1
|
Doyle CA, Busey GW, Iobst WH, Kiessling V, Renken C, Doppalapudi H, Stremska ME, Manjegowda MC, Arish M, Wang W, Naphade S, Kennedy J, Bloyet LM, Thompson CE, Rothlauf PW, Stipes EJ, Whelan SPJ, Tamm LK, Kreutzberger AJB, Sun J, Desai BN. Endosomal fusion of pH-dependent enveloped viruses requires ion channel TRPM7. Nat Commun 2024; 15:8479. [PMID: 39353909 PMCID: PMC11445543 DOI: 10.1038/s41467-024-52773-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/19/2024] [Indexed: 10/03/2024] Open
Abstract
The majority of viruses classified as pandemic threats are enveloped viruses which enter the cell through receptor-mediated endocytosis and take advantage of endosomal acidification to activate their fusion machinery. Here we report that the endosomal fusion of low pH-requiring viruses is highly dependent on TRPM7, a widely expressed TRP channel that is located on the plasma membrane and in intracellular vesicles. Using several viral infection systems expressing the envelope glycoproteins of various viruses, we find that loss of TRPM7 protects cells from infection by Lassa, LCMV, Ebola, Influenza, MERS, SARS-CoV-1, and SARS-CoV-2. TRPM7 ion channel activity is intrinsically necessary to acidify virus-laden endosomes but is expendable for several other endosomal acidification pathways. We propose a model wherein TRPM7 ion channel activity provides a countercurrent of cations from endosomal lumen to cytosol necessary to sustain the pumping of protons into these virus-laden endosomes. This study demonstrates the possibility of developing a broad-spectrum, TRPM7-targeting antiviral drug to subvert the endosomal fusion of low pH-dependent enveloped viruses.
Collapse
Affiliation(s)
- Catherine A Doyle
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Gregory W Busey
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Wesley H Iobst
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Volker Kiessling
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA
| | - Chloe Renken
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Hansa Doppalapudi
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Marta E Stremska
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
- Department of Pathology and Immunology, Washington University, St. Louis, MO, USA
| | - Mohan C Manjegowda
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Mohd Arish
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Weiming Wang
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Nikegen Inc., Shanghai, China
| | - Shardul Naphade
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Joel Kennedy
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Louis-Marie Bloyet
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Cassandra E Thompson
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Paul W Rothlauf
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
- Program in Virology, Harvard Medical School, Boston, MA, USA
| | - Eric J Stipes
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Sean P J Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lukas K Tamm
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA
| | - Alex J B Kreutzberger
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Boston Children's Hospital, Boston, MA, USA
| | - Jie Sun
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Bimal N Desai
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA.
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA.
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
2
|
Garcia-Vidal E, Calba I, Riveira-Muñoz E, García E, Clotet B, Serra-Mitjà P, Cabrera C, Ballana E, Badia R. Nucleotide-Binding Oligomerization Domain 1 (NOD1) Agonists Prevent SARS-CoV-2 Infection in Human Lung Epithelial Cells through Harnessing the Innate Immune Response. Int J Mol Sci 2024; 25:5318. [PMID: 38791357 PMCID: PMC11121681 DOI: 10.3390/ijms25105318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
The lung is prone to infections from respiratory viruses such as Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). A challenge in combating these infections is the difficulty in targeting antiviral activity directly at the lung mucosal tract. Boosting the capability of the respiratory mucosa to trigger a potent immune response at the onset of infection could serve as a potential strategy for managing respiratory infections. This study focused on screening immunomodulators to enhance innate immune response in lung epithelial and immune cell models. Through testing various subfamilies and pathways of pattern recognition receptors (PRRs), the nucleotide-binding and oligomerization domain (NOD)-like receptor (NLR) family was found to selectively activate innate immunity in lung epithelial cells. Activation of NOD1 and dual NOD1/2 by the agonists TriDAP and M-TriDAP, respectively, increased the number of IL-8+ cells by engaging the NF-κB and interferon response pathways. Lung epithelial cells showed a stronger response to NOD1 and dual NOD1/2 agonists compared to control. Interestingly, a less-pronounced response to NOD1 agonists was noted in PBMCs, indicating a tissue-specific effect of NOD1 in lung epithelial cells without inducing widespread systemic activation. The specificity of the NOD agonist pathway was confirmed through gene silencing of NOD1 (siRNA) and selective NOD1 and dual NOD1/2 inhibitors in lung epithelial cells. Ultimately, activation induced by NOD1 and dual NOD1/2 agonists created an antiviral environment that hindered SARS-CoV-2 replication in vitro in lung epithelial cells.
Collapse
Affiliation(s)
| | - Ignasi Calba
- IrsiCaixa, 08916 Badalona, Barcelona, Spain (E.G.)
- Health Research Institute Germans Trias i Pujol (IGTP), Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Barcelona, Spain
| | | | | | - Bonaventura Clotet
- IrsiCaixa, 08916 Badalona, Barcelona, Spain (E.G.)
- University of Vic—Central University of Catalonia (UVic-UCC), 08500 Vic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, CIBERINFEC, 28029 Madrid, Spain
| | - Pere Serra-Mitjà
- Pulmonology and Allergy Unit, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, 08041 Barcelona, Barcelona, Spain;
| | - Cecilia Cabrera
- IrsiCaixa, 08916 Badalona, Barcelona, Spain (E.G.)
- Health Research Institute Germans Trias i Pujol (IGTP), Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Barcelona, Spain
| | - Ester Ballana
- IrsiCaixa, 08916 Badalona, Barcelona, Spain (E.G.)
- Health Research Institute Germans Trias i Pujol (IGTP), Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, CIBERINFEC, 28029 Madrid, Spain
| | - Roger Badia
- IrsiCaixa, 08916 Badalona, Barcelona, Spain (E.G.)
- Health Research Institute Germans Trias i Pujol (IGTP), Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Barcelona, Spain
| |
Collapse
|
3
|
Pérez-Vargas J, Lemieux G, Thompson CAH, Désilets A, Ennis S, Gao G, Gordon DG, Schulz AL, Niikura M, Nabi IR, Krajden M, Boudreault PL, Leduc R, Jean F. Nanomolar anti-SARS-CoV-2 Omicron activity of the host-directed TMPRSS2 inhibitor N-0385 and synergistic action with direct-acting antivirals. Antiviral Res 2024; 225:105869. [PMID: 38548023 DOI: 10.1016/j.antiviral.2024.105869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/10/2024] [Accepted: 03/16/2024] [Indexed: 04/04/2024]
Abstract
SARS-CoV-2 Omicron subvariants with increased transmissibility and immune evasion are spreading globally with alarming persistence. Whether the mutations and evolution of spike (S) Omicron subvariants alter the viral hijacking of human TMPRSS2 for viral entry remains to be elucidated. This is particularly important to investigate because of the large number and diversity of mutations of S Omicron subvariants reported since the emergence of BA.1. Here we report that human TMPRSS2 is a molecular determinant of viral entry for all the Omicron clinical isolates tested in human lung cells, including ancestral Omicron subvariants (BA.1, BA.2, BA.5), contemporary Omicron subvariants (BQ.1.1, XBB.1.5, EG.5.1) and currently circulating Omicron BA.2.86. First, we used a co-transfection assay to demonstrate the endoproteolytic cleavage by TMPRSS2 of spike Omicron subvariants. Second, we found that N-0385, a highly potent TMPRSS2 inhibitor, is a robust entry inhibitor of virus-like particles harbouring the S protein of Omicron subvariants. Third, we show that N-0385 exhibits nanomolar broad-spectrum antiviral activity against live Omicron subvariants in human Calu-3 lung cells and primary patient-derived bronchial epithelial cells. Interestingly, we found that N-0385 is 10-20 times more potent than the repositioned TMPRSS2 inhibitor, camostat, against BA.5, EG.5.1, and BA.2.86. We further found that N-0385 shows broad synergistic activity with clinically approved direct-acting antivirals (DAAs), i.e., remdesivir and nirmatrelvir, against Omicron subvariants, demonstrating the potential therapeutic benefits of a multi-targeted treatment based on N-0385 and DAAs.
Collapse
Affiliation(s)
- Jimena Pérez-Vargas
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Gabriel Lemieux
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Connor A H Thompson
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Antoine Désilets
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Siobhan Ennis
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Guang Gao
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada; Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Danielle G Gordon
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Annika Lea Schulz
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Masahiro Niikura
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Ivan Robert Nabi
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Mel Krajden
- British Columbia Centre for Disease Control Public Health Laboratory, Vancouver, BC, V5Z 4R4, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Pierre-Luc Boudreault
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Richard Leduc
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| | - François Jean
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
4
|
Ianevski A, Frøysa IT, Lysvand H, Calitz C, Smura T, Schjelderup Nilsen HJ, Høyer E, Afset JE, Sridhar A, Wolthers KC, Zusinaite E, Tenson T, Kurg R, Oksenych V, Galabov AS, Stoyanova A, Bjørås M, Kainov DE. The combination of pleconaril, rupintrivir, and remdesivir efficiently inhibits enterovirus infections in vitro, delaying the development of drug-resistant virus variants. Antiviral Res 2024; 224:105842. [PMID: 38417531 DOI: 10.1016/j.antiviral.2024.105842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/10/2024] [Accepted: 02/24/2024] [Indexed: 03/01/2024]
Abstract
Enteroviruses are a significant global health concern, causing a spectrum of diseases from the common cold to more severe conditions like hand-foot-and-mouth disease, meningitis, myocarditis, pancreatitis, and poliomyelitis. Current treatment options for these infections are limited, underscoring the urgent need for effective therapeutic strategies. To find better treatment option we analyzed toxicity and efficacy of 12 known broad-spectrum anti-enterovirals both individually and in combinations against different enteroviruses in vitro. We identified several novel, synergistic two-drug and three-drug combinations that demonstrated significant inhibition of enterovirus infections in vitro. Specifically, the triple-drug combination of pleconaril, rupintrivir, and remdesivir exhibited remarkable efficacy against echovirus (EV) 1, EV6, EV11, and coxsackievirus (CV) B5, in human lung epithelial A549 cells. This combination surpassed the effectiveness of single-agent or dual-drug treatments, as evidenced by its ability to protect A549 cells from EV1-induced cytotoxicity across seven passages. Additionally, this triple-drug cocktail showed potent antiviral activity against EV-A71 in human intestinal organoids. Thus, our findings highlight the therapeutic potential of the pleconaril-rupintrivir-remdesivir combination as a broad-spectrum treatment option against a range of enterovirus infections. The study also paves the way towards development of strategic antiviral drug combinations with virus family coverage and high-resistance barriers.
Collapse
Affiliation(s)
- Aleksandr Ianevski
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway
| | - Irene Trøen Frøysa
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway
| | - Hilde Lysvand
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway
| | - Carlemi Calitz
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Teemu Smura
- Department of Virology, University of Helsinki, 00014 Helsinki, Finland; HUS Diagnostic Center, Clinical Microbiology, Helsinki University Hospital, University of Helsinki, 00029 Helsinki, Finland
| | | | - Erling Høyer
- Department of Medical Microbiology, Clinic for Laboratory Medicine, St. Olavs Hospital, 7028 Trondheim, Norway
| | - Jan Egil Afset
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway; Department of Medical Microbiology, Clinic for Laboratory Medicine, St. Olavs Hospital, 7028 Trondheim, Norway
| | - Adithya Sridhar
- OrganoVIR Labs, Dept of Pediatric Infectious Diseases, Emma Children's Hospital, Amsterdam University Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Katja C Wolthers
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Eva Zusinaite
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Tanel Tenson
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Reet Kurg
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Angel S Galabov
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Adelina Stoyanova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Magnar Bjørås
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway; Department of Microbiology, Oslo University Hospital and University of Oslo, 0372 Oslo, Norway
| | - Denis E Kainov
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway; Institute for Molecular Medicine Finland, University of Helsinki, 00014, Helsinki, Finland.
| |
Collapse
|
5
|
Mendonça SC, Gomes BA, Campos MF, da Fonseca TS, Esteves MEA, Andriolo BV, Cheohen CFDAR, Constant LEC, da Silva Costa S, Calil PT, Tucci AR, de Oliveira TKF, Rosa ADS, Ferreira VNDS, Lima JNH, Miranda MD, da Costa LJ, da Silva ML, Scotti MT, Allonso D, Leitão GG, Leitão SG. Myrtucommulones and Related Acylphloroglucinols from Myrtaceae as a Promising Source of Multitarget SARS-CoV-2 Cycle Inhibitors. Pharmaceuticals (Basel) 2024; 17:436. [PMID: 38675398 PMCID: PMC11054083 DOI: 10.3390/ph17040436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
The LABEXTRACT plant extract bank, featuring diverse members of the Myrtaceae family from Brazilian hot spot regions, provides a promising avenue for bioprospection. Given the pivotal roles of the Spike protein and 3CLpro and PLpro proteases in SARS-CoV-2 infection, this study delves into the correlations between the Myrtaceae species from the Atlantic Forest and these targets, as well as an antiviral activity through both in vitro and in silico analyses. The results uncovered notable inhibitory effects, with Eugenia prasina and E. mosenii standing out, while E. mosenii proved to be multitarget, presenting inhibition values above 72% in the three targets analyzed. All extracts inhibited viral replication in Calu-3 cells (EC50 was lower than 8.3 µg·mL-1). Chemometric analyses, through LC-MS/MS, encompassing prediction models and molecular networking, identified potential active compounds, such as myrtucommulones, described in the literature for their antiviral activity. Docking analyses showed that one undescribed myrtucommulone (m/z 841 [M - H]-) had a higher fitness score when interacting with the targets of this study, including ACE2, Spike, PLpro and 3CLpro of SARS-CoV-2. Also, the study concludes that Myrtaceae extracts, particularly from E. mosenii and E. prasina, exhibit promising inhibitory effects against crucial stages in SARS-CoV-2 infection. Compounds like myrtucommulones emerge as potential anti-SARS-CoV-2 agents, warranting further exploration.
Collapse
Affiliation(s)
- Simony Carvalho Mendonça
- Departamento de Produtos Naturais e Alimentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (S.C.M.); (B.A.G.); (M.F.C.)
| | - Brendo Araujo Gomes
- Departamento de Produtos Naturais e Alimentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (S.C.M.); (B.A.G.); (M.F.C.)
- Programa de Pós-Graduação em Biotecnologia Vegetal e Bioprocessos, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Mariana Freire Campos
- Departamento de Produtos Naturais e Alimentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (S.C.M.); (B.A.G.); (M.F.C.)
- Programa de Pós-Graduação em Biotecnologia Vegetal e Bioprocessos, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Thamirys Silva da Fonseca
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
| | - Maria Eduarda Alves Esteves
- Programa de Pós-Graduação em Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil; (M.E.A.E.); (M.L.d.S.)
| | - Bruce Veiga Andriolo
- Programa de Pós-Graduação em Biotecnologia, Instituto Nacional de Metrologia, Qualidade e Tecnologia, Duque de Caxias 25250-020, RJ, Brazil;
| | - Caio Felipe de Araujo Ribas Cheohen
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Centro de Ciências da Saúde, Instituto de Biodiversidade e Sustentabilidade NUPEM, Universidade Federal do Rio de Janeiro, Macaé 27965-045, RJ, Brazil;
| | - Larissa Esteves Carvalho Constant
- Programa de Pós-Graduação em Ciências Biológicas, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, RJ, Brazil; (L.E.C.C.); (S.d.S.C.); (D.A.)
| | - Stephany da Silva Costa
- Programa de Pós-Graduação em Ciências Biológicas, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, RJ, Brazil; (L.E.C.C.); (S.d.S.C.); (D.A.)
| | - Pedro Telles Calil
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, RJ, Brazil; (P.T.C.); (L.J.d.C.)
| | - Amanda Resende Tucci
- Laboratory of Morphology and Viral Morphogenesis, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, RJ, Brazil; (A.R.T.); (T.K.F.d.O.); (A.d.S.R.); (V.N.d.S.F.); (J.N.H.L.); (M.D.M.)
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, RJ, Brazil
| | - Thamara Kelcya Fonseca de Oliveira
- Laboratory of Morphology and Viral Morphogenesis, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, RJ, Brazil; (A.R.T.); (T.K.F.d.O.); (A.d.S.R.); (V.N.d.S.F.); (J.N.H.L.); (M.D.M.)
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, RJ, Brazil
| | - Alice dos Santos Rosa
- Laboratory of Morphology and Viral Morphogenesis, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, RJ, Brazil; (A.R.T.); (T.K.F.d.O.); (A.d.S.R.); (V.N.d.S.F.); (J.N.H.L.); (M.D.M.)
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, RJ, Brazil
| | - Vivian Neuza dos Santos Ferreira
- Laboratory of Morphology and Viral Morphogenesis, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, RJ, Brazil; (A.R.T.); (T.K.F.d.O.); (A.d.S.R.); (V.N.d.S.F.); (J.N.H.L.); (M.D.M.)
| | - Julia Nilo Henrique Lima
- Laboratory of Morphology and Viral Morphogenesis, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, RJ, Brazil; (A.R.T.); (T.K.F.d.O.); (A.d.S.R.); (V.N.d.S.F.); (J.N.H.L.); (M.D.M.)
| | - Milene Dias Miranda
- Laboratory of Morphology and Viral Morphogenesis, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, RJ, Brazil; (A.R.T.); (T.K.F.d.O.); (A.d.S.R.); (V.N.d.S.F.); (J.N.H.L.); (M.D.M.)
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, RJ, Brazil
| | - Luciana Jesus da Costa
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, RJ, Brazil; (P.T.C.); (L.J.d.C.)
| | - Manuela Leal da Silva
- Programa de Pós-Graduação em Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil; (M.E.A.E.); (M.L.d.S.)
- Programa de Pós-Graduação em Biotecnologia, Instituto Nacional de Metrologia, Qualidade e Tecnologia, Duque de Caxias 25250-020, RJ, Brazil;
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Centro de Ciências da Saúde, Instituto de Biodiversidade e Sustentabilidade NUPEM, Universidade Federal do Rio de Janeiro, Macaé 27965-045, RJ, Brazil;
| | - Marcus Tullius Scotti
- Departamento de Química, Universidade Federal da Paraíba, João Pessoa 58033-455, PB, Brazil;
| | - Diego Allonso
- Programa de Pós-Graduação em Ciências Biológicas, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, RJ, Brazil; (L.E.C.C.); (S.d.S.C.); (D.A.)
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Gilda Guimarães Leitão
- Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Suzana Guimarães Leitão
- Departamento de Produtos Naturais e Alimentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (S.C.M.); (B.A.G.); (M.F.C.)
- Programa de Pós-Graduação em Biotecnologia Vegetal e Bioprocessos, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
| |
Collapse
|
6
|
Rushing BR, Thessen AE, Soliman GA, Ramesh A, Sumner SCJ. The Exposome and Nutritional Pharmacology and Toxicology: A New Application for Metabolomics. EXPOSOME 2023; 3:osad008. [PMID: 38766521 PMCID: PMC11101153 DOI: 10.1093/exposome/osad008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The exposome refers to all of the internal and external life-long exposures that an individual experiences. These exposures, either acute or chronic, are associated with changes in metabolism that will positively or negatively influence the health and well-being of individuals. Nutrients and other dietary compounds modulate similar biochemical processes and have the potential in some cases to counteract the negative effects of exposures or enhance their beneficial effects. We present herein the concept of Nutritional Pharmacology/Toxicology which uses high-information metabolomics workflows to identify metabolic targets associated with exposures. Using this information, nutritional interventions can be designed toward those targets to mitigate adverse effects or enhance positive effects. We also discuss the potential for this approach in precision nutrition where nutrients/diet can be used to target gene-environment interactions and other subpopulation characteristics. Deriving these "nutrient cocktails" presents an opportunity to modify the effects of exposures for more beneficial outcomes in public health.
Collapse
Affiliation(s)
- Blake R. Rushing
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anne E Thessen
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ghada A. Soliman
- Department of Environmental, Occupational and Geospatial Health Sciences, City University of New York-Graduate School of Public Health and Health Policy, New York, NY, USA
| | - Aramandla Ramesh
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, Meharry Medical College, Nashville, TN, USA
| | - Susan CJ Sumner
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
7
|
Abstract
There are at least 21 families of enveloped viruses that infect mammals, and many contain members of high concern for global human health. All enveloped viruses have a dedicated fusion protein or fusion complex that enacts the critical genome-releasing membrane fusion event that is essential before viral replication within the host cell interior can begin. Because all enveloped viruses enter cells by fusion, it behooves us to know how viral fusion proteins function. Viral fusion proteins are also major targets of neutralizing antibodies, and hence they serve as key vaccine immunogens. Here we review current concepts about viral membrane fusion proteins focusing on how they are triggered, structural intermediates between pre- and postfusion forms, and their interplay with the lipid bilayers they engage. We also discuss cellular and therapeutic interventions that thwart virus-cell membrane fusion.
Collapse
Affiliation(s)
- Judith M White
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA;
| | - Amanda E Ward
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Laura Odongo
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Lukas K Tamm
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
8
|
Odongo L, Habtegebrael BH, Kiessling V, White JM, Tamm LK. A novel in vitro system of supported planar endosomal membranes (SPEMs) reveals an enhancing role for cathepsin B in the final stage of Ebola virus fusion and entry. Microbiol Spectr 2023; 11:e0190823. [PMID: 37728342 PMCID: PMC10581071 DOI: 10.1128/spectrum.01908-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/17/2023] [Indexed: 09/21/2023] Open
Abstract
Ebola virus (EBOV) causes a hemorrhagic fever with fatality rates up to 90%. The EBOV entry process is complex and incompletely understood. Following attachment to host cells, EBOV is trafficked to late endosomes/lysosomes where its glycoprotein (GP) is processed to a 19-kDa form, which binds to the EBOV intracellular receptor Niemann-Pick type C1. We previously showed that the cathepsin protease inhibitor, E-64d, blocks infection by pseudovirus particles bearing 19-kDa GP, suggesting that further cathepsin action is needed to trigger fusion. This, however, has not been demonstrated directly. Since 19-kDa Ebola GP fusion occurs in late endosomes, we devised a system in which enriched late endosomes are used to prepare supported planar endosomal membranes (SPEMs), and fusion of fluorescent (pseudo)virus particles is monitored by total internal reflection fluorescence microscopy. We validated the system by demonstrating the pH dependencies of influenza virus hemagglutinin (HA)-mediated and Lassa virus (LASV) GP-mediated fusion. Using SPEMs, we showed that fusion mediated by 19-kDa Ebola GP is dependent on low pH, enhanced by Ca2+, and augmented by the addition of cathepsins. Subsequently, we found that E-64d inhibits full fusion, but not lipid mixing, mediated by 19-kDa GP, which we corroborated with the reversible cathepsin inhibitor VBY-825. Hence, we provide both gain- and loss-of-function evidence that further cathepsin action enhances the fusion activity of 19-kDa Ebola GP. In addition to providing new insights into how Ebola GP mediates fusion, the approach we developed employing SPEMs can now be broadly used for studies of virus and toxin entry through endosomes. IMPORTANCE Ebola virus is the causative agent of Ebola virus disease, which is severe and frequently lethal. EBOV gains entry into cells via late endosomes/lysosomes. The events immediately preceding fusion of the viral and endosomal membranes are incompletely understood. In this study, we report a novel in vitro system for studying virus fusion with endosomal membranes. We validated the system by demonstrating the low pH dependencies of influenza and Lassa virus fusion. Moreover, we show that further cathepsin B action enhances the fusion activity of the primed Ebola virus glycoprotein. Finally, this model endosomal membrane system should be useful in studying the mechanisms of bilayer breaching by other enveloped viruses, by non-enveloped viruses, and by acid-activated bacterial toxins.
Collapse
Affiliation(s)
- Laura Odongo
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Betelihem H. Habtegebrael
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Volker Kiessling
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Judith M. White
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia, USA
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Lukas K. Tamm
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
9
|
Tucci AR, da Rosa RM, Rosa AS, Augusto Chaves O, Ferreira VNS, Oliveira TKF, Coutinho Souza DD, Borba NRR, Dornelles L, Rocha NS, Mayer JCP, da Rocha JBT, Rodrigues OED, Miranda MD. Antiviral Effect of 5'-Arylchalcogeno-3-aminothymidine Derivatives in SARS-CoV-2 Infection. Molecules 2023; 28:6696. [PMID: 37764472 PMCID: PMC10537738 DOI: 10.3390/molecules28186696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/04/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
The understanding that zidovudine (ZDV or azidothymidine, AZT) inhibits the RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 and that chalcogen atoms can increase the bioactivity and reduce the toxicity of AZT has directed our search for the discovery of novel potential anti-coronavirus compounds. Here, the antiviral activity of selenium and tellurium containing AZT derivatives in human type II pneumocytes cell model (Calu-3) and monkey kidney cells (Vero E6) infected with SARS-CoV-2, and their toxic effects on these cells, was evaluated. Cell viability analysis revealed that organoselenium (R3a-R3e) showed lower cytotoxicity than organotellurium (R3f, R3n-R3q), with CC50 ≥ 100 µM. The R3b and R3e were particularly noteworthy for inhibiting viral replication in both cell models and showed better selectivity index. In Vero E6, the EC50 values for R3b and R3e were 2.97 ± 0.62 µM and 1.99 ± 0.42 µM, respectively, while in Calu-3, concentrations of 3.82 ± 1.42 µM and 1.92 ± 0.43 µM (24 h treatment) and 1.33 ± 0.35 µM and 2.31 ± 0.54 µM (48 h) were observed, respectively. The molecular docking calculations were carried out to main protease (Mpro), papain-like protease (PLpro), and RdRp following non-competitive, competitive, and allosteric inhibitory approaches. The in silico results suggested that the organoselenium is a potential non-competitive inhibitor of RdRp, interacting in the allosteric cavity located in the palm region. Overall, the cell-based results indicated that the chalcogen-zidovudine derivatives were more potent than AZT in inhibiting SARS-CoV-2 replication and that the compounds R3b and R3e play an important inhibitory role, expanding the knowledge about the promising therapeutic capacity of organoselenium against COVID-19.
Collapse
Affiliation(s)
- Amanda Resende Tucci
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, RJ, Brazil; (A.R.T.); (A.S.R.); (V.N.S.F.); (T.K.F.O.); (D.D.C.S.); (N.R.R.B.)
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, RJ, Brazil
| | - Raquel Mello da Rosa
- LabSelen-NanoBio—Departamento de Química, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil; (R.M.d.R.); (L.D.); (N.S.R.); (J.C.P.M.)
| | - Alice Santos Rosa
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, RJ, Brazil; (A.R.T.); (A.S.R.); (V.N.S.F.); (T.K.F.O.); (D.D.C.S.); (N.R.R.B.)
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, RJ, Brazil
| | - Otávio Augusto Chaves
- CQC-IMS, Departamento de Química, Universidade de Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
- Laboratório de Imunofarmacologia, Centro de Pesquisa, Inovação e Vigilância em COVID-19 e Emergências Sanitárias (CPIV), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil
| | - Vivian Neuza Santos Ferreira
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, RJ, Brazil; (A.R.T.); (A.S.R.); (V.N.S.F.); (T.K.F.O.); (D.D.C.S.); (N.R.R.B.)
| | - Thamara Kelcya Fonseca Oliveira
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, RJ, Brazil; (A.R.T.); (A.S.R.); (V.N.S.F.); (T.K.F.O.); (D.D.C.S.); (N.R.R.B.)
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, RJ, Brazil
| | - Daniel Dias Coutinho Souza
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, RJ, Brazil; (A.R.T.); (A.S.R.); (V.N.S.F.); (T.K.F.O.); (D.D.C.S.); (N.R.R.B.)
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, RJ, Brazil
| | - Nathalia Roberto Resende Borba
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, RJ, Brazil; (A.R.T.); (A.S.R.); (V.N.S.F.); (T.K.F.O.); (D.D.C.S.); (N.R.R.B.)
| | - Luciano Dornelles
- LabSelen-NanoBio—Departamento de Química, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil; (R.M.d.R.); (L.D.); (N.S.R.); (J.C.P.M.)
| | - Nayra Salazar Rocha
- LabSelen-NanoBio—Departamento de Química, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil; (R.M.d.R.); (L.D.); (N.S.R.); (J.C.P.M.)
| | - João Candido Pilar Mayer
- LabSelen-NanoBio—Departamento de Química, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil; (R.M.d.R.); (L.D.); (N.S.R.); (J.C.P.M.)
| | - João B. Teixeira da Rocha
- Programa de Pós-Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil;
| | - Oscar Endrigo D. Rodrigues
- LabSelen-NanoBio—Departamento de Química, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil; (R.M.d.R.); (L.D.); (N.S.R.); (J.C.P.M.)
| | - Milene Dias Miranda
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, RJ, Brazil; (A.R.T.); (A.S.R.); (V.N.S.F.); (T.K.F.O.); (D.D.C.S.); (N.R.R.B.)
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, RJ, Brazil
| |
Collapse
|
10
|
Lopez-Orozco J, Fayad N, Khan JQ, Felix-Lopez A, Elaish M, Rohamare M, Sharma M, Falzarano D, Pelletier J, Wilson J, Hobman TC, Kumar A. The RNA Interference Effector Protein Argonaute 2 Functions as a Restriction Factor Against SARS-CoV-2. J Mol Biol 2023; 435:168170. [PMID: 37271493 PMCID: PMC10238125 DOI: 10.1016/j.jmb.2023.168170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 05/17/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
Argonaute 2 (Ago2) is a key component of the RNA interference (RNAi) pathway, a gene-regulatory system that is present in most eukaryotes. Ago2 uses microRNAs (miRNAs) and small interfering RNAs (siRNAs) for targeting to homologous mRNAs which are then degraded or translationally suppressed. In plants and invertebrates, the RNAi pathway has well-described roles in antiviral defense, but its function in limiting viral infections in mammalian cells is less well understood. Here, we examined the role of Ago2 in replication of the betacoronavirus SARS-CoV-2, the etiologic agent of COVID-19. Microscopic analyses of infected cells revealed that a pool of Ago2 closely associates with viral replication sites and gene ablation studies showed that loss of Ago2 resulted in over 1,000-fold increase in peak viral titers. Replication of the alphacoronavirus 229E was also significantly increased in cells lacking Ago2. The antiviral activity of Ago2 was dependent on both its ability to bind small RNAs and its endonuclease function. Interestingly, in cells lacking Dicer, an upstream component of the RNAi pathway, viral replication was the same as in parental cells. This suggests that the antiviral activity of Ago2 is independent of Dicer processed miRNAs. Deep sequencing of infected cells by other groups identified several SARS-CoV-2-derived small RNAs that bind to Ago2. A mutant virus lacking the most abundant ORF7A-derived viral miRNA was found to be significantly less sensitive to Ago2-mediated restriction. This combined with our findings that endonuclease and small RNA-binding functions of Ago2 are required for its antiviral function, suggests that Ago2-small viral RNA complexes target nascent viral RNA produced at replication sites for cleavage. Further studies are required to elucidate the processing mechanism of the viral small RNAs that are used by Ago2 to limit coronavirus replication.
Collapse
Affiliation(s)
- Joaquin Lopez-Orozco
- Department of Cell Biology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | - Nawell Fayad
- Department of Cell Biology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | - Juveriya Qamar Khan
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Alberto Felix-Lopez
- Department of Medical Microbiology & Immunology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | - Mohamed Elaish
- Department of Cell Biology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | - Megha Rohamare
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Maansi Sharma
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Darryl Falzarano
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Canada; Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Canada
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, Canada
| | - Joyce Wilson
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Tom C Hobman
- Department of Cell Biology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada; Department of Medical Microbiology & Immunology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Canada.
| | - Anil Kumar
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada.
| |
Collapse
|
11
|
Barua S, Kaltenboeck B, Juan YC, Bird RC, Wang C. Comparative Evaluation of GS-441524, Teriflunomide, Ruxolitinib, Molnupiravir, Ritonavir, and Nirmatrelvir for In Vitro Antiviral Activity against Feline Infectious Peritonitis Virus. Vet Sci 2023; 10:513. [PMID: 37624300 PMCID: PMC10459838 DOI: 10.3390/vetsci10080513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023] Open
Abstract
Feline infectious peritonitis (FIP), caused by feline coronavirus (FcoV), is considered one of the most enigmatic diseases in cats. Developing effective drugs for FIP is crucial due to its global prevalence and severity. In this study, six antiviral drugs were tested for their cytotoxicity, cell viability, and antiviral efficacies in Crandell-Reese feline kidney cells. A cytotoxicity assay demonstrated that these drugs were safe to be used with essentially no cytotoxicity with concentrations as high as 250 µM for ruxolitinib; 125 µM for GS441524; 63 µM for teriflunomide, molnupiravir, and nirmatrelvir; and 16 µM for ritonavir. GS441524 and nirmatrelvir exhibited the least detrimental effects on the CRFK cells, with 50% cytotoxic concentration (CC50) values of 260.0 µM and 279.1 µM, respectively, while ritonavir showed high toxicity (CC50 = 39.9 µM). In the dose-response analysis, GS441524, nirmatrelvir, and molnupiravir demonstrated promising results with selectivity index values of 165.54, 113.67, and 29.27, respectively, against FIPV. Our study suggests that nirmatrelvir and molnupiravir hold potential for FIPV treatment and could serve as alternatives to GS441524. Continued research and development of antiviral drugs are essential to ensure the well-being of companion animals and improve our preparedness for future outbreaks of coronaviruses affecting animals and humans alike.
Collapse
Affiliation(s)
| | | | | | | | - Chengming Wang
- Department of Pathobiology, Auburn University College of Veterinary Medicine, Auburn, AL 36830, USA; (S.B.); (B.K.); (Y.-C.J.); (R.C.B.)
| |
Collapse
|
12
|
Gidari A, Sabbatini S, Schiaroli E, Bastianelli S, Pierucci S, Busti C, Saraca LM, Capogrossi L, Pasticci MB, Francisci D. Synergistic Activity of Remdesivir-Nirmatrelvir Combination on a SARS-CoV-2 In Vitro Model and a Case Report. Viruses 2023; 15:1577. [PMID: 37515263 PMCID: PMC10385213 DOI: 10.3390/v15071577] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND This study aims to investigate the activity of the remdesivir-nirmatrelvir combination against Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) and to report a case of Coronavirus Disease 2019 (COVID-19) cured with this combination. METHODS A Vero E6 cell-based infection assay was used to investigate the in vitro activity of the remdesivir-nirmatrelvir combination. The SARS-CoV-2 strains tested were 20A.EU1, BA.1 and BA.5. After incubation, a viability assay was performed. The supernatants were collected and used for viral titration. The Highest Single Agent (HSA) reference model was calculated. An HSA score >10 is considered synergic. RESULTS Remdesivir and nirmatrelvir showed synergistic activity at 48 and 72 h, with an HSA score of 52.8 and 28.6, respectively (p < 0.0001). These data were confirmed by performing supernatant titration and against the omicron variants: the combination reduced the viral titer better than the more active compound alone. An immunocompromised patient with prolonged and critical COVID-19 was successfully treated with remdesivir, nirmatrelvir/ritonavir, tixagevimab/cilgavimab and dexamethasone, with an excellent clinical-radiological response. However, she required further off-label prolonged therapy with nirmatrelvir/ritonavir until she tested negative. CONCLUSIONS Remdesivir-nirmatrelvir combination has synergic activity in vitro. This combination may have a role in immunosuppressed patients with severe COVID-19 and prolonged viral shedding.
Collapse
Affiliation(s)
- Anna Gidari
- Department of Medicine and Surgery, Clinic of Infectious Diseases, "Santa Maria della Misericordia" Hospital, University of Perugia, 06123 Perugia, Italy
- Clinic of Infectious Diseases, "Santa Maria" Hospital, Terni, 05100 Terni, Italy
| | - Samuele Sabbatini
- Department of Medicine and Surgery, Medical Microbiology Section, University of Perugia, 06123 Perugia, Italy
| | - Elisabetta Schiaroli
- Department of Medicine and Surgery, Clinic of Infectious Diseases, "Santa Maria della Misericordia" Hospital, University of Perugia, 06123 Perugia, Italy
| | - Sabrina Bastianelli
- Department of Medicine and Surgery, Clinic of Infectious Diseases, "Santa Maria della Misericordia" Hospital, University of Perugia, 06123 Perugia, Italy
| | - Sara Pierucci
- Department of Medicine and Surgery, Clinic of Infectious Diseases, "Santa Maria della Misericordia" Hospital, University of Perugia, 06123 Perugia, Italy
| | - Chiara Busti
- Department of Medicine and Surgery, Clinic of Infectious Diseases, "Santa Maria della Misericordia" Hospital, University of Perugia, 06123 Perugia, Italy
| | - Lavinia Maria Saraca
- Clinic of Infectious Diseases, "Santa Maria" Hospital, Terni, 05100 Terni, Italy
| | - Luca Capogrossi
- Department of Medicine and Surgery, Clinic of Infectious Diseases, "Santa Maria della Misericordia" Hospital, University of Perugia, 06123 Perugia, Italy
| | - Maria Bruna Pasticci
- Department of Medicine and Surgery, Clinic of Infectious Diseases, "Santa Maria della Misericordia" Hospital, University of Perugia, 06123 Perugia, Italy
- Clinic of Infectious Diseases, "Santa Maria" Hospital, Terni, 05100 Terni, Italy
| | - Daniela Francisci
- Department of Medicine and Surgery, Clinic of Infectious Diseases, "Santa Maria della Misericordia" Hospital, University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
13
|
Simonetti L, Nilsson J, McInerney G, Ivarsson Y, Davey NE. SLiM-binding pockets: an attractive target for broad-spectrum antivirals. Trends Biochem Sci 2023; 48:420-427. [PMID: 36623987 DOI: 10.1016/j.tibs.2022.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 01/08/2023]
Abstract
Short linear motif (SLiM)-mediated interactions offer a unique strategy for viral intervention due to their compact interfaces, ease of convergent evolution, and key functional roles. Consequently, many viruses extensively mimic host SLiMs to hijack or deregulate cellular pathways and the same motif-binding pocket is often targeted by numerous unrelated viruses. A toolkit of therapeutics targeting commonly mimicked SLiMs could provide prophylactic and therapeutic broad-spectrum antivirals and vastly improve our ability to treat ongoing and future viral outbreaks. In this opinion article, we discuss the therapeutic relevance of SLiMs, advocating their suitability as targets for broad-spectrum antiviral inhibitors.
Collapse
Affiliation(s)
| | - Jakob Nilsson
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Faculty of Health and Medical Sciences, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Gerald McInerney
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ylva Ivarsson
- Department of Chemistry - BMC, Husargatan 3, 751 23 Uppsala, Sweden
| | - Norman E Davey
- Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| |
Collapse
|
14
|
Khadilkar A, Bunch ZL, Wagoner J, Ravindran V, Oda JM, Vidar WS, Clark TN, Manwill PK, Todd DA, Barr SA, Olinger LK, Fink SL, Strangman WK, Linington RG, MacMillan JB, Cech NB, Polyak SJ. Modulation of in Vitro SARS-CoV-2 Infection by Stephania tetrandra and Its Alkaloid Constituents. JOURNAL OF NATURAL PRODUCTS 2023; 86:1061-1073. [PMID: 37043739 PMCID: PMC10108733 DOI: 10.1021/acs.jnatprod.3c00159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Indexed: 05/05/2023]
Abstract
Botanical natural products have been widely consumed for their purported usefulness against COVID-19. Here, six botanical species from multiple sources and 173 isolated natural product compounds were screened for blockade of wild-type (WT) SARS-CoV-2 infection in human 293T epithelial cells overexpressing ACE-2 and TMPRSS2 protease (293TAT). Antiviral activity was demonstrated by an extract from Stephania tetrandra. Extract fractionation, liquid chromatography-mass spectrometry (LC-MS), antiviral assays, and computational analyses revealed that the alkaloid fraction and purified alkaloids tetrandrine, fangchinoline, and cepharanthine inhibited WT SARS-CoV-2 infection. The alkaloids and alkaloid fraction also inhibited the delta variant of concern but not WT SARS-CoV-2 in VeroAT cells. Membrane permeability assays demonstrate that the alkaloids are biologically available, although fangchinoline showed lower permeability than tetrandrine. At high concentrations, the extract, alkaloid fractions, and pure alkaloids induced phospholipidosis in 293TAT cells and less so in VeroAT cells. Gene expression profiling during virus infection suggested that alkaloid fraction and tetrandrine displayed similar effects on cellular gene expression and pathways, while fangchinoline showed distinct effects on cells. Our study demonstrates a multifaceted approach to systematically investigate the diverse activities conferred by complex botanical mixtures, their cell-context specificity, and their pleiotropic effects on biological systems.
Collapse
Affiliation(s)
- Aswad Khadilkar
- Department
of Chemistry and Biochemistry, University
of California, Santa
Cruz, California 95964, United States
| | - Zoie L. Bunch
- Department
of Chemistry and Biochemistry, University
of North Carolina, Greensboro, North Carolina 27412, United States
| | - Jessica Wagoner
- Department
of Laboratory Medicine and Pathology, University
of Washington, Seattle, Washington 98195,United States
| | - Vandana Ravindran
- Oslo
Centre for Biostatistics and Epidemiology (OCBE), Faculty of Medicine, University of Oslo, Oslo 0313, Norway
| | - Jessica M. Oda
- Department
of Laboratory Medicine and Pathology, University
of Washington, Seattle, Washington 98195,United States
| | - Warren S. Vidar
- Department
of Chemistry and Biochemistry, University
of North Carolina, Greensboro, North Carolina 27412, United States
| | - Trevor N. Clark
- Department
of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Preston K. Manwill
- Department
of Chemistry and Biochemistry, University
of North Carolina, Greensboro, North Carolina 27412, United States
| | - Daniel A. Todd
- Department
of Chemistry and Biochemistry, University
of North Carolina, Greensboro, North Carolina 27412, United States
| | - Sarah A. Barr
- Department
of Chemistry and Biochemistry, University
of North Carolina Wilmington, Wilmington, North Carolina 28403, United States
| | - Lauren K. Olinger
- Department
of Biology and Marine Biology, University
of North Carolina Wilmington, Wilmington, North Carolina 28403, United States
| | - Susan L. Fink
- Department
of Laboratory Medicine and Pathology, University
of Washington, Seattle, Washington 98195,United States
| | - Wendy K. Strangman
- Department
of Chemistry and Biochemistry, University
of North Carolina Wilmington, Wilmington, North Carolina 28403, United States
| | - Roger G. Linington
- Department
of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - John B. MacMillan
- Department
of Chemistry and Biochemistry, University
of California, Santa
Cruz, California 95964, United States
| | - Nadja B. Cech
- Department
of Chemistry and Biochemistry, University
of North Carolina, Greensboro, North Carolina 27412, United States
| | - Stephen J. Polyak
- Department
of Laboratory Medicine and Pathology, University
of Washington, Seattle, Washington 98195,United States
| |
Collapse
|
15
|
Yang K, Wang C, Kreutzberger AJB, White KI, Pfuetzner RA, Esquivies L, Kirchhausen T, Brunger AT. Structure-based design of a SARS-CoV-2 Omicron-specific inhibitor. Proc Natl Acad Sci U S A 2023; 120:e2300360120. [PMID: 36940324 PMCID: PMC10068829 DOI: 10.1073/pnas.2300360120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/13/2023] [Indexed: 03/22/2023] Open
Abstract
The Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) introduced a relatively large number of mutations, including three mutations in the highly conserved heptad repeat 1 (HR1) region of the spike glycoprotein (S) critical for its membrane fusion activity. We show that one of these mutations, N969K induces a substantial displacement in the structure of the heptad repeat 2 (HR2) backbone in the HR1HR2 postfusion bundle. Due to this mutation, fusion-entry peptide inhibitors based on the Wuhan strain sequence are less efficacious. Here, we report an Omicron-specific peptide inhibitor designed based on the structure of the Omicron HR1HR2 postfusion bundle. Specifically, we inserted an additional residue in HR2 near the Omicron HR1 K969 residue to better accommodate the N969K mutation and relieve the distortion in the structure of the HR1HR2 postfusion bundle it introduced. The designed inhibitor recovers the loss of inhibition activity of the original longHR2_42 peptide with the Wuhan strain sequence against the Omicron variant in both a cell-cell fusion assay and a vesicular stomatitis virus (VSV)-SARS-CoV-2 chimera infection assay, suggesting that a similar approach could be used to combat future variants. From a mechanistic perspective, our work suggests the interactions in the extended region of HR2 may mediate the initial landing of HR2 onto HR1 during the transition of the S protein from the prehairpin intermediate to the postfusion state.
Collapse
Affiliation(s)
- Kailu Yang
- HHMI, Stanford University, Stanford, CA94305
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA94305
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA94305
- Department of Structural Biology, Stanford University, Stanford, CA94305
- Department of Photon Science, Stanford University, Stanford, CA94305
| | - Chuchu Wang
- HHMI, Stanford University, Stanford, CA94305
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA94305
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA94305
- Department of Structural Biology, Stanford University, Stanford, CA94305
- Department of Photon Science, Stanford University, Stanford, CA94305
| | - Alex J. B. Kreutzberger
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA02115
- Department of Pediatrics, Harvard Medical School, Boston, MA02115
| | - K. Ian White
- HHMI, Stanford University, Stanford, CA94305
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA94305
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA94305
- Department of Structural Biology, Stanford University, Stanford, CA94305
- Department of Photon Science, Stanford University, Stanford, CA94305
| | - Richard A. Pfuetzner
- HHMI, Stanford University, Stanford, CA94305
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA94305
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA94305
- Department of Structural Biology, Stanford University, Stanford, CA94305
- Department of Photon Science, Stanford University, Stanford, CA94305
| | - Luis Esquivies
- HHMI, Stanford University, Stanford, CA94305
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA94305
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA94305
- Department of Structural Biology, Stanford University, Stanford, CA94305
- Department of Photon Science, Stanford University, Stanford, CA94305
| | - Tomas Kirchhausen
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA02115
- Department of Pediatrics, Harvard Medical School, Boston, MA02115
- Department of Cell Biology, Harvard Medical School, Boston, MA02115
| | - Axel T. Brunger
- HHMI, Stanford University, Stanford, CA94305
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA94305
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA94305
- Department of Structural Biology, Stanford University, Stanford, CA94305
- Department of Photon Science, Stanford University, Stanford, CA94305
| |
Collapse
|
16
|
Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform. iScience 2023; 26:105944. [PMID: 36644320 PMCID: PMC9822553 DOI: 10.1016/j.isci.2023.105944] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/07/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
Reliable, easy-to-handle phenotypic screening platforms are needed for the identification of anti-SARS-CoV-2 compounds. Here, we present caspase 3/7 activity as a readout for monitoring the replication of SARS-CoV-2 isolates from different variants, including a remdesivir-resistant strain, and of other coronaviruses in numerous cell culture models, independently of cytopathogenic effect formation. Compared to other models, the Caco-2 subline Caco-2-F03 displayed superior performance. It possesses a stable SARS-CoV-2 susceptibility phenotype and does not produce false-positive hits due to drug-induced phospholipidosis. A proof-of-concept screen of 1,796 kinase inhibitors identified known and novel antiviral drug candidates including inhibitors of phosphoglycerate dehydrogenase (PHGDH), CDC like kinase 1 (CLK-1), and colony stimulating factor 1 receptor (CSF1R). The activity of the PHGDH inhibitor NCT-503 was further increased in combination with the hexokinase II (HK2) inhibitor 2-deoxy-D-glucose, which is in clinical development for COVID-19. In conclusion, caspase 3/7 activity detection in SARS-CoV-2-infected Caco-2-F03 cells provides a simple phenotypic high-throughput screening platform for SARS-CoV-2 drug candidates that reduces false-positive hits.
Collapse
|
17
|
Abstract
Lassa virus (LASV) is endemic in the rodent populations of Sierra Leone, Nigeria and other countries in West Africa. Spillover to humans occurs frequently and results in Lassa fever, a viral haemorrhagic fever (VHF) associated with a high case fatality rate. Despite advances, fundamental gaps in knowledge of the immunology, epidemiology, ecology and pathogenesis of Lassa fever persist. More frequent outbreaks, the potential for further geographic expansion of Mastomys natalensis and other rodent reservoirs, the ease of procurement and possible use and weaponization of LASV, the frequent importation of LASV to North America and Europe, and the emergence of novel LASV strains in densely populated West Africa have driven new initiatives to develop countermeasures for LASV. Although promising candidates are being evaluated, as yet there are no approved vaccines or therapeutics for human use. This Review discusses the virology of LASV, the clinical course of Lassa fever and the progress towards developing medical countermeasures.
Collapse
Affiliation(s)
- Robert F Garry
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA, USA.
- Zalgen Labs, Frederick, MD, USA.
- Global Viral Network, Baltimore, MD, USA.
| |
Collapse
|
18
|
Ma M, Lei X. A dual graph neural network for drug-drug interactions prediction based on molecular structure and interactions. PLoS Comput Biol 2023; 19:e1010812. [PMID: 36701288 PMCID: PMC9879511 DOI: 10.1371/journal.pcbi.1010812] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/12/2022] [Indexed: 01/27/2023] Open
Abstract
Expressive molecular representation plays critical roles in researching drug design, while effective methods are beneficial to learning molecular representations and solving related problems in drug discovery, especially for drug-drug interactions (DDIs) prediction. Recently, a lot of work has been put forward using graph neural networks (GNNs) to forecast DDIs and learn molecular representations. However, under the current GNNs structure, the majority of approaches learn drug molecular representation from one-dimensional string or two-dimensional molecular graph structure, while the interaction information between chemical substructure remains rarely explored, and it is neglected to identify key substructures that contribute significantly to the DDIs prediction. Therefore, we proposed a dual graph neural network named DGNN-DDI to learn drug molecular features by using molecular structure and interactions. Specifically, we first designed a directed message passing neural network with substructure attention mechanism (SA-DMPNN) to adaptively extract substructures. Second, in order to improve the final features, we separated the drug-drug interactions into pairwise interactions between each drug's unique substructures. Then, the features are adopted to predict interaction probability of a DDI tuple. We evaluated DGNN-DDI on real-world dataset. Compared to state-of-the-art methods, the model improved DDIs prediction performance. We also conducted case study on existing drugs aiming to predict drug combinations that may be effective for the novel coronavirus disease 2019 (COVID-19). Moreover, the visual interpretation results proved that the DGNN-DDI was sensitive to the structure information of drugs and able to detect the key substructures for DDIs. These advantages demonstrated that the proposed method enhanced the performance and interpretation capability of DDI prediction modeling.
Collapse
Affiliation(s)
- Mei Ma
- School of Computer Science, Shaanxi Normal University, Xi’an, China
- School of Mathematics and Statistics, Qinghai Normal University, Qinghai, China
| | - Xiujuan Lei
- School of Computer Science, Shaanxi Normal University, Xi’an, China
- * E-mail:
| |
Collapse
|
19
|
Cheng W, Xu T, Cui L, Xue Z, Liu J, Yang R, Qin S, Guo Y. Discovery of Amphiphilic Xanthohumol Derivatives as Membrane-Targeting Antimicrobials against Methicillin-Resistant Staphylococcus aureus. J Med Chem 2023; 66:962-975. [PMID: 36584344 DOI: 10.1021/acs.jmedchem.2c01793] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Infections caused by multidrug-resistant (MDR) bacteria are increasing worldwide, and with limited clinically available antibiotics, it is urgent to develop new antimicrobials to combat these MDR bacteria. Here, a class of novel amphiphilic xanthohumol derivatives were prepared using a building-block approach. Bioactivity assays showed that the molecule IV15 not only exhibited a remarkable antibacterial effect against clinical methicillin-resistant Staphylococcus aureus (MRSA) isolates (MICs: 1-2 μg/mL) but also had the advantages of rapid bactericidal properties, low toxicity, good plasma stability, and not readily inducing bacterial resistance. Mechanistic studies indicated that IV15 has good membrane-targeting ability and can bind to phosphatidylglycerol and cardiolipin in bacterial membranes, thus disrupting the bacterial cell membranes and causing increased intracellular reactive oxygen species and leakage of proteins and DNA, eventually resulting in bacterial death. Notably, IV15 exhibited remarkable in vivo anti-MRSA efficacy, superior to vancomycin, making it a potential candidate to combat MRSA infections.
Collapse
Affiliation(s)
- Wanqing Cheng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Ting Xu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Liping Cui
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Zihan Xue
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Jifeng Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Ruige Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Shangshang Qin
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Yong Guo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan Province, China
| |
Collapse
|
20
|
Nelfinavir: An Old Ally in the COVID-19 Fight? Microorganisms 2022; 10:microorganisms10122471. [PMID: 36557724 PMCID: PMC9783559 DOI: 10.3390/microorganisms10122471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
After almost three years of the pandemic, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is still spreading around the world, causing notable sanitary and social issues. New antiviral therapies are constantly under investigation. However, few options have been approved for the treatment of COVID-19. Clinical trials are currently ongoing to evaluate the efficacy of nelfinavir on mild−moderate COVID-19. This study aims to investigate the activity of this compound on SARS-CoV-2 “Variants of Concern” (VOCs), comparing its effectiveness with the approved drugs remdesivir and molnupiravir. The experiments were conducted in a biosafety level 3 facility. In this study, we used a Vero-E6-cell-based infection assay to investigate the in vitro activity of nelfinavir, molnupiravir, and remdesivir. Four strains of SARS-CoV-2 were tested: 20A.EU1, B.1.1.7, P.1, and B.1.617.2. All compounds reached micromolar/submicromolar EC50, EC90, and EC99. Furthermore, the Cmax/EC50 and Cmax/EC90 ratios were >1 for all compounds and all variants tested. Our study demonstrated that nelfinavir, as molnupiravir, and remdesivir are effective in vitro on SARS-CoV-2 variants.
Collapse
|
21
|
Ravindran V, Wagoner J, Athanasiadis P, Den Hartigh AB, Sidorova JM, Ianevski A, Fink SL, Frigessi A, White J, Polyak SJ, Aittokallio T. Discovery of host-directed modulators of virus infection by probing the SARS-CoV-2-host protein-protein interaction network. Brief Bioinform 2022; 23:bbac456. [PMID: 36305426 PMCID: PMC9677461 DOI: 10.1093/bib/bbac456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/05/2022] [Accepted: 09/23/2022] [Indexed: 12/14/2022] Open
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic has highlighted the need to better understand virus-host interactions. We developed a network-based method that expands the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-host protein interaction network and identifies host targets that modulate viral infection. To disrupt the SARS-CoV-2 interactome, we systematically probed for potent compounds that selectively target the identified host proteins with high expression in cells relevant to COVID-19. We experimentally tested seven chemical inhibitors of the identified host proteins for modulation of SARS-CoV-2 infection in human cells that express ACE2 and TMPRSS2. Inhibition of the epigenetic regulators bromodomain-containing protein 4 (BRD4) and histone deacetylase 2 (HDAC2), along with ubiquitin-specific peptidase (USP10), enhanced SARS-CoV-2 infection. Such proviral effect was observed upon treatment with compounds JQ1, vorinostat, romidepsin and spautin-1, when measured by cytopathic effect and validated by viral RNA assays, suggesting that the host proteins HDAC2, BRD4 and USP10 have antiviral functions. We observed marked differences in antiviral effects across cell lines, which may have consequences for identification of selective modulators of viral infection or potential antiviral therapeutics. While network-based approaches enable systematic identification of host targets and selective compounds that may modulate the SARS-CoV-2 interactome, further developments are warranted to increase their accuracy and cell-context specificity.
Collapse
Affiliation(s)
- Vandana Ravindran
- Oslo Centre for Biostatistics and Epidemiology (OCBE), Faculty of Medicine, University of Oslo, Oslo, Norway
- Institute for Cancer Research, Department of Cancer Genetics, Oslo University Hospital, Oslo, Norway
| | - Jessica Wagoner
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, USA
| | - Paschalis Athanasiadis
- Oslo Centre for Biostatistics and Epidemiology (OCBE), Faculty of Medicine, University of Oslo, Oslo, Norway
- Institute for Cancer Research, Department of Cancer Genetics, Oslo University Hospital, Oslo, Norway
| | - Andreas B Den Hartigh
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, USA
| | - Julia M Sidorova
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, USA
| | - Aleksandr Ianevski
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Susan L Fink
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, USA
| | - Arnoldo Frigessi
- Oslo Centre for Biostatistics and Epidemiology (OCBE), Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Judith White
- Department of Cell Biology and Department of Microbiology, University of Virginia, Charlottesville, VA, USA
| | - Stephen J Polyak
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, USA
| | - Tero Aittokallio
- Oslo Centre for Biostatistics and Epidemiology (OCBE), Faculty of Medicine, University of Oslo, Oslo, Norway
- Institute for Cancer Research, Department of Cancer Genetics, Oslo University Hospital, Oslo, Norway
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
22
|
Askr H, Elgeldawi E, Aboul Ella H, Elshaier YAMM, Gomaa MM, Hassanien AE. Deep learning in drug discovery: an integrative review and future challenges. Artif Intell Rev 2022; 56:5975-6037. [PMID: 36415536 PMCID: PMC9669545 DOI: 10.1007/s10462-022-10306-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2022] [Indexed: 11/18/2022]
Abstract
Recently, using artificial intelligence (AI) in drug discovery has received much attention since it significantly shortens the time and cost of developing new drugs. Deep learning (DL)-based approaches are increasingly being used in all stages of drug development as DL technology advances, and drug-related data grows. Therefore, this paper presents a systematic Literature review (SLR) that integrates the recent DL technologies and applications in drug discovery Including, drug-target interactions (DTIs), drug-drug similarity interactions (DDIs), drug sensitivity and responsiveness, and drug-side effect predictions. We present a review of more than 300 articles between 2000 and 2022. The benchmark data sets, the databases, and the evaluation measures are also presented. In addition, this paper provides an overview of how explainable AI (XAI) supports drug discovery problems. The drug dosing optimization and success stories are discussed as well. Finally, digital twining (DT) and open issues are suggested as future research challenges for drug discovery problems. Challenges to be addressed, future research directions are identified, and an extensive bibliography is also included.
Collapse
Affiliation(s)
- Heba Askr
- Faculty of Computers and Artificial Intelligence, University of Sadat City, Sadat City, Egypt
| | - Enas Elgeldawi
- Computer Science Department, Faculty of Science, Minia University, Minia, Egypt
| | - Heba Aboul Ella
- Faculty of Pharmacy and Drug Technology, Chinese University in Egypt (CUE), Cairo, Egypt
| | | | - Mamdouh M. Gomaa
- Computer Science Department, Faculty of Science, Minia University, Minia, Egypt
| | - Aboul Ella Hassanien
- Faculty of Computers and Artificial Intelligence, Cairo University, Cairo, Egypt
| |
Collapse
|
23
|
Shetnev AA, Volobueva AS, Panova VA, Zarubaev VV, Baykov SV. Design of 4-Substituted Sulfonamidobenzoic Acid Derivatives Targeting Coxsackievirus B3. Life (Basel) 2022; 12:1832. [PMID: 36362987 PMCID: PMC9694965 DOI: 10.3390/life12111832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 10/29/2023] Open
Abstract
A series of novel 4-substituted sulfonamidobenzoic acid derivatives was synthesized as the structural evolution of 4-(4-(1,3-dioxoisoindolin-2-yl)phenylsulfonamido)benzoic acid, which is the known inhibitor of the enterovirus life cycle. Antiviral properties of prepared compounds were evaluated in vitro using phenotypic screening and viral yield reduction assay. Their capsid binding properties were verified in thermostability assay. We identified two new hit-compounds (4 and 7a) with high activity against the coxsackievirus B3 (Nancy, CVB3) strain with potencies (IC50 values of 4.29 and 4.22 μM, respectively) which are slightly superior to the reference compound 2a (IC50 5.54 μM). Both hits changed the heat inactivation of CVB3 in vitro to higher temperatures, suggesting that they are capsid binders, as 2a is. The results obtained can serve as a basis for further development of the lead compounds for novel drug design to combat enterovirus infection.
Collapse
Affiliation(s)
- Anton A. Shetnev
- Pharmaceutical Technology Transfer Center, Yaroslavl State Pedagogical University Named after K.D. Ushinsky, 108 Respublikanskaya St., 150000 Yaroslavl, Russia
| | | | - Valeria A. Panova
- Pharmaceutical Technology Transfer Center, Yaroslavl State Pedagogical University Named after K.D. Ushinsky, 108 Respublikanskaya St., 150000 Yaroslavl, Russia
| | - Vladimir V. Zarubaev
- Saint Petersburg Pasteur Institute, 14 Mira Street, 197101 Saint Petersburg, Russia
| | - Sergey V. Baykov
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 Saint Petersburg, Russia
| |
Collapse
|
24
|
Bojkova D, Stack R, Rothenburger T, Kandler JD, Ciesek S, Wass MN, Michaelis M, Cinatl J. Synergism of interferon-beta with antiviral drugs against SARS-CoV-2 variants. J Infect 2022; 85:573-607. [PMID: 35917841 PMCID: PMC9339084 DOI: 10.1016/j.jinf.2022.07.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 02/05/2023]
Affiliation(s)
- Denisa Bojkova
- Institute for Medical Virology, University Hospital, Goethe University, Frankfurt am Main, Germany
| | - Richard Stack
- School of Biosciences, University of Kent, Canterbury, UK
| | - Tamara Rothenburger
- Institute for Medical Virology, University Hospital, Goethe University, Frankfurt am Main, Germany
| | - Joshua D Kandler
- Institute for Medical Virology, University Hospital, Goethe University, Frankfurt am Main, Germany
| | - Sandra Ciesek
- Institute for Medical Virology, University Hospital, Goethe University, Frankfurt am Main, Germany; German Center for Infection Research, DZIF, External partner site, Frankfurt am Main, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch Translational Medicine und Pharmacology, Frankfurt am Main, Germany
| | - Mark N Wass
- School of Biosciences, University of Kent, Canterbury, UK.
| | | | - Jindrich Cinatl
- Institute for Medical Virology, University Hospital, Goethe University, Frankfurt am Main, Germany; Dr. Petra Joh-Forschungshaus, Frankfurt am Main, Germany.
| |
Collapse
|
25
|
Wagoner J, Herring S, Hsiang TY, Ianevski A, Biering SB, Xu S, Hoffmann M, Pöhlmann S, Gale M, Aittokallio T, Schiffer JT, White JM, Polyak SJ. Combinations of Host- and Virus-Targeting Antiviral Drugs Confer Synergistic Suppression of SARS-CoV-2. Microbiol Spectr 2022; 10:e0333122. [PMID: 36190406 PMCID: PMC9718484 DOI: 10.1128/spectrum.03331-22] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 02/08/2023] Open
Abstract
Three directly acting antivirals (DAAs) demonstrated substantial reduction in COVID-19 hospitalizations and deaths in clinical trials. However, these agents did not completely prevent severe illness and are associated with cases of rebound illness and viral shedding. Combination regimens can enhance antiviral potency, reduce the emergence of drug-resistant variants, and lower the dose of each component in the combination. Concurrently targeting virus entry and virus replication offers opportunities to discover synergistic drug combinations. While combination antiviral drug treatments are standard for chronic RNA virus infections, no antiviral combination therapy has been approved for SARS-CoV-2. Here, we demonstrate that combining host-targeting antivirals (HTAs) that target TMPRSS2 and hence SARS-CoV-2 entry, with the DAA molnupiravir, which targets SARS-CoV-2 replication, synergistically suppresses SARS-CoV-2 infection in Calu-3 lung epithelial cells. Strong synergy was observed when molnupiravir, an oral drug, was combined with three TMPRSS2 (HTA) oral or inhaled inhibitors: camostat, avoralstat, or nafamostat. The combination of camostat plus molnupiravir was also effective against the beta and delta variants of concern. The pyrimidine biosynthesis inhibitor brequinar combined with molnupiravir also conferred robust synergistic inhibition. These HTA+DAA combinations had similar potency to the synergistic all-DAA combination of molnupiravir plus nirmatrelvir, the protease inhibitor found in paxlovid. Pharmacodynamic modeling allowed estimates of antiviral potency at all possible concentrations of each agent within plausible therapeutic ranges, suggesting possible in vivo efficacy. The triple combination of camostat, brequinar, and molnupiravir further increased antiviral potency. These findings support the development of HTA+DAA combinations for pandemic response and preparedness. IMPORTANCE Imagine a future viral pandemic where if you test positive for the new virus, you can quickly take some medicines at home for a few days so that you do not get too sick. To date, only single drugs have been approved for outpatient use against SARS-CoV-2, and we are learning that these have some limitations and may succumb to drug resistance. Here, we show that combinations of two oral drugs are better than the single ones in blocking SARS-CoV-2, and we use mathematical modeling to show that these drug combinations are likely to work in people. We also show that a combination of three oral drugs works even better at eradicating the virus. Our findings therefore bode well for the development of oral drug cocktails for at home use at the first sign of an infection by a coronavirus or other emerging viral pathogens.
Collapse
Affiliation(s)
- Jessica Wagoner
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Shawn Herring
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Tien-Ying Hsiang
- Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Aleksandr Ianevski
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Scott B. Biering
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California—Berkeley, Berkeley, California, USA
| | - Shuang Xu
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, University of Göttingen, Göttingen, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, University of Göttingen, Göttingen, Germany
| | - Michael Gale
- Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Oslo Centre for Biostatistics and Epidemiology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Joshua T. Schiffer
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Division of Allergy and Infectious Disease, University of Washington, Seattle, Washington, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Judith M. White
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA
- Department of Microbiology, University of Virginia, Charlottesville, Virginia, USA
| | - Stephen J. Polyak
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
26
|
Dhawan M, Saied AA, Mitra S, Alhumaydhi FA, Emran TB, Wilairatana P. Omicron variant (B.1.1.529) and its sublineages: What do we know so far amid the emergence of recombinant variants of SARS-CoV-2? Biomed Pharmacother 2022; 154:113522. [PMID: 36030585 PMCID: PMC9376347 DOI: 10.1016/j.biopha.2022.113522] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 12/19/2022] Open
Abstract
Since the start of the COVID-19 pandemic, numerous variants of SARS-CoV-2 have been reported worldwide. The advent of variants of concern (VOCs) raises severe concerns amid the serious containment efforts against COVID-19 that include physical measures, pharmacological repurposing, immunization, and genomic/community surveillance. Omicron variant (B.1.1.529) has been identified as a highly modified, contagious, and crucial variant among the five VOCs of SARS-CoV-2. The increased affinity of the spike protein (S-protein), and host receptor, angiotensin converting enzyme-2 (ACE-2), due to a higher number of mutations in the receptor-binding domain (RBD) of the S-protein has been proposed as the primary reason for the decreased efficacy of majorly available vaccines against the Omicron variant and the increased transmissible nature of the Omicron variant. Because of its significant competitive advantage, the Omicron variant and its sublineages swiftly surpassed other variants to become the dominant circulating lineages in a number of nations. The Omicron variant has been identified as a prevalent strain in the United Kingdom and South Africa. Furthermore, the emergence of recombinant variants through the conjunction of the Omicron variant with other variants or by the mixing of the Omicron variant's sublineages/subvariants poses a major threat to humanity. This raises various issues and hazards regarding the Omicron variant and its sublineages, such as an Omicron variant breakout in susceptible populations among fully vaccinated persons. As a result, understanding the features and genetic implications of this variant is crucial. Hence, we explained in depth the evolution and features of the Omicron variant and analyzed the repercussions of spike mutations on infectiousness, dissemination ability, viral entry mechanism, and immune evasion. We also presented a viewpoint on feasible strategies for precluding and counteracting any future catastrophic emergence and spread of the omicron variant and its sublineages that could result in a detrimental wave of COVID-19 cases.
Collapse
Affiliation(s)
- Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana 141004, Punjab, India; Trafford College, Altrincham, Manchester WA14 5PQ, UK.
| | - AbdulRahman A Saied
- National Food Safety Authority (NFSA), Aswan Branch, Aswan 81511, Egypt; Ministry of Tourism and Antiquities, Aswan Office, Aswan 81511, Egypt
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh; Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh.
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
27
|
Blasiak A, Truong ATL, Wang P, Hooi L, Chye DH, Tan SB, You K, Remus A, Allen DM, Chai LYA, Chan CEZ, Lye DCB, Tan GYG, Seah SGK, Chow EKH, Ho D. IDentif.AI-Omicron: Harnessing an AI-Derived and Disease-Agnostic Platform to Pinpoint Combinatorial Therapies for Clinically Actionable Anti-SARS-CoV-2 Intervention. ACS NANO 2022; 16:15141-15154. [PMID: 35977379 DOI: 10.1021/acsnano.2c06366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanomedicine-based and unmodified drug interventions to address COVID-19 have evolved over the course of the pandemic as more information is gleaned and virus variants continue to emerge. For example, some early therapies (e.g., antibodies) have experienced markedly decreased efficacy. Due to a growing concern of future drug resistant variants, current drug development strategies are seeking to find effective drug combinations. In this study, we used IDentif.AI, an artificial intelligence-derived platform, to investigate the drug-drug and drug-dose interaction space of six promising experimental or currently deployed therapies at various concentrations: EIDD-1931, YH-53, nirmatrelvir, AT-511, favipiravir, and auranofin. The drugs were tested in vitro against a live B.1.1.529 (Omicron) virus first in monotherapy and then in 50 strategic combinations designed to interrogate the interaction space of 729 possible combinations. Key findings and interactions were then further explored and validated in an additional experimental round using an expanded concentration range. Overall, we found that few of the tested drugs showed moderate efficacy as monotherapies in the actionable concentration range, but combinatorial drug testing revealed significant dose-dependent drug-drug interactions, specifically between EIDD-1931 and YH-53, as well as nirmatrelvir and YH-53. Checkerboard validation analysis confirmed these synergistic interactions and also identified an interaction between EIDD-1931 and favipiravir in an expanded range. Based on the platform nature of IDentif.AI, these findings may support further explorations of the dose-dependent drug interactions between different drug classes in further pre-clinical and clinical trials as possible combinatorial therapies consisting of unmodified and nanomedicine-enabled drugs, to combat current and future COVID-19 strains and other emerging pathogens.
Collapse
Affiliation(s)
- Agata Blasiak
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 117583, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Anh T L Truong
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 117583, Singapore
| | - Peter Wang
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 117583, Singapore
| | - Lissa Hooi
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
| | - De Hoe Chye
- Defence Medical and Environmental Research Institute, DSO National Laboratories, 117510, Singapore
| | - Shi-Bei Tan
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 117583, Singapore
| | - Kui You
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 117583, Singapore
| | - Alexandria Remus
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 117583, Singapore
| | - David Michael Allen
- Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117545, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore
- Division of Infectious Disease, Department of Medicine, National University Hospital, 119074, Singapore
| | - Louis Yi Ann Chai
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore
- Division of Infectious Disease, Department of Medicine, National University Hospital, 119074, Singapore
| | - Conrad E Z Chan
- Defence Medical and Environmental Research Institute, DSO National Laboratories, 117510, Singapore
- National Centre for Infectious Diseases (NCID), Jalan Tan Tock Seng, 308442, Singapore
| | - David C B Lye
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore
- National Centre for Infectious Diseases (NCID), Jalan Tan Tock Seng, 308442, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, 308433, Singapore
| | - Gek-Yen G Tan
- Defence Medical and Environmental Research Institute, DSO National Laboratories, 117510, Singapore
| | - Shirley G K Seah
- Defence Medical and Environmental Research Institute, DSO National Laboratories, 117510, Singapore
| | - Edward Kai-Hua Chow
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 117583, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
| | - Dean Ho
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 117583, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| |
Collapse
|
28
|
Madariaga-Mazón A, Naveja JJ, Becerra A, Alberto Campillo-Balderas J, Hernández-Morales R, Jácome R, Lazcano A, Martinez-Mayorga K. Subtle structural differences of nucleotide analogs may impact SARS-CoV-2 RNA-dependent RNA polymerase and exoribonuclease activity. Comput Struct Biotechnol J 2022; 20:5181-5192. [PMID: 36097553 PMCID: PMC9452397 DOI: 10.1016/j.csbj.2022.08.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/05/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022] Open
Abstract
The rapid spread and public health impact of the novel SARS-CoV-2 variants that cause COVID-19 continue to produce major global impacts and social distress. Several vaccines were developed in record time to prevent and limit the spread of the infection, thus playing a pivotal role in controlling the pandemic. Although the repurposing of available drugs attempts to provide therapies of immediate access against COVID-19, there is still a need for developing specific treatments for this disease. Remdesivir, molnupiravir and Paxlovid remain the only evidence-supported antiviral drugs to treat COVID-19 patients, and only in severe cases. To contribute on the search of potential Covid-19 therapeutic agents, we targeted the viral RNA-dependent RNA polymerase (RdRp) and the exoribonuclease (ExoN) following two strategies. First, we modeled and analyzed nucleoside analogs sofosbuvir, remdesivir, favipiravir, ribavirin, and molnupiravir at three key binding sites on the RdRp-ExoN complex. Second, we curated and virtually screened a database containing 517 nucleotide analogs in the same binding sites. Finally, we characterized key interactions and pharmacophoric features presumably involved in viral replication halting at multiple sites. Our results highlight structural modifications that might lead to more potent SARS-CoV-2 inhibitors against an expansive range of variants and provide a collection of nucleotide analogs useful for screening campaigns.
Collapse
Affiliation(s)
- Abraham Madariaga-Mazón
- Instituto de Química Unidad Mérida, Universidad Nacional Autónoma de México, Carretera Mérida-Tetiz Km. 4.5, Ucú, Yucatán, Mexico.,Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas Unidad Mérida, Universidad Nacional Autónoma de México, Sierra Papacál Mérida, Yucatán 97302, Mexico
| | - José J Naveja
- Instituto de Química Unidad Mérida, Universidad Nacional Autónoma de México, Carretera Mérida-Tetiz Km. 4.5, Ucú, Yucatán, Mexico.,Institute for Molecular Biology and University Cancer Center (UCT) Mainz, Germany
| | - Arturo Becerra
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | | - Rodrigo Jácome
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Antonio Lazcano
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico.,El Colegio Nacional, Mexico City, Mexico
| | - Karina Martinez-Mayorga
- Instituto de Química Unidad Mérida, Universidad Nacional Autónoma de México, Carretera Mérida-Tetiz Km. 4.5, Ucú, Yucatán, Mexico.,Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas Unidad Mérida, Universidad Nacional Autónoma de México, Sierra Papacál Mérida, Yucatán 97302, Mexico
| |
Collapse
|
29
|
Lam HYI, Guan JS, Mu Y. In Silico Repurposed Drugs against Monkeypox Virus. Molecules 2022; 27:molecules27165277. [PMID: 36014515 PMCID: PMC9415168 DOI: 10.3390/molecules27165277] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 12/30/2022] Open
Abstract
Monkeypox is an emerging epidemic of concern. The disease is caused by the monkeypox virus and an increasing global incidence with a 2022 outbreak that has spread to Europe amid the COVID-19 pandemic. The new outbreak is associated with novel, previously undiscovered mutations and variants. Currently, the US Food and Drug Administration (FDA) approved poxvirus treatment involves the use of tecovirimat. However, there is otherwise limited pharmacopoeia and research interest in monkeypox. In this study, virtual screening and molecular dynamics were employed to explore the potential repurposing of multiple drugs previously approved by the FDA or other jurisdictions for other applications. Several drugs are predicted to tightly bind to viral proteins, which are crucial in viral replication, including molecules which show high potential for binding the monkeypox D13L capsid protein, whose inhibition has previously been demonstrated to suppress viral replication.
Collapse
Affiliation(s)
- Hilbert Yuen In Lam
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Dr, Singapore 637551, Singapore
- A*STAR Skin Research Labs, Agency of Science, Technology and Research, Singapore, 11 Mandalay Rd, #17-01, Singapore 308232, Singapore
| | - Jia Sheng Guan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Dr, Singapore 637551, Singapore
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Dr, Singapore 637551, Singapore
- Correspondence:
| |
Collapse
|
30
|
The Combination of Molnupiravir with Nirmatrelvir or GC376 Has a Synergic Role in the Inhibition of SARS-CoV-2 Replication In Vitro. Microorganisms 2022; 10:microorganisms10071475. [PMID: 35889194 PMCID: PMC9323947 DOI: 10.3390/microorganisms10071475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction: The development of effective vaccines has partially mitigated the trend of the SARS-CoV-2 pandemic; however, the need for orally administered antiviral drugs persists. This study aims to investigate the activity of molnupiravir in combination with nirmatrelvir or GC376 on SARS-CoV-2 to verify the synergistic effect. Methods: The SARS-CoV-2 strains 20A.EU, BA.1 and BA.2 were used to infect Vero E6 in presence of antiviral compounds alone or in combinations using five two-fold serial dilution of compound concentrations ≤EC90. After 48 and 72 h post-infection, viability was performed using MTT reduction assay. Supernatants were collected for plaque-assay titration. All experiments were performed in triplicate, each being repeated at least three times. The synergistic score was calculated using Synergy Finder version 2. Results: All compounds reached micromolar EC90. Molnupiravir and GC376 showed a synergistic activity at 48 h with an HSA score of 19.33 (p < 0.0001) and an additive activity at 72 h with an HSA score of 8.61 (p < 0.0001). Molnupiravir and nirmatrelvir showed a synergistic activity both at 48 h and 72 h with an HSA score of 14.2 (p = 0.01) and 13.08 (p < 0.0001), respectively. Conclusion: Molnupiravir associated with one of the two protease-inhibitors nirmatrelvir and GC376 showed good additive-synergic activity in vitro.
Collapse
|
31
|
Lin Q, Lu C, Hong Y, Li R, Chen J, Chen W, Chen J. Animal models for studying coronavirus infections and developing antiviral agents and vaccines. Antiviral Res 2022; 203:105345. [PMID: 35605699 PMCID: PMC9122840 DOI: 10.1016/j.antiviral.2022.105345] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/30/2022] [Accepted: 05/17/2022] [Indexed: 01/17/2023]
Abstract
In addition to severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV), SARS-CoV-2 has become the third deadly coronavirus that infects humans and causes the new coronavirus disease (COVID-19). COVID-19 has already caused more than six million deaths worldwide and it is likely the biggest pandemic of this century faced by mankind. Although many studies on SARS-CoV-2 have been conducted, a detailed understanding of SARS-CoV-2 and COVID-19 is still lacking. Animal models are indispensable for studying its pathogenesis and developing vaccines and antivirals. In this review, we analyze animal models of coronavirus infections and explore their applications on antivirals and vaccines.
Collapse
Affiliation(s)
- Qisheng Lin
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Chunni Lu
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Monash University, Clayton, Victoria 3168, Australia
| | - Yuqi Hong
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Runfeng Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Jinding Chen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Weisan Chen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia.
| | - Jianxin Chen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
32
|
Ianevski A, Giri AK, Aittokallio T. SynergyFinder 3.0: an interactive analysis and consensus interpretation of multi-drug synergies across multiple samples. Nucleic Acids Res 2022; 50:W739-W743. [PMID: 35580060 PMCID: PMC9252834 DOI: 10.1093/nar/gkac382] [Citation(s) in RCA: 239] [Impact Index Per Article: 79.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/16/2022] [Accepted: 04/29/2022] [Indexed: 11/26/2022] Open
Abstract
SynergyFinder (https://synergyfinder.fimm.fi) is a free web-application for interactive analysis and visualization of multi-drug combination response data. Since its first release in 2017, SynergyFinder has become a popular tool for multi-dose combination data analytics, partly because the development of its functionality and graphical interface has been driven by a diverse user community, including both chemical biologists and computational scientists. Here, we describe the latest upgrade of this community-effort, SynergyFinder release 3.0, introducing a number of novel features that support interactive multi-sample analysis of combination synergy, a novel consensus synergy score that combines multiple synergy scoring models, and an improved outlier detection functionality that eliminates false positive results, along with many other post-analysis options such as weighting of synergy by drug concentrations and distinguishing between different modes of synergy (potency and efficacy). Based on user requests, several additional improvements were also implemented, including new data visualizations and export options for multi-drug combinations. With these improvements, SynergyFinder 3.0 supports robust identification of consistent combinatorial synergies for multi-drug combinatorial discovery and clinical translation.
Collapse
Affiliation(s)
- Aleksandr Ianevski
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Finland.,Helsinki Institute for Information Technology (HIIT), Aalto University, Finland
| | - Anil K Giri
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Finland.,Foundation for the Finnish Cancer Institute (FCI), University of Helsinki, Finland
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Finland.,Helsinki Institute for Information Technology (HIIT), Aalto University, Finland.,Institute for Cancer Research, Department of Cancer Genetics, Oslo University Hospital, Norway.,Centre for Biostatistics and Epidemiology (OCBE), Faculty of Medicine, University of Oslo, Norway
| |
Collapse
|
33
|
Abstract
Broadly effective antiviral therapies must be developed to be ready for clinical trials, which should begin soon after the emergence of new life-threatening viruses. Here, we pave the way towards this goal by reviewing conserved druggable virus-host interactions, mechanisms of action, immunomodulatory properties of available broad-spectrum antivirals (BSAs), routes of BSA delivery, and interactions of BSAs with other antivirals. Based on the review, we concluded that the range of indications of BSAs can be expanded, and new pan- and cross-viral mono- and combinational therapies can be developed. We have also developed a new scoring algorithm that can help identify the most promising few of the thousands of potential BSAs and BSA-containing drug cocktails (BCCs) to prioritize their development during the critical period between the identification of a new virus and the development of virus-specific vaccines, drugs, and therapeutic antibodies.
Collapse
|
34
|
Aittokallio T. What are the current challenges for machine learning in drug discovery and repurposing? Expert Opin Drug Discov 2022; 17:423-425. [PMID: 35255749 DOI: 10.1080/17460441.2022.2050694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Tero Aittokallio
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland.,Institute for Cancer Research, Department of Cancer Genetics, Oslo University Hospital, Oslo, Norway.,Centre for Biostatistics and Epidemiology (OCBE), Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
35
|
Oksenych V, Kainov DE. Broad-Spectrum Antivirals and Antiviral Drug Combinations. Viruses 2022; 14:301. [PMID: 35215894 PMCID: PMC8876582 DOI: 10.3390/v14020301] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 12/24/2022] Open
Abstract
Viral diseases consistently pose a substantial economic and public health burden worldwide [...].
Collapse
Affiliation(s)
- Valentyn Oksenych
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway;
- Department for Cancer Research and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Denis E. Kainov
- Department for Cancer Research and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Institute of Technology, University of Tartu, 50090 Tartu, Estonia
| |
Collapse
|
36
|
Li P, Wang Y, Lavrijsen M, Lamers MM, de Vries AC, Rottier RJ, Bruno MJ, Peppelenbosch MP, Haagmans BL, Pan Q. SARS-CoV-2 Omicron variant is highly sensitive to molnupiravir, nirmatrelvir, and the combination. Cell Res 2022; 32:322-324. [PMID: 35058606 PMCID: PMC8771185 DOI: 10.1038/s41422-022-00618-w] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 12/31/2022] Open
|
37
|
Athanasiadis P, Ianevski A, Skånland SS, Aittokallio T. Computational Pipeline for Rational Drug Combination Screening in Patient-Derived Cells. Methods Mol Biol 2022; 2449:327-348. [PMID: 35507270 DOI: 10.1007/978-1-0716-2095-3_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In many complex diseases, such as cancers, resistance to monotherapies easily occurs, and longer-term treatment responses often require combinatorial therapies as next-line regimens. However, due to a massive number of possible drug combinations to test, there is a need for systematic and rational approaches to finding safe and effective drug combinations for each individual patient. This protocol describes an ecosystem of computational methods to guide high-throughput combinatorial screening that help experimental researchers to identify optimal drug combinations in terms of synergy, efficacy, and/or selectivity for further preclinical and clinical investigation. The methods are demonstrated in the context of combinatorial screening in primary cells of leukemia patients, where the translational aim is to identify drug combinations that show not only high synergy but also maximal cancer-selectivity. The mechanism-agnostic and cost-effective computational methods are widely applicable to various cancer types, which are amenable to drug testing, as the computational methods take as input only the phenotypic measurements of a subset of drug combinations, without requiring target information or genomic profiles of the patient samples.
Collapse
Affiliation(s)
- Paschalis Athanasiadis
- Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Oslo Centre for Biostatistics and Epidemiology, University of Oslo, Oslo, Norway
| | - Aleksandr Ianevski
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Sigrid S Skånland
- Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K. G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Tero Aittokallio
- Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
- Oslo Centre for Biostatistics and Epidemiology, University of Oslo, Oslo, Norway.
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
38
|
Ianevski A, Ahmad S, Anunnitipat K, Oksenych V, Zusinaite E, Tenson T, Bjørås M, Kainov DE. Seven classes of antiviral agents. Cell Mol Life Sci 2022; 79:605. [PMID: 36436108 PMCID: PMC9701656 DOI: 10.1007/s00018-022-04635-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 11/28/2022]
Abstract
The viral epidemics and pandemics have stimulated the development of known and the discovery of novel antiviral agents. About a hundred mono- and combination antiviral drugs have been already approved, whereas thousands are in development. Here, we briefly reviewed 7 classes of antiviral agents: neutralizing antibodies, neutralizing recombinant soluble human receptors, antiviral CRISPR/Cas systems, interferons, antiviral peptides, antiviral nucleic acid polymers, and antiviral small molecules. Interferons and some small molecules alone or in combinations possess broad-spectrum antiviral activity, which could be beneficial for treatment of emerging and re-emerging viral infections.
Collapse
Affiliation(s)
- Aleksandr Ianevski
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway
| | - Shahzaib Ahmad
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway
| | - Kraipit Anunnitipat
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway
| | - Valentyn Oksenych
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway
| | - Eva Zusinaite
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Tanel Tenson
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Magnar Bjørås
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway
| | - Denis E. Kainov
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway ,Institute of Technology, University of Tartu, 50411 Tartu, Estonia ,Institute for Molecular Medicine Finland, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|