1
|
Fernández-García L, Angulo J, López-Lastra M. The Polypyrimidine Tract-Binding Protein Is a Transacting Factor for the Dengue Virus Internal Ribosome Entry Site. Viruses 2024; 16:1757. [PMID: 39599871 PMCID: PMC11599071 DOI: 10.3390/v16111757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/02/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Dengue virus (DENV) is an enveloped, positive sense, single-stranded RNA virus belonging to the Flaviviridae. Translation initiation of the DENV mRNA (vRNA) can occur following a cap-dependent, 5'-3'end-dependent internal ribosome entry site (IRES)-independent or IRES-dependent mechanism. This study evaluated the activity of DENV IRES in BHK-21 cells and the role of the polypyrimidine-tract binding protein (PTB) isoforms PTB1, PTB2, and PTB4 as IRES-transacting factors (ITAFs) for the DENV IRES. The results show that DENV-IRES activity is stimulated in DENV-replicating BHK-21 cells and cells expressing the Foot-and-mouth disease virus leader or Human rhinovirus 2A proteases. Protease activity was necessary, although a complete shutdown of cap-dependent translation initiation was not a requirement to stimulate DENV IRES activity. Regarding PTB, the results show that PTB1 > PTB2 > PTB4 stimulates DENV-IRES activity in BHK-21 cells. Mutations in the PTB RNA recognition motifs (RRMs), RRM1/RRM2 or RRM3/RRM4, differentially impact PTB1, PTB2, and PTB4's ability to promote DENV IRES-mediated translation initiation in BHK-21 cells. PTB1-induced DENV-IRES stimulation is rescinded when RRM1/RRM2 or RRM3/RRM4 are disrupted. Mutations in RRM1/RRM2 or RRM3/RRM4 do not affect the ITAF activity of PTB2. Mutating RRM3/RRM4, but not RRM1/RRM2, abolishes the ability of PTB4 to stimulate the DENV IRES. Thus, PTB1, PTB2, and PTB4 are ITAFs for the DENV IRES.
Collapse
Affiliation(s)
- Leandro Fernández-García
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Centro de Investigaciones Médicas, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago 8330024, Chile; (L.F.-G.); (J.A.)
| | - Jenniffer Angulo
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Centro de Investigaciones Médicas, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago 8330024, Chile; (L.F.-G.); (J.A.)
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avenida Libertador Bernardo O’Higgins 340, Santiago 8331150, Chile
| | - Marcelo López-Lastra
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Centro de Investigaciones Médicas, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago 8330024, Chile; (L.F.-G.); (J.A.)
| |
Collapse
|
2
|
Pallarés H, González López Ledesma M, Oviedo-Rouco S, Castellano L, Costa Navarro G, Fernández-Alvarez A, D’Andreiz M, Aldas-Bulos V, Alvarez D, Bazzini A, Gamarnik A. Zika virus non-coding RNAs antagonize antiviral responses by PKR-mediated translational arrest. Nucleic Acids Res 2024; 52:11128-11147. [PMID: 38917323 PMCID: PMC11472168 DOI: 10.1093/nar/gkae507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/08/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024] Open
Abstract
Zika virus (ZIKV) is an emerging mosquito-borne flavivirus that causes severe outbreaks in human populations. ZIKV infection leads to the accumulation of small non-coding viral RNAs (known as sfRNAs) that are crucial for evasion of antiviral responses and for viral pathogenesis. However, the mechanistic understanding of how sfRNAs function remains incomplete. Here, we use recombinant ZIKVs and ribosome profiling of infected human cells to show that sfRNAs block translation of antiviral genes. Mechanistically, we demonstrate that specific RNA structures present in sfRNAs trigger PKR activation, which instead of limiting viral replication, enhances viral particle production. Although ZIKV infection induces mRNA expression of antiviral genes, translation efficiency of type I interferon and interferon stimulated genes were significantly downregulated by PKR activation. Our results reveal a novel viral adaptation mechanism mediated by sfRNAs, where ZIKV increases its fitness by repurposing the antiviral role of PKR into a proviral factor.
Collapse
Affiliation(s)
- Horacio M Pallarés
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires IIBBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Mora González López Ledesma
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires IIBBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Santiago Oviedo-Rouco
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires IIBBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | | | - Guadalupe S Costa Navarro
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires IIBBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ana J Fernández-Alvarez
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires IIBBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Josefina D’Andreiz
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires IIBBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | | | - Diego E Alvarez
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín-CONICET, Buenos Aires, Argentina
| | - Ariel A Bazzini
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| | - Andrea V Gamarnik
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires IIBBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
3
|
da Fonseca FG, Serufo ÂV, Leão TL, Lourenço KL. Viral Infections and Their Ability to Modulate Endoplasmic Reticulum Stress Response Pathways. Viruses 2024; 16:1555. [PMID: 39459886 PMCID: PMC11512299 DOI: 10.3390/v16101555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/28/2024] Open
Abstract
In eukaryotic cells, the endoplasmic reticulum is particularly important in post-translational modification of proteins before they are released extracellularly or sent to another endomembrane system. The correct three-dimensional folding of most proteins occurs in the ER lumen, which has an oxidative environment that is essential for the formation of disulfide bridges, which are important in maintaining protein structure. The ER is a versatile organelle that ensures the correct structure of proteins and is essential in the synthesis of lipids and sterols, in addition to offering support in the maintenance of intracellular calcium. Consequently, the cells needed to respond to demands caused by physiological conditions and pathological disturbances in the organelle homeostasis, leading to proper functioning of the cell or even programmed cell death. Disturbances to the ER function trigger a response to the accumulation of unfolded or misfolded proteins, known as the unfolded protein response. Such disturbances include abiotic stress, pharmacological agents, and intracellular pathogens, such as viruses. When misfolded proteins accumulate in the ER, they can undergo ubiquitination and proteasomal degradation through components of the ER-associated degradation system. Once a prolonged activity of the UPR pathway occurs, indicating that homeostasis cannot be reestablished, components of this pathway induce cell death by apoptosis. Here, we discuss how viruses have evolved ways to counteract UPR responses to maximize replication. This evolutionary viral ability is important to understand cell pathology and should be taken into account when designing therapeutic interventions and vaccines.
Collapse
Affiliation(s)
- Flávio Guimarães da Fonseca
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Pampulha, Belo Horizonte 31270-901, MG, Brazil; (F.G.d.F.); (T.L.L.)
| | - Ângela Vieira Serufo
- CT Terapias Avançacadas e Inovadoras, CTERAPIAS, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil;
| | - Thiago Lima Leão
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Pampulha, Belo Horizonte 31270-901, MG, Brazil; (F.G.d.F.); (T.L.L.)
| | - Karine Lima Lourenço
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Pampulha, Belo Horizonte 31270-901, MG, Brazil; (F.G.d.F.); (T.L.L.)
| |
Collapse
|
4
|
Wilken L, Rimmelzwaan GF, Elbahesh H. The Raf kinase inhibitors Dabrafenib and Regorafenib impair Zika virus replication via distinct mechanisms. J Virol 2024; 98:e0061824. [PMID: 39023323 PMCID: PMC11334485 DOI: 10.1128/jvi.00618-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/01/2024] [Indexed: 07/20/2024] Open
Abstract
Zika virus (ZIKV) is a re-emerging mosquito-borne flavivirus that has been associated with congenital neurological defects in fetuses born to infected mothers. At present, no vaccine or antiviral therapy is available to combat this devastating disease. Repurposing drugs that target essential host factors exploited by viruses is an attractive therapeutic approach. Here, we screened a panel of clinically approved small-molecule kinase inhibitors for their antiviral effects against a clinical isolate of ZIKV and thoroughly characterized their mechanisms of action. We found that the Raf kinase inhibitors Dabrafenib and Regorafenib potently impair the replication of ZIKV, but not that of its close relative dengue virus. Time-of-addition experiments showed that both inhibitors target ZIKV infection at post-entry steps. We found that Dabrafenib, but not Regorafenib, interfered with ZIKV genome replication by impairing both negative- and positive-strand RNA synthesis. Regorafenib, on the other hand, altered steady-state viral protein levels, viral egress, and blocked NS1 secretion. We also observed Regorafenib-induced ER fragmentation in ZIKV-infected cells, which might contribute to its antiviral effects. Because these inhibitors target different steps of the ZIKV infection cycle, their use in combination therapy may amplify their antiviral effects which could be further explored for future therapeutic strategies against ZIKV and possibly other flaviviruses. IMPORTANCE There is an urgent need to develop effective therapeutics against re-emerging arboviruses associated with neurological disorders like Zika virus (ZIKV). We identified two FDA-approved kinase inhibitors, Dabrafenib and Regorafenib, as potent inhibitors of contemporary ZIKV strains at distinct stages of infection despite overlapping host targets. Both inhibitors reduced viral titers by ~1 to 2 log10 (~10-fold to 100-fold) with minimal cytotoxicity. Furthermore, we show that Dabrafenib inhibits ZIKV RNA replication whereas Regorafenib inhibits ZIKV translation and egress. Regorafenib has the added benefit of limiting NS1 secretion, which contributes to the pathogenesis and disease progression of several flaviviruses. Because these inhibitors affect distinct post-entry steps of ZIKV infection, their therapeutic potential may be amplified by combination therapy and likely does not require prophylactic administration. This study provides further insight into ZIKV-host interactions and has implications for the development of novel antivirals against ZIKV and possibly other flaviviruses.
Collapse
Affiliation(s)
- Lucas Wilken
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine (TiHo), Hannover, Germany
| | - Guus F. Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine (TiHo), Hannover, Germany
| | - Husni Elbahesh
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine (TiHo), Hannover, Germany
| |
Collapse
|
5
|
Wu X, Zhang L, Liu C, Cheng Q, Zhao W, Chen P, Qin Y, Chen M. The NS2B-PP1α-eIF2α axis: Inhibiting stress granule formation and Boosting Zika virus replication. PLoS Pathog 2024; 20:e1012355. [PMID: 38935808 PMCID: PMC11236161 DOI: 10.1371/journal.ppat.1012355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 07/10/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024] Open
Abstract
Stress granules (SGs), formed by untranslated messenger ribonucleoproteins (mRNPs) during cellular stress in eukaryotes, have been linked to flavivirus interference without clear understanding. This study reveals the role of Zika virus (ZIKV) NS2B as a scaffold protein mediating interaction between protein phosphatase 1α (PP1α) and eukaryotic initiation factor 2α (eIF2α). This interaction promotes eIF2α dephosphorylation by PP1α, inhibiting SG formation. The NS2B-PP1α complex exhibits remarkable stability, resisting ubiquitin-induced degradation and amplifying eIF2α dephosphorylation, thus promoting ZIKV replication. In contrast, the NS2BV35A mutant, interacting exclusively with eIF2α, fails to inhibit SG formation, resulting in reduced viral replication and diminished impact on brain organoid growth. These findings reveal PP1α's dual role in ZIKV infection, inducing interferon production as an antiviral factor and suppressing SG formation as a viral promoter. Moreover, we found that NS2B also serves as a versatile mechanism employed by flaviviruses to counter host antiviral defenses, primarily by broadly inhibiting SG formation. This research advances our comprehension of the complex interplay in flavivirus-host interactions, offering potential for innovative therapeutic strategies against flavivirus infections.
Collapse
Affiliation(s)
- Xiaoyan Wu
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Linliang Zhang
- College of Life Sciences, Hubei University, Wuhan, China
| | - Cong Liu
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Qi Cheng
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Wen Zhao
- Tissue Engineering and Organ Manufacturing (TEOM) lab, Department of Biomedical Engineering, Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Pu Chen
- Tissue Engineering and Organ Manufacturing (TEOM) lab, Department of Biomedical Engineering, Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Yali Qin
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
- College of Life Sciences, Hubei University, Wuhan, China
| | - Mingzhou Chen
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
- College of Life Sciences, Hubei University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Hubei Jiangxia Laboratory, Wuhan, China
| |
Collapse
|
6
|
Zhang XZ, Wang J, Tian WJ, You JL, Chi XJ, Wang XJ. Phospho-eIF4E stimulation regulates coronavirus entry by selective expression of cell membrane-residential factors. J Virol 2024; 98:e0194823. [PMID: 38299843 PMCID: PMC10878034 DOI: 10.1128/jvi.01948-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 12/31/2023] [Indexed: 02/02/2024] Open
Abstract
The eukaryotic translation initiation factor eIF4E can regulate cellular translation via phosphorylation on serine 209. In a recent study, by two rounds of TMT relative quantitative proteomics, we found that phosphorylated eIF4E (p-eIF4E) favors the translation of selected mRNAs, and the encoded proteins are mainly involved in ECM-receptor, focal adhesion, and PI3K-Akt signaling. The current paper is focused on the relationship between p-eIF4E and the downstream host cell proteins, and their presumed effect on efficient entry of PEDV. We found that the depletion of membrane-residential factor TSPAN3, CD63, and ITGB2 significantly inhibited viral invasion of PEDV, and reduced the entry of pseudotyped particles PEDV-pp, SARS-CoV-pp, and SARS-CoV-2-pp. The specific antibodies of TSPAN3, CD63, and ITGB2 blocked the adsorption of PEDV into host cells. Moreover, we detected that eIF4E phosphorylation was increased at 1 h after PEDV infection, in accordance with the expression of TSPAN3, CD63, and ITGB2. Similar trends appeared in the intestines of piglets in the early stage of PEDV challenge. Compared with Vero cells, S209A-Vero cells in which eIF4E cannot be phosphorylated showed a decrease of invading PEDV virions. MNK kinase inhibitor blocked PEDV invasion, as well as reduced the accumulation of TSPAN3, CD63, and ITGB2. Further study showed that the ERK-MNK pathway was responsible for the regulation of PEDV-induced early phosphorylation of eIF4E. This paper demonstrates for the first time the connections among p-eIF4E stimulation and membrane-residential host factors. Our findings also enrich the understanding of the biological function of phosphorylated eIF4E during the viral life cycle.IMPORTANCEThe eukaryotic translation initiation factor eIF4E can regulate cellular translation via phosphorylation. In our previous study, several host factors susceptible to a high level of p-eIF4E were found to be conducive to viral infection by coronavirus PEDV. The current paper is focused on cell membrane-residential factors, which are involved in signal pathways that are sensitive to phosphorylated eIF4E. We found that the ERK-MNK pathway was activated, which resulted in the stimulation of phosphorylation of eIF4E in early PEDV infection. Phospho-eIF4E promoted the viral invasion of PEDV by upregulating the expression of host factors TSPAN3, CD63, and ITGB2 at the translation level rather than at the transcription level. Moreover, TSPAN3, CD63, or ITGB2 facilitates the efficient entry of coronavirus SARS-CoV, SARS-CoV-2, and HCoV-OC43. Our findings broaden our insights into the dynamic phosphorylation of eIF4E during the viral life cycle, and provide further evidence that phosphorylated eIF4E regulates selective translation of host mRNA.
Collapse
Affiliation(s)
- Xiu-Zhong Zhang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jing Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wen-Jun Tian
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jing-Ling You
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiao-Jing Chi
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiao-Jia Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Espada CE, da Rocha EL, Ricciardi-Jorge T, dos Santos AA, Soares ZG, Malaquias G, Patrício DO, Gonzalez Kozlova E, dos Santos PF, Bordignon J, Sanford TJ, Fajardo T, Sweeney TR, Báfica A, Mansur DS. ISG15/USP18/STAT2 is a molecular hub regulating IFN I-mediated control of Dengue and Zika virus replication. Front Immunol 2024; 15:1331731. [PMID: 38384473 PMCID: PMC10879325 DOI: 10.3389/fimmu.2024.1331731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
The establishment of a virus infection is the result of the pathogen's ability to replicate in a hostile environment generated by the host's immune system. Here, we found that ISG15 restricts Dengue and Zika viruses' replication through the stabilization of its binding partner USP18. ISG15 expression was necessary to control DV replication driven by both autocrine and paracrine type one interferon (IFN-I) signaling. Moreover, USP18 competes with NS5-mediated STAT2 degradation, a major mechanism for establishment of flavivirus infection. Strikingly, reconstitution of USP18 in ISG15-deficient cells was sufficient to restore the STAT2's stability and restrict virus growth, suggesting that the IFNAR-mediated ISG15 activity is also antiviral. Our results add a novel layer of complexity in the virus/host interaction interface and suggest that NS5 has a narrow window of opportunity to degrade STAT2, therefore suppressing host's IFN-I mediated response and promoting virus replication.
Collapse
Affiliation(s)
- Constanza Eleonora Espada
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Edroaldo Lummertz da Rocha
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Taissa Ricciardi-Jorge
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Adara Aurea dos Santos
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Zamira Guerra Soares
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Greicy Malaquias
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Daniel Oliveira Patrício
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Edgar Gonzalez Kozlova
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Paula Fernandes dos Santos
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Juliano Bordignon
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Instituto Carlos Chagas (ICC)/Fiocruz-PR, Curitiba, Brazil
| | - Thomas J. Sanford
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Teodoro Fajardo
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Trevor R. Sweeney
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
- Viral Gene Expression Group, The Pirbright Institute, Guildford, United Kingdom
| | - André Báfica
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Daniel Santos Mansur
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
8
|
Jablunovsky A, Jose J. The Dynamic Landscape of Capsid Proteins and Viral RNA Interactions in Flavivirus Genome Packaging and Virus Assembly. Pathogens 2024; 13:120. [PMID: 38392858 PMCID: PMC10893219 DOI: 10.3390/pathogens13020120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
The Flavivirus genus of the Flaviviridae family of enveloped single-stranded RNA viruses encompasses more than 70 members, many of which cause significant disease in humans and livestock. Packaging and assembly of the flavivirus RNA genome is essential for the formation of virions, which requires intricate coordination of genomic RNA, viral structural, and nonstructural proteins in association with virus-induced, modified endoplasmic reticulum (ER) membrane structures. The capsid (C) protein, a small but versatile RNA-binding protein, and the positive single-stranded RNA genome are at the heart of the elusive flavivirus assembly process. The nucleocapsid core, consisting of the genomic RNA encapsidated by C proteins, buds through the ER membrane, which contains viral glycoproteins prM and E organized as trimeric spikes into the lumen, forming an immature virus. During the maturation process, which involves the low pH-mediated structural rearrangement of prM and E and furin cleavage of prM in the secretory pathway, the spiky immature virus with a partially ordered nucleocapsid core becomes a smooth, mature virus with no discernible nucleocapsid. This review focuses on the mechanisms of genome packaging and assembly by examining the structural and functional aspects of C protein and viral RNA. We review the current lexicon of critical C protein features and evaluate interactions between C and genomic RNA in the context of assembly and throughout the life cycle.
Collapse
Affiliation(s)
- Anastazia Jablunovsky
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Joyce Jose
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA;
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
9
|
Abram QH, Landry BN, Wang AB, Kothe RF, Hauch HC, Sagan SM. The myriad roles of RNA structure in the flavivirus life cycle. RNA Biol 2024; 21:14-30. [PMID: 38797925 PMCID: PMC11135854 DOI: 10.1080/15476286.2024.2357857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024] Open
Abstract
As positive-sense RNA viruses, the genomes of flaviviruses serve as the template for all stages of the viral life cycle, including translation, replication, and infectious particle production. Yet, they encode just 10 proteins, suggesting that the structure and dynamics of the viral RNA itself helps shepherd the viral genome through these stages. Herein, we highlight advances in our understanding of flavivirus RNA structural elements through the lens of their impact on the viral life cycle. We highlight how RNA structures impact translation, the switch from translation to replication, negative- and positive-strand RNA synthesis, and virion assembly. Consequently, we describe three major themes regarding the roles of RNA structure in flavivirus infections: 1) providing a layer of specificity; 2) increasing the functional capacity; and 3) providing a mechanism to support genome compaction. While the interactions described herein are specific to flaviviruses, these themes appear to extend more broadly across RNA viruses.
Collapse
Affiliation(s)
- Quinn H. Abram
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Breanna N. Landry
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada
| | - Alex B. Wang
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Ronja F. Kothe
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Hannah C.H. Hauch
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada
| | - Selena M. Sagan
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada
| |
Collapse
|
10
|
Lu JW, Huang CK, Chen YC, Lee GC, Ho YJ. Virucidal activity of trehalose 6-monolaurate against dengue virus in vitro. Drug Dev Res 2023; 84:1699-1708. [PMID: 37688413 DOI: 10.1002/ddr.22112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 08/05/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Dengue fever is an acute febrile disease caused by dengue virus (DENV) infection. Over the past 60 years, DENV has spread throughout tropical regions and currently affects more than 50% of the world's population; however, there are as of yet no effective anti-DENV drugs for clinical treatment. A number of research teams have investigated derivatives of glycolipids as possible agents for the inhibition of DENV. Our objective in this research was to study the antiviral effects of trehalose 6-caprate (TMC), trehalose 6-monolaurate (TML), and trehalose 6-monooleate (TMO), based on reports that the corresponding glycosyl, trehalose, reduces the transmission of Zika virus (ZIKV). We also sought to elucidate the molecular mechanisms underlying inhibition using the RNA isolation and reverse transcription-quantitative polymerase chain reaction, western blot analysis, median tissue culture infectious dose (TCID50 ) assay, and immunofluorescence assay and immunochemistry staining, in vitro. This is the first study to demonstrate the TML-induced inhibition of DENV serotype 2 (DENV-2) in a dose-dependent manner. The inhibitory effects of TML in the pretreated, cotreated, and full-treated groups were confirmed using time of addition assays. We determined that TML restricted viral binding, entry, replication, and release. We also confirmed the efficacy of TML against three clinical isolates of DENV serotypes 1, 3, and 4 (DENV-1, DENV-3, and DENV-4). The findings obtained in this study identify TML as a promising candidate for the development of drugs to treat DENV infection.
Collapse
Affiliation(s)
- Jeng-Wei Lu
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Finsen Laboratory, Rigshospitalet/National University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Chin-Kai Huang
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan, ROC
- Department of Pharmacy, Tri-Service General Hospital Penghu Branch, National Defense Medical Center, Magong City, Taiwan, ROC
| | - Yen-Chen Chen
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan, ROC
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei, Taiwan, ROC
| | - Guan-Chiun Lee
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan, ROC
| | - Yi-Jung Ho
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan, ROC
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, ROC
| |
Collapse
|
11
|
Ricciardi-Jorge T, da Rocha EL, Gonzalez-Kozlova E, Rodrigues-Luiz GF, Ferguson BJ, Sweeney T, Irigoyen N, Mansur DS. PKR-mediated stress response enhances dengue and Zika virus replication. mBio 2023; 14:e0093423. [PMID: 37732809 PMCID: PMC10653888 DOI: 10.1128/mbio.00934-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/01/2023] [Indexed: 09/22/2023] Open
Abstract
IMPORTANCE One of the fundamental features that make viruses intracellular parasites is the necessity to use cellular translational machinery. Hence, this is a crucial checkpoint for controlling infections. Here, we show that dengue and Zika viruses, responsible for nearly 400 million infections every year worldwide, explore such control for optimal replication. Using immunocompetent cells, we demonstrate that arrest of protein translations happens after sensing of dsRNA and that the information required to avoid this blocking is contained in viral 5'-UTR. Our work, therefore, suggests that the non-canonical translation described for these viruses is engaged when the intracellular stress response is activated.
Collapse
Affiliation(s)
- Taissa Ricciardi-Jorge
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
- The Pirbright Institute, Woking, United Kingdom
| | - Edroaldo Lummertz da Rocha
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Edgar Gonzalez-Kozlova
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
- Icahn School of Medicine, New York, USA
| | - Gabriela Flavia Rodrigues-Luiz
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Brian J. Ferguson
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | | | - Nerea Irigoyen
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Daniel Santos Mansur
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| |
Collapse
|
12
|
Ohlson MB, Eitson JL, Wells AI, Kumar A, Jang S, Ni C, Xing C, Buszczak M, Schoggins JW. Genome-Scale CRISPR Screening Reveals Host Factors Required for Ribosome Formation and Viral Replication. mBio 2023; 14:e0012723. [PMID: 36809113 PMCID: PMC10128003 DOI: 10.1128/mbio.00127-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 02/23/2023] Open
Abstract
Viruses are known to co-opt host machinery for translation initiation, but less is known about which host factors are required for the formation of ribosomes used to synthesize viral proteins. Using a loss-of-function CRISPR screen, we show that synthesis of a flavivirus-encoded fluorescent reporter depends on multiple host factors, including several 60S ribosome biogenesis proteins. Viral phenotyping revealed that two of these factors, SBDS, a known ribosome biogenesis factor, and the relatively uncharacterized protein SPATA5, were broadly required for replication of flaviviruses, coronaviruses, alphaviruses, paramyxoviruses, an enterovirus, and a poxvirus. Mechanistic studies revealed that loss of SPATA5 caused defects in rRNA processing and ribosome assembly, suggesting that this human protein may be a functional ortholog of yeast Drg1. These studies implicate specific ribosome biogenesis proteins as viral host dependency factors that are required for synthesis of virally encoded protein and accordingly, optimal viral replication. IMPORTANCE Viruses are well known for their ability to co-opt host ribosomes to synthesize viral proteins. The specific factors involved in translation of viral RNAs are not fully described. In this study, we implemented a unique genome-scale CRISPR screen to identify previously uncharacterized host factors that are important for the synthesis of virally encoded protein. We found that multiple genes involved in 60S ribosome biogenesis were required for viral RNA translation. Loss of these factors severely impaired viral replication. Mechanistic studies on the AAA ATPase SPATA5 indicate that this host factor is required for a late step in ribosome formation. These findings reveal insight into the identity and function of specific ribosome biogenesis proteins that are critical for viral infections.
Collapse
Affiliation(s)
- Maikke B. Ohlson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jennifer L. Eitson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Alexandra I. Wells
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ashwani Kumar
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Seoyeon Jang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chunyang Ni
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chao Xing
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Michael Buszczak
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - John W. Schoggins
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
13
|
Dong HJ, Wang J, Zhang XZ, Li CC, Liu JF, Wang XJ. Proteomic screening identifies RPLp2 as a specific regulator for the translation of coronavirus. Int J Biol Macromol 2023; 230:123191. [PMID: 36632964 PMCID: PMC9827737 DOI: 10.1016/j.ijbiomac.2023.123191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023]
Abstract
Viral mRNA of coronavirus translates in an eIF4E-dependent manner, and the phosphorylation of eIF4E can modulate this process, but the role of p-eIF4E in coronavirus infection is not yet entirely evident. p-eIF4E favors the translation of selected mRNAs, specifically the mRNAs that encode proteins associated with cell proliferation, inflammation, the extracellular matrix, and tumor formation and metastasis. In the present work, two rounds of TMT relative quantitative proteomics were used to screen 77 cellular factors that are upregulated upon infection by coronavirus PEDV and are potentially susceptible to a high level of p-eIF4E. PEDV infection increased the translation level of ribosomal protein lateral stalk subunit RPLp2 (but not subunit RPLp0/1) in a p-eIF4E-dependent manner. The bicistronic dual-reporter assay and polysome profile showed that RPLp2 is essential for translating the viral mRNA of PEDV. RNA binding protein and immunoprecipitation assay showed that RPLp2 interacted with PEDV 5'UTR via association with eIF4E. Moreover, the cap pull-down assay showed that the viral nucleocapsid protein is recruited in m7GTP-precipitated complexes with the assistance of RPLp2. The heterogeneous ribosomes, which are different in composition, regulate the selective translation of specific mRNAs. Our study proves that viral mRNA and protein utilize translation factors and heterogeneous ribosomes for preferential translation initiation. This previously uncharacterized process may be involved in the selective translation of coronavirus.
Collapse
Affiliation(s)
- Hui-Jun Dong
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jing Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiu-Zhong Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Cui-Cui Li
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jian-Feng Liu
- College of Animal Science and Technol, China Agricultural University, Beijing 100193, China.
| | - Xiao-Jia Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
14
|
Li W, Wang Y. Stress granules: potential therapeutic targets for infectious and inflammatory diseases. Front Immunol 2023; 14:1145346. [PMID: 37205103 PMCID: PMC10185834 DOI: 10.3389/fimmu.2023.1145346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/12/2023] [Indexed: 05/21/2023] Open
Abstract
Eukaryotic cells are stimulated by external pressure such as that derived from heat shock, oxidative stress, nutrient deficiencies, or infections, which induce the formation of stress granules (SGs) that facilitates cellular adaptation to environmental pressures. As aggregated products of the translation initiation complex in the cytoplasm, SGs play important roles in cell gene expression and homeostasis. Infection induces SGs formation. Specifically, a pathogen that invades a host cell leverages the host cell translation machinery to complete the pathogen life cycle. In response, the host cell suspends translation, which leads to SGs formation, to resist pathogen invasion. This article reviews the production and function of SGs, the interaction between SGs and pathogens, and the relationship between SGs and pathogen-induced innate immunity to provide directions for further research into anti-infection and anti-inflammatory disease strategies.
Collapse
Affiliation(s)
- Wenyuan Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yao Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- *Correspondence: Yao Wang,
| |
Collapse
|
15
|
Leon KE, Khalid MM, Flynn RA, Fontaine KA, Nguyen TT, Kumar GR, Simoneau CR, Tomar S, Jimenez-Morales D, Dunlap M, Kaye J, Shah PS, Finkbeiner S, Krogan NJ, Bertozzi C, Carette JE, Ott M. Nuclear accumulation of host transcripts during Zika Virus Infection. PLoS Pathog 2023; 19:e1011070. [PMID: 36603024 PMCID: PMC9847913 DOI: 10.1371/journal.ppat.1011070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 01/18/2023] [Accepted: 12/17/2022] [Indexed: 01/06/2023] Open
Abstract
Zika virus (ZIKV) infects fetal neural progenitor cells (NPCs) causing severe neurodevelopmental disorders in utero. Multiple pathways involved in normal brain development are dysfunctional in infected NPCs but how ZIKV centrally reprograms these pathways remains unknown. Here we show that ZIKV infection disrupts subcellular partitioning of host transcripts critical for neurodevelopment in NPCs and functionally link this process to the up-frameshift protein 1 (UPF1). UPF1 is an RNA-binding protein known to regulate decay of cellular and viral RNAs and is less expressed in ZIKV-infected cells. Using infrared crosslinking immunoprecipitation and RNA sequencing (irCLIP-Seq), we show that a subset of mRNAs loses UPF1 binding in ZIKV-infected NPCs, consistent with UPF1's diminished expression. UPF1 target transcripts, however, are not altered in abundance but in subcellular localization, with mRNAs accumulating in the nucleus of infected or UPF1 knockdown cells. This leads to diminished protein expression of FREM2, a protein required for maintenance of NPC identity. Our results newly link UPF1 to the regulation of mRNA transport in NPCs, a process perturbed during ZIKV infection.
Collapse
Affiliation(s)
- Kristoffer E. Leon
- J. David Gladstone Institutes, San Francisco, California, United States of America
- Department of Medicine, University of California, San Francisco, California, United States of America
- Medical Scientist Training Program, University of California, San Francisco, California, United States of America
- Biomedical Sciences Graduate Program, University of California, San Francisco, California, United States of America
| | - Mir M. Khalid
- J. David Gladstone Institutes, San Francisco, California, United States of America
| | - Ryan A. Flynn
- Stem Cell Program, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Krystal A. Fontaine
- J. David Gladstone Institutes, San Francisco, California, United States of America
| | - Thong T. Nguyen
- J. David Gladstone Institutes, San Francisco, California, United States of America
| | - G. Renuka Kumar
- J. David Gladstone Institutes, San Francisco, California, United States of America
| | - Camille R. Simoneau
- J. David Gladstone Institutes, San Francisco, California, United States of America
- Department of Medicine, University of California, San Francisco, California, United States of America
- Biomedical Sciences Graduate Program, University of California, San Francisco, California, United States of America
| | - Sakshi Tomar
- J. David Gladstone Institutes, San Francisco, California, United States of America
| | - David Jimenez-Morales
- J. David Gladstone Institutes, San Francisco, California, United States of America
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, California, United States of America
| | - Mariah Dunlap
- J. David Gladstone Institutes, San Francisco, California, United States of America
| | - Julia Kaye
- J. David Gladstone Institutes, San Francisco, California, United States of America
| | - Priya S. Shah
- Departments of Chemical Engineering and Microbiology and Molecular Genetics, University of California, Davis, California, United States of America
| | - Steven Finkbeiner
- J. David Gladstone Institutes, San Francisco, California, United States of America
- Center for Systems and Therapeutics and Taube/Koret Center for Neurodegenerative Disease Research, San Francisco, California, United States of America
- Departments of Neurology and Physiology, University of California, San Francisco, California, United States of America
| | - Nevan J. Krogan
- J. David Gladstone Institutes, San Francisco, California, United States of America
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, United States of America
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
| | - Carolyn Bertozzi
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Jan E. Carette
- Department of Microbiology and Immunology, Stanford University, Stanford, California, United States of America
| | - Melanie Ott
- J. David Gladstone Institutes, San Francisco, California, United States of America
- Department of Medicine, University of California, San Francisco, California, United States of America
- Chan Zuckerberg Biohub, San Francisco, California, United States of America
| |
Collapse
|
16
|
Wang X, Zhu J, Zhang D, Liu G. Ribosomal control in RNA virus-infected cells. Front Microbiol 2022; 13:1026887. [PMID: 36419416 PMCID: PMC9677555 DOI: 10.3389/fmicb.2022.1026887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022] Open
Abstract
Viruses are strictly intracellular parasites requiring host cellular functions to complete their reproduction cycle involving virus infection of host cell, viral genome replication, viral protein translation, and virion release. Ribosomes are protein synthesis factories in cells, and viruses need to manipulate ribosomes to complete their protein synthesis. Viruses use translation initiation factors through their own RNA structures or cap structures, thereby inducing ribosomes to synthesize viral proteins. Viruses also affect ribosome production and the assembly of mature ribosomes, and regulate the recognition of mRNA by ribosomes, thereby promoting viral protein synthesis and inhibiting the synthesis of host antiviral immune proteins. Here, we review the remarkable mechanisms used by RNA viruses to regulate ribosomes, in particular, the mechanisms by which RNA viruses induce the formation of specific heterogeneous ribosomes required for viral protein translation. This review provides valuable insights into the control of viral infection and diseases from the perspective of viral protein synthesis.
Collapse
|
17
|
Mersinoglu B, Cristinelli S, Ciuffi A. The Impact of Epitranscriptomics on Antiviral Innate Immunity. Viruses 2022; 14:1666. [PMID: 36016289 PMCID: PMC9412694 DOI: 10.3390/v14081666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022] Open
Abstract
Epitranscriptomics, i.e., chemical modifications of RNA molecules, has proven to be a new layer of modulation and regulation of protein expression, asking for the revisiting of some aspects of cellular biology. At the virological level, epitranscriptomics can thus directly impact the viral life cycle itself, acting on viral or cellular proteins promoting replication, or impacting the innate antiviral response of the host cell, the latter being the focus of the present review.
Collapse
Affiliation(s)
| | | | - Angela Ciuffi
- Institute of Microbiology, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland; (B.M.); (S.C.)
| |
Collapse
|
18
|
Zitzmann C, Dächert C, Schmid B, van der Schaar H, van Hemert M, Perelson AS, van Kuppeveld FJ, Bartenschlager R, Binder M, Kaderali L. Mathematical modeling of plus-strand RNA virus replication to identify broad-spectrum antiviral treatment strategies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.07.25.501353. [PMID: 35923314 PMCID: PMC9347285 DOI: 10.1101/2022.07.25.501353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Plus-strand RNA viruses are the largest group of viruses. Many are human pathogens that inflict a socio-economic burden. Interestingly, plus-strand RNA viruses share remarkable similarities in their replication. A hallmark of plus-strand RNA viruses is the remodeling of intracellular membranes to establish replication organelles (so-called "replication factories"), which provide a protected environment for the replicase complex, consisting of the viral genome and proteins necessary for viral RNA synthesis. In the current study, we investigate pan-viral similarities and virus-specific differences in the life cycle of this highly relevant group of viruses. We first measured the kinetics of viral RNA, viral protein, and infectious virus particle production of hepatitis C virus (HCV), dengue virus (DENV), and coxsackievirus B3 (CVB3) in the immuno-compromised Huh7 cell line and thus without perturbations by an intrinsic immune response. Based on these measurements, we developed a detailed mathematical model of the replication of HCV, DENV, and CVB3 and show that only small virus-specific changes in the model were necessary to describe the in vitro dynamics of the different viruses. Our model correctly predicted virus-specific mechanisms such as host cell translation shut off and different kinetics of replication organelles. Further, our model suggests that the ability to suppress or shut down host cell mRNA translation may be a key factor for in vitro replication efficiency which may determine acute self-limited or chronic infection. We further analyzed potential broad-spectrum antiviral treatment options in silico and found that targeting viral RNA translation, especially polyprotein cleavage, and viral RNA synthesis may be the most promising drug targets for all plus-strand RNA viruses. Moreover, we found that targeting only the formation of replicase complexes did not stop the viral replication in vitro early in infection, while inhibiting intracellular trafficking processes may even lead to amplified viral growth. Author summary Plus-strand RNA viruses comprise a large group of related and medically relevant viruses. The current global pandemic of COVID-19 caused by the SARS-coronavirus-2 as well as the constant spread of diseases such as dengue and chikungunya fever show the necessity of a comprehensive and precise analysis of plus-strand RNA virus infections. Plus-strand RNA viruses share similarities in their life cycle. To understand their within-host replication strategies, we developed a mathematical model that studies pan-viral similarities and virus-specific differences of three plus-strand RNA viruses, namely hepatitis C, dengue, and coxsackievirus. By fitting our model to in vitro data, we found that only small virus-specific variations in the model were required to describe the dynamics of all three viruses. Furthermore, our model predicted that ribosomes involved in viral RNA translation seem to be a key player in plus-strand RNA replication efficiency, which may determine acute or chronic infection outcome. Furthermore, our in-silico drug treatment analysis suggests that targeting viral proteases involved in polyprotein cleavage, in combination with viral RNA replication, may represent promising drug targets with broad-spectrum antiviral activity.
Collapse
Affiliation(s)
- Carolin Zitzmann
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Christopher Dächert
- Research Group “Dynamics of Early Viral Infection and the Innate Antiviral Response”, Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bianca Schmid
- Dept of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Hilde van der Schaar
- Division of infectious Diseases and Immunology, Virology Section, Dept of Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Martijn van Hemert
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Alan S. Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Frank J.M. van Kuppeveld
- Division of infectious Diseases and Immunology, Virology Section, Dept of Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Ralf Bartenschlager
- Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Dept of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
- German Center for Infection Research (DZIF), Heidelberg partner site, Heidelberg, Germany
| | - Marco Binder
- Research Group “Dynamics of Early Viral Infection and the Innate Antiviral Response”, Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lars Kaderali
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
19
|
Singh K, Martinez MG, Lin J, Gregory J, Nguyen TU, Abdelaal R, Kang K, Brennand K, Grünweller A, Ouyang Z, Phatnani H, Kielian M, Wendel HG. Transcriptional and Translational Dynamics of Zika and Dengue Virus Infection. Viruses 2022; 14:1418. [PMID: 35891396 PMCID: PMC9316442 DOI: 10.3390/v14071418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/18/2022] [Indexed: 11/16/2022] Open
Abstract
Zika virus (ZIKV) and dengue virus (DENV) are members of the Flaviviridae family of RNA viruses and cause severe disease in humans. ZIKV and DENV share over 90% of their genome sequences, however, the clinical features of Zika and dengue infections are very different reflecting tropism and cellular effects. Here, we used simultaneous RNA sequencing and ribosome footprinting to define the transcriptional and translational dynamics of ZIKV and DENV infection in human neuronal progenitor cells (hNPCs). The gene expression data showed induction of aminoacyl tRNA synthetases (ARS) and the translation activating PIM1 kinase, indicating an increase in RNA translation capacity. The data also reveal activation of different cell stress responses, with ZIKV triggering a BACH1/2 redox program, and DENV activating the ATF/CHOP endoplasmic reticulum (ER) stress program. The RNA translation data highlight activation of polyamine metabolism through changes in key enzymes and their regulators. This pathway is needed for eIF5A hypusination and has been implicated in viral translation and replication. Concerning the viral RNA genomes, ribosome occupancy readily identified highly translated open reading frames and a novel upstream ORF (uORF) in the DENV genome. Together, our data highlight both the cellular stress response and the activation of RNA translation and polyamine metabolism during DENV and ZIKV infection.
Collapse
Affiliation(s)
- Kamini Singh
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA;
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Albert Einstein Cancer, Center, Bronx, NY 10461, USA;
| | - Maria Guadalupe Martinez
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (M.G.M.); (R.A.); (M.K.)
- Global Innovation, Boehringer Ingelheim Animal Health, 69800 Saint-Priest, France
| | - Jianan Lin
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 and Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA;
| | - James Gregory
- Department of Neurology, Vagelos College of Physicians & Surgeons of Columbia University, New York, NY 10032, USA; (J.G.); (K.K.); (H.P.)
- Center for Genomics of Neurodegenerative Disease, New York Genome Center, New York, NY 10013, USA
| | - Trang Uyen Nguyen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Albert Einstein Cancer, Center, Bronx, NY 10461, USA;
| | - Rawan Abdelaal
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (M.G.M.); (R.A.); (M.K.)
| | - Kristy Kang
- Department of Neurology, Vagelos College of Physicians & Surgeons of Columbia University, New York, NY 10032, USA; (J.G.); (K.K.); (H.P.)
- Center for Genomics of Neurodegenerative Disease, New York Genome Center, New York, NY 10013, USA
| | - Kristen Brennand
- Division of Molecular Psychiatry, Departments of Psychiatry and Genetics, Yale School of Medicine, New Haven, CT 06510, USA;
| | - Arnold Grünweller
- Institute of Pharmaceutical Chemistry, Philipps University Marburg, 35032 Marburg, Germany;
| | - Zhengqing Ouyang
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA 01003, USA;
| | - Hemali Phatnani
- Department of Neurology, Vagelos College of Physicians & Surgeons of Columbia University, New York, NY 10032, USA; (J.G.); (K.K.); (H.P.)
- Center for Genomics of Neurodegenerative Disease, New York Genome Center, New York, NY 10013, USA
| | - Margaret Kielian
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (M.G.M.); (R.A.); (M.K.)
| | - Hans-Guido Wendel
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA;
| |
Collapse
|
20
|
Klein P, Kallenberger SM, Roth H, Roth K, Ly-Hartig TBN, Magg V, Aleš J, Talemi SR, Qiang Y, Wolf S, Oleksiuk O, Kurilov R, Di Ventura B, Bartenschlager R, Eils R, Rohr K, Hamprecht FA, Höfer T, Fackler OT, Stoecklin G, Ruggieri A. Temporal control of the integrated stress response by a stochastic molecular switch. SCIENCE ADVANCES 2022; 8:eabk2022. [PMID: 35319985 PMCID: PMC8942376 DOI: 10.1126/sciadv.abk2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Stress granules (SGs) are formed in the cytosol as an acute response to environmental cues and activation of the integrated stress response (ISR), a central signaling pathway controlling protein synthesis. Using chronic virus infection as stress model, we previously uncovered a unique temporal control of the ISR resulting in recurrent phases of SG assembly and disassembly. Here, we elucidate the molecular network generating this fluctuating stress response by integrating quantitative experiments with mathematical modeling and find that the ISR operates as a stochastic switch. Key elements controlling this switch are the cooperative activation of the stress-sensing kinase PKR, the ultrasensitive response of SG formation to the phosphorylation of the translation initiation factor eIF2α, and negative feedback via GADD34, a stress-induced subunit of protein phosphatase 1. We identify GADD34 messenger RNA levels as the molecular memory of the ISR that plays a central role in cell adaptation to acute and chronic stress.
Collapse
Affiliation(s)
- Philipp Klein
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg University, Heidelberg, Germany
| | - Stefan M. Kallenberger
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Digital Health Center, Berlin Institute of Health (BIH) and Charité, Berlin, Germany
- Medical Oncology, National Center for Tumor Diseases, Heidelberg University, Heidelberg, Germany
| | - Hanna Roth
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg University, Heidelberg, Germany
| | - Karsten Roth
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg University, Heidelberg, Germany
| | - Thi Bach Nga Ly-Hartig
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Vera Magg
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg University, Heidelberg, Germany
| | - Janez Aleš
- HCI/IWR, Heidelberg University, Heidelberg, Germany
| | - Soheil Rastgou Talemi
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Yu Qiang
- Biomedical Computer Vision Group, BioQuant, IPMB, Heidelberg University, Heidelberg, Germany
| | - Steffen Wolf
- HCI/IWR, Heidelberg University, Heidelberg, Germany
| | - Olga Oleksiuk
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg University, Heidelberg, Germany
| | - Roma Kurilov
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Barbara Di Ventura
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg University, Heidelberg, Germany
- Division Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Roland Eils
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Digital Health Center, Berlin Institute of Health (BIH) and Charité, Berlin, Germany
| | - Karl Rohr
- Biomedical Computer Vision Group, BioQuant, IPMB, Heidelberg University, Heidelberg, Germany
| | | | - Thomas Höfer
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Oliver T. Fackler
- Department of Infectious Diseases, Integrative Virology, Center for Integrative Infectious Diseases Research, Heidelberg University, Heidelberg, Germany
| | - Georg Stoecklin
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Alessia Ruggieri
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg University, Heidelberg, Germany
- Corresponding author.
| |
Collapse
|
21
|
Burgess HM, Vink EI, Mohr I. Minding the message: tactics controlling RNA decay, modification, and translation in virus-infected cells. Genes Dev 2022; 36:108-132. [PMID: 35193946 PMCID: PMC8887129 DOI: 10.1101/gad.349276.121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
With their categorical requirement for host ribosomes to translate mRNA, viruses provide a wealth of genetically tractable models to investigate how gene expression is remodeled post-transcriptionally by infection-triggered biological stress. By co-opting and subverting cellular pathways that control mRNA decay, modification, and translation, the global landscape of post-transcriptional processes is swiftly reshaped by virus-encoded factors. Concurrent host cell-intrinsic countermeasures likewise conscript post-transcriptional strategies to mobilize critical innate immune defenses. Here we review strategies and mechanisms that control mRNA decay, modification, and translation in animal virus-infected cells. Besides settling infection outcomes, post-transcriptional gene regulation in virus-infected cells epitomizes fundamental physiological stress responses in health and disease.
Collapse
Affiliation(s)
- Hannah M Burgess
- Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Elizabeth I Vink
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA
| | - Ian Mohr
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA
- Laura and Isaac Perlmutter Cancer Institute, New York University School of Medicine, New York, New York 10016, USA
| |
Collapse
|
22
|
RNA-Binding Proteins as Regulators of Internal Initiation of Viral mRNA Translation. Viruses 2022; 14:v14020188. [PMID: 35215780 PMCID: PMC8879377 DOI: 10.3390/v14020188] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/03/2022] [Accepted: 01/14/2022] [Indexed: 12/17/2022] Open
Abstract
Viruses are obligate intracellular parasites that depend on the host’s protein synthesis machinery for translating their mRNAs. The viral mRNA (vRNA) competes with the host mRNA to recruit the translational machinery, including ribosomes, tRNAs, and the limited eukaryotic translation initiation factor (eIFs) pool. Many viruses utilize non-canonical strategies such as targeting host eIFs and RNA elements known as internal ribosome entry sites (IRESs) to reprogram cellular gene expression, ensuring preferential translation of vRNAs. In this review, we discuss vRNA IRES-mediated translation initiation, highlighting the role of RNA-binding proteins (RBPs), other than the canonical translation initiation factors, in regulating their activity.
Collapse
|
23
|
Construction, Identification and Analysis of the Interaction Network of African Swine Fever Virus MGF360-9L with Host Proteins. Viruses 2021; 13:v13091804. [PMID: 34578385 PMCID: PMC8473002 DOI: 10.3390/v13091804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 12/24/2022] Open
Abstract
African swine fever virus (ASFV) is prevalent in many countries and is a contagious and lethal virus that infects pigs, posing a threat to the global pig industry and public health. The interaction between the virus and the host is key to unlocking the mystery behind viral pathogenesis. A comprehensive understanding of the viral and host protein interaction may provide clues for developing new antiviral strategies. Here, we show a network of ASFV MGF360-9L protein interactions in porcine kidney (PK-15) cells. Overall, 268 proteins that interact with MGF360-9L are identified using immunoprecipitation and liquid chromatography–mass spectrometry (LC-MS). Accordingly, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted, and the protein–protein interaction (PPI) network was created. It was speculated that the cellular proteins interacting with MGF360-9L are involved in protein binding, metabolism, and the innate immune response. Proteasome subunit alpha type (PSMA3), 26S protease regulatory subunit 4 (PSMC1), autophagy and beclin 1 regulator 1 (AMBRA1), and DEAD-box helicase 20 (DDX20) could interact with MGF360-9L in vitro. PSMA3 and PSMC1 overexpression significantly promoted ASFV replication, and MGF360-9L maintained the transcriptional level of PSMA3 and PSMC1. Here, we show the interaction between ASFV MGF360-9L and cellular proteins and elucidate the virus–host interaction network, which effectively provides useful protein-related information that can enable further study of the potential mechanism and pathogenesis of ASFV infection.
Collapse
|
24
|
Pintó RM, Bosch A. The Codon Usage Code for Cotranslational Folding of Viral Capsids. Genome Biol Evol 2021; 13:evab089. [PMID: 33914886 PMCID: PMC8410136 DOI: 10.1093/gbe/evab089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2021] [Indexed: 12/25/2022] Open
Abstract
Codon bias is common to all organisms and is the result of mutation, drift, and selection. Selection for the efficiency and accuracy of translation is well recognized as a factor shaping the codon usage. In contrast, fewer studies report the control of the rate of translation as an additional selective pressure influencing the codon usage of an organism. Experimental molecular evolution using RNA virus populations is a powerful tool for the identification of mechanisms underlying the codon bias. Indeed, the role of deoptimized codons on the cotranslational folding has been proven in the capsids of two fecal-orally transmitted picornaviruses, poliovirus, and the hepatitis A virus, emphasizing the role of the frequency of codons in determining the phenotype. However, most studies on virus codon usage rely only on computational analyses, and experimental studies should be encouraged to clearly define the role of selection on codon evolution.
Collapse
Affiliation(s)
- Rosa M Pintó
- Enteric Virus Laboratory, Section of Microbiology, Virology and Biotechnology, Department of Genetics, Microbiology and Statistics, School of Biology, and Institute of Nutrition and Safety, University of Barcelona, Barcelona, Spain
| | - Albert Bosch
- Enteric Virus Laboratory, Section of Microbiology, Virology and Biotechnology, Department of Genetics, Microbiology and Statistics, School of Biology, and Institute of Nutrition and Safety, University of Barcelona, Barcelona, Spain
| |
Collapse
|
25
|
Shu J, Ma X, Zhang Y, Zou J, Yuan Z, Yi Z. NS5-independent Ablation of STAT2 by Zika virus to antagonize interferon signalling. Emerg Microbes Infect 2021; 10:1609-1625. [PMID: 34340648 PMCID: PMC8366623 DOI: 10.1080/22221751.2021.1964384] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Flavivirus genus includes numerous arthropod-borne human pathogens that are clinically important. Flaviviruses are notorious for their ability to antagonize host interferon (IFN) induced anti-viral signalling. It has been documented that NS5s of flaviviruses mediate proteasome degradation of STAT2 to evade IFN signalling. Deciphering the molecular mechanism of the IFN antagonism by the viruses and reversing this antagonism may dictate anti-viral responses and provide novel antiviral approaches. In this report, by using Zika virus (ZIKV) as a model, we first demonstrated that ZIKV antagonized interferon signalling in an infectious dose-dependent manner; in other words, the virus antagonized interferon signalling at a high multiple of infection (MOI) and was sensitive to interferon signalling at a low MOI. Mechanistically, we found that ZIKV infection triggered degradation of ubiquitinated STAT2 and host short-lived proteins while didn't affect the proteasome activity per se. ZIKV infection resulted in suppression of host de novo protein synthesis. Overexpression of NS5 alone only marginally reduced STAT2 and had no effect on the host de novo protein synthesis. Ectopically expressed murine STAT2 that was resistant to NS5- and ZIKV-induced ablation exaggerated the IFN-induced anti-viral signalling. These data favour a new model of the innate immune evasion of ZIKV in which the viral infection triggers suppression of host de novo protein synthesis to accelerate the degradation of short-lived, ubiquitinated STAT2. As flaviviruses share a very conserved replication strategy, the mechanisms of IFN antagonism elucidated here might also be employed by other flaviviruses.
Collapse
Affiliation(s)
- Jun Shu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, and Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, People's Republic of China
| | - Xiao Ma
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, and Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, People's Republic of China
| | - Yang Zhang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, and Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, People's Republic of China
| | - Jingyi Zou
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, and Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, People's Republic of China
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, and Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, People's Republic of China
| | - Zhigang Yi
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, and Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, People's Republic of China.,Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
26
|
Yu PL, Cao SJ, Wu R, Zhao Q, Yan QG. Regulatory effect of m 6 A modification on different viruses. J Med Virol 2021; 93:6100-6115. [PMID: 34329499 DOI: 10.1002/jmv.27246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/13/2021] [Accepted: 07/28/2021] [Indexed: 02/05/2023]
Abstract
N6 -methyladenosine (m6 A) modification is the most common and reversible posttranscriptional modification of RNA in eukaryotes, which is mainly regulated by methyltransferase, demethylase, and specific binding protein. The replication of the virus and host immune response to the virus are affected by m6 A modification. In different kinds of viruses, m6 A modification has two completely opposite regulatory functions. This paper reviews the regulatory effects of m6 A modification on different viruses and provides a reference for studying the regulatory effects of RNA epitranscriptomic modification.
Collapse
Affiliation(s)
- Pei-Lun Yu
- Department of Preventive Veterinary Medicine, Swine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - San-Jie Cao
- Department of Preventive Veterinary Medicine, Swine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Rui Wu
- Department of Preventive Veterinary Medicine, Swine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, Swine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Qi-Gui Yan
- Department of Preventive Veterinary Medicine, Swine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| |
Collapse
|
27
|
Abstract
Zika virus (ZIKV; Flaviviridae) is a devastating virus transmitted to humans by the mosquito Aedes aegypti. The interaction of the virus with the mosquito vector is poorly known. The double-stranded RNA (dsRNA)-mediated interruption or activation of immunity-related genes in the Toll, IMD, JAK-STAT, and short interfering RNA (siRNA) pathways did not affect ZIKV infection in A. aegypti. Transcriptome-based analysis indicated that most immunity-related genes were upregulated in response to ZIKV infection, including leucine-rich immune protein (LRIM) genes. Further, there was a significant increment in the ZIKV load in LRIM9-, LRIM10A-, and LIRM10B-silenced A. aegypti, suggesting their function in modulating viral infection. Further, gene function enrichment analysis revealed that viral infection increased global ribosomal activity. Silencing of RpL23 and RpL27, two ribosomal large subunit genes, increased mosquito resistance to ZIKV infection. In vitro fat body culture assay revealed that the expression of RpL23 and RpL27 was responsive to the Juvenile hormone (JH) signaling pathway. These two genes were transcriptionally regulated by JH and its receptor methoprene-tolerant (Met) complex. Silencing of Met also inhibited ZIKV infection in A. aegypti. This suggests that ZIKV enhances ribosomal activity through JH regulation to promote infection in mosquitoes. Together, these data reveal A. aegypti immune responses to ZIKV and suggest a control strategy that reduces ZIKV transmission by modulating host factors. IMPORTANCE Most flaviviruses are transmitted between hosts by arthropod vectors such as mosquitoes. Since therapeutics or vaccines are lacking for most mosquito-borne diseases, reducing the mosquito vector competence is an effective way to decrease disease burden. We used high-throughput sequencing technology to study the interaction between mosquito Aedes aegypti and ZIKV. Leucine-rich immune protein (LRIM) genes were involved in the defense in response to viral infection. In addition, RNA interference (RNAi) silencing of RpL23 and RpL27, two JH-regulated ribosomal large subunit genes, suppressed ZIKV infection in A. aegypti. These results suggest a novel control strategy that could block the transmission of ZIKV.
Collapse
|
28
|
Hanley JP, Tu HA, Dragon JA, Dickson DM, Rio-Guerra RD, Tighe SW, Eckstrom KM, Selig N, Scarpino SV, Whitehead SS, Durbin AP, Pierce KK, Kirkpatrick BD, Rizzo DM, Frietze S, Diehl SA. Immunotranscriptomic profiling the acute and clearance phases of a human challenge dengue virus serotype 2 infection model. Nat Commun 2021; 12:3054. [PMID: 34031380 PMCID: PMC8144425 DOI: 10.1038/s41467-021-22930-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 04/08/2021] [Indexed: 12/13/2022] Open
Abstract
About 20-25% of dengue virus (DENV) infections become symptomatic ranging from self-limiting fever to shock. Immune gene expression changes during progression to severe dengue have been documented in hospitalized patients; however, baseline or kinetic information is difficult to standardize in natural infection. Here we profile the host immunotranscriptome response in humans before, during, and after infection with a partially attenuated rDEN2Δ30 challenge virus (ClinicalTrials.gov NCT02021968). Inflammatory genes including type I interferon and viral restriction pathways are induced during DENV2 viremia and return to baseline after viral clearance, while others including myeloid, migratory, humoral, and growth factor immune regulation factors pathways are found at non-baseline levels post-viremia. Furthermore, pre-infection baseline gene expression is useful to predict rDEN2Δ30-induced immune responses and the development of rash. Our results suggest a distinct immunological profile for mild rDEN2Δ30 infection and offer new potential biomarkers for characterizing primary DENV infection.
Collapse
Affiliation(s)
- John P Hanley
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Translational Global Infectious Disease Research Center, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Huy A Tu
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Cellular and Molecular Biomedical Sciences Program, University of Vermont, Burlington, VT, USA
- Vaccine Testing Center, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Julie A Dragon
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Vermont Integrated Genomics Resource, University of Vermont, Burlington, VT, USA
| | - Dorothy M Dickson
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Translational Global Infectious Disease Research Center, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Vaccine Testing Center, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Roxana Del Rio-Guerra
- Flow Cytometry and Cell Sorting Facility, Department of Surgery, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Scott W Tighe
- Vermont Integrated Genomics Resource, University of Vermont, Burlington, VT, USA
| | - Korin M Eckstrom
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Vermont Integrated Genomics Resource, University of Vermont, Burlington, VT, USA
| | - Nicholas Selig
- Vaccine Testing Center, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | | | - Stephen S Whitehead
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Anna P Durbin
- Center for Immunization Research, Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Kristen K Pierce
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Translational Global Infectious Disease Research Center, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Vaccine Testing Center, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Beth D Kirkpatrick
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Translational Global Infectious Disease Research Center, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Vaccine Testing Center, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Donna M Rizzo
- Department of Civil and Environmental Engineering, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, VT, USA
| | - Seth Frietze
- Cellular and Molecular Biomedical Sciences Program, University of Vermont, Burlington, VT, USA
- Department of Biomedical and Health Sciences, College of Nursing and Health Sciences, University of Vermont, Burlington, VT, USA
- University of Vermont Cancer Center, Burlington, VT, USA
| | - Sean A Diehl
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, USA.
- Translational Global Infectious Disease Research Center, Larner College of Medicine, University of Vermont, Burlington, VT, USA.
- Cellular and Molecular Biomedical Sciences Program, University of Vermont, Burlington, VT, USA.
- Vaccine Testing Center, Larner College of Medicine, University of Vermont, Burlington, VT, USA.
| |
Collapse
|
29
|
Flynn RA, Belk JA, Qi Y, Yasumoto Y, Wei J, Alfajaro MM, Shi Q, Mumbach MR, Limaye A, DeWeirdt PC, Schmitz CO, Parker KR, Woo E, Chang HY, Horvath TL, Carette JE, Bertozzi CR, Wilen CB, Satpathy AT. Discovery and functional interrogation of SARS-CoV-2 RNA-host protein interactions. Cell 2021; 184:2394-2411.e16. [PMID: 33743211 PMCID: PMC7951565 DOI: 10.1016/j.cell.2021.03.012] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/03/2021] [Accepted: 03/04/2021] [Indexed: 12/22/2022]
Abstract
SARS-CoV-2 is the cause of a pandemic with growing global mortality. Using comprehensive identification of RNA-binding proteins by mass spectrometry (ChIRP-MS), we identified 309 host proteins that bind the SARS-CoV-2 RNA during active infection. Integration of this data with ChIRP-MS data from three other RNA viruses defined viral specificity of RNA-host protein interactions. Targeted CRISPR screens revealed that the majority of functional RNA-binding proteins protect the host from virus-induced cell death, and comparative CRISPR screens across seven RNA viruses revealed shared and SARS-specific antiviral factors. Finally, by combining the RNA-centric approach and functional CRISPR screens, we demonstrated a physical and functional connection between SARS-CoV-2 and mitochondria, highlighting this organelle as a general platform for antiviral activity. Altogether, these data provide a comprehensive catalog of functional SARS-CoV-2 RNA-host protein interactions, which may inform studies to understand the host-virus interface and nominate host pathways that could be targeted for therapeutic benefit.
Collapse
Affiliation(s)
- Ryan A Flynn
- Stanford ChEM-H and Department of Chemistry, Stanford University, Stanford, CA, USA.
| | - Julia A Belk
- Department of Computer Science, Stanford University, Stanford, CA, USA; Department of Pathology, Stanford University, Stanford, CA, USA
| | - Yanyan Qi
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Yuki Yasumoto
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University, New Haven, CT, USA
| | - Jin Wei
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Mia Madel Alfajaro
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Quanming Shi
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Maxwell R Mumbach
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Aditi Limaye
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Peter C DeWeirdt
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Cameron O Schmitz
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Kevin R Parker
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Elizabeth Woo
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Tamas L Horvath
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University, New Haven, CT, USA
| | - Jan E Carette
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Carolyn R Bertozzi
- Stanford ChEM-H and Department of Chemistry, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Craig B Wilen
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA.
| | | |
Collapse
|
30
|
Liu Y, Cheng A, Wang M, Mao S, Ou X, Yang Q, Wu Y, Gao Q, Liu M, Zhang S, Huang J, Jia R, Zhu D, Chen S, Zhao X, Yu Y, Liu Y, Zhang L, Tian B, Pan L. Duck Hepatitis A Virus Type 1 Induces eIF2α Phosphorylation-Dependent Cellular Translation Shutoff via PERK/GCN2. Front Microbiol 2021; 12:624540. [PMID: 33912143 PMCID: PMC8072014 DOI: 10.3389/fmicb.2021.624540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/12/2021] [Indexed: 11/20/2022] Open
Abstract
Duck hepatitis A virus type 1 (DHAV-1) is one of the most deadly pathogens that endanger the duck industry. Most viruses usually turn off host translation after infection to facilitate viral replication and translation. For the first time report to our knowledge, DHAV-1 can induce eIF2α phosphorylation and inhibit cellular translation in duck embryo fibroblasts (DEFs). Moreover, the activity of DHAV-1 in the cells caused obvious eIF2α phosphorylation, which has nothing to do with the viral protein. Subsequently, we screened two kinases (PERK and GCN2) that affect eIF2α phosphorylation through inhibitors and shRNA. Notably, the role of GCN2 in other picornaviruses has not been reported. In addition, when the phosphorylation of eIF2α induced by DHAV-1 is inhibited, the translation efficiency of DEFs restores to a normal level, indicating that DHAV-1 induced cellular translation shutoff is dependent on eIF2α phosphorylation.
Collapse
Affiliation(s)
- Yuanzhi Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Leichang Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
31
|
Zika Virus Growth in Human Kidney Cells Is Restricted by an Elevated Glucose Level. Int J Mol Sci 2021; 22:ijms22052495. [PMID: 33801335 PMCID: PMC7958337 DOI: 10.3390/ijms22052495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/31/2020] [Accepted: 01/02/2021] [Indexed: 12/16/2022] Open
Abstract
Mosquito-borne Zika virus (ZIKV) became a real threat to human health due to the lack of vaccine and effective antiviral treatment. The virus has recently been responsible for a global outbreak leading to millions of infected cases. ZIKV complications were highlighted in adults with Guillain–Barré syndrome and in newborns with increasing numbers of congenital disorders ranging from mild developmental delays to fatal conditions. The ability of ZIKV to establish a long-term infection in diverse organs including the kidneys has been recently documented but the consequences of such a viral infection are still debated. Our study aimed to determine whether the efficiency of ZIKV growth in kidney cells relates to glucose concentration. Human kidney HK-2 cells were infected with different ZIKV strains in presence of normal and high glucose concentrations. Virological assays showed a decrease in viral replication without modifying entry steps (viral binding, internalization, fusion) under high glucose conditions. This decrease replication was associated with a lower virus progeny and increased cell viability when compared to ZIKV-infected HK-2 cells in normal glucose concentration. In conclusion, we showed for the first time that an elevated glucose level influences ZIKV replication level with an effect on kidney cell survival.
Collapse
|
32
|
Rosche KL, Sidak-Loftis LC, Hurtado J, Fisk EA, Shaw DK. Arthropods Under Pressure: Stress Responses and Immunity at the Pathogen-Vector Interface. Front Immunol 2021; 11:629777. [PMID: 33659000 PMCID: PMC7917218 DOI: 10.3389/fimmu.2020.629777] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022] Open
Abstract
Understanding what influences the ability of some arthropods to harbor and transmit pathogens may be key for controlling the spread of vector-borne diseases. Arthropod immunity has a central role in dictating vector competence for pathogen acquisition and transmission. Microbial infection elicits immune responses and imparts stress on the host by causing physical damage and nutrient deprivation, which triggers evolutionarily conserved stress response pathways aimed at restoring cellular homeostasis. Recent studies increasingly recognize that eukaryotic stress responses and innate immunity are closely intertwined. Herein, we describe two well-characterized and evolutionarily conserved mechanisms, the Unfolded Protein Response (UPR) and the Integrated Stress Response (ISR), and examine evidence that these stress responses impact immune signaling. We then describe how multiple pathogens, including vector-borne microbes, interface with stress responses in mammals. Owing to the well-conserved nature of the UPR and ISR, we speculate that similar mechanisms may be occurring in arthropod vectors and ultimately impacting vector competence. We conclude this Perspective by positing that novel insights into vector competence will emerge when considering that stress-signaling pathways may be influencing the arthropod immune network.
Collapse
Affiliation(s)
- Kristin L Rosche
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Lindsay C Sidak-Loftis
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Joanna Hurtado
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Elizabeth A Fisk
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Dana K Shaw
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| |
Collapse
|
33
|
The internal ribosome entry site of the Dengue virus mRNA is active when cap-dependent translation initiation is inhibited. J Virol 2021; 95:JVI.01998-20. [PMID: 33298544 PMCID: PMC8092825 DOI: 10.1128/jvi.01998-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Dengue virus (DENV) is an enveloped, positive-sense, single-stranded RNA virus belonging to the Flaviviridae family. Translation initiation of the DENV mRNA can occur following a cap-dependent or a cap-independent mechanism. Two non-mutually exclusive cap-independent mechanisms of translation initiation have been described for the DENV mRNA. The first corresponds to a 5'end-dependent internal ribosome entry site (IRES)-independent mechanism, while the second relies on IRES-dependent initiation. In this report, we study the recently discovered DENV IRES. Results show that the DENV IRES is functional in the rabbit reticulocyte (RRL) in vitro translation system. In accordance, the activity of DENV IRES was resistant to the cleavage of eIF4G by the Foot-and-mouth disease virus leader protease in RRL. In cells, the DENV IRES exhibited only a marginal activity under standard culture conditions. The DENV IRES showed weak activity in HEK 293T cells; however, the DENV IRES activity was significantly enhanced in HEK 293T cells expressing the Human rhinovirus 2A protease. These findings suggest that the DENV IRES enables viral protein synthesis under conditions that suppress canonical translation initiation.IMPORTANCE Dengue virus (DENV), the etiological agent of Dengue, a febrile and hemorrhagic disease, infects millions of people per year in tropical and subtropical countries. When infecting cells, DENV induces stress conditions known to inhibit canonical protein synthesis. Under these conditions, DENV mRNA thrives using non-canonical modes of translation initiation. In this study, we characterize the mechanism dependent upon an internal ribosome entry site (IRES). Herein, we describe the activity of the DENV IRES in vitro and cells. We show that in cells, DENV IRES enables the viral mRNA to translate under conditions that suppress canonical translation initiation.
Collapse
|
34
|
Relevance of oxidative stress in inhibition of eIF2 alpha phosphorylation and stress granules formation during Usutu virus infection. PLoS Negl Trop Dis 2021; 15:e0009072. [PMID: 33493202 PMCID: PMC7861526 DOI: 10.1371/journal.pntd.0009072] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 02/04/2021] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Usutu virus (USUV) is an African mosquito-borne flavivirus closely related to West Nile, Japanese encephalitis, Zika, and dengue viruses. USUV emerged in 1996 in Europe, where quickly spread across the continent causing a considerable number of bird deaths and varied neurological disorders in humans, including encephalitis, meningoencephalitis, or facial paralysis, thus warning about USUV as a potential health threat. USUV replication takes place on the endoplasmic reticulum (ER) of infected cells, inducing ER stress and resulting in the activation of stress-related cellular pathways collectively known as the integrated stress response (ISR). The alpha subunit of the eukaryotic initiation factor eIF2 (eIF2α), the core factor in this pathway, is phosphorylated by stress activated kinases: protein kinase R (PKR), PKR-like endoplasmic reticulum kinase (PERK), heme-regulated inhibitor kinase (HRI), and general control non-repressed 2 kinase (GCN2). Its phosphorylation results, among others, in the downstream inhibition of translation with accumulation of discrete foci in the cytoplasm termed stress granules (SGs). Our results indicated that USUV infection evades cellular stress response impairing eIF2α phosphorylation and SGs assembly induced by treatment with the HRI activator ArsNa. This protective effect was related with oxidative stress responses in USUV-infected cells. Overall, these results provide new insights into the complex connections between the stress response and flavivirus infection in order to maintain an adequate cellular environment for viral replication. Usutu virus (USUV) infection impairs eIF2α phosphorylation and SGs assembly, in an oxidative stress related manner, as a mechanism to evade cellular stress response. Our results provide new insights into the complex connections between the stress response and USUV infection to maintain a better cellular environment for viral replication.
Collapse
|
35
|
Cheng Y, Sun F, Wang L, Gao M, Xie Y, Sun Y, Liu H, Yuan Y, Yi W, Huang Z, Yan H, Peng K, Wu Y, Cao Z. Virus-induced p38 MAPK activation facilitates viral infection. Am J Cancer Res 2020; 10:12223-12240. [PMID: 33204339 PMCID: PMC7667676 DOI: 10.7150/thno.50992] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/17/2020] [Indexed: 12/27/2022] Open
Abstract
Rationale: Many viral infections are known to activate the p38 mitogen-activated protein kinase (MAPK) signaling pathway. However, the role of p38 activation in viral infection and the underlying mechanism remain unclear. The role of virus-hijacked p38 MAPK activation in viral infection was investigated in this study. Methods: The correlation of hepatitis C virus (HCV) infection and p38 activation was studied in patient tissues and primary human hepatocytes (PHHs) by immunohistochemistry and western blotting. Coimmunoprecipitation, GST pulldown and confocal microscopy were used to investigate the interaction of p38α and the HCV core protein. In vitro kinase assays and mass spectrometry were used to analyze the phosphorylation of the HCV core protein. Plaque assays, quantitative real time PCR (qRT-PCR), western blotting, siRNA and CRISPR/Cas9 were used to determine the effect of p38 activation on viral replication. Results: HCV infection was associated with p38 activation in clinical samples. HCV infection increased p38 phosphorylation by triggering the interaction of p38α and TGF-β activated kinase 1 (MAP3K7) binding protein 1 (TAB1). TAB1-mediated p38α activation facilitated HCV replication, and pharmaceutical inhibition of p38α activation by SB203580 suppressed HCV infection at the viral assembly step. Activated p38α interacted with the N-terminal region of the HCV core protein and subsequently phosphorylated the HCV core protein, which promoted HCV core protein oligomerization, an essential step for viral assembly. As expected, SB203580 or the HCV core protein N-terminal peptide (CN-peptide) disrupted the p38α-HCV core protein interaction, efficiently impaired HCV assembly and impeded normal HCV replication in both cultured cells and primary human hepatocytes. Similarly, severe fever with thrombocytopenia syndrome virus (SFTSV), herpes simplex virus type 1 (HSV-1) or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection also activated p38 MAPK. Most importantly, pharmacological blockage of p38 activation by SB203580 effectively inhibited SFTSV, HSV-1 and SARS-CoV-2. Conclusion: Our study shows that virus-hijacked p38 activation is a key event for viral replication and that pharmacological blockage of p38 activation is an antiviral strategy.
Collapse
|
36
|
Leblanc S, Brunet MA. Modelling of pathogen-host systems using deeper ORF annotations and transcriptomics to inform proteomics analyses. Comput Struct Biotechnol J 2020; 18:2836-2850. [PMID: 33133425 PMCID: PMC7585943 DOI: 10.1016/j.csbj.2020.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 01/08/2023] Open
Abstract
The Zika virus is a flavivirus that can cause fulminant outbreaks and lead to Guillain-Barré syndrome, microcephaly and fetal demise. Like other flaviviruses, the Zika virus is transmitted by mosquitoes and provokes neurological disorders. Despite its risk to public health, no antiviral nor vaccine are currently available. In the recent years, several studies have set to identify human host proteins interacting with Zika viral proteins to better understand its pathogenicity. Yet these studies used standard human protein sequence databases. Such databases rely on genome annotations, which enforce a minimal open reading frame (ORF) length criterion. An ever-increasing number of studies have demonstrated the shortcomings of such annotation, which overlooks thousands of functional ORFs. Here we show that the use of a customized database including currently non-annotated proteins led to the identification of 4 alternative proteins as interactors of the viral capsid and NS4A proteins. Furthermore, 12 alternative proteins were identified in the proteome profiling of Zika infected monocytes, one of which was significantly up-regulated. This study presents a computational framework for the re-analysis of proteomics datasets to better investigate the viral-host protein interplays upon infection with the Zika virus.
Collapse
Key Words
- AP-MS, affinity-purification mass spectrometry
- Alternative ORFs
- DEP, differentially expressed proteins
- FDR, false discovery rate
- FPKM, fragments per kilobase of exon model per million reads mapped
- Flavivirus
- HCIP, highly confident interacting proteins
- HCMV, human cytomegalovirus
- LFQ, label free quantification
- MS, mass spectrometry
- ORF, open reading frame
- PSM, peptide spectrum match
- Protein network
- Proteogenomics
- Proteome profiling
- ZIKV, Zika virus
- Zika
- altProt, alternative protein
- ncRNA, non-coding RNA
- sORF, small open reading frame
Collapse
Affiliation(s)
- Sebastien Leblanc
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, Canada
- PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Canada
| | - Marie A. Brunet
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, Canada
- PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Canada
| |
Collapse
|
37
|
Flynn RA, Belk JA, Qi Y, Yasumoto Y, Schmitz CO, Mumbach MR, Limaye A, Wei J, Alfajaro MM, Parker KR, Chang HY, Horvath TL, Carette JE, Bertozzi C, Wilen CB, Satpathy AT. Systematic discovery and functional interrogation of SARS-CoV-2 viral RNA-host protein interactions during infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.10.06.327445. [PMID: 33052334 PMCID: PMC7553159 DOI: 10.1101/2020.10.06.327445] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of a pandemic with growing global mortality. There is an urgent need to understand the molecular pathways required for host infection and anti-viral immunity. Using comprehensive identification of RNA-binding proteins by mass spectrometry (ChIRP-MS), we identified 309 host proteins that bind the SARS-CoV-2 RNA during active infection. Integration of this data with viral ChIRP-MS data from three other positive-sense RNA viruses defined pan-viral and SARS-CoV-2-specific host interactions. Functional interrogation of these factors with a genome-wide CRISPR screen revealed that the vast majority of viral RNA-binding proteins protect the host from virus-induced cell death, and we identified known and novel anti-viral proteins that regulate SARS-CoV-2 pathogenicity. Finally, our RNA-centric approach demonstrated a physical connection between SARS-CoV-2 RNA and host mitochondria, which we validated with functional and electron microscopy data, providing new insights into a more general virus-specific protein logic for mitochondrial interactions. Altogether, these data provide a comprehensive catalogue of SARS-CoV-2 RNA-host protein interactions, which may inform future studies to understand the mechanisms of viral pathogenesis, as well as nominate host pathways that could be targeted for therapeutic benefit. HIGHLIGHTS · ChIRP-MS of SARS-CoV-2 RNA identifies a comprehensive viral RNA-host protein interaction network during infection across two species· Comparison to RNA-protein interaction networks with Zika virus, dengue virus, and rhinovirus identify SARS-CoV-2-specific and pan-viral RNA protein complexes and highlights distinct intracellular trafficking pathways· Intersection of ChIRP-MS and genome-wide CRISPR screens identify novel SARS-CoV-2-binding proteins with pro- and anti-viral function· Viral RNA-RNA and RNA-protein interactions reveal specific SARS-CoV-2-mediated mitochondrial dysfunction during infection.
Collapse
Affiliation(s)
- Ryan A. Flynn
- Stanford ChEM-H and Department of Chemistry, Stanford University, Stanford, CA
- These authors contributed equally
| | - Julia A. Belk
- Department of Computer Science, Stanford University, Stanford, CA
- Department of Pathology, Stanford University, Stanford, CA
- These authors contributed equally
| | - Yanyan Qi
- Department of Pathology, Stanford University, Stanford, CA
| | - Yuki Yasumoto
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University, New Haven, CT
| | - Cameron O. Schmitz
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT
- Department of Immunobiology, Yale School of Medicine, New Haven, CT
| | - Maxwell R. Mumbach
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA
| | - Aditi Limaye
- Department of Pathology, Stanford University, Stanford, CA
| | - Jin Wei
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT
- Department of Immunobiology, Yale School of Medicine, New Haven, CT
| | - Mia Madel Alfajaro
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT
- Department of Immunobiology, Yale School of Medicine, New Haven, CT
| | - Kevin R. Parker
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA
| | - Howard Y. Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA
| | - Tamas L. Horvath
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University, New Haven, CT
| | - Jan E. Carette
- Department of Microbiology and Immunology, Stanford University, Stanford, CA
| | - Carolyn Bertozzi
- Stanford ChEM-H and Department of Chemistry, Stanford University, Stanford, CA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA
| | - Craig B. Wilen
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT
- Department of Immunobiology, Yale School of Medicine, New Haven, CT
| | | |
Collapse
|
38
|
Harringtonine Inhibits Zika Virus Infection through Multiple Mechanisms. Molecules 2020; 25:molecules25184082. [PMID: 32906689 PMCID: PMC7570876 DOI: 10.3390/molecules25184082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/05/2020] [Accepted: 09/06/2020] [Indexed: 02/06/2023] Open
Abstract
Mosquito-borne Zika virus (ZIKV) is a Flavivirus that came under intense study from 2014 to 2016 for its well-known ability to cause congenital microcephaly in fetuses and neurological Guillain-Barré disease in adults. Substantial research on screening antiviral agents against ZIKV and preventing ZIKV infection are globally underway, but Food and Drug Administration (FDA)-approved treatments are not available yet. Compounds from Chinese medicinal herbs may offer an opportunity for potential therapies for anti-ZIKV infection. In this study, we evaluated the antiviral efficacy of harringtonine against ZIKV. Harringtonine possessed anti-ZIKV properties against the binding, entry, replication, and release stage through the virus life cycle. In addition, harringtonine have strong virucidal effects in ZIKV and exhibited prophylaxis antiviral ability prior ZIKV infection. The antiviral activity also observed in the treatment against Japanese encephalitis reporter virus (RP9-GFP strain). Overall, this study demonstrated that harringtonine would be a favorable potential candidate for the development of anti-ZIKV infection therapies.
Collapse
|
39
|
Eiermann N, Haneke K, Sun Z, Stoecklin G, Ruggieri A. Dance with the Devil: Stress Granules and Signaling in Antiviral Responses. Viruses 2020; 12:v12090984. [PMID: 32899736 PMCID: PMC7552005 DOI: 10.3390/v12090984] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023] Open
Abstract
Cells have evolved highly specialized sentinels that detect viral infection and elicit an antiviral response. Among these, the stress-sensing protein kinase R, which is activated by double-stranded RNA, mediates suppression of the host translation machinery as a strategy to limit viral replication. Non-translating mRNAs rapidly condensate by phase separation into cytosolic stress granules, together with numerous RNA-binding proteins and components of signal transduction pathways. Growing evidence suggests that the integrated stress response, and stress granules in particular, contribute to antiviral defense. This review summarizes the current understanding of how stress and innate immune signaling act in concert to mount an effective response against virus infection, with a particular focus on the potential role of stress granules in the coordination of antiviral signaling cascades.
Collapse
Affiliation(s)
- Nina Eiermann
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (N.E.); (K.H.); (G.S.)
| | - Katharina Haneke
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (N.E.); (K.H.); (G.S.)
| | - Zhaozhi Sun
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research (CIID), University of Heidelberg, 69120 Heidelberg, Germany;
| | - Georg Stoecklin
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (N.E.); (K.H.); (G.S.)
| | - Alessia Ruggieri
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research (CIID), University of Heidelberg, 69120 Heidelberg, Germany;
- Correspondence:
| |
Collapse
|
40
|
cis-Acting Sequences and Secondary Structures in Untranslated Regions of Duck Tembusu Virus RNA Are Important for Cap-Independent Translation and Viral Proliferation. J Virol 2020; 94:JVI.00906-20. [PMID: 32522848 DOI: 10.1128/jvi.00906-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/04/2020] [Indexed: 01/12/2023] Open
Abstract
Duck Tembusu virus (DTMUV) (genus Flavivirus) is a causative agent of duck egg drop syndrome and has zoonotic potential. The positive-strand RNA genomes of flaviviruses are commonly translated in a cap-dependent manner. However, dengue and Zika viruses also exhibit cap-independent translation. In this study, we show that RNAs containing 5' and 3' untranslated regions (UTRs) of DTMUV, mosquito-borne Tembusu virus (TMUV), and Japanese encephalitis virus can be translated in a cap-independent manner in mammalian, avian, and mosquito cells. The ability of the 5' UTRs of flaviviruses to direct the translation of a second open reading frame in bicistronic RNAs was much less than that observed for internal ribosome entry site (IRES) encephalomyocarditis virus, indicating a lack of substantial IRES activity. Instead, cap-independent translation of DTMUV RNA was dependent on the presence of a 3' UTR, RNA secondary structures located in both UTRs, and specific RNA sequences. Mutations inhibiting cap-independent translation decreased DTMUV proliferation in vitro and delayed, but did not prevent, the death of infected duck embryos. Thus, the 5' and 3' UTRs of DTMUV enable the virus to use a cap- and IRES-independent RNA genome translation strategy that is important for its propagation and virulence.IMPORTANCE The genus Flavivirus includes major human pathogens, as well as animal-infecting viruses with zoonotic potential. In order to counteract the threats these viruses represent, it is important to understand their basic biology to develop universal attenuation strategies. Here, we demonstrate that five different flaviviruses use cap-independent translation, indicating that the phenomenon is probably common to all members of the genus. The mechanism used for flavivirus cap-independent translation was found to be different from that of IRES-mediated translation and dependent on both 5' and 3' UTRs that act in cis As cap-independent translation was also observed in mosquito cells, its role in flavivirus infection is unlikely to be limited to the evasion of consequences of the shutoff of host translation. We found that the inhibition of cap-independent translation results in decreased viral proliferation, indicating that the strategy could be applied to produce attenuated variants of flaviviruses as potential vaccine candidates.
Collapse
|
41
|
Liu Y, Wang M, Cheng A, Yang Q, Wu Y, Jia R, Liu M, Zhu D, Chen S, Zhang S, Zhao XX, Huang J, Mao S, Ou X, Gao Q, Wang Y, Xu Z, Chen Z, Zhu L, Luo Q, Liu Y, Yu Y, Zhang L, Tian B, Pan L, Rehman MU, Chen X. The role of host eIF2α in viral infection. Virol J 2020; 17:112. [PMID: 32703221 PMCID: PMC7376328 DOI: 10.1186/s12985-020-01362-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/23/2020] [Indexed: 12/24/2022] Open
Abstract
Background eIF2α is a regulatory node that controls protein synthesis initiation by its phosphorylation or dephosphorylation. General control nonderepressible-2 (GCN2), protein kinase R-like endoplasmic reticulum kinase (PERK), double-stranded RNA (dsRNA)-dependent protein kinase (PKR) and heme-regulated inhibitor (HRI) are four kinases that regulate eIF2α phosphorylation. Main body In the viral infection process, dsRNA or viral proteins produced by viral proliferation activate different eIF2α kinases, resulting in eIF2α phosphorylation, which hinders ternary tRNAMet-GTP-eIF2 complex formation and inhibits host or viral protein synthesis. The stalled messenger ribonucleoprotein (mRNP) complex aggregates under viral infection stress to form stress granules (SGs), which encapsulate viral RNA and transcription- and translation-related proteins, thereby limiting virus proliferation. However, many viruses have evolved a corresponding escape mechanism to synthesize their own proteins in the event of host protein synthesis shutdown and SG formation caused by eIF2α phosphorylation, and viruses can block the cell replication cycle through the PERK-eIF2α pathway, providing a favorable environment for their own replication. Subsequently, viruses can induce host cell autophagy or apoptosis through the eIF2α-ATF4-CHOP pathway. Conclusions This review summarizes the role of eIF2α in viral infection to provide a reference for studying the interactions between viruses and hosts.
Collapse
Affiliation(s)
- Yuanzhi Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China. .,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Xin-Xin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Yin Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Zhiwen Xu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Zhengli Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Ling Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Qihui Luo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Leichang Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Mujeeb Ur Rehman
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Xiaoyue Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| |
Collapse
|
42
|
Pozzi B, Bragado L, Mammi P, Torti MF, Gaioli N, Gebhard L, García Solá M, Vaz-Drago R, Iglesias N, García C, Gamarnik A, Srebrow A. Dengue virus targets RBM10 deregulating host cell splicing and innate immune response. Nucleic Acids Res 2020; 48:6824-6838. [PMID: 32432721 PMCID: PMC7337517 DOI: 10.1093/nar/gkaa340] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 03/30/2020] [Accepted: 04/27/2020] [Indexed: 11/14/2022] Open
Abstract
RNA-seq experiments previously performed by our laboratories showed enrichment in intronic sequences and alterations in alternative splicing in dengue-infected human cells. The transcript of the SAT1 gene, of well-known antiviral action, displayed higher inclusion of exon 4 in infected cells, leading to an mRNA isoform that is degraded by non-sense mediated decay. SAT1 is a spermidine/spermine acetyl-transferase enzyme that decreases the reservoir of cellular polyamines, limiting viral replication. Delving into the molecular mechanism underlying SAT1 pre-mRNA splicing changes upon viral infection, we observed lower protein levels of RBM10, a splicing factor responsible for SAT1 exon 4 skipping. We found that the dengue polymerase NS5 interacts with RBM10 and its sole expression triggers RBM10 proteasome-mediated degradation. RBM10 over-expression in infected cells prevents SAT1 splicing changes and limits viral replication, while its knock-down enhances the splicing switch and also benefits viral replication, revealing an anti-viral role for RBM10. Consistently, RBM10 depletion attenuates expression of interferon and pro-inflammatory cytokines. In particular, we found that RBM10 interacts with viral RNA and RIG-I, and even promotes the ubiquitination of the latter, a crucial step for its activation. We propose RBM10 fulfills diverse pro-inflammatory, anti-viral tasks, besides its well-documented role in splicing regulation of apoptotic genes.
Collapse
Affiliation(s)
- Berta Pozzi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Laureano Bragado
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Pablo Mammi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - María Florencia Torti
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, IQUIBICEN, Buenos Aires, Argentina
| | - Nicolás Gaioli
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Leopoldo G Gebhard
- CONICET-Universidad Nacional de Quilmes, Laboratorio de Virus Emergentes, Departamento de CyT, Buenos Aires, Argentina
| | - Martín E García Solá
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Rita Vaz-Drago
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Néstor G Iglesias
- CONICET-Universidad Nacional de Quilmes, Laboratorio de Virus Emergentes, Departamento de CyT, Buenos Aires, Argentina
| | - Cybele C García
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, IQUIBICEN, Buenos Aires, Argentina
| | | | - Anabella Srebrow
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| |
Collapse
|
43
|
Infectious Bronchitis Virus Regulates Cellular Stress Granule Signaling. Viruses 2020; 12:v12050536. [PMID: 32422883 PMCID: PMC7291021 DOI: 10.3390/v12050536] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 12/21/2022] Open
Abstract
Viruses must hijack cellular translation machinery to express viral genes. In many cases, this is impeded by cellular stress responses. These stress responses result in the global inhibition of translation and the storage of stalled mRNAs, into RNA-protein aggregates called stress granules. This results in the translational silencing of the majority of mRNAs excluding those beneficial for the cell to resolve the specific stress. For example, the expression of antiviral factors is maintained during viral infection. Here we investigated stress granule regulation by Gammacoronavirus infectious bronchitis virus (IBV), which causes the economically important poultry disease, infectious bronchitis. Interestingly, we found that IBV is able to inhibit multiple cellular stress granule signaling pathways, whilst at the same time, IBV replication also results in the induction of seemingly canonical stress granules in a proportion of infected cells. Moreover, IBV infection uncouples translational repression and stress granule formation and both processes are independent of eIF2α phosphorylation. These results provide novel insights into how IBV modulates cellular translation and antiviral stress signaling.
Collapse
|
44
|
Glucose-Regulated Protein 78 Interacts with Zika Virus Envelope Protein and Contributes to a Productive Infection. Viruses 2020; 12:v12050524. [PMID: 32397571 PMCID: PMC7290722 DOI: 10.3390/v12050524] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/01/2020] [Accepted: 05/05/2020] [Indexed: 12/23/2022] Open
Abstract
Zika virus (ZIKV; Flaviviridae) is a mosquito-borne flavivirus shown to cause fetal abnormalities collectively known as congenital Zika syndrome and Guillain-Barré syndrome in recent outbreaks. Currently, there is no specific treatment or vaccine available, and more effort is needed to identify cellular factors in the viral life cycle. Here, we investigated interactors of ZIKV envelope (E) protein by combining protein pull-down with mass spectrometry. We found that E interacts with the endoplasmic reticulum (ER) resident chaperone, glucose regulated protein 78 (GRP78). Although other flaviviruses are known to co-opt ER resident proteins, including GRP78, to enhance viral infectivity, the role ER proteins play during the ZIKV life cycle is yet to be elucidated. We showed that GRP78 levels increased during ZIKV infection and localised to sites coincident with ZIKV E staining. Depletion of GRP78 using specific siRNAs significantly reduced reporter-virus luciferase readings, viral protein synthesis, and viral titres. Additionally, GRP78 depletion reduced the ability of ZIKV to disrupt host cell translation and altered the localisation of viral replication factories, though there was no effect on viral RNA synthesis. In summary, we showed GRP78 is a vital host-factor during ZIKV infection, which may be involved in the coordination of viral replication factories.
Collapse
|
45
|
Diosa-Toro M, Prasanth KR, Bradrick SS, Garcia Blanco MA. Role of RNA-binding proteins during the late stages of Flavivirus replication cycle. Virol J 2020; 17:60. [PMID: 32334603 PMCID: PMC7183730 DOI: 10.1186/s12985-020-01329-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/11/2020] [Indexed: 12/21/2022] Open
Abstract
The genus Flavivirus encompasses several worldwide-distributed arthropod-borne viruses including, dengue virus, Japanese encephalitis virus, West Nile virus, yellow fever virus, Zika virus, and tick-borne encephalitis virus. Infection with these viruses manifest with symptoms ranging from febrile illness to life- threatening hypotensive shock and encephalitis. Therefore, flaviviruses pose a great risk to public health. Currently, preventive measures are falling short to control epidemics and there are no antivirals against any Flavivirus.Flaviviruses carry a single stranded positive-sense RNA genome that plays multiple roles in infected cells: it is translated into viral proteins, used as template for genome replication, it is the precursor of the subgenomic flaviviral RNA and it is assembled into new virions. Furthermore, viral RNA genomes are also packaged into extracellular vesicles, e.g. exosomes, which represent an alternate mode of virus dissemination.Because RNA molecules are at the center of Flavivirus replication cycle, viral and host RNA-binding proteins (RBPs) are critical determinants of infection. Numerous studies have revealed the function of RBPs during Flavivirus infection, particularly at the level of RNA translation and replication. These proteins, however, are also critical participants at the late stages of the replication cycle. Here we revise the function of host RBPs and the viral proteins capsid, NS2A and NS3, during the packaging of viral RNA and the assembly of new virus particles. Furthermore, we go through the evidence pointing towards the importance of host RBPs in mediating cellular RNA export with the idea that the biogenesis of exosomes harboring Flavivirus RNA would follow an analogous pathway.
Collapse
Affiliation(s)
- Mayra Diosa-Toro
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.
| | - K Reddisiva Prasanth
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Shelton S Bradrick
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
- Global Health, Surveillance & Diagnostics Group, MRIGlobal, Kansas City, MO, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Mariano A Garcia Blanco
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
46
|
Progressive Rotavirus Infection Downregulates Redox-Sensitive Transcription Factor Nrf2 and Nrf2-Driven Transcription Units. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7289120. [PMID: 32322337 PMCID: PMC7165344 DOI: 10.1155/2020/7289120] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/31/2020] [Accepted: 02/10/2020] [Indexed: 12/13/2022]
Abstract
Eukaryotic cells adopt highly tuned stress response physiology under threats of exogenous stressors including viruses to maintain cellular homeostasis. Not surprisingly, avoidance of cellular stress response pathways is an essential facet of virus-induced obligatory host reprogramming to invoke a cellular environment conducive to viral perpetuation. Adaptive cellular responses to oxidative and electrophilic stress are usually taken care of by an antioxidant defense system, core to which lies the redox-responsive transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) and Nrf2-driven transcriptional cascade. Deregulation of host redox balance and redox stress-sensitive Nrf2 antioxidant defense have been reported for many viruses. In the current study, we aimed to study the modulation of the Nrf2-based host cellular redox defense system in response to Rotavirus (RV) infection in vitro. Interestingly, we found that Nrf2 protein levels decline sharply with progression of RV infection beyond an initial upsurge. Moreover, Nrf2 decrease as a whole was found to be accompanied by active nuclear vacuity of Nrf2, resulting in lowered expression of stress-responsive Nrf2 target genes heme oxygenase-1 (HO-1), NAD(P)H quinone dehydrogenase 1, and superoxide dismutase 1 both in the presence and absence of Nrf2-driven transcriptional inducers. Initial induction of Nrf2 concurred with RV-induced early burst of oxidative stress and therefore was sensitive to treatments with antioxidants. Reduction of Nrf2 levels beyond initial hours, however, was found to be independent of the cellular redox status. Furthermore, increasing the half-life of Nrf2 through inhibition of the Kelch-like erythroid cell-derived protein with CNC homology- (ECH-) associated protein 1/Cullin3-RING Box1-based canonical Nrf2 turnover pathway could not restore Nrf2 levels post RV-SA11 infection. Depletion of the Nrf2/HO-1 axis was subsequently found to be sensitive to proteasome inhibition with concurrent observation of increased K48-linked ubiquitination associated with Nrf2. Together, the present study describes robust downregulation of Nrf2-dependent cellular redox defense beyond initial hours of RV infection, justifying our previous observation of potent antirotaviral implications of Nrf2 agonists.
Collapse
|
47
|
Oyarzún-Arrau A, Alonso-Palomares L, Valiente-Echeverría F, Osorio F, Soto-Rifo R. Crosstalk between RNA Metabolism and Cellular Stress Responses during Zika Virus Replication. Pathogens 2020; 9:E158. [PMID: 32106582 PMCID: PMC7157488 DOI: 10.3390/pathogens9030158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/21/2020] [Accepted: 02/23/2020] [Indexed: 12/16/2022] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne virus associated with neurological disorders such as Guillain-Barré syndrome and microcephaly. In humans, ZIKV is able to replicate in cell types from different tissues including placental cells, neurons, and microglia. This intricate virus-cell interaction is accompanied by virally induced changes in the infected cell aimed to promote viral replication as well as cellular responses aimed to counteract or tolerate the virus. Early in the infection, the 11-kb positive-sense RNA genome recruit ribosomes in the cytoplasm and the complex is translocated to the endoplasmic reticulum (ER) for viral protein synthesis. In this process, ZIKV replication is known to induce cellular stress, which triggers both the expression of innate immune genes and the phosphorylation of eukaryotic translation initiation factor 2 (eIF2α), shutting-off host protein synthesis. Remodeling of the ER during ZIKV replication also triggers the unfolded protein response (UPR), which induces changes in the cellular transcriptional landscapes aimed to tolerate infection or trigger apoptosis. Alternatively, ZIKV replication induces changes in the adenosine methylation patterns of specific host mRNAs, which have different consequences in viral replication and cellular fate. In addition, the ZIKV RNA genome undergoes adenosine methylation by the host machinery, which results in the inhibition of viral replication. However, despite these relevant findings, the full scope of these processes to the outcome of infection remains poorly elucidated. This review summarizes relevant aspects of the complex crosstalk between RNA metabolism and cellular stress responses against ZIKV and discusses their possible impact on viral pathogenesis.
Collapse
Affiliation(s)
- Aarón Oyarzún-Arrau
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (A.O.-A.); (L.A.-P.); (F.V.-E.)
| | - Luis Alonso-Palomares
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (A.O.-A.); (L.A.-P.); (F.V.-E.)
- HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Fernando Valiente-Echeverría
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (A.O.-A.); (L.A.-P.); (F.V.-E.)
- HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Fabiola Osorio
- Laboratory of Immunology and Cellular Stress, Immunology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile;
| | - Ricardo Soto-Rifo
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (A.O.-A.); (L.A.-P.); (F.V.-E.)
- HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| |
Collapse
|
48
|
Quintana VM, Selisko B, Brunetti JE, Eydoux C, Guillemot JC, Canard B, Damonte EB, Julander JG, Castilla V. Antiviral activity of the natural alkaloid anisomycin against dengue and Zika viruses. Antiviral Res 2020; 176:104749. [PMID: 32081740 DOI: 10.1016/j.antiviral.2020.104749] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 01/21/2020] [Accepted: 02/15/2020] [Indexed: 12/26/2022]
Abstract
Flaviviruses constitute a public health concern because of their global burden and the lack of specific antiviral treatment. Here we investigated the antiviral activity of the alkaloid anisomycin against dengue (DENV) and Zika (ZIKV) viruses. At non-cytotoxic concentrations, anisomycin strongly inhibited the replication of reference strains and clinical isolates of all DENV serotypes and Asian and African strains of ZIKV in Vero cells. Anisomycin also prevented DENV and ZIKV multiplication in human cell lines. While initial steps of DENV and ZIKV replicative cycle were unaffected, a high inhibition of viral protein expression was demonstrated after treatment with anisomycin. DENV RNA synthesis was strongly reduced in anisomycin treated cultures, but the compound did not exert a direct inhibitory effect on 2' O-methyltransferase or RNA polymerase activities of DENV NS5 protein. Furthermore, anisomycin-mediated activation of p38 signaling was not related to the antiviral action of the compound. The evaluation of anisomycin efficacy in a mouse model of ZIKV morbidity and mortality revealed that animals treated with a low dose of anisomycin exhibited a significant reduction in viremia levels and died significantly later than the control group. This protective effect was lost at higher doses, though. In conclusion, anisomycin is a potent and selective in vitro inhibitor of DENV and ZIKV that impairs a post-entry step of viral replication; and a low-dose anisomycin treatment may provide some minimal benefit in a mouse model.
Collapse
Affiliation(s)
- V M Quintana
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires/ IQUIBICEN (CONICET), Ciudad Universitaria, Pabellón 2, Piso 4, Buenos Aires, 1428, Argentina.
| | - B Selisko
- Centre National de la Recherche Scientifique (CNRS) and Aix-Marseille Université (AMU), Laboratoire d'Architecture et Fonction des Macromolécules Biologiques (AFMB) UMR 7257, 163 Avenue de Luminy, 13288, Marseille Cedex 9, France.
| | - J E Brunetti
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires/ IQUIBICEN (CONICET), Ciudad Universitaria, Pabellón 2, Piso 4, Buenos Aires, 1428, Argentina.
| | - C Eydoux
- Centre National de la Recherche Scientifique (CNRS) and Aix-Marseille Université (AMU), Laboratoire d'Architecture et Fonction des Macromolécules Biologiques (AFMB) UMR 7257, 163 Avenue de Luminy, 13288, Marseille Cedex 9, France.
| | - J C Guillemot
- Centre National de la Recherche Scientifique (CNRS) and Aix-Marseille Université (AMU), Laboratoire d'Architecture et Fonction des Macromolécules Biologiques (AFMB) UMR 7257, 163 Avenue de Luminy, 13288, Marseille Cedex 9, France.
| | - B Canard
- Centre National de la Recherche Scientifique (CNRS) and Aix-Marseille Université (AMU), Laboratoire d'Architecture et Fonction des Macromolécules Biologiques (AFMB) UMR 7257, 163 Avenue de Luminy, 13288, Marseille Cedex 9, France.
| | - E B Damonte
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires/ IQUIBICEN (CONICET), Ciudad Universitaria, Pabellón 2, Piso 4, Buenos Aires, 1428, Argentina.
| | - J G Julander
- Institute for Antiviral Research, Utah State University, Logan, UT, USA.
| | - V Castilla
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires/ IQUIBICEN (CONICET), Ciudad Universitaria, Pabellón 2, Piso 4, Buenos Aires, 1428, Argentina.
| |
Collapse
|
49
|
Gokhale NS, McIntyre ABR, Mattocks MD, Holley CL, Lazear HM, Mason CE, Horner SM. Altered m 6A Modification of Specific Cellular Transcripts Affects Flaviviridae Infection. Mol Cell 2020; 77:542-555.e8. [PMID: 31810760 PMCID: PMC7007864 DOI: 10.1016/j.molcel.2019.11.007] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/11/2019] [Accepted: 10/29/2019] [Indexed: 02/07/2023]
Abstract
The RNA modification N6-methyladenosine (m6A) modulates mRNA fate and thus affects many biological processes. We analyzed m6A across the transcriptome following infection by dengue virus (DENV), Zika virus (ZIKV), West Nile virus (WNV), and hepatitis C virus (HCV). We found that infection by these viruses in the Flaviviridae family alters m6A modification of specific cellular transcripts, including RIOK3 and CIRBP. During viral infection, the addition of m6A to RIOK3 promotes its translation, while loss of m6A in CIRBP promotes alternative splicing. Importantly, viral activation of innate immune sensing or the endoplasmic reticulum (ER) stress response contributes to the changes in m6A in RIOK3 or CIRBP, respectively. Further, several transcripts with infection-altered m6A profiles, including RIOK3 and CIRBP, encode proteins that influence DENV, ZIKV, and HCV infection. Overall, this work reveals that cellular signaling pathways activated during viral infection lead to alterations in m6A modification of host mRNAs to regulate infection.
Collapse
Affiliation(s)
- Nandan S Gokhale
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27705, USA
| | - Alexa B R McIntyre
- Department of Physiology and Biophysics and the Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA; Tri-Institutional Program in Computational Biology and Medicine, New York, NY 10065, USA
| | - Melissa D Mattocks
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Christopher L Holley
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27705, USA; Department of Medicine, Duke University Medical Center, Durham, NC 27705, USA
| | - Helen M Lazear
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics and the Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA; The HRH Prince Alwaleed Bin Talal Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA; The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10065, USA; The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Stacy M Horner
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27705, USA; Department of Medicine, Duke University Medical Center, Durham, NC 27705, USA.
| |
Collapse
|
50
|
Norovirus infection results in eIF2α independent host translation shut-off and remodels the G3BP1 interactome evading stress granule formation. PLoS Pathog 2020; 16:e1008250. [PMID: 31905230 PMCID: PMC6964919 DOI: 10.1371/journal.ppat.1008250] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 01/16/2020] [Accepted: 12/04/2019] [Indexed: 12/14/2022] Open
Abstract
Viral infections impose major stress on the host cell. In response, stress pathways can rapidly deploy defence mechanisms by shutting off the protein synthesis machinery and triggering the accumulation of mRNAs into stress granules to limit the use of energy and nutrients. Because this threatens viral gene expression, viruses need to evade these pathways to propagate. Human norovirus is responsible for gastroenteritis outbreaks worldwide. Here we examined how norovirus interacts with the eIF2α signaling axis controlling translation and stress granules. While norovirus infection represses host cell translation, our mechanistic analyses revealed that eIF2α signaling mediated by the stress kinase GCN2 is uncoupled from translational stalling. Moreover, infection results in a redistribution of the RNA-binding protein G3BP1 to replication complexes and remodelling of its interacting partners, allowing the avoidance from canonical stress granules. These results define novel strategies by which norovirus undergo efficient replication whilst avoiding the host stress response and manipulating the G3BP1 interactome. Viruses have evolved elegant strategies to evade host responses that restrict viral propagation by targeting the protein synthesis machinery and stress granules, which are membrane-less RNA granules with antiviral properties. Previous studies have unravelled how viruses, including norovirus the leading cause of gastroenteritis, regulate the activity of translation factors to affect the antiviral response. Furthermore, stress granules evasion strategies have been linked to targeting the scaffolding protein G3BP1. Here we dissect how murine norovirus, the main model for norovirus, evades the cellular stress responses. Our work challenges the dogma that translational control during infection is mainly mediated by eIF2α and demonstrate that norovirus evades this stress pathway. We further show that norovirus evades the stress granule response in a novel way by isolating and characterising the G3BP1 interactome for the first time in the context of a viral infection. We conclude that norovirus infection results in a redistribution of G3BP1 and its cellular partners to replication complexes, thereby preventing the assembly of stress granules. Overall, we define a novel evasion strategy by which norovirus escapes stress granule formation by rewiring the G3BP1 interactome.
Collapse
|