1
|
Shimada H, Hata S, Yamazaki Y, Otsubo Y, Sato I, Ise K, Yokoyama A, Suzuki T, Sasano H, Sugawara A, Nakamura Y. YM750, an ACAT Inhibitor, Acts on Adrenocortical Cells to Inhibit Aldosterone Secretion Due to Depolarization. Int J Mol Sci 2022; 23:12803. [PMID: 36361592 PMCID: PMC9655524 DOI: 10.3390/ijms232112803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/07/2022] [Accepted: 10/19/2022] [Indexed: 01/30/2024] Open
Abstract
Primary aldosteronism (PA) is considered the most common form of secondary hypertension, which is associated with excessive aldosterone secretion in the adrenal cortex. The cause of excessive aldosterone secretion is the induction of aldosterone synthase gene (CYP11B2) expression by depolarization of adrenocortical cells. In this study, we found that YM750, an Acyl-coenzyme A: cholesterol acyltransferase (ACAT) inhibitor, acts on adrenocortical cells to suppress CYP11B2 gene expression and aldosterone secretion. YM750 inhibited the induction of CYP11B2 gene expression by KCl stimulation, but not by angiotensin II and forskolin stimulation. Interestingly, YM750 did not inhibit KCl-stimulated depolarization via an increase in intracellular calcium ion concentration. Moreover, ACAT1 expression was relatively abundant in the zona glomerulosa (ZG) including these CYP11B2-positive cells. Thus, YM750 suppresses CYP11B2 gene expression by suppressing intracellular signaling activated by depolarization. In addition, ACAT1 was suggested to play an important role in steroidogenesis in the ZG. YM750 suppresses CYP11B2 gene expression and aldosterone secretion in the adrenal cortex, suggesting that it may be a potential therapeutic agent for PA.
Collapse
Affiliation(s)
- Hiroki Shimada
- Division of Pathology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai 983-8536, Miyagi, Japan
| | - Shuko Hata
- Division of Pathology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai 983-8536, Miyagi, Japan
| | - Yuto Yamazaki
- Department of Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| | - Yuri Otsubo
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| | - Ikuko Sato
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| | - Kazue Ise
- Division of Pathology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai 983-8536, Miyagi, Japan
| | - Atsushi Yokoyama
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| | - Takashi Suzuki
- Department of Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| | - Akira Sugawara
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| | - Yasuhiro Nakamura
- Division of Pathology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai 983-8536, Miyagi, Japan
| |
Collapse
|
2
|
Matsuoka H, Harada K, Sugawara A, Kim D, Inoue M. Expression of p11 and heteromeric TASK channels in mouse adrenal cortical cells and H295R cells. Acta Histochem 2022; 124:151898. [PMID: 35526370 DOI: 10.1016/j.acthis.2022.151898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 11/30/2022]
Abstract
TWIK-related acid-sensitive K+ (TASK) channels are thought to contribute to the resting membrane potential in adrenal cortical (AC) cells. However, the molecular identity of TASK channels in AC cells have not yet been elucidated. Thus, immunocytochemical and molecular biological approaches were employed to investigate the expression and intracellular distribution of TASK1 and TASK3 in mouse AC cells and H295R cells derived from human adrenocortical carcinoma. Immunocytochemical study revealed that immunoreactive materials were mainly located in the cytoplasm for TASK1 and at the cell periphery for TASK3 in mouse AC cells. A similar pattern of localization was observed when GFP-TASK1 and GFP-TASK3 were exogenously expressed in H295R cells. In addition, p11 that is known to suppress the endoplasmic reticulum exit of TASK1 was localized in the cytoplasm in mouse AC and H295R cells, but not in adrenal medullary cells. Proximity ligation assay (PLA) suggested formation of heteromeric TASK1-3 channels that were found predominantly in the cytoplasm and weakly at the cell periphery. A similar distribution was observed following exogenous expression of tandem TASK1-3 channels in H295R cells. When stimulated by angiotensin II, however, tandem TASK1-3 channels were present mainly in the cytoplasm in all H295R cells. In contrast to that in H295R cells, tandem channels were exclusively located at the cell periphery in all non-stimulated and exclusively in the cytoplasm in stimulated PC12 cells, respectively. From these results, we conclude that TASK1 proteins are present mainly in the cytoplasm and minimally at the cell periphery as a heteromeric channel with TASK3, whereas the majority of TASK3 is at the cell periphery as homomeric and heteromeric channels.
Collapse
Affiliation(s)
- Hidetada Matsuoka
- Department of Cell and Systems Physiology, University of Occupational and Environmental Health School of Medicine, Kitakyushu 807-8555, Japan
| | - Keita Harada
- Department of Cell and Systems Physiology, University of Occupational and Environmental Health School of Medicine, Kitakyushu 807-8555, Japan
| | - Akira Sugawara
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medical Science, Sendai 980-8575, Japan
| | - Donghee Kim
- Department of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064-3095, USA
| | - Masumi Inoue
- Department of Cell and Systems Physiology, University of Occupational and Environmental Health School of Medicine, Kitakyushu 807-8555, Japan.
| |
Collapse
|
3
|
Duranova H, Fialkova V, Valkova V, Bilcikova J, Olexikova L, Lukac N, Massanyi P, Knazicka Z. Human adrenocortical carcinoma cell line (NCI-H295R): An in vitro screening model for the assessment of endocrine disruptors' actions on steroidogenesis with an emphasis on cell ultrastructural features. Acta Histochem 2022; 124:151912. [PMID: 35661985 DOI: 10.1016/j.acthis.2022.151912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/16/2022] [Accepted: 05/24/2022] [Indexed: 11/28/2022]
Abstract
Cell lines as an in vitro model for xenobiotic screening and toxicity studies provide a very important tool in the field of scientific research at the level of molecular pathways and gene expression. Good cell culture practice and intracellular characterization, as well as physiological properties of the cell line are of critical importance for in vitro reproductive toxicity testing of various endocrine-disrupting chemicals. The NCI-H295R, human adrenocarcinoma cell line, is the most widely used in vitro cellular system to study the human adrenal steroidogenic pathway at the level of hormone production and gene expression, as it expresses genes that encode for all the key enzymes for steroidogenesis. In this review, we aim to highlight the information considering the origin, development, physiological and ultrastructural characteristics of the NCI-H295R cell line. The review also creates a broad overview of the cell line usage in various range of studies related to the steroidogenesis issues. To our best knowledge, the paper provides the first report of quantitative data (ex novo) from stereological estimates of component (volume, surface) densities of nuclei, mitochondria, and lipid droplets of the NCI-H295R cells. Such ultrastructural measurements can be valuable in the assessment of underlying mechanisms of changes in the cell steroid hormone production induced by the action of diverse endocrine disruptors. Thus, they can significantly contribute to complexity of structure-function relationships in association with steroidogenesis.
Collapse
Affiliation(s)
- Hana Duranova
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Veronika Fialkova
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Veronika Valkova
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Jana Bilcikova
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Lucia Olexikova
- Institute of Farm Animal Genetics and Reproduction, NPPC - Research Institute for Animal Production in Nitra, Hlohovecká 2, 951 41 Lužianky, Slovak Republic.
| | - Norbert Lukac
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Peter Massanyi
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Zuzana Knazicka
- Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.
| |
Collapse
|
4
|
Sasaki L, Hamada Y, Yarimizu D, Suzuki T, Nakamura H, Shimada A, Pham KTN, Shao X, Yamamura K, Inatomi T, Morinaga H, Nishimura EK, Kudo F, Manabe I, Haraguchi S, Sugiura Y, Suematsu M, Kinoshita S, Machida M, Nakajima T, Kiyonari H, Okamura H, Yamaguchi Y, Miyake T, Doi M. Intracrine activity involving NAD-dependent circadian steroidogenic activity governs age-associated meibomian gland dysfunction. NATURE AGING 2022; 2:105-114. [PMID: 37117756 PMCID: PMC10154200 DOI: 10.1038/s43587-021-00167-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 12/22/2021] [Indexed: 04/30/2023]
Abstract
Canonically, hormones are produced in the endocrine organs and delivered to target tissues. However, for steroids, the concept of tissue intracrinology, whereby hormones are produced in the tissues where they exert their effect without release into circulation, has been proposed, but its role in physiology/disease remains unclear. The meibomian glands in the eyelids produce oil to prevent tear evaporation, which reduces with aging. Here, we demonstrate that (re)activation of local intracrine activity through nicotinamide adenine dinucleotide (NAD+)-dependent circadian 3β-hydroxyl-steroid dehydrogenase (3β-HSD) activity ameliorates age-associated meibomian gland dysfunction and accompanying evaporative dry eye disease. Genetic ablation of 3β-HSD nullified local steroidogenesis and led to atrophy of the meibomian gland. Conversely, reactivation of 3β-HSD activity by boosting its coenzyme NAD+ availability improved glandular cell proliferation and alleviated the dry eye disease phenotype. Both women and men express 3β-HSD in the meibomian gland. Enhancing local steroidogenesis may help combat age-associated meibomian gland dysfunction.
Collapse
Affiliation(s)
- Lena Sasaki
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yuki Hamada
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Daisuke Yarimizu
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Tomo Suzuki
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Ophthalmology, Kyoto City Hospital, Kyoto, Japan
| | - Hiroki Nakamura
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Aya Shimada
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Khanh Tien Nguyen Pham
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Xinyan Shao
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Koki Yamamura
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Tsutomu Inatomi
- Department of Ophthalmology, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Hironobu Morinaga
- Dpartment of Stem Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Emi K Nishimura
- Dpartment of Stem Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Fujimi Kudo
- Department of Disease Biology and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ichiro Manabe
- Department of Disease Biology and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shogo Haraguchi
- Department of Biochemistry, Showa University School of Medicine, Tokyo, Japan
| | - Yuki Sugiura
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Shigeru Kinoshita
- Department of Frontier Medical Science and Technology for Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Mamiko Machida
- Senju Laboratory of Ocular Sciences, Senju Pharmaceutical Co., Kobe, Japan
| | - Takeshi Nakajima
- Senju Laboratory of Ocular Sciences, Senju Pharmaceutical Co., Kobe, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Hitoshi Okamura
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan.
- Division of Physiology and Neurobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Yoshiaki Yamaguchi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Takahito Miyake
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Masao Doi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
5
|
Shimada H, Yamazaki Y, Sugawara A, Sasano H, Nakamura Y. Molecular Mechanisms of Functional Adrenocortical Adenoma and Carcinoma: Genetic Characterization and Intracellular Signaling Pathway. Biomedicines 2021; 9:biomedicines9080892. [PMID: 34440096 PMCID: PMC8389593 DOI: 10.3390/biomedicines9080892] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 02/06/2023] Open
Abstract
The adrenal cortex produces steroid hormones as adrenocortical hormones in the body, secreting mineralocorticoids, glucocorticoids, and adrenal androgens, which are all considered essential for life. Adrenocortical tumors harbor divergent hormonal activity, frequently with steroid excess, and disrupt homeostasis of the body. Aldosterone-producing adenomas (APAs) cause primary aldosteronism (PA), and cortisol-producing adenomas (CPAs) are the primary cause of Cushing’s syndrome. In addition, adrenocortical carcinoma (ACC) is a highly malignant cancer harboring poor prognosis. Various genetic abnormalities have been reported, which are associated with possible pathogenesis by the alteration of intracellular signaling and activation of transcription factors. In particular, somatic mutations in APAs have been detected in genes encoding membrane proteins, especially ion channels, resulting in hypersecretion of aldosterone due to activation of intracellular calcium signaling. In addition, somatic mutations have been detected in those encoding cAMP-PKA signaling-related factors, resulting in hypersecretion of cortisol due to its driven status in CPAs. In ACC, mutations in tumor suppressor genes and Wnt-β-catenin signaling-related factors have been implicated in its pathogenesis. In this article, we review recent findings on the genetic characteristics and regulation of intracellular signaling and transcription factors in individual tumors.
Collapse
Affiliation(s)
- Hiroki Shimada
- Division of Pathology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai 983-8536, Miyagi, Japan;
| | - Yuto Yamazaki
- Department of Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan; (Y.Y.); (H.S.)
| | - Akira Sugawara
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan;
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan; (Y.Y.); (H.S.)
| | - Yasuhiro Nakamura
- Division of Pathology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai 983-8536, Miyagi, Japan;
- Correspondence: ; Tel.: +81-22-290-8731
| |
Collapse
|
6
|
Ito R, Shima H, Masuda K, Sato I, Shimada H, Yokoyama A, Shirahige K, Igarashi K, Sugawara A. Comparative proteomic analysis to identify the novel target gene of angiotensin II in adrenocortical H295R cells. Endocr J 2021; 68:441-450. [PMID: 33390420 DOI: 10.1507/endocrj.ej20-0144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Angiotensin II (Ang II) is a well-known peptide that maintains the balance of electrolytes in the higher vertebrates. Ang II stimulation in the adrenal gland induces the synthesis of mineralocorticoids, mainly aldosterone, through the up-regulation of aldosterone synthase (CYP11B2) gene expression. Additionally, it has been reported that Ang II activates multiple signaling pathways such as mitogen-activated protein kinase (MAPK) and Ca2+ signaling. Although Ang II has various effects on the cellular signaling in the adrenal cells, its biological significance, except for the aldosterone synthesis, is still unclear. In this study, we attempted to search the novel target gene(s) of Ang II in the human adrenal H295R cells using a proteomic approach combined with stable isotopic labeling using amino acid in cell culture (SILAC). Interestingly, we found that Ang II stimulation elevated the expression of phosphofructokinase type platelet (PFKP) in both protein and mRNA levels. Moreover, transactivation of PFKP by Ang II was dependent on extracellular-signal-regulated kinase (ERK) 1/2 activation. Finally, we observed that Ang II treatment facilitated glucose uptake in the H295R cells. Taken together, we here identified PFKP as a novel target gene of Ang II, indicating that Ang II not only stimulates steroidogenesis but also affects glucose metabolism.
Collapse
Affiliation(s)
- Ryo Ito
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Hiroki Shima
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Koji Masuda
- Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Ikuko Sato
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Hiroki Shimada
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Atsushi Yokoyama
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Katsuhiko Shirahige
- Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Akira Sugawara
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| |
Collapse
|
7
|
Fan J, Campioli E, Sottas C, Zirkin B, Papadopoulos V. Amhr2-Cre-Mediated Global Tspo Knockout. J Endocr Soc 2020; 4:bvaa001. [PMID: 32099945 PMCID: PMC7031085 DOI: 10.1210/jendso/bvaa001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/09/2020] [Indexed: 12/27/2022] Open
Abstract
Although the role of translocator protein (TSPO) in cholesterol transport in steroid-synthesizing cells has been studied extensively, recent studies of TSPO genetic depletion have questioned its role. Amhr2-Cre mice have been used to generate Leydig cell-specific Tspo conditional knockout (cKO) mice. Using the same Cre line, we were unable to generate Tspo cKO mice possibly because of genetic linkage between Tspo and Amhr2 and coexpression of Amhr2-Cre and Tspo in early embryonic development. We found that Amhr2-Cre is expressed during preimplantation stages, resulting in global heterozygous mice (gHE; Amhr2-Cre+/–,Tspo–/+). Two gHE mice were crossed, generating Amhr2-Cre–mediated Tspo global knockout (gKO; Tspo–/–) mice. We found that 33.3% of blastocysts at E3.5 to E4.5 showed normal morphology, whereas 66.7% showed delayed development, which correlates with the expected Mendelian proportions of Tspo+/+ (25%), Tspo–/– (25%), and Tspo+/– (50%) genotypes from crossing 2 Tspo–/+ mice. Adult Tspo gKO mice exhibited disturbances in neutral lipid homeostasis and reduced intratesticular and circulating testosterone levels, but no change in circulating basal corticosterone levels. RNA-sequencing data from mouse adrenal glands and lungs revealed transcriptome changes in response to the loss of TSPO, including changes in several cholesterol-binding and transfer proteins. This study demonstrates that Amhr2-Cre can be used to produce Tspo gKO mice instead of cKO, and can serve as a new global “Cre deleter.” Moreover, our results show that Tspo deletion causes delayed preimplantation embryonic development, alters neutral lipid storage and steroidogenesis, and leads to transcriptome changes that may reflect compensatory mechanisms in response to the loss of function of TSPO.
Collapse
Affiliation(s)
- Jinjiang Fan
- The Research Institute of the McGill University Health Centre.,Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Enrico Campioli
- The Research Institute of the McGill University Health Centre.,Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Chantal Sottas
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, US
| | - Barry Zirkin
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, US
| | - Vassilios Papadopoulos
- The Research Institute of the McGill University Health Centre.,Department of Medicine, McGill University, Montreal, Quebec, Canada.,Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, US
| |
Collapse
|
8
|
Bai J, Duraisamy K, Mak SOK, Allam A, Ajarem J, Li Z, Chow BKC. Role of SCTR/AT1aR heteromer in mediating ANGII-induced aldosterone secretion. PLoS One 2019; 14:e0222005. [PMID: 31479491 PMCID: PMC6719825 DOI: 10.1371/journal.pone.0222005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/20/2019] [Indexed: 12/26/2022] Open
Abstract
The involvement of secretin (SCT) and its receptor (SCTR) in angiotensin II (ANGII)-mediated osmoregulation by forming SCTR/ angiotensin II type 1 receptor (AT1R) heteromer is well established. In this study, we demonstrated that SCTR/AT1R complex can mediate ANGII-induced aldosterone secretion/release through potentiating calcium mobilization. Through IHC and cAMP studies, we showed the presence of functional SCTR and AT1R in the primary zona glomerulosa (ZG) cells of C57BL/6N (C57), and functional AT1R and non-functional SCTR in SCTR knockout (SCTR-/-) mice. Calcium mobilization studies revealed the important role of SCTR on ANGII-mediated calcium mobilization in adrenal gland. The fluo4-AM loaded primary adrenal ZG cells from the C57 mice displayed a dose-dependent increase in intracellular calcium influx ([Ca2+]i) when exposed to ANGII but not from the SCTR-/- ZG cells. Synthetic SCTR transmembrane (TM) peptides STM-II/-IV were able to alter [Ca2+]i in C57 mice, but not the mice with mutated STM-II/-IV (STM-IIm/IVm) peptides. Through enzyme immunoassay (EIA), we measured the aldosterone release from primary ZG cells of both C57 and SCTR-/- mice by exposing them to ANGII (10nM). SCTR-/- ZG cells showed impaired ANGII-induced aldosterone secretion compared to the C57 mice. TM peptide, STM-II hindered the aldosterone secretion in ZG cells of C57 mice. These findings support the involvement of SCTR/AT1R heterodimer complex in aldosterone secretion/release through [Ca2+]i.
Collapse
MESH Headings
- Aldosterone/metabolism
- Angiotensin II/metabolism
- Animals
- Calcium Signaling
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mutation
- Osmoregulation/genetics
- Osmoregulation/physiology
- Peptide Fragments/chemistry
- Peptide Fragments/genetics
- Peptide Fragments/metabolism
- Protein Structure, Quaternary
- Receptor, Angiotensin, Type 1/chemistry
- Receptor, Angiotensin, Type 1/metabolism
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/deficiency
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Gastrointestinal Hormone/chemistry
- Receptors, Gastrointestinal Hormone/deficiency
- Receptors, Gastrointestinal Hormone/metabolism
- Zona Glomerulosa/cytology
- Zona Glomerulosa/metabolism
Collapse
Affiliation(s)
- Juan Bai
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Karthi Duraisamy
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Sarah O. K. Mak
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Ahmed Allam
- Department of Zoology, College of Science, King Saud University, Riyadh, KSA
- Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Jamaan Ajarem
- Department of Zoology, College of Science, King Saud University, Riyadh, KSA
| | - Zhang Li
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Billy K. C. Chow
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
- * E-mail:
| |
Collapse
|
9
|
Doi M, Shimatani H, Atobe Y, Murai I, Hayashi H, Takahashi Y, Fustin JM, Yamaguchi Y, Kiyonari H, Koike N, Yagita K, Lee C, Abe M, Sakimura K, Okamura H. Non-coding cis-element of Period2 is essential for maintaining organismal circadian behaviour and body temperature rhythmicity. Nat Commun 2019; 10:2563. [PMID: 31189882 PMCID: PMC6561950 DOI: 10.1038/s41467-019-10532-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 05/16/2019] [Indexed: 12/22/2022] Open
Abstract
Non-coding cis-regulatory elements are essential determinants of development, but their exact impacts on behavior and physiology in adults remain elusive. Cis-element-based transcriptional regulation is believed to be crucial for generating circadian rhythms in behavior and physiology. However, genetic evidence supporting this model is based on mutations in the protein-coding sequences of clock genes. Here, we report generation of mutant mice carrying a mutation only at the E'-box cis-element in the promoter region of the core clock gene Per2. The Per2 E'-box mutation abolishes sustainable molecular clock oscillations and renders circadian locomotor activity and body temperature rhythms unstable. Without the E'-box, Per2 messenger RNA and protein expression remain at mid-to-high levels. Our work delineates the Per2 E'-box as a critical nodal element for keeping sustainable cell-autonomous circadian oscillation and reveals the extent of the impact of the non-coding cis-element in daily maintenance of animal locomotor activity and body temperature rhythmicity.
Collapse
Affiliation(s)
- Masao Doi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Kyoto, 606-8501, Japan.
| | - Hiroyuki Shimatani
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Kyoto, 606-8501, Japan
| | - Yuta Atobe
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Kyoto, 606-8501, Japan
| | - Iori Murai
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Kyoto, 606-8501, Japan.,Laboratory of Molecular Brain Science, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Kyoto, 606-8501, Japan
| | - Hida Hayashi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Kyoto, 606-8501, Japan
| | - Yukari Takahashi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Kyoto, 606-8501, Japan
| | - Jean-Michel Fustin
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Kyoto, 606-8501, Japan
| | - Yoshiaki Yamaguchi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Kyoto, 606-8501, Japan
| | - Hiroshi Kiyonari
- Laboratories for Animal Resource Development and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, 650-0047, Japan
| | - Nobuya Koike
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Kazuhiro Yagita
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Choogon Lee
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Manabu Abe
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Hitoshi Okamura
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Kyoto, 606-8501, Japan. .,Laboratory of Molecular Brain Science, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
10
|
Tkhorenko BA, Tsepokina AV, Trishkina NN, Lavryashina MB, Ponasenko AV. Aldosterone Biosynthesis: Genetic Control and Contribution to the Development of Arterial Hypertension. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419060176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Tetti M, Castellano I, Venziano F, Magnino C, Veglio F, Mulatero P, Monticone S. Role of Cryptochrome-1 and Cryptochrome-2 in Aldosterone-Producing Adenomas and Adrenocortical Cells. Int J Mol Sci 2018; 19:ijms19061675. [PMID: 29874863 PMCID: PMC6032245 DOI: 10.3390/ijms19061675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 11/17/2022] Open
Abstract
Mice lacking the core-clock components, cryptochrome-1 (CRY1) and cryptochrome-2 (CRY2) display a phenotype of hyperaldosteronism, due to the upregulation of type VI 3β-hydroxyl-steroid dehydrogenase (Hsd3b6), the murine counterpart to the human type I 3β-hydroxyl-steroid dehydrogenase (HSD3B1) gene. In the present study, we evaluated the role of CRY1 and CRY2 genes, and their potential interplay with HSD3B isoforms in adrenal pathophysiology in man. Forty-six sporadic aldosterone-producing adenomas (APAs) and 20 paired adrenal samples were included, with the human adrenocortical cells HAC15 used as the in vitro model. In our cohort of sporadic APAs, CRY1 expression was 1.7-fold [0.75–2.26] higher (p = 0.016), while CRY2 showed a 20% lower expression [0.80, 0.52–1.08] (p = 0.04) in APAs when compared with the corresponding adjacent adrenal cortex. Type II 3β-hydroxyl-steroid dehydrogenase (HSD3B2) was 317-fold [200–573] more expressed than HSD3B1, and is the main HSD3B isoform in APAs. Both dehydrogenases were more expressed in APAs when compared with the adjacent cortex (5.7-fold and 3.5-fold, respectively, p < 0.001 and p = 0.001) and HSD3B1 was significantly more expressed in APAs composed mainly of zona glomerulosa-like cells. Treatment with angiotensin II (AngII) resulted in a significant upregulation of CRY1 (1.7 ± 0.25-fold, p < 0.001) at 6 h, and downregulation of CRY2 at 12 h (0.6 ± 0.1-fold, p < 0.001), through activation of the AngII type 1 receptor. Independent silencing of CRY1 and CRY2 genes in HAC15 cells resulted in a mild upregulation of HSD3B2 without affecting HSD3B1 expression. In conclusion, our results support the hypothesis that CRY1 and CRY2, being AngII-regulated genes, and showing a differential expression in APAs when compared with the adjacent adrenal cortex, might be involved in adrenal cell function, and in the regulation of aldosterone production.
Collapse
Affiliation(s)
- Martina Tetti
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Torino, 10126 Torino, Italy.
| | - Isabella Castellano
- Division of Pathology, Department of Medical Sciences, University of Torino,10126 Torino, Italy.
| | - Francesca Venziano
- Division of Pathology, Department of Medical Sciences, University of Torino,10126 Torino, Italy.
| | - Corrado Magnino
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Torino, 10126 Torino, Italy.
| | - Franco Veglio
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Torino, 10126 Torino, Italy.
| | - Paolo Mulatero
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Torino, 10126 Torino, Italy.
| | - Silvia Monticone
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Torino, 10126 Torino, Italy.
| |
Collapse
|
12
|
Noro E, Yokoyama A, Kobayashi M, Shimada H, Suzuki S, Hosokawa M, Takehara T, Parvin R, Shima H, Igarashi K, Sugawara A. Endogenous Purification of NR4A2 (Nurr1) Identified Poly(ADP-Ribose) Polymerase 1 as a Prime Coregulator in Human Adrenocortical H295R Cells. Int J Mol Sci 2018; 19:ijms19051406. [PMID: 29738496 PMCID: PMC5983848 DOI: 10.3390/ijms19051406] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/06/2018] [Accepted: 05/06/2018] [Indexed: 01/01/2023] Open
Abstract
Aldosterone is synthesized in zona glomerulosa of adrenal cortex in response to angiotensin II. This stimulation transcriptionally induces expression of a series of steroidogenic genes such as HSD3B and CYP11B2 via NR4A (nuclear receptor subfamily 4 group A) nuclear receptors and ATF (activating transcription factor) family transcription factors. Nurr1 belongs to the NR4A family and is regarded as an orphan nuclear receptor. The physiological significance of Nurr1 in aldosterone production in adrenal cortex has been well studied. However, coregulators supporting the Nurr1 function still remain elusive. In this study, we performed RIME (rapid immunoprecipitation mass spectrometry of endogenous proteins), a recently developed endogenous coregulator purification method, in human adrenocortical H295R cells and identified PARP1 as one of the top Nurr1-interacting proteins. Nurr1-PARP1 interaction was verified by co-immunoprecipitation. In addition, both siRNA knockdown of PARP1 and treatment of AG14361, a specific PARP1 inhibitor suppressed the angiotensin II-mediated target gene induction in H295R cells. Furthermore, PARP1 inhibitor also suppressed the aldosterone secretion in response to the angiotensin II. Together, these results suggest PARP1 is a prime coregulator for Nurr1.
Collapse
Affiliation(s)
- Erika Noro
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| | - Atsushi Yokoyama
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| | - Makoto Kobayashi
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| | - Hiroki Shimada
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| | - Susumu Suzuki
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| | - Mari Hosokawa
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| | - Tomohiro Takehara
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| | - Rehana Parvin
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| | - Hiroki Shima
- Department of Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| | - Akira Sugawara
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| |
Collapse
|
13
|
Chao HW, Doi M, Fustin JM, Chen H, Murase K, Maeda Y, Hayashi H, Tanaka R, Sugawa M, Mizukuchi N, Yamaguchi Y, Yasunaga JI, Matsuoka M, Sakai M, Matsumoto M, Hamada S, Okamura H. Circadian clock regulates hepatic polyploidy by modulating Mkp1-Erk1/2 signaling pathway. Nat Commun 2017; 8:2238. [PMID: 29269828 PMCID: PMC5740157 DOI: 10.1038/s41467-017-02207-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 11/13/2017] [Indexed: 01/08/2023] Open
Abstract
Liver metabolism undergoes robust circadian oscillations in gene expression and enzymatic activity essential for liver homeostasis, but whether the circadian clock controls homeostatic self-renewal of hepatocytes is unknown. Here we show that hepatocyte polyploidization is markedly accelerated around the central vein, the site of permanent cell self-renewal, in mice deficient in circadian Period genes. In these mice, a massive accumulation of hyperpolyploid mononuclear and binuclear hepatocytes occurs due to impaired mitogen-activated protein kinase phosphatase 1 (Mkp1)-mediated circadian modulation of the extracellular signal-regulated kinase (Erk1/2) activity. Time-lapse imaging of hepatocytes suggests that the reduced activity of Erk1/2 in the midbody during cytokinesis results in abscission failure, leading to polyploidization. Manipulation of Mkp1 phosphatase activity is sufficient to change the ploidy level of hepatocytes. These data provide clear evidence that the Period genes not only orchestrate dynamic changes in metabolic activity, but also regulate homeostatic self-renewal of hepatocytes through Mkp1-Erk1/2 signaling pathway. Circadian clock regulates hepatic gene expression and functions. Here Chao et al. show that alteration of circadian clock genes by Period deletion induces polyploidy in hepatocytes due to impaired regulation of Erk signaling by mitogen-activated protein kinase phosphatase 1.
Collapse
Affiliation(s)
- Hsu-Wen Chao
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan.,Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Masao Doi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Jean-Michel Fustin
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Huatao Chen
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Kimihiko Murase
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan.,The Department of Respiratory Care and Sleep Control Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Yuki Maeda
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Hida Hayashi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Rina Tanaka
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Maho Sugawa
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Naoki Mizukuchi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Yoshiaki Yamaguchi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Jun-Ichirou Yasunaga
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Kyoto, 606-8507, Japan
| | - Masao Matsuoka
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Kyoto, 606-8507, Japan.,Department of Hematology, Rheumatology, and Infectious Diseases, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Mashito Sakai
- Department of Molecular Metabolic Regulation, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Michihiro Matsumoto
- Department of Molecular Metabolic Regulation, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | | | - Hitoshi Okamura
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
14
|
Shimada H, Kogure N, Noro E, Kudo M, Sugawara K, Sato I, Shimizu K, Kobayashi M, Suzuki D, Parvin R, Saito-Ito T, Uruno A, Saito-Hakoda A, Rainey WE, Ito S, Yokoyama A, Sugawara A. High glucose stimulates expression of aldosterone synthase ( CYP11B2) and secretion of aldosterone in human adrenal cells. FEBS Open Bio 2017; 7:1410-1421. [PMID: 28904869 PMCID: PMC5586344 DOI: 10.1002/2211-5463.12277] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 06/11/2017] [Accepted: 07/26/2017] [Indexed: 11/09/2022] Open
Abstract
Aldosterone synthase is the key rate‐limiting enzyme in adrenal aldosterone production, and induction of its gene (CYP11B2) results in the progression of hypertension. As hypertension is a frequent complication among patients with diabetes, we set out to elucidate the link between diabetes mellitus and hypertension. We examined the effects of high glucose on CYP11B2 expression and aldosterone production using human adrenal H295R cells and a stable H295R cell line expressing a CYP11B2 5′‐flanking region/luciferase cDNA chimeric construct. d‐glucose (d‐glu), but not its enantiomer l‐glucose, dose dependently induced CYP11B2 transcription and mRNA expression. A high concentration (450 mg·dL−1) of d‐glu time dependently induced CYP11B2 transcription and mRNA expression. Moreover, high glucose stimulated secretion of aldosterone into the media. Transient transfection studies using deletion mutants/nerve growth factor‐induced clone B (NGFIB) response element 1 (NBRE‐1) point mutant of CYP11B2 5′‐flanking region revealed that the NBRE‐1 element, known to be activated by transcription factors NGFIB and NURR1, was responsible for the high glucose‐mediated effect. High glucose also induced the mRNA expression of these transcription factors, especially that of NURR1, but NURR1 knockdown using its siRNA did not affect high glucose‐induced CYP11B2 mRNA expression. Taken together, it is speculated that high glucose may induce CYP11B2 transcription via the NBRE‐1 element in its 5′‐flanking region, resulting in the increase in aldosterone production although high glucose‐induced NURR1 is not directly involved in the effect. Additionally, glucose metabolism and calcium channels were found to be involved in the high glucose effect. Our observations suggest one possible explanation for the high incidence of hypertension in patients with diabetes.
Collapse
Affiliation(s)
- Hiroki Shimada
- Department of Molecular Endocrinology Tohoku University Graduate School of Medicine Sendai Miyagi Japan
| | - Naotaka Kogure
- Department of Molecular Endocrinology Tohoku University Graduate School of Medicine Sendai Miyagi Japan
| | - Erika Noro
- Department of Molecular Endocrinology Tohoku University Graduate School of Medicine Sendai Miyagi Japan
| | - Masataka Kudo
- Division of Nephrology, Endocrinology and Vascular Medicine Tohoku University Graduate School of Medicine Sendai Miyagi Japan
| | - Kaori Sugawara
- Department of Molecular Endocrinology Tohoku University Graduate School of Medicine Sendai Miyagi Japan
| | - Ikuko Sato
- Department of Molecular Endocrinology Tohoku University Graduate School of Medicine Sendai Miyagi Japan
| | - Kyoko Shimizu
- Department of Molecular Endocrinology Tohoku University Graduate School of Medicine Sendai Miyagi Japan
| | - Makoto Kobayashi
- Department of Molecular Endocrinology Tohoku University Graduate School of Medicine Sendai Miyagi Japan
| | - Dai Suzuki
- Department of Pediatrics Tohoku University Graduate School of Medicine Sendai Miyagi Japan
| | - Rehana Parvin
- Department of Molecular Endocrinology Tohoku University Graduate School of Medicine Sendai Miyagi Japan
| | - Takako Saito-Ito
- Department of Molecular Endocrinology Tohoku University Graduate School of Medicine Sendai Miyagi Japan
| | - Akira Uruno
- Department of Medical Biochemistry Tohoku University Graduate School of Medicine Sendai Miyagi Japan
| | - Akiko Saito-Hakoda
- Department of Molecular Endocrinology Tohoku University Graduate School of Medicine Sendai Miyagi Japan
| | - William E Rainey
- Department of Molecular and Integrative Physiology University of Michigan Medical School Ann Arbor MI USA
| | - Sadayoshi Ito
- Division of Nephrology, Endocrinology and Vascular Medicine Tohoku University Graduate School of Medicine Sendai Miyagi Japan
| | - Atsushi Yokoyama
- Department of Molecular Endocrinology Tohoku University Graduate School of Medicine Sendai Miyagi Japan
| | - Akira Sugawara
- Department of Molecular Endocrinology Tohoku University Graduate School of Medicine Sendai Miyagi Japan
| |
Collapse
|
15
|
Suzuki D, Saito-Hakoda A, Ito R, Shimizu K, Parvin R, Shimada H, Noro E, Suzuki S, Fujiwara I, Kagechika H, Rainey WE, Kure S, Ito S, Yokoyama A, Sugawara A. Suppressive effects of RXR agonist PA024 on adrenal CYP11B2 expression, aldosterone secretion and blood pressure. PLoS One 2017; 12:e0181055. [PMID: 28800627 PMCID: PMC5553648 DOI: 10.1371/journal.pone.0181055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 06/26/2017] [Indexed: 12/20/2022] Open
Abstract
The effects of retinoids on adrenal aldosterone synthase gene (CYP11B2) expression and aldosterone secretion are still unknown. We therefore examined the effects of nuclear retinoid X receptor (RXR) pan-agonist PA024 on CYP11B2 expression, aldosterone secretion and blood pressure, to elucidate its potential as a novel anti-hypertensive drug. We demonstrated that PA024 significantly suppressed angiotensin II (Ang II)-induced CYP11B2 mRNA expression, promoter activity and aldosterone secretion in human adrenocortical H295R cells. Human CYP11B2 promoter functional analyses using its deletion and point mutants indicated that the suppression of CYP11B2 promoter activity by PA024 was in the region from -1521 (full length) to -106 including the NBRE-1 and the Ad5 elements, and the Ad5 element may be mainly involved in the PA024-mediated suppression. PA024 also significantly suppressed the Ang II-induced mRNA expression of transcription factors NURR1 and NGFIB that bind to and activate the Ad5 element. NURR1 overexpression demonstrated that the decrease of NURR1 expression may contribute to the PA024-mediated suppression of CYP11B2 transcription. PA024 also suppressed the Ang II-induced mRNA expression of StAR, HSD3β2 and CYP21A2, a steroidogenic enzyme group involved in aldosterone biosynthesis. Additionally, the PA024-mediated CYP11B2 transcription suppression was shown to be exerted via RXRα. Moreover, the combination of PPARγ agonist pioglitazone and PA024 caused synergistic suppressive effects on CYP11B2 mRNA expression. Finally, PA024 treatment significantly lowered both the systolic and diastolic blood pressure in Tsukuba hypertensive mice (hRN8-12 x hAG2-5). Thus, RXR pan-agonist PA024 may be a candidate anti-hypertensive drugs that acts via the suppression of aldosterone synthesis and secretion.
Collapse
Affiliation(s)
- Dai Suzuki
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Akiko Saito-Hakoda
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Ryo Ito
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kyoko Shimizu
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Rehana Parvin
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hiroki Shimada
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Erika Noro
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Susumu Suzuki
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Ikuma Fujiwara
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hiroyuki Kagechika
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo, Japan
| | - William E. Rainey
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Shigeo Kure
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Sadayoshi Ito
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Atsushi Yokoyama
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Akira Sugawara
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- * E-mail:
| |
Collapse
|
16
|
Stowasser M, Gordon RD. Primary Aldosteronism: Changing Definitions and New Concepts of Physiology and Pathophysiology Both Inside and Outside the Kidney. Physiol Rev 2016; 96:1327-84. [DOI: 10.1152/physrev.00026.2015] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In the 60 years that have passed since the discovery of the mineralocorticoid hormone aldosterone, much has been learned about its synthesis (both adrenal and extra-adrenal), regulation (by renin-angiotensin II, potassium, adrenocorticotrophin, and other factors), and effects (on both epithelial and nonepithelial tissues). Once thought to be rare, primary aldosteronism (PA, in which aldosterone secretion by the adrenal is excessive and autonomous of its principal regulator, angiotensin II) is now known to be the most common specifically treatable and potentially curable form of hypertension, with most patients lacking the clinical feature of hypokalemia, the presence of which was previously considered to be necessary to warrant further efforts towards confirming a diagnosis of PA. This, and the appreciation that aldosterone excess leads to adverse cardiovascular, renal, central nervous, and psychological effects, that are at least partly independent of its effects on blood pressure, have had a profound influence on raising clinical and research interest in PA. Such research on patients with PA has, in turn, furthered knowledge regarding aldosterone synthesis, regulation, and effects. This review summarizes current progress in our understanding of the physiology of aldosterone, and towards defining the causes (including genetic bases), epidemiology, outcomes, and clinical approaches to diagnostic workup (including screening, diagnostic confirmation, and subtype differentiation) and treatment of PA.
Collapse
Affiliation(s)
- Michael Stowasser
- Endocrine Hypertension Research Centre, University of Queensland School of Medicine, Greenslopes and Princess Alexandra Hospitals, Brisbane, Queensland, Australia
| | - Richard D. Gordon
- Endocrine Hypertension Research Centre, University of Queensland School of Medicine, Greenslopes and Princess Alexandra Hospitals, Brisbane, Queensland, Australia
| |
Collapse
|
17
|
Okamura H, Doi M, Goto K, Kojima R. Clock genes and salt-sensitive hypertension: a new type of aldosterone-synthesizing enzyme controlled by the circadian clock and angiotensin II. Hypertens Res 2016; 39:681-687. [PMID: 27439492 DOI: 10.1038/hr.2016.91] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/06/2016] [Accepted: 06/06/2016] [Indexed: 11/10/2022]
Abstract
With the current societal norm of shiftwork and long working hours, maintaining a stable daily life is becoming very difficult. An irregular lifestyle disrupts circadian rhythms, resulting in the malfunction of body physiology and ultimately leading to lifestyle-related diseases, including hypertension. By analyzing completely arrhythmic Cry1/Cry2 double-knockout (Cry-null) mice, we found salt-sensitive hypertension accompanied by hyperaldosteronism. On the basis of a DNA microarray analysis of the adrenal gland and subsequent biochemical analyses, we discovered that Hsd3b6/HSD3B1, a subtype of 3β-HSD, is markedly overexpressed in aldosterone-producing cells in the Cry-null adrenal cortex. In addition, we found that Hsd3b6/HSD3B1, which converts pregnenolone to progesterone, is a clock-controlled gene and might also be a key enzyme for the regulation of aldosterone biosynthesis, in addition to the previously established CYP11B2, which synthesizes aldosterone from deoxycorticosterone. Importantly, angiotensin II induces HSD3B1 via the transcription factor NGFIB in human adrenocortical H295R cells, similarly to CYP11B2. As HSD3B1 levels are abnormally high in the adrenal aldosterone-producing cells of idiopathic hyperaldosteronism (IHA), the temporal component of this system in the pathophysiology of IHA is a promising area for future research.
Collapse
Affiliation(s)
- Hitoshi Okamura
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Masao Doi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Kaoru Goto
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Rika Kojima
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan
| |
Collapse
|
18
|
The angiotensin II type 1 receptor-neprilysin inhibitor LCZ696 blocked aldosterone synthesis in a human adrenocortical cell line. Hypertens Res 2016; 39:758-763. [PMID: 27334058 DOI: 10.1038/hr.2016.72] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/06/2016] [Accepted: 04/11/2016] [Indexed: 12/11/2022]
Abstract
A recent clinical study indicated that an angiotensin II (Ang II) type 1 (AT1) receptor-neprilysin inhibitor (ARNi) designated LCZ696 (sacubitril/valsartan, as combined sodium complex) was superior to enalapril at reducing the risks of death and hospitalization due to heart failure. Therefore, we investigated the possible mechanisms of the beneficial effect of LCZ696, in which the inhibition of neprilysin enhances atrial natriuretic peptide (NP) or brain NP (ANP or BNP)-evoked signals that can block Ang II/AT1 receptor-induced aldosterone (Ald) synthesis in human adrenocortical cells. The binding affinity of valsartan+LBQ657 (active moiety of sacubitril) to the AT1 receptor was greater than that of valsartan alone in an AT1 receptor-expressing human embryonic kidney cell-based assay. There was no difference in the dissociation from the AT1 receptor between valsartan+LBQ657 and valsartan alone. In Ang II-sensitized human adrenocortical cells, ANP or BNP alone, but not LBQ657 or valsartan alone, significantly decreased Ald synthesis. The level of suppression of Ald synthesis by ANP or BNP with LBQ657 was greater than that by ANP or BNP without LBQ657. The suppression of ANP was blocked by inhibitors of regulator of G-protein signaling proteins and cyclic GMP-dependent protein kinase. The inhibition of neprilysin did not change the mRNA levels of the AT1 receptor, ANP receptor A, regulator of G-protein signaling protein, renin or 3β-hydroxysteroid dehydrogenases. In conclusion, the inhibition of neprilysin by LBQ657 enhances the NP-evoked signals that can block Ang II/AT1 receptor-induced Ald synthesis in human adrenocortical cells.
Collapse
|
19
|
Nakamura Y, Yamazaki Y, Konosu-Fukaya S, Ise K, Satoh F, Sasano H. Aldosterone biosynthesis in the human adrenal cortex and associated disorders. J Steroid Biochem Mol Biol 2015; 153:57-62. [PMID: 26051166 DOI: 10.1016/j.jsbmb.2015.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/15/2015] [Accepted: 05/16/2015] [Indexed: 10/23/2022]
Abstract
Aldosterone is one of the mineralocorticoids synthesized and secreted by the adrenal glands, and it plays pivotal roles in regulating extracellular fluid volume and blood pressure. Autonomous excessive aldosterone secretion resulting from adrenocortical diseases is known as primary aldosteronism, and it constitutes one of the most frequent causes of secondary hypertension. Therefore, it is important to understand the molecular mechanisms of aldosterone synthesis in both normal and pathological adrenal tissues. Various factors have been suggested to be involved in regulation of aldosterone biosynthesis, and several adrenocortical cell lines have been developed for use as in vitro models of adrenal aldosterone-producing cells, for analysis of the underlying molecular mechanisms. In this review, we summarize the available reports on the regulation of aldosterone biosynthesis in the normal adrenal cortex, in associated disorders, and in in vitro models.
Collapse
Affiliation(s)
- Yasuhiro Nakamura
- Department of Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Yuto Yamazaki
- Department of Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Sachiko Konosu-Fukaya
- Department of Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Kazue Ise
- Department of Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Fumitoshi Satoh
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| |
Collapse
|
20
|
Konosu-Fukaya S, Nakamura Y, Satoh F, Felizola SJA, Maekawa T, Ono Y, Morimoto R, Ise K, Takeda KI, Katsu K, Fujishima F, Kasajima A, Watanabe M, Arai Y, Gomez-Sanchez EP, Gomez-Sanchez CE, Doi M, Okamura H, Sasano H. 3β-Hydroxysteroid dehydrogenase isoforms in human aldosterone-producing adenoma. Mol Cell Endocrinol 2015; 408:205-12. [PMID: 25458695 PMCID: PMC4821076 DOI: 10.1016/j.mce.2014.10.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/29/2014] [Accepted: 10/12/2014] [Indexed: 11/17/2022]
Abstract
It has become important to evaluate the possible involvement of 3β-hydroxysteroid dehydrogenase type 1 (HSD3B1) and 2 (HSD3B2) isoforms in aldosterone-producing adenoma (APA). In this study, we studied 67 and 100 APA cases using real-time quantitative PCR (qPCR) and immunohistochemistry, respectively. Results of qPCR analysis demonstrated that HSD3B2 mRNA was significantly more abundant than HSD3B1 mRNA (P < 0.0001), but only HSD3B1 mRNA significantly correlated with CYP11B2 (aldosterone synthase) mRNA (P <0.0001) and plasma aldosterone concentration (PAC) of the patients (P <0.0001). Results of immunohistochemistry subsequently revealed that HSD3B2 immunoreactivity was detected in the great majority of APA but a significant correlation was also detected between HSD3B1 and CYP11B2 (P <0.0001). In KCNJ5 mutated APA, CYP11B2 mRNA (P <0.0001) and HSD3B1 mRNA (P = 0.011) were significantly higher than those of wild type APA. These results suggest that HSD3B1 is involved in aldosterone production, despite its lower levels of expression compared with HSD3B2, and also possibly associated with KCNJ5 mutation in APA.
Collapse
Affiliation(s)
- Sachiko Konosu-Fukaya
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiro Nakamura
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Fumitoshi Satoh
- Division of Nephrology, Endocrinology and Vascular Medicine, Department of Medicine, Tohoku University Hospital, Sendai, Japan
| | - Saulo J A Felizola
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takashi Maekawa
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshikiyo Ono
- Division of Nephrology, Endocrinology and Vascular Medicine, Department of Medicine, Tohoku University Hospital, Sendai, Japan
| | - Ryo Morimoto
- Division of Nephrology, Endocrinology and Vascular Medicine, Department of Medicine, Tohoku University Hospital, Sendai, Japan
| | - Kazue Ise
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | - Koshin Katsu
- Tohoku University School of Medicine, Sendai, Japan
| | - Fumiyoshi Fujishima
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Atsuko Kasajima
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika Watanabe
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoichi Arai
- Department of Urology, Tohoku University School of Medicine, Sendai, Japan
| | - Elise P Gomez-Sanchez
- Endocrine Section, G.V. (Sonny) Montgomery VA Medical Center, MS, USA; Endocrinology, University of Mississippi Medical Center, Jackson, MS, USA; Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Celso E Gomez-Sanchez
- Endocrine Section, G.V. (Sonny) Montgomery VA Medical Center, MS, USA; Endocrinology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Masao Doi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Hitoshi Okamura
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
21
|
Yarimizu D, Doi M, Ota T, Okamura H. Stimulus-selective induction of the orphan nuclear receptor NGFIB underlies different influences of angiotensin II and potassium on the human adrenal gland zona glomerulosa-specific 3β-HSD isoform gene expression in adrenocortical H295R cells. Endocr J 2015; 62:765-76. [PMID: 26096451 DOI: 10.1507/endocrj.ej15-0211] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In the adrenal, the type I 3β-hydroxysteroid dehydrogenase (HSD3B1) is expressed exclusively in the zona glomerulosa (ZG), where aldosterone is produced. Angiotensin II (AngII) and potassium (K(+)) are the major physiological regulators of aldosterone synthesis. However, their respective roles in regulation of aldosterone synthesis are not fully defined, particularly in terms of transcriptional regulation of steroidogenic enzyme genes. We previously showed that AngII can stimulate expression of HSD3B1. But, K(+) responsiveness of this gene has remained unexplored. Here, we report that K(+) stimulation lacks the ability to induce HSD3B1 expression in human adrenocortical H295R cells. Both AngII and K(+) were able to enhance transcription of the aldosterone synthase gene (CYP11B2). Promoter analysis revealed that although both AngII and K(+) activate transcription from the Ca(2+)/cAMP-responsive element (CRE) located in the CYP11B2 promoter, the orphan nuclear receptor NGFIB-responsive element (NBRE) located in the HSD3B1 promoter fails to respond to K(+), being only able to enhance transcription after AngII treatment. We found that induction of de novo protein synthesis of NGFIB occurs only after AngII treatment. This sharply contrasts with the phosphorylation that occurs in response to both AngII and K(+) on the CREB/ATF family transcription factor ATF2. Chromatin immunoprecipitation assay confirmed that the NGFIB protein occupies the HSD3B1 promoter only after AngII, while ATF2 binds to the CYP11B2 promoter in response to both AngII and K(+). These data provide evidence that downstream signals from AngII and K(+) can be uncoupled in the regulation of HSD3B1 in the human adrenocortical H295R cells.
Collapse
Affiliation(s)
- Daisuke Yarimizu
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8051, Japan
| | | | | | | |
Collapse
|