1
|
Ning Y, Qu X, Li X, Jin L, Liu J. Molecular mechanism of RB progression and Circ_0082415 inhibits MKLN1 translation to suppress retinoblastoma progression: Changes in mRNA and protein levels. Int J Biol Macromol 2025; 286:138524. [PMID: 39647744 DOI: 10.1016/j.ijbiomac.2024.138524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/28/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
The molecular mechanism of retinoblastoma (RB) is complex, involving the abnormal regulation of many genes and signaling pathways. The objective of this research was to explore the molecular mechanisms underlying the role of Circ_0082415 in the progression of retinoblastoma (RB), with particular emphasis on its suppressive impact on the translation of MKLN1 and its consequent influence on the advancement of RB. The study quantified the expression levels of Circ_0082415 in both RB cells and normal retinal cells using quantitative reverse transcription polymerase chain reaction (qRT-PCR), and subsequently analyzed the trend of Circ_0082415 expression throughout the progression of RB. The interaction mechanism between Circ_0082415 and MKLN1 mRNA was investigated by bioinformatics analysis and double luciferase reporter gene experiment. The expression of Circ_0082415 was markedly reduced in retinoblastoma (RB) cells, and its expression level exhibited a negative correlation with RB progression. Notably, the upregulation of Circ_0082415 significantly suppressed the proliferation, migration, and invasion of RB cells. A dual luciferase reporter gene assay substantiated the interaction between Circ_0082415 and MKLN1 mRNA, elucidating the mechanism through which Circ_0082415 exerts its anti-tumor effects by impeding the translation of MKLN1.
Collapse
Affiliation(s)
- Yuan Ning
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, No.4 Chongshan East Road, Huanggu District, Shenyang 110032, China
| | - Xiaohan Qu
- Department of Thoracic Surgery, The First Hospital of China Medical University, No.155 Nanjing North Street, Heping District, Shenyang 110001, Liaoning, China
| | - Xuedong Li
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, No.4 Chongshan East Road, Huanggu District, Shenyang 110032, China
| | - Li Jin
- School of Pharmacy, State Key Laboratory for Quality Research of Chinese Medicine, Macau University of Science and Technology, Taipa 999078, Macao; Key Laboratory, Sichuan Cancer Hospital. No. 55 Renmin South Road, Chengdu 610041, Sichuan, China.
| | - Jinlu Liu
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, No.4 Chongshan East Road, Huanggu District, Shenyang 110032, China.
| |
Collapse
|
2
|
Kolapalli SP, Nielsen TM, Frankel LB. Post-transcriptional dynamics and RNA homeostasis in autophagy and cancer. Cell Death Differ 2025; 32:27-36. [PMID: 37558732 PMCID: PMC11742036 DOI: 10.1038/s41418-023-01201-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/22/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023] Open
Abstract
Autophagy is an essential recycling and quality control pathway which preserves cellular and organismal homeostasis. As a catabolic process, autophagy degrades damaged and aged intracellular components in response to conditions of stress, including nutrient deprivation, oxidative and genotoxic stress. Autophagy is a highly adaptive and dynamic process which requires an intricately coordinated molecular control. Here we provide an overview of how autophagy is regulated post-transcriptionally, through RNA processing events, epitranscriptomic modifications and non-coding RNAs. We further discuss newly revealed RNA-binding properties of core autophagy machinery proteins and review recent indications of autophagy's ability to impact cellular RNA homeostasis. From a physiological perspective, we examine the biological implications of these emerging regulatory layers of autophagy, particularly in the context of nutrient deprivation and tumorigenesis.
Collapse
Affiliation(s)
| | | | - Lisa B Frankel
- Danish Cancer Institute, Copenhagen, Denmark.
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
3
|
Cairns CA, Xiao L, Wang JY. Posttranscriptional Regulation of Intestinal Mucosal Growth and Adaptation by Noncoding RNAs in Critical Surgical Disorders. J INVEST SURG 2024; 37:2308809. [PMID: 38323630 PMCID: PMC11027105 DOI: 10.1080/08941939.2024.2308809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 01/12/2024] [Indexed: 02/08/2024]
Abstract
The human intestinal epithelium has an impressive ability to respond to insults and its homeostasis is maintained by well-regulated mechanisms under various pathophysiological conditions. Nonetheless, acute injury and inhibited regeneration of the intestinal epithelium occur commonly in critically ill surgical patients, leading to the translocation of luminal toxic substances and bacteria to the bloodstream. Effective therapies for the preservation of intestinal epithelial integrity and for the prevention of mucosal hemorrhage and gut barrier dysfunction are limited, primarily because of a poor understanding of the mechanisms underlying mucosal disruption. Noncoding RNAs (ncRNAs), which include microRNAs (miRNAs), long ncRNAs (lncRNAs), circular RNAs (circRNAs), and small vault RNAs (vtRNAs), modulate a wide array of biological functions and have been identified as orchestrators of intestinal epithelial homeostasis. Here, we feature the roles of many important ncRNAs in controlling intestinal mucosal growth, barrier function, and repair after injury-particularly in the context of postoperative recovery from bowel surgery. We review recent literature surrounding the relationships between lncRNAs, microRNAs, and RNA-binding proteins and how their interactions impact cell survival, proliferation, migration, and cell-to-cell interactions in the intestinal epithelium. With advancing knowledge of ncRNA biology and growing recognition of the importance of ncRNAs in maintaining the intestinal epithelial integrity, ncRNAs provide novel therapeutic targets for treatments to preserve the gut epithelium in individuals suffering from critical surgical disorders.
Collapse
Affiliation(s)
- Cassandra A. Cairns
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Baltimore Veterans Affairs Medical Center, Baltimore, Maryland 21201
| |
Collapse
|
4
|
Kwon MS, Chung HK, Xiao L, Yu TX, Sharma S, Cairns CM, Chen T, Chae S, Turner DJ, Wang JY. Interaction between microRNA-195 and HuR regulates Paneth cell function in the intestinal epithelium by altering SOX9 translation. Am J Physiol Cell Physiol 2024; 327:C817-C829. [PMID: 39099425 PMCID: PMC11427006 DOI: 10.1152/ajpcell.00325.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/06/2024]
Abstract
Paneth cells at the bottom of small intestinal crypts secrete antimicrobial peptides, enzymes, and growth factors and contribute to pathogen clearance and maintenance of the stem cell niche. Loss of Paneth cells and their dysfunction occur commonly in various pathologies, but the mechanism underlying the control of Paneth cell function remains largely unknown. Here, we identified microRNA-195 (miR-195) as a repressor of Paneth cell development and activity by altering SOX9 translation via interaction with RNA-binding protein HuR. Tissue-specific transgenic expression of miR-195 (miR195-Tg) in the intestinal epithelium decreased the levels of mucosal SOX9 and reduced the numbers of lysozyme-positive (Paneth) cells in mice. Ectopically expressed SOX9 in the intestinal organoids derived from miR-195-Tg mice restored Paneth cell development ex vivo. miR-195 did not bind to Sox9 mRNA but it directly interacted with HuR and prevented HuR binding to Sox9 mRNA, thus inhibiting SOX9 translation. Intestinal mucosa from mice that harbored both Sox9 transgene and ablation of the HuR locus exhibited lower levels of SOX9 protein and Paneth cell numbers than those observed in miR-195-Tg mice. Inhibition of miR-195 activity by its specific antagomir improved Paneth cell function in HuR-deficient intestinal organoids. These results indicate that interaction of miR-195 with HuR regulates Paneth cell function by altering SOX9 translation in the small intestinal epithelium.NEW & NOTEWORTHY Our results indicate that intestinal epithelial tissue-specific transgenic miR-195 expression decreases the levels of SOX9 expression, along with reduced numbers of Paneth cells. Ectopically expressed SOX9 in the intestinal organoids derived from miR-195-Tg mice restores Paneth cell development ex vivo. miR-195 inhibits SOX9 translation by preventing binding of HuR to Sox9 mRNA. These findings suggest that interaction between miR-195 and HuR controls Paneth cell function via SOX9 in the intestinal epithelium.
Collapse
Affiliation(s)
- Min S Kwon
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Hee K Chung
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, United States
| | - Ting-Xi Yu
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Shweta Sharma
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Cassandra M Cairns
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Ting Chen
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Songah Chae
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Douglas J Turner
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, United States
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, United States
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
5
|
Dushnitzky S, Ishtayeh H, Ashkenazi A. The new kids on the block: RNA-binding proteins regulate autophagy in disease. FEBS J 2024; 291:3811-3819. [PMID: 38825737 DOI: 10.1111/febs.17195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/30/2024] [Accepted: 05/24/2024] [Indexed: 06/04/2024]
Abstract
Mammalian autophagy is a highly regulated and conserved cellular homeostatic process. Its existence allows the degradation of self-components to mediate cell survival in different stress conditions. Autophagy is involved in the regulation of cellular metabolic needs, protecting the cell or tissue from starvation through the degradation and recycling of cytoplasmic materials and organelles to basic molecular building blocks. It also plays a critical role in eliminating damaged or harmful proteins, organelles, and intracellular pathogens. Thus, a deterioration of the process may result in pathological conditions, such as aging-associated disorders and cancer. Understanding the crucial role of autophagy in maintaining the normal physiological function of cells, tissue, or organs has led to copious and expansive research regarding the regulation of this process. So far, most of the research has revolved around transcriptional and post-translational regulation. Here, we discuss the regulation of autophagy-related (ATG) mRNA transcripts by RNA-binding proteins (RBPs). This analysis focuses on how RBPs modulate autophagy in disease. A deeper understanding of the involvement of RBPs in autophagy can facilitate further research and treatment of a variety of human diseases.
Collapse
Affiliation(s)
- Shai Dushnitzky
- The Department of Cell and Developmental Biology, Faculty of Medical & Health Sciences, Tel Aviv University, Israel
| | - Hasan Ishtayeh
- The Department of Cell and Developmental Biology, Faculty of Medical & Health Sciences, Tel Aviv University, Israel
| | - Avraham Ashkenazi
- The Department of Cell and Developmental Biology, Faculty of Medical & Health Sciences, Tel Aviv University, Israel
- Sagol School of Neuroscience, Tel Aviv University, Israel
| |
Collapse
|
6
|
Liu M, Jiang H, Momeni MR. Epigenetic regulation of autophagy by non-coding RNAs and exosomal non-coding RNAs in colorectal cancer: A narrative review. Int J Biol Macromol 2024; 273:132732. [PMID: 38823748 DOI: 10.1016/j.ijbiomac.2024.132732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 06/03/2024]
Abstract
One of the major diseases affecting people globally is colorectal cancer (CRC), which is primarily caused by a lack of effective medical treatment and a limited understanding of its underlying mechanisms. Cellular autophagy functions to break down and eliminate superfluous proteins and substances, thereby facilitating the continual replacement of cellular elements and generating vital energy for cell processes. Non-coding RNAs and exosomal ncRNAs have a crucial impact on regulating gene expression and essential cellular functions such as autophagy, metastasis, and treatment resistance. The latest research has indicated that specific ncRNAs and exosomal ncRNA to influence the process of autophagy in CRC cells, which could have significant consequences for the advancement and treatment of this disease. It has been determined that a variety of ncRNAs have a vital function in regulating the genes essential for the formation and maturation of autophagosomes. Furthermore, it has been confirmed that ncRNAs have a considerable influence on the signaling pathways associated with autophagy, such as those involving AMPK, AKT, and mTOR. Additionally, numerous ncRNAs have the potential to affect specific genes involved in autophagy. This study delves into the control mechanisms of ncRNAs and exosomal ncRNAs and examines how they simultaneously influence autophagy in CRC.
Collapse
Affiliation(s)
- Minghua Liu
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning, China
| | - Hongfang Jiang
- Department of Geriatrics, Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning, China.
| | - Mohammad Reza Momeni
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States.
| |
Collapse
|
7
|
Wang S, Yang Y, Jiang X, Zheng X, Wei Q, Dai W, Zhang X. Nurturing gut health: role of m6A RNA methylation in upholding the intestinal barrier. Cell Death Discov 2024; 10:271. [PMID: 38830900 PMCID: PMC11148167 DOI: 10.1038/s41420-024-02043-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 06/05/2024] Open
Abstract
The intestinal lumen acts as a critical interface connecting the external environment with the body's internal state. It's essential to prevent the passage of harmful antigens and bacteria while facilitating nutrient and water absorption. The intestinal barriers encompass microbial, mechanical, immunological, and chemical elements, working together to maintain intestinal balance. Numerous studies have associated m6A modification with intestinal homeostasis. This review comprehensively outlines potential mechanisms through which m6A modification could initiate, exacerbate, or sustain barrier damage from an intestinal perspective. The pivotal role of m6A modification in preserving intestinal equilibrium provides new insights, guiding the exploration of m6A modification as a target for optimizing preventive and therapeutic strategies for intestinal homeostasis.
Collapse
Affiliation(s)
| | - Yuzhong Yang
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Xiaohan Jiang
- Department of Pathology, Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, China
| | - Xiang Zheng
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Qiufang Wei
- Department of Pathology, Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, China
| | - Wenbin Dai
- Department of Pathology, Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, China.
| | - Xuemei Zhang
- Department of Pathology, Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, China.
| |
Collapse
|
8
|
Tuerdi R, Zhang H, Wang W, Shen M, Wei X. Bibliometric analysis of the research hotspots and trends of circular RNAs. Heliyon 2024; 10:e31478. [PMID: 38818139 PMCID: PMC11137546 DOI: 10.1016/j.heliyon.2024.e31478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/27/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024] Open
Abstract
Background and objective Circular RNAs (circRNAs) have garnered considerable attention in the study of various human diseases due to their ubiquitous expression and potential biological functions. This study conducts a bibliometric and visualization-based analysis of circRNA-related research in diseases, aiming to reveal the current status, hotspots and emerging trends within the field. Methods Literature published between 2013 and 2022 and indexed in the Web of Science core databases was retrieved. Visualizations of publication volume, countries, authors, institutions, journals, references, and keywords were performed. Microsoft Excel (2021) was used to analyze and graph publication volume and growth trends. Additionally, CiteSpace (version 6.1.R6) and VOSviewer (version 1.6.18) were employed to visualize the bibliographic information. Results Between 2013 and 2022, a total of 4195 relevant articles on circRNA in the context of diseases were identified. These articles covered 56 countries, 2528 institutions, 19,842 authors and 698 journals, citing 85,541 references. The annual publication volume showed an exponential growth trend, with rapid development post-2017. China, the United States and Germany emerged as the top three contributors, demonstrating high publication volume and total citations. Notably, Nanjing Medical University exhibited the highest publication volume, boasting 291 articles. Burton B. Yang and Li Yang consistently ranked among the top 10 authors in terms of publication volume and citations, emerging as core contributors in this research field. The journal Bioengineered ranked first in terms of published articles (160), with an impact factor of 6.832, while Molecular Cancer garnered the highest impact factor (41.4), solidifying its position as a top journal in this field. Furthermore, high-frequency keywords included "expression" "proliferation" "biomarker" "microRNA" "cancer", signifying the prevailing research hotspots and principal themes of this field over the past decade. As of 2022, "biomarker", "prostate cancer","drug resistance","papillary thyroid carcinoma", etc. continued as keywords during the outbreak period. At present, the value of circRNA application is mainly reflected in the two aspects of biomarkers and therapeutic targets, and the prediction of accurate diagnosis and precise treatment based on big data analysis, especially in cancer, will become a hot spot of research in the future. Conclusion The trajectory of circRNA research from its biological origins to its applications in diseases has been delineated from 2013 to 2022. However, the transition to disease-specific applications and exploration of biological functions warrants further attention in future research endeavors.
Collapse
Affiliation(s)
- Reyila Tuerdi
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Hui Zhang
- Pathogenic Biology Laboratory, Gansu Provincial Center for Disease Prevention and Control, Lanzhou, 730000, Gansu, China
| | - Wenxin Wang
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Minghui Shen
- Center of Laboratory Medicine, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China
| | - Xingmin Wei
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| |
Collapse
|
9
|
Yang X, Xiong S, Zhao X, Jin J, Yang X, Du Y, Zhao L, He Z, Gong C, Guo L, Liang T. Orchestrating Cellular Balance: ncRNAs and RNA Interactions at the Dominant of Autophagy Regulation in Cancer. Int J Mol Sci 2024; 25:1561. [PMID: 38338839 PMCID: PMC10855840 DOI: 10.3390/ijms25031561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/15/2023] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Autophagy, a complex and highly regulated cellular process, is critical for the maintenance of cellular homeostasis by lysosomal degradation of cellular debris, intracellular pathogens, and dysfunctional organelles. It has become an interesting and attractive topic in cancer because of its dual role as a tumor suppressor and cell survival mechanism. As a highly conserved pathway, autophagy is strictly regulated by diverse non-coding RNAs (ncRNAs), ranging from short and flexible miRNAs to lncRNAs and even circRNAs, which largely contribute to autophagy regulatory networks via complex RNA interactions. The potential roles of RNA interactions during autophagy, especially in cancer procession and further anticancer treatment, will aid our understanding of related RNAs in autophagy in tumorigenesis and cancer treatment. Herein, we mainly summarized autophagy-related mRNAs and ncRNAs, also providing RNA-RNA interactions and their potential roles in cancer prognosis, which may deepen our understanding of the relationships between various RNAs during autophagy and provide new insights into autophagy-related therapeutic strategies in personalized medicine.
Collapse
Affiliation(s)
- Xueni Yang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China; (X.Y.); (S.X.); (X.Z.); (J.J.); (L.Z.); (Z.H.)
| | - Shizheng Xiong
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China; (X.Y.); (S.X.); (X.Z.); (J.J.); (L.Z.); (Z.H.)
| | - Xinmiao Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China; (X.Y.); (S.X.); (X.Z.); (J.J.); (L.Z.); (Z.H.)
| | - Jiaming Jin
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China; (X.Y.); (S.X.); (X.Z.); (J.J.); (L.Z.); (Z.H.)
| | - Xinbing Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (X.Y.); (Y.D.)
| | - Yajing Du
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (X.Y.); (Y.D.)
| | - Linjie Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China; (X.Y.); (S.X.); (X.Z.); (J.J.); (L.Z.); (Z.H.)
| | - Zhiheng He
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China; (X.Y.); (S.X.); (X.Z.); (J.J.); (L.Z.); (Z.H.)
| | - Chengjun Gong
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China; (X.Y.); (S.X.); (X.Z.); (J.J.); (L.Z.); (Z.H.)
| | - Li Guo
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China; (X.Y.); (S.X.); (X.Z.); (J.J.); (L.Z.); (Z.H.)
| | - Tingming Liang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (X.Y.); (Y.D.)
| |
Collapse
|
10
|
Chung HK, Xiao L, Han N, Chen J, Yao V, Cairns CM, Raufman B, Rao JN, Turner DJ, Kozar R, Gorospe M, Wang JY. Circular RNA Cdr1as inhibits proliferation and delays injury-induced regeneration of the intestinal epithelium. JCI Insight 2024; 9:e169716. [PMID: 38227372 PMCID: PMC11143936 DOI: 10.1172/jci.insight.169716] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 01/11/2024] [Indexed: 01/17/2024] Open
Abstract
Circular RNAs (circRNAs) are highly expressed in the mammalian intestinal epithelium, but their functions remain largely unknown. Here, we identified the circRNA Cdr1as as a repressor of intestinal epithelial regeneration and defense. Cdr1as levels increased in mouse intestinal mucosa after colitis and septic stress, as well as in human intestinal mucosa from patients with inflammatory bowel disease and sepsis. Ablation of the Cdr1as locus from the mouse genome enhanced renewal of the intestinal mucosa, promoted injury-induced epithelial regeneration, and protected the mucosa against colitis. We found approximately 40 microRNAs, including miR-195, differentially expressed between intestinal mucosa of Cdr1as-knockout (Cdr1as-/-) versus littermate mice. Increasing the levels of Cdr1as inhibited intestinal epithelial repair after wounding in cultured cells and repressed growth of intestinal organoids cultured ex vivo, but this inhibition was abolished by miR-195 silencing. The reduction in miR-195 levels in the Cdr1as-/- intestinal epithelium was the result of reduced stability and processing of the precursor miR-195. These findings indicate that Cdr1as reduces proliferation and repair of the intestinal epithelium at least in part via interaction with miR-195 and highlight a role for induced Cdr1as in the pathogenesis of unhealed wounds and disrupted renewal of the intestinal mucosa.
Collapse
Affiliation(s)
- Hee Kyoung Chung
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, USA
| | - Naomi Han
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jason Chen
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Vivian Yao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Cassandra M. Cairns
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Benjamin Raufman
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jaladanki N. Rao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, USA
| | - Douglas J. Turner
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, USA
| | - Rosemary Kozar
- Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging-IRP, NIH, Baltimore, Maryland, USA
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Lun J, Guo J, Yu M, Zhang H, Fang J. Circular RNAs in inflammatory bowel disease. Front Immunol 2023; 14:1307985. [PMID: 38187401 PMCID: PMC10771839 DOI: 10.3389/fimmu.2023.1307985] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a term encompassing a few chronic inflammatory disorders that leads to damage of the intestinal tract. Although much progress has been made in understanding the pathology of IBD, the precise pathogenesis is not completely understood. Circular RNAs (circRNAs) are single-stranded, covalently closed, endogenous molecules in eukaryotes with a variety of biological functions. CircRNAs have been shown to have regulatory effects in many diseases, such as cancer, cardiovascular disease, and neurological disorders. CircRNAs have also been found to play important roles in IBD, and although they are not sufficiently investigated in the context of IBD, a few circRNAs have been identified as potential biomarkers for the diagnosis and prognosis of IBD and as potential therapeutic targets for IBD. Herein, we survey recent progress in understanding the functions and roles of circRNAs in IBD and discuss their potential clinical applications.
Collapse
Affiliation(s)
- Jie Lun
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao, China
| | - Jing Guo
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao, China
| | - Mengchao Yu
- Central Laboratories, Qingdao Municipal Hospital, Qingdao, China
| | - Hongwei Zhang
- Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Jing Fang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao, China
| |
Collapse
|
12
|
Xiao L, Warner B, Mallard CG, Chung HK, Shetty A, Brantner CA, Rao JN, Yochum GS, Koltun WA, To KB, Turner DJ, Gorospe M, Wang JY. Control of Paneth cell function by HuR regulates gut mucosal growth by altering stem cell activity. Life Sci Alliance 2023; 6:e202302152. [PMID: 37696579 PMCID: PMC10494932 DOI: 10.26508/lsa.202302152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/13/2023] Open
Abstract
Rapid self-renewal of the intestinal epithelium requires the activity of intestinal stem cells (ISCs) that are intermingled with Paneth cells (PCs) at the crypt base. PCs provide multiple secreted and surface-bound niche signals and play an important role in the regulation of ISC proliferation. Here, we show that control of PC function by RNA-binding protein HuR via mitochondria affects intestinal mucosal growth by altering ISC activity. Targeted deletion of HuR in mice disrupted PC gene expression profiles, reduced PC-derived niche factors, and impaired ISC function, leading to inhibited renewal of the intestinal epithelium. Human intestinal mucosa from patients with critical surgical disorders exhibited decreased levels of tissue HuR and PC/ISC niche dysfunction, along with disrupted mucosal growth. HuR deletion led to mitochondrial impairment by decreasing the levels of several mitochondrial-associated proteins including prohibitin 1 (PHB1) in the intestinal epithelium, whereas HuR enhanced PHB1 expression by preventing microRNA-195 binding to the Phb1 mRNA. These results indicate that HuR is essential for maintaining the integrity of the PC/ISC niche and highlight a novel role for a defective PC/ISC niche in the pathogenesis of intestinal mucosa atrophy.
Collapse
Affiliation(s)
- Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bridgette Warner
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Caroline G Mallard
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hee K Chung
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amol Shetty
- Institute for Genome Science, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Christine A Brantner
- Electron Microscopy Core Imaging Facility, University of Maryland Baltimore, Baltimore, MD, USA
| | - Jaladanki N Rao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Baltimore Veterans Affairs Medical Center, Baltimore, MD, USA
| | - Gregory S Yochum
- Department of Surgery, Pennsylvania State University College of Medicine, Hershey, PA, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Walter A Koltun
- Department of Surgery, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Kathleen B To
- Baltimore Veterans Affairs Medical Center, Baltimore, MD, USA
| | - Douglas J Turner
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Baltimore Veterans Affairs Medical Center, Baltimore, MD, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging-IRP, NIH, Baltimore, MD, USA
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Baltimore Veterans Affairs Medical Center, Baltimore, MD, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
13
|
Feng XY, Zhu SX, Pu KJ, Huang HJ, Chen YQ, Wang WT. New insight into circRNAs: characterization, strategies, and biomedical applications. Exp Hematol Oncol 2023; 12:91. [PMID: 37828589 PMCID: PMC10568798 DOI: 10.1186/s40164-023-00451-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/23/2023] [Indexed: 10/14/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of covalently closed, endogenous ncRNAs. Most circRNAs are derived from exonic or intronic sequences by precursor RNA back-splicing. Advanced high-throughput RNA sequencing and experimental technologies have enabled the extensive identification and characterization of circRNAs, such as novel types of biogenesis, tissue-specific and cell-specific expression patterns, epigenetic regulation, translation potential, localization and metabolism. Increasing evidence has revealed that circRNAs participate in diverse cellular processes, and their dysregulation is involved in the pathogenesis of various diseases, particularly cancer. In this review, we systematically discuss the characterization of circRNAs, databases, challenges for circRNA discovery, new insight into strategies used in circRNA studies and biomedical applications. Although recent studies have advanced the understanding of circRNAs, advanced knowledge and approaches for circRNA annotation, functional characterization and biomedical applications are continuously needed to provide new insights into circRNAs. The emergence of circRNA-based protein translation strategy will be a promising direction in the field of biomedicine.
Collapse
Affiliation(s)
- Xin-Yi Feng
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Shun-Xin Zhu
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Ke-Jia Pu
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Heng-Jing Huang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Yue-Qin Chen
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| | - Wen-Tao Wang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
14
|
Yuan L, Duan J, Zhou H. Perspectives of circular RNAs in diabetic complications from biological markers to potential therapeutic targets (Review). Mol Med Rep 2023; 28:194. [PMID: 37681455 PMCID: PMC10502942 DOI: 10.3892/mmr.2023.13081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023] Open
Abstract
Chronic complications of diabetes increase mortality and disability of patients. It is crucial to find potential early biomarkers and provide novel therapeutic strategies for diabetic complications. Circular RNAs (circRNAs), covalently closed RNA molecules in eukaryotes, have high stability. Recent studies have confirmed that differentially expressed circRNAs have a vital role in diabetic complications. Certain circRNAs, such as circRNA ankyrin repeat domain 36, circRNA homeodomain‑interacting protein kinase 3 (circHIPK3) and circRNA WD repeat domain 77, are associated with inflammation, endothelial cell apoptosis and smooth muscle cell proliferation, leading to vascular endothelial dysfunction and atherosclerosis. CircRNA LDL receptor related protein 6, circRNA actin related protein 2, circ_0000064, circ‑0101383, circ_0123996, hsa_circ_0003928 and circ_0000285 mediate inflammation, apoptosis and autophagy of podocytes, mesangial cell hypertrophy and proliferation, as well as tubulointerstitial fibrosis, in diabetic nephropathy by regulating the expression of microRNAs and proteins. Circ_0005015, circRNA PWWP domain containing 2A, circRNA zinc finger protein 532, circRNA zinc finger protein 609, circRNA DNA methyltransferase 3β, circRNA collagen type I α2 chain and circHIPK3 widely affect multiple biological processes of diabetic retinopathy. Furthermore, circ_000203, circ_010567, circHIPK3, hsa_circ_0076631 and circRNA cerebellar degeneration‑related protein 1 antisense are involved in the pathology of diabetic cardiomyopathy. CircHIPK3 is the most well‑studied circRNA in the field of diabetic complications and is most likely to become a biological marker and therapeutic target for diabetic complications. The applications of circRNAs may be a promising treatment strategy for human diseases at the molecular level. The relationship between circRNAs and diabetic complications is summarized in the present study. Of note, circRNA‑targeted therapy and the role of circRNAs as biomarkers may potentially be used in diabetic complications in the future.
Collapse
Affiliation(s)
- Lingling Yuan
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Jinsheng Duan
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Hong Zhou
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
15
|
Zhang Y, Luo J, Yang W, Ye WC. CircRNAs in colorectal cancer: potential biomarkers and therapeutic targets. Cell Death Dis 2023; 14:353. [PMID: 37296107 PMCID: PMC10250185 DOI: 10.1038/s41419-023-05881-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/09/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
Globally, colorectal cancer (CRC) is the third most prevalent cancer and the second leading cause of cancer-related deaths. Circular RNAs (circRNAs) are single-stranded RNA with covalently closed-loop structures and are highly stable, conserved, and abundantly expressed in various organs and tissues. Recent research found abnormal circRNA expression in CRC patients' blood/serum, cells, CRC tissues, and exosomes. Furthermore, mounting data demonstrated that circRNAs are crucial to the development of CRC. CircRNAs have been shown to exert biological functions by acting as microRNA sponges, RNA-binding protein sponges, regulators of gene splicing and transcription, and protein/peptide translators. These characteristics make circRNAs potential markers for CRC diagnosis and prognosis, potential therapeutic targets, and circRNA-based therapies. However, further studies are still necessary to improve the understanding of the roles and biological mechanisms of circRNAs in the development of CRC. In this review, up-to-date research on the role of circRNAs in CRC was examined, focusing on their potential application in CRC diagnosis and targeted therapy, which would advance the knowledge of the functions of circRNAs in the development and progression of CRC.
Collapse
Affiliation(s)
- Yuying Zhang
- Central Laboratory, Shenzhen Longhua Maternity and Child Healthcare Hospital, Shenzhen, 518109, China
| | - Jingyan Luo
- Forevergen Biosciences Centre, Guangzhou International Biotech Island, Guangzhou, 510300, China
| | - Weikang Yang
- Department of Prevention and Healthcare, Shenzhen Longhua Maternity and Child Healthcare Hospital, Shenzhen, 518109, China
| | - Wen-Chu Ye
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| |
Collapse
|
16
|
m6A modification in inflammatory bowel disease provides new insights into clinical applications. Biomed Pharmacother 2023; 159:114298. [PMID: 36706633 DOI: 10.1016/j.biopha.2023.114298] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Inflammatory bowel disease (IBD) results from a complex interplay between genetic predisposition, environmental factors, and gut microbes. The role of N6-methyladenosine (m6A) methylation in the pathogenesis of IBD has attracted increasing attention. m6A modification not only regulates intestinal mucosal immunity and intestinal barrier function, but also affects apoptosis and autophagy in intestinal epithelial cells. Additionally, m6A modification participated in the interaction between gut microbes and the host, providing a novel direction to explore the molecular mechanisms of IBD and the theoretical basis for specific microorganism-oriented prevention and treatment measures. m6A regulators are expected to be biomarkers for predicting the prognosis of IBD patients. m6A methylation may be utilized as a novel target in the management of IBD. This review focused on the recent advances in how m6A modification causes the initiation and development of IBD, and provided new insights into optimal prevention and treatment measures for IBD.
Collapse
|
17
|
Ma X, Xiao L, Wen SJ, Yu T, Sharma S, Chung HK, Warner B, Mallard CG, Rao JN, Gorospe M, Wang J. Small noncoding vault RNA2-1 disrupts gut epithelial barrier function via interaction with HuR. EMBO Rep 2023; 24:e54925. [PMID: 36440604 PMCID: PMC9900329 DOI: 10.15252/embr.202254925] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/29/2022] Open
Abstract
Vault RNAs (vtRNAs) are small noncoding RNAs and highly expressed in many eukaryotes. Here, we identified vtRNA2-1 as a novel regulator of the intestinal barrier via interaction with RNA-binding protein HuR. Intestinal mucosal tissues from patients with inflammatory bowel diseases and from mice with colitis or sepsis express increased levels of vtRNAs relative to controls. Ectopically expressed vtRNA2-1 decreases the levels of intercellular junction (IJ) proteins claudin 1, occludin, and E-cadherin and causes intestinal epithelial barrier dysfunction in vitro, whereas vtRNA2-1 silencing promotes barrier function. Increased vtRNA2-1 also decreases IJs in intestinal organoid, inhibits epithelial renewal, and causes Paneth cell defects ex vivo. Elevating the levels of tissue vtRNA2-1 in the intestinal mucosa increases the vulnerability of the gut barrier to septic stress in mice. vtRNA2-1 interacts with HuR and prevents HuR binding to claudin 1 and occludin mRNAs, thus decreasing their translation. These results indicate that vtRNA2-1 impairs intestinal barrier function by repressing HuR-facilitated translation of claudin 1 and occludin.
Collapse
Affiliation(s)
- Xiang‐Xue Ma
- Cell Biology Group, Department of SurgeryUniversity of Maryland School of MedicineBaltimoreMDUSA
- Present address:
Department of Gastroenterology, Xiyuan HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Lan Xiao
- Cell Biology Group, Department of SurgeryUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Susan J Wen
- Cell Biology Group, Department of SurgeryUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Ting‐Xi Yu
- Cell Biology Group, Department of SurgeryUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Shweta Sharma
- Cell Biology Group, Department of SurgeryUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Hee K Chung
- Cell Biology Group, Department of SurgeryUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Bridgette Warner
- Cell Biology Group, Department of SurgeryUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Caroline G Mallard
- Cell Biology Group, Department of SurgeryUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Jaladanki N Rao
- Cell Biology Group, Department of SurgeryUniversity of Maryland School of MedicineBaltimoreMDUSA
- Baltimore Veterans Affairs Medical CenterBaltimoreMDUSA
| | - Myriam Gorospe
- Laboratory of Genetics and GenomicsNational Institute on Aging‐IRP, NIHBaltimoreMDUSA
| | - Jian‐Ying Wang
- Cell Biology Group, Department of SurgeryUniversity of Maryland School of MedicineBaltimoreMDUSA
- Laboratory of Genetics and GenomicsNational Institute on Aging‐IRP, NIHBaltimoreMDUSA
- Department of PathologyUniversity of Maryland School of MedicineBaltimoreMDUSA
| |
Collapse
|
18
|
[Circular RNA circRSF1 binds to HuR to promote radiation-induced inflammatory phenotype in hepatic stellate cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2023; 43:46-51. [PMID: 36856209 DOI: 10.12122/j.issn.1673-4254.2023.01.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
OBJECTIVE To investigate whether circular RNA circRSF1 regulates radiation-induced inflammatory phenotype of hepatic stellate cells (HSCs) by binding to HuR protein and repressing its function. METHODS Human HSC cell line LX2 with HuR overexpression or knockdown was exposed to 8 Gy X-ray irradiation, and the changes in the expression of inflammatory factors (IL-1β, IL-6 and TNF-α) were detected by qRT-PCR. The expressions of IκBα and phosphorylation of NF-κB were detected with Western blotting. The binding of circRSF1 to HuR was verified by RNA pull-down assay and RNA-binding protein immunoprecipitation (RIP). The expressions of inflammatory factors, IκBα and the phosphorylation of NF-κB were detected after modifying the interaction between circRSF1 and HuR. RESULTS Knockdown of HuR significantly up- regulated the expressions of IL-1β, IL-6 and TNF-α, decreased IκBα expression and promoted NF-κB phosphorylation in irradiated LX2 cells, whereas overexpression of HuR produced the opposite changes (P < 0.05). Overexpression or knockdown of circRSF1 did not significantly affect the expression of HuR. RNA pull-down and RIP experiments confirmed the binding between circRSF1 and HuR. Overexpression of circRSF1 significantly reduced the binding of HuR to IκBα and down-regulated the expression of IκBα (P < 0.05). Overexpression of circRSF1 combined with HuR overexpression partially reversed the up-regulation of the inflammatory factors, down-regulated IκBα expression and increased phosphorylation of NFκB in LX2 cells, while the opposite effects were observed in cells with knockdown of both circRSF1 and HuR (P < 0.05). CONCLUSION circRSF1 reduces IκBα expression by binding to HuR to promote the activation of NF-κB pathway, thereby enhancing radiation- induced inflammatory phenotype of HSCs.
Collapse
|
19
|
Li Y, Zhang J, Sun L, Zhao H, Jia X, Zhang Y, Li Y. Fluoride-Induced Sperm Damage and HuR-Mediated Excessive Apoptosis and Autophagy in Spermatocytes. Biol Trace Elem Res 2023; 201:295-305. [PMID: 35226278 DOI: 10.1007/s12011-022-03138-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/25/2022] [Indexed: 01/11/2023]
Abstract
It is critical to determine the mechanism underlying fluoride (F)-induced damage of the testes to develop appropriate strategies for monitoring and intervention. In the present study, exposure to 50 mg/L sodium fluoride (NaF) for 90 days damaged the normal structure of the testes and quality of the sperm, particularly the spermatocytes, and triggered overexpression of human antigen R (Elavl1/HuR) according to western blotting and immunofluorescence. Furthermore, 0.5 mM NaF exposure for 24 h exposure increased the proportion of apoptosis and expression of caspase-3 and caspase-9 in mouse spermatocytes (GC-2spd cell line), whereas inhibition of HuR reduced apoptosis and the expression of caspase-3 and caspase-9. Additionally, inhibition of HuR alleviated F-induced autophagy based on observation of the autophagy bodies, detection of autophagy activity, and analysis of the expression of the LC3II/LC3I and p62 proteins. These results reveal that excessive F can lead to overexpression of HuR, resulting in high levels of apoptosis and autophagy in spermatocytes. These findings improve the understanding of the mechanisms underlying F-induced male reproductive toxicity, and HuR may be explored as a treatment target for certain conditions. Excessive fluoride can induce overexpression of HuR in testis and result in excessive apoptosis and autophagy in spermatocytes as well as male reproductive damage, such as a decreased sperm count, decreased sperm motility, and increased deformity rate.
Collapse
Affiliation(s)
- Yanyan Li
- Department of Public Health and Preventive Medicine, Changzhi Medical College, Changzhi, Shanxi, 046011, People's Republic of China.
| | - Jianbin Zhang
- Department of Public Health and Preventive Medicine, Changzhi Medical College, Changzhi, Shanxi, 046011, People's Republic of China
| | - Linlin Sun
- Department of Public Health and Preventive Medicine, Changzhi Medical College, Changzhi, Shanxi, 046011, People's Republic of China
| | - Hongyu Zhao
- Department of Public Health and Preventive Medicine, Changzhi Medical College, Changzhi, Shanxi, 046011, People's Republic of China
| | - Xiaohan Jia
- Department of Public Health and Preventive Medicine, Changzhi Medical College, Changzhi, Shanxi, 046011, People's Republic of China
| | - Yingri Zhang
- Department of Public Health and Preventive Medicine, Changzhi Medical College, Changzhi, Shanxi, 046011, People's Republic of China
| | - Yuanbin Li
- Department of Public Health and Preventive Medicine, Changzhi Medical College, Changzhi, Shanxi, 046011, People's Republic of China
| |
Collapse
|
20
|
Kumar D, Sahoo SS, Chauss D, Kazemian M, Afzali B. Non-coding RNAs in immunoregulation and autoimmunity: Technological advances and critical limitations. J Autoimmun 2023; 134:102982. [PMID: 36592512 PMCID: PMC9908861 DOI: 10.1016/j.jaut.2022.102982] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 01/02/2023]
Abstract
Immune cell function is critically dependent on precise control over transcriptional output from the genome. In this respect, integration of environmental signals that regulate gene expression, specifically by transcription factors, enhancer DNA elements, genome topography and non-coding RNAs (ncRNAs), are key components. The first three have been extensively investigated. Even though non-coding RNAs represent the vast majority of cellular RNA species, this class of RNA remains historically understudied. This is partly because of a lag in technological and bioinformatic innovations specifically capable of identifying and accurately measuring their expression. Nevertheless, recent progress in this domain has enabled a profusion of publications identifying novel sub-types of ncRNAs and studies directly addressing the function of ncRNAs in human health and disease. Many ncRNAs, including circular and enhancer RNAs, have now been demonstrated to play key functions in the regulation of immune cells and to show associations with immune-mediated diseases. Some ncRNAs may function as biomarkers of disease, aiding in diagnostics and in estimating response to treatment, while others may play a direct role in the pathogenesis of disease. Importantly, some are relatively stable and are amenable to therapeutic targeting, for example through gene therapy. Here, we provide an overview of ncRNAs and review technological advances that enable their study and hold substantial promise for the future. We provide context-specific examples by examining the associations of ncRNAs with four prototypical human autoimmune diseases, specifically rheumatoid arthritis, psoriasis, inflammatory bowel disease and multiple sclerosis. We anticipate that the utility and mechanistic roles of these ncRNAs in autoimmunity will be further elucidated in the near future.
Collapse
Affiliation(s)
- Dhaneshwar Kumar
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Subhransu Sekhar Sahoo
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Daniel Chauss
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Majid Kazemian
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA.
| |
Collapse
|
21
|
Chen M, Liu Q, Song M, Liu X, Huang K, Zhong D, Chen Y, Jiang M, Sun J, Ouyang Y, Sooranna SR, Shi D, Li H. CircCLTH promotes skeletal muscle development and regeneration. Epigenetics 2022; 17:2296-2317. [PMID: 36043316 PMCID: PMC9665157 DOI: 10.1080/15592294.2022.2117115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/04/2022] [Accepted: 08/18/2022] [Indexed: 11/03/2022] Open
Abstract
Buffalo holds an excellent potential for beef production, and circRNA plays an important role in regulating myogenesis. However, the regulatory mechanism of circRNAs during buffalo skeletal muscle development has not been fully explored. In this study, circRNA expression profiles during the proliferation and differentiation stages of buffalo myoblasts were analysed by RNA-seq. Here, a total of 3,142 circRNAs candidates were identified, and 110 of them were found to be differentially expressed in the proliferation and differentiation stages of buffalo myoblast libraries. We focused on a 347 nt circRNA subsequently named circCLTH. It consists of three exons and is expressed specifically in muscle tissues. It is a highly conserved non-coding RNA with about 95% homology to both the human and the mouse circRNAs. The results of cell experiments and RNA pull-down assays indicated that circCLTH may capture PLEC protein, promote the proliferation and differentiation of myoblasts as well as inhibit apoptosis. Overexpression of circCLTH in vivo suggests that circCLTH is involved in the stimulation of skeletal muscle regeneration. In conclusion, we identified a novel noncoding regulator, circCLTH, that promotes proliferation and differentiation of myoblasts and skeletal muscles.
Collapse
Affiliation(s)
- Mengjie Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
- College of Life Science and Engineering, Foshan University, Foshan, China
| | - Mingming Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xingyu Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Kongwei Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Dandan Zhong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yaling Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Mingsheng Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Junming Sun
- Laboratory Animal Center, Guangxi Medical University, Nanning, China
| | - Yiqiang Ouyang
- Laboratory Animal Center, Guangxi Medical University, Nanning, China
| | - Suren R Sooranna
- Institute of Reproductive and Developmental Biology, Imperial College London, London, UK
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Hui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
22
|
Zhuang Z, Jin C, Li X, Han Y, Yang Q, Huang Y, Zheng Y, Li W. Knockdown of circHIPK3 promotes the osteogenic differentiation of human bone marrow mesenchymal stem cells through activating the autophagy flux. FASEB J 2022; 36:e22590. [PMID: 36208289 DOI: 10.1096/fj.202200832r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/07/2022] [Accepted: 09/23/2022] [Indexed: 11/11/2022]
Abstract
Many circular RNAs (circRNAs) involved in the osteogenesis of human bone marrow mesenchymal stem cells (hBMSCs) have recently been discovered. The role of circHIPK3 in osteogenesis has yet to be determined. Cell transfection was conducted using small-interfering RNAs (siRNAs). Expression of osteogenic markers were detected by quantitative reverse transcription-polymerase chain reaction, western blotting analysis, and immunofluorescence staining. Ectopic bone formation models in nude mice were used to examined the bone formation ability in vivo. The autophagy flux was examined via western blotting analysis, immunofluorescence staining and transmission electron microscopy analysis. RNA immunoprecipitation (RIP) analysis was carried out to analyze the binding between human antigen R (HUR) and circHIPK3 or autophagy-related 16-like 1 (ATG16L1). Actinomycin D was used to determine the mRNA stability. Our results demonstrated that silencing circHIPK3 promoted the osteogenesis of hBMSCs while silencing the linear mHIPK3 did not affect osteogenic differentiation, both in vivo and in vitro. Moreover, we found that knockdown of circHIPK3 activated autophagy flux. Activation of autophagy enhanced the osteogenesis of hBMSCs and inhibition of autophagy reduced the osteogenesis through using autophagy regulators chloroquine and rapamycin. We also discovered that circHIPK3 and ATG16L1 both bound to HUR. Knockdown of circHIPK3 released the binding sites of HUR to ATG16L1, which stabilized the mRNA expression of ATG16L1, resulting in the upregulation of ATG16L1 and autophagy activation. CircHIPK3 functions as an osteogenesis and autophagy regulator and has the potential for clinical application in the future.
Collapse
Affiliation(s)
- Ziyao Zhuang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| | - Chanyuan Jin
- National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China.,Second Clinical Division, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xiaobei Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| | - Yineng Han
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| | - Qiaolin Yang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| | - Yiping Huang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| | - Yunfei Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| | - Weiran Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| |
Collapse
|
23
|
Li X, Li L, Si X, Zhang Z, Ni Z, Zhou Y, Liu K, Xia W, Zhang Y, Gu X, Huang J, Yin C, Shao A, Jiang L. The regulatory roles of circular RNAs via autophagy in ischemic stroke. Front Neurol 2022; 13:963508. [PMID: 36330428 PMCID: PMC9623297 DOI: 10.3389/fneur.2022.963508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/07/2022] [Indexed: 11/24/2022] Open
Abstract
Ischemic stroke (IS) is a severe disease with a high disability, recurrence, and mortality rates. Autophagy, a highly conserved process that degrades damaged or aging organelles and excess cellular components to maintain homeostasis, is activated during IS. It influences the blood–brain barrier integrity and regulates apoptosis. Circular RNAs (circRNAs) are novel non-coding RNAs involved in IS-induced autophagy and participate in various pathological processes following IS. In addition, they play a role in autophagy regulation. This review summarizes current evidence on the roles of autophagy and circRNA in IS and the potential mechanisms by which circRNAs regulate autophagy to influence IS injury. This review serves as a basis for the clinical application of circRNAs as novel biomarkers and therapeutic targets in the future.
Collapse
Affiliation(s)
- Xiaoqin Li
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lingfei Li
- Department of Neurology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoli Si
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zheng Zhang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhumei Ni
- Department of Emergency, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongji Zhou
- Department of Neurology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Keqin Liu
- Department of Neurology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenqing Xia
- Department of Neurology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuyao Zhang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin Gu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jinyu Huang
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Congguo Yin
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Neurology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Congguo Yin
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Disease, Hangzhou, China
- Anwen Shao
| | - Lin Jiang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Neurology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Lin Jiang
| |
Collapse
|
24
|
Yu TX, Kalakonda S, Liu X, Han N, Chung HK, Xiao L, Rao JN, He TC, Raufman JP, Wang JY. Long noncoding RNA uc.230/CUG-binding protein 1 axis sustains intestinal epithelial homeostasis and response to tissue injury. JCI Insight 2022; 7:156612. [PMID: 36214222 PMCID: PMC9675575 DOI: 10.1172/jci.insight.156612] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 08/31/2022] [Indexed: 01/16/2023] Open
Abstract
Intestinal epithelial integrity is commonly disrupted in patients with critical disorders, but the exact underlying mechanisms are unclear. Long noncoding RNAs transcribed from ultraconserved regions (T-UCRs) control different cell functions and are involved in pathologies. Here, we investigated the role of T-UCRs in intestinal epithelial homeostasis and identified T-UCR uc.230 as a major regulator of epithelial renewal, apoptosis, and barrier function. Compared with controls, intestinal mucosal tissues from patients with ulcerative colitis and from mice with colitis or fasted for 48 hours had increased levels of uc.230. Silencing uc.230 inhibited the growth of intestinal epithelial cells (IECs) and organoids and caused epithelial barrier dysfunction. Silencing uc.230 also increased IEC vulnerability to apoptosis, whereas increasing uc.230 levels protected IECs against cell death. In mice with colitis, reduced uc.230 levels enhanced mucosal inflammatory injury and delayed recovery. Mechanistic studies revealed that uc.230 increased CUG-binding protein 1 (CUGBP1) by acting as a natural decoy RNA for miR-503, which interacts with Cugbp1 mRNA and represses its translation. These findings indicate that uc.230 sustains intestinal mucosal homeostasis by promoting epithelial renewal and barrier function and that it protects IECs against apoptosis by serving as a natural sponge for miR-503, thereby preserving CUGBP1 expression.
Collapse
Affiliation(s)
- Ting-Xi Yu
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Sudhakar Kalakonda
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Xiangzheng Liu
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Naomi Han
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Hee K. Chung
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, USA
| | - Jaladanki N. Rao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, USA
| | - Tong-Chuan He
- Department of Surgery, The University of Chicago Medical Center, Chicago, Illinois, USA
| | - Jean-Pierre Raufman
- Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, USA.,Department of Medicine and
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, USA.,Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
25
|
In Silico Identification and Characterization of circRNAs as Potential Virulence-Related miRNA/siRNA Sponges from Entamoeba histolytica and Encystment-Related circRNAs from Entamoeba invadens. Noncoding RNA 2022; 8:ncrna8050065. [PMID: 36287117 PMCID: PMC9607107 DOI: 10.3390/ncrna8050065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 11/30/2022] Open
Abstract
Ubiquitous eukaryotic non-coding circular RNAs regulate transcription and translation. We have reported full-length intronic circular RNAs (flicRNAs) in Entamoeba histolytica with esterified 3′ss and 5′ss. Their 5′ss GU-rich elements are essential for their biogenesis and their suggested role in transcription regulation. Here, we explored whether exonic, exonic-intronic, and intergenic circular RNAs are also part of the E. histolytica and E. invadens ncRNA RNAome and investigated their possible functions. Available RNA-Seq libraries were analyzed with the CIRI-full software in search of circular exonic RNAs (circRNAs). The robustness of the analyses was validated using synthetic decoy sequences with bona fide back splice junctions. Differentially expressed (DE) circRNAs, between the virulent HM1:IMSS and the nonvirulent Rahman E. histolytica strains, were identified, and their miRNA sponging potential was analyzed using the intaRNA software. Respectively, 188 and 605 reverse overlapped circRNAs from E. invadens and E. histolytica were identified. The sequence composition of the circRNAs was mostly exonic although different to human circRNAs in other attributes. 416 circRNAs from E. histolytica were virulent-specific and 267 were nonvirulent-specific. Out of the common circRNAs, 32 were DE between strains. Finally, we predicted that 8 of the DE circRNAs could function as sponges of the bioinformatically reported miRNAs in E. histolytica, whose functions are still unknown. Our results extend the E. histolytica RNAome and allow us to devise a hypothesis to test circRNAs/miRNAs/siRNAs interactions in determining the virulent/nonvirulent phenotypes and to explore other regulatory mechanisms during amoebic encystment.
Collapse
|
26
|
Behrouj H, Vakili O, Sadeghdoust A, Aligolighasemabadi N, Khalili P, Zamani M, Mokarram P. Epigenetic regulation of autophagy in coronavirus disease 2019 (COVID-19). Biochem Biophys Rep 2022; 30:101264. [PMID: 35469237 PMCID: PMC9021360 DOI: 10.1016/j.bbrep.2022.101264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/22/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has become the most serious global public health issue in the past two years, requiring effective therapeutic strategies. This viral infection is a contagious disease caused by new coronaviruses (nCoVs), also called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Autophagy, as a highly conserved catabolic recycling process, plays a significant role in the growth and replication of coronaviruses (CoVs). Therefore, there is great interest in understanding the mechanisms that underlie autophagy modulation. The modulation of autophagy is a very complex and multifactorial process, which includes different epigenetic alterations, such as histone modifications and DNA methylation. These mechanisms are also known to be involved in SARS-CoV-2 replication. Thus, molecular understanding of the epigenetic pathways linked with autophagy and COVID-19, could provide novel therapeutic targets for COVID-19 eradication. In this context, the current review highlights the role of epigenetic regulation of autophagy in controlling COVID-19, focusing on the potential therapeutic implications.
Collapse
Affiliation(s)
- Hamid Behrouj
- Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Adel Sadeghdoust
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda Aligolighasemabadi
- Department of Internal Medicine, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Parnian Khalili
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mozhdeh Zamani
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pooneh Mokarram
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Iran
| |
Collapse
|
27
|
Cai H, Zheng D, Yao Y, Yang L, Huang X, Wang L. Roles of Embryonic Lethal Abnormal Vision-Like RNA Binding Proteins in Cancer and Beyond. Front Cell Dev Biol 2022; 10:847761. [PMID: 35465324 PMCID: PMC9019298 DOI: 10.3389/fcell.2022.847761] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/04/2022] [Indexed: 12/31/2022] Open
Abstract
Embryonic lethal abnormal vision-like (ELAVL) proteins are RNA binding proteins that were originally discovered as indispensable regulators of the development and functioning of the nervous system. Subsequent studies have shown that ELAVL proteins not only exist in the nervous system, but also have regulatory effects in other tissues. ELAVL proteins have attracted attention as potential therapeutic targets because they stabilize multiple mRNAs by binding within the 3′-untranslated region and thus promote the development of tumors, including hepatocellular carcinoma, pancreatic cancer, ovarian cancer, breast cancer, colorectal carcinoma and lung cancer. Previous studies have focused on these important relationships with downstream mRNAs, but emerging studies suggest that ELAVL proteins also interact with non-coding RNAs. In this review, we will summarize the relationship of the ELAVL protein family with mRNA and non-coding RNA and the roles of ELAVL protein family members in a variety of physiological and pathological processes.
Collapse
Affiliation(s)
| | | | | | - Lehe Yang
- *Correspondence: Lehe Yang, ; Xiaoying Huang, ; Liangxing Wang,
| | - Xiaoying Huang
- *Correspondence: Lehe Yang, ; Xiaoying Huang, ; Liangxing Wang,
| | - Liangxing Wang
- *Correspondence: Lehe Yang, ; Xiaoying Huang, ; Liangxing Wang,
| |
Collapse
|
28
|
Chen G, Long C, Wang S, Wang Z, Chen X, Tang W, He X, Bao Z, Tan B, Zhao J, Xie Y, Li Z, Yang D, Xiao G, Peng S. Circular RNA circStag1 promotes bone regeneration by interacting with HuR. Bone Res 2022; 10:32. [PMID: 35361779 PMCID: PMC8971384 DOI: 10.1038/s41413-022-00208-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 01/29/2022] [Accepted: 02/28/2022] [Indexed: 12/11/2022] Open
Abstract
Postmenopausal osteoporosis is a common bone metabolic disorder characterized by deterioration of the bone microarchitecture, leading to an increased risk of fractures. Recently, circular RNAs (circRNAs) have been demonstrated to play pivotal roles in regulating bone metabolism. However, the underlying functions of circRNAs in bone metabolism in postmenopausal osteoporosis remain obscure. Here, we report that circStag1 is a critical osteoporosis-related circRNA that shows significantly downregulated expression in osteoporotic bone marrow mesenchymal stem cells (BMSCs) and clinical bone tissue samples from patients with osteoporosis. Overexpression of circStag1 significantly promoted the osteogenic capability of BMSCs. Mechanistically, we found that circStag1 interacts with human antigen R (HuR), an RNA-binding protein, and promotes the translocation of HuR into the cytoplasm. A high cytoplasmic level of HuR led to the activation of the Wnt signaling pathway by stabilizing and enhancing low-density lipoprotein receptor-related protein 5/6 (Lrp5/6) and β-catenin expression, thereby stimulating the osteogenic differentiation of BMSCs. Furthermore, overexpression of circStag1 in vivo by circStag1-loaded adeno-associated virus (circStag1-AAV) promoted new bone formation, thereby preventing bone loss in ovariectomized rats. Collectively, we show that circStag1 plays a pivotal role in promoting the regeneration of bone tissue via HuR/Wnt signaling, which may provide new strategies to prevent bone metabolic disorders such as postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Gaoyang Chen
- Department of Spine Surgery and Institute for Orthopaedic Research, the Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen, 518020, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Canling Long
- Department of Spine Surgery and Institute for Orthopaedic Research, the Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen, 518020, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shang Wang
- Department of Spine Surgery and Institute for Orthopaedic Research, the Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen, 518020, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhenmin Wang
- Department of Spine Surgery and Institute for Orthopaedic Research, the Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen, 518020, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xin Chen
- Department of Spine Surgery and Institute for Orthopaedic Research, the Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen, 518020, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wanze Tang
- Department of Spine Surgery and Institute for Orthopaedic Research, the Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen, 518020, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiaoqin He
- Department of Spine Surgery and Institute for Orthopaedic Research, the Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen, 518020, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhiteng Bao
- Department of Spine Surgery and Institute for Orthopaedic Research, the Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen, 518020, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Baoyu Tan
- Department of Spine Surgery and Institute for Orthopaedic Research, the Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen, 518020, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jin Zhao
- Department of Spine Surgery and Institute for Orthopaedic Research, the Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen, 518020, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yongheng Xie
- Department of Spine Surgery and Institute for Orthopaedic Research, the Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen, 518020, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhizhong Li
- The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Dazhi Yang
- Department of Spine Surgery and Institute for Orthopaedic Research, the Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen, 518020, China.
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Guozhi Xiao
- School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055, China.
| | - Songlin Peng
- Department of Spine Surgery and Institute for Orthopaedic Research, the Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen, 518020, China.
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
29
|
Donda K, Torres BA, Maheshwari A. Non-coding RNAs in Neonatal Necrotizing Enterocolitis. NEWBORN 2022; 1:120-130. [PMID: 35754997 PMCID: PMC9219563 DOI: 10.5005/jp-journals-11002-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Keyur Donda
- Department of Pediatrics, University of South Florida Health Morsani College of Medicine, Tampa, Florida, United States of America
| | - Benjamin A Torres
- Department of Pediatrics, University of South Florida Health Morsani College of Medicine, Tampa, Florida, United States of America
| | - Akhil Maheshwari
- Global Newborn Society, Clarksville, Maryland, United States of America
| |
Collapse
|
30
|
Pitolli C, Marini A, Sette C, Pagliarini V. Non-Canonical Splicing and Its Implications in Brain Physiology and Cancer. Int J Mol Sci 2022; 23:ijms23052811. [PMID: 35269953 PMCID: PMC8911335 DOI: 10.3390/ijms23052811] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 02/01/2023] Open
Abstract
The advance of experimental and computational techniques has allowed us to highlight the existence of numerous different mechanisms of RNA maturation, which have been so far unknown. Besides canonical splicing, consisting of the removal of introns from pre-mRNA molecules, non-canonical splicing events may occur to further increase the regulatory and coding potential of the human genome. Among these, splicing of microexons, recursive splicing and biogenesis of circular and chimeric RNAs through back-splicing and trans-splicing processes, respectively, all contribute to expanding the repertoire of RNA transcripts with newly acquired regulatory functions. Interestingly, these non-canonical splicing events seem to occur more frequently in the central nervous system, affecting neuronal development and differentiation programs with important implications on brain physiology. Coherently, dysregulation of non-canonical RNA processing events is associated with brain disorders, including brain tumours. Herein, we summarize the current knowledge on molecular and regulatory mechanisms underlying canonical and non-canonical splicing events with particular emphasis on cis-acting elements and trans-acting factors that all together orchestrate splicing catalysis reactions and decisions. Lastly, we review the impact of non-canonical splicing on brain physiology and pathology and how unconventional splicing mechanisms may be targeted or exploited for novel therapeutic strategies in cancer.
Collapse
Affiliation(s)
- Consuelo Pitolli
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; (C.P.); (C.S.)
- GSTEP-Organoids Research Core Facility, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, 00168 Rome, Italy;
| | - Alberto Marini
- GSTEP-Organoids Research Core Facility, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, 00168 Rome, Italy;
| | - Claudio Sette
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; (C.P.); (C.S.)
- GSTEP-Organoids Research Core Facility, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, 00168 Rome, Italy;
| | - Vittoria Pagliarini
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; (C.P.); (C.S.)
- GSTEP-Organoids Research Core Facility, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, 00168 Rome, Italy;
- Correspondence:
| |
Collapse
|
31
|
Abstract
RNA-binding proteins (RBPs) are of fundamental importance for post-transcriptional gene regulation and protein synthesis. They are required for pre-mRNA processing and for RNA transport, degradation and translation into protein, and can regulate every step in the life cycle of their RNA targets. In addition, RBP function can be modulated by RNA binding. RBPs also participate in the formation of ribonucleoprotein complexes that build up macromolecular machineries such as the ribosome and spliceosome. Although most research has focused on mRNA-binding proteins, non-coding RNAs are also regulated and sequestered by RBPs. Functional defects and changes in the expression levels of RBPs have been implicated in numerous diseases, including neurological disorders, muscular atrophy and cancers. RBPs also contribute to a wide spectrum of kidney disorders. For example, human antigen R has been reported to have a renoprotective function in acute kidney injury (AKI) but might also contribute to the development of glomerulosclerosis, tubulointerstitial fibrosis and diabetic kidney disease (DKD), loss of bicaudal C is associated with cystic kidney diseases and Y-box binding protein 1 has been implicated in the pathogenesis of AKI, DKD and glomerular disorders. Increasing data suggest that the modulation of RBPs and their interactions with RNA targets could be promising therapeutic strategies for kidney diseases.
Collapse
|
32
|
Nicolet BP, Jansen SBG, Heideveld E, Ouwehand WH, van den Akker E, von Lindern M, Wolkers MC. Circular RNAs exhibit limited evidence for translation, or translation regulation of the mRNA counterpart in terminal hematopoiesis. RNA (NEW YORK, N.Y.) 2022; 28:194-209. [PMID: 34732567 PMCID: PMC8906552 DOI: 10.1261/rna.078754.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Each day, about 1012 erythrocytes and platelets are released into the bloodstream. This substantial output from hematopoietic stem cells is tightly regulated by transcriptional and epigenetic factors. Whether and how circular RNAs (circRNAs) contribute to the differentiation and/or identity of hematopoietic cells is to date not known. We recently reported that erythrocytes and platelets contain the highest levels and numbers of circRNAs among hematopoietic cells. Here, we provide the first detailed analysis of circRNA expression during erythroid and megakaryoid differentiation. CircRNA expression not only significantly increased upon enucleation, but also had limited overlap between progenitor cells and mature cells, suggesting that circRNA expression stems from regulated processes rather than resulting from mere accumulation. To study circRNA function in hematopoiesis, we first compared the expression levels of circRNAs with the translation efficiency of their mRNA counterpart. We found that only one out of 2531 (0.04%) circRNAs associated with mRNA-translation regulation. Furthermore, irrespective of thousands of identified putative open reading frames, deep ribosome-footprinting sequencing, and mass spectrometry analysis provided little evidence for translation of endogenously expressed circRNAs. In conclusion, circRNAs alter their expression profile during terminal hematopoietic differentiation, yet their contribution to regulate cellular processes remains enigmatic.
Collapse
Affiliation(s)
- Benoit P Nicolet
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066CX Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Sjoert B G Jansen
- Department of Haematology, University of Cambridge and NHS Blood and Transplant, Cambridge CB2 0AW, United Kingdom
| | - Esther Heideveld
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066CX Amsterdam, The Netherlands
| | - Willem H Ouwehand
- Department of Haematology, University of Cambridge and NHS Blood and Transplant, Cambridge CB2 0AW, United Kingdom
| | - Emile van den Akker
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066CX Amsterdam, The Netherlands
| | - Marieke von Lindern
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066CX Amsterdam, The Netherlands
| | - Monika C Wolkers
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066CX Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| |
Collapse
|
33
|
Promoter-Bound Full-Length Intronic Circular RNAs-RNA Polymerase II Complexes Regulate Gene Expression in the Human Parasite Entamoeba histolytica. Noncoding RNA 2022; 8:ncrna8010012. [PMID: 35202086 PMCID: PMC8876499 DOI: 10.3390/ncrna8010012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/12/2022] Open
Abstract
Ubiquitous eukaryotic non-coding circular RNAs are involved in numerous co- and post-transcriptional regulatory mechanisms. Recently, we reported full-length intronic circular RNAs (flicRNAs) in Entamoeba histolytica, with 3′ss–5′ss ligation points and 5′ss GU-rich elements essential for their biogenesis and their suggested role in transcription regulation. Here, we explored how flicRNAs impact gene expression regulation. Using CLIP assays, followed by qRT-PCR, we identified that the RabX13 control flicRNA and virulence-associated flicRNAs were bound to the HA-tagged RNA Pol II C-terminus domain in E. histolytica transformants. The U2 snRNA was also present in such complexes, indicating that they belonged to transcription initiation/elongation complexes. Correspondingly, inhibition of the second step of splicing using boric acid reduced flicRNA formation and modified the expression of their parental genes and non-related genes. flicRNAs were also recovered from chromatin immunoprecipitation eluates, indicating that the flicRNA-Pol II complex was formed in the promoter of their cognate genes. Finally, two flicRNAs were found to be cytosolic, whose functions remain to be uncovered. Here, we provide novel evidence of the role of flicRNAs in gene expression regulation in cis, apparently in a widespread fashion, as an element bound to the RNA polymerase II transcription initiation complex, in E. histolytica.
Collapse
|
34
|
Ma Q, Long S, Gan Z, Tettamanti G, Li K, Tian L. Transcriptional and Post-Transcriptional Regulation of Autophagy. Cells 2022; 11:cells11030441. [PMID: 35159248 PMCID: PMC8833990 DOI: 10.3390/cells11030441] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/03/2022] [Accepted: 01/25/2022] [Indexed: 12/13/2022] Open
Abstract
Autophagy is a widely conserved process in eukaryotes that is involved in a series of physiological and pathological events, including development, immunity, neurodegenerative disease, and tumorigenesis. It is regulated by nutrient deprivation, energy stress, and other unfavorable conditions through multiple pathways. In general, autophagy is synergistically governed at the RNA and protein levels. The upstream transcription factors trigger or inhibit the expression of autophagy- or lysosome-related genes to facilitate or reduce autophagy. Moreover, a significant number of non-coding RNAs (microRNA, circRNA, and lncRNA) are reported to participate in autophagy regulation. Finally, post-transcriptional modifications, such as RNA methylation, play a key role in controlling autophagy occurrence. In this review, we summarize the progress on autophagy research regarding transcriptional regulation, which will provide the foundations and directions for future studies on this self-eating process.
Collapse
Affiliation(s)
- Qiuqin Ma
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Q.M.); (Z.G.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Shihui Long
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China;
| | - Zhending Gan
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Q.M.); (Z.G.)
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy;
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Napoli Federico II, 80138 Napoli, Italy
| | - Kang Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China;
- Correspondence: (K.L.); (L.T.)
| | - Ling Tian
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Q.M.); (Z.G.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (K.L.); (L.T.)
| |
Collapse
|
35
|
Nie K, Yi J, Yang Y, Deng M, Yang Y, Wang T, Chen X, Zhang Z, Wang X. A Broad m6A Modification Landscape in Inflammatory Bowel Disease. Front Cell Dev Biol 2022; 9:782636. [PMID: 35127705 PMCID: PMC8809481 DOI: 10.3389/fcell.2021.782636] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/16/2021] [Indexed: 12/20/2022] Open
Abstract
Background and Aims: N6-Methyladenosine (m6A) is the most common post-transcriptional modification on eukaryotic mRNA, affecting the mRNA’s fate. The role of m6A regulation in inflammatory bowel disease is unclear. Here, we investigated the m6A landscape in inflammatory bowel diseases (IBD). Methods: Eleven human IBD microarray datasets were recruited from the Gene Expression Omnibus database and four were selected as discovery cohorts. An RNA-seq dataset from the Inflammatory Bowel Disease Multi’omics Database was used as a validation cohort. m6A regulators were measured in volunteers’ colonic samples. Consensus clustering and immune scoring were used to estimate the characteristics of m6A regulation in IBD. m6A-related characteristics of different sub-phenotypes, sample sources, and biological therapeutic responses were determined using seven independent datasets. Results: m6A modification involves methyltransferases (writers), demethylases (erasers), and methylation-reading proteins (readers). A wide interaction exists between m6A regulators and IBD risk genes. The IBD risk loci can also be modified by m6A modifications in the public m6A sequencing data. Furthermore, m6A regulators displayed extensive differential expression in four independent discovery cohorts that share common differential genes (IGF2BP2, HNRNPA2B1, ZCCHC4, and EIF3I). In the validated cohort and enrolled volunteers’ colonic biopsy samples, the differential m6A regulators were reconfirmed. Two clusters of consensus clustering exhibit different immune phenotypes. m6A-modified positions exist in the core IBD immune cytokines. Another set of IBD datasets revealed m6A-related differences across clinical phenotypes, biological samples, and therapeutic response subgroups in IBD patients. Conclusion: Regulation of m6A methylation is widely involved in IBD occurrence and development. m6A modifications in risk variants, core cytokines, immune cells, and other proteins may deeply influence the pathophysiology and clinical phenotypes. Further studies are needed to determine its role in IBD.
Collapse
Affiliation(s)
- Kai Nie
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Jun Yi
- Department of Gastroenterology, The Xiangya Hospital of Central South University, Changsha, China
| | - Yuanyuan Yang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Minzi Deng
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Yan Yang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Tianyu Wang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xuejie Chen
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhaoyu Zhang
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
- Cancer Research Institute, Central South University, Changsha, China
- *Correspondence: Zhaoyu Zhang, ; Xiaoyan Wang,
| | - Xiaoyan Wang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
- *Correspondence: Zhaoyu Zhang, ; Xiaoyan Wang,
| |
Collapse
|
36
|
Yin J, Tong F, Ye Y, Hu T, Xu L, Zhang L, Zhu J, Pang Z. Hsa_circRNA_103124 Upregulation in Crohn's Disease Promotes Cell Proliferation and Inhibits Autophagy by Regulating the Hsa-miR-650/AKT2 Signaling Pathway. Front Genet 2021; 12:753161. [PMID: 34804121 PMCID: PMC8602894 DOI: 10.3389/fgene.2021.753161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/20/2021] [Indexed: 12/21/2022] Open
Abstract
Circular RNAs (circRNAs) play important roles in the pathogenesis of Crohn's disease (CD). We discovered that hsa_circRNA_103124 was upregulated in CD patients in our previous study. Nonetheless, the function of hsa_circRNA_103124 is unclear. In this study, hsa_circRNA_103124 was predicted to interact with hsa-miR-650. Gene Ontology (GO) and pathway analyses identified AKT serine/threonine kinase 2 (AKT2) as the downstream target protein of hsa-miR-650. Activated AKT2 inhibits autophagy, but promotes cell proliferation. Recent studies suggest that the inhibition of autophagy is one of the mechanisms of CD pathogenesis. Therefore, we inferred that hsa_circRNA_103124 might regulate autophagy and proliferation by targeting AKT2 as a sponge for hsa-miR-650. Here, quantitative reverse transcription PCR (RT-QPCR) results revealed that upregulated hsa_circRNA_103124 expression in patients with CD was negatively correlated with hsa-miR-650 expression but positively correlated with the white blood cell count and calprotectin levels. TSC complex subunit 1 (TSC1), one of the proteins upstream of autophagy was downregulated in patients with CD. Consisting with the bioinformatics prediction, it was verified that hsa_circRNA_103124 targeted to hsa-miR650 by fluorescence in situ hybridization (FISH) and luciferase reporter assays. A hsa-miR-650 inhibitor reversed the promotion of rapamycin-induced autophagy and the inhibition of cell proliferation by the hsa_circRNA_103124 siRNA. However, hsa-miR-650 mimics reversed the inhibition of rapamycin-induced autophagy and the promotion of cell proliferation through hsa_circRNA_103124 overexpression. These results indicate that hsa_circRNA_103124 upregulation in patients with CD promotes cell proliferation and inhibits autophagy by regulating the hsa-miR-650/AKT2 signaling pathway.
Collapse
Affiliation(s)
- Juan Yin
- Department of Digestive Disease and Nutrition Research Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Fuyi Tong
- The Fifth People's Hospital of Suzhou, The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, China
| | - Yulan Ye
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Tong Hu
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Lijuan Xu
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Liping Zhang
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Jianyun Zhu
- Department of Digestive Disease and Nutrition Research Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Zhi Pang
- Department of Digestive Disease and Nutrition Research Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.,Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| |
Collapse
|
37
|
Xiao L, Ma XX, Luo J, Chung HK, Kwon MS, Yu TX, Rao JN, Kozar R, Gorospe M, Wang JY. Circular RNA CircHIPK3 Promotes Homeostasis of the Intestinal Epithelium by Reducing MicroRNA 29b Function. Gastroenterology 2021; 161:1303-1317.e3. [PMID: 34116030 PMCID: PMC8463477 DOI: 10.1053/j.gastro.2021.05.060] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 05/04/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Circular RNAs (circRNAs) are a class of endogenous noncoding RNAs that form covalently closed circles. Although circRNAs influence many biological processes, little is known about their role in intestinal epithelium homeostasis. We surveyed circRNAs required to maintain intestinal epithelial integrity and identified circular homeodomain-interacting protein kinase 3 (circHIPK3) as a major regulator of intestinal epithelial repair after acute injury. METHODS Intestinal mucosal tissues were collected from mice exposed to cecal ligation and puncture for 48 hours and patients with inflammatory bowel diseases and sepsis. We isolated primary enterocytes from the small intestine of mice and derived intestinal organoids. The levels of circHIPK3 were silenced in intestinal epithelial cells (IECs) by transfection with small interfering RNAs targeting the circularization junction of circHIPK3 or elevated using a plasmid vector that overexpressed circHIPK3. Intestinal epithelial repair was examined in an in vitro injury model by removing part of the monolayer. The association of circHIPK3 with microRNA 29b (miR-29b) was determined by biotinylated RNA pull-down assays. RESULTS Genome-wide profile analyses identified ∼300 circRNAs, including circHIPK3, differentially expressed in the intestinal mucosa of mice after cecal ligation and puncture relative to sham mice. Intestinal mucosa from patients with inflammatory bowel diseases and sepsis had reduced levels of circHIPK3. Increasing the levels of circHIPK3 enhanced intestinal epithelium repair after wounding, whereas circHIPK3 silencing repressed epithelial recovery. CircHIPK3 silencing also inhibited growth of IECs and intestinal organoids, and circHIPK3 overexpression promoted intestinal epithelium renewal in mice. Mechanistic studies revealed that circHIPK3 directly bound to miR-29b and inhibited miR-29 activity, thus increasing expression of Rac1, Cdc42, and cyclin B1 in IECs after wounding. CONCLUSIONS In studies of mice, IECs, and human tissues, our results indicate that circHIPK3 improves repair of the intestinal epithelium at least in part by reducing miR-29b availability.
Collapse
Affiliation(s)
- Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Xiang-Xue Ma
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jason Luo
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Hee K Chung
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Min S Kwon
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Ting-Xi Yu
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jaladanki N Rao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Rosemary Kozar
- Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland; Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland.
| |
Collapse
|
38
|
Li B, Li Y, Li L, Yu Y, Gu X, Liu C, Long X, Yu Y, Zuo X. Hsa_circ_0001021 regulates intestinal epithelial barrier function via sponging miR-224-5p in ulcerative colitis. Epigenomics 2021; 13:1385-1401. [PMID: 34528447 DOI: 10.2217/epi-2021-0230] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aims: Few circRNAs have been thoroughly explored in ulcerative colitis (UC). Materials & methods: Microarrays and qualitative real-time PCRs were used to detect and confirm dysregulated circRNAs associated with UC. Functional analysis was performed to explore the roles. Results: A total of 580 circRNAs and 87 miRNAs were simultaneously dysregulated in both inflamed and noninflamed UC colonic mucosa compared with healthy controls. Accordingly, hsa_circ_0001021 was significantly downregulated in patients with UC and was related to Mayo scores. Clinical samples and cell experiments revealed that hsa_circ_0001021 was expressed in epithelial cells and correlated with ZO-1, occludin and CLDN-2. Moreover, hsa_circ_0001021 sponged miR-224-5p to upregulate smad4 and increased ZO-1 and occludin. Conclusion: Hsa_circ_0001021 is related to UC severity and regulates epithelial barrier function via sponging miR-224-5p.
Collapse
Affiliation(s)
- Bing Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Robot Engineering Laboratory for Precise Diagnosis & Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yan Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Robot Engineering Laboratory for Precise Diagnosis & Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Lixiang Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Robot Engineering Laboratory for Precise Diagnosis & Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yu Yu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Robot Engineering Laboratory for Precise Diagnosis & Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiang Gu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Robot Engineering Laboratory for Precise Diagnosis & Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Chang Liu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Robot Engineering Laboratory for Precise Diagnosis & Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xin Long
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Robot Engineering Laboratory for Precise Diagnosis & Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yanbo Yu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Robot Engineering Laboratory for Precise Diagnosis & Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiuli Zuo
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Robot Engineering Laboratory for Precise Diagnosis & Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
39
|
Shi J, Guo C, Ma J. CCAT2 enhances autophagy-related invasion and metastasis via regulating miR-4496 and ELAVL1 in hepatocellular carcinoma. J Cell Mol Med 2021; 25:8985-8996. [PMID: 34409736 PMCID: PMC8435435 DOI: 10.1111/jcmm.16859] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 07/07/2021] [Accepted: 07/31/2021] [Indexed: 12/14/2022] Open
Abstract
Autophagy is thought to contribute to the pathogenesis of many diseases, including cancer. Long non‐coding RNA (lncRNA) CCAT2 functions as an oncogene in a variety of tumours. However, it is still unknown whether CCAT2 is involved in autophagy and metastasis of hepatocellular carcinoma (HCC). In our study, we found that lncRNA CCAT2 expression was significantly increased in HCC tissue and was correlated with advanced stage and venous invasion. Further experiments revealed that CCAT2 induced autophagy and promoted migration and invasion in vitro and in vivo. Mechanistic investigations found that CCAT2 involved in HCC by regulating miR‐4496/Atg5 in cytoplasm. In nucleus, CCAT2 bound with ELAVL1/HuR to facilitate HCC progression. Our findings suggest that CCAT2 is an oncogenic factor in the progression of HCC with different regulatory mechanisms and may serve as a target for HCC therapy.
Collapse
Affiliation(s)
- Jing Shi
- Affiliated Hospital of Jining Medical University, Jining, China
| | - Cao Guo
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, China
| | - Junli Ma
- Affiliated Hospital of Jining Medical University, Jining, China
| |
Collapse
|
40
|
Regulation of Paneth Cell Function by RNA-Binding Proteins and Noncoding RNAs. Cells 2021; 10:cells10082107. [PMID: 34440876 PMCID: PMC8392049 DOI: 10.3390/cells10082107] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/12/2021] [Accepted: 08/14/2021] [Indexed: 12/20/2022] Open
Abstract
Paneth cells are specialized intestinal epithelial cells that are located at the base of small intestinal crypts and play a vital role in preserving the gut epithelium homeostasis. Paneth cells act as a safeguard from bacterial translocation across the epithelium and constitute the niche for intestinal stem cells in the small intestine by providing multiple niche signals. Recently, Paneth cells have become the focal point of investigations defining the mechanisms underlying the epithelium-microbiome interactions and pathogenesis of chronic gut mucosal inflammation and bacterial infection. Function of Paneth cells is tightly regulated by numerous factors at different levels, while Paneth cell defects have been widely documented in various gut mucosal diseases in humans. The post-transcription events, specific change in mRNA stability and translation by RNA-binding proteins (RBPs) and noncoding RNAs (ncRNAs) are implicated in many aspects of gut mucosal physiology by modulating Paneth cell function. Deregulation of RBPs and ncRNAs and subsequent Paneth cell defects are identified as crucial elements of gut mucosal pathologies. Here, we overview the posttranscriptional regulation of Paneth cells by RBPs and ncRNAs, with a particular focus on the increasing evidence of RBP HuR and long ncRNA H19 in this process. We also discuss the involvement of Paneth cell dysfunction in altered susceptibility of the intestinal epithelium to chronic inflammation and bacterial infection following disrupted expression of HuR and H19.
Collapse
|
41
|
Rao JN, Xiao L, Wang JY. Polyamines in Gut Epithelial Renewal and Barrier Function. Physiology (Bethesda) 2021; 35:328-337. [PMID: 32783609 DOI: 10.1152/physiol.00011.2020] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Polyamines regulate a variety of physiological functions and are involved in pathogenesis of diverse human diseases. The epithelium of the mammalian gut mucosa is a rapidly self-renewing tissue in the body, and its homeostasis is preserved through well-controlled mechanisms. Here, we highlight the roles of cellular polyamines in maintaining the integrity of the gut epithelium, focusing on the emerging evidence of polyamines in the regulation of gut epithelial renewal and barrier function. Gut mucosal growth depends on the available supply of polyamines to the dividing cells in the crypts, and polyamines are also essential for normal gut epithelial barrier function. Polyamines modulate expression of various genes encoding growth-associated proteins and intercellular junctions via distinct mechanisms involving RNA-binding proteins and noncoding RNAs. With the rapid advance of polyamine biology, polyamine metabolism and transport are promising therapeutic targets in our efforts to protect the gut epithelium and barrier function in patients with critical illnesses.
Collapse
Affiliation(s)
- Jaladanki N Rao
- Department of Surgery,Cell Biology Group, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Lan Xiao
- Department of Surgery,Cell Biology Group, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Jian-Ying Wang
- Department of Surgery,Cell Biology Group, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland.,Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
42
|
Shi J, Lv X, Zeng L, Li W, Zhong Y, Yuan J, Deng S, Liu B, Yuan B, Chen Y, Ming Z, Yang X, Fang P, Yang S, Chen G. CircPVT1 promotes proliferation of lung squamous cell carcinoma by binding to miR-30d/e. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:193. [PMID: 34112238 PMCID: PMC8194141 DOI: 10.1186/s13046-021-01976-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 05/09/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND Circular RNAs (circRNAs) are a new type of extensive non-coding RNAs that regulate the activation and progression of different human diseases, including cancer. However, information on the underlying mechanisms and clinical significance of circRNAs in lung squamous cell carcinoma (LUSC) remains scant. METHODS The expression profile of RNAs in 8 LUSC tissues, and 9 healthy lung tissues were assayed using RNA sequencing (RNA-seq) techniques. Real-time quantitative polymerase chain reaction (qRT-PCR) was used to profile the expression of circPVT1 and its relationship with the prognosis of LUSC, i.e., survival analysis. Moreover, in vitro and in vivo experiments were performed to evaluate the impacts of circPVT1 on the growth of tumors. RNA pull-down tests, mass spectrometry, dual-luciferase reporter assessment, and RNA immune-precipitation tests were further conducted to interrogate the cross-talk between circPVT1, HuR, or miR-30d/e in LUSC. RESULTS Our data showed that circPVT1 was upregulated in LUSC tissues, serum, and cell lines. LUSC patients with higher circPVT1 expression exhibited shorter survival rates. The in vivo and in vitro data revealed that circPVT1 promotes the proliferation of LUSC cells. Additionally, mechanistic analysis showed that HuR regulated circPVT1. On the other hand, circPVT1 acted as a competing endogenous RNA (ceRNA) of miR-30d and miR-30e in alleviating the suppressive influences of miR-30d and miR-30e on its target cyclin F (CCNF). CONCLUSION CircPVT1 promotes LUSC progression via HuR/circPVT1/miR-30d and miR-30e/CCNF cascade. Also, it acts as a novel diagnostic biomarker or treatment target of individuals diagnosed with LUSC.
Collapse
Affiliation(s)
- Jie Shi
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, 157th Xiwu Road, Xi'an, 710000, People's Republic of China
| | - Xin Lv
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, 157th Xiwu Road, Xi'an, 710000, People's Republic of China
| | - Lizhong Zeng
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, 157th Xiwu Road, Xi'an, 710000, People's Republic of China
| | - Wei Li
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, 157th Xiwu Road, Xi'an, 710000, People's Republic of China
| | - Yujie Zhong
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, 157th Xiwu Road, Xi'an, 710000, People's Republic of China
| | - Jingyan Yuan
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, 157th Xiwu Road, Xi'an, 710000, People's Republic of China
| | - Shanshan Deng
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, 157th Xiwu Road, Xi'an, 710000, People's Republic of China
| | - Boxuan Liu
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, 157th Xiwu Road, Xi'an, 710000, People's Republic of China
| | - Bo Yuan
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, 157th Xiwu Road, Xi'an, 710000, People's Republic of China
| | - Yang Chen
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, 157th Xiwu Road, Xi'an, 710000, People's Republic of China
| | - Zongjuan Ming
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, 157th Xiwu Road, Xi'an, 710000, People's Republic of China
| | - Xia Yang
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, 157th Xiwu Road, Xi'an, 710000, People's Republic of China
| | - Ping Fang
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, 157th Xiwu Road, Xi'an, 710000, People's Republic of China
| | - Shuanying Yang
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, 157th Xiwu Road, Xi'an, 710000, People's Republic of China.
| | - Guoan Chen
- School of Medicine, Southern University of Science and Technology, 1088th Xueyuan Road, Shenzhen, 518055, People's Republic of China
| |
Collapse
|
43
|
Ghafouri-Fard S, Taheri M, Hussen BM, Vafaeimanesh J, Abak A, Vafaee R. Function of circular RNAs in the pathogenesis of colorectal cancer. Biomed Pharmacother 2021; 140:111721. [PMID: 34015582 DOI: 10.1016/j.biopha.2021.111721] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/20/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023] Open
Abstract
Circular RNAs (circRNAs) comprise a group of noncoding RNAs with a circular conformation being constructed by either classic spliceosome-mediated or lariat-kind of splicing. They have tissue and temporal specificity and are involved in different biological functions. A vast body of literature has demonstrated critical roles of circRNAs in the formation or progression of neoplasms. Hsa_circ_0066631, hsa_circ_0082096, ciRS-7, circMAT2B, circ_052666, circMBOAT2, circPACRGL and circ_0128846 are among up-regulated circRNAs in CRC. Instead, expression levels of circTADA2A, circ_022743, circ_004452, circ-FBXW7, circ0106714, circFNDC3B and circ_cse1 have been decreased in CRC samples. Finally, expression levels of circRNA-100876, hsa_circ_0002320, circNOL10, circ_0056618, circ_0060745, circ-0004277, hsa_circRNA_102958, circPPP1R12A, hsa_circ_0007534, circ_0079993 and hsa_circ_0005075 can be used for prediction of clinical outcome of patients CRC.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | | | - Atefe Abak
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Vafaee
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
44
|
Xu Y, Tian Y, Wang Y, Yang J, Li F, Wan X, Ouyang M. Human antigen R (HuR) and Cold inducible RNA-binding protein (CIRP) influence intestinal mucosal barrier function in ulcerative colitis by competitive regulation on Claudin1. Biofactors 2021; 47:427-443. [PMID: 33638934 DOI: 10.1002/biof.1719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/28/2021] [Indexed: 11/09/2022]
Abstract
To investigate the effects of RNA-binding proteins cold-inducible RNA binding protein (CIRP) and human antigen R (HuR) on expression of Claudin1 and mucosal barrier function in ulcerative colitis (UC). The clinical specimens of UC patients and healthy volunteers were collected. In the clinical experiments, the expressions of CIRP, Claudin1, and HuR, along with their correlations in tissues of UC patients were analyzed by qRT-PCR, Western blot and Pearson correlation coefficient, respectively. The chi-square test was utilized to assess the relevance between CIRP/HuR/Claudin1 level and clinicopathological characteristics of UC patients. The in vitro and in vivo models of UC were established by lipopolysaccharide treatment or dextran sulfate sodium injection. For cell experiments, after loss- and gain-of-function, the roles of CIRP or HuR in the apoptosis and proliferation of enterocytes were examined by flow cytometry and CCK-8 assay. The intestinal epithelial barrier function was inspected after determination on transepithelial electrical resistance value, horseradish peroxidase permeability and expressions of tight junction proteins (Occludin, ZO-1, and JAM-1). The relationship between HuR, CIRP, and Claudin1 was performed by RNA immunoprecipitation and dual-luciferase reporter gene assay. For in vivo experiments, the disease activity index score, weight loss and colon length of mice were assessed to observe the effect of CIRP or HuR on the UC mouse models. Histological analysis of colon tissues was conducted by H&E staining. FITC-dextran tracking was applied to inspect the intestinal mucosal barrier function of UC mouse models. In this study, high expression of CIRP and low expressions of HuR and Claudin1 were observed in patients, cells and mouse models of UC. The expressions of CIRP, HuR, and Claudin1 were correlated with the severity of patients with UC. There was a negative correlation between CIRP and Claudin1, and as a positive correlation between HuR and Claudin1. Claudin1 can be suppressed by CIRP, while enhanced by HuR. HuR and CIRP can competitively bind to Claudin1. HuR upregulation or CIRP downregulation promoted proliferation, suppressed apoptosis and ameliorated the damage of the barrier function in enterocytes. The in vivo experiments verified that the ameliorated damage of the intestinal mucosal barrier function in UC mice occurred with HuR overexpression or CIRP knockdown. CIRP and HuR confer pivotal effect on the intestinal mucosal barrier function of UC through competitively binding to Claudin1 mRNA.
Collapse
Affiliation(s)
- Yan Xu
- Department of Health Management Center, Xiangya Hospital, Central South University, Changsha, China
| | - Yuxi Tian
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Ying Wang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
| | - Junwen Yang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
| | - Fujun Li
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoping Wan
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Miao Ouyang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
45
|
The RNA-binding protein HuR regulates intestinal epithelial restitution by modulating Caveolin-1 gene expression. Biochem J 2021; 478:247-260. [PMID: 33346337 DOI: 10.1042/bcj20200372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 11/24/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022]
Abstract
The integrity of the intestinal mucosal barrier protects hosts against pathological conditions. Early mucosal restitution after wounding refers to epithelial cell migration into a defect. The RNA-binding protein HuR plays an important role in the posttranscriptional regulation of gene expression and is involved in many aspects of cellular physiology. In the present study, we investigated the role of HuR in the regulation of cell migration through the posttranscriptional regulation of Caveolin-1 (Cav-1). Online software was used to identify Cav-1 mRNA as a potential target of HuR. The interaction of HuR with Cav-1 mRNA was investigated via ribonucleoprotein immunoprecipitation (RNP IP) assays and biotin pulldown analysis. HuR was found to bind specifically to the Cav-1 3'-UTR rather than the coding region or 5'-UTR. Transfection of cells with siHuR decreased both HuR protein levels and Cav-1 protein levels; conversely, ectopic overexpression of HuR via infection of cells with an adenoviral vector containing HuR cDNA (AdHuR) increased Cav-1 protein levels without disturbing Cav-1 mRNA levels. Thus, HuR enhanced Cav-1 expression in vitro by stimulating Cav-1 translation. Intestinal epithelium-specific HuR knockout in mice decreased Cav-1 protein levels without changing Cav-1 mRNA levels, consistent with the in vitro results. Decreasing the levels of HuR via siHuR transfection inhibited early epithelial repair, but this effect was reversed by ectopic overexpression of GFP-tagged Cav-1. These results indicate that posttranscriptional regulation of Cav-1 gene expression by HuR plays a critical role in the regulation of rapid epithelial repair after wounding.
Collapse
|
46
|
Yang Y, Liu KY, Liu Q, Cao Q. Androgen Receptor-Related Non-coding RNAs in Prostate Cancer. Front Cell Dev Biol 2021; 9:660853. [PMID: 33869227 PMCID: PMC8049439 DOI: 10.3389/fcell.2021.660853] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/12/2021] [Indexed: 12/20/2022] Open
Abstract
Prostate cancer (PCa) is the second leading cause of cancer-related death among men in the United States. Androgen receptor (AR) signaling is the dominant oncogenic pathway in PCa and the main strategy of PCa treatment is to control the AR activity. A large number of patients acquire resistance to Androgen deprivation therapy (ADT) due to AR aberrant activation, resulting in castration-resistant prostate cancer (CRPC). Understanding the molecular mechanisms underlying AR signaling in the PCa is critical to identify new therapeutic targets for PCa patients. The recent advances in high-throughput RNA sequencing (RNA-seq) techniques identified an increasing number of non-coding RNAs (ncRNAs) that play critical roles through various mechanisms in different diseases. Some ncRNAs have shown great potentials as biomarkers and therapeutic targets. Many ncRNAs have been investigated to regulate PCa through direct association with AR. In this review, we aim to comprehensively summarize recent findings of the functional roles and molecular mechanisms of AR-related ncRNAs as AR regulators or targets in the progression of PCa.
Collapse
Affiliation(s)
- Yongyong Yang
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Kilia Y Liu
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Qi Liu
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Qi Cao
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
47
|
Kwon MS, Chung HK, Xiao L, Yu TX, Wang SR, Piao JJ, Rao JN, Gorospe M, Wang JY. MicroRNA-195 regulates Tuft cell function in the intestinal epithelium by altering translation of DCLK1. Am J Physiol Cell Physiol 2021; 320:C1042-C1054. [PMID: 33788631 DOI: 10.1152/ajpcell.00597.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Intestinal Tuft cells sense luminal contents to influence the mucosal immune response against eukaryotic infection. Paneth cells secrete antimicrobial proteins as part of the mucosal protective barrier. Defects in Tuft and Paneth cells occur commonly in various gut mucosal disorders. MicroRNA-195 (miR-195) regulates the stability and translation of target mRNAs and is involved in many aspects of cell processes and pathologies. Here, we reported the posttranscriptional mechanisms by which miR-195 regulates Tuft and Paneth cell function in the small intestinal epithelium. Mucosal tissues from intestinal epithelial tissue-specific miR-195 transgenic (miR195-Tg) mice had reduced numbers of double cortin-like kinase 1 (DCLK1)-positive (Tuft) and lysozyme-positive (Paneth) cells, compared with tissues from control mice, but there were no effects on Goblet cells and enterocytes. Intestinal organoids expressing higher miR-195 levels from miR195-Tg mice also exhibited fewer Tuft and Paneth cells. Transgenic expression of miR-195 in mice failed to alter growth of the small intestinal mucosa but increased vulnerability of the gut barrier in response to lipopolysaccharide (LPS). Studies aimed at investigating the mechanism underlying regulation of Tuft cells revealed that miR-195 directly interacted with the Dclk1 mRNA via its 3'-untranslated region and inhibited DCLK1 translation. Interestingly, the RNA-binding protein HuR competed with miR-195 for binding Dclk1 mRNA and increased DCLK1 expression. These results indicate that miR-195 suppresses the function of Tuft and Paneth cells in the small intestinal epithelium and further demonstrate that increased miR-195 disrupts Tuft cell function by inhibiting DCLK1 translation via interaction with HuR.
Collapse
Affiliation(s)
- Min S Kwon
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Hee K Chung
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Ting-Xi Yu
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Shelley R Wang
- Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Jun-Jie Piao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jaladanki N Rao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging-IRP, NIH, Baltimore, Maryland
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland.,Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| |
Collapse
|
48
|
Zhou W, Zhang H, Pan Y, Xu Y, Cao Y. circRNA expression profiling of colon tissue from mesalazine-treated mouse of inflammatory bowel disease reveals an important circRNA-miRNA-mRNA pathway. Aging (Albany NY) 2021; 13:10187-10207. [PMID: 33819198 PMCID: PMC8064189 DOI: 10.18632/aging.202780] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022]
Abstract
Mesalazine (5-aminosalicylic acid, 5-ASA) has been widely used to treat inflammatory bowel disease (IBD). However, it remains unclear about the underlying biological mechanisms of IBD pathogenesis and mesalazine treatment, which could be partially clarified by exploring the profiling of circular RNAs (circRNAs) using RNA-seq. A total of 15 mice (C57BL/6) were randomly assigned to three equally sized groups: control, dextran sulfate sodium (DSS, using DSS to induce IBD), and DSS+5-ASA (using mesalazine to treat IBD). We randomly selected three mice of each group to collect colon tissues for RNA-seq and then performed bioinformatic analysis for two comparisons: DSS vs. control and DSS+5-ASA vs. DSS. Comparisons of a series of indicators (e.g., body weight) verified the establishment of DSS-induced IBD mouse model and the effectiveness of mesalazine in treating IBD. We identified 182 differentially expressed circRNAs, including 55 up-regulated and 47 down-regulated circRNAs when comparing the DSS+5-ASA with the DSS group. These 102 circRNA-associated genes were significantly involved in the N-Glycan biosynthesis and lysine degradation. The network analysis of circRNA-miRNA-mRNAs identified an important pathway, i.e., chr10:115386962-115390436+/mmu-miR-6914-5p/Atg7, which is related to autophagy. The findings provide new insights into the biological mechanisms of IBD pathogenesis and mesalazine treatment, particularly highlighting the circRNA-miRNA-mRNA pathway.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Anal-Rectal Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06510, United States of America
| | - Haiyin Zhang
- Department of Biochemistry, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yibin Pan
- Department of Anal-Rectal Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanwu Xu
- Department of Biochemistry, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongqing Cao
- Department of Anal-Rectal Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
49
|
Hamaoui D, Subtil A. ATG16L1 functions in cell homeostasis beyond autophagy. FEBS J 2021; 289:1779-1800. [PMID: 33752267 DOI: 10.1111/febs.15833] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/17/2021] [Accepted: 03/19/2021] [Indexed: 12/14/2022]
Abstract
Atg16-like (ATG16L) proteins were identified in higher eukaryotes for their resemblance to Atg16, a yeast protein previously characterized as a subunit of the Atg12-Atg5/Atg16 complex. In yeast, this complex catalyzes the lipidation of Atg8 on pre-autophagosomal structures and is therefore required for the formation of autophagosomes. In higher eukaryotes, ATG16L1 is also almost exclusively present as part of an ATG12-ATG5/ATG16L1 complex and has the same essential function in autophagy. However, ATG16L1 is three times bigger than Atg16. It displays, in particular, a carboxy-terminal extension, including a WD40 domain, which provides a platform for interaction with a variety of proteins, and allows for the recruitment of the ATG12-ATG5/ATG16L1 complex to membranes under different contexts. Furthermore, detailed analyses at the cellular level have revealed that some of the ATG16L1-driven activities are independent of the lipidation reaction catalyzed by the ATG12-ATG5/ATG16L1 complex. At the organ level, the use of mice that are hypomorphic for Atg16l1, or with cell-specific ablation of its expression, revealed a large panel of consequences of ATG16L1 dysfunctions. In this review, we recapitulate the current knowledge on ATG16L1 expression and functions. We emphasize, in particular, how it broadly acts as a brake on inflammation, thereby contributing to maintaining cell homeostasis. We also report on independent studies that converge to show that ATG16L1 is an important player in the regulation of intracellular traffic. Overall, autophagy-independent functions of ATG16L1 probably account for more of the phenotypes associated with ATG16L1 deficiencies than currently appreciated.
Collapse
Affiliation(s)
- Daniel Hamaoui
- Unité de Biologie Cellulaire de l'Infection Microbienne, Institut Pasteur, UMR3691 CNRS, Paris, France
| | - Agathe Subtil
- Unité de Biologie Cellulaire de l'Infection Microbienne, Institut Pasteur, UMR3691 CNRS, Paris, France
| |
Collapse
|
50
|
Xiao L, Rao JN, Wang JY. RNA-binding proteins and long noncoding RNAs in intestinal epithelial autophagy and barrier function. Tissue Barriers 2021; 9:1895648. [PMID: 33709880 DOI: 10.1080/21688370.2021.1895648] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The intestinal autophagy and barrier function are crucial for maintaining the epithelium homeostasis and tightly regulated through well-controlled mechanisms. RNA-binding proteins (RBPs) and long noncoding RNAs (lncRNAs) modulate gene expression at the posttranscription level and are intimately involved in different physiological processes and diverse human diseases. In this review, we first highlight the roles of several RBPs and lncRNAs in the regulation of intestinal epithelial autophagy and barrier function, particularly focusing on the emerging evidence of RBPs and lncRNAs in the control of mRNA stability and translation. We additionally discuss recent findings that the interactions between RBPs and lncRNAs alter the fate of their target transcripts and thus influence gut epithelium host defense in response to stressful environments. These exciting advances in understanding the posttranscriptional control of the epithelial autophagy and barrier function by RBPs and lncRNAs provide a strong rationale for developing new effective therapeutics based on targeting RBPs and/or lncRNAs to preserve the intestinal epithelial integrity in patients with critical illnesses.
Collapse
Affiliation(s)
- Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA.,Baltimore Veterans Affairs Medical Center, Baltimore, MD, USA
| | - Jaladanki N Rao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA.,Baltimore Veterans Affairs Medical Center, Baltimore, MD, USA
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA.,Baltimore Veterans Affairs Medical Center, Baltimore, MD, USA.,Department of Pathology, Department of Veterans Affairs, USA
| |
Collapse
|