69 in patients with periodontal disease compared to those from healthy controls. Similarly, TNF-α release was higher from oral blood of patients with periodontal disease when compared to healthy controls. Increased activation induced cell death of peripheral blood mononuclear cells (PBMCs) but not OBMCs from patients with periodontal disease was observed when compared to those from healthy individuals. Unlike those from healthy individuals, OBMC-derived supernatants from periodontitis patients exhibited decreased ability to induce secretion of IFN-γ by allogeneic healthy PBMCs treated with IL-2, while they triggered significant levels of TNF-α, IL-1β and IL-6 by untreated PBMCs. Interaction of PBMCs, or NK cells with intact or NFκB knock down oral epithelial cells in the presence of a periodontal pathogen, F. nucleatum, significantly induced a number of pro-inflammatory cytokines including IFN-γ. These studies indicated that the relative numbers of immune subsets obtained from peripheral blood may not represent the composition of the immune cells in the oral environment, and that orally-derived immune effectors may differ in survival and function from those of peripheral blood.
Collapse
Affiliation(s)
- Kawaljit Kaur
- Division of Oral Biology and Oral Medicine, School of Dentistry and Medicine, Los Angeles, CA 90095, USA; (K.K.); (S.V.)
| | - Shahram Vaziri
- Division of Oral Biology and Oral Medicine, School of Dentistry and Medicine, Los Angeles, CA 90095, USA; (K.K.); (S.V.)
| | - Marcela Romero-Reyes
- Department of Neural and Pain Sciences, University of Maryland, Baltimore, MD 21201, USA;
| | - Avina Paranjpe
- Department of Endodontics, University of Washington, Seattle, DC 98195, USA;
| | - Anahid Jewett
- Division of Oral Biology and Oral Medicine, School of Dentistry and Medicine, Los Angeles, CA 90095, USA; (K.K.); (S.V.)
- The Jonsson Comprehensive Cancer Center, UCLA School of Dentistry and Medicine, Los Angeles, CA 90095, USA
- Correspondence: ; Tel.: +1-310-206-3970; Fax: +1-310-794-7109
| |
Collapse
|
11
|
Ma PY, Tan JE, Hee EW, Yong DWX, Heng YS, Low WX, Wu XH, Cletus C, Kumar Chellappan D, Aung K, Yong CY, Liew YK. Human Genetic Variation Influences Enteric Fever Progression. Cells 2021; 10:cells10020345. [PMID: 33562108 PMCID: PMC7915608 DOI: 10.3390/cells10020345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 01/06/2023] Open
Abstract
In the 21st century, enteric fever is still causing a significant number of mortalities, especially in high-risk regions of the world. Genetic studies involving the genome and transcriptome have revealed a broad set of candidate genetic polymorphisms associated with susceptibility to and the severity of enteric fever. This review attempted to explain and discuss the past and the most recent findings on human genetic variants affecting the progression of Salmonella typhoidal species infection, particularly toll-like receptor (TLR) 4, TLR5, interleukin (IL-) 4, natural resistance-associated macrophage protein 1 (NRAMP1), VAC14, PARK2/PACRG, cystic fibrosis transmembrane conductance regulator (CFTR), major-histocompatibility-complex (MHC) class II and class III. These polymorphisms on disease susceptibility or progression in patients could be related to multiple mechanisms in eliminating both intracellular and extracellular Salmonella typhoidal species. Here, we also highlighted the limitations in the studies reported, which led to inconclusive results in association studies. Nevertheless, the knowledge obtained through this review may shed some light on the development of risk prediction tools, novel therapies as well as strategies towards developing a personalised typhoid vaccine.
Collapse
Affiliation(s)
- Pei Yee Ma
- School of Postgraduate Studies, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia;
| | - Jing En Tan
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia; (J.E.T.); (E.W.H.); (D.W.X.Y.); (Y.S.H.); (W.X.L.); (X.H.W.); (C.C.)
| | - Edd Wyn Hee
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia; (J.E.T.); (E.W.H.); (D.W.X.Y.); (Y.S.H.); (W.X.L.); (X.H.W.); (C.C.)
| | - Dylan Wang Xi Yong
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia; (J.E.T.); (E.W.H.); (D.W.X.Y.); (Y.S.H.); (W.X.L.); (X.H.W.); (C.C.)
| | - Yi Shuan Heng
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia; (J.E.T.); (E.W.H.); (D.W.X.Y.); (Y.S.H.); (W.X.L.); (X.H.W.); (C.C.)
| | - Wei Xiang Low
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia; (J.E.T.); (E.W.H.); (D.W.X.Y.); (Y.S.H.); (W.X.L.); (X.H.W.); (C.C.)
| | - Xun Hui Wu
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia; (J.E.T.); (E.W.H.); (D.W.X.Y.); (Y.S.H.); (W.X.L.); (X.H.W.); (C.C.)
| | - Christy Cletus
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia; (J.E.T.); (E.W.H.); (D.W.X.Y.); (Y.S.H.); (W.X.L.); (X.H.W.); (C.C.)
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, International Medical University, Kuala Lumpur 57000, Malaysia;
| | - Kyan Aung
- Department of Pathology, International Medical University, Kuala Lumpur 57000, Malaysia;
| | - Chean Yeah Yong
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia;
| | - Yun Khoon Liew
- Department of Life Sciences, International Medical University, Kuala Lumpur 57000, Malaysia;
- Correspondence:
| |
Collapse
|
12
|
Peignier A, Parker D. Impact of Type I Interferons on Susceptibility to Bacterial Pathogens. Trends Microbiol 2021; 29:823-835. [PMID: 33546974 DOI: 10.1016/j.tim.2021.01.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/30/2022]
Abstract
Interferons (IFNs) are a broad class of cytokines that have multifaceted roles. Type I IFNs have variable effects when it comes to host susceptibility to bacterial infections, that is, the resulting outcomes can be either protective or deleterious. The mechanisms identified to date have been wide and varied between pathogens. In this review, we discuss recent literature that provides new insights into the mechanisms of how type I IFN signaling exerts its effects on the outcome of infection from the host's point of view.
Collapse
Affiliation(s)
- Adeline Peignier
- Department of Pathology, Immunology, and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Dane Parker
- Department of Pathology, Immunology, and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
13
|
Peignier A, Parker D. Pseudomonas aeruginosa Can Degrade Interferon λ, Thereby Repressing the Antiviral Response of Bronchial Epithelial Cells. J Interferon Cytokine Res 2020; 40:429-431. [PMID: 32672514 DOI: 10.1089/jir.2020.0057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Adeline Peignier
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Dane Parker
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
14
|
The LysR-type transcriptional regulator STM0030 contributes to Salmonella
Typhimurium growth in macrophages and virulence in mice. J Basic Microbiol 2019; 59:1143-1153. [DOI: 10.1002/jobm.201900315] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/01/2019] [Accepted: 08/29/2019] [Indexed: 11/07/2022]
|
15
|
Hu W, Chan H, Lu L, Wong KT, Wong SH, Li MX, Xiao ZG, Cho CH, Gin T, Chan MTV, Wu WKK, Zhang L. Autophagy in intracellular bacterial infection. Semin Cell Dev Biol 2019; 101:41-50. [PMID: 31408699 DOI: 10.1016/j.semcdb.2019.07.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/06/2019] [Accepted: 07/30/2019] [Indexed: 12/11/2022]
Abstract
Autophagy is a conserved intracellular degradation process enclosing the bulk of cytosolic components for lysosomal degradation to maintain cellular homeostasis. Accumulating evidences showed that a specialized form of autophagy, known as xenophagy, could serve as an innate immune response to defend against pathogens invading inside the host cells. Correspondingly, infectious pathogens have developed a variety of strategies to disarm xenophagy, leading to a prolonged and persistent intracellular colonization. In this review, we first summarize the current knowledge about the general mechanisms of intracellular bacterial infections and xenophagy. We then focus on the ongoing battle between these two processes.
Collapse
Affiliation(s)
- Wei Hu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, PR China; Department of Anesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Hung Chan
- Department of Anesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Lan Lu
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, Sichuan, PR China
| | - Kam Tak Wong
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Sunny H Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, and Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China
| | - Ming X Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China
| | - Zhan G Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China
| | - Chi H Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China
| | - Tony Gin
- Department of Anesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Matthew T V Chan
- Department of Anesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China.
| | - William K K Wu
- Department of Anesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, and Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China.
| | - Lin Zhang
- Department of Anesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, and Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
16
|
Intracellular Pathogens: Host Immunity and Microbial Persistence Strategies. J Immunol Res 2019; 2019:1356540. [PMID: 31111075 PMCID: PMC6487120 DOI: 10.1155/2019/1356540] [Citation(s) in RCA: 198] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/15/2019] [Accepted: 04/02/2019] [Indexed: 01/18/2023] Open
Abstract
Infectious diseases caused by pathogens including viruses, bacteria, fungi, and parasites are ranked as the second leading cause of death worldwide by the World Health Organization. Despite tremendous improvements in global public health since 1950, a number of challenges remain to either prevent or eradicate infectious diseases. Many pathogens can cause acute infections that are effectively cleared by the host immunity, but a subcategory of these pathogens called "intracellular pathogens" can establish persistent and sometimes lifelong infections. Several of these intracellular pathogens manage to evade the host immune monitoring and cause disease by replicating inside the host cells. These pathogens have evolved diverse immune escape strategies and overcome immune responses by residing and multiplying inside host immune cells, primarily macrophages. While these intracellular pathogens that cause persistent infections are phylogenetically diverse and engage in diverse immune evasion and persistence strategies, they share common pathogen type-specific mechanisms during host-pathogen interaction inside host cells. Likewise, the host immune system is also equipped with a diverse range of effector functions to fight against the establishment of pathogen persistence and subsequent host damage. This article provides an overview of the immune effector functions used by the host to counter pathogens and various persistence strategies used by intracellular pathogens to counter host immunity, which enables their extended period of colonization in the host. The improved understanding of persistent intracellular pathogen-derived infections will contribute to develop improved disease diagnostics, therapeutics, and prophylactics.
Collapse
|
17
|
Wang L, Li Y, Liu Y, Zuo L, Li Y, Wu S, Huang R. Salmonella spv locus affects type I interferon response and the chemotaxis of neutrophils via suppressing autophagy. FISH & SHELLFISH IMMUNOLOGY 2019; 87:721-729. [PMID: 30753916 DOI: 10.1016/j.fsi.2019.02.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/02/2019] [Accepted: 02/08/2019] [Indexed: 06/09/2023]
Abstract
Salmonella is a facultative intracellular pathogen that can cause significant morbidity and mortality in humans and animals. Salmonella plasmid virulence (spv) gene sequence is a highly conserved 6.8 kb region which exists in the plasmid of most pathogenic Salmonella. Autophagy is a degradation process of unnecessary and dysfunctional cytoplasm components to maintain cellular homeostasis, which could affect host inflammatory responses, such as type I interferon response. Type I interferon response can promote the antibacterial activity of macrophage as well as the secretion of cytokines and neutrophil chemokines. We previously reported that spv locus could suppress autophagy and the aggregation of neutrophils in zebrafish larvae. To explore the influence of spv locus on Salmonella escaping from the innate immune responses and the underlying mechanism, the models of Salmonella enterica serovar Typhimurium infected macrophages in vitro and zebrafish larvae in vivo were used in this study. The interactions among spv locus, autophagy, type I interferon response and the chemotaxis of neutrophils were investigated. Western blot was used to detect the expression levels of autophagy related proteins and RT-qPCR was used to measure the mRNA levels of type I interferon response and the neutrophil chemokines. The chemotaxis of neutrophils were observed by Laser Scanning confocal microscopy. Autophagy agonist Torin 1 was also involved to interfere the autophagy influx. Results showed that spv locus could restrain type I interferon response and the chemotaxis of neutrophils via suppressing autophagy, which provided substantial foundation to study the mechanism of Salmonella escaping the innate immunity.
Collapse
Affiliation(s)
- Lidan Wang
- Department of Microbiology, Medical College of Soochow University. No. 199, Ren Ai Road, Suzhou, Jiangsu, 215123, PR China
| | - Yangli Li
- Department of Microbiology, Medical College of Soochow University. No. 199, Ren Ai Road, Suzhou, Jiangsu, 215123, PR China
| | - Yuanhui Liu
- Department of Microbiology, Medical College of Soochow University. No. 199, Ren Ai Road, Suzhou, Jiangsu, 215123, PR China
| | - Lingli Zuo
- Department of Microbiology, Medical College of Soochow University. No. 199, Ren Ai Road, Suzhou, Jiangsu, 215123, PR China
| | - Yuanyuan Li
- Department of Microbiology, Medical College of Soochow University. No. 199, Ren Ai Road, Suzhou, Jiangsu, 215123, PR China
| | - Shuyan Wu
- Department of Microbiology, Medical College of Soochow University. No. 199, Ren Ai Road, Suzhou, Jiangsu, 215123, PR China.
| | - Rui Huang
- Department of Microbiology, Medical College of Soochow University. No. 199, Ren Ai Road, Suzhou, Jiangsu, 215123, PR China.
| |
Collapse
|
18
|
Kim SP, Lee SJ, Nam SH, Friedman M. The composition of a bioprocessed shiitake (Lentinus edodes) mushroom mycelia and rice bran formulation and its antimicrobial effects against Salmonella enterica subsp. enterica serovar Typhimurium strain SL1344 in macrophage cells and in mice. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:322. [PMID: 30518352 PMCID: PMC6282263 DOI: 10.1186/s12906-018-2365-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 10/29/2018] [Indexed: 02/06/2023]
Abstract
Background Human infection by pathogenic Salmonella bacteria can be acquired by consuming of undercooked meat products and eggs. Antimicrobial resistance against antibiotics used in medicine is also a major concern. To help overcome these harmful effects on microbial food safety and human health, we are developing novel antimicrobial food-compatible formulations, one of which is described in the present study. Methods The composition of a bioprocessed (fermented) rice bran extract (BPRBE) from Lentinus edodes liquid mycelia culture was evaluated using gas chromatography and mass spectrometry, and the mechanism of its antibacterial effect against Salmonella Typhimurium, strain SL1344 was investigated in macrophage cells and in mice. Results BPRBE stimulated uptake of the bacteria into RAW 264.7 murine macrophage cells. Activation of the cells was confirmed by increases in NO production resulting from the elevation of inducible nitric oxide synthase (iNOS) mRNA, and in protein expression. Salmonella infection down-regulated the expression of the following protein biomarkers of autophagy (a catabolic process for stress adaptation of cellular components): Beclin-1, Atg5, Atg12, Atg16, LC3-I and LC3-II. BPRBE promoted the upregulation of protein expressions that induced bacterial destruction in autolysosomes of RAW 264.7 cells. ELISA analysis of interferon IFN-β showed that inflammatory cytokine secretion and bactericidal activity had similar profiles, suggesting that BPRBE enhances cell-autonomous and systemic bactericidal activities via autophagic capture of Salmonella. The treatment also elicited increased excretion of bacteria in feces and their decreased translocation to internal organs (cecum, mesenteric lymph node, spleen, and liver). Conclusions The antibiotic mechanism of BPRBE involves the phagocytosis of extracellular bacteria, autophagic capture of intracellular bacteria, and prevention of translocation of bacteria across the intestinal epithelial cells. The new bioprocessing combination of mushroom mycelia and rice brans forms a potentially novel food formulation with in vivo antimicrobial properties that could serve as a functional antimicrobial food and medical antibiotic.
Collapse
|
19
|
Boyarskikh UA, Shadrina AS, Smetanina MA, Tsepilov YA, Oscorbin IP, Kozlov VV, Kel AE, Filipenko ML. Mycoplasma hyorhinis reduces sensitivity of human lung carcinoma cells to Nutlin-3 and promotes their malignant phenotype. J Cancer Res Clin Oncol 2018; 144:1289-1300. [PMID: 29737431 DOI: 10.1007/s00432-018-2658-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/02/2018] [Indexed: 02/08/2023]
Abstract
PURPOSE MDM2 inhibitors are promising anticancer agents that induce cell cycle arrest and tumor cells death via p53 reactivation. We examined the influence of Mycoplasma hyorhinis infection on sensitivity of human lung carcinoma cells NCI-H292 to MDM2 inhibitor Nutlin-3. In order to unveil possible mechanisms underlying the revealed effect, we investigated gene expression changes and signal transduction networks activated in NCI-H292 cells in response to mycoplasma infection. METHODS Sensitivity of NCI-Н292 cells to Nutlin-3 was estimated by resazurin-based cell viability assay. Genome-wide transcriptional profiles of NCI-H292 and NCI-Н292Myc.h cell lines were determined using Illumina Human HT-12 v3 Expression BeadChip. Search for key transcription factors and key node molecules was performed using the geneXplain platform. Ability for anchorage-independent growth was tested by soft agar colony formation assay. RESULTS NCI-Н292Myc.h cells were shown to be 1.5- and 5.2-fold more resistant to killing by Nutlin-3 at concentrations of 15 and 30 µM than uninfected NCI-Н292 cells (P < 0.05 and P < 0.001, respectively). Transcriptome analysis revealed differential expression of multiple genes involved in cancer progression and metastasis as well as epithelial-mesenchymal transition (EMT). Moreover, we have shown experimentally that NCI-Н292Myc.h cells were more capable of growing and dividing without binding to a substrate. The most likely mechanism explaining the observed changes was found to be TLR4- and IL-1b-mediated activation of NF-κB pathway. CONCLUSIONS Our results provide evidence that mycoplasma infection is an important factor modulating the effect of MDM2 inhibitors on cancer cells and is able to induce EMT-related changes.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Carcinoma, Mucoepidermoid/drug therapy
- Carcinoma, Mucoepidermoid/genetics
- Carcinoma, Mucoepidermoid/metabolism
- Carcinoma, Mucoepidermoid/microbiology
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/microbiology
- Cell Line, Tumor
- Drug Resistance, Neoplasm
- Female
- Gene Expression/drug effects
- Humans
- Imidazoles/pharmacology
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/microbiology
- Male
- Middle Aged
- Mycoplasma Infections/metabolism
- Mycoplasma Infections/microbiology
- Mycoplasma Infections/physiopathology
- Mycoplasma hyorhinis/physiology
- Piperazines/pharmacology
- Signal Transduction
- Transcriptome
- Young Adult
Collapse
Affiliation(s)
- Uljana A Boyarskikh
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentjev Avenue, Novosibirsk, 630090, Russia
| | - Alexandra S Shadrina
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentjev Avenue, Novosibirsk, 630090, Russia.
- Novosibirsk State University, 2 Pirogova Street, Novosibirsk, 630090, Russia.
| | - Mariya A Smetanina
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentjev Avenue, Novosibirsk, 630090, Russia
- Novosibirsk State University, 2 Pirogova Street, Novosibirsk, 630090, Russia
| | - Yakov A Tsepilov
- Novosibirsk State University, 2 Pirogova Street, Novosibirsk, 630090, Russia
- Institute of Cytology and Genetics, 10 Lavrentjev Avenue, Novosibirsk, 630090, Russia
| | - Igor P Oscorbin
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentjev Avenue, Novosibirsk, 630090, Russia
- Novosibirsk State University, 2 Pirogova Street, Novosibirsk, 630090, Russia
| | - Vadim V Kozlov
- Novosibirsk Regional Clinical Oncological Center, 2 Plakhotnogo Street, Novosibirsk, 630108, Russia
| | - Alexander E Kel
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentjev Avenue, Novosibirsk, 630090, Russia
- Department of Research and Development, geneXplain GmbH, Am Exer 10b, 38302, Wolfenbüttel, Germany
| | - Maxim L Filipenko
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentjev Avenue, Novosibirsk, 630090, Russia
- Novosibirsk State University, 2 Pirogova Street, Novosibirsk, 630090, Russia
| |
Collapse
|
20
|
Wang L, Yan J, Niu H, Huang R, Wu S. Autophagy and Ubiquitination in Salmonella Infection and the Related Inflammatory Responses. Front Cell Infect Microbiol 2018; 8:78. [PMID: 29594070 PMCID: PMC5861197 DOI: 10.3389/fcimb.2018.00078] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 02/27/2018] [Indexed: 12/12/2022] Open
Abstract
Salmonellae are facultative intracellular pathogens that cause globally distributed diseases with massive morbidity and mortality in humans and animals. In the past decades, numerous studies were focused on host defenses against Salmonella infection. Autophagy has been demonstrated to be an important defense mechanism to clear intracellular pathogenic organisms, as well as a regulator of immune responses. Ubiquitin modification also has multiple effects on the host immune system against bacterial infection. It has been indicated that ubiquitination plays critical roles in recognition and clearance of some invading bacteria by autophagy. Additionally, the ubiquitination of autophagy proteins in autophagy flux and inflammation-related substance determines the outcomes of infection. However, many intracellular pathogens manipulate the ubiquitination system to counteract the host immunity. Salmonellae interfere with host responses via the delivery of ~30 effector proteins into cytosol to promote their survival and proliferation. Among them, some could link the ubiquitin-proteasome system with autophagy during infection and affect the host inflammatory responses. In this review, novel findings on the issue of ubiquitination and autophagy connection as the mechanisms of host defenses against Salmonella infection and the subverted processes are introduced.
Collapse
Affiliation(s)
- Lidan Wang
- Department of Microbiology, Medical College of Soochow University, Suzhou, China
| | - Jing Yan
- Department of Microbiology, Medical College of Soochow University, Suzhou, China
| | - Hua Niu
- Department of Microbiology, Medical College of Soochow University, Suzhou, China
| | - Rui Huang
- Department of Microbiology, Medical College of Soochow University, Suzhou, China
| | - Shuyan Wu
- Department of Microbiology, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
21
|
Samie M, Lim J, Verschueren E, Baughman JM, Peng I, Wong A, Kwon Y, Senbabaoglu Y, Hackney JA, Keir M, Mckenzie B, Kirkpatrick DS, van Lookeren Campagne M, Murthy A. Selective autophagy of the adaptor TRIF regulates innate inflammatory signaling. Nat Immunol 2018; 19:246-254. [PMID: 29358708 DOI: 10.1038/s41590-017-0042-6] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 12/15/2017] [Indexed: 12/17/2022]
Abstract
Defective autophagy is linked to diseases such as rheumatoid arthritis, lupus and inflammatory bowel disease (IBD). However, the mechanisms by which autophagy limits inflammation remain poorly understood. Here we found that loss of the autophagy-related gene Atg16l1 promoted accumulation of the adaptor TRIF and downstream signaling in macrophages. Multiplex proteomic profiling identified SQSTM1 and Tax1BP1 as selective autophagy-related receptors that mediated the turnover of TRIF. Knockdown of Tax1bp1 increased production of the cytokines IFN-β and IL-1β. Mice lacking Atg16l1 in myeloid cells succumbed to lipopolysaccharide-mediated sepsis but enhanced their clearance of intestinal Salmonella typhimurium in an interferon receptor-dependent manner. Human macrophages with the Crohn's disease-associated Atg16l1 variant T300A exhibited more production of IFN-β and IL-1β. An elevated interferon-response gene signature was observed in patients with IBD who were resistant to treatment with an antibody to the cytokine TNF. These findings identify selective autophagy as a key regulator of signaling via the innate immune system.
Collapse
Affiliation(s)
- Mohammad Samie
- Department of Cancer Immunology, Genentech, South San Francisco, CA, USA
| | - Junghyun Lim
- Department of Cancer Immunology, Genentech, South San Francisco, CA, USA
| | - Erik Verschueren
- Department of Microchemistry, Proteomics & Lipidomics, Genentech, South San Francisco, CA, USA
| | - Joshua M Baughman
- Department of Microchemistry, Proteomics & Lipidomics, Genentech, South San Francisco, CA, USA
| | - Ivan Peng
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Aaron Wong
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Youngsu Kwon
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Yasin Senbabaoglu
- Department of Bioinformatics & Computational Biology, Genentech, South San Francisco, CA, USA
| | - Jason A Hackney
- Department of Bioinformatics & Computational Biology, Genentech, South San Francisco, CA, USA
| | - Mary Keir
- Biomarker Discovery OMNI, Genentech, South San Francisco, CA, USA
| | - Brent Mckenzie
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Donald S Kirkpatrick
- Department of Microchemistry, Proteomics & Lipidomics, Genentech, South San Francisco, CA, USA
| | | | - Aditya Murthy
- Department of Cancer Immunology, Genentech, South San Francisco, CA, USA.
| |
Collapse
|
22
|
Anderson CJ, Kendall MM. Salmonella enterica Serovar Typhimurium Strategies for Host Adaptation. Front Microbiol 2017; 8:1983. [PMID: 29075247 PMCID: PMC5643478 DOI: 10.3389/fmicb.2017.01983] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 09/26/2017] [Indexed: 12/21/2022] Open
Abstract
Bacterial pathogens must sense and respond to newly encountered host environments to regulate the expression of critical virulence factors that allow for niche adaptation and successful colonization. Among bacterial pathogens, non-typhoidal serovars of Salmonella enterica, such as serovar Typhimurium (S. Tm), are a primary cause of foodborne illnesses that lead to hospitalizations and deaths worldwide. S. Tm causes acute inflammatory diarrhea that can progress to invasive systemic disease in susceptible patients. The gastrointestinal tract and intramacrophage environments are two critically important niches during S. Tm infection, and each presents unique challenges to limit S. Tm growth. The intestinal tract is home to billions of commensal microbes, termed the microbiota, which limits the amount of available nutrients for invading pathogens such as S. Tm. Therefore, S. Tm encodes strategies to manipulate the commensal population and side-step this nutritional competition. During subsequent stages of disease, S. Tm resists host immune cell mechanisms of killing. Host cells use antimicrobial peptides, acidification of vacuoles, and nutrient limitation to kill phagocytosed microbes, and yet S. Tm is able to subvert these defense systems. In this review, we discuss recently described molecular mechanisms that S. Tm uses to outcompete the resident microbiota within the gastrointestinal tract. S. Tm directly eliminates close competitors via bacterial cell-to-cell contact as well as by stimulating a host immune response to eliminate specific members of the microbiota. Additionally, S. Tm tightly regulates the expression of key virulence factors that enable S. Tm to withstand host immune defenses within macrophages. Additionally, we highlight the chemical and physical signals that S. Tm senses as cues to adapt to each of these environments. These strategies ultimately allow S. Tm to successfully adapt to these two disparate host environments. It is critical to better understand bacterial adaptation strategies because disruption of these pathways and mechanisms, especially those shared by multiple pathogens, may provide novel therapeutic intervention strategies.
Collapse
Affiliation(s)
- Christopher J Anderson
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine,, Charlottesville, VA, United States
| | - Melissa M Kendall
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine,, Charlottesville, VA, United States
| |
Collapse
|
23
|
Ebner P, Versteeg GA, Ikeda F. Ubiquitin enzymes in the regulation of immune responses. Crit Rev Biochem Mol Biol 2017; 52:425-460. [PMID: 28524749 PMCID: PMC5490640 DOI: 10.1080/10409238.2017.1325829] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/06/2017] [Accepted: 04/28/2017] [Indexed: 12/25/2022]
Abstract
Ubiquitination plays a central role in the regulation of various biological functions including immune responses. Ubiquitination is induced by a cascade of enzymatic reactions by E1 ubiquitin activating enzyme, E2 ubiquitin conjugating enzyme, and E3 ubiquitin ligase, and reversed by deubiquitinases. Depending on the enzymes, specific linkage types of ubiquitin chains are generated or hydrolyzed. Because different linkage types of ubiquitin chains control the fate of the substrate, understanding the regulatory mechanisms of ubiquitin enzymes is central. In this review, we highlight the most recent knowledge of ubiquitination in the immune signaling cascades including the T cell and B cell signaling cascades as well as the TNF signaling cascade regulated by various ubiquitin enzymes. Furthermore, we highlight the TRIM ubiquitin ligase family as one of the examples of critical E3 ubiquitin ligases in the regulation of immune responses.
Collapse
|
24
|
Marinho FV, Benmerzoug S, Oliveira SC, Ryffel B, Quesniaux VFJ. The Emerging Roles of STING in Bacterial Infections. Trends Microbiol 2017. [PMID: 28625530 DOI: 10.1016/j.tim.2017.05.008] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The STING (Stimulator of Interferon Genes) protein connects microorganism cytosolic sensing with effector functions of the host cell by sensing directly cyclic dinucleotides (CDNs), originating from pathogens or from the host upon DNA recognition. Although STING activation favors effective immune responses against viral infections, its role during bacterial diseases is controversial, ranging from protective to detrimental effects for the host. In this review, we summarize important features of the STING activation pathway and recent highlights about the role of STING in bacterial infections by Chlamydia, Listeria, Francisella, Brucella, Shigella, Salmonella, Streptococcus, and Neisseria genera, with a special focus on mycobacteria.
Collapse
Affiliation(s)
- Fabio V Marinho
- CNRS, UMR7355, Orleans, France; Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sulayman Benmerzoug
- CNRS, UMR7355, Orleans, France; Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sergio C Oliveira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Bernhard Ryffel
- CNRS, UMR7355, Orleans, France; Experimental and Molecular Immunology and Neurogenetics, University of Orleans, France
| | - V F J Quesniaux
- CNRS, UMR7355, Orleans, France; Experimental and Molecular Immunology and Neurogenetics, University of Orleans, France.
| |
Collapse
|
25
|
Casanova JE. Bacterial Autophagy: Offense and Defense at the Host-Pathogen Interface. Cell Mol Gastroenterol Hepatol 2017; 4:237-243. [PMID: 28660242 PMCID: PMC5480303 DOI: 10.1016/j.jcmgh.2017.05.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/02/2017] [Indexed: 02/02/2023]
Abstract
Autophagy is a fundamental cellular process used for the turnover and recycling of cytosolic components and damaged organelles. Originally characterized as a response to cellular stress, it now is well established that autophagy also is used as a defensive mechanism to combat the infection of host cells by intracellular pathogens. However, although this defensive strategy does limit the proliferation of most pathogens within their host cells, successful pathogens have evolved countermeasures that subvert or circumvent the autophagic response. In this review, we discuss the mechanisms used by a number of these pathogens to escape autophagy, with a particular focus on Salmonella enterica serovar Typhimurium, which has been the most extensively studied example. We also discuss the consequences of bacterial autophagy for the broader innate immune response.
Collapse
Affiliation(s)
- James E. Casanova
- Correspondence Address correspondence to: James E. Casanova, PhD, University of Virginia Health System, 3014 Pinn Hall, Charlottesville, Virginia 22908.University of Virginia Health System3014 Pinn HallCharlottesvilleVirginia 22908
| |
Collapse
|
26
|
Snyder DT, Hedges JF, Jutila MA. Getting "Inside" Type I IFNs: Type I IFNs in Intracellular Bacterial Infections. J Immunol Res 2017; 2017:9361802. [PMID: 28529959 PMCID: PMC5424489 DOI: 10.1155/2017/9361802] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 03/20/2017] [Accepted: 03/27/2017] [Indexed: 12/23/2022] Open
Abstract
Type I interferons represent a unique and complex group of cytokines, serving many purposes during innate and adaptive immunity. Discovered in the context of viral infections, type I IFNs are now known to have myriad effects in infectious and autoimmune disease settings. Type I IFN signaling during bacterial infections is dependent on many factors including whether the infecting bacterium is intracellular or extracellular, as different signaling pathways are activated. As such, the repercussions of type I IFN induction can positively or negatively impact the disease outcome. This review focuses on type I IFN induction and downstream consequences during infection with the following intracellular bacteria: Chlamydia trachomatis, Listeria monocytogenes, Mycobacterium tuberculosis, Salmonella enterica serovar Typhimurium, Francisella tularensis, Brucella abortus, Legionella pneumophila, and Coxiella burnetii. Intracellular bacterial infections are unique because the bacteria must avoid, circumvent, and even co-opt microbial "sensing" mechanisms in order to reside and replicate within a host cell. Furthermore, life inside a host cell makes intracellular bacteria more difficult to target with antibiotics. Because type I IFNs are important immune effectors, modulating this pathway may improve disease outcomes. But first, it is critical to understand the context-dependent effects of the type I IFN pathway in intracellular bacterial infections.
Collapse
Affiliation(s)
- Deann T. Snyder
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Jodi F. Hedges
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Mark A. Jutila
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| |
Collapse
|
27
|
Simonov D, Swift S, Blenkiron C, Phillips AR. Bacterial RNA as a signal to eukaryotic cells as part of the infection process. Discoveries (Craiova) 2016; 4:e70. [PMID: 32309589 PMCID: PMC7159825 DOI: 10.15190/d.2016.17] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The discovery of regulatory RNA has identified an underappreciated area for microbial subversion of the host. There is increasing evidence that RNA can be delivered from bacteria to host cells associated with membrane vesicles or by direct release from intracellular bacteria. Once inside the host cell, RNA can act by activating sequence-independent receptors of the innate immune system, where recent findings suggest this can be more than simple pathogen detection, and may contribute to the subversion of immune responses. Sequence specific effects are also being proposed, with examples from nematode, plant and human models providing support for the proposition that bacteria-to-human RNA signaling and the subversion of host gene expression may occur.
Collapse
Affiliation(s)
- Denis Simonov
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand.,Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Simon Swift
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Cherie Blenkiron
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand.,Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Anthony R Phillips
- Department of Surgery, University of Auckland, Auckland, New Zealand.,School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand
| |
Collapse
|
28
|
Li YT, Yu CB, Yan D, Huang JR, Li LJ. Effects of Salmonella infection on hepatic damage following acute liver injury in rats. Hepatobiliary Pancreat Dis Int 2016; 15:399-405. [PMID: 27498580 DOI: 10.1016/s1499-3872(16)60113-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Acute liver injury is a common clinical disorder associated with intestinal barrier injury and disturbance of intestinal microbiota. Probiotic supplementation has been reported to reduce liver injury; however, it is unclear whether enteropathogen infection exacerbates liver injury. The purpose of this study was to address this unanswered question using a rat model. METHODS Oral supplementation with Salmonella enterica serovar enteritidis (S. enteritidis) was given to rats for 7 days. Different degrees of acute liver injury were then induced by intraperitoneal injection of D-galactosamine. The presence and extent of liver injury was assayed by measuring the concentrations of serum alanine aminotransferase, aspartate aminotransferase, and total bilirubin. Histology was used to observe liver tissue damage. Additionally, we measured the changes in plasma endotoxin, serum cytokines and bacterial translocation to clarify the mechanisms underlying intestinal microbiota associated liver injury. RESULTS The levels of liver damage and endotoxin were significantly increased in the Salmonella infected rats with severe liver injury compared with the no infection rats with severe liver injury (P<0.01); The peyer's patch CD3+ T cell counts were increased significantly when the Salmonella infection with severe injury group was compared with the normal group (P<0.05). S. enteritidis pretreatment enhanced intestinal barrier impairment and bacterial translocation. CONCLUSIONS Oral S. enteritidis administration exacerbates acute liver injury, especially when injury was severe. Major factors of the exacerbation include inflammatory and oxidative stress injuries induced by the translocated bacteria and associated endotoxins, as well as over-activation of the immune system in the intestine and liver.
Collapse
Affiliation(s)
- Yong-Tao Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | | | | | | | | |
Collapse
|