1
|
Romero-Olivares AL, Lopez A, Catalan-Dibene J, Ferrenberg S, Jordan SE, Osborne B. Effects of global change drivers on the expression of pathogenicity and stress genes in dryland soil fungi. mSphere 2024; 9:e0065824. [PMID: 39475318 PMCID: PMC11580470 DOI: 10.1128/msphere.00658-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/08/2024] [Indexed: 11/22/2024] Open
Abstract
The impacts of global climate change on dryland fungi have been understudied even though fungi are extremely sensitive to changes in the environment. Considering that many fungi are pathogens of plants and animals, including humans, their responses to anthropogenic change could have important implications for public health and food security. In this study, we investigated the potential physiological responses (i.e., metatranscriptomics) of pathogenicity and stress in dryland fungi exposed to global change drivers, drought, and the physical disturbance associated with land use. Specifically, we wanted to assess if there was an increase in the transcription of genes associated to pathogenicity and stress in response to global change drivers. In addition, we wanted to investigate which pathogenicity and stress genes were consistently differentially expressed under the different global change conditions across the heterogeneous landscape (i.e., microsite) of the Chihuahuan desert. We observed increased transcription of pathogenicity and stress genes, with specific genes being most upregulated in response to global change drivers. Additionally, climatic conditions linked to different microsites, such as those found under patches of vegetation, may play a significant role. We provide evidence supporting the idea that environmental stress caused by global change could contribute to an increase of pathogenicity as global climate changes. Specifically, increases in the transcription of stress and virulence genes, coupled with variations in gene expression, could lead to the onset of pathogenicity. Our work underscores the importance of studying dryland fungi exposed to global climate change and increases in existing fungal pathogens, as well as the emergence of new fungal pathogens, and consequences to public health and food security. IMPORTANCE The effects of global climate change on dryland fungi and consequences to our society have been understudied despite evidence showing that pathogenic fungi increase in abundance under global climate change. Moreover, there is a growing concern that global climate change will contribute to the emergence of new fungal pathogens. Yet, we do not understand what mechanisms might be driving this increase in virulence and the onset of pathogenicity. In this study, we investigate how fungi respond to global change drivers, physical disturbance, and drought, in a dryland ecosystem in terms of pathogenicity and stress. We find that indeed, under global change drivers, there is an increase in the transcription and expression of genes associated to pathogenicity and stress, but that microclimatic conditions matter. Our study shows the importance of investigating dryland fungi exposed to global climate change and impacts on our society, which may include threats to public health and food security.
Collapse
Affiliation(s)
| | - Andrea Lopez
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, USA
| | | | - Scott Ferrenberg
- Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, Montana, USA
| | - Samuel E. Jordan
- Arizona State University, School of Life Sciences, Tempe, Arizona, USA
| | - Brooke Osborne
- Department of Environment and Society, Utah State University, Moab, Utah, USA
| |
Collapse
|
2
|
Martirosyan V, Stavi I, Doniger T, Applebaum I, Sherman C, Levi M, Steinberger Y. Fungal community dynamics in a hyper-arid ecosystem after 7 and 47 years of petroleum contamination. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1212. [PMID: 39556259 DOI: 10.1007/s10661-024-13387-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 11/04/2024] [Indexed: 11/19/2024]
Abstract
This study investigates the impact of crude oil contamination on the fungal community dynamics in the Evrona Nature Reserve, situated in Israel's hyper-arid Arava Valley. The reserve experienced petroleum-hydrocarbon-spill pollution at two neighboring sites in 1975 and 2014. The initial contamination was left untreated, providing a unique opportunity to compare its effects to those of the second contamination event. In 2022, soil samples were collected from both contaminated areas and nearby clean (control) sites, 47 and 7 years after the spills. The taxonomic diversity of fungal community and functional guilds, as well as various properties of the soil, were analyzed. We focused on three functional groups within fungal communities: saprotrophs, symbiotrophs, and pathotrophs. The results revealed a significant decrease in number of fungal species in the contaminated samples over time. Consequently, prolonged effect of crude oil-contaminated soils can facilitate the development of a distinct fungal community, which has adapted to the conditions of oil contamination. This study aims to elucidate the dynamics of fungal communities in oil-contaminated soils, contributing to a better understanding of their behavior and adaptation in such environments.
Collapse
Affiliation(s)
| | - Ilan Stavi
- Dead Sea and Arava Science Center, Yotvata, Israel.
| | - Tirza Doniger
- The Mina and Everard Goodman, Faculty of Life Sciences, Bar-Ilan University, 5290002, Ramat-Gan, Israel
| | - Itaii Applebaum
- The Mina and Everard Goodman, Faculty of Life Sciences, Bar-Ilan University, 5290002, Ramat-Gan, Israel
| | - Chen Sherman
- The Mina and Everard Goodman, Faculty of Life Sciences, Bar-Ilan University, 5290002, Ramat-Gan, Israel
| | - May Levi
- The Mina and Everard Goodman, Faculty of Life Sciences, Bar-Ilan University, 5290002, Ramat-Gan, Israel
| | - Yosef Steinberger
- The Mina and Everard Goodman, Faculty of Life Sciences, Bar-Ilan University, 5290002, Ramat-Gan, Israel.
| |
Collapse
|
3
|
Castaño JD, El Khoury IV, Goering J, Evans JE, Zhang J. Unlocking the distinctive enzymatic functions of the early plant biomass deconstructive genes in a brown rot fungus by cell-free protein expression. Appl Environ Microbiol 2024; 90:e0012224. [PMID: 38567954 PMCID: PMC11205865 DOI: 10.1128/aem.00122-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/10/2024] [Indexed: 05/22/2024] Open
Abstract
Saprotrophic fungi that cause brown rot of woody biomass evolved a distinctive mechanism that relies on reactive oxygen species (ROS) to kick-start lignocellulosic polymers' deconstruction. These ROS agents are generated at incipient decay stages through a series of redox relays that shuttle electrons from fungus's central metabolism to extracellular Fenton chemistry. A list of genes has been suggested encoding the enzyme catalysts of the redox processes involved in ROS's function. However, navigating the functions of the encoded enzymes has been challenging due to the lack of a rapid method for protein synthesis. Here, we employed cell-free expression system to synthesize four redox or degradative enzymes, which were identified, by transcriptomic data, as conserved players of the ROS oxidation phase across brown rot fungal species. All four enzymes were successfully expressed and showed activities that enable confident assignment of function, namely, benzoquinone reductase (BQR), ferric reductase, α-L-arabinofuranosidase (ABF), and heme-thiolate peroxidase (HTP). Detailed analysis of their catalytic features within the context of brown rot environments allowed us to interpret their roles during ROS-driven wood decomposition. Specifically, we validated the functions of BQR as the driver redox enzyme of Fenton cycles and reconstructed its interactions with the co-occurring HTP or laccase and ABF. Taken together, this research demonstrated that the cell-free expression platform is adequate for synthesizing functional fungal enzymes and provided an alternative route for the rapid characterization of fungal proteins, escalating our understanding of the distinctive biocatalyst system for plant biomass conversion.IMPORTANCEBrown rot fungi are efficient wood decomposers in nature, and their unique degradative systems harbor untapped catalysts pursued by the biorefinery and bioremediation industries. While the use of "omics" platforms has recently uncovered the key "oxidative-hydrolytic" mechanisms that allow these fungi to attack lignocellulose, individual protein characterization is lagging behind due to the lack of a robust method for rapid synthesis of crucial fungal enzymes. This work delves into the studies of biochemical functions of brown rot enzymes using a rapid, cell-free expression platform, which allowed the successful depictions of enzymes' catalytic features, their interactions with Fenton chemistry, and their roles played during the incipient stage of brown rot when fungus sets off the reactive oxygen species for oxidative degradation. We expect this research could illuminate cell-free protein expression system's use to fulfill the increasing need for functional studies of fungal enzymes, advancing the discoveries of novel biomass-converting catalysts.
Collapse
Affiliation(s)
- Jesus D. Castaño
- Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, Minnesota, USA
| | - Irina V. El Khoury
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Joshua Goering
- Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, Minnesota, USA
| | - James E. Evans
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| | - Jiwei Zhang
- Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, Minnesota, USA
| |
Collapse
|
4
|
Nakazawa T, Kawauchi M, Otsuka Y, Han J, Koshi D, Schiphof K, Ramírez L, Pisabarro AG, Honda Y. Pleurotus ostreatus as a model mushroom in genetics, cell biology, and material sciences. Appl Microbiol Biotechnol 2024; 108:217. [PMID: 38372792 PMCID: PMC10876731 DOI: 10.1007/s00253-024-13034-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/11/2024] [Accepted: 01/25/2024] [Indexed: 02/20/2024]
Abstract
Pleurotus ostreatus, also known as the oyster mushroom, is a popular edible mushroom cultivated worldwide. This review aims to survey recent progress in the molecular genetics of this fungus and demonstrate its potential as a model mushroom for future research. The development of modern molecular genetic techniques and genome sequencing technologies has resulted in breakthroughs in mushroom science. With efficient transformation protocols and multiple selection markers, a powerful toolbox, including techniques such as gene knockout and genome editing, has been developed, and numerous new findings are accumulating in P. ostreatus. These include molecular mechanisms of wood component degradation, sexual development, protein secretion systems, and cell wall structure. Furthermore, these techniques enable the identification of new horizons in enzymology, biochemistry, cell biology, and material science through protein engineering, fluorescence microscopy, and molecular breeding. KEY POINTS: • Various genetic techniques are available in Pleurotus ostreatus. • P. ostreatus can be used as an alternative model mushroom in genetic analyses. • New frontiers in mushroom science are being developed using the fungus.
Collapse
Affiliation(s)
- Takehito Nakazawa
- Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Moriyuki Kawauchi
- Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Yuitsu Otsuka
- Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Junxian Han
- Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Daishiro Koshi
- Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Kim Schiphof
- Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Lucía Ramírez
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarra (UPNA), 31006, Pamplona, Spain
| | - Antonio G Pisabarro
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarra (UPNA), 31006, Pamplona, Spain
| | - Yoichi Honda
- Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan.
| |
Collapse
|
5
|
Nagappan J, Ooi SE, Chan KL, Kadri F, Nurazah Z, Halim MAA, Angel LPL, Sundram S, Chin CF, May ST, Low ETL. Transcriptional effects of carbon and nitrogen starvation on Ganoderma boninense, an oil palm phytopathogen. Mol Biol Rep 2024; 51:212. [PMID: 38273212 DOI: 10.1007/s11033-023-09054-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/24/2023] [Indexed: 01/27/2024]
Abstract
BACKGROUND Ganoderma boninense is a phytopathogen of oil palm, causing basal and upper stem rot diseases. METHODS The genome sequence was used as a reference to study gene expression during growth in a starved carbon (C) and nitrogen (N) environment with minimal sugar and sawdust as initial energy sources. This study was conducted to mimic possible limitations of the C-N nutrient sources during the growth of G. boninense in oil palm plantations. RESULTS Genome sequencing of an isolate collected from a palm tree in West Malaysia generated an assembly of 67.12 Mb encoding 19,851 predicted genes. Transcriptomic analysis from a time course experiment during growth in this starvation media identified differentially expressed genes (DEGs) that were found to be associated with 29 metabolic pathways. During the active growth phase, 26 DEGs were related to four pathways, including secondary metabolite biosynthesis, carbohydrate metabolism, glycan metabolism and mycotoxin biosynthesis. G. boninense genes involved in the carbohydrate metabolism pathway that contribute to the degradation of plant cell walls were up-regulated. Interestingly, several genes associated with the mycotoxin biosynthesis pathway were identified as playing a possible role in pathogen-host interaction. In addition, metabolomics analysis revealed six metabolites, maltose, xylobiose, glucooligosaccharide, glycylproline, dimethylfumaric acid and arabitol that were up-regulated on Day2 of the time course experiment. CONCLUSIONS This study provides information on genes expressed by G. boninense in metabolic pathways that may play a role in the initial infection of the host.
Collapse
Affiliation(s)
- Jayanthi Nagappan
- Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
- School of Biosciences, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor, Malaysia
| | - Siew-Eng Ooi
- Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Kuang-Lim Chan
- Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Faizun Kadri
- Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Zain Nurazah
- Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Mohd Amin Ab Halim
- Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Lee Pei Lee Angel
- Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Shamala Sundram
- Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Chiew-Foan Chin
- School of Biosciences, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor, Malaysia
| | - Sean T May
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nr Loughborough, LE12 5RD, UK
| | - Eng Ti Leslie Low
- Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia.
| |
Collapse
|
6
|
Nakazawa T, Yamaguchi I, Zhang Y, Saka C, Wu H, Kayama K, Kawauchi M, Sakamoto M, Honda Y. Experimental evidence that lignin-modifying enzymes are essential for degrading plant cell wall lignin by Pleurotus ostreatus using CRISPR/Cas9. Environ Microbiol 2023; 25:1909-1924. [PMID: 37218079 DOI: 10.1111/1462-2920.16427] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/10/2023] [Indexed: 05/24/2023]
Abstract
Lignin-modifying enzymes (LMEs), which include laccases (Lacs), manganese peroxidases (MnPs), versatile peroxidases (VPs), and lignin peroxidases (LiPs), have been considered key factors in lignin degradation by white-rot fungi because they oxidize lignin model compounds and depolymerize synthetic lignin in vitro. However, it remains unclear whether these enzymes are essential/important in the actual degradation of natural lignin in plant cell walls. To address this long-standing issue, we examined the lignin-degrading abilities of multiple mnp/vp/lac mutants of Pleurotus ostreatus. One vp2/vp3/mnp3/mnp6 quadruple-gene mutant was generated from a monokaryotic wild-type strain PC9 using plasmid-based CRISPR/Cas9. Also, two vp2/vp3/mnp2/mnp3/mnp6, two vp2/vp3/mnp3/mnp6/lac2 quintuple-gene mutants, and two vp2/vp3/mnp2/mnp3/mnp6/lac2 sextuple-gene mutants were generated. The lignin-degrading abilities of the sextuple and vp2/vp3/mnp2/mnp3/mnp6 quintuple-gene mutants on the Beech wood sawdust medium reduced drastically, but not so much for those of the vp2/vp3/mnp3/mnp6/lac2 mutants and the quadruple mutant strain. The sextuple-gene mutants also barely degraded lignin in Japanese Cedar wood sawdust and milled rice straw. Thus, this study presented evidence that the LMEs, especially MnPs and VPs, play a crucial role in the degradation of natural lignin by P. ostreatus for the first time.
Collapse
Affiliation(s)
| | - Iori Yamaguchi
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yufan Zhang
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Chinami Saka
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Hongli Wu
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Keita Kayama
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | | | - Yoichi Honda
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
7
|
Müller M, Kües U, Budde KB, Gailing O. Applying molecular and genetic methods to trees and their fungal communities. Appl Microbiol Biotechnol 2023; 107:2783-2830. [PMID: 36988668 PMCID: PMC10106355 DOI: 10.1007/s00253-023-12480-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023]
Abstract
Forests provide invaluable economic, ecological, and social services. At the same time, they are exposed to several threats, such as fragmentation, changing climatic conditions, or increasingly destructive pests and pathogens. Trees, the inherent species of forests, cannot be viewed as isolated organisms. Manifold (micro)organisms are associated with trees playing a pivotal role in forest ecosystems. Of these organisms, fungi may have the greatest impact on the life of trees. A multitude of molecular and genetic methods are now available to investigate tree species and their associated organisms. Due to their smaller genome sizes compared to tree species, whole genomes of different fungi are routinely compared. Such studies have only recently started in forest tree species. Here, we summarize the application of molecular and genetic methods in forest conservation genetics, tree breeding, and association genetics as well as for the investigation of fungal communities and their interrelated ecological functions. These techniques provide valuable insights into the molecular basis of adaptive traits, the impacts of forest management, and changing environmental conditions on tree species and fungal communities and can enhance tree-breeding cycles due to reduced time for field testing. It becomes clear that there are multifaceted interactions among microbial species as well as between these organisms and trees. We demonstrate the versatility of the different approaches based on case studies on trees and fungi. KEY POINTS: • Current knowledge of genetic methods applied to forest trees and associated fungi. • Genomic methods are essential in conservation, breeding, management, and research. • Important role of phytobiomes for trees and their ecosystems.
Collapse
Affiliation(s)
- Markus Müller
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany.
- Center for Integrated Breeding Research (CiBreed), University of Goettingen, 37073, Göttingen, Germany.
| | - Ursula Kües
- Molecular Wood Biotechnology and Technical Mycology, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany
- Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, 37077, Göttingen, Germany
- Center of Sustainable Land Use (CBL), Georg-August-University Göttingen, 37077, Göttingen, Germany
| | - Katharina B Budde
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany
- Center of Sustainable Land Use (CBL), Georg-August-University Göttingen, 37077, Göttingen, Germany
| | - Oliver Gailing
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), University of Goettingen, 37073, Göttingen, Germany
- Center of Sustainable Land Use (CBL), Georg-August-University Göttingen, 37077, Göttingen, Germany
| |
Collapse
|
8
|
Nosenko T, Zimmer I, Ghirardo A, Köllner TG, Weber B, Polle A, Rosenkranz M, Schnitzler JP. Predicting functions of putative fungal sesquiterpene synthase genes based on multiomics data analysis. Fungal Genet Biol 2023; 165:103779. [PMID: 36706978 DOI: 10.1016/j.fgb.2023.103779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023]
Abstract
Sesquiterpenes (STs) are secondary metabolites, which mediate biotic interactions between different organisms. Predicting the species-specific ST repertoires can contribute to deciphering the language of communication between organisms of the same or different species. High biochemical plasticity and catalytic promiscuity of sesquiterpene synthases (STSs), however, challenge the homology-based prediction of the STS functions. Using integrated analyses of genomic, transcriptomic, volatilomic, and metabolomic data, we predict product profiles for 116 out of 146 putative STS genes identified in the genomes of 30 fungal species from different trophic groups. Our prediction method is based on the observation that STSs encoded by genes closely related phylogenetically are likely to share the initial enzymatic reactions of the ST biosynthesis pathways and, therefore, produce STs via the same reaction route. The classification by reaction routes allows to assign STs known to be emitted by a particular species to the putative STS genes from this species. Gene expression information helps to further specify these ST-to-STS assignments. Validation of the computational predictions of the STS functions using both in silico and experimental approaches shows that integrated multiomic analyses are able to correctly link cyclic STs of non-cadalane type to genes. In the process of the experimental validation, we characterized catalytic properties of several putative STS genes from the mycorrhizal fungus Laccaria bicolor. We show that the STSs encoded by the L.bicolor mycorrhiza-induced genes emit either nerolidol or α-cuprenene and α-cuparene, and discuss the possible roles of these STs in the mycorrhiza formation.
Collapse
Affiliation(s)
- Tetyana Nosenko
- Helmholtz Zentrum München, Research Unit Environmental Simulation, 85764 Neuherberg, Germany.
| | - Ina Zimmer
- Helmholtz Zentrum München, Research Unit Environmental Simulation, 85764 Neuherberg, Germany
| | - Andrea Ghirardo
- Helmholtz Zentrum München, Research Unit Environmental Simulation, 85764 Neuherberg, Germany
| | - Tobias G Köllner
- Max Planck Institute for Chemical Ecology, Department of Natural Product Biosynthesis, 07745 Jena, Germany
| | - Baris Weber
- Helmholtz Zentrum München, Research Unit Environmental Simulation, 85764 Neuherberg, Germany
| | - Andrea Polle
- Forest Botany and Tree Physiology, University of Göttingen, 37077 Göttingen, Germany
| | - Maaria Rosenkranz
- Helmholtz Zentrum München, Research Unit Environmental Simulation, 85764 Neuherberg, Germany
| | - Jörg-Peter Schnitzler
- Helmholtz Zentrum München, Research Unit Environmental Simulation, 85764 Neuherberg, Germany
| |
Collapse
|
9
|
A Laccase Gene Reporting System That Enables Genetic Manipulations in a Brown Rot Wood Decomposer Fungus Gloeophyllum trabeum. Microbiol Spectr 2023; 11:e0424622. [PMID: 36651769 PMCID: PMC9927100 DOI: 10.1128/spectrum.04246-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Brown rot fungi are primary decomposers of wood and litter in northern forests. Relative to other microbes, these fungi have evolved distinct mechanisms that rapidly depolymerize and metabolize cellulose and hemicellulose without digesting the more recalcitrant lignin. Its efficient degradative system has therefore attracted considerable attention for the development of sustainable biomass conversion technologies. However, there has been a significant lack of genetic tools in brown rot species by which to manipulate genes for both mechanistic studies and engineering applications. To advance brown rot genetic studies, we provided a gene-reporting system that can facilitate genetic manipulations in a model fungus Gloeophyllum trabeum. We first optimized a transformation procedure in G. trabeum, and then transformed the fungus into a constitutive laccase producer with a well-studied white rot laccases gene (from Trametes versicolor). With this, we built a gene reporting system based on laccase gene's expression and its rapid assay using an 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) indicator dye. The laccase reporter system was validated robust enough to allow us to test the effects of donor DNA's formats, protoplast viability, and gene regulatory elements on transformation efficiencies. Going forward, we anticipate the toolset provided in this work would expedite phenotyping studies and genetic engineering of brown rot species. IMPORTANCE One of the most ubiquitous types of decomposers in nature, brown rot fungi, has lacked robust genetic tools by which to manipulate genes and understand its biology. Brown rot fungi are primary decomposers in northern forests helping recycle the encased carbons in trees back to ecosystem. Relative to other microbes, these fungi employ distinctive mechanisms to disrupt and consume the lignified polysaccharides in wood. Its decay mechanism allows fast, selective carbohydrate catabolization, but without digesting lignin-a barren component that produces least energy trade back for fungal metabolisms. Thus, its efficient degradative system provides a great platform for developing sustainable biotechnologies for biomass conversions. However, progress has been hampered by the lack genetic tools facilitating mechanistic studies and engineering applications. Here, the laccase reporter system provides a genetic toolset for genetic manipulations in brown rot species, which we expect would advance relevant genetic studies for discovering and harnessing the unique fungal degradative mechanisms.
Collapse
|
10
|
Romero-Olivares AL, Frey SD, Treseder KK. Tracking fungal species-level responses in soil environments exposed to long-term warming and associated drying. FEMS Microbiol Lett 2023; 370:fnad128. [PMID: 38059856 DOI: 10.1093/femsle/fnad128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/26/2023] [Accepted: 12/05/2023] [Indexed: 12/08/2023] Open
Abstract
Climate change is affecting fungal communities and their function in terrestrial ecosystems. Despite making progress in the understanding of how the fungal community responds to global change drivers in natural ecosystems, little is known on how fungi respond at the species level. Understanding how fungal species respond to global change drivers, such as warming, is critical, as it could reveal adaptation pathways to help us to better understand ecosystem functioning in response to global change. Here, we present a model study to track species-level responses of fungi to warming-and associated drying-in a decade-long global change field experiment; we focused on two free-living saprotrophic fungi which were found in high abundance in our site, Mortierella and Penicillium. Using microbiological isolation techniques, combined with whole genome sequencing of fungal isolates, and community level metatranscriptomics, we investigated transcription-level differences of functional categories and specific genes involved in catabolic processes, cell homeostasis, cell morphogenesis, DNA regulation and organization, and protein biosynthesis. We found that transcription-level responses were mostly species-specific but that under warming, both fungi consistently invested in the transcription of critical genes involved in catabolic processes, cell morphogenesis, and protein biosynthesis, likely allowing them to withstand a decade of chronic stress. Overall, our work supports the idea that fungi that invest in maintaining their catabolic rates and processes while growing and protecting their cells may survive under global climate change.
Collapse
Affiliation(s)
| | - Serita D Frey
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH 03824, Unites States
| | - Kathleen K Treseder
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, United States
| |
Collapse
|
11
|
Metabolomics Highlights Different Life History Strategies of White and Brown Rot Wood-Degrading Fungi. mSphere 2022; 7:e0054522. [PMID: 36468887 PMCID: PMC9769625 DOI: 10.1128/msphere.00545-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
White and brown rot fungi efficiently deconstruct lignocellulose in wood, Earth's largest pool of aboveground biotic carbon and an important natural resource. Despite its vital importance, little is known about the metabolomic signatures among fungal species and nutritional modes (rot types). In this study, we used GC-MS metabolomics in solid wood substrates (in planta) to compare brown rot fungi (Rhodonia placenta and Gloeophylum trabeum) and white rot fungi (Trametes versicolor and Pleurotus ostreatus) at two decay stages (earlier and later), finding identifiable patterns for brown rot fungi at later decay stages. These patterns occurred in highly reducing environments that were not observed in white rot fungi. Metabolomes measured among the two white rot fungi were notably different, but we found a potential biomarker compound, galactitol, that was characteristic to white rot taxa. In addition, we found that white rot fungi were more efficient at catabolizing phenolic compounds that were originally present in wood. Collectively, white rot fungi were characterized by measured sugar release relative to higher carbohydrate solubilization by brown rot fungi, a distinction in soluble sugar availability that might shape success in the face of "cheater" competitors. This need to protect excess free sugars may explain the differentially high brown rot fungal production of pyranones and furanones, likely linked to an expansion of polyketide synthase genes. IMPORTANCE Despite the ecological and economic importance of wood-degrading fungi, little is known about the array of metabolites that fungi produce during wood decomposition. This study provides an in-depth insight into the wood decomposition process by analyzing and comparing the changes of >100 compounds produced by fungi with metabolic distinct nutritional modes (white and brown rot fungi) at different decay stages. We found a unique pattern of metabolites that correlated well with brown rot (carbohydrate selective mode) in later decay. These compounds were in line with some of the physiochemical and genetic features previously seen in these fungi such as a faster sugar release, lower pH, and the expansion of polyketide-synthase genes compared to white rot fungi (lignin-degrading mode). This study provides spatiotemporally resolved mechanism insights as well as critical groundwork that will be valuable for studies in basic biology and ecology, as well as applied biomass deconstruction and bioremediation.
Collapse
|
12
|
Wu Z, Peng K, Zhang Y, Wang M, Yong C, Chen L, Qu P, Huang H, Sun E, Pan M. Lignocellulose dissociation with biological pretreatment towards the biochemical platform: A review. Mater Today Bio 2022; 16:100445. [PMID: 36212906 PMCID: PMC9535326 DOI: 10.1016/j.mtbio.2022.100445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 11/30/2022]
Abstract
Lignocellulose utilization has been gaining great attention worldwide due to its abundance, accessibility, renewability and recyclability. Destruction and dissociation of the cross-linked, hierarchical structure within cellulose hemicellulose and lignin is the key procedure during chemical utilization of lignocellulose. Of the pretreatments, biological treatment, which can effectively target the complex structures, is attractive due to its mild reaction conditions and environmentally friendly characteristics. Herein, we report a comprehensive review of the current biological pretreatments for lignocellulose dissociation and their corresponding degradation mechanisms. Firstly, we analyze the layered, hierarchical structure of cell wall, and the cross-linked network between cellulose, hemicellulose and lignin, then highlight that the cracking of β-aryl ether is considered the key to lignin degradation because of its dominant position. Secondly, we explore the effect of biological pretreatments, such as fungi, bacteria, microbial consortium, and enzymes, on substrate structure and degradation efficiency. Additionally, combining biological pretreatment with other methods (chemical methods and catalytic materials) may reduce the time necessary for the whole process, which also help to strengthen the lignocellulose dissociation efficiency. Thirdly, we summarize the related applications of lignocellulose, such as fuel production, chemicals platform, and bio-pulping, which could effectively alleviate the energy pressure through bioconversion into high value-added products. Based on reviewing of current progress of lignocellulose pretreatment, the challenges and future prospects are emphasized. Genetic engineering and other technologies to modify strains or enzymes for improved biotransformation efficiency will be the focus of future research.
Collapse
Affiliation(s)
- Zengyou Wu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization/Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Kun Peng
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yin Zhang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Mei Wang
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Cheng Yong
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization/Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Ling Chen
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization/Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Ping Qu
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization/Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Hongying Huang
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization/Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Enhui Sun
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization/Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, China
- College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Pietermaritzburg Campus), Private Bag X01, Scottsville, 3209, South Africa
- Corresponding author. Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization/Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Mingzhu Pan
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
- Corresponding author.
| |
Collapse
|
13
|
Shabaev AV, Moiseenko KV, Glazunova OA, Savinova OS, Fedorova TV. Comparative Analysis of Peniophora lycii and Trametes hirsuta Exoproteomes Demonstrates “Shades of Gray” in the Concept of White-Rotting Fungi. Int J Mol Sci 2022; 23:ijms231810322. [PMID: 36142233 PMCID: PMC9499651 DOI: 10.3390/ijms231810322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
White-rot basidiomycete fungi are a unique group of organisms that evolved an unprecedented arsenal of extracellular enzymes for an efficient degradation of all components of wood such as cellulose, hemicelluloses and lignin. The exoproteomes of white-rot fungi represent a natural enzymatic toolbox for white biotechnology. Currently, only exoproteomes of a narrow taxonomic group of white-rot fungi—fungi belonging to the Polyporales order—are extensively studied. In this article, two white-rot fungi, Peniophora lycii LE-BIN 2142 from the Russulales order and Trametes hirsuta LE-BIN 072 from the Polyporales order, were compared and contrasted in terms of their enzymatic machinery used for degradation of different types of wood substrates—alder, birch and pine sawdust. Our findings suggested that the studied fungi use extremely different enzymatic systems for the degradation of carbohydrates and lignin. While T. hirsuta LE-BIN 072 behaved as a typical white-rot fungus, P. lycii LE-BIN 2142 demonstrated substantial peculiarities. Instead of using cellulolytic and hemicellulolytic hydrolytic enzymes, P. lycii LE-BIN 2142 primarily relies on oxidative polysaccharide-degrading enzymes such as LPMO and GMC oxidoreductase. Moreover, exoproteomes of P. lycii LE-BIN 2142 completely lacked ligninolytic peroxidases, a well-known marker of white-rot fungi, but instead contained several laccase isozymes and previously uncharacterized FAD-binding domain-containing proteins.
Collapse
|
14
|
Zhu Y, Li W, Meng D, Li X, Goodell B. Non-enzymatic modification of the crystalline structure and chemistry of Masson pine in brown-rot decay. Carbohydr Polym 2022; 286:119242. [DOI: 10.1016/j.carbpol.2022.119242] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 12/15/2022]
|
15
|
The Transcription Factor Roc1 Is a Key Regulator of Cellulose Degradation in the Wood-Decaying Mushroom
Schizophyllum commune. mBio 2022; 13:e0062822. [PMID: 35604096 PMCID: PMC9239231 DOI: 10.1128/mbio.00628-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Wood-degrading fungi in the phylum Basidiomycota play a crucial role in nutrient recycling by breaking down all components of wood. Fungi have evolved transcriptional networks that regulate expression of wood-degrading enzymes, allowing them to prioritize one nutrient source over another.
Collapse
|
16
|
Capturing an Early Gene Induction Event during Wood Decay by the Brown Rot Fungus Rhodonia placenta. Appl Environ Microbiol 2022; 88:e0018822. [PMID: 35348388 PMCID: PMC9040566 DOI: 10.1128/aem.00188-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Brown rot fungi dominate wood decomposition in coniferous forests, and their carbohydrate-selective mechanisms are of commercial interest. Brown rot was recently described as a two-step, sequential mechanism orchestrated by fungi using differentially expressed genes (DEGs) and consisting of oxidation via reactive oxygen species (ROS) followed by enzymatic saccharification. There have been indications, however, that the initial oxidation step itself might require induction. To capture this early gene regulation event, here, we integrated fine-scale cryosectioning with whole-transcriptome sequencing to dissect gene expression at the single-hyphal-cell scale (tens of micrometers). This improved the spatial resolution 50-fold, relative to previous work, and we were able to capture the activity of the first 100 μm of hyphal front growth by Rhodonia placenta in aspen wood. This early decay period was dominated by delayed gene expression patterns as the fungus ramped up its mechanism. These delayed DEGs included many genes implicated in ROS pathways (lignocellulose oxidation [LOX]) that were previously and incorrectly assumed to be constitutively expressed. These delayed DEGs, which include those with and without predicted functions, also create a focused subset of target genes for functional genomics. However, this delayed pattern was not universal, with a few genes being upregulated immediately at the hyphal front. Most notably, this included a gene commonly implicated in hydroquinone and iron redox cycling: benzoquinone reductase. IMPORTANCE Earth's aboveground terrestrial biomass is primarily wood, and fungi dominate wood decomposition. Here, we studied these fungal pathways in a common "brown rot"-type fungus, Rhodonia placenta, that selectively extracts sugars from carbohydrates embedded within wood lignin. Using a space-for-time design to map fungal gene expression at the extreme hyphal front in wood, we made two discoveries. First, we found that many genes long assumed to be "on" (constitutively expressed) from the very beginning of decay were instead "off" before being upregulated, when mapped (via transcriptome sequencing [RNA-seq]) at a high resolution. Second, we found that the gene encoding benzoquinone reductase was "on" in incipient decay and quickly downregulated, implying a key role in "kick-starting" brown rot.
Collapse
|
17
|
Maillard F, Jusino MA, Andrews E, Moran M, Vaziri GJ, Banik MT, Fanin N, Trettin CC, Lindner DL, Schilling JS. Wood-decay type and fungal guild dominance across a North American log transplant experiment. FUNGAL ECOL 2022. [DOI: 10.1016/j.funeco.2022.101151] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Zhang J, Meng Markillie L, Mitchell HD, Gaffrey MJ, Orr G, Schilling JS. Distinctive carbon repression effects in the carbohydrate-selective wood decay fungus Rhodonia placenta. Fungal Genet Biol 2022; 159:103673. [PMID: 35150839 DOI: 10.1016/j.fgb.2022.103673] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/29/2022] [Accepted: 02/06/2022] [Indexed: 11/19/2022]
Abstract
Brown rot fungi dominate the carbon degradation of northern terrestrial conifers. These fungi adapted unique genetic inventories to degrade lignocellulose and to rapidly release a large quantity of carbohydrates for fungal catabolism. We know that brown rot involves "two-step" gene regulation to delay most hydrolytic enzyme expression until after harsh oxidative pretreatments. This implies the crucial role of concise gene regulation to brown rot efficacy, but the underlying regulatory mechanisms remain uncharacterized. Here, using the combined transcriptomic and enzyme analyses we investigated the roles of carbon catabolites in controlling gene expression in model brown rot fungus Rhodonia placenta. We identified co-regulated gene regulons as shared transcriptional responses to no-carbon controls, glucose, cellobiose, or aspen wood (Populus sp.). We found that cellobiose, a common inducing catabolite for fungi, induced expression of main chain-cleaving cellulases in GH5 and GH12 families (cellobiose vs. no-carbon > 4-fold, Padj < 0.05), whereas complex aspen was a universal inducer for Carbohydrate Active Enzymes (CAZymes) expression. Importantly, we observed the attenuated glucose-mediated repression effects on cellulases expression, but not on hemicellulases and lignin oxidoreductases, suggesting fungi might have adapted diverged regulatory routes to boost cellulase production for the fast carbohydrate release. Using carbon regulons, we further predicted the cis- and trans-regulatory elements and assembled a network model of the distinctive regulatory machinery of brown rot. These results offer mechanistic insights into the energy efficiency traits of a common group of decomposer fungi with enormous influence on the carbon cycle.
Collapse
Affiliation(s)
- Jiwei Zhang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN, United States.
| | - Lye Meng Markillie
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Hugh D Mitchell
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Matthew J Gaffrey
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Galya Orr
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Jonathan S Schilling
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, United States.
| |
Collapse
|
19
|
Bail J, Gomez JAM, de Oliveira Vaz GC, de Castro WAC, Bonugli-Santos RC. Structural and functional changes in the fungal community of plant detritus in an invaded Atlantic Forest. BMC Microbiol 2022; 22:10. [PMID: 34986801 PMCID: PMC8729104 DOI: 10.1186/s12866-021-02431-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/14/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Changes in the fungal community in the litter decomposition by invasive plants can negatively impact nutrient cycling in natural ecosystems. One still does not know the dimension of this hypothesis, but apparently, it is not despicable. This study evaluated the assemblage composition of fungi during litter decomposition in areas of Atlantic Forest invaded or not invaded by Tradescantia zebrina using Illumina MiSeq and metabarcoding analysis. RESULTS The invaded sample showed significantly higher richness and a difference in the species dominance than the invaded litter. Ascomycota was the first most abundant phylum in both areas. Even so, the dissimilarity between areas can be evidenced. The fungal from Basidiomycota were very representative in the non-invaded areas (ranged from an abundance of 43.29% in the non-invaded to 2.35% in the invaded sample). The genus Lepiota can indicate the primary functional group related to biomass degradation and showed the might difference about the invaded areas due to its essential reduction by the invader. In the invaded sample, there was a total absence of the endophyte-undefined saprotroph guild. Also, some genera not taxonomically characterized were eliminated in the invaded sample, revealing that the fungal biodiversity of areas has not yet been thoroughly characterized. CONCLUSIONS Hence, makes impossible the real interpretation of the invasive plant impact, showing the importance of continuing research on fungal biodiversity. It is important to emphasize that the replacement of the native species by T. zebrina may be responsible for the elimination of fungal groups that have not yet been identified.
Collapse
Affiliation(s)
- Jaqueline Bail
- Federal University of Latin American Integration (UNILA), Institute Latin American of Nature and Life Sciences (ILACNV), Interdisciplinary Center of Life Sciences (CICV), 1000 Tarquínio Joslin dos Santos Av., Jardim Universitário, Foz do Iguaçu, PR, 85870-901, Brazil
| | - Jose Alejandro Morales Gomez
- Federal University of Latin American Integration (UNILA), Institute Latin American of Nature and Life Sciences (ILACNV), Interdisciplinary Center of Life Sciences (CICV), 1000 Tarquínio Joslin dos Santos Av., Jardim Universitário, Foz do Iguaçu, PR, 85870-901, Brazil
| | - Giselle Cristina de Oliveira Vaz
- Federal University of Latin American Integration (UNILA), Institute Latin American of Nature and Life Sciences (ILACNV), Interdisciplinary Center of Life Sciences (CICV), 1000 Tarquínio Joslin dos Santos Av., Jardim Universitário, Foz do Iguaçu, PR, 85870-901, Brazil
| | - Wagner Antonio Chiba de Castro
- Federal University of Latin American Integration (UNILA), Institute Latin American of Nature and Life Sciences (ILACNV), Interdisciplinary Center of Life Sciences (CICV), 1000 Tarquínio Joslin dos Santos Av., Jardim Universitário, Foz do Iguaçu, PR, 85870-901, Brazil
| | - Rafaella Costa Bonugli-Santos
- Federal University of Latin American Integration (UNILA), Institute Latin American of Nature and Life Sciences (ILACNV), Interdisciplinary Center of Life Sciences (CICV), 1000 Tarquínio Joslin dos Santos Av., Jardim Universitário, Foz do Iguaçu, PR, 85870-901, Brazil.
| |
Collapse
|
20
|
Bail J, Gomez JAM, de Oliveira Vaz GC, de Castro WAC, Bonugli-Santos RC. Structural and functional changes in the fungal community of plant detritus in an invaded Atlantic Forest. BMC Microbiol 2022. [PMID: 34986801 DOI: 10.1186/s12866-021-02431-859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Changes in the fungal community in the litter decomposition by invasive plants can negatively impact nutrient cycling in natural ecosystems. One still does not know the dimension of this hypothesis, but apparently, it is not despicable. This study evaluated the assemblage composition of fungi during litter decomposition in areas of Atlantic Forest invaded or not invaded by Tradescantia zebrina using Illumina MiSeq and metabarcoding analysis. RESULTS The invaded sample showed significantly higher richness and a difference in the species dominance than the invaded litter. Ascomycota was the first most abundant phylum in both areas. Even so, the dissimilarity between areas can be evidenced. The fungal from Basidiomycota were very representative in the non-invaded areas (ranged from an abundance of 43.29% in the non-invaded to 2.35% in the invaded sample). The genus Lepiota can indicate the primary functional group related to biomass degradation and showed the might difference about the invaded areas due to its essential reduction by the invader. In the invaded sample, there was a total absence of the endophyte-undefined saprotroph guild. Also, some genera not taxonomically characterized were eliminated in the invaded sample, revealing that the fungal biodiversity of areas has not yet been thoroughly characterized. CONCLUSIONS Hence, makes impossible the real interpretation of the invasive plant impact, showing the importance of continuing research on fungal biodiversity. It is important to emphasize that the replacement of the native species by T. zebrina may be responsible for the elimination of fungal groups that have not yet been identified.
Collapse
Affiliation(s)
- Jaqueline Bail
- Federal University of Latin American Integration (UNILA), Institute Latin American of Nature and Life Sciences (ILACNV), Interdisciplinary Center of Life Sciences (CICV), 1000 Tarquínio Joslin dos Santos Av., Jardim Universitário, Foz do Iguaçu, PR, 85870-901, Brazil
| | - Jose Alejandro Morales Gomez
- Federal University of Latin American Integration (UNILA), Institute Latin American of Nature and Life Sciences (ILACNV), Interdisciplinary Center of Life Sciences (CICV), 1000 Tarquínio Joslin dos Santos Av., Jardim Universitário, Foz do Iguaçu, PR, 85870-901, Brazil
| | - Giselle Cristina de Oliveira Vaz
- Federal University of Latin American Integration (UNILA), Institute Latin American of Nature and Life Sciences (ILACNV), Interdisciplinary Center of Life Sciences (CICV), 1000 Tarquínio Joslin dos Santos Av., Jardim Universitário, Foz do Iguaçu, PR, 85870-901, Brazil
| | - Wagner Antonio Chiba de Castro
- Federal University of Latin American Integration (UNILA), Institute Latin American of Nature and Life Sciences (ILACNV), Interdisciplinary Center of Life Sciences (CICV), 1000 Tarquínio Joslin dos Santos Av., Jardim Universitário, Foz do Iguaçu, PR, 85870-901, Brazil
| | - Rafaella Costa Bonugli-Santos
- Federal University of Latin American Integration (UNILA), Institute Latin American of Nature and Life Sciences (ILACNV), Interdisciplinary Center of Life Sciences (CICV), 1000 Tarquínio Joslin dos Santos Av., Jardim Universitário, Foz do Iguaçu, PR, 85870-901, Brazil.
| |
Collapse
|
21
|
Kölle M, Crivelente Horta MA, Benz JP, Pilgård A. Comparative Transcriptomics During Brown Rot Decay in Three Fungi Reveals Strain-Specific Degradative Strategies and Responses to Wood Acetylation. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:701579. [PMID: 37744145 PMCID: PMC10512373 DOI: 10.3389/ffunb.2021.701579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/12/2021] [Indexed: 09/26/2023]
Abstract
Brown rot fungi degrade wood in a two-step process in which enzymatic hydrolysis is preceded by an oxidative degradation phase. While a detailed understanding of the molecular processes during brown rot decay is mandatory for being able to better protect wooden products from this type of degradation, the underlying mechanisms are still not fully understood. This is particularly true for wood that has been treated to increase its resistance against rot. In the present study, the two degradation phases were separated to study the impact of wood acetylation on the behavior of three brown rot fungi commonly used in wood durability testing. Transcriptomic data from two strains of Rhodonia placenta (FPRL280 and MAD-698) and Gloeophyllum trabeum were recorded to elucidate differences between the respective decay strategies. Clear differences were found between the two decay stages in all fungi. Moreover, strategies varied not only between species but also between the two strains of the same species. The responses to wood acetylation showed that decay is generally delayed and that parts of the process are attenuated. By hierarchical clustering, we could localize several transcription factors within gene clusters that were heavily affected by acetylation, especially in G. trabeum. The results suggest that regulatory circuits evolve rapidly and are probably the major cause behind the different decay strategies as observed even between the two strains of R. placenta. Identifying key genes in these processes can help in decay detection and identification of the fungi by biomarker selection, and also be informative for other fields, such as fiber modification by biocatalysts and the generation of biochemical platform chemicals for biorefinery applications.
Collapse
Affiliation(s)
- Martina Kölle
- Chair of Wood Science, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - Maria Augusta Crivelente Horta
- Professorship of Fungal Biotechnology in Wood Science, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - J. Philipp Benz
- Professorship of Fungal Biotechnology in Wood Science, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
- Institute of Advanced Study, Technical University of Munich, Munich, Germany
| | - Annica Pilgård
- Chair of Wood Science, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
- Biobased Materials, Bioeconomy, RISE Research Institutes of Sweden, Borås, Sweden
| |
Collapse
|
22
|
Abstract
Brown rot fungi release massive amounts of carbon from forest deadwood, particularly at high latitudes. These fungi degrade wood by generating small reactive oxygen species (ROS) to loosen lignocellulose, to then selectively remove carbohydrates. The ROS mechanism has long been considered the key adaptation defining brown rot wood decomposition, but recently, we found preliminary evidence that fungal glycoside hydrolases (GHs) implicated in early cell wall loosening might have been adapted to tolerate ROS stress and to synergize with ROS to loosen woody lignocellulose. In the current study, we found more specifically that side chain hemicellulases that help in the early deconstruction of the lignocellulosic complex are significantly more tolerant of ROS in the brown rot fungus Rhodonia placenta than in a white rot fungus (Trametes versicolor) and a soft rot fungus (Trichoderma reesei). Using proteomics to understand the extent of tolerance, we found that significant oxidation of secreted R. placenta proteins exposed to ROS was less than half of the oxidation observed for T. versicolor or T. reesei. The principal oxidative modifications observed in all cases were monooxidation and dioxidation/trioxidation (mainly in methionine and tryptophan residues), some of which were critical for enzyme activity. At the peptide level, we found that GHs in R. placenta were the least ROS affected among our tested fungi. These results confirm and describe underlying mechanisms of tolerance in early-secreted brown rot fungal hemicellulases. These enzymatic adaptations may have been as important as nonenzymatic ROS pathway adaptations in brown rot fungal evolution.
Collapse
|
23
|
Veličković D, Zhou M, Schilling JS, Zhang J. Using MALDI-FTICR-MS Imaging to Track Low-Molecular-Weight Aromatic Derivatives of Fungal Decayed Wood. J Fungi (Basel) 2021; 7:jof7080609. [PMID: 34436148 PMCID: PMC8397067 DOI: 10.3390/jof7080609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 11/25/2022] Open
Abstract
Low-molecular-weight (LMW) aromatics are crucial in meditating fungal processes for plant biomass decomposition. Some LMW compounds are employed as electron donors for oxidative degradation in brown rot (BR), an efficient wood-degrading strategy in fungi that selectively degrades carbohydrates but leaves modified lignins. Previous understandings of LMW aromatics were primarily based on “bulk extraction”, an approach that cannot fully reflect their real-time functions during BR. Here, we applied an optimized molecular imaging method that combines matrix-assisted laser desorption ionization (MALDI) with Fourier-transform ion cyclotron resonance mass spectrometry (FTICR-MS) to directly measure the temporal profiles of BR aromatics as Rhodonia placenta decayed a wood wafer. We found that some phenolics were pre-existing in wood, while some (e.g., catechin-methyl ether and dihydroxy-dimethoxyflavan) were generated immediately after fungal activity. These pinpointed aromatics might be recruited to drive early BR oxidative mechanisms by generating Fenton reagents, Fe2+ and H2O2. As BR progressed, ligninolytic products were accumulated and then modified into various aromatic derivatives, confirming that R. placenta depolymerizes lignin. Together, this work confirms aromatic patterns that have been implicated in BR fungi, and it demonstrates the use of MALDI-FTICR-MS imaging as a new approach to monitor the temporal changes of LMW aromatics during wood degradation.
Collapse
Affiliation(s)
- Dušan Veličković
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (D.V.); (M.Z.)
| | - Mowei Zhou
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (D.V.); (M.Z.)
| | - Jonathan S. Schilling
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA
- Correspondence: (J.S.S.); (J.Z.); Tel.: +1-612-624-1761 (J.Z.); Fax: +1-612-625-6286 (J.Z.)
| | - Jiwei Zhang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN 55108, USA
- Correspondence: (J.S.S.); (J.Z.); Tel.: +1-612-624-1761 (J.Z.); Fax: +1-612-625-6286 (J.Z.)
| |
Collapse
|
24
|
Umezawa K, Itakura S. Influence of carbon source on wood decay-associated gene expression in sequential hyphal zones of the brown rot fungus Gloeophyllum trabeum. Biosci Biotechnol Biochem 2021; 85:1782-1788. [PMID: 33942872 DOI: 10.1093/bbb/zbab080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 04/27/2021] [Indexed: 11/12/2022]
Abstract
Brown rot fungi show a two-step wood degradation mechanism comprising oxidative radical-based and enzymatic saccharification systems. Recent studies have demonstrated that the brown rot fungus Rhodonia placenta expresses oxidoreductase genes ahead of glycoside hydrolase genes and spatially protects the saccharification enzymes from oxidative damage of the oxidoreductase reactions. This study aimed to assess the generality of the spatial gene regulation of these genes in other brown rot fungi and examine the effects of carbon source on the gene regulation. Gene expression analysis was performed on 14 oxidoreductase and glycoside hydrolase genes in the brown rot fungus Gloeophyllum trabeum, directionally grown on wood, sawdust-agar, and glucose-agar wafers. In G. trabeum, both oxidoreductase and glycoside hydrolase genes were expressed at higher levels in sections behind the wafers. The upregulation of glycoside hydrolase genes was significantly higher in woody substrates than in glucose, whereas the oxidoreductase gene expression was not affected by substrates.
Collapse
Affiliation(s)
- Kiwamu Umezawa
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Shuji Itakura
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan
| |
Collapse
|
25
|
Evolution of Fungal Carbohydrate-Active Enzyme Portfolios and Adaptation to Plant Cell-Wall Polymers. J Fungi (Basel) 2021; 7:jof7030185. [PMID: 33807546 PMCID: PMC7998857 DOI: 10.3390/jof7030185] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 12/21/2022] Open
Abstract
The postindustrial era is currently facing two ecological challenges. First, the rise in global temperature, mostly caused by the accumulation of carbon dioxide (CO2) in the atmosphere, and second, the inability of the environment to absorb the waste of human activities. Fungi are valuable levers for both a reduction in CO2 emissions, and the improvement of a circular economy with the optimized valorization of plant waste and biomass. Soil fungi may promote plant growth and thereby increase CO2 assimilation via photosynthesis or, conversely, they may prompt the decomposition of dead organic matter, and thereby contribute to CO2 emissions. The strategies that fungi use to cope with plant-cell-wall polymers and access the saccharides that they use as a carbon source largely rely on the secretion of carbohydrate-active enzymes (CAZymes). In the past few years, comparative genomics and phylogenomics coupled with the functional characterization of CAZymes significantly improved the understanding of their evolution in fungal genomes, providing a framework for the design of nature-inspired enzymatic catalysts. Here, we provide an overview of the diversity of CAZyme enzymatic systems employed by fungi that exhibit different substrate preferences, different ecologies, or belong to different taxonomical groups for lignocellulose degradation.
Collapse
|
26
|
Sainte-Marie J, Barrandon M, Saint-André L, Gelhaye E, Martin F, Derrien D. C-STABILITY an innovative modeling framework to leverage the continuous representation of organic matter. Nat Commun 2021; 12:810. [PMID: 33547289 PMCID: PMC7864906 DOI: 10.1038/s41467-021-21079-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 01/11/2021] [Indexed: 01/30/2023] Open
Abstract
The understanding of soil organic matter (SOM) dynamics has considerably advanced in recent years. It was previously assumed that most SOM consisted of recalcitrant compounds, whereas the emerging view considers SOM as a range of polymers continuously processed into smaller molecules by decomposer enzymes. Mainstreaming this new paradigm in current models is challenging because of their ill-adapted framework. We propose the C-STABILITY model to resolve this issue. Its innovative framework combines compartmental and continuous modeling approaches to accurately reproduce SOM cycling processes. C-STABILITY emphasizes the influence of substrate accessibility on SOM turnover and makes enzymatic and microbial biotransformations of substrate explicit. Theoretical simulations provide new insights on how depolymerization and decomposers ecology impact organic matter chemistry and amount during decomposition and at steady state. The flexible mathematical structure of C-STABILITY offers a promising foundation for exploring new mechanistic hypotheses and supporting the design of future experiments.
Collapse
Affiliation(s)
- Julien Sainte-Marie
- grid.503480.aUniversité de Lorraine, AgroParisTech, INRAE, SILVA, F-54000 Nancy, France ,INRAE, BEF, F-54000 Nancy, France
| | - Matthieu Barrandon
- grid.29172.3f0000 0001 2194 6418Université de Lorraine, CNRS, IECL, F-54000 Nancy, France
| | | | - Eric Gelhaye
- grid.503276.50000 0004 1763 486XUniversité de Lorraine, INRAE, IAM, F-54000 Nancy, France
| | - Francis Martin
- grid.503276.50000 0004 1763 486XUniversité de Lorraine, INRAE, IAM, F-54000 Nancy, France ,grid.66741.320000 0001 1456 856XBeijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | | |
Collapse
|
27
|
Hage H, Miyauchi S, Virágh M, Drula E, Min B, Chaduli D, Navarro D, Favel A, Norest M, Lesage-Meessen L, Bálint B, Merényi Z, de Eugenio L, Morin E, Martínez AT, Baldrian P, Štursová M, Martínez MJ, Novotny C, Magnuson JK, Spatafora JW, Maurice S, Pangilinan J, Andreopoulos W, LaButti K, Hundley H, Na H, Kuo A, Barry K, Lipzen A, Henrissat B, Riley R, Ahrendt S, Nagy LG, Grigoriev IV, Martin F, Rosso MN. Gene family expansions and transcriptome signatures uncover fungal adaptations to wood decay. Environ Microbiol 2021; 23:5716-5732. [PMID: 33538380 PMCID: PMC8596683 DOI: 10.1111/1462-2920.15423] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/16/2022]
Abstract
Because they comprise some of the most efficient wood‐decayers, Polyporales fungi impact carbon cycling in forest environment. Despite continuous discoveries on the enzymatic machinery involved in wood decomposition, the vision on their evolutionary adaptation to wood decay and genome diversity remains incomplete. We combined the genome sequence information from 50 Polyporales species, including 26 newly sequenced genomes and sought for genomic and functional adaptations to wood decay through the analysis of genome composition and transcriptome responses to different carbon sources. The genomes of Polyporales from different phylogenetic clades showed poor conservation in macrosynteny, indicative of genome rearrangements. We observed different gene family expansion/contraction histories for plant cell wall degrading enzymes in core polyporoids and phlebioids and captured expansions for genes involved in signalling and regulation in the lineages of white rotters. Furthermore, we identified conserved cupredoxins, thaumatin‐like proteins and lytic polysaccharide monooxygenases with a yet uncharacterized appended module as new candidate players in wood decomposition. Given the current need for enzymatic toolkits dedicated to the transformation of renewable carbon sources, the observed genomic diversity among Polyporales strengthens the relevance of mining Polyporales biodiversity to understand the molecular mechanisms of wood decay.
Collapse
Affiliation(s)
- Hayat Hage
- INRAE, Aix Marseille Univ, UMR1163, Biodiversité et Biotechnologie Fongiques, Marseille, 13009, France
| | - Shingo Miyauchi
- INRAE, Aix Marseille Univ, UMR1163, Biodiversité et Biotechnologie Fongiques, Marseille, 13009, France.,Max Planck Institute for Plant Breeding Research, Department of Plant Microbe Interactions, Köln, Germany
| | - Máté Virágh
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, 6726, Hungary
| | - Elodie Drula
- INRAE, Aix Marseille Univ, UMR1163, Biodiversité et Biotechnologie Fongiques, Marseille, 13009, France.,INRAE, USC1408, AFMB, Marseille, 13009, France
| | - Byoungnam Min
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Delphine Chaduli
- INRAE, Aix Marseille Univ, UMR1163, Biodiversité et Biotechnologie Fongiques, Marseille, 13009, France.,INRAE, Aix Marseille Univ, CIRM-CF, UMR1163, Marseille, 13009, France
| | - David Navarro
- INRAE, Aix Marseille Univ, UMR1163, Biodiversité et Biotechnologie Fongiques, Marseille, 13009, France.,INRAE, Aix Marseille Univ, CIRM-CF, UMR1163, Marseille, 13009, France
| | - Anne Favel
- INRAE, Aix Marseille Univ, UMR1163, Biodiversité et Biotechnologie Fongiques, Marseille, 13009, France.,INRAE, Aix Marseille Univ, CIRM-CF, UMR1163, Marseille, 13009, France
| | - Manon Norest
- INRAE, Aix Marseille Univ, UMR1163, Biodiversité et Biotechnologie Fongiques, Marseille, 13009, France
| | - Laurence Lesage-Meessen
- INRAE, Aix Marseille Univ, UMR1163, Biodiversité et Biotechnologie Fongiques, Marseille, 13009, France.,INRAE, Aix Marseille Univ, CIRM-CF, UMR1163, Marseille, 13009, France
| | - Balázs Bálint
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, 6726, Hungary
| | - Zsolt Merényi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, 6726, Hungary
| | - Laura de Eugenio
- Centro de Investigaciones Biológicas Margarita Salas, CIB-CSIC, Madrid, 28040, Spain
| | - Emmanuelle Morin
- Université de Lorraine, INRAE, UMR1136, Interactions Arbres/Microorganismes, Champenoux, 54280, France
| | - Angel T Martínez
- Centro de Investigaciones Biológicas Margarita Salas, CIB-CSIC, Madrid, 28040, Spain
| | - Petr Baldrian
- Institute of Microbiology of the Czech Academy of Sciences, Praha 4, 142 20, Czech Republic
| | - Martina Štursová
- Institute of Microbiology of the Czech Academy of Sciences, Praha 4, 142 20, Czech Republic
| | - María Jesús Martínez
- Centro de Investigaciones Biológicas Margarita Salas, CIB-CSIC, Madrid, 28040, Spain
| | - Cenek Novotny
- Institute of Microbiology of the Czech Academy of Sciences, Praha 4, 142 20, Czech Republic.,University of Ostrava, Ostrava, 701 03, Czech Republic
| | - Jon K Magnuson
- Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Joey W Spatafora
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Sundy Maurice
- Section for Genetics and Evolutionary Biology, University of Oslo, Oslo, 0316, Norway
| | - Jasmyn Pangilinan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Willian Andreopoulos
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Kurt LaButti
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Hope Hundley
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Hyunsoo Na
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Alan Kuo
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Kerrie Barry
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Bernard Henrissat
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Robert Riley
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Steven Ahrendt
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - László G Nagy
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, 6726, Hungary.,Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Budapest, 1117, Hungary
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Francis Martin
- Université de Lorraine, INRAE, UMR1136, Interactions Arbres/Microorganismes, Champenoux, 54280, France
| | - Marie-Noëlle Rosso
- INRAE, Aix Marseille Univ, UMR1163, Biodiversité et Biotechnologie Fongiques, Marseille, 13009, France
| |
Collapse
|
28
|
Hess J, Balasundaram SV, Bakkemo RI, Drula E, Henrissat B, Högberg N, Eastwood D, Skrede I. Niche differentiation and evolution of the wood decay machinery in the invasive fungus Serpula lacrymans. THE ISME JOURNAL 2021; 15:592-604. [PMID: 33077886 PMCID: PMC8027034 DOI: 10.1038/s41396-020-00799-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/26/2020] [Accepted: 09/25/2020] [Indexed: 11/21/2022]
Abstract
Ecological niche breadth and the mechanisms facilitating its evolution are fundamental to understanding adaptation to changing environments, persistence of generalist and specialist lineages and the formation of new species. Woody substrates are structurally complex resources utilized by organisms with specialized decay machinery. Wood-decaying fungi represent ideal model systems to study evolution of niche breadth, as they vary greatly in their host range and preferred decay stage of the substrate. In order to dissect the genetic basis for niche specialization in the invasive brown rot fungus Serpula lacrymans, we used phenotyping and integrative analysis of phylogenomic and transcriptomic data to compare this species to wild relatives in the Serpulaceae with a range of specialist to generalist decay strategies. Our results indicate specialist species have rewired regulatory networks active during wood decay towards decreased reliance on enzymatic machinery, and therefore nitrogen-intensive decay components. This shift was likely accompanied with adaptation to a narrow tree line habitat and switch to a pioneer decomposer strategy, both requiring rapid colonization of a nitrogen-limited substrate. Among substrate specialists with narrow niches, we also found evidence for pathways facilitating reversal to generalism, highlighting how evolution may move along different axes of niche space.
Collapse
Affiliation(s)
- Jaqueline Hess
- Department of Biosciences, University of Oslo, Oslo, Norway.
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria.
- Department of Soil Ecology, Helmholtz Centre for Environmental Research, UFZ, Halle (Saale), Germany.
| | | | | | - Elodie Drula
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille University, Marseille, France
- INRA, USC1408 AFMB, Marseille, France
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille University, Marseille, France
- INRA, USC1408 AFMB, Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nils Högberg
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Daniel Eastwood
- Department of Biosciences, University of Swansea, Swansea, UK
| | - Inger Skrede
- Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
29
|
Diversity of Omega Glutathione Transferases in mushroom-forming fungi revealed by phylogenetic, transcriptomic, biochemical and structural approaches. Fungal Genet Biol 2021; 148:103506. [PMID: 33450403 DOI: 10.1016/j.fgb.2020.103506] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 01/20/2023]
Abstract
The Omega class of glutathione transferases (GSTs) forms a distinct class within the cytosolic GST superfamily because most of them possess a catalytic cysteine residue. The human GST Omega 1 isoform was first characterized twenty years ago, but it took years of work to clarify the roles of the human isoforms. Concerning the kingdom of fungi, little is known about the cellular functions of Omega glutathione transferases (GSTOs), although they are widely represented in some of these organisms. In this study, we re-assess the phylogeny and the classification of GSTOs based on 240 genomes of mushroom-forming fungi (Agaricomycetes). We observe that the number of GSTOs is not only extended in the order of Polyporales but also in other orders such as Boletales. Our analysis leads to a new classification in which the fungal GSTOs are divided into two Types A and B. The catalytic residue of Type-A is either cysteine or serine, while that of Type-B is cysteine. The present study focuses on Trametes versicolor GSTO isoforms that possess a catalytic cysteine residue. Transcriptomic data show that Type-A GSTOs are constitutive enzymes while Type-B are inducible ones. The crystallographic analysis reveals substantial structural differences between the two types while they have similar biochemical profiles in the tested conditions. Additionally, these enzymes have the ability to bind antioxidant molecules such as wood polyphenols in two possible binding sites as observed from X-ray structures. The multiplication of GSTOs could allow fungal organisms to adapt more easily to new environments.
Collapse
|
30
|
Sahu N, Merényi Z, Bálint B, Kiss B, Sipos G, Owens RA, Nagy LG. Hallmarks of Basidiomycete Soft- and White-Rot in Wood-Decay -Omics Data of Two Armillaria Species. Microorganisms 2021; 9:149. [PMID: 33440901 PMCID: PMC7827401 DOI: 10.3390/microorganisms9010149] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/01/2021] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
Wood-decaying Basidiomycetes are among the most efficient degraders of plant cell walls, making them key players in forest ecosystems, global carbon cycle, and in bio-based industries. Recent insights from -omics data revealed a high functional diversity of wood-decay strategies, especially among the traditional white-rot and brown-rot dichotomy. We examined the mechanistic bases of wood-decay in the conifer-specialists Armillaria ostoyae and Armillaria cepistipes using transcriptomic and proteomic approaches. Armillaria spp. (Fungi, Basidiomycota) include devastating pathogens of temperate forests and saprotrophs that decay wood. They have been discussed as white-rot species, though their response to wood deviates from typical white-rotters. While we observed an upregulation of a diverse suite of plant cell wall degrading enzymes, unlike white-rotters, they possess and express an atypical wood-decay repertoire in which pectinases and expansins are enriched, whereas lignin-decaying enzymes (LDEs) are generally downregulated. This combination of wood decay genes resembles the soft-rot of Ascomycota and appears widespread among Basidiomycota that produce a superficial white rot-like decay. These observations are consistent with ancestral soft-rot decay machinery conserved across asco- and Basidiomycota, a gain of efficient lignin-degrading ability in white-rot fungi and repeated, complete, or partial losses of LDE encoding gene repertoires in brown- and secondarily soft-rot fungi.
Collapse
Affiliation(s)
- Neha Sahu
- Biological Research Center, Synthetic and Systems Biology Unit, 6726 Szeged, Hungary; (N.S.); (Z.M.); (B.B.); (B.K.)
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
| | - Zsolt Merényi
- Biological Research Center, Synthetic and Systems Biology Unit, 6726 Szeged, Hungary; (N.S.); (Z.M.); (B.B.); (B.K.)
| | - Balázs Bálint
- Biological Research Center, Synthetic and Systems Biology Unit, 6726 Szeged, Hungary; (N.S.); (Z.M.); (B.B.); (B.K.)
| | - Brigitta Kiss
- Biological Research Center, Synthetic and Systems Biology Unit, 6726 Szeged, Hungary; (N.S.); (Z.M.); (B.B.); (B.K.)
| | - György Sipos
- Research Center for Forestry and Wood Industry, Functional Genomics and Bioinformatics Group, University of Sopron, 9400 Sopron, Hungary;
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - Rebecca A. Owens
- Department of Biology, Maynooth University, W23 F2H6 Kildare, Ireland;
| | - László G. Nagy
- Biological Research Center, Synthetic and Systems Biology Unit, 6726 Szeged, Hungary; (N.S.); (Z.M.); (B.B.); (B.K.)
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary
| |
Collapse
|
31
|
Vos AM, Bleichrodt R, Herman KC, Ohm RA, Scholtmeijer K, Schmitt H, Lugones LG, Wösten HAB. Cycling in degradation of organic polymers and uptake of nutrients by a litter-degrading fungus. Environ Microbiol 2021; 23:224-238. [PMID: 33140552 PMCID: PMC7894533 DOI: 10.1111/1462-2920.15297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 11/30/2022]
Abstract
Wood and litter degrading fungi are the main decomposers of lignocellulose and thus play a key role in carbon cycling in nature. Here, we provide evidence for a novel lignocellulose degradation strategy employed by the litter degrading fungus Agaricus bisporus (known as the white button mushroom). Fusion of hyphae allows this fungus to synchronize the activity of its mycelium over large distances (50 cm). The synchronized activity has a 13-h interval that increases to 20 h before becoming irregular and it is associated with a 3.5-fold increase in respiration, while compost temperature increases up to 2°C. Transcriptomic analysis of this burst-like phenomenon supports a cyclic degradation of lignin, deconstruction of (hemi-) cellulose and microbial cell wall polymers, and uptake of degradation products during vegetative growth of A. bisporus. Cycling in expression of the ligninolytic system, of enzymes involved in saccharification, and of proteins involved in nutrient uptake is proposed to provide an efficient way for degradation of substrates such as litter.
Collapse
Affiliation(s)
- Aurin M. Vos
- Microbiology, Department of BiologyUtrecht UniversityUtrechtthe Netherlands
- Wageningen Plant ResearchWageningen URWageningenthe Netherlands
| | | | - Koen C. Herman
- Microbiology, Department of BiologyUtrecht UniversityUtrechtthe Netherlands
| | - Robin A. Ohm
- Microbiology, Department of BiologyUtrecht UniversityUtrechtthe Netherlands
| | - Karin Scholtmeijer
- Plant BreedingWageningen University and ResearchWageningenthe Netherlands
| | - Heike Schmitt
- Institute for Risk Assessment SciencesUtrecht UniversityUtrechtthe Netherlands
| | - Luis G. Lugones
- Microbiology, Department of BiologyUtrecht UniversityUtrechtthe Netherlands
| | - Han A. B. Wösten
- Microbiology, Department of BiologyUtrecht UniversityUtrechtthe Netherlands
| |
Collapse
|
32
|
Wu H, Nakazawa T, Morimoto R, Sakamoto M, Honda Y. Targeted disruption of hir1 alters the transcriptional expression pattern of putative lignocellulolytic genes in the white-rot fungus Pleurotus ostreatus. Fungal Genet Biol 2021; 147:103507. [PMID: 33383191 DOI: 10.1016/j.fgb.2020.103507] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/28/2020] [Accepted: 12/22/2020] [Indexed: 11/16/2022]
Abstract
Pleurotus ostreatus is frequently used in molecular genetics and genomic studies on white-rot fungi because various molecular genetic tools and relatively well-annotated genome databases are available. To explore the molecular mechanisms underlying wood lignin degradation by P. ostreatus, we performed mutational analysis of a newly isolated mutant UVRM28 that exhibits decreased lignin-degrading ability on the beech wood sawdust medium. We identified that a mutation in the hir1 gene encoding a putative histone chaperone, which probably plays an important role in DNA replication-independent nucleosome assembly, is responsible for the mutant phenotype. The expression pattern of ligninolytic genes was altered in hir1 disruptants. The most highly expressed gene vp2 was significantly inactivated, whereas the expression of vp1 was remarkably upregulated (300-400 fold) at the transcription level. Conversely, many cellulolytic and xylanolytic genes were upregulated in hir1 disruptants. Chromatin immunoprecipitation analysis suggested that the histone modification status was altered in the 5'-upstream regions of some of the up- and down-regulated lignocellulolytic genes in hir1 disruptants compared with that in the 20b strain. Hence, our data provide new insights into the regulatory mechanisms of lignocellulolytic genes in P. ostreatus.
Collapse
Affiliation(s)
- Hongli Wu
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takehito Nakazawa
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Ryota Morimoto
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Masahiro Sakamoto
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yoichi Honda
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
33
|
PsAA9A, a C1-specific AA9 lytic polysaccharide monooxygenase from the white-rot basidiomycete Pycnoporus sanguineus. Appl Microbiol Biotechnol 2020; 104:9631-9643. [DOI: 10.1007/s00253-020-10911-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/04/2020] [Accepted: 09/14/2020] [Indexed: 10/23/2022]
|
34
|
Presley GN, Zhang J, Purvine SO, Schilling JS. Functional Genomics, Transcriptomics, and Proteomics Reveal Distinct Combat Strategies Between Lineages of Wood-Degrading Fungi With Redundant Wood Decay Mechanisms. Front Microbiol 2020; 11:1646. [PMID: 32849338 PMCID: PMC7399148 DOI: 10.3389/fmicb.2020.01646] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/24/2020] [Indexed: 01/06/2023] Open
Abstract
Wood-degrading fungi vary in their strategies for deconstructing wood, and their competitive successes shape the rate and fate of carbon released from wood, Earth’s largest pool of aboveground terrestrial carbon. In this study, one-on-one interspecific interactions between two model brown rot (carbohydrate-selective) fungi, Gloeophyllum trabeum and Rhodonia (Postia) placenta, were studied on wood wafers where a clearly resolved interaction zone (IZ) could be generated, reproducibly. Comparative RNAseq and proteomics between the IZ and non-interacting hyphae of each species identified combative strategies for each fungus. Glycoside hydrolases were a relatively smaller portion of the interaction secretome compared to non-interacting hyphae. The interaction zone showed higher pectinase specific activity than all other sampling locations, and higher laminarinase specific activity (branched β-glucan proxy) was seen in the IZ secretome relative to equivalent hyphae in single-species cultures. Our efforts also identified two distinct competitive strategies in these two fungi with a shared nutritional mode (brown rot) but polyphyletic ancestral lineages. Gloeophyllum trabeum (Gloeophyllum clade) upregulated more secondary metabolite (SM) synthesis genes in response to a competitor than did R. placenta. R. placenta (Antrodia clade) upregulated a larger variety of uncharacterized oxidoreductases in interacting hyphae, suggesting that these may play a role in mediating competitor response in this fungus. Both species produced several hypothetical proteins exclusively in the interaction zone, leaving questions as to the function of these proteins. This work supports the existence of multiple interaction strategies among brown rot fungi and highlights the functional diversity among wood decay fungi.
Collapse
Affiliation(s)
- Gerald N Presley
- Department of Wood Science and Engineering, Oregon State University, Corvallis, OR, United States
| | - Jiwei Zhang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN, United States
| | - Samuel O Purvine
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Jonathan S Schilling
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, United States
| |
Collapse
|
35
|
Zhu Y, Plaza N, Kojima Y, Yoshida M, Zhang J, Jellison J, Pingali SV, O’Neill H, Goodell B. Nanostructural Analysis of Enzymatic and Non-enzymatic Brown Rot Fungal Deconstruction of the Lignocellulose Cell Wall †. Front Microbiol 2020; 11:1389. [PMID: 32670241 PMCID: PMC7326796 DOI: 10.3389/fmicb.2020.01389] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/29/2020] [Indexed: 12/14/2022] Open
Abstract
Brown rot (BR) decay mechanisms employ carbohydrate-active enzymes (CAZymes) as well as a unique non-enzymatic chelator-mediated Fenton (CMF) chemistry to deconstruct lignocellulosic materials. Unlike white rot fungi, BR fungi lack peroxidases for lignin deconstruction, and also lack some endoglucanase/cellobiohydrolase activities. The role that the CMF mechanism plays in "opening up" the wood cell wall structure in advance of enzymatic action, and any interaction between CMF constituents and the selective CAZyme suite that BRs possess, is still unclear. Expression patterns for CMF redox metabolites and lytic polysaccharide monooxygenase (LPMO-AA9 family) genes showed that some LPMO isozymes were upregulated with genes associated with CMF at early stages of brown rot by Gloeophyllum trabeum. In the structural studies, wood decayed by the G. trabeum was compared to CMF-treated wood, or CMF-treated wood followed by treatment with either the early-upregulated LPMO or a commercial CAZyme cocktail. Structural modification of decayed/treated wood was characterized using small angle neutron scattering. CMF treatment produced neutron scattering patterns similar to that of the BR decay indicating that both systems enlarged the nanopore structure of wood cell walls to permit enzyme access. Enzymatic deconstruction of cellulose or lignin in raw wood samples was not achieved via CAZyme cocktail or LPMO enzyme action alone. CMF treatment resulted in depolymerization of crystalline cellulose as attack progressed from the outer regions of individual crystallites. Multiple pulses of CMF treatment on raw wood showed a progressive increase in the spacing between the cellulose elementary fibrils (EFs), indicating the CMF eroded the matrix outside the EF bundles, leading to less tightly packed EFs. Peracetic acid delignification treatment enhanced subsequent CMF treatment effects, and allowed both enzyme systems to further increase spacing of the EFs. Moreover, even after a single pulse of CMF treatment, both enzymes were apparently able to penetrate the cell wall to further increase EF spacing. The data suggest the potential for the early-upregulated LPMO enzyme to work in association with CMF chemistry, suggesting that G. trabeum may have adopted mechanisms to integrate non-enzymatic and enzymatic chemistries together during early stages of brown rot decay.
Collapse
Affiliation(s)
- Yuan Zhu
- School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Nayomi Plaza
- Forest Products Laboratory, USDA Forest Service, Madison, WI, United States
| | - Yuka Kojima
- Department of Environmental and Natural Resource Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Makoto Yoshida
- Department of Environmental and Natural Resource Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Jiwei Zhang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN, United States
| | - Jody Jellison
- Center for Agriculture, Food and the Environment, University of Massachusetts, Amherst, MA, United States
| | - Sai Venkatesh Pingali
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Hugh O’Neill
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Barry Goodell
- Department of Microbiology, Morrill Science Center IV-N, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
36
|
Schilling JS, Kaffenberger JT, Held BW, Ortiz R, Blanchette RA. Using Wood Rot Phenotypes to Illuminate the "Gray" Among Decomposer Fungi. Front Microbiol 2020; 11:1288. [PMID: 32595628 PMCID: PMC7303305 DOI: 10.3389/fmicb.2020.01288] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/20/2020] [Indexed: 01/16/2023] Open
Abstract
Wood-decomposing fungi use distinct strategies to deconstruct wood that can significantly vary carbon release rates and fates. White and brown rot-type fungi attack lignin as a prerequisite to access carbohydrates (white rot) or selectively remove carbohydrates (brown rot). Soft rot fungi use less well-studied mechanisms to deconstruct wood (e.g., cavitation and erosion). These fungi often co-exist in nature, creating a balance in carbon turnover that could presumably “tip” in a changing climate. There is no simple genetic marker, however, to distinguish fungi by rot types, and traditional black and white distinctions (brown and white, in this case) cannot explain a spectrum of “gray” carbon loss possibilities. In this study, we tested 39 wood-degrading fungal strains along this spectrum of rot types. We tracked wood mass loss and chemical changes in aspen blocks in early- to mid-decay stages, including three signatures of fungal nutritional mode measured from wood rather than from fungus: dilute alkali solubility, water-soluble monosaccharides, and lignin loss (%) relative to density loss (%) (L/D). Results were then plotted relative to rot types and correlated with gene counts, combining new data with past results in some cases. Results yielded a novel distinction in soluble monosaccharide patterns for brown rot fungi, and reliable distinctions between white and brown rot fungi, although soft rot fungi were not as clearly distinguished as suggested in past studies. Gene contents (carbohydrate-active enzymes and peroxidases) also clearly distinguished brown and white rot fungi, but did not offer reliable correlation with lignin vs. carbohydrate selectivity. These results support the use of wood residue chemistry to link fungal genes (with known or unknown function) with emergent patterns of decomposition. Wood signatures, particularly L/D, not only confirm the rot type of dominant fungi, but they offer a more nuanced, continuous variable to which we can correlate genomic, transcriptomic, and secretomic evidence rather than limit it to functional categories as distinct “bins.”
Collapse
Affiliation(s)
- Jonathan S Schilling
- Department of Plant & Microbial Biology, University of Minnesota, Saint Paul, MN, United States
| | - Justin T Kaffenberger
- Department of Bioproducts & Biosystems Engineering, University of Minnesota, Saint Paul, MN, United States
| | - Benjamin W Held
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, United States
| | - Rodrigo Ortiz
- Escuela de Construcción Civil, Facultad de Ingeniería, Universidad de Valparaíso, Valparaíso, Chile
| | - Robert A Blanchette
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, United States
| |
Collapse
|
37
|
Brischke C, Alfredsen G. Wood-water relationships and their role for wood susceptibility to fungal decay. Appl Microbiol Biotechnol 2020; 104:3781-3795. [PMID: 32144473 PMCID: PMC8326242 DOI: 10.1007/s00253-020-10479-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 12/12/2022]
Abstract
Wood in service is sequestering carbon, but it is principally prone to deterioration where different fungi metabolize wood, and carbon dioxide is released back to the atmosphere. A key prerequisite for fungal degradation of wood is the presence of moisture. Conversely, keeping wood dry is the most effective way to protect wood from wood degradation and for long-term binding of carbon. Wood is porous and hygroscopic; it can take up water in liquid and gaseous form, and water is released from wood through evaporation following a given water vapour pressure gradient. During the last decades, the perception of wood-water relationships changed significantly and so did the view on moisture-affected properties of wood. Among the latter is its susceptibility to fungal decay. This paper reviews findings related to wood-water relationships and their role for fungal wood decomposition. These are complex interrelationships not yet fully understood, and current knowledge gaps are therefore identified. Studies with chemically and thermally modified wood are included as examples of fungal wood substrates with altered moisture properties. Quantification and localization of capillary and cell wall water - especially in the over-hygroscopic range - is considered crucial for determining minimum moisture thresholds (MMThr) of wood-decay fungi. The limitations of the various methods and experimental set-ups to investigate wood-water relationships and their role for fungal decay are manifold. Hence, combining techniques from wood science, mycology, biotechnology and advanced analytics is expected to provide new insights and eventually a breakthrough in understanding the intricate balance between fungal decay and wood-water relations. KEY POINTS: • Susceptibility to wood-decay fungi is closely linked to their physiological needs. • Content, state and distribution of moisture in wood are keys for fungal activity. • Quantification and localization of capillary and cell wall water in wood is needed. • New methodological approaches are expected to provide new insights.
Collapse
Affiliation(s)
- Christian Brischke
- Department of Wood Biology and Wood Products, Faculty of Forest Sciences and Forest Ecology, University of Goettingen, Buesgenweg 4, D-37077, Goettingen, Germany.
| | - Gry Alfredsen
- Norwegian Institute of Bioeconomy Research (NIBIO), Division of Forest and Forest Resources, Wood Technology, Høgskoleveien 8, 1433, Ås, Norway
| |
Collapse
|