1
|
Rani A, Stadler JT, Marsche G. HDL-based therapeutics: A promising frontier in combating viral and bacterial infections. Pharmacol Ther 2024; 260:108684. [PMID: 38964560 DOI: 10.1016/j.pharmthera.2024.108684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/03/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Low levels of high-density lipoprotein (HDL) and impaired HDL functionality have been consistently associated with increased susceptibility to infection and its serious consequences. This has been attributed to the critical role of HDL in maintaining cellular lipid homeostasis, which is essential for the proper functioning of immune and structural cells. HDL, a multifunctional particle, exerts pleiotropic effects in host defense against pathogens. It functions as a natural nanoparticle, capable of sequestering and neutralizing potentially harmful substances like bacterial lipopolysaccharides. HDL possesses antiviral activity, preventing viruses from entering or fusing with host cells, thereby halting their replication cycle. Understanding the complex relationship between HDL and the immune system may reveal innovative targets for developing new treatments to combat infectious diseases and improve patient outcomes. This review aims to emphasize the role of HDL in influencing the course of bacterial and viral infections and its and its therapeutic potential.
Collapse
Affiliation(s)
- Alankrita Rani
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Styria, Austria
| | - Julia T Stadler
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Styria, Austria
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Styria, Austria; BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Styria, Austria.
| |
Collapse
|
2
|
Fu Y, Zhang Z, Webster KA, Paulus YM. Treatment Strategies for Anti-VEGF Resistance in Neovascular Age-Related Macular Degeneration by Targeting Arteriolar Choroidal Neovascularization. Biomolecules 2024; 14:252. [PMID: 38540673 PMCID: PMC10968528 DOI: 10.3390/biom14030252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 05/04/2024] Open
Abstract
Despite extensive use of intravitreal anti-vascular endothelial growth factor (anti-VEGF) biologics for over a decade, neovascular age-related macular degeneration (nAMD) or choroidal neovascularization (CNV) continues to be a major cause of irreversible vision loss in developed countries. Many nAMD patients demonstrate persistent disease activity or experience declining responses over time despite anti-VEGF treatment. The underlying mechanisms of anti-VEGF resistance are poorly understood, and no effective treatment strategies are available to date. Here we review evidence from animal models and clinical studies that supports the roles of neovascular remodeling and arteriolar CNV formation in anti-VEGF resistance. Cholesterol dysregulation, inflammation, and ensuing macrophage activation are critically involved in arteriolar CNV formation and anti-VEGF resistance. Combination therapy by neutralizing VEGF and enhancing cholesterol removal from macrophages is a promising strategy to combat anti-VEGF resistance in CNV.
Collapse
Affiliation(s)
- Yingbin Fu
- Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, USA; (Z.Z.); (K.A.W.)
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhao Zhang
- Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, USA; (Z.Z.); (K.A.W.)
| | - Keith A. Webster
- Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, USA; (Z.Z.); (K.A.W.)
- Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Yannis M. Paulus
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA;
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA
| |
Collapse
|
3
|
Zarubin EA, Kogan EA, Zharkov NV, Avdalyan AM, Procenko DN. [Exosomes' role in intercellular interactions in different variants of lung injury in fatal cases of COVID-19]. Arkh Patol 2024; 86:22-29. [PMID: 38591903 DOI: 10.17116/patol20248602122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
BACKGROUND Extracellular vesicles are surrounded by a phospholipid bilayer, carrying various active biomolecules and participating in many physiological and pathological processes, including infectious ones. OBJECTIVE To research the role of exosomes in intercellular interactions in the pathogenesis of various types of lung damage in fatal cases of COVID-19. MATERIAL AND METHODS We conducted a clinical and morphological analysis of 118 fatal cases caused by coronavirus infection in Moscow. We selected 32 cases with morphological signs of various types of lung lesions for immunohistochemical reaction (IHC) with antibodies against tetraspanin proteins (CD63, CD81), which are involved in the assembly of exosomes, as well as with antibodies against viral proteins: nucleocapsid and spike protein. We determined the main producing cells of extracellular vesicles and cells containing viral proteins, carried out their comparison and quantitative analysis. RESULTS IHC reaction with antibodies against CD63 showed cytoplasmic granular uniform and subapical staining of cells, as well as granular extracellular staining. We determined similar staining using antibodies against viral proteins. Extracellular vesicles were found in the same cells as viral proteins. The main producing cells of vesicles and cells containing viral proteins were found to be macrophages, type II pneumocytes, and endothelial cells. CONCLUSION Taking into account the results of the literature, the localization of viral proteins and extracellular vesicles in the same cells indicates the key role of vesicles in the pathogenesis of various forms of lung damage by the SARS-CoV-2 virus, in the dissemination of the pathogen in the organism, which leads to interaction with the adaptive immune system and the formation of immunity.
Collapse
Affiliation(s)
- E A Zarubin
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Moscow Multidisciplinary Clinical Center «Kommunarka», Moscow, Russia
| | - E A Kogan
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - N V Zharkov
- Moscow Multidisciplinary Clinical Center «Kommunarka», Moscow, Russia
| | - A M Avdalyan
- Moscow Multidisciplinary Clinical Center «Kommunarka», Moscow, Russia
| | - D N Procenko
- Moscow Multidisciplinary Clinical Center «Kommunarka», Moscow, Russia
| |
Collapse
|
4
|
Ghaly M, Proulx J, Borgmann K, Park IW. Novel role of HIV-1 Nef in regulating the ubiquitination of cellular proteins. Front Cell Infect Microbiol 2023; 13:1106591. [PMID: 36968110 PMCID: PMC10031067 DOI: 10.3389/fcimb.2023.1106591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/16/2023] [Indexed: 03/10/2023] Open
Abstract
Our recent data established that HIV-1 Nef is pivotal in determining the fate of cellular proteins by modulating ubiquitination. However, it is unknown which proteins are ubiquitinated in the presence of Nef, a question critical for understanding the proliferation/restriction strategies of HIV-1 in infected cells. To identify cellular proteins ubiquitinated by Nef, we conducted a proteomic analysis of cellular proteins in the presence and absence of Nef. Proteomic analysis in HEK293T cells indicated that 93 proteins were upregulated and 232 were downregulated in their ubiquitination status by Nef. Computational analysis classified these proteins based on molecular function, biological process, subcellular localization, and biological pathway. Of those proteins, we found a majority of molecular functions to be involved in binding and catalytic activity. With respect to biological processes, a significant portion of the proteins identified were related to cellular and metabolic processes. Subcellular localization analysis showed the bulk of proteins to be localized to the cytosol and cytosolic compartments, which is consistent with the known function and location of Nef during HIV-1 infection. As for biological pathways, the wide range of affected proteins was denoted by the multiple modes to fulfill function, as distinguished from a strictly singular means, which was not detected. Among these ubiquitinated proteins, six were found to directly interact with Nef, wherein two were upregulated and four downregulated. We also identified 14 proteins involved in protein stability through directly participating in the Ubiquitin Proteasome System (UPS)-mediated proteasomal degradation pathway. Of those proteins, we found six upregulated and eight downregulated. Taken together, these analyses indicate that HIV-1 Nef is integral to regulating the stability of various cellular proteins via modulating ubiquitination. The molecular mechanisms directing Nef-triggered regulation of cellular protein ubiquitination are currently under investigation.
Collapse
|
5
|
Dissecting Platelet's Role in Viral Infection: A Double-Edged Effector of the Immune System. Int J Mol Sci 2023; 24:ijms24032009. [PMID: 36768333 PMCID: PMC9916939 DOI: 10.3390/ijms24032009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/11/2022] [Accepted: 12/23/2022] [Indexed: 01/20/2023] Open
Abstract
Platelets play a major role in the processes of primary hemostasis and pathological inflammation-induced thrombosis. In the mid-2000s, several studies expanded the role of these particular cells, placing them in the "immune continuum" and thus changing the understanding of their function in both innate and adaptive immune responses. Among the many receptors they express on their surface, platelets express Toll-Like Receptors (TLRs), key receptors in the inflammatory cell-cell reaction and in the interaction between innate and adaptive immunity. In response to an infectious stimulus, platelets will become differentially activated. Platelet activation is variable depending on whether platelets are activated by a hemostatic or pathogen stimulus. This review highlights the role that platelets play in platelet modulation count and adaptative immune response during viral infection.
Collapse
|
6
|
Kim JD, Zhou T, Zhang A, Li S, Gupte AA, Hamilton DJ, Fang L. AIBP Regulates Metabolism of Ketone and Lipids but Not Mitochondrial Respiration. Cells 2022; 11:cells11223643. [PMID: 36429071 PMCID: PMC9688289 DOI: 10.3390/cells11223643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
Accumulating evidence indicates that the APOA1 binding protein (AIBP)-a secreted protein-plays a profound role in lipid metabolism. Interestingly, AIBP also functions as an NAD(P)H-hydrate epimerase to catalyze the interconversion of NAD(P)H hydrate [NAD(P)HX] epimers and is renamed as NAXE. Thus, we call it NAXE hereafter. We investigated its role in NAD(P)H-involved metabolism in murine cardiomyocytes, focusing on the metabolism of hexose, lipids, and amino acids as well as mitochondrial redox function. Unbiased metabolite profiling of cardiac tissue shows that NAXE knockout markedly upregulates the ketone body 3-hydroxybutyric acid (3-HB) and increases or trends increasing lipid-associated metabolites cholesterol, α-linolenic acid and deoxycholic acid. Paralleling greater ketone levels, ChemRICH analysis of the NAXE-regulated metabolites shows reduced abundance of hexose despite similar glucose levels in control and NAXE-deficient blood. NAXE knockout reduces cardiac lactic acid but has no effect on the content of other NAD(P)H-regulated metabolites, including those associated with glucose metabolism, the pentose phosphate pathway, or Krebs cycle flux. Although NAXE is present in mitochondria, it has no apparent effect on mitochondrial oxidative phosphorylation. Instead, we detected more metabolites that can potentially improve cardiac function (3-HB, adenosine, and α-linolenic acid) in the Naxe-/- heart; these mice also perform better in aerobic exercise. Our data reveal a new role of NAXE in cardiac ketone and lipid metabolism.
Collapse
Affiliation(s)
- Jun-dae Kim
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, 6550 Fannin St., Houston, TX 77030, USA
| | - Teng Zhou
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, 6550 Fannin St., Houston, TX 77030, USA
| | - Aijun Zhang
- Center for Bioenergetics, Houston Methodist Research Institute, 6550 Fannin St., Houston, TX 77030, USA
- Department of Medicine, Houston Methodist, Weill Cornell Medicine Affiliate, 6550 Fannin St., Houston, TX 77030, USA
| | - Shumin Li
- Center for Bioenergetics, Houston Methodist Research Institute, 6550 Fannin St., Houston, TX 77030, USA
| | - Anisha A. Gupte
- Center for Bioenergetics, Houston Methodist Research Institute, 6550 Fannin St., Houston, TX 77030, USA
- Department of Medicine, Houston Methodist, Weill Cornell Medicine Affiliate, 6550 Fannin St., Houston, TX 77030, USA
| | - Dale J. Hamilton
- Center for Bioenergetics, Houston Methodist Research Institute, 6550 Fannin St., Houston, TX 77030, USA
- Department of Medicine, Houston Methodist, Weill Cornell Medicine Affiliate, 6550 Fannin St., Houston, TX 77030, USA
- Weill Cornell Medical College, Cornell University, 407 E 61st St., New York, NY 10065, USA
| | - Longhou Fang
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, 6550 Fannin St., Houston, TX 77030, USA
- Department of Medicine, Houston Methodist, Weill Cornell Medicine Affiliate, 6550 Fannin St., Houston, TX 77030, USA
- Weill Cornell Medical College, Cornell University, 407 E 61st St., New York, NY 10065, USA
- Correspondence: ; Tel.: +713-363-9012; Fax: +713-363-9782
| |
Collapse
|
7
|
Sbarigia C, Vardanyan D, Buccini L, Tacconi S, Dini L. SARS-CoV-2 and extracellular vesicles: An intricate interplay in pathogenesis, diagnosis and treatment. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.987034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Extracellular vesicles (EVs) are widely recognized as intercellular communication mediators. Among the different biological processes, EVs play a role in viral infections, supporting virus entrance and spread into host cells and immune response evasion. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection became an urgent public health issue with significant morbidity and mortality worldwide, being responsible for the current COVID-19 pandemic. Since EVs are implicated in SARS-CoV-2 infection in a morphological and functional level, they have gained growing interest for a better understanding of SARS-CoV-2 pathogenesis and represent possible diagnostic tools to track the disease progression. Furthermore, thanks to their biocompatibility and efficient immune activation, the use of EVs may also represent a promising strategy for the development of new therapeutic strategies against COVID-19. In this review, we explore the role of EVs in viral infections with a focus on SARS-CoV-2 biology and pathogenesis, considering recent morphometric studies. The common biogenesis aspects and structural similarities between EVs and SARS-CoV-2 will be examined, offering a panoramic of their multifaceted interplay and presenting EVs as a machinery supporting the viral cycle. On the other hand, EVs may be exploited as early diagnostic biomarkers and efficient carriers for drug delivery and vaccination, and ongoing studies will be reviewed to highlight EVs as potential alternative therapeutic strategies against SARS-CoV-2 infection.
Collapse
|
8
|
Tahyra ASC, Calado RT, Almeida F. The Role of Extracellular Vesicles in COVID-19 Pathology. Cells 2022; 11:cells11162496. [PMID: 36010572 PMCID: PMC9406571 DOI: 10.3390/cells11162496] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/27/2022] [Accepted: 08/04/2022] [Indexed: 12/02/2022] Open
Abstract
Extracellular vesicles (EVs) have become a trending topic in recent years; they constitute a new intercellular communication paradigm. Extracellular vesicles are 30–4000 nanometers in diameter particles that are limited by a phospholipid bilayer and contain functional biomolecules, such as proteins, lipids, and nucleic acids. They are released by virtually all types of eukaryotic cells; through their cargoes, EVs are capable of triggering signaling in recipient cells. In addition to their functions in the homeostatic state, EVs have gained attention because of their roles in pathological contexts, eventually contributing to disease progression. In the Coronavirus disease 2019 (COVID-19) pandemic, aside from the scientific race for the development of preventive and therapeutic interventions, it is critical to understand the pathological mechanisms involved in SARS-CoV-2 infection. In this sense, EVs are key players in the main processes of COVID-19. Thus, in this review, we highlight the role of EVs in the establishment of the viral infection and in the procoagulant state, cytokine storm, and immunoregulation of innate and adaptive immune responses.
Collapse
Affiliation(s)
- Aline Seiko Carvalho Tahyra
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Rodrigo T. Calado
- Department of Medical Imaging, Hematology, and Oncology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Fausto Almeida
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
- Correspondence:
| |
Collapse
|
9
|
Hu Q, Xie N, Liao K, Huang J, Yang Q, Zhou Y, Liu Y, Deng K. An injectable thermosensitive Pluronic F127/hyaluronic acid hydrogel loaded with human umbilical cord mesenchymal stem cells and asiaticoside microspheres for uterine scar repair. Int J Biol Macromol 2022; 219:96-108. [PMID: 35902020 DOI: 10.1016/j.ijbiomac.2022.07.161] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 11/15/2022]
Abstract
Uterine scar was one of the long-term complications cesarean section. In this study, an thermo-responsive injectable hydrogel loaded with human umbilical cord mesenchymal stem cells (UCMSCs) and asiaticoside microspheres (AMs) was used for uterine scar repair, which was prepared by optimizing the mixed ratio of aldehyde-functionalized Pluronic F127 (F127-CHO) and adipic dihydrazide-modified hyaluronic acid (AHA). The asiaticoside was loaded in Poly (DL-lactide-co-gycolide) (PLGA) by emulsion- diffusion-evaporation method. The hydrogel had appropriate pore size, good mechanical property, and slow release ability of asiaticoside. In vitro cell experiments demonstrated that F127-CHO/AHA/AMs could effectively promote stem cell adhesion and proliferation, promote angiogenesis, and provide a suitable microenvironment for cell survival. The F127-CHO/AHA/AMs/UCMSCs hydrogel was further used to repair uterine scar in female SD rats. The results showed that the prepared hydrogel could promote the proliferation of rat endometrial cells, promote the regeneration of glands, reduce the degree of endometrial fibrosis and restore the morphology of uterine cavity. The hydrogel could upregulate expression of Ki67 and IGF-1, downregulate TGF-β1 expression and promote M1-M2 transition of macrophages. This study confirmed that the prepared hydrogel could be used as an effective transplantation strategy, which could be expected to achieve clinical transformation of uterine scar repair.
Collapse
Affiliation(s)
- Qinqin Hu
- Department of Gynecology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong 528308, China
| | - Ning Xie
- Department of Gynecology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong 528308, China
| | - Kedan Liao
- Department of Gynecology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong 528308, China
| | - Jinfa Huang
- Department of Gynecology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong 528308, China
| | - Qian Yang
- Department of Gynecology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong 528308, China
| | - Yuan Zhou
- Department of Gynecology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong 528308, China
| | - Yixuan Liu
- Department of Gynecology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong 528308, China
| | - Kaixian Deng
- Department of Gynecology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong 528308, China.
| |
Collapse
|
10
|
Lipids in Pathophysiology and Development of the Membrane Lipid Therapy: New Bioactive Lipids. MEMBRANES 2021; 11:membranes11120919. [PMID: 34940418 PMCID: PMC8708953 DOI: 10.3390/membranes11120919] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/19/2022]
Abstract
Membranes are mainly composed of a lipid bilayer and proteins, constituting a checkpoint for the entry and passage of signals and other molecules. Their composition can be modulated by diet, pathophysiological processes, and nutritional/pharmaceutical interventions. In addition to their use as an energy source, lipids have important structural and functional roles, e.g., fatty acyl moieties in phospholipids have distinct impacts on human health depending on their saturation, carbon length, and isometry. These and other membrane lipids have quite specific effects on the lipid bilayer structure, which regulates the interaction with signaling proteins. Alterations to lipids have been associated with important diseases, and, consequently, normalization of these alterations or regulatory interventions that control membrane lipid composition have therapeutic potential. This approach, termed membrane lipid therapy or membrane lipid replacement, has emerged as a novel technology platform for nutraceutical interventions and drug discovery. Several clinical trials and therapeutic products have validated this technology based on the understanding of membrane structure and function. The present review analyzes the molecular basis of this innovative approach, describing how membrane lipid composition and structure affects protein-lipid interactions, cell signaling, disease, and therapy (e.g., fatigue and cardiovascular, neurodegenerative, tumor, infectious diseases).
Collapse
|
11
|
Gopi P, Anju TR, Pillai VS, Veettil M. SARS-Coronavirus 2, A Metabolic Reprogrammer: A Review in the Context of the Possible Therapeutic Strategies. Curr Drug Targets 2021; 23:770-781. [PMID: 34533443 DOI: 10.2174/1389450122666210917113842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/17/2021] [Accepted: 08/11/2021] [Indexed: 11/22/2022]
Abstract
Novel coronavirus, SARS-CoV-2 is advancing at a staggering pace to devastate the health care system and foster the concerns over public health. In contrast to the past outbreaks, coronaviruses aren't clinging themselves as a strict respiratory virus. Rather, becoming a multifaceted virus, it affects multiple organs by interrupting a number of metabolic pathways leading to significant rates of morbidity and mortality. Following infection they rigorously reprogram multiple metabolic pathways of glucose, lipid, protein, nucleic acid and their metabolites to extract adequate energy and carbon skeletons required for their existence and further molecular constructions inside a host cell. Although the mechanism of these alterations are yet to be known, the impact of these reprogramming is reflected in the hyper inflammatory responses, so called cytokine storm and the hindrance of host immune defence system. The metabolic reprogramming during SARS-CoV-2 infection needs to be considered while devising therapeutic strategies to combat the disease and its further complication. The inhibitors of cholesterol and phospholipids synthesis and cell membrane lipid raft of the host cell can, to a great extent, control the viral load and further infection. Depletion of energy source by inhibiting the activation of glycolytic and hexoseamine biosynthetic pathway can also augment the antiviral therapy. The cross talk between these pathways also necessitates the inhibition of amino acid catabolism and tryptophan metabolism. A combinatorial strategy which can address the cross talks between the metabolic pathways might be more effective than a single approach and the infection stage and timing of therapy will also influence the effectiveness of the antiviral approach. We herein focus on the different metabolic alterations during the course of virus infection that help to exploit the cellular machinery and devise a therapeutic strategy which promotes resistance to viral infection and can augment body's antivirulence mechanisms. This review may cast the light into the possibilities of targeting altered metabolic pathways to defend virus infection in a new perspective.
Collapse
Affiliation(s)
- Poornima Gopi
- Department of Biotechnology, Cochin University of Science and Technology, Cochin 682022, Kerala, India
| | - T R Anju
- Department of Biotechnology, Newman College, Thodupuzha 685585, Kerala, India
| | - Vinod Soman Pillai
- Department of Biotechnology, Cochin University of Science and Technology, Cochin 682022, Kerala, India
| | - Mohanan Veettil
- Institute of Advanced Virology, Thonnakkal, Thiruvananthapuram 695317, Kerala, India
| |
Collapse
|
12
|
Adzhubei AA, Kulkarni A, Tolstova AP, Anashkina AA, Sviridov D, Makarov AA, Bukrinsky MI. Direct interaction between ABCA1 and HIV-1 Nef: Molecular modeling and virtual screening for inhibitors. Comput Struct Biotechnol J 2021; 19:3876-3884. [PMID: 34584633 PMCID: PMC8440812 DOI: 10.1016/j.csbj.2021.06.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/23/2021] [Accepted: 06/30/2021] [Indexed: 12/18/2022] Open
Abstract
HIV-1 infection impairs cellular cholesterol efflux by downmodulating the cholesterol transporter ABCA1, leading to metabolic co-morbidities like cardio-vascular disease. The main mechanism of this effect is impairment by the HIV-1 protein Nef of the ABCA1 interaction with the endoplasmic reticulum chaperone calnexin, which leads to a block in ABCA1 maturation followed by its degradation. However, ABCA1 is also downmodulated by Nef delivered with the extracellular vesicles, suggesting involvement of a direct Nef:ABCA1 interaction at the plasma membrane. Here, we present an optimized model of the Nef:ABCA1 interaction, which identifies interaction sites and provides an opportunity to perform a virtual screening for potential inhibitors. Interestingly, the predicted sites on Nef involved in the ABCA1 interaction overlap with those involved in the interaction with calnexin. The compounds previously shown to block Nef:calnexin interaction were among the top ranking ligands in docking simulations with ABCA1-interacting sites on Nef, suggesting the possibility that both interactions can be inhibited by the same chemical compounds. This study identifies a series of compounds for potential development as inhibitors of Nef-mediated co-morbidities of HIV infection.
Collapse
Affiliation(s)
- Alexei A. Adzhubei
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Amol Kulkarni
- Howard University College of Pharmacy, Washington, District of Columbia, USA
| | - Anna P. Tolstova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Dmitri Sviridov
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Alexander A. Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Michael I. Bukrinsky
- The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| |
Collapse
|
13
|
Kim JD, Zhu L, Sun Q, Fang L. Systemic metabolite profiling reveals sexual dimorphism of AIBP control of metabolism in mice. PLoS One 2021; 16:e0248964. [PMID: 33793635 PMCID: PMC8016339 DOI: 10.1371/journal.pone.0248964] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/08/2021] [Indexed: 01/04/2023] Open
Abstract
Emerging studies indicate that APOA-I binding protein (AIBP) is a secreted protein and functions extracellularly to promote cellular cholesterol efflux, thereby disrupting lipid rafts on the plasma membrane. AIBP is also present in the mitochondria and acts as an epimerase, facilitating the repair of dysfunctional hydrated NAD(P)H, known as NAD(P)H(X). Importantly, AIBP deficiency contributes to lethal neurometabolic disorder, reminiscent of the Leigh syndrome in humans. Whereas cyclic NADPHX production is proposed to be the underlying cause, we hypothesize that an unbiased metabolic profiling may: 1) reveal new clues for the lethality, e.g., changes of mitochondrial metabolites., and 2) identify metabolites associated with new AIBP functions. To this end, we performed unbiased and profound metabolic studies of plasma obtained from adult AIBP knockout mice and control littermates of both genders. Our systemic metabolite profiling, encompassing 9 super pathways, identified a total of 640 compounds. Our studies demonstrate a surprising sexual dimorphism of metabolites affected by AIBP deletion, with more statistically significant changes in the AIBP knockout female vs male when compared with the corresponding controls. AIBP knockout trends to reduce cholesterol but increase the bile acid precursor 7-HOCA in female but not male. Complex lipids, phospholipids, sphingomyelin and plasmalogens were reduced, while monoacylglycerol, fatty acids and the lipid soluble vitamins E and carotene diol were elevated in AIBP knockout female but not male. NAD metabolites were not significantly different in AIBP knockout vs control mice but differed for male vs female mice. Metabolites associated with glycolysis and the Krebs cycle were unchanged by AIBP knockout. Importantly, polyamine spermidine, critical for many cellular functions including cerebral cortex synapses, was reduced in male but not female AIBP knockout. This is the first report of a systemic metabolite profile of plasma samples from AIBP knockout mice, and provides a metabolic basis for future studies of AIBP regulation of cellular metabolism and the pathophysiological presentation of AIBP deficiency in patients.
Collapse
Affiliation(s)
- Jun-dae Kim
- Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, United States of America
| | - Lingping Zhu
- Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, United States of America
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Quan Sun
- Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, United States of America
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Longhou Fang
- Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, United States of America
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States of America
- Weill Cornell Medical College, New York, NY, United States of America
- * E-mail:
| |
Collapse
|
14
|
Why Cells and Viruses Cannot Survive without an ESCRT. Cells 2021; 10:cells10030483. [PMID: 33668191 PMCID: PMC7995964 DOI: 10.3390/cells10030483] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 12/15/2022] Open
Abstract
Intracellular organelles enwrapped in membranes along with a complex network of vesicles trafficking in, out and inside the cellular environment are one of the main features of eukaryotic cells. Given their central role in cell life, compartmentalization and mechanisms allowing their maintenance despite continuous crosstalk among different organelles have been deeply investigated over the past years. Here, we review the multiple functions exerted by the endosomal sorting complex required for transport (ESCRT) machinery in driving membrane remodeling and fission, as well as in repairing physiological and pathological membrane damages. In this way, ESCRT machinery enables different fundamental cellular processes, such as cell cytokinesis, biogenesis of organelles and vesicles, maintenance of nuclear–cytoplasmic compartmentalization, endolysosomal activity. Furthermore, we discuss some examples of how viruses, as obligate intracellular parasites, have evolved to hijack the ESCRT machinery or part of it to execute/optimize their replication cycle/infection. A special emphasis is given to the herpes simplex virus type 1 (HSV-1) interaction with the ESCRT proteins, considering the peculiarities of this interplay and the need for HSV-1 to cross both the nuclear-cytoplasmic and the cytoplasmic-extracellular environment compartmentalization to egress from infected cells.
Collapse
|
15
|
Choi SH, Agatisa-Boyle C, Gonen A, Kim A, Kim J, Alekseeva E, Tsimikas S, Miller YI. Intracellular AIBP (Apolipoprotein A-I Binding Protein) Regulates Oxidized LDL (Low-Density Lipoprotein)-Induced Mitophagy in Macrophages. Arterioscler Thromb Vasc Biol 2021; 41:e82-e96. [PMID: 33356389 PMCID: PMC8105271 DOI: 10.1161/atvbaha.120.315485] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Atherosclerotic lesions are often characterized by accumulation of OxLDL (oxidized low-density lipoprotein), which is associated with vascular inflammation and lesion vulnerability to rupture. Extracellular AIBP (apolipoprotein A-I binding protein; encoded by APOA1BP gene), when secreted, promotes cholesterol efflux and regulates lipid rafts dynamics, but its role as an intracellular protein in mammalian cells remains unknown. The aim of this work was to determine the function of intracellular AIBP in macrophages exposed to OxLDL and in atherosclerotic lesions. Approach and Results: Using a novel monoclonal antibody against human and mouse AIBP, which are highly homologous, we demonstrated robust AIBP expression in human and mouse atherosclerotic lesions. We observed significantly reduced autophagy in bone marrow-derived macrophages, isolated from Apoa1bp-/- compared with wild-type mice, which were exposed to OxLDL. In atherosclerotic lesions from Apoa1bp-/- mice subjected to Ldlr knockdown and fed a Western diet, autophagy was reduced, whereas apoptosis was increased, when compared with that in wild-type mice. AIBP expression was necessary for efficient control of reactive oxygen species and cell death and for mitochondria quality control in macrophages exposed to OxLDL. Mitochondria-localized AIBP, via its N-terminal domain, associated with E3 ubiquitin-protein ligase PARK2 (Parkin), MFN (mitofusin)1, and MFN2, but not BNIP3 (Bcl2/adenovirus E1B 19-kDa-interacting protein-3), and regulated ubiquitination of MFN1 and MFN2, key components of mitophagy. CONCLUSIONS These data suggest that intracellular AIBP is a new regulator of autophagy in macrophages. Mitochondria-localized AIBP augments mitophagy and participates in mitochondria quality control, protecting macrophages against cell death in the context of atherosclerosis.
Collapse
Affiliation(s)
- Soo-Ho Choi
- Department of Medicine University of California San Diego, La Jolla, CA 92093
| | - Colin Agatisa-Boyle
- Department of Medicine University of California San Diego, La Jolla, CA 92093
| | - Ayelet Gonen
- Department of Medicine University of California San Diego, La Jolla, CA 92093
| | - Alisa Kim
- Department of Medicine University of California San Diego, La Jolla, CA 92093
| | - Jungsu Kim
- Department of Medicine University of California San Diego, La Jolla, CA 92093
| | - Elena Alekseeva
- Department of Medicine University of California San Diego, La Jolla, CA 92093
| | - Sotirios Tsimikas
- Department of Medicine University of California San Diego, La Jolla, CA 92093
| | - Yury I. Miller
- Department of Medicine University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
16
|
Zhang X, Zhang Y, Shi X, Dai K, Liang Z, Zhu M, Zhang Z, Shen Z, Pan J, Wang C, Hu X, Gong C. Characterization of the lipidomic profile of BmN cells in response to Bombyx mori cytoplasmic polyhedrosis virus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103822. [PMID: 32810558 PMCID: PMC7428682 DOI: 10.1016/j.dci.2020.103822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Bombyx mori cytoplasmic polyhedrosis virus (BmCPV)that belongs to the genus Cypovirus in the family of Reoviridae is one of the problematic pathogens in sericulture. In our previous study, we have found that lipid-related constituents in the host cellular membrane are associated with the BmCPV life cycle. It is important to note that the lipids not only affect the cellular biological processes, they also impact the virus life cycle. However, the intracellular lipid homeostasis in BmN cells after BmCPV infection remains unclear. Here, the lipid metabolism in BmCPV-infected BmN cells was studied by lipidomics analysis. Our results revealed that the intracellular lipid homeostasis was disturbed in BmN cells upon BmCPV infection. Major lipids constituents in cellular membrane were found to be significantly induced upon BmCPV infection, which included triglycerides, phosphatidylcholine, phosphatidylethanolamine, sphingomyelin, phospholipids, glucoside ceramide, monoetherphosphatidylcholin, ceramide, ceramide phosphoethanolamine and cardiolipin. Further analysis of the pathways related to these altered lipids (such as PE and PC) showed that glycerophospholipid metabolism was one of the most enriched pathways. These results suggested that BmCPV may manipulate the lipid metabolism of cells for their own interest. The findings may facilitate a better understanding of the roles of lipid metabolic changes during virus infection in future studies.
Collapse
Affiliation(s)
- Xing Zhang
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Yunshan Zhang
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Xiu Shi
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Kun Dai
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Zi Liang
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Min Zhu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Ziyao Zhang
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Zeen Shen
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Jun Pan
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Chonglong Wang
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Xiaolong Hu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China.
| | - Chengliang Gong
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
17
|
Martins SDT, Alves LR. Extracellular Vesicles in Viral Infections: Two Sides of the Same Coin? Front Cell Infect Microbiol 2020; 10:593170. [PMID: 33335862 PMCID: PMC7736630 DOI: 10.3389/fcimb.2020.593170] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/30/2020] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles are small membrane structures containing proteins and nucleic acids that are gaining a lot of attention lately. They are produced by most cells and can be detected in several body fluids, having a huge potential in therapeutic and diagnostic approaches. EVs produced by infected cells usually have a molecular signature that is very distinct from healthy cells. For intracellular pathogens like viruses, EVs can have an even more complex function, since the viral biogenesis pathway can overlap with EV pathways in several ways, generating a continuum of particles, like naked virions, EVs containing infective viral genomes and quasi-enveloped viruses, besides the classical complete viral particles that are secreted to the extracellular space. Those particles can act in recipient cells in different ways. Besides being directly infective, they also can prime neighbor cells rendering them more susceptible to infection, block antiviral responses and deliver isolated viral molecules. On the other hand, they can trigger antiviral responses and cytokine secretion even in uninfected cells near the infection site, helping to fight the infection and protect other cells from the virus. This protective response can also backfire, when a massive inflammation facilitated by those EVs can be responsible for bad clinical outcomes. EVs can help or harm the antiviral response, and sometimes both mechanisms are observed in infections by the same virus. Since those pathways are intrinsically interlinked, understand the role of EVs during viral infections is crucial to comprehend viral mechanisms and respond better to emerging viral diseases.
Collapse
Affiliation(s)
- Sharon de Toledo Martins
- Gene Expression Regulation Laboratory, Carlos Chagas Institute, ICC-Fiocruz, Curitiba, Brazil.,Biological Sciences Sector, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Lysangela Ronalte Alves
- Gene Expression Regulation Laboratory, Carlos Chagas Institute, ICC-Fiocruz, Curitiba, Brazil
| |
Collapse
|
18
|
Barik SK, Mohanty KK, Mohanty AK, Rawat P, Gopal G, Bisht D, Patil SA, Singh R, Sharma D, Tripathy SP, Tandon R, Singh TP, Jena S. Identification and differential expression of serotransferrin and apolipoprotein A-I in the plasma of HIV-1 patients treated with first-line antiretroviral therapy. BMC Infect Dis 2020; 20:898. [PMID: 33246440 PMCID: PMC7694411 DOI: 10.1186/s12879-020-05610-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 11/11/2020] [Indexed: 11/10/2022] Open
Abstract
Background Plasma proteins are known to interfere the drug metabolism during therapy. As limited information is available regarding the role of plasma proteins in HIV drug resistance during ART in HIV/AIDS patients, the present study aimed to identify and characterize the differentially expressed plasma proteins in the drug resistant and drug respondent groups of HIV-1 infected patients with > 6 years of first line ART. Methods Four-drug resistant (treatment failure) and four-drug respondent (treatment responder) patients were selected for plasma proteomic analysis based on viral load and drug resistance associated mutations from a cohort study designed on the first line ART patients who were enrolled in the antiretroviral therapy center, Sarojini Naidu Medical College, Agra, India from December 2009 to November 2016. After depleting high abundant proteins, plasma proteins were resolved using two-dimensional gel electrophoresis on IPG strips, pH range of 3–10. Spots were selected in the gel based on the density of staining which was common in the drug resistant and drug respondent groups separately. The fold change of each spot was calculated using image-J. Each protein spot was identified using the matrix assisted laser desorption/ionization-time of flight/time of flight (MALDI-TOF/TOF) after tryptic digestion. Peptide peaks were identified through flex analysis version 3.3, and a search against a protein data base using the internal Mascot. Gene ontology study was completed through STRING v.11 and Panther15.0. Results Out of eight spots from 2D gel samples analyzed by MALDITOF/TOF, two proteins were found to have significant score (> 56) after Flex analysis. These two proteins were identified to be apolipoprotein A1 and serotransferrin. The fold change expression of these two proteins were analyzed in drug resistant and drug respondent group. Apolipoprotein-A1 and serotransferrin were observed to be expressed 1.76 and 1.13-fold more respectively in drug respondent group compared to drug resistant group. The gene ontology analysis revealed the involvement of these two proteins in various important physiological processes. Conclusion Apolipoprotein A-I and serotransferrin were found to be expressed more in drug respondent group compared to drug resistant group. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-020-05610-6.
Collapse
Affiliation(s)
- Sushanta Kumar Barik
- National JALMA Institute for Leprosy and Other Mycobacterial Diseases, ICMR, Tajganj, Agra, Uttar-Pradesh, 282004, India
| | - Keshar Kunja Mohanty
- National JALMA Institute for Leprosy and Other Mycobacterial Diseases, ICMR, Tajganj, Agra, Uttar-Pradesh, 282004, India.
| | | | - Preeti Rawat
- National Dairy Research Institute, ICAR, Karnal, 132001, India
| | - G Gopal
- Cancer Institute, Chennai, 600020, India
| | - Deepa Bisht
- National JALMA Institute for Leprosy and Other Mycobacterial Diseases, ICMR, Tajganj, Agra, Uttar-Pradesh, 282004, India
| | - Shripad A Patil
- National JALMA Institute for Leprosy and Other Mycobacterial Diseases, ICMR, Tajganj, Agra, Uttar-Pradesh, 282004, India
| | - Rananjay Singh
- National JALMA Institute for Leprosy and Other Mycobacterial Diseases, ICMR, Tajganj, Agra, Uttar-Pradesh, 282004, India
| | - Devesh Sharma
- National JALMA Institute for Leprosy and Other Mycobacterial Diseases, ICMR, Tajganj, Agra, Uttar-Pradesh, 282004, India
| | | | - Rekha Tandon
- Sarojini Naidu Medical College, Agra, 282002, India
| | | | - Srikanta Jena
- Ravenshaw University, Cuttack, Odisha, 753003, India
| |
Collapse
|
19
|
Qiu X, Luo J, Fang L. AIBP, Angiogenesis, Hematopoiesis, and Atherogenesis. Curr Atheroscler Rep 2020; 23:1. [PMID: 33230630 DOI: 10.1007/s11883-020-00899-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2020] [Indexed: 01/04/2023]
Abstract
PURPOSE OF REVIEW The goal of this manuscript is to summarize the current understanding of the secreted APOA1 binding protein (AIBP), encoded by NAXE, in angiogenesis, hematopoiesis, and inflammation. The studies on AIBP illustrate a critical connection between lipid metabolism and the aforementioned endothelial and immune cell biology. RECENT FINDINGS AIBP dictates both developmental processes such as angiogenesis and hematopoiesis, and pathological events such as inflammation, tumorigenesis, and atherosclerosis. Although cholesterol efflux dictates AIBP-mediated lipid raft disruption in many of the cell types, recent studies document cholesterol efflux-independent mechanism involving Cdc42-mediated cytoskeleton remodeling in macrophages. AIBP disrupts lipid rafts and impairs raft-associated VEGFR2 but facilitates non-raft-associated NOTCH1 signaling. Furthermore, AIBP can induce cholesterol biosynthesis gene SREBP2 activation, which in turn transactivates NOTCH1 and supports specification of hematopoietic stem and progenitor cells (HSPCs). In addition, AIBP also binds TLR4 and represses TLR4-mediated inflammation. In this review, we summarize the latest research on AIBP, focusing on its role in cholesterol metabolism and the attendant effects on lipid raft-regulated VEGFR2 and non-raft-associated NOTCH1 activation in angiogenesis, SREBP2-upregulated NOTCH1 signaling in hematopoiesis, and TLR4 signaling in inflammation and atherogenesis. We will discuss its potential therapeutic applications in angiogenesis and inflammation due to selective targeting of activated cells.
Collapse
Affiliation(s)
- Xueting Qiu
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, 6550 Fannin Street, Houston, TX, 77030, USA
| | - Jingmin Luo
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, 6550 Fannin Street, Houston, TX, 77030, USA
| | - Longhou Fang
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, 6550 Fannin Street, Houston, TX, 77030, USA. .,Department of Obstetrics and Gynecology, Houston Methodist Research Institute, 6550 Fannin Street, Houston, TX, 77030, USA. .,Houston Methodist Institute for Academic Medicine, Houston Methodist Research Institute, 6550 Fannin Street, Houston, TX, 77030, USA. .,Department of Cardiothoracic Surgeries, Weill Cornell Medical College, Cornell University, New York, NY, 10065, USA.
| |
Collapse
|
20
|
Sviridov D, Miller YI, Ballout RA, Remaley AT, Bukrinsky M. Targeting Lipid Rafts-A Potential Therapy for COVID-19. Front Immunol 2020; 11:574508. [PMID: 33133090 PMCID: PMC7550455 DOI: 10.3389/fimmu.2020.574508] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/27/2020] [Indexed: 12/21/2022] Open
Abstract
COVID-19 is a global pandemic currently in an acute phase of rapid expansion. While public health measures remain the most effective protection strategy at this stage, when the peak passes, it will leave in its wake important health problems. Historically, very few viruses have ever been eradicated. Instead, the virus may persist in communities causing recurrent local outbreaks of the acute infection as well as several chronic diseases that may arise from the presence of a “suppressed” virus or as a consequence of the initial exposure. An ideal solution would be an anti-viral medication that (i) targets multiple stages of the viral lifecycle, (ii) is insensitive to frequent changes of viral phenotype due to mutagenesis, (iii) has broad spectrum, (iv) is safe and (v) also targets co-morbidities of the infection. In this Perspective we discuss a therapeutic approach that owns these attributes, namely “lipid raft therapy.” Lipid raft therapy is an approach aimed at reducing the abundance and structural modifications of host lipid rafts or at targeted delivery of therapeutics to the rafts. Lipid rafts are the sites of the initial binding, activation, internalization and cell-to-cell transmission of SARS-CoV-2. They also are key regulators of immune and inflammatory responses, dysregulation of which is characteristic to COVID-19 infection. Lipid raft therapy was successful in targeting many viral infections and inflammatory disorders, and can potentially be highly effective for treatment of COVID-19.
Collapse
Affiliation(s)
- Dmitri Sviridov
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Yury I Miller
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Rami A Ballout
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health, Bethesda, MD, United States
| | - Alan T Remaley
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health, Bethesda, MD, United States
| | - Michael Bukrinsky
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| |
Collapse
|
21
|
Low H, Mukhamedova N, Capettini LDSA, Xia Y, Carmichael I, Cody SH, Huynh K, Ditiatkovski M, Ohkawa R, Bukrinsky M, Meikle PJ, Choi SH, Field S, Miller YI, Sviridov D. Cholesterol Efflux-Independent Modification of Lipid Rafts by AIBP (Apolipoprotein A-I Binding Protein). Arterioscler Thromb Vasc Biol 2020; 40:2346-2359. [PMID: 32787522 PMCID: PMC7530101 DOI: 10.1161/atvbaha.120.315037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE AIBP (apolipoprotein A-I binding protein) is an effective and selective regulator of lipid rafts modulating many metabolic pathways originating from the rafts, including inflammation. The mechanism of action was suggested to involve stimulation by AIBP of cholesterol efflux, depleting rafts of cholesterol, which is essential for lipid raft integrity. Here we describe a different mechanism contributing to the regulation of lipid rafts by AIBP. Approach and Results: We demonstrate that modulation of rafts by AIBP may not exclusively depend on the rate of cholesterol efflux or presence of the key regulator of the efflux, ABCA1 (ATP-binding cassette transporter A-I). AIBP interacted with phosphatidylinositol 3-phosphate, which was associated with increased abundance and activation of Cdc42 and rearrangement of the actin cytoskeleton. Cytoskeleton rearrangement was accompanied with reduction of the abundance of lipid rafts, without significant changes in the lipid composition of the rafts. The interaction of AIBP with phosphatidylinositol 3-phosphate was blocked by AIBP substrate, NADPH (nicotinamide adenine dinucleotide phosphate), and both NADPH and silencing of Cdc42 interfered with the ability of AIBP to regulate lipid rafts and cholesterol efflux. CONCLUSIONS Our findings indicate that an underlying mechanism of regulation of lipid rafts by AIBP involves PIP-dependent rearrangement of the cytoskeleton.
Collapse
Affiliation(s)
- Hann Low
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia (H.L., N.M., K.H., M.D., R.O., P.J.M., D.S.)
| | - Nigora Mukhamedova
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia (H.L., N.M., K.H., M.D., R.O., P.J.M., D.S.)
| | - Luciano Dos Santos Aggum Capettini
- Department of Medicine, University of California San Diego, La Jolla (L.d.S.A.C., Y.X., S.-H.C., S.F., Y.I.M.).,Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil (L.d.S.A.C.)
| | - Yining Xia
- Department of Medicine, University of California San Diego, La Jolla (L.d.S.A.C., Y.X., S.-H.C., S.F., Y.I.M.)
| | - Irena Carmichael
- Department of Monash Micro Imaging, Monash University, Melbourne, VIC, Australia (I.C., S.H.C.)
| | - Stephen H Cody
- Department of Monash Micro Imaging, Monash University, Melbourne, VIC, Australia (I.C., S.H.C.)
| | - Kevin Huynh
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia (H.L., N.M., K.H., M.D., R.O., P.J.M., D.S.)
| | - Michael Ditiatkovski
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia (H.L., N.M., K.H., M.D., R.O., P.J.M., D.S.)
| | - Ryunosuke Ohkawa
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia (H.L., N.M., K.H., M.D., R.O., P.J.M., D.S.).,Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan (R.O.)
| | - Michael Bukrinsky
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University School of Medicine and Health Sciences, DC (M.B.)
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia (H.L., N.M., K.H., M.D., R.O., P.J.M., D.S.)
| | - Soo-Ho Choi
- Department of Medicine, University of California San Diego, La Jolla (L.d.S.A.C., Y.X., S.-H.C., S.F., Y.I.M.)
| | - Seth Field
- Department of Medicine, University of California San Diego, La Jolla (L.d.S.A.C., Y.X., S.-H.C., S.F., Y.I.M.)
| | - Yury I Miller
- Department of Medicine, University of California San Diego, La Jolla (L.d.S.A.C., Y.X., S.-H.C., S.F., Y.I.M.)
| | - Dmitri Sviridov
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia (H.L., N.M., K.H., M.D., R.O., P.J.M., D.S.).,Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia (D.S.)
| |
Collapse
|
22
|
Ditiatkovski M, Mukhamedova N, Dragoljevic D, Hoang A, Low H, Pushkarsky T, Fu Y, Carmichael I, Hill AF, Murphy AJ, Bukrinsky M, Sviridov D. Modification of lipid rafts by extracellular vesicles carrying HIV-1 protein Nef induces redistribution of amyloid precursor protein and Tau, causing neuronal dysfunction. J Biol Chem 2020; 295:13377-13392. [PMID: 32732283 DOI: 10.1074/jbc.ra120.014642] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/16/2020] [Indexed: 12/13/2022] Open
Abstract
HIV-associated neurocognitive disorders (HANDs) are a frequent outcome of HIV infection. Effective treatment of HIV infection has reduced the rate of progression and severity but not the overall prevalence of HANDs, suggesting ongoing pathological process even when viral replication is suppressed. In this study, we investigated how HIV-1 protein Nef secreted in extracellular vesicles (exNef) impairs neuronal functionality. ExNef were rapidly taken up by neural cells in vitro, reducing the abundance of ABC transporter A1 (ABCA1) and thus cholesterol efflux and increasing the abundance and modifying lipid rafts in neuronal plasma membranes. ExNef caused a redistribution of amyloid precursor protein (APP) and Tau to lipid rafts and increased the abundance of these proteins, as well as of Aβ42 ExNef further potentiated phosphorylation of Tau and activation of inflammatory pathways. These changes were accompanied by neuronal functional impairment. Disruption of lipid rafts with cyclodextrin reversed the phenotype. Short-term treatment of C57BL/6 mice with either purified recombinant Nef or exNef similarly resulted in reduced abundance of ABCA1 and elevated abundance of APP in brain tissue. The abundance of ABCA1 in brain tissue of HIV-infected human subjects diagnosed with HAND was lower, and the abundance of lipid rafts was higher compared with HIV-negative individuals. Levels of APP and Tau in brain tissue correlated with the abundance of Nef. Thus, modification of neuronal cholesterol trafficking and of lipid rafts by Nef may contribute to early stages of neurodegeneration and pathogenesis in HAND.
Collapse
Affiliation(s)
| | | | | | - Anh Hoang
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Hann Low
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Tatiana Pushkarsky
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C., USA
| | - Ying Fu
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Irena Carmichael
- Department of Micro Imaging, Monash University, Melbourne, Victoria, Australia
| | - Andrew F Hill
- Department of Biochemistry and Genetics, Louisiana Trobe Institute for Molecular Science, Louisiana Trobe University, Bundoora, Victoria, Australia
| | - Andrew J Murphy
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Michael Bukrinsky
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C., USA
| | - Dmitri Sviridov
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
23
|
Kara S, Amon L, Lühr JJ, Nimmerjahn F, Dudziak D, Lux A. Impact of Plasma Membrane Domains on IgG Fc Receptor Function. Front Immunol 2020; 11:1320. [PMID: 32714325 PMCID: PMC7344230 DOI: 10.3389/fimmu.2020.01320] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022] Open
Abstract
Lipid cell membranes not only represent the physical boundaries of cells. They also actively participate in many cellular processes. This contribution is facilitated by highly complex mixtures of different lipids and incorporation of various membrane proteins. One group of membrane-associated receptors are Fc receptors (FcRs). These cell-surface receptors are crucial for the activity of most immune cells as they bind immunoglobulins such as immunoglobulin G (IgG). Based on distinct mechanisms of IgG binding, two classes of Fc receptors are now recognized: the canonical type I FcγRs and select C-type lectin receptors newly referred to as type II FcRs. Upon IgG immune complex induced cross-linking, these receptors are known to induce a multitude of cellular effector responses in a cell-type dependent manner, including internalization, antigen processing, and presentation as well as production of cytokines. The response is also determined by specific intracellular signaling domains, allowing FcRs to either positively or negatively modulate immune cell activity. Expression of cell-type specific combinations and numbers of receptors therefore ultimately sets a threshold for induction of effector responses. Mechanistically, receptor cross-linking and localization to lipid rafts, i.e., organized membrane microdomains enriched in intracellular signaling proteins, were proposed as major determinants of initial FcR activation. Given that immune cell membranes might also vary in their lipid compositions, it is reasonable to speculate, that the cell membrane and especially lipid rafts serve as an additional regulator of FcR activity. In this article, we aim to summarize the current knowledge on the interplay of lipid rafts and IgG binding FcRs with a focus on the plasma membrane composition and receptor localization in immune cells, the proposed mechanisms underlying this localization and consequences for FcR function with respect to their immunoregulatory capacity.
Collapse
Affiliation(s)
- Sibel Kara
- Department of Biology, Institute of Genetics, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Lukas Amon
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Jennifer J Lühr
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.,Division of Nano-Optics, Max-Planck Institute for the Science of Light, Erlangen, Germany
| | - Falk Nimmerjahn
- Department of Biology, Institute of Genetics, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.,Medical Immunology Campus Erlangen (MICE), Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.,Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.,Medical Immunology Campus Erlangen (MICE), Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.,Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany.,Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nürnberg (CCC ER-EMN), Erlangen, Germany
| | - Anja Lux
- Department of Biology, Institute of Genetics, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.,Medical Immunology Campus Erlangen (MICE), Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
24
|
Sviridov D, Mukhamedova N, Miller YI. Lipid rafts as a therapeutic target. J Lipid Res 2020; 61:687-695. [PMID: 32205411 PMCID: PMC7193956 DOI: 10.1194/jlr.tr120000658] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/16/2020] [Indexed: 12/12/2022] Open
Abstract
Lipid rafts regulate the initiation of cellular metabolic and signaling pathways by organizing the pathway components in ordered microdomains on the cell surface. Cellular responses regulated by lipid rafts range from physiological to pathological, and the success of a therapeutic approach targeting "pathological" lipid rafts depends on the ability of a remedial agent to recognize them and disrupt pathological lipid rafts without affecting normal raft-dependent cellular functions. In this article, concluding the Thematic Review Series on Biology of Lipid Rafts, we review current experimental therapies targeting pathological lipid rafts, including examples of inflammarafts and clusters of apoptotic signaling molecule-enriched rafts. The corrective approaches include regulation of cholesterol and sphingolipid metabolism and membrane trafficking by using HDL and its mimetics, LXR agonists, ABCA1 overexpression, and cyclodextrins, as well as a more targeted intervention with apoA-I binding protein. Among others, we highlight the design of antagonists that target inflammatory receptors only in their activated form of homo- or heterodimers, when receptor dimerization occurs in pathological lipid rafts. Other therapies aim to promote raft-dependent physiological functions, such as augmenting caveolae-dependent tissue repair. The overview of this highly dynamic field will provide readers with a view on the emerging concept of targeting lipid rafts as a therapeutic strategy.jlr;61/5/687/F1F1f1.
Collapse
Affiliation(s)
- Dmitri Sviridov
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | | | - Yury I. Miller
- Department of Medicine,University of California, San Diego, La Jolla, CA
| |
Collapse
|