1
|
Ambroise R, Takasugi P, Liu J, Qian L. Direct Cardiac Reprogramming in the Age of Computational Biology. J Cardiovasc Dev Dis 2024; 11:273. [PMID: 39330331 PMCID: PMC11432431 DOI: 10.3390/jcdd11090273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/28/2024] Open
Abstract
Heart disease continues to be one of the most fatal conditions worldwide. This is in part due to the maladaptive remodeling process by which ischemic cardiac tissue is replaced with a fibrotic scar. Direct cardiac reprogramming presents a unique solution for restoring injured cardiac tissue through the direct conversion of fibroblasts into induced cardiomyocytes, bypassing the transition through a pluripotent state. Since its inception in 2010, direct cardiac reprogramming using the transcription factors Gata4, Mef2c, and Tbx5 has revolutionized the field of cardiac regenerative medicine. Just over a decade later, the field has rapidly evolved through the expansion of identified molecular and genetic factors that can be used to optimize reprogramming efficiency. The integration of computational tools into the study of direct cardiac reprogramming has been critical to this progress. Advancements in transcriptomics, epigenetics, proteomics, genome editing, and machine learning have not only enhanced our understanding of the underlying mechanisms driving this cell fate transition, but have also driven innovations that push direct cardiac reprogramming closer to clinical application. This review article explores how these computational advancements have impacted and continue to shape the field of direct cardiac reprogramming.
Collapse
Affiliation(s)
- Rachelle Ambroise
- Department of Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Paige Takasugi
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jiandong Liu
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Li Qian
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
2
|
Shehaj A, Khristov V, Mareboina M, Tufano E, Abdeen A, Rizk E, Connor J. Genetic Biomarkers in Astrocytoma: Diagnostic, Prognostic, and Therapeutic Potential. World Neurosurg 2024; 189:339-350.e1. [PMID: 38857866 DOI: 10.1016/j.wneu.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024]
Abstract
Astrocytoma is the most common adult brain tumor, with glioblastoma being the deadliest neuro-related malignancy. Despite advances in oncology, the prognosis for astrocytoma, especially glioblastoma, remains poor, and tracking disease progression is challenging due to a lack of robust biomarkers. Genetic biomarkers, including microRNAs, cell-free DNA, circulating tumor DNA, circular RNA, and long noncoding RNA, can serve as potential diagnostic and therapeutic targets. In this review, we examine the existing literature, analyzing the various less established liquid and tumor genetic biomarkers and their potential to act as diagnostic, prognostic, and therapeutic targets. We highlight the clinical challenges and limitations in implementing liquid biopsy strategies in clinical practice. The article discusses the potential of liquid biopsies as valuable tools for personalized astrocytoma management while emphasizing the need for standardized protocols and further advancements to establish their clinical utility and therapeutic application.
Collapse
Affiliation(s)
- Andrea Shehaj
- Department of Neurosurgery, Penn State Hershey College of Medicine, Hershey, Pennsylvania, USA.
| | - Vladimir Khristov
- Department of Neurosurgery, Penn State Hershey College of Medicine, Hershey, Pennsylvania, USA
| | - Manvita Mareboina
- Department of Neurosurgery, Penn State Hershey College of Medicine, Hershey, Pennsylvania, USA
| | - Emily Tufano
- Department of Neurosurgery, Penn State Hershey College of Medicine, Hershey, Pennsylvania, USA
| | - Ahmed Abdeen
- Department of Neurosurgery, Penn State Hershey College of Medicine, Hershey, Pennsylvania, USA
| | - Elias Rizk
- Department of Neurosurgery, Penn State Hershey College of Medicine, Hershey, Pennsylvania, USA
| | - James Connor
- Department of Neurosurgery, Penn State Hershey College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
3
|
Pinto GV, Rai P, Kabekkodu SP, Karunasagar I, Kumar BK. Identification of circulating miRNA biomarkers in leptospirosis for early detection: A promising diagnostic approach. Microb Pathog 2024; 193:106781. [PMID: 38969187 DOI: 10.1016/j.micpath.2024.106781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Leptospirosis is a zoonotic disease of global significance, contributing to morbidity and mortality worldwide. It is endemic to tropical regions, with outbreaks during monsoons. The disease manifestations are similar to that of other febrile illness such as dengue, malaria hence often misdiagnosed and underreported. The zoonoses if undetected, progresses to cause severe life-threatening complications also known as Weil's disease. Routine diagnostic tests are based on the detection of antibodies in patient serum and are not accurate during the initial phase of the infection. Therefore, it is necessary to detect novel biomarkers that can be used in early detection of leptospirosis. Circulating miRNAs are known to be promising biomarkers for various diseases including cancer, tuberculosis, influenza; hence in this study the potential of miRNAs as biomarkers for leptospirosis was evaluated. A total of 30 leptospirosis cases were screened for the differential expression of 10 miRNA by RT-qPCR assay. The differential expression was calculated by relative quantification using healthy individuals as controls. Among the 10 miRNA,3 miRNA, miR-28-5p, miR-302c-3p and miR-302a-3p were reported to exhibit a significant trend of upregulation. Further their role in immune pathways and biological processes was investigated by KEGG analysis and Gene Ontology. The 3 miRNAs were observed to target various immune response pathways, thus confirming their role in host immune response. Based on the results obtained in this study, miR-28-5p, miR-302c-3p and miR-302a-3p can be considered as potential biomarkers for the detection of leptospirosis.
Collapse
Affiliation(s)
- Gillaine Vail Pinto
- Nitte (Deemed to Be University), Department of Infectious Diseases and Microbial Genomics, Nitte University Centre for Science Education and Research, Deralakatte, Mangalore, 575018, Karnataka, India
| | - Praveen Rai
- Nitte (Deemed to Be University), Department of Infectious Diseases and Microbial Genomics, Nitte University Centre for Science Education and Research, Deralakatte, Mangalore, 575018, Karnataka, India
| | - Shama Prakash Kabekkodu
- Nitte (Deemed to Be University), Department of General Medicine, K.S. Hegde Medical Academy, Deralakatte, Mangalore, 575018, Karnataka, India
| | - Indrani Karunasagar
- Nitte (Deemed to Be University), Department of Infectious Diseases and Microbial Genomics, Nitte University Centre for Science Education and Research, Deralakatte, Mangalore, 575018, Karnataka, India
| | - Ballamoole Krishna Kumar
- Nitte (Deemed to Be University), Department of Infectious Diseases and Microbial Genomics, Nitte University Centre for Science Education and Research, Deralakatte, Mangalore, 575018, Karnataka, India.
| |
Collapse
|
4
|
Garry DJ, Zhang J(J, Larson TA, Sadek HA, Garry MG. Networks that Govern Cardiomyocyte Proliferation to Facilitate Repair of the Injured Mammalian Heart. Methodist Debakey Cardiovasc J 2023; 19:16-25. [PMID: 38028968 PMCID: PMC10655759 DOI: 10.14797/mdcvj.1300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Cardiovascular diseases are the number one cause of death worldwide and in the United States (US). Cardiovascular diseases frequently progress to end-stage heart failure, and curative therapies are extremely limited. Intense interest has focused on deciphering the cascades and networks that govern cardiomyocyte proliferation and regeneration of the injured heart. For example, studies have shown that lower organisms such as the adult newt and adult zebrafish have the capacity to completely regenerate their injured heart with restoration of function. Similarly, the neonatal mouse and pig are also able to completely regenerate injured myocardium due to cardiomyocyte proliferation from preexisting cardiomyocytes. Using these animal models and transcriptome analyses, efforts have focused on the definition of factors and signaling pathways that can reactivate and induce cardiomyocyte proliferation in the adult mammalian injured heart. These studies and discoveries have the potential to define novel therapies to promote cardiomyocyte proliferation and repair of the injured, mammalian heart.
Collapse
Affiliation(s)
- Daniel J. Garry
- University of Minnesota, Minneapolis, Minnesota, US
- NorthStar Genomics, Eagan, Minnesota, US
| | | | | | | | - Mary G. Garry
- NorthStar Genomics, Eagan, Minnesota, US
- University of Minnesota, Minneapolis, MN
| |
Collapse
|
5
|
Li Z, Duan Y, Yan S, Zhang Y, Wu Y. The miR-302/367 cluster: Aging, inflammation, and cancer. Cell Biochem Funct 2023; 41:752-766. [PMID: 37555645 DOI: 10.1002/cbf.3836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/25/2023] [Indexed: 08/10/2023]
Abstract
MicroRNAs (miRNAs) are a class of noncoding RNAs that occupy a significant role in biological processes as important regulators of intracellular homeostasis. First, we will discuss the biological genesis and functions of the miR-302/367 cluster, including miR-302a, miR-302b, miR-302c, miR-302d, and miR-367, as well as their roles in physiologically healthy tissues. The second section of this study reviews the progress of the miR-302/367 cluster in the treatment of cancer, inflammation, and diseases associated with aging. This cluster's aberrant expression in cells and/or tissues exhibits similar or different effects in various diseases through molecular mechanisms such as proliferation, apoptosis, cycling, drug resistance, and invasion. This article also discusses the upstream and downstream regulatory networks of miR-302/367 clusters and their related mechanisms. Particularly because studies on the upstream regulatory molecules of miR-302/367 clusters, which include age-related macular degeneration, myocardial infarction, and cancer, have become more prevalent in recent years. MiR-302/367 cluster can be an important therapeutic target and the use of miRNAs in combination with other molecular markers may improve diagnostic or therapeutic capabilities, providing unique insights and a more dynamic view of various diseases. It is noted that miRNAs can be an important bio-diagnostic target and offer a promising method for illness diagnosis, prevention, and treatment.
Collapse
Affiliation(s)
- Zhou Li
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi Province, China
| | - Yan Duan
- Department of Stomatology, Shanxi Provincial People's Hospital, Taiyuan, Shanxi Province, China
| | - Shaofu Yan
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi Province, China
| | - Yao Zhang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi Province, China
| | - Yunxia Wu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi Province, China
- Department of Stomatology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| |
Collapse
|
6
|
Burgon PG, Weldrick JJ, Talab OMSA, Nadeer M, Nomikos M, Megeney LA. Regulatory Mechanisms That Guide the Fetal to Postnatal Transition of Cardiomyocytes. Cells 2023; 12:2324. [PMID: 37759546 PMCID: PMC10528641 DOI: 10.3390/cells12182324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Heart disease remains a global leading cause of death and disability, necessitating a comprehensive understanding of the heart's development, repair, and dysfunction. This review surveys recent discoveries that explore the developmental transition of proliferative fetal cardiomyocytes into hypertrophic postnatal cardiomyocytes, a process yet to be well-defined. This transition is key to the heart's growth and has promising therapeutic potential, particularly for congenital or acquired heart damage, such as myocardial infarctions. Although significant progress has been made, much work is needed to unravel the complex interplay of signaling pathways that regulate cardiomyocyte proliferation and hypertrophy. This review provides a detailed perspective for future research directions aimed at the potential therapeutic harnessing of the perinatal heart transitions.
Collapse
Affiliation(s)
- Patrick G. Burgon
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | - Jonathan J. Weldrick
- Department of Medicine, Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (J.J.W.); (L.A.M.)
| | | | - Muhammad Nadeer
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (O.M.S.A.T.)
| | - Michail Nomikos
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (O.M.S.A.T.)
| | - Lynn A. Megeney
- Department of Medicine, Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (J.J.W.); (L.A.M.)
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| |
Collapse
|
7
|
Maraghechi P, Aponte MTS, Ecker A, Lázár B, Tóth R, Szabadi NT, Gócza E. Pluripotency-Associated microRNAs in Early Vertebrate Embryos and Stem Cells. Genes (Basel) 2023; 14:1434. [PMID: 37510338 PMCID: PMC10379376 DOI: 10.3390/genes14071434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
MicroRNAs (miRNAs), small non-coding RNA molecules, regulate a wide range of critical biological processes, such as proliferation, cell cycle progression, differentiation, survival, and apoptosis, in many cell types. The regulatory functions of miRNAs in embryogenesis and stem cell properties have been extensively investigated since the early years of miRNA discovery. In this review, we will compare and discuss the impact of stem-cell-specific miRNA clusters on the maintenance and regulation of early embryonic development, pluripotency, and self-renewal of embryonic stem cells, particularly in vertebrates.
Collapse
Affiliation(s)
- Pouneh Maraghechi
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences; Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Szent-Györgyi Albert str. 4, 2100 Gödöllő, Hungary
| | - Maria Teresa Salinas Aponte
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences; Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Szent-Györgyi Albert str. 4, 2100 Gödöllő, Hungary
| | - András Ecker
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences; Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Szent-Györgyi Albert str. 4, 2100 Gödöllő, Hungary
| | - Bence Lázár
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences; Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Szent-Györgyi Albert str. 4, 2100 Gödöllő, Hungary
- National Centre for Biodiversity and Gene Conservation, Institute for Farm Animal Gene Conservation (NBGK-HGI), Isaszegi str. 200, 2100 Gödöllő, Hungary
| | - Roland Tóth
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences; Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Szent-Györgyi Albert str. 4, 2100 Gödöllő, Hungary
| | - Nikolett Tokodyné Szabadi
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences; Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Szent-Györgyi Albert str. 4, 2100 Gödöllő, Hungary
| | - Elen Gócza
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences; Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Szent-Györgyi Albert str. 4, 2100 Gödöllő, Hungary
| |
Collapse
|
8
|
Fedorova V, Amruz Cerna K, Oppelt J, Pospisilova V, Barta T, Mraz M, Bohaciakova D. MicroRNA Profiling of Self-Renewing Human Neural Stem Cells Reveals Novel Sets of Differentially Expressed microRNAs During Neural Differentiation In Vitro. Stem Cell Rev Rep 2023:10.1007/s12015-023-10524-2. [PMID: 36918496 PMCID: PMC10366325 DOI: 10.1007/s12015-023-10524-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
The involvement of microRNAs (miRNAs) in orchestrating self-renewal and differentiation of stem cells has been revealed in a number of recent studies. And while in human pluripotent stem cells, miRNAs have been directly linked to the core pluripotency network, including the cell cycle regulation and the maintenance of the self-renewing capacity, their role in the onset of differentiation in other contexts, such as determination of neural cell fate, remains poorly described. To bridge this gap, we used three model cell types to study miRNA expression patterns: human embryonic stem cells (hESCs), hESCs-derived self-renewing neural stem cells (NSCs), and differentiating NSCs. The comprehensive miRNA profiling presented here reveals novel sets of miRNAs differentially expressed during human neural cell fate determination in vitro. Furthermore, we report a miRNA expression profile of self-renewing human NSCs, which has been lacking to this date. Our data also indicates that miRNA clusters enriched in NSCs share the target-determining seed sequence with cell cycle regulatory miRNAs expressed in pluripotent hESCs. Lastly, our mechanistic experiments confirmed that cluster miR-17-92, one of the NSCs-enriched clusters, is directly transcriptionally regulated by transcription factor c-MYC.
Collapse
Affiliation(s)
- Veronika Fedorova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Katerina Amruz Cerna
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jan Oppelt
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Veronika Pospisilova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Tomas Barta
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marek Mraz
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Dasa Bohaciakova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic. .,International Clinical Research Center (ICRC), St. Anne's University Hospital, Brno, Czech Republic.
| |
Collapse
|
9
|
Gene Therapy for Cardiomyocyte Renewal: Cell Cycle, a Potential Therapeutic Target. Mol Diagn Ther 2023; 27:129-140. [PMID: 36512179 PMCID: PMC10123801 DOI: 10.1007/s40291-022-00625-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2022] [Indexed: 12/14/2022]
Abstract
Heart disease is the primary cause of death worldwide. Even though extensive research has been done, and many pharmacological and surgical treatments have been introduced to treat heart disease, the mortality rate still remains high. Gene therapy is widely used to understand molecular mechanisms of myocardial infarction and to treat cardiomyocyte loss. It was reported that adult cardiomyocytes proliferate at a very low rate; thus, targeting their proliferation has become a new regenerative therapeutic approach. Currently, re-activating cardiomyocyte proliferation appears to be one of the most promising methods to promote adult cardiomyocyte renewal. In this article, we highlight gene therapeutic targets of cell proliferation presently being pursued to re-activate the cell cycle of cardiomyocytes, including cell cycle regulators, transcription factors, microRNAs, signal transduction, and other contributing factors. We also summarize gene delivery vectors that have been used in cardiac research and major challenges to be overcome in the translation to the clinical approach and future directions.
Collapse
|
10
|
Zare A, Salehpour A, Khoradmehr A, Bakhshalizadeh S, Najafzadeh V, Almasi-Turk S, Mahdipour M, Shirazi R, Tamadon A. Epigenetic Modification Factors and microRNAs Network Associated with Differentiation of Embryonic Stem Cells and Induced Pluripotent Stem Cells toward Cardiomyocytes: A Review. Life (Basel) 2023; 13:life13020569. [PMID: 36836926 PMCID: PMC9965891 DOI: 10.3390/life13020569] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 02/22/2023] Open
Abstract
More research is being conducted on myocardial cell treatments utilizing stem cell lines that can develop into cardiomyocytes. All of the forms of cardiac illnesses have shown to be quite amenable to treatments using embryonic (ESCs) and induced pluripotent stem cells (iPSCs). In the present study, we reviewed the differentiation of these cell types into cardiomyocytes from an epigenetic standpoint. We also provided a miRNA network that is devoted to the epigenetic commitment of stem cells toward cardiomyocyte cells and related diseases, such as congenital heart defects, comprehensively. Histone acetylation, methylation, DNA alterations, N6-methyladenosine (m6a) RNA methylation, and cardiac mitochondrial mutations are explored as potential tools for precise stem cell differentiation.
Collapse
Affiliation(s)
- Afshin Zare
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 7514633196, Iran
| | - Aria Salehpour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 7514633196, Iran
| | - Arezoo Khoradmehr
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 7514633196, Iran
| | - Shabnam Bakhshalizadeh
- Reproductive Development, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Vahid Najafzadeh
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | - Sahar Almasi-Turk
- Department of Basic Sciences, School of Medicine, Bushehr University of Medical Sciences, Bushehr 7514633341, Iran
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 5166653431, Iran
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5166653431, Iran
- Correspondence: (M.M.); (R.S.); (A.T.)
| | - Reza Shirazi
- Department of Anatomy, School of Medical Sciences, Medicine & Health, UNSW Sydney, Sydney, NSW 2052, Australia
- Correspondence: (M.M.); (R.S.); (A.T.)
| | - Amin Tamadon
- PerciaVista R&D Co., Shiraz 7135644144, Iran
- Correspondence: (M.M.); (R.S.); (A.T.)
| |
Collapse
|
11
|
MiR-302a Regenerates Human Corneal Endothelial Cells against IFN-γ-Induced Cell Death. Cells 2022; 12:cells12010036. [PMID: 36611829 PMCID: PMC9818234 DOI: 10.3390/cells12010036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/08/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Damage to human corneal endothelial cells (hCECs) leads to bullous keratopathy because these cells cannot be regenerated in vivo. In this study, we investigated the protective role of microRNA (miR)-302a against interferon-γ (IFN-γ)-induced senescence and cell death of hCECs. Cultured hCECs were transfected with miR-302a and treated with IFN-γ (20 ng/mL) to evaluate the protective effect of miR-302a on IFN-γ-induced cell death. Senescence was evaluated by the senescence-associated β-galactosidase (SA-β-gal) assay, and the secretion of senescence-associated secretory phenotype (SASP) factors was analyzed. Mitochondrial function and endoplasmic reticulum (ER) stress were assessed. We revealed that miR-302a enhanced the cell viability and proliferation of hCECs and that IFN-γ increased the cell size, the number of SA-β-gal-positive cells, and SASP factors, and arrested the cell cycle, which was eliminated by miR-302a. miR-302a ameliorated mitochondrial oxidative stress and ER stress levels which were induced by IFN-γ. IFN-γ decreased the mitochondrial membrane potential and promoted autophagy, which was eliminated by miR-302a. The in vivo study showed that regeneration of rat CECs was promoted in the miR-302a group by inhibiting IFN-γ and enhancing mitochondrial function. In conclusion, miR-302a eliminated IFN-γ-induced senescence and cellular damage by regulating the oxidative and ER stress, and promoting the proliferation of CECs. Therefore, miR-302a may be a therapeutic option to protect hCECs against IFN-γ-induced stress.
Collapse
|
12
|
Rajabi A, Kayedi M, Rahimi S, Dashti F, Mirazimi SMA, Homayoonfal M, Mahdian SMA, Hamblin MR, Tamtaji OR, Afrasiabi A, Jafari A, Mirzaei H. Non-coding RNAs and glioma: Focus on cancer stem cells. Mol Ther Oncolytics 2022; 27:100-123. [PMID: 36321132 PMCID: PMC9593299 DOI: 10.1016/j.omto.2022.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Glioblastoma and gliomas can have a wide range of histopathologic subtypes. These heterogeneous histologic phenotypes originate from tumor cells with the distinct functions of tumorigenesis and self-renewal, called glioma stem cells (GSCs). GSCs are characterized based on multi-layered epigenetic mechanisms, which control the expression of many genes. This epigenetic regulatory mechanism is often based on functional non-coding RNAs (ncRNAs). ncRNAs have become increasingly important in the pathogenesis of human cancer and work as oncogenes or tumor suppressors to regulate carcinogenesis and progression. These RNAs by being involved in chromatin remodeling and modification, transcriptional regulation, and alternative splicing of pre-mRNA, as well as mRNA stability and protein translation, play a key role in tumor development and progression. Numerous studies have been performed to try to understand the dysregulation pattern of these ncRNAs in tumors and cancer stem cells (CSCs), which show robust differentiation and self-regeneration capacity. This review provides recent findings on the role of ncRNAs in glioma development and progression, particularly their effects on CSCs, thus accelerating the clinical implementation of ncRNAs as promising tumor biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Ali Rajabi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mehrdad Kayedi
- Department of Radiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shiva Rahimi
- School of Medicine,Fasa University of Medical Sciences, Fasa, Iran
| | - Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Amin Mahdian
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Omid Reza Tamtaji
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Afrasiabi
- Department of Internal Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ameneh Jafari
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
13
|
Sugawara T, Kawamoto Y, Kawasaki T, Umezawa A, Akutsu H. A single allele of the hsa-miR-302/367 cluster maintains human pluripotent stem cells. Regen Ther 2022; 21:37-45. [PMID: 35702483 PMCID: PMC9162946 DOI: 10.1016/j.reth.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/13/2022] [Accepted: 05/15/2022] [Indexed: 12/03/2022] Open
Abstract
Introduction In a diploid organism, two alleles from a single genetic locus are expressed to generate a normal phenotype. Heterozygous deleterious mutation causes a reduction of functional proteins to a half dose and insufficient amounts of functional proteins can occur to generate an in–normal phenotype, namely haploinsufficiency. Heterozygous deleterious mutation of microRNAs (miRs), non-coding RNAs that regulate the expression level of target transcripts, is still not well understood. The hsa-miR-302/367 cluster is the most abundant and specifically up-regulated miR cluster in human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) and plays an important role in the maintenance of pluripotency. Methods We targeted the hsa-miR-302/367 region via a Cas9 nuclease complex with guide RNA and replaced that region with green fluorescent protein (GFP). Using a homologous donor, consisting of left and right arms and GFP, we confirmed deletion of the hsa-miR-302/367 cluster by homologous recombination without cellular destruction by microscopy. We sub-cloned GFP-positive colonies and checked the genotype of each sub-clone by genomic PCR. We then analyzed the pluripotency of heterozygous knockout cells with a hsa-miR-302/367 cluster by assessing cell proliferation ratio, morphology, and undifferentiated marker gene expression. We also used an embryoid body formation assay and transplanted wild-type and heterozygous knockout cells into immune-deficient mice. Furthermore, to analyze the lineage-specific differentiation potential of heterozygous knockout cells, we differentiated both wild-type and heterozygous knockout cells into neural stem cells. Results Here, we show that the half dose of mature miRs from the hsa-miR-302/367 cluster loci was sufficient for the continued self-renewal of hiPSCs. All GFP-positive clones were revealed to be heterozygous knockout cells, suggesting hsa-miR-302/367 cluster homozygous knockout cells were not maintained. The cell proliferation ratio, morphology, and expression of undifferentiated marker genes were comparable between wild-type and heterozygous knockout of undifferentiated human iPSCs. In addition, we found that heterozygous knockout human iPSCs have the capacity to differentiate into three germ layers, including neural stem cells. Conclusions Taken together, a single allele of the hsa-miR-302/367 cluster expresses a sufficient amount of miRs to maintain the pluripotent properties of human stem cells. hsa-miR-302/367 cluster was deleted with CRISPR/Cas9 in human pluripotent stem cells. Homozygous hsa-miR-302/367 knockout cell was not generated.
Collapse
Affiliation(s)
| | | | | | | | - Hidenori Akutsu
- Corresponding author. Department of Reproductive Medicine, Center for Regenerative Medicine, National Center for Child Health and Development (NCCHD), Okura 2-10-1, Setagaya, Tokyo, 157-8535, Japan. Tel: +81-3-5494-7047, Fax: +81-3-5494-7048.
| |
Collapse
|
14
|
Polonio CM, da Silva P, Russo FB, Hyppolito BRN, Zanluqui NG, Benazzato C, Beltrão-Braga PCB, Muxel SM, Peron JPS. microRNAs Control Antiviral Immune Response, Cell Death and Chemotaxis Pathways in Human Neuronal Precursor Cells (NPCs) during Zika Virus Infection. Int J Mol Sci 2022; 23:ijms231810282. [PMID: 36142200 PMCID: PMC9499039 DOI: 10.3390/ijms231810282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Viral infections have always been a serious burden to public health, increasing morbidity and mortality rates worldwide. Zika virus (ZIKV) is a flavivirus transmitted by the Aedes aegypti vector and the causative agent of severe fetal neuropathogenesis and microcephaly. The virus crosses the placenta and reaches the fetal brain, mainly causing the death of neuronal precursor cells (NPCs), glial inflammation, and subsequent tissue damage. Genetic differences, mainly related to the antiviral immune response and cell death pathways greatly influence the susceptibility to infection. These components are modulated by many factors, including microRNAs (miRNAs). MiRNAs are small noncoding RNAs that regulate post-transcriptionally the overall gene expression, including genes for the neurodevelopment and the formation of neural circuits. In this context, we investigated the pathways and target genes of miRNAs modulated in NPCs infected with ZIKV. We observed downregulation of miR-302b, miR-302c and miR-194, whereas miR-30c was upregulated in ZIKV infected human NPCs in vitro. The analysis of a public dataset of ZIKV-infected human NPCs evidenced 262 upregulated and 3 downregulated genes, of which 142 were the target of the aforementioned miRNAs. Further, we confirmed a correlation between miRNA and target genes affecting pathways related to antiviral immune response, cell death and immune cells chemotaxis, all of which could contribute to the establishment of microcephaly and brain lesions. Here, we suggest that miRNAs target gene expression in infected NPCs, directly contributing to the pathogenesis of fetal microcephaly.
Collapse
Affiliation(s)
- Carolina M. Polonio
- Neuroimmune Interactions Laboratory, Department of Immunology, University of São Paulo, São Paulo 05508-000, Brazil
- Scientific Platform Pasteur-USP (SPPU), University of São Paulo, São Paulo 05508-000, Brazil
| | - Patrick da Silva
- Neuroimmune Interactions Laboratory, Department of Immunology, University of São Paulo, São Paulo 05508-000, Brazil
- Scientific Platform Pasteur-USP (SPPU), University of São Paulo, São Paulo 05508-000, Brazil
| | - Fabiele B. Russo
- Scientific Platform Pasteur-USP (SPPU), University of São Paulo, São Paulo 05508-000, Brazil
- Disease Modeling Laboratory at Department of Microbiology, Institute of Biomedical Sciences, São Paulo 05508-000, Brazil
| | - Brendo R. N. Hyppolito
- Neuroimmune Interactions Laboratory, Department of Immunology, University of São Paulo, São Paulo 05508-000, Brazil
- Immunopathology and Allergy Post Graduate Program, School of Medicine, University of São Paulo, São Paulo 05508-000, Brazil
| | - Nagela G. Zanluqui
- Neuroimmune Interactions Laboratory, Department of Immunology, University of São Paulo, São Paulo 05508-000, Brazil
- Scientific Platform Pasteur-USP (SPPU), University of São Paulo, São Paulo 05508-000, Brazil
- Immunopathology and Allergy Post Graduate Program, School of Medicine, University of São Paulo, São Paulo 05508-000, Brazil
| | - Cecília Benazzato
- Disease Modeling Laboratory at Department of Microbiology, Institute of Biomedical Sciences, São Paulo 05508-000, Brazil
| | - Patrícia C. B. Beltrão-Braga
- Scientific Platform Pasteur-USP (SPPU), University of São Paulo, São Paulo 05508-000, Brazil
- Disease Modeling Laboratory at Department of Microbiology, Institute of Biomedical Sciences, São Paulo 05508-000, Brazil
| | - Sandra M. Muxel
- Neuroimmune Interactions Laboratory, Department of Immunology, University of São Paulo, São Paulo 05508-000, Brazil
- Scientific Platform Pasteur-USP (SPPU), University of São Paulo, São Paulo 05508-000, Brazil
- Correspondence: (S.M.M.); (J.P.S.P.)
| | - Jean Pierre S. Peron
- Neuroimmune Interactions Laboratory, Department of Immunology, University of São Paulo, São Paulo 05508-000, Brazil
- Scientific Platform Pasteur-USP (SPPU), University of São Paulo, São Paulo 05508-000, Brazil
- Immunopathology and Allergy Post Graduate Program, School of Medicine, University of São Paulo, São Paulo 05508-000, Brazil
- Correspondence: (S.M.M.); (J.P.S.P.)
| |
Collapse
|
15
|
Ko T, Nomura S. Manipulating Cardiomyocyte Plasticity for Heart Regeneration. Front Cell Dev Biol 2022; 10:929256. [PMID: 35898398 PMCID: PMC9309349 DOI: 10.3389/fcell.2022.929256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/14/2022] [Indexed: 01/14/2023] Open
Abstract
Pathological heart injuries such as myocardial infarction induce adverse ventricular remodeling and progression to heart failure owing to widespread cardiomyocyte death. The adult mammalian heart is terminally differentiated unlike those of lower vertebrates. Therefore, the proliferative capacity of adult cardiomyocytes is limited and insufficient to restore an injured heart. Although current therapeutic approaches can delay progressive remodeling and heart failure, difficulties with the direct replenishment of lost cardiomyocytes results in a poor long-term prognosis for patients with heart failure. However, it has been revealed that cardiac function can be improved by regulating the cell cycle or changing the cell state of cardiomyocytes by delivering specific genes or small molecules. Therefore, manipulation of cardiomyocyte plasticity can be an effective treatment for heart disease. This review summarizes the recent studies that control heart regeneration by manipulating cardiomyocyte plasticity with various approaches including differentiating pluripotent stem cells into cardiomyocytes, reprogramming cardiac fibroblasts into cardiomyocytes, and reactivating the proliferation of cardiomyocytes.
Collapse
|
16
|
Yuan JN, Hong Y, Ma ZL, Pang RP, Lei QQ, Lv XF, Zhou JG, Huang H, Zhang TT. MiR-302a Limits Vascular Inflammation by Suppressing Nuclear Factor-κ B Pathway in Endothelial Cells. Front Cell Dev Biol 2021; 9:682574. [PMID: 34409030 PMCID: PMC8365611 DOI: 10.3389/fcell.2021.682574] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/21/2021] [Indexed: 01/09/2023] Open
Abstract
The inflammatory response of endothelial cells accelerates various vascular diseases. MicroRNAs (miRNAs) participate in diverse cellular processes during inflammation. In the present study, we found that miR-302a is an effective suppressor of vascular inflammation in endothelial cells. It was revealed that miR-302a exhibited a lower level in a lipopolysaccharide (LPS)-induced mouse model and in patients with vascular inflammatory disease. Genetic haploinsufficiency of miR-302 aggravated the LPS-induced vascular inflammatory response in mice, and overexpression of miR-302a attenuated vascular inflammation in mice. Furthermore, overexpression of miR-302a inhibited the synthesis and secretion of adhesion factors in endothelial cells, and suppressed the adhesion of monocytes to endothelium. In the study of molecular mechanism, we found that miR-302a relieved vascular inflammation mainly by regulating the nuclear factor kappa-B (NF-κB) pathway in endothelial cells. The results showed that interleukin-1 receptor-associated kinase4 (IRAK4) and zinc finger protein 91 (ZFP91) were the binding targets of miR-302a. MiR-302a prevented the nuclear translocation of NF-κB by inhibiting phosphorylation of IκB kinase complex β (IKKβ) and inhibitors of κBα (IκBα) via targeting IRAK4. In addition, miR-302a downregulated the expression of NF-κB by directly binding with ZFP91. These findings indicate that miR-302a negatively regulates inflammatory responses in the endothelium via the NF-κB pathway and it may be a novel target for relieving vascular inflammation.
Collapse
Affiliation(s)
- Jia-Ni Yuan
- Program of Cardiovascular Research, The Eighth Affiliated Hospital, Zhongshan School Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Pharmacology, and Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yu Hong
- Department of Pharmacology, and Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhuo-Lin Ma
- Department of Physiology, Zhongshan School Medicine, Sun Yat-sen University, Guangzhou, China
| | - Rui-Ping Pang
- Department of Physiology, Zhongshan School Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qing-Qing Lei
- Department of Pharmacology, and Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Fei Lv
- Department of Pharmacology, and Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jia-Guo Zhou
- Program of Cardiovascular Research, The Eighth Affiliated Hospital, Zhongshan School Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Pharmacology, and Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hui Huang
- Program of Cardiovascular Research, The Eighth Affiliated Hospital, Zhongshan School Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Ting-Ting Zhang
- Program of Cardiovascular Research, The Eighth Affiliated Hospital, Zhongshan School Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Pharmacology, and Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
17
|
Kim YJ, Tamadon A, Kim YY, Kang BC, Ku SY. Epigenetic Regulation of Cardiomyocyte Differentiation from Embryonic and Induced Pluripotent Stem Cells. Int J Mol Sci 2021; 22:8599. [PMID: 34445302 PMCID: PMC8395249 DOI: 10.3390/ijms22168599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 12/17/2022] Open
Abstract
With the intent to achieve the best modalities for myocardial cell therapy, different cell types are being evaluated as potent sources for differentiation into cardiomyocytes. Embryonic stem cells and induced pluripotent stem cells have great potential for future progress in the treatment of myocardial diseases. We reviewed aspects of epigenetic mechanisms that play a role in the differentiation of these cells into cardiomyocytes. Cardiomyocytes proliferate during fetal life, and after birth, they undergo permanent terminal differentiation. Upregulation of cardiac-specific genes in adults induces hypertrophy due to terminal differentiation. The repression or expression of these genes is controlled by chromatin structural and epigenetic changes. However, few studies have reviewed and analyzed the epigenetic aspects of the differentiation of embryonic stem cells and induced pluripotent stem cells into cardiac lineage cells. In this review, we focus on the current knowledge of epigenetic regulation of cardiomyocyte proliferation and differentiation from embryonic and induced pluripotent stem cells through histone modification and microRNAs, the maintenance of pluripotency, and its alteration during cardiac lineage differentiation.
Collapse
Affiliation(s)
- Yong-Jin Kim
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul 08308, Korea;
| | - Amin Tamadon
- Department of Marine Stem Cell and Tissue Engineering, Bushehr University of Medical Sciences, Bushehr 14174, Iran;
| | - Yoon-Young Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Korea;
- Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea;
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, Seoul 03080, Korea
| | - Byeong-Cheol Kang
- Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea;
| | - Seung-Yup Ku
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Korea;
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, Seoul 03080, Korea
| |
Collapse
|
18
|
Induced Cardiomyocyte Proliferation: A Promising Approach to Cure Heart Failure. Int J Mol Sci 2021; 22:ijms22147720. [PMID: 34299340 PMCID: PMC8303201 DOI: 10.3390/ijms22147720] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/31/2022] Open
Abstract
Unlike some lower vertebrates which can completely regenerate their heart, the human heart is a terminally differentiated organ. Cardiomyocytes lost during cardiac injury and heart failure cannot be replaced due to their limited proliferative capacity. Therefore, cardiac injury generally leads to progressive failure. Here, we summarize the latest progress in research on methods to induce cardiomyocyte cell cycle entry and heart repair through the alteration of cardiomyocyte plasticity, which is emerging as an effective strategy to compensate for the loss of functional cardiomyocytes and improve the impaired heart functions.
Collapse
|
19
|
Expression of the miR-302/367 microRNA cluster is regulated by a conserved long non-coding host-gene. Sci Rep 2021; 11:11115. [PMID: 34045480 PMCID: PMC8159989 DOI: 10.1038/s41598-021-89080-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 04/20/2021] [Indexed: 12/28/2022] Open
Abstract
MicroRNAs are important regulators of cellular functions. MiR-302/367 is a polycistronic miRNA cluster that can induce and maintain pluripotency. Here we investigate the transcriptional control and the processing of the miR-302 host-gene in mice. Our results indicate that the mmu-miR-302 host-gene is alternatively spliced, polyadenylated and exported from the nucleus. The regulatory sequences extend at least 2 kb upstream of the transcription start site and contain several conserved binding sites for both transcriptional activators and repressors. The gene structure and regulatory elements are highly conserved between mouse and human. So far, regulating miR-302 expression is the only known function of the miR-302 host-gene. Even though we here only provide one example, regulation of microRNA transcription might be a so far little recognized function of long non-coding RNA genes.
Collapse
|
20
|
Liu YY, Liu X, Zhou JG, Liang SJ. MicroRNA-302a promotes neointimal formation following carotid artery injury in mice by targeting PHLPP2 thus increasing Akt signaling. Acta Pharmacol Sin 2021; 42:550-559. [PMID: 32694755 PMCID: PMC8115114 DOI: 10.1038/s41401-020-0440-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 05/12/2020] [Indexed: 01/12/2023]
Abstract
The excessive proliferation and migration of smooth muscle cells (SMCs) play an important role in restenosis following percutaneous coronary interventions. MicroRNAs are able to target various genes and involved in the regulation of diverse cellular processes including cell growth and proliferation. In this study we investigated whether and how MicroRNAs regulated vascular SMC proliferation and vascular remodeling following carotid artery injury in mice. We showed that carotid artery injury-induced neointimal formation was remarkably ameliorated in microRNA (miR)-302 heterozygous mice and SMC-specific miR-302 knockout mice. In contrast, delivery of miR-302a adenovirus to the injured carotid artery enhanced neointimal formation. Upregulation of miR-302a enhanced the proliferation and migration of mouse aorta SMC (MASMC) in vitro by promoting cell cycle transition, whereas miR-302a inhibition caused the opposite results. Moreover, miR-302a promoted Akt activation by corporately decreasing Akt expression and increasing Akt phosphorylation in MASMCs. Application of the Akt inhibitor GSK690693 (5 μmol/L) counteracted the functions of miR-302a in promoting MASMC proliferation and migration. We further revealed that miR-302a directly targeted at the 3' untranslated region of PH domain and leucine rich repeat protein phosphatase 2 (PHLPP2) and negatively regulated PHLPP2 expression. Restoration of PHLPP2 abrogated the effects of miR-302a on Akt activation and MASMC motility. Furthermore, knockdown of PHLPP2 largely abolished the inhibition of neointimal formation that was observed in miR-302 heterozygous mice. Our data demonstrate that miR-302a exacerbates SMC proliferation and restenosis through increasing Akt signaling by targeting PHLPP2.
Collapse
Affiliation(s)
- Ying-Ying Liu
- Department of Pharmacology, and Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xiu Liu
- Department of Pharmacology, and Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jia-Guo Zhou
- Department of Pharmacology, and Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Si-Jia Liang
- Department of Pharmacology, and Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
21
|
Rahimi K, Parsa S, Nikzaban M, Khaledian B, Mowla SJ, Fathi F. Evaluation of miR-302 promoter activity in transgenic mice and pluripotent stem cell lines. In Vitro Cell Dev Biol Anim 2020; 56:896-905. [PMID: 33210246 DOI: 10.1007/s11626-020-00516-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/29/2020] [Indexed: 12/30/2022]
Abstract
Some miRNAs, including the miR-302 cluster, are critical regulators of the stemness state of embryonic stem cells and cell fate patterning. In this study, we evaluated the activity of the miR-302 core promotor in mice and human pluripotent stem cells, somatic tissue derivatives, and generated transgenic mice expressing EGFP under a miR-302 promoter. The expression of EGFP under the control of the miR-302 promotor was examined in the cell lines and somatic tissues of transgenic mice, transgenic blastocysts, and embryonic stem cells derived from transgenic blastocysts. Our results showed that the miR-302 promoter is highly expressed in the mouse and human pluripotent cells, weakly expressed in the somatic tissue derivatives, is highly expressed in both blastocysts and the first passages of transgenic embryonic stem cells, and lowly expressed in the somatic tissues of transgenic mice. It can be concluded that different temporal and spatial gene expression patterns occur during the embryonic and adult stages of cells in mice.
Collapse
Affiliation(s)
- Karim Rahimi
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Sara Parsa
- Molecular Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehrnoush Nikzaban
- Department of Biological Sciences and Biotechnology, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| | - Behnoush Khaledian
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Seyed Javad Mowla
- Molecular Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fardin Fathi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
22
|
Pan CT, Lin YS. MicroRNA retrocopies generated via L1-mediated retrotransposition in placental mammals help to reveal how their parental genes were transcribed. Sci Rep 2020; 10:20612. [PMID: 33244051 PMCID: PMC7692494 DOI: 10.1038/s41598-020-77381-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023] Open
Abstract
In mammalian genomes, most retrocopies emerged via the L1 retrotransposition machinery. The hallmarks of an L1-mediated retrocopy, i.e., the intronlessness, the presence of a 3′ poly-A tail, and the TSDs at both ends, were frequently used to identify retrotransposition events. However, most previous studies only focused on protein-coding genes as their possible parental sources and thus only a few retrocopies derived from non-coding genes were reported. Remarkably, none of them was from microRNAs. Here in this study, we found several retrocopies generated from the mir-302–367 cluster gene (MIR302CHG), and identified a novel alternatively spliced exon encoding mir-302a. The other recognized microRNA retrotransposition events are primate-specific with mir-373 and mir-498 as their parental genes. The 3′ poly-A tracts of these two retrocopy groups were directly attached to the end of the microRNA precursor homologous regions, which suggests that their parental transcripts might alternatively terminate at the end of mir-373 and mir-498. All the three parental microRNAs are highly expressed in specific tissues with elevated retrotransposon activity, such as the embryonic stem cells and the placenta. This might be the reason that our first microRNA retrocopy findings were derived from these three microRNA genes.
Collapse
Affiliation(s)
- Cheng-Tsung Pan
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Yeong-Shin Lin
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan. .,Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, 300, Taiwan. .,Center For Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Chiao Tung University, Hsinchu, 300, Taiwan.
| |
Collapse
|
23
|
Huang T, Pu Q, Zhou C, Lin P, Gao P, Zhang X, Chu Y, Yue B, Wu M. MicroRNA-302/367 Cluster Impacts Host Antimicrobial Defense via Regulation of Mitophagic Response Against Pseudomonas aeruginosa Infection. Front Immunol 2020; 11:569173. [PMID: 33117356 PMCID: PMC7576609 DOI: 10.3389/fimmu.2020.569173] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/21/2020] [Indexed: 02/05/2023] Open
Abstract
Mitophagy has recently been implicated in bacterial infection but the underlying mechanism remains largely unknown. Here, we uncover a role of microRNA-302/367 cluster in regulating mitophagy and its associated host response against bacterial infection. We demonstrate that miR-302/367 cluster expression was significantly increased after Pseudomonas aeruginosa infection. Enhanced expression of miR-302/367 cluster accelerated the mitophagic response in macrophages, thus increasing clearance of invading P. aeruginosa by regulating production of reactive oxygen species (ROS), while application of miR-302/367 cluster inhibitors decreased bacterial clearance. Blocking mitophagy with siRNA against mitophagy receptor prohibitin 2 (PHB2) reduced the effect of miR-302/367 cluster on induction of mitophagy and its-associated P. aeruginosa elimination. In addition, we found that miR-302/367 cluster also increased bacterial clearance in mouse model. Mechanistically, we illustrate that miR-302/367 cluster binds to the 3′-untranslated region of nuclear factor kappa B (NF-κB), a negative regulator of mitophagy, accelerated the process of mitophagy by inhibiting NF-κB. Furthermore, inhibition of NF-κB in macrophages attenuated the ROS or cytokines production and may reduce cell injury by P. aeruginosa infection to maintain cellular homeostasis. Collectively, our findings elucidate that miR-302/367 cluster functions as potent regulators in mitophagy-mediated P. aeruginosa elimination and pinpoint an unexpected functional link between miRNAs and mitophagy.
Collapse
Affiliation(s)
- Ting Huang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China.,Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China.,Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Qinqin Pu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States.,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Chuanmin Zhou
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Ping Lin
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Pan Gao
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States.,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiuyue Zhang
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Yiwen Chu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Bisong Yue
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
| |
Collapse
|
24
|
Jiang L, Park MJ, Cho CJ, Lee K, Jung MK, Pack CG, Myung SJ, Chang S. ADAR1 Suppresses Interferon Signaling in Gastric Cancer Cells by MicroRNA-302a-Mediated IRF9/STAT1 Regulation. Int J Mol Sci 2020; 21:ijms21176195. [PMID: 32867271 PMCID: PMC7504523 DOI: 10.3390/ijms21176195] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/27/2022] Open
Abstract
ADAR (adenosine deaminase acting on RNA) catalyzes the deamination of adenosine to generate inosine, through its binding to double-stranded RNA (dsRNA), a phenomenon known as RNA editing. One of the functions of ADAR1 is suppressing the type I interferon (IFN) response, but its mechanism in gastric cancer is not clearly understood. We analyzed changes in RNA editing and IFN signaling in ADAR1-depleted gastric cancer cells, to clarify how ADAR1 regulates IFN signaling. Interestingly, we observed a dramatic increase in the protein level of signal transducer and activator of transcription 1 (STAT1) and interferon regulatory factor 9 (IRF9) upon ADAR1 knockdown, in the absence of type I or type II IFN treatment. However, there were no changes in protein expression or localization of the mitochondrial antiviral signaling protein (MAVS) and interferon alpha and beta-receptor subunit 2 (IFNAR2), the two known mediators of IFN production. Instead, we found that miR-302a-3p binds to the untranslated region (UTR) of IRF9 and regulate its expression. The treatment of ADAR1-depleted AGS cells with an miR-302a mimic successfully restored IRF9 as well as STAT1 protein level. Hence, our results suggest that ADAR1 regulates IFN signaling in gastric cancer through the suppression of STAT1 and IRF9 via miR-302a, which is independent from the RNA editing of known IFN production pathway.
Collapse
Affiliation(s)
- Lushang Jiang
- Department of Biomedical Sciences, College of Medicine, Asan Medical Center, University of Ulsan, Seoul 05505, Korea; (L.J.); (M.J.P.); (C.J.C.); (K.L.)
| | - Min Ji Park
- Department of Biomedical Sciences, College of Medicine, Asan Medical Center, University of Ulsan, Seoul 05505, Korea; (L.J.); (M.J.P.); (C.J.C.); (K.L.)
| | - Charles J. Cho
- Department of Biomedical Sciences, College of Medicine, Asan Medical Center, University of Ulsan, Seoul 05505, Korea; (L.J.); (M.J.P.); (C.J.C.); (K.L.)
| | - Kihak Lee
- Department of Biomedical Sciences, College of Medicine, Asan Medical Center, University of Ulsan, Seoul 05505, Korea; (L.J.); (M.J.P.); (C.J.C.); (K.L.)
| | - Min Kyo Jung
- Department of Convergence Medicine, College of Medicine, Asan Medical Center, University of Ulsan, Seoul 05505, Korea; (M.K.J.); (C.G.P.)
| | - Chan Gi Pack
- Department of Convergence Medicine, College of Medicine, Asan Medical Center, University of Ulsan, Seoul 05505, Korea; (M.K.J.); (C.G.P.)
| | - Seung-Jae Myung
- Department of Gastroenterology, College of Medicine, Asan Medical Center, University of Ulsan, Seoul 05505, Korea
- Correspondence: (S.-J.M.); (S.C.)
| | - Suhwan Chang
- Department of Biomedical Sciences, College of Medicine, Asan Medical Center, University of Ulsan, Seoul 05505, Korea; (L.J.); (M.J.P.); (C.J.C.); (K.L.)
- Department of Physiology, College of Medicine, Asan Medical Center, University of Ulsan, Seoul 05505, Korea
- Correspondence: (S.-J.M.); (S.C.)
| |
Collapse
|
25
|
Guo M, Gan L, Si J, Zhang J, Liu Z, Zhao J, Gou Z, Zhang H. Role of miR-302/367 cluster in human physiology and pathophysiology. Acta Biochim Biophys Sin (Shanghai) 2020; 52:791-800. [PMID: 32785592 DOI: 10.1093/abbs/gmaa065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/22/2020] [Accepted: 12/26/2019] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that negatively regulate target mRNAs at the post-transcriptional level. Increasing evidence shows the involvement of miRNAs in diverse biological processes. miR-302/367 cluster is highly conserved among vertebrates and made up of five members, including miR-367, miR-302a, miR-302b, miR-302c and miR-302d. miR-302/367 cluster plays an important role in cell proliferation, differentiation and reprogramming, affecting the development of tumor, cardiovascular system, nervous system and immune system. In this review, we will summarize the role of miR-302/367 cluster in embryonic stem cells and induced pluripotent stem cells and try to point out its relationship with tumors, cardiovascular system, nervous system and immune system.
Collapse
Affiliation(s)
- Menghuan Guo
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Lu Gan
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou 730000, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Si
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou 730000, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinhua Zhang
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou 730000, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiyuan Liu
- School of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, China
| | - Jin Zhao
- Medical College, Northwest Minzu University, Lanzhou 730030, China
| | - Zhong Gou
- Medical College, Northwest Minzu University, Lanzhou 730030, China
| | - Hong Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou 730000, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
26
|
Pidíkova P, Reis R, Herichova I. miRNA Clusters with Down-Regulated Expression in Human Colorectal Cancer and Their Regulation. Int J Mol Sci 2020; 21:E4633. [PMID: 32610706 PMCID: PMC7369991 DOI: 10.3390/ijms21134633] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/24/2020] [Accepted: 06/27/2020] [Indexed: 02/07/2023] Open
Abstract
Regulation of microRNA (miRNA) expression has been extensively studied with respect to colorectal cancer (CRC), since CRC is one of the leading causes of cancer mortality worldwide. Transcriptional control of miRNAs creating clusters can be, to some extent, estimated from cluster position on a chromosome. Levels of miRNAs are also controlled by miRNAs "sponging" by long non-coding RNAs (ncRNAs). Both types of miRNA regulation strongly influence their function. We focused on clusters of miRNAs found to be down-regulated in CRC, containing miR-1, let-7, miR-15, miR-16, miR-99, miR-100, miR-125, miR-133, miR-143, miR-145, miR-192, miR-194, miR-195, miR-206, miR-215, miR-302, miR-367 and miR-497 and analysed their genome position, regulation and functions. Only evidence provided with the use of CRC in vivo and/or in vitro models was taken into consideration. Comprehensive research revealed that down-regulated miRNA clusters in CRC are mostly located in a gene intron and, in a majority of cases, miRNA clusters possess cluster-specific transcriptional regulation. For all selected clusters, regulation mediated by long ncRNA was experimentally demonstrated in CRC, at least in one cluster member. Oncostatic functions were predominantly linked with the reviewed miRNAs, and their high expression was usually associated with better survival. These findings implicate the potential of down-regulated clusters in CRC to become promising multi-targets for therapeutic manipulation.
Collapse
Affiliation(s)
- Paulína Pidíkova
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia;
| | - Richard Reis
- First Surgery Department, University Hospital, Comenius University in Bratislava, 811 07 Bratislava, Slovakia;
| | - Iveta Herichova
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia;
| |
Collapse
|
27
|
Tabet F, Lee S, Zhu W, Levin MG, Toth CL, Cuesta Torres LF, Vinh A, Kim HA, Chu HX, Evans MA, Kuzmich ME, Drummond GR, Remaley AT, Rye KA, Sobey CG, Vickers KC. microRNA-367-3p regulation of GPRC5A is suppressed in ischemic stroke. J Cereb Blood Flow Metab 2020; 40:1300-1315. [PMID: 31296130 PMCID: PMC7238381 DOI: 10.1177/0271678x19858637] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ischemic stroke is a major cause of mortality and long-term disability with limited treatment options, and a greater understanding of the gene regulatory mechanisms underlying ischemic stroke-associated neuroinflammation is required for new therapies. To study ischemic stroke in vivo, mice were subjected to sustained ischemia by intraluminal filament-induced middle cerebral artery occlusion (MCAo) for 24 h without reperfusion or transient ischemia for 30 min followed by 23.5 h reperfusion, and brain miRNA and mRNA expression changes were quantified by TaqMan OpenArrays and gene (mRNA) expression arrays, respectively. Sustained ischemia resulted in 18 significantly altered miRNAs and 392 altered mRNAs in mouse brains compared to Sham controls; however, the transient ischemic condition was found to impact only 6 miRNAs and 126 mRNAs. miR-367-3p was found to be significantly decreased in brain homogenates with sustained ischemia. G protein-coupled receptor, family C, group 5, member A (Gprc5a), a miR-367-3p target gene, was found to be significantly increased with sustained ischemia. In primary neurons, inhibition of endogenous miR-367-3p resulted in a significant increase in Gprc5a expression. Moreover, miR-367-3p was found to be co-expressed with GPRC5A in human neurons. Results suggest that loss of miR-367-3p suppression of GPRC5A may contribute to neuroinflammation associated with ischemic stroke.
Collapse
Affiliation(s)
- Fatiha Tabet
- Mechanisms of Disease and Translational Research, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Seyoung Lee
- Department of Pharmacology, Monash University, Melbourne, Victoria, Australia
| | - Wanying Zhu
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael G Levin
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cynthia L Toth
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Luisa F Cuesta Torres
- Mechanisms of Disease and Translational Research, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Antony Vinh
- Department of Pharmacology, Monash University, Melbourne, Victoria, Australia.,Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| | - Hyun Ah Kim
- Department of Pharmacology, Monash University, Melbourne, Victoria, Australia.,Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| | - Hannah X Chu
- Department of Pharmacology, Monash University, Melbourne, Victoria, Australia
| | - Megan A Evans
- Department of Pharmacology, Monash University, Melbourne, Victoria, Australia.,Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| | - Meaghan E Kuzmich
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Grant R Drummond
- Department of Pharmacology, Monash University, Melbourne, Victoria, Australia.,Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| | - Alan T Remaley
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kerry-Anne Rye
- Mechanisms of Disease and Translational Research, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Christopher G Sobey
- Department of Pharmacology, Monash University, Melbourne, Victoria, Australia.,Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| | - Kasey C Vickers
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
28
|
Sugawara T, Miura T, Kawasaki T, Umezawa A, Akutsu H. The hsa-miR-302 cluster controls ectodermal differentiation of human pluripotent stem cell via repression of DAZAP2. Regen Ther 2020; 15:1-9. [PMID: 32490061 PMCID: PMC7251312 DOI: 10.1016/j.reth.2020.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/03/2020] [Accepted: 03/11/2020] [Indexed: 12/27/2022] Open
Abstract
Introduction Recent studies have revealed that microRNAs (miRNAs, miRs) are important for self-renewal, differentiation, and cellular reprogramming of somatic cells into induced pluripotent stem cells (iPSC); however, their functional roles and target genes that are regulated by human PSC-specific miRs including hsa-miR-302 clusters remain largely unknown. Analysis of their target gene will give us the opportunity to understand the functional roles of such miRs. Methods We analyzed the expression profiles of miRs in 4 somatic cell lines, 8 human iPSC lines derived from 4 different cell types, 3 human ESC lines, and embryoid bodies differentiated from the human ESCs to identify human PSC-specific miRs. We also analyzed the simultaneous expression profiles of miRs and mRNAs to identify candidate targets of human PSC-specific miRs. Then, we constructed a vector for overexpressing one of the target gene to dissect the functions of human PSC-specific miR in maintenance of self-renew and differentiation. Results We focused on hsa-miR-302 cluster as a human PSC-specific miR and identified 22 candidate targets of hsa-miR-302 cluster that were moderately expressed in undifferentiated human PSCs and up-regulated in differentiated cells. Deleted in azoospermia-associated protein 2 (DAZAP2), one such target, was directly repressed by hsa-miR-302a, -302b, -302c and -302d, but not by hsa-miR-367. Overexpression of DAZAP2 caused a decrease in cell proliferation of undifferentiated human iPSCs, although morphology and undifferentiated marker gene expression was not affected. In addition, neural differentiation was suppressed in DAZAP2-overexpressing human iPSCs. Conclusion Our study revealed that hsa-miR-302 cluster controls the cell proliferation of human PSCs and the neural differentiation of human PSCs by repression of DAZAP2, thereby highlighting an additional function of human PSC-specific miRs in maintaining pluripotency.
Collapse
Affiliation(s)
| | | | | | | | - Hidenori Akutsu
- Corresponding author. Department of Reproductive Medicine, National Center for Child Health and Developmen, Okura 2-10-1, Setagaya-ku, Tokyo, 157-8535, Japan. Fax: +81-3-5494-7048.
| |
Collapse
|
29
|
Cuthbert JM, Russell SJ, White KL, Benninghoff AD. The maternal-to-zygotic transition in bovine in vitro-fertilized embryos is associated with marked changes in small non-coding RNAs†. Biol Reprod 2020; 100:331-350. [PMID: 30165428 DOI: 10.1093/biolre/ioy190] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/25/2018] [Accepted: 08/23/2018] [Indexed: 12/14/2022] Open
Abstract
In mammals, small non-coding RNAs (sncRNAs) have been reported to be important during early embryo development. However, a comprehensive assessment of the inventory of sncRNAs during the maternal-to-zygotic transition (MZT) has not been performed in an animal model that better represents the sncRNA biogenesis pathway in human oocytes and embryos. The objective of this study was to examine dynamic changes in expression of sncRNAs during the MZT in bovine embryos produced by in vitro fertilization (IVF), which occurs at the 8-cell stage. An unbiased, discovery-based approach was employed using small RNAseq to profile sncRNAs in bovine oocytes, 8-cell stage embryos and blastocyst stage embryos followed by network and ontology analyses to explore the functional relevance of differentially expressed micro-RNAS (miRNAs). The relative abundance of miRNAs was markedly higher in 8-cell stage embryos compared to oocytes or blastocyst stage embryos. This shift in miRNA population was largely associated with upregulation of miRNAs predicted to target genes involved in the biological processes of cell development, cell division, Wnt signaling, and pluripotency, among others. Distinct populations of piwi-interacting-like RNAs (pilRNAs) were identified in bovine oocytes and blastocyst stage embryos, though pilRNAs were nearly absent in 8-cell stage embryos. Also, small nucleolar RNAs were highly expressed in 8-cell stage embryos. Overall, these data reveal a strong dynamic shift in the relative abundance of sncRNAs associated with the MZT in bovine oocytes and embryos, suggesting that these molecules may play important roles in the shift from maternal to zygotic control of gene expression.
Collapse
Affiliation(s)
- Jocelyn M Cuthbert
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah, USA
| | | | - Kenneth L White
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah, USA.,School of Veterinary Medicine, Utah State University, Logan, Utah, USA
| | - Abby D Benninghoff
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah, USA.,School of Veterinary Medicine, Utah State University, Logan, Utah, USA
| |
Collapse
|
30
|
Rao SR, Howarth A, Kratschmer P, Snaith AE, Yapp C, Ebner D, Hamdy FC, Edwards CM. Transcriptomic and Functional Screens Reveal MicroRNAs That Modulate Prostate Cancer Metastasis. Front Oncol 2020; 10:292. [PMID: 32231998 PMCID: PMC7082744 DOI: 10.3389/fonc.2020.00292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/19/2020] [Indexed: 12/16/2022] Open
Abstract
Identifying new mechanisms that underlie the complex process of metastasis is vital to combat this fatal step in prostate cancer (PCa) progression. Small non-coding RNAs are emerging as important regulators of tumor cell biology. Here we take an integrative approach to elucidate the contribution of microRNAs to metastatic progression, combining transcriptomic analysis with functional screens for migration and morphology. We developed high-content microscopy, high-throughput functional screens for migration and morphology in PCa cells using a microRNA library. RNA-Seq analysis of paired epithelial and mesenchymal PCa cells identified differential expression of 200 microRNAs. Data integration identified two microRNAs that inhibited migration, induced an epithelial-like morphology and were increased in epithelial PCa cells. An overrepresentation of the AAGUGC seed sequence was detected in all three datasets. Analysis of published datasets of patients with PCa identified microRNAs of clinical relevance. The integration of high-throughput functional and expression analyses identifies microRNAs with clinical significance that modulate metastatic behavior in PCa.
Collapse
Affiliation(s)
- Srinivasa R Rao
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Alison Howarth
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Patrick Kratschmer
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Ann E Snaith
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Clarence Yapp
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, United Kingdom
| | - Daniel Ebner
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Freddie C Hamdy
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Claire M Edwards
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
31
|
Lin SL, Chen JS, Ying SY. MiR-302-Mediated Somatic Cell Reprogramming and Method for Generating Tumor-Free iPS Cells Using miR-302. Methods Mol Biol 2020; 2115:199-219. [PMID: 32006403 DOI: 10.1007/978-1-0716-0290-4_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Human induced pluripotent stem cells (iPSCs) by four factors have the risks of teratoma formation and potential tumorigenicity. To overcome this major hurdle, we examined the mechanism(s) by which the cell cycle genes of embryonic cells were regulated. Naturally occurring embryonic stem cells (ESCs) possess two unique stemness properties: pluripotent differentiation into all cell types and self-renewal with no risk of tumor formation. Despite overwhelming reports describing iPSC pluripotency, there have been no observations of tumor prevention mechanism that suppresses tumor formation similar to that in naturally occurring ESCs. The ESC-specific microRNA (miRNA), miR-302, regulates human iPSC tumorigenicity through co-suppression of both cyclin E-CDK2 and cyclin D-CDK4/6 cell cycle pathways during G1-S phase transition. MiR-302 also silenced BMI-1, a cancer stem cell marker gene, to promote the expression of two senescence-associated tumor suppressor genes, p16Ink4a and p14/p19Arf. Together, the combinatory effect of reducing G1-S cell cycle transition and increasing p16/p14(p19) expression resulted in a relatively attenuated cell cycle rate similar to that of 2-to-8-cell-stage embryonic cells in early mammalian zygotes (20-24 h/cycle), as compared to the fast proliferation rate of iPSCs induced by four defined factors Oct4-Sox2-Klf4-c-Myc (12-16 h/cycle). In addition to the prevention of stem cell tumorigenicity, the mechanism underlying miR-302-mediated iPSCs also includes the initiation of global genomic DNA methylation, activation of ESC-specific gene expression, and inhibition of developmental signaling. Overall, we have established an effective protocol to express the intronic miR-302 cluster, according to its own natural biogenesis mechanism to generate tumor-free iPSCs for use in biology and therapy.
Collapse
Affiliation(s)
- Shi-Lung Lin
- WJWU & LYNN Institute for Stem Cell Research, Santa Fe Springs, CA, USA
| | - Jack S Chen
- WJWU & LYNN Institute for Stem Cell Research, Santa Fe Springs, CA, USA
| | - Shao-Yao Ying
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
32
|
Yang T, Tian S, Wang L, Wang Y, Zhao J. MicroRNA-367-3p overexpression represses the proliferation and invasion of cervical cancer cells through downregulation of SPAG5-mediated Wnt/β-catenin signalling. Clin Exp Pharmacol Physiol 2019; 47:687-695. [PMID: 31792998 DOI: 10.1111/1440-1681.13222] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/30/2019] [Accepted: 11/29/2019] [Indexed: 12/16/2022]
Abstract
MicroRNA-367-3p (miR-367-3p) has been previously reported as a cancer-related miRNA that is dysregulated in various cancer types and functions either as an oncogenic or as tumour suppressive miRNA. However, whether miR-367-3p is dysregulated in cervical cancer and, further, whether it contributes to the development and progression of the disease remains unknown. Here, our results demonstrated that miR-367-3p expression was markedly decreased in both cervical cancer tissues and cell lines compared with corresponding controls. In vitro experiments revealed that miR-367-3p overexpression repressed the proliferation and invasion of cervical cancer cells. Notably, sperm-associated antigen 5 (SPAG5) was identified as a target gene of miR-367-3p. Moreover, decreased expression of miR-367-3p was correlated with high expression of SPAG5 in cervical cancer tissue specimens. SPAG5 inhibition or miR-367-3p overexpression significantly downregulated Wnt/β-catenin signalling in cervical cancer cells. However, the antitumour effect mediated by miR-367-3p overexpression was partially reversed by SPAG5 overexpression. Overall, these findings demonstrate that miR-367-3p overexpression restricts the proliferation and invasion of cervical cancer cells through targeting SPAG5 to downregulate Wnt/β-catenin signalling, suggesting a mechanism for the tumour suppressive function of miR-367-3p in cervical cancer. Our study highlights the involvement of miR-367-3p/SPAG5/Wnt/β-catenin signalling axis in regulating the malignant progression of cervical cancer.
Collapse
Affiliation(s)
- Ting Yang
- Obstetrics and Gynecology Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China
| | - Sijuan Tian
- Obstetrics and Gynecology Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China
| | - Linlin Wang
- Obstetrics and Gynecology Department, Ningbo First Hospital, Ningbo, China
| | - Yaohui Wang
- Obstetrics and Gynecology Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China
| | - Juan Zhao
- Obstetrics and Gynecology Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China
| |
Collapse
|
33
|
Yasukawa K, Kinoshita D, Yaku K, Nakagawa T, Koshiba T. The microRNAs miR-302b and miR-372 regulate mitochondrial metabolism via the SLC25A12 transporter, which controls MAVS-mediated antiviral innate immunity. J Biol Chem 2019; 295:444-457. [PMID: 31767682 DOI: 10.1074/jbc.ra119.010511] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/20/2019] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that suppress the expression of multiple genes and are involved in numerous biologic functions and disorders, including human diseases. Here, we report that two miRNAs, miR-302b and miR-372, target mitochondrial-mediated antiviral innate immunity by regulating mitochondrial dynamics and metabolic demand. Using human cell lines transfected with the synthetic analog of viral dsRNA, poly(I-C), or challenged with Sendai virus, we found that both miRNAs are up-regulated in the cells late after viral infection and ultimately terminate the production of type I interferons and inflammatory cytokines. We found that miR-302b and miR-372 are involved in dynamin-related protein 1 (DRP1)-dependent mitochondrial fragmentation and disrupt mitochondrial metabolism by attenuating solute carrier family 25 member 12 (SLC25A12), a member of the SLC25 family. Neutralizing the effects of the two miRNAs through specific inhibitors re-established the mitochondrial dynamics and the antiviral responses. We found that SLC25A12 contributes to regulating the antiviral response by inducing mitochondrial-related metabolite changes in the organelle. Structure-function analysis indicated that SLC25A12, as part of a prohibitin complex, associates with the mitochondrial antiviral-signaling protein in mitochondria, providing structural insight into the regulation of the mitochondrial-mediated antiviral response. Our results contribute to the understanding of how miRNAs modulate the innate immune response by altering mitochondrial dynamics and metabolic demand. Manipulating the activities of miR-302b and miR-372 may be a potential therapeutic approach to target RNA viruses.
Collapse
Affiliation(s)
- Kai Yasukawa
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan; Modality Laboratories, Innovative Research Division, Mitsubishi Tanabe Pharma Corp., Fujisawa 251-8555, Japan
| | - Daisuke Kinoshita
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Keisuke Yaku
- Department of Metabolism and Nutrition, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama 930-0194, Japan
| | - Takashi Nakagawa
- Department of Metabolism and Nutrition, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama 930-0194, Japan; Frontier Research Core for Life Science, University of Toyama, Toyama 930-0194, Japan
| | - Takumi Koshiba
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan; Department of Chemistry, Faculty of Science, Fukuoka University, Fukuoka 814-0180, Japan.
| |
Collapse
|
34
|
BRM transcriptionally regulates miR-302a-3p to target SOCS5/STAT3 signaling axis to potentiate pancreatic cancer metastasis. Cancer Lett 2019; 449:215-225. [DOI: 10.1016/j.canlet.2019.02.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/03/2019] [Accepted: 02/14/2019] [Indexed: 12/11/2022]
|
35
|
Rahimi K, Füchtbauer AC, Fathi F, Mowla SJ, Füchtbauer EM. Isolation of cancer stem cells by selection for miR-302 expressing cells. PeerJ 2019; 7:e6635. [PMID: 30941272 PMCID: PMC6440458 DOI: 10.7717/peerj.6635] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/18/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Cancer stem cells are believed to be a major reason for long-term therapy failure because they are multi-drug resistant and able to rest mitotically inactive in the hypoxic center of tumors. Due to their variable number and their often low proliferation rate, cancer stem cells are difficult to purify in decent quantities and to grow in cell culture systems, where they are easily outcompeted by faster growing more 'differentiated', i.e., less stem cell-like tumor cells. METHODS Here we present a proof of principle study based on the idea to select cancer stem cells by means of the expression of a stem cell-specific gene. A selectable egfp-neo coding sequence was inserted in the last exon of the non-coding murine miR-302 host gene. As a stem cell specific regulatory element, 2.1 kb of the genomic region immediately upstream of the miR-302 host gene transcription start site was used. Stable transgenic CJ7 embryonic stem cells were used to induce teratomas. RESULTS After three weeks, tumors were removed for analysis and primary cultures were established. Stem cell-like cells were selected from these culture based on G418 selection. When the selection was removed, stem cell morphology and miR-302 expression were rapidly lost, indicating that it was not the original ES cells that had been isolated. CONCLUSIONS We show the possibility to use drug resistance expressed from a regulatory sequence of a stem cell-specific marker, to isolate and propagate cancer stem cells that otherwise might be hidden in the majority of tumor cells.
Collapse
Affiliation(s)
- Karim Rahimi
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | | | - Fardin Fathi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Seyed J. Mowla
- Molecular Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
36
|
Viiri LE, Rantapero T, Kiamehr M, Alexanova A, Oittinen M, Viiri K, Niskanen H, Nykter M, Kaikkonen MU, Aalto-Setälä K. Extensive reprogramming of the nascent transcriptome during iPSC to hepatocyte differentiation. Sci Rep 2019; 9:3562. [PMID: 30837492 PMCID: PMC6401154 DOI: 10.1038/s41598-019-39215-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 01/17/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatocyte-like cells (HLCs) derived from induced pluripotent stem cells (iPSCs) provide a renewable source of cells for drug discovery, disease modelling and cell-based therapies. Here, by using GRO-Seq we provide the first genome-wide analysis of the nascent RNAs in iPSCs, HLCs and primary hepatocytes to extend our understanding of the transcriptional changes occurring during hepatic differentiation process. We demonstrate that a large fraction of hepatocyte-specific genes are regulated at transcriptional level and identify hundreds of differentially expressed non-coding RNAs (ncRNAs), including primary miRNAs (pri-miRNAs) and long non-coding RNAs (lncRNAs). Differentiation induced alternative transcription start site (TSS) usage between the cell types as evidenced for miR-221/222 and miR-3613/15a/16-1 clusters. We demonstrate that lncRNAs and coding genes are tightly co-expressed and could thus be co-regulated. Finally, we identified sets of transcriptional regulators that might drive transcriptional changes during hepatocyte differentiation. These included RARG, E2F1, SP1 and FOXH1, which were associated with the down-regulated transcripts, and hepatocyte-specific TFs such as FOXA1, FOXA2, HNF1B, HNF4A and CEBPA, as well as RXR, PPAR, AP-1, JUNB, JUND and BATF, which were associated with up-regulated transcripts. In summary, this study clarifies the role of regulatory ncRNAs and TFs in differentiation of HLCs from iPSCs.
Collapse
Affiliation(s)
- Leena E Viiri
- Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33014, Finland.
| | - Tommi Rantapero
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33014, Finland
| | - Mostafa Kiamehr
- Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33014, Finland
| | - Anna Alexanova
- Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33014, Finland
| | - Mikko Oittinen
- Tampere Center for Child Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33014, Finland
| | - Keijo Viiri
- Tampere Center for Child Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33014, Finland
| | - Henri Niskanen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, 70211, Finland
| | - Matti Nykter
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33014, Finland
| | - Minna U Kaikkonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, 70211, Finland
| | - Katriina Aalto-Setälä
- Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33014, Finland
- Heart Center, Tampere University Hospital, Tampere, 33520, Finland
| |
Collapse
|
37
|
Cao J, Li L, Han X, Cheng H, Chen W, Qi K, Chen C, Wu Q, Niu M, Zeng L, Xu K. miR-302 cluster inhibits angiogenesis and growth of K562 leukemia cells by targeting VEGFA. Onco Targets Ther 2019; 12:433-441. [PMID: 30662269 PMCID: PMC6329480 DOI: 10.2147/ott.s190146] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background miR-302 cluster has been reported as a tumor suppressor in many human cancers; yet, its function in chronic myeloid leukemia (CML) tumorigenesis remains largely unclear. The study was aimed to explore the functional roles of miR-302 cluster in CML progression. Materials and methods Quantitative reverse transcriptase PCR and Western blot were performed to evaluate miR-302 cluster and vascular endothelial growth factor A (VEGFA) expression levels. Cell Counting Kit-8 assay, colony formation assay and human umbilical vein endothelial cell line capillary tube formation were used to determine the influence of miR-302 cluster on the growth and angiogenesis of K562 cells, respectively. Luciferase reporter assay was employed to confirm the direct target interaction between miR-302 cluster and VEGFA. Results This study demonstrated that miR-302 cluster was frequently downregulated in CML samples and cell lines and high level of miR-302 cluster was significantly associated with good prognosis of CML patients. Compared with miRNA negative control, miR-302 cluster mimics obviously suppressed cell growth, colony formation and angiogenesis. Further studies revealed that VEGFA was a direct target gene of miR-302 cluster. Moreover, overexpression of VEGFA dramatically abated the inhibition of miR-302 cluster on cell growth and angiogenesis. Conclusion The present study, for the first time, identified miR-302 cluster as a tumor suppressor, and overexpression of miR-302 cluster inhibited growth and angiogenesis in K562 cells. miR-302 cluster may be a potential therapeutic target in CML to develop the adjuvant antiangiogenic therapy based on VEGFA.
Collapse
Affiliation(s)
- Jiang Cao
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China,
| | - Li Li
- Department of Gastroenterology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Xiao Han
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China,
| | - Hai Cheng
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China,
| | - Wei Chen
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China,
| | - Kunming Qi
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China,
| | - Chong Chen
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China,
| | - Qingyun Wu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China,
| | - Mingshan Niu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China,
| | - Lingyu Zeng
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China,
| | - Kailin Xu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China,
| |
Collapse
|
38
|
Ramezankhani B, Taha MF, Javeri A. Vitamin C counteracts miR-302/367-induced reprogramming of human breast cancer cells and restores their invasive and proliferative capacity. J Cell Physiol 2018; 234:2672-2682. [PMID: 30191953 DOI: 10.1002/jcp.27081] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 06/29/2018] [Indexed: 12/21/2022]
Abstract
Epigenetic reprogramming by embryonic stem cell-specific miR-302/367 cluster has shown some tumor suppressive effects in cancer cells of different tissues such as skin, colon, and cervix. Vitamin C has been known as a reprogramming enhancer of human and mouse somatic cells. In this study, first we aimed to investigate whether exogenous induction of miR-302/367 in breast cancer cells shows the same tumor suppressive effects previously observed in other cancer cells lines, and whether vitamin C can enhance reprogramming of breast cancer cells and also improve the tumor suppressive function of miR-302/367 cluster. Overexpression of miR-302/367 cluster in MDA-MB-231 and SK-BR-3 breast cancer cells upregulated expression of miR-302/367 members and also some core pluripotency factors including OCT4A, SOX2 and NANOG, induced mesenchymal to epithelial transition, suppressed invasion, proliferation, and induced apoptosis in the both cell lines. However, treatment of the miR-302/367 transfected cells with vitamin C suppressed the expression of pluripotency factors and augmented the tumorigenicity of the breast cancer cells by restoring their proliferative and invasive capacity and compromising the apoptotic effect of miR-302/367. Supplementing the culture medium with vitamin C downregulated expression of TET1 gene which seems to be the reason behind the negative impact of vitamin C on the reprogramming efficiency of miR-302/367 cluster and its anti-tumor effects. Therefore application of vitamin C may not always serve as a reprogramming enhancer depending on its switching function on TET1. This phenomenon should be carefully considered when considering a reprogramming strategy for tumor suppression.
Collapse
Affiliation(s)
- Bahareh Ramezankhani
- Department of Stem Cells and Regenerative Medicine, Institute for Medical Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Masoumeh F Taha
- Department of Stem Cells and Regenerative Medicine, Institute for Medical Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Arash Javeri
- Department of Stem Cells and Regenerative Medicine, Institute for Medical Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
39
|
Tang L, Hu H, He Y, Mcleod HL, Xiao D, Chen P, Shen L, Zeng S, Yin X, Ge J, Li L, Ma J, Chen Z, Huang J. The relationship between miR-302b and EphA2 and their clinical significance in gastric cancer. J Cancer 2018; 9:3109-3116. [PMID: 30210634 PMCID: PMC6134821 DOI: 10.7150/jca.25235] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/16/2018] [Indexed: 12/18/2022] Open
Abstract
Introduction: EphA2 is a crucial oncogene in gastric cancer (GC) development and metastasis, and miR-302b can target EphA2 in gastric cancer. This study plans to investigate their relationship and clinical significance in clinical samples. Materials and Methods: We explored the correlation of the expression of EphA2 and miR-302b, and their clinical significance in the training (n=226) cohort of GC patients, and then validated the results in the validation (n=128) cohort. Results: miR-302b was remarkably downregulated in GC tissues, while high EphA2 expression were detected, and they were inversely correlated both in mRNA and protein, (r=-0.4209, P<0.0001; r=-0.336, P <0.001, respectively). Furthermore, the pattern of high EphA2 and low miR-302b expression were found to be associated with poor overall survival in stage IV GC patients in both training and validation cohort. Conclusions: The expression of miR-302b and EphA2 was inversely correlated, and had prognostic significance on GC in clinic.
Collapse
Affiliation(s)
- Lanhua Tang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Huabin Hu
- The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510655, China
| | - Yijing He
- Department of Dermatology, XiangYa Hospital, Central South University, Changsha, 410008, China
| | - Howard L Mcleod
- Department of Dermatology, XiangYa Hospital, Central South University, Changsha, 410008, China.,Department of Clinical Pharmacology, XiangYa Hospital, Central South University, Changsha, 410008, China.,Moffitt Cancer Center, DeBartolo Family Personalized Medicine Institute, Tampa, FL 33612, USA
| | - Desheng Xiao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Pan Chen
- Department of Hepatobiliary Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Liangfang Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xianli Yin
- Department of gastroenterology and urology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013,China
| | - Jie Ge
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Li Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jian Ma
- Cancer Research Institute, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Central South University, Changsha, 410008, China
| | - Zihua Chen
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jin Huang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| |
Collapse
|
40
|
MicroRNA Expression Analysis of In Vitro Dedifferentiated Human Pancreatic Islet Cells Reveals the Activation of the Pluripotency-Related MicroRNA Cluster miR-302s. Int J Mol Sci 2018; 19:ijms19041170. [PMID: 29649109 PMCID: PMC5979342 DOI: 10.3390/ijms19041170] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/06/2018] [Accepted: 04/09/2018] [Indexed: 12/12/2022] Open
Abstract
β-cell dedifferentiation has been recently suggested as an additional mechanism contributing to type-1 and to type-2 diabetes pathogenesis. Moreover, several studies demonstrated that in vitro culture of native human pancreatic islets derived from non-diabetic donors resulted in the generation of an undifferentiated cell population. Additional evidence from in vitro human β-cell lineage tracing experiments, demonstrated that dedifferentiated cells derive from β-cells, thus representing a potential in vitro model of β-cell dedifferentiation. Here, we report the microRNA expression profiles analysis of in vitro dedifferentiated islet cells in comparison to mature human native pancreatic islets. We identified 13 microRNAs upregulated and 110 downregulated in islet cells upon in vitro dedifferentiation. Interestingly, among upregulated microRNAs, we observed the activation of microRNA miR-302s cluster, previously defined as pluripotency-associated. Bioinformatic analysis indicated that miR-302s are predicted to target several genes involved in the control of β-cell/epithelial phenotype maintenance; accordingly, such genes were downregulated upon human islet in vitro dedifferentiation. Moreover, we uncovered that cell–cell contacts are needed to maintain low/null expression levels of miR-302. In conclusion, we showed that miR-302 microRNA cluster genes are involved in in vitro dedifferentiation of human pancreatic islet cells and inhibits the expression of multiple genes involved in the maintenance of β-cell mature phenotype.
Collapse
|
41
|
Ying SY, Fang W, Lin SL. The miR-302-Mediated Induction of Pluripotent Stem Cells (iPSC): Multiple Synergistic Reprogramming Mechanisms. Methods Mol Biol 2018; 1733:283-304. [PMID: 29435941 DOI: 10.1007/978-1-4939-7601-0_23] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pluripotency represents a unique feature of embryonic stem cells (ESCs). To generate ESC-like-induced pluripotent stem cells (iPSCs) derived from somatic cells, the cell genome needs to be reset and reprogrammed to express the ESC-specific transcriptome. Numerous studies have shown that genomic DNA demethylation is required for epigenetic reprogramming of somatic cell nuclei to form iPSCs; yet, the mechanism remains largely unclear. In ESCs, the reprogramming process goes through two critical stages: germline and zygotic demethylation, both of which erase genomic DNA methylation sites and hence allow for different gene expression patterns to be reset into a pluripotent state. Recently, miR-302, an ESC-specific microRNA (miRNA), was found to play an essential role in four aspects of this reprogramming mechanism-(1) initiating global genomic DNA demethylation, (2) activating ESC-specific gene expression, (3) inhibiting developmental signaling, and (4) preventing stem cell tumorigenicity. In this review, we will summarize miR-302 functions in all four reprogramming aspects and further discuss how these findings may improve the efficiency and safety of the current iPSC technology.
Collapse
Affiliation(s)
- Shao-Yao Ying
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - William Fang
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shi-Lung Lin
- Division of Regenerative Medicine, WJWU & LYNN (W&L) Institute for Stem Cell Research, Santa Fe Springs, CA, USA
| |
Collapse
|
42
|
Mechanism and Method for Generating Tumor-Free iPS Cells Using Intronic MicroRNA miR-302 Induction. Methods Mol Biol 2018; 1733:265-282. [PMID: 29435940 DOI: 10.1007/978-1-4939-7601-0_22] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Today's researchers generating induced pluripotent stem cells (iPS cells or iPSCs) usually consider their pluripotency rather than potential tumorigenicity. Oncogenic factors such as c-Myc and Klf4 are frequently used to boost the survival and proliferative rates of iPSCs, creating an inevitable problem of tumorigenicity that hinders the therapeutic usefulness of these iPSCs. To prevent stem cell tumorigenicity, we have examined mechanisms by which the cell cycle genes are regulated in embryonic stem cells (ESCs). Naturally, ESCs possess two unique stemness properties: pluripotent differentiation into almost all cell types and unlimited self-renewal without the risk of tumor formation. These two features are also important for the use of ESCs or iPSCs in therapy. Currently, despite overwhelming reports describing iPSC pluripotency, there is no report of any tumor prevention mechanism in either ESCs or iPSCs. To this, our studies have revealed for the first time that an ESC-specific microRNA (miRNA), miR-302, regulates human iPSC tumorigenicity through cosuppression of both cyclin E-CDK2 and cyclin D-CDK4/6 cell cycle pathways during G1-S phase transition. Moreover, miR-302 also silences BMI-1, a cancer stem cell gene marker, to promote the expression of two senescence-associated tumor suppressor genes, p16Ink4a and p14/p19Arf. Together, the combinatory effects of inhibiting G1-S cell cycle transition and increasing p16/p14(p19) expression result in an attenuated cell cycle rate similar to that of 2-to-8-cell-stage embryonic cells in early zygotes (20-24 h/cycle), which is however slower than the fast proliferation rate of iPSCs induced by the four defined factors Oct4-Sox2-Klf4-c-Myc (12-16 h/cycle). These findings provide a means to control iPSC tumorigenicity and improve the safety of iPSCs for the therapeutic use. In this chapter, we review the mechanism underlying miR-302-mediated tumor suppression and then demonstrate how to apply this mechanism to generate tumor-free iPSCs. The same strategy may also be used to prevent ESC tumorigenicity.
Collapse
|
43
|
Chen X, Zhou L, Peng N, Yu H, Li M, Cao Z, Lin Y, Wang X, Li Q, Wang J, She Y, Zhu C, Lu M, Zhu Y, Liu S. MicroRNA-302a suppresses influenza A virus-stimulated interferon regulatory factor-5 expression and cytokine storm induction. J Biol Chem 2017; 292:21291-21303. [PMID: 29046356 DOI: 10.1074/jbc.m117.805937] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/11/2017] [Indexed: 12/25/2022] Open
Abstract
During influenza A virus (IAV) infection, cytokine storms play a vital and critical role in clinical outcomes. We have previously reported that microRNA (miR)-302c regulates IAV-induced IFN expression by targeting the 3'-UTR of nuclear factor κB (NF-κB)-inducing kinase. In the current study, we found that miR-302a, another member of the miR-302 cluster, controls the IAV-induced cytokine storm. According to results from cell-based and knockout mouse models, IAV induces a cytokine storm via interferon regulatory factor-5 (IRF-5). We also found that IAV infection up-regulates IRF-5 expression and that IRF-5 in turn promotes IAV replication. Furthermore, we observed that IRF-5 is a direct target of miR-302a, which down-regulated IRF-5 expression by binding its 3'-UTR. Moreover, IAV increased IRF-5 expression by down-regulating miR-302a expression. Interestingly, miR-302a inhibited IAV replication. In IAV-infected patients, miR-302a expression was down-regulated, whereas IRF-5 expression was up-regulated. Taken together, our work uncovers and defines a signaling pathway implicated in an IAV-induced cytokine storm.
Collapse
Affiliation(s)
- Xueyuan Chen
- From the State Key Laboratory of Virology, College of Life Sciences, and
| | - Li Zhou
- the Animal Biosafety Level III Laboratory at the Center for Animal Experiment, School of Medicine, Wuhan University, Wuhan 430072, China
| | - Nanfang Peng
- From the State Key Laboratory of Virology, College of Life Sciences, and
| | - Haisheng Yu
- From the State Key Laboratory of Virology, College of Life Sciences, and
| | - Mengqi Li
- From the State Key Laboratory of Virology, College of Life Sciences, and
| | - Zhongying Cao
- From the State Key Laboratory of Virology, College of Life Sciences, and
| | - Yong Lin
- the Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen 45122, Germany
| | - Xueyu Wang
- the Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen 45122, Germany
| | - Qian Li
- the Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen 45122, Germany
| | - Jun Wang
- the Center of Clinical Laboratory, The Fifth People's Hospital of Wuxi, Jiangnan University, Wuxi, Jiangsu 214005, China
| | - Yinglong She
- From the State Key Laboratory of Virology, College of Life Sciences, and
| | - Chengliang Zhu
- the Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China, and
| | - Mengji Lu
- the Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen 45122, Germany
| | - Ying Zhu
- From the State Key Laboratory of Virology, College of Life Sciences, and
| | - Shi Liu
- From the State Key Laboratory of Virology, College of Life Sciences, and
| |
Collapse
|
44
|
Driessen BJ, Logie C, Vonk LA. Cellular reprogramming for clinical cartilage repair. Cell Biol Toxicol 2017; 33:329-349. [PMID: 28144824 PMCID: PMC5493710 DOI: 10.1007/s10565-017-9382-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 01/17/2017] [Indexed: 01/06/2023]
Abstract
The repair of articular cartilage needs a sufficient number of chondrocytes to replace the defect tissue, and therefore, expansion of cells is generally required. Chondrocytes derived by cellular reprogramming may provide a solution to the limitations of current (stem) cell-based therapies. In this article, two distinct approaches-induced pluripotent stem cell (iPSC)-mediated reprogramming and direct lineage conversion-are analysed and compared according to criteria that encompass the qualification of the method and the derived chondrocytes for the purpose of clinical application. Progress in iPSC generation has provided insights into the replacement of reprogramming factors by small molecules and chemical compounds. As follows, multistage chondrogenic differentiation methods have shown to improve the chondrocyte yield and quality. Nevertheless, the iPSC 'detour' remains a time- and cost-consuming approach. Direct conversion of fibroblasts into chondrocytes provides a slight advantage over these aspects compared to the iPSC detour. However, the requirement of constitutive transgene expression to inhibit hypertrophic differentiation limits this approach of being translated to the clinic. It can be concluded that the quality of the derived chondrocytes highly depends on the characteristics of the reprogramming method and that this is important to keep in mind during the experimental set-up. Further research into both reprogramming approaches for clinical cartilage repair has to include proper control groups and epigenetic profiling to optimize the techniques and eventually derive functionally stable articular chondrocytes.
Collapse
Affiliation(s)
- Britta J.H. Driessen
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Colin Logie
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Lucienne A. Vonk
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
45
|
Sun R, Liang Y, Yuan F, Nie X, Sun H, Wang Y, Yu T, Gao L, Zhang L. Functional polymorphisms in the promoter region of miR-17-92 cluster are associated with a decreased risk of colorectal cancer. Oncotarget 2017; 8:82531-82540. [PMID: 29137282 PMCID: PMC5669908 DOI: 10.18632/oncotarget.19753] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 06/19/2017] [Indexed: 12/18/2022] Open
Abstract
miR-17-92 cluster is identified as a potential oncogenic miRNA. The aim of this study was to investigate the association of polymorphisms in the promoter region of miR-17-92 cluster with the risk of colorectal cancer (CRC). Three polymorphisms (i.e., rs9588884, rs982873 and rs1813389) in the promoter of miR-17-92 were analyzed among 874 cases and 1132 controls using a TaqMan allelic discrimination assay or a polymerase chain reaction-restriction fragment length polymorphism method. Relative expression of miR-17-92 was examined among CRC tumors and noncancerous tissues using quantitative reverse transcription-PCR. Transcriptional activities were measured using dual-luciferase reporter assay. We found a significantly reduced CRC risk with the rs9588884 (GG vs. CC: adjusted OR = 0.46, 95% CI, 0.35-0.62; dominant model: adjusted OR = 0.72, 95% CI, 0.59-0.86; recessive model: adjusted OR = 0.53, 95% CI, 0.40-0.69) and the rs982873 (CC vs. TT: adjusted OR = 0.60, 95%CI, 0.46-0.80; recessive model: adjusted OR = 0.62, 95% CI, 0.49-0.80). Haplotype analysis showed that the GCG haplotype had a decreased risk for CRC compared to the CTA haplotype (adjusted OR = 0.67, 95% CI, 0.57-0.79). The rs9588884 GG displayed a lower level of miR-20a and the rs982873 CC displayed a lower level of miR-17. Additionally, the rare allele of rs9588884 G and the rs982873 C revealed a reduced luciferase activity. These findings indicate that the rs9588884 GG and the rs982873 CC in the promoter of miR-17-92 may protect against CRC, possibly by decreasing transcriptional activity and eventually resulting in lower levels of miR-20a and miR-17.
Collapse
Affiliation(s)
- Ruifen Sun
- Laboratory of Molecular and Translational Medicine, West China Institute of Women and Children's Health, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Central Laboratory, Yunnan University of Chinese Traditional Medicine, Kunming 650500, Yunnan, P.R. China
| | - Yundan Liang
- Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, Sichuan 610083, P.R. China
| | - Fang Yuan
- Laboratory of Molecular and Translational Medicine, West China Institute of Women and Children's Health, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Division of Reproductive Medical Center, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xinwen Nie
- Laboratory of Molecular and Translational Medicine, West China Institute of Women and Children's Health, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hong Sun
- Laboratory of Molecular and Translational Medicine, West China Institute of Women and Children's Health, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Division of Reproductive Medical Center, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yanyun Wang
- Laboratory of Molecular and Translational Medicine, West China Institute of Women and Children's Health, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Tao Yu
- Department of Child Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Linbo Gao
- Laboratory of Molecular and Translational Medicine, West China Institute of Women and Children's Health, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Lin Zhang
- Laboratory of Molecular and Translational Medicine, West China Institute of Women and Children's Health, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
46
|
Romero-López C, Lahlali T, Berzal-Herranz B, Berzal-Herranz A. Development of Optimized Inhibitor RNAs Allowing Multisite-Targeting of the HCV Genome. Molecules 2017; 22:861. [PMID: 28531161 PMCID: PMC6154567 DOI: 10.3390/molecules22050861] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/12/2017] [Accepted: 05/16/2017] [Indexed: 02/07/2023] Open
Abstract
Engineered multivalent drugs are promising candidates for fighting infection by highly variable viruses, such as HCV. The combination into a single molecule of more than one inhibitory domain, each with its own target specificity and even a different mechanism of action, results in drugs with potentially enhanced therapeutic properties. In the present work, the anti-HCV chimeric inhibitor RNA HH363-10, which has a hammerhead catalytic domain and an aptamer RNA domain, was subjected to an in vitro selection strategy to isolate ten different optimised chimeric inhibitor RNAs. The catalytic domain was preserved while the aptamer RNA domain was evolved to contain two binding sites, one mapping to the highly conserved IIIf domain of the HCV genome's internal ribosome entry site (IRES), and the other either to IRES domain IV (which contains the translation start codon) or the essential linker region between domains I and II. These chimeric molecules efficiently and specifically interfered with HCV IRES-dependent translation in vitro (with IC50 values in the low µM range). They also inhibited both viral translation and replication in cell culture. These findings highlight the feasibility of using in vitro selection strategies for obtaining improved RNA molecules with potential clinical applications.
Collapse
Affiliation(s)
- Cristina Romero-López
- Instituto de Parasitología y Biomedicina "López-Neyra", IPBLN-CSIC, PTS Granada, Av. del Conocimiento 17, Armilla, 18016 Granada, Spain.
| | - Thomas Lahlali
- Instituto de Parasitología y Biomedicina "López-Neyra", IPBLN-CSIC, PTS Granada, Av. del Conocimiento 17, Armilla, 18016 Granada, Spain.
| | - Beatriz Berzal-Herranz
- Instituto de Parasitología y Biomedicina "López-Neyra", IPBLN-CSIC, PTS Granada, Av. del Conocimiento 17, Armilla, 18016 Granada, Spain.
| | - Alfredo Berzal-Herranz
- Instituto de Parasitología y Biomedicina "López-Neyra", IPBLN-CSIC, PTS Granada, Av. del Conocimiento 17, Armilla, 18016 Granada, Spain.
| |
Collapse
|
47
|
Inhibition of miR-302 Suppresses Hypoxia-Reoxygenation-Induced H9c2 Cardiomyocyte Death by Regulating Mcl-1 Expression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7968905. [PMID: 28491238 PMCID: PMC5405583 DOI: 10.1155/2017/7968905] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/30/2017] [Accepted: 03/07/2017] [Indexed: 11/18/2022]
Abstract
MicroRNAs play important roles in cell proliferation, differentiation, and apoptosis, and their expression influences cardiomyocyte apoptosis resulting from ischemia-induced myocardial infarction. Here, we determined the role of miR expression in cardiomyocyte apoptosis during hypoxia and reoxygenation. The rat cardiomyocyte cell line H9c2 was incubated for 3 h in normal or hypoxia medium, followed by reoxygenation for 24 h and transfection with a miR-302 mimic or antagomir. The effect of miR-302 on myeloid leukemia cell-differentiation protein-1 (Mcl-1) expression was determined by western blot, real-time polymerase chain reaction, and luciferase reporter assays, with cell viability assays. We observed that miR-302 expression was elevated by hypoxia/reoxygenation injury and increased further or decreased by transfection of the miR-302 mimic or miR-302 antagomir, respectively. Additionally, elevated miR-302 levels increased apoptosis-related protein levels and cardiomyocyte apoptosis, and luciferase reporter assays revealed miR-302 binding to the Mcl-1 mRNA 3' untranslated region. Our findings suggested that miR-302 overexpression aggravated hypoxia/reoxygenation-mediated cardiomyocyte apoptosis by inhibiting antiapoptotic Mcl-1 expression, thereby activating proapoptotic molecules. Furthermore, results indicating cardiomyocyte rescue from hypoxia/reoxygenation injury following treatment with miR-302 antagomir suggested that miR-302 inhibition might constitute a therapeutic strategy for protection against cardiomyocyte apoptosis during hypoxia/reoxygenation injury.
Collapse
|
48
|
Fagnocchi L, Zippo A. Multiple Roles of MYC in Integrating Regulatory Networks of Pluripotent Stem Cells. Front Cell Dev Biol 2017; 5:7. [PMID: 28217689 PMCID: PMC5289991 DOI: 10.3389/fcell.2017.00007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/20/2017] [Indexed: 12/20/2022] Open
Abstract
Pluripotent stem cells (PSCs) are defined by their self-renewal potential, which permits their unlimited propagation, and their pluripotency, being able to generate cell of the three embryonic lineages. These properties render PSCs a valuable tool for both basic and medical research. To induce and stabilize the pluripotent state, complex circuitries involving signaling pathways, transcription regulators and epigenetic mechanisms converge on a core transcriptional regulatory network of PSCs, thus determining their cell identity. Among the transcription factors, MYC represents a central hub, which modulates and integrates multiple mechanisms involved both in the maintenance of pluripotency and in cell reprogramming. Indeed, it instructs the PSC-specific cell cycle, metabolism and epigenetic landscape, contributes to limit exit from pluripotency and modulates signaling cascades affecting the PSC identity. Moreover, MYC extends its regulation on pluripotency by controlling PSC-specific non-coding RNAs. In this report, we review the MYC-controlled networks, which support the pluripotent state and discuss how their perturbation could affect cell identity. We further discuss recent finding demonstrating a central role of MYC in triggering epigenetic memory in PSCs, which depends on the establishment of a WNT-centered self-reinforcing circuit. Finally, we comment on the therapeutic implications of the role of MYC in affecting PSCs. Indeed, PSCs are used for both disease and cancer modeling and to derive cells for regenerative medicine. For these reasons, unraveling the MYC-mediated mechanism in those cells is fundamental to exploit their full potential and to identify therapeutic targets.
Collapse
Affiliation(s)
- Luca Fagnocchi
- Department of Epigenetics, Fondazione Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM)Milan, Italy; Division of Pathology, Fondazione IRCCS Ca' Granda, Ospedale Maggiore PoliclinicoMilan, Italy
| | - Alessio Zippo
- Department of Epigenetics, Fondazione Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM)Milan, Italy; Division of Pathology, Fondazione IRCCS Ca' Granda, Ospedale Maggiore PoliclinicoMilan, Italy
| |
Collapse
|
49
|
Chen YL, Xu QP, Guo F, Guan WH. MicroRNA-302d downregulates TGFBR2 expression and promotes hepatocellular carcinoma growth and invasion. Exp Ther Med 2017; 13:681-687. [PMID: 28352351 PMCID: PMC5348686 DOI: 10.3892/etm.2016.3970] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 09/22/2016] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-associated mortality in China and the third leading cause worldwide. A number of microRNAs (miRNAs) have been implicated in cell cycle progression, growth, apoptosis, angiogenesis and metastasis in HCC. In the present study, reverse transcription-quantitative polymerase chain reaction analysis was used to detect the levels of miR-302d expression in the tissues of 30 patients with HCC. Cell cycle, growth, apoptosis and migration were analyzed using a cell counting kit, flow cytometry and a Transwell migration assay. Dual-luciferase reporter assays and western blotting were also used to analyze the expression levels of transforming growth factor beta type II receptor (TGFBR2) in HCC cells. The present study evaluated the role of miR-302d in the development and progression of HCC. Abnormally high expression of miR-302d was observed in 80% of HCC specimens. Moreover, patients with lower levels of miR-302d expression experienced a longer survival time than those with higher levels of miR-302d expression. It was demonstrated that miR-302d promoted HCC cell growth and migration, suppressed cell apoptosis and affected cell cycle distribution in vitro, and augmented tumorigenicity in vivo. Furthermore, TGFBR2, which is a tumor suppressor, was confirmed as a target of miR-302d in HCC cells. Dual-luciferase reporter assays indicated that TGFBR2 expression was negatively regulated by miR-302d. Taken together, the results of the present study suggest that miR-302d may serve as a valuable tool for predicting the prognosis of patients with HCC.
Collapse
Affiliation(s)
- Yue-Liang Chen
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Qiu-Ping Xu
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Feng Guo
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Wen-Hua Guan
- Department of Infectious Diseases, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
50
|
Shim J, Nam JW. The expression and functional roles of microRNAs in stem cell differentiation. BMB Rep 2016; 49:3-10. [PMID: 26497582 PMCID: PMC4914210 DOI: 10.5483/bmbrep.2016.49.1.217] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Indexed: 01/23/2023] Open
Abstract
microRNAs (miRNAs) are key regulators of cell state transition and retention during stem cell proliferation and differentiation by post-transcriptionally downregulating hundreds of conserved target genes via seed-pairing in their 3' untranslated region. In embryonic and adult stem cells, dozens of miRNAs that elaborately control stem cell processes by modulating the transcriptomic context therein have been identified. Some miRNAs accelerate the change of cell state into progenitor cell lineages-such as myoblast, myeloid or lymphoid progenitors, and neuro precursor stem cells-and other miRNAs decelerate the change but induce proliferative activity, resulting in cell state retention. This cell state choice can be controlled by endogenously or exogenously changing miRNA levels or by including or excluding target sites. This control of miRNA-mediated gene regulation could improve our understanding of stem cell biology and facilitate their development as therapeutic tools.
Collapse
Affiliation(s)
- Jiwon Shim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Jin-Wu Nam
- Department of Life Science, College of Natural Sciences and Research Institute of Natural Sciences, Hanyang University, Seoul 04763, Korea
| |
Collapse
|