1
|
Nahalka J. 1-L Transcription in Prion Diseases. Int J Mol Sci 2024; 25:9961. [PMID: 39337449 PMCID: PMC11431846 DOI: 10.3390/ijms25189961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/17/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Understanding the pathogenesis and mechanisms of prion diseases can significantly expand our knowledge in the field of neurodegenerative diseases. Prion biology is increasingly recognized as being relevant to the pathophysiology of Alzheimer's disease and Parkinson's disease, both of which affect millions of people each year. This bioinformatics study used a theoretical protein-RNA recognition code (1-L transcription) to reveal the post-transcriptional regulation of the prion protein (PrPC). The principle for this method is directly elucidated on PrPC, in which an octa-repeat can be 1-L transcribed into a GGA triplet repeat RNA aptamer known to reduce the misfolding of normal PrPC into abnormal PrPSc. The identified genes/proteins are associated with mitochondria, cancer, COVID-19 and ER-stress, and approximately half are directly or indirectly associated with prion diseases. For example, the octa-repeat supports CD44, and regions of the brain with astrocytic prion accumulation also display high levels of CD44.
Collapse
Affiliation(s)
- Jozef Nahalka
- Centre for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Dubravska Cesta 9, SK-84538 Bratislava, Slovakia
- Centre of Excellence for White-Green Biotechnology, Slovak Academy of Sciences, Trieda Andreja Hlinku 2, SK-94976 Nitra, Slovakia
| |
Collapse
|
2
|
Nishisaka H, Tomohiro T, Fukuzumi K, Fukao A, Funakami Y, Fujiwara T. Deciphering the Akt1-HuD interaction in HuD-mediated neuronal differentiation. Biochimie 2024; 221:20-26. [PMID: 38244852 DOI: 10.1016/j.biochi.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/22/2024]
Abstract
The RNA-binding protein HuD/ELAVL4 is essential for neuronal development and synaptic plasticity by governing various post-transcriptional processes of target mRNAs, including stability, translation, and localization. We previously showed that the linker region and poly(A)-binding domain of HuD play a pivotal role in promoting translation and inducing neurite outgrowth. In addition, we found that HuD interacts exclusively with the active form of Akt1, through the linker region. Although this interaction is essential for neurite outgrowth, HuD is not a substrate for Akt1, raising questions about the dynamics between HuD-mediated translational stimulation and its association with active Akt1. Here, we demonstrate that active Akt1 interacts with the cap-binding complex via HuD. We identify key amino acids in linker region of HuD responsible for Akt1 interaction, leading to the generation of two point-mutated HuD variants: one that is incapable of binding to Akt1 and another that can interact with Akt1 regardless of its phosphorylation status. In vitro translation assays using these mutants reveal that HuD-mediated translation stimulation is independent of its binding to Akt1. In addition, it is evident that the interaction between HuD and active Akt1 is essential for HuD-induced neurite outgrowth, whereas a HuD mutant capable of binding to any form of Akt1 leads to aberrant neurite development. Collectively, our results revisit the understanding of the HuD-Akt1 interaction in translation and suggest that this interaction contributes to HuD-mediated neurite outgrowth via a unique molecular mechanism distinct from translation regulation.
Collapse
Affiliation(s)
| | - Takumi Tomohiro
- Faculty of Pharmacy, Kindai University, Higashi-Osaka, Japan
| | - Kako Fukuzumi
- Faculty of Pharmacy, Kindai University, Higashi-Osaka, Japan
| | - Akira Fukao
- Faculty of Pharmacy, Kindai University, Higashi-Osaka, Japan
| | | | | |
Collapse
|
3
|
Magg V, Manetto A, Kopp K, Wu CC, Naghizadeh M, Lindner D, Eke L, Welsch J, Kallenberger SM, Schott J, Haucke V, Locker N, Stoecklin G, Ruggieri A. Turnover of PPP1R15A mRNA encoding GADD34 controls responsiveness and adaptation to cellular stress. Cell Rep 2024; 43:114069. [PMID: 38602876 DOI: 10.1016/j.celrep.2024.114069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 01/25/2024] [Accepted: 03/21/2024] [Indexed: 04/13/2024] Open
Abstract
The integrated stress response (ISR) is a key cellular signaling pathway activated by environmental alterations that represses protein synthesis to restore homeostasis. To prevent sustained damage, the ISR is counteracted by the upregulation of growth arrest and DNA damage-inducible 34 (GADD34), a stress-induced regulatory subunit of protein phosphatase 1 that mediates translation reactivation and stress recovery. Here, we uncover a novel ISR regulatory mechanism that post-transcriptionally controls the stability of PPP1R15A mRNA encoding GADD34. We establish that the 3' untranslated region of PPP1R15A mRNA contains an active AU-rich element (ARE) recognized by proteins of the ZFP36 family, promoting its rapid decay under normal conditions and stabilization for efficient expression of GADD34 in response to stress. We identify the tight temporal control of PPP1R15A mRNA turnover as a component of the transient ISR memory, which sets the threshold for cellular responsiveness and mediates adaptation to repeated stress conditions.
Collapse
Affiliation(s)
- Vera Magg
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, 69120 Heidelberg, Germany
| | - Alessandro Manetto
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, 69120 Heidelberg, Germany
| | - Katja Kopp
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, 69120 Heidelberg, Germany
| | - Chia Ching Wu
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, 69120 Heidelberg, Germany
| | - Mohsen Naghizadeh
- Heidelberg University, Medical Faculty Mannheim, Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), 68167 Mannheim, Germany
| | - Doris Lindner
- Heidelberg University, Medical Faculty Mannheim, Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), 68167 Mannheim, Germany
| | - Lucy Eke
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Julia Welsch
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, 69120 Heidelberg, Germany
| | - Stefan M Kallenberger
- Digital Health Center, Berlin Institute of Health (BIH) and Charité, 10178 Berlin, Germany; Medical Oncology, National Center for Tumor Diseases, Heidelberg University, 69120 Heidelberg, Germany
| | - Johanna Schott
- Heidelberg University, Medical Faculty Mannheim, Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), 68167 Mannheim, Germany
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany; Freie Universität Berlin, Faculty of Biology, Chemistry, and Pharmacy, 14195 Berlin, Germany
| | - Nicolas Locker
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, UK; The Pirbright Institute, GU24 0NF Pirbright, UK
| | - Georg Stoecklin
- Heidelberg University, Medical Faculty Mannheim, Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), 68167 Mannheim, Germany; Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany.
| | - Alessia Ruggieri
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, 69120 Heidelberg, Germany.
| |
Collapse
|
4
|
Baccianti F, Masson C, Delecluse S, Li Z, Poirey R, Delecluse HJ. Epstein-Barr virus infectious particles initiate B cell transformation and modulate cytokine response. mBio 2023; 14:e0178423. [PMID: 37830871 PMCID: PMC10653912 DOI: 10.1128/mbio.01784-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/14/2023] [Indexed: 10/14/2023] Open
Abstract
IMPORTANCE The Epstein-Barr virus efficiently infects and transforms B lymphocytes. During this process, infectious viral particles transport the viral genome to the nucleus of target cells. We show here that these complex viral structures serve additional crucial roles by activating transcription of the transforming genes encoded by the virus. We show that components of the infectious particle sequentially activate proinflammatory B lymphocyte signaling pathways that, in turn, activate viral gene expression but also cause cytokine release. However, virus infection activates expression of ZFP36L1, an RNA-binding stress protein that limits the length and the intensity of the cytokine response. Thus, the infectious particles can activate viral gene expression and initiate cellular transformation at the price of a limited immune response.
Collapse
Affiliation(s)
- Francesco Baccianti
- Pathogenesis of Virus Associated Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Unit U1074, INSERM, Heidelberg, Germany
| | - Charlène Masson
- Pathogenesis of Virus Associated Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Unit U1074, INSERM, Heidelberg, Germany
| | - Susanne Delecluse
- Pathogenesis of Virus Associated Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Unit U1074, INSERM, Heidelberg, Germany
- Nierenzentrum Heidelberg e.V., Heidelberg, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), Braunschweig, Germany
| | - Zhe Li
- Pathogenesis of Virus Associated Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Unit U1074, INSERM, Heidelberg, Germany
| | - Remy Poirey
- Pathogenesis of Virus Associated Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Unit U1074, INSERM, Heidelberg, Germany
| | - Henri-Jacques Delecluse
- Pathogenesis of Virus Associated Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Unit U1074, INSERM, Heidelberg, Germany
| |
Collapse
|
5
|
Segal D, Maier S, Mastromarco GJ, Qian WW, Nabeel-Shah S, Lee H, Moore G, Lacoste J, Larsen B, Lin ZY, Selvabaskaran A, Liu K, Smibert C, Zhang Z, Greenblatt J, Peng J, Lee HO, Gingras AC, Taipale M. A central chaperone-like role for 14-3-3 proteins in human cells. Mol Cell 2023; 83:974-993.e15. [PMID: 36931259 DOI: 10.1016/j.molcel.2023.02.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 11/30/2022] [Accepted: 02/15/2023] [Indexed: 03/18/2023]
Abstract
14-3-3 proteins are highly conserved regulatory proteins that interact with hundreds of structurally diverse clients and act as central hubs of signaling networks. However, how 14-3-3 paralogs differ in specificity and how they regulate client protein function are not known for most clients. Here, we map the interactomes of all human 14-3-3 paralogs and systematically characterize the effect of disrupting these interactions on client localization. The loss of 14-3-3 binding leads to the coalescence of a large fraction of clients into discrete foci in a client-specific manner, suggesting a central chaperone-like function for 14-3-3 proteins. Congruently, the engraftment of 14-3-3 binding motifs to nonclients can suppress their aggregation or phase separation. Finally, we show that 14-3-3s negatively regulate the localization of the RNA-binding protein SAMD4A to cytoplasmic granules and inhibit its activity as a translational repressor. Our work suggests that 14-3-3s have a more prominent role as chaperone-like molecules than previously thought.
Collapse
Affiliation(s)
- Dmitri Segal
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Stefan Maier
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | | | - Wesley Wei Qian
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Syed Nabeel-Shah
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Hyunmin Lee
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Computer Science, University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Gaelen Moore
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jessica Lacoste
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Brett Larsen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Zhen-Yuan Lin
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Abeeshan Selvabaskaran
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Karen Liu
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Craig Smibert
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Zhaolei Zhang
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Computer Science, University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Jack Greenblatt
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Jian Peng
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Hyun O Lee
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada.
| | - Mikko Taipale
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada.
| |
Collapse
|
6
|
Regulation of low-density lipoprotein receptor expression in triple negative breast cancer by EGFR-MAPK signaling. Sci Rep 2021; 11:17927. [PMID: 34504181 PMCID: PMC8429745 DOI: 10.1038/s41598-021-97327-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 08/24/2021] [Indexed: 11/15/2022] Open
Abstract
Expression of the low-density lipoprotein receptor (LDLR) has been shown to play a critical role in hypercholesterolemia-associated breast cancer growth and is associated with shorter recurrence-free survival in human breast cancer studies. We sought to identify how circulating LDL cholesterol and tumor LDLR might accelerate oncogenic processes by determining whether increased LDLR expression and cholesterol uptake are associated with the activation of the epidermal growth factor receptor (EGFR) signaling pathway in triple negative breast cancer (TNBC) cell lines. EGF stimulation of MDA-MB-468 (MDA468) cells activated p44/42MAPK (MAPK), increased expression of LDLR, and fluorescent LDL cholesterol uptake. However, stimulation of MDA-MB-231 (MDA231) cells with EGF did not lead to increased expression of LDLR despite inducing phosphorylation of EGFR. Inhibition of MAPK using UO126 in MDA231 cells reduced LDLR expression, and in MDA468 cells, UO126 impaired the LDLR increase in response to EGF. MDA468 cells exposed to the transcription inhibitor, Actinomycin, prior to treatment with EGF showed reduced degradation of LDLR mRNA compared to vehicle-treated cells. Our results suggest that the EGF-associated increase in LDLR protein expression is cell line-specific. The common pathway regulating LDLR expression was MAPK in both TNBC cell lines.
Collapse
|
7
|
Dolicka D, Foti M, Sobolewski C. The Emerging Role of Stress Granules in Hepatocellular Carcinoma. Int J Mol Sci 2021; 22:ijms22179428. [PMID: 34502337 PMCID: PMC8430939 DOI: 10.3390/ijms22179428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022] Open
Abstract
Stress granules (SGs) are small membrane-free cytosolic liquid-phase ordered entities in which mRNAs are protected and translationally silenced during cellular adaptation to harmful conditions (e.g., hypoxia, oxidative stress). This function is achieved by structural and functional SG components such as scaffold proteins and RNA-binding proteins controlling the fate of mRNAs. Increasing evidence indicates that the capacity of cells to assemble/disassemble functional SGs may significantly impact the onset and the development of metabolic and inflammatory diseases, as well as cancers. In the liver, the abnormal expression of SG components and formation of SG occur with chronic liver diseases, hepatocellular carcinoma (HCC), and selective hepatic resistance to anti-cancer drugs. Although, the role of SG in these diseases is still debated, the modulation of SG assembly/disassembly or targeting the expression/activity of specific SG components may represent appealing strategies to treat hepatic disorders and potentially cancer. In this review, we discuss our current knowledge about pathophysiological functions of SGs in HCC as well as available molecular tools and drugs capable of modulating SG formation and functions for therapeutic purposes.
Collapse
|
8
|
Translation Initiation Regulated by RNA-Binding Protein in Mammals: The Modulation of Translation Initiation Complex by Trans-Acting Factors. Cells 2021; 10:cells10071711. [PMID: 34359885 PMCID: PMC8306974 DOI: 10.3390/cells10071711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/03/2021] [Accepted: 07/04/2021] [Indexed: 12/15/2022] Open
Abstract
Protein synthesis is tightly regulated at each step of translation. In particular, the formation of the basic cap-binding complex, eukaryotic initiation factor 4F (eIF4F) complex, on the 5' cap structure of mRNA is positioned as the rate-limiting step, and various cis-elements on mRNA contribute to fine-tune spatiotemporal protein expression. The cis-element on mRNAs is recognized and bound to the trans-acting factors, which enable the regulation of the translation rate or mRNA stability. In this review, we focus on the molecular mechanism of how the assembly of the eIF4F complex is regulated on the cap structure of mRNAs. We also summarize the fine-tuned regulation of translation initiation by various trans-acting factors through cis-elements on mRNAs.
Collapse
|
9
|
Rodríguez-Gómez G, Paredes-Villa A, Cervantes-Badillo MG, Gómez-Sonora JP, Jorge-Pérez JH, Cervantes-Roldán R, León-Del-Río A. Tristetraprolin: A cytosolic regulator of mRNA turnover moonlighting as transcriptional corepressor of gene expression. Mol Genet Metab 2021; 133:137-147. [PMID: 33795191 DOI: 10.1016/j.ymgme.2021.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 01/12/2023]
Abstract
Tristetraprolin (TTP) is a nucleocytoplasmic 326 amino acid protein whose sequence is characterized by possessing two CCCH-type zinc finger domains. In the cytoplasm TTP function is to promote the degradation of mRNAs that contain adenylate/uridylate-rich elements (AREs). Mechanistically, TTP promotes the recruitment of poly(A)-specific deadenylases and exoribonucleases. By reducing the half-life of about 10% of all the transcripts in the cell TTP has been shown to participate in multiple cell processes that include regulation of gene expression, cell proliferation, metabolic homeostasis and control of inflammation and immune responses. However, beyond its role in mRNA decay, in the cell nucleus TTP acts as a transcriptional coregulator by interacting with chromatin modifying enzymes. TTP has been shown to repress the transactivation of NF-κB and estrogen receptor suggesting the possibility that it participates in the transcriptional regulation of hundreds of genes in human cells and its possible involvement in breast cancer progression. In this review, we discuss the cytoplasmic and nuclear functions of TTP and the effect of the dysregulation of its protein levels in the development of human diseases. We suggest that TTP be classified as a moonlighting tumor supressor protein that regulates gene expression through two different mechanims; the decay of ARE-mRNAs and a transcriptional coregulatory function.
Collapse
Affiliation(s)
- Gabriel Rodríguez-Gómez
- Programa de Investigación en Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Alejandro Paredes-Villa
- Programa de Investigación en Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Mayte Guadalupe Cervantes-Badillo
- Programa de Investigación en Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Jessica Paola Gómez-Sonora
- Programa de Investigación en Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Jesús H Jorge-Pérez
- Programa de Investigación en Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Rafael Cervantes-Roldán
- Programa de Investigación en Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Alfonso León-Del-Río
- Programa de Investigación en Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
| |
Collapse
|
10
|
Matsuura Y, Noguchi A, Sakai S, Yokota N, Kawahara H. Nuclear accumulation of ZFP36L1 is cell cycle-dependent and determined by a C-terminal serine-rich cluster. J Biochem 2021; 168:477-489. [PMID: 32687160 DOI: 10.1093/jb/mvaa072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/26/2020] [Indexed: 11/14/2022] Open
Abstract
ZFP36L1 is an RNA-binding protein responsible for mRNA decay in the cytoplasm. ZFP36L1 has also been suggested as a nuclear-cytoplasmic shuttling protein because it contains a potential nuclear localization signal and a nuclear export signal. However, it remains unclear how the nuclear localization of ZFP36L1 is controlled. In this study, we provide evidence that the nuclear accumulation of ZFP36L1 protein is modulated in a cell cycle-dependent manner. ZFP36L1 protein accumulation in fractionated nuclei was particularly prominent in cells arrested at G1-/S-phase boundary, while it was downregulated in S-phase cells, and eventually disappeared in G2-phase nuclei. Moreover, forced nuclear targeting of ZFP36L1 revealed marked downregulation of this protein in S- and G2-phase cells, suggesting that ZFP36L1 can be eliminated in the nucleus. The C-terminal serine-rich cluster of ZFP36L1 is critical for the regulation of its nuclear accumulation because truncation of this probable disordered region enhanced the nuclear localization of ZFP36L1, increased its stability and abolished its cell cycle-dependent fluctuations. These findings provide the first hints to the question of how ZFP36L1 nuclear accumulation is controlled during the course of the cell cycle.
Collapse
Affiliation(s)
- Yuki Matsuura
- Laboratory of Cell Biology and Biochemistry, Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Aya Noguchi
- Laboratory of Cell Biology and Biochemistry, Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Shunsuke Sakai
- Laboratory of Cell Biology and Biochemistry, Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Naoto Yokota
- Laboratory of Cell Biology and Biochemistry, Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Hiroyuki Kawahara
- Laboratory of Cell Biology and Biochemistry, Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| |
Collapse
|
11
|
mRNA Post-Transcriptional Regulation by AU-Rich Element-Binding Proteins in Liver Inflammation and Cancer. Int J Mol Sci 2020; 21:ijms21186648. [PMID: 32932781 PMCID: PMC7554771 DOI: 10.3390/ijms21186648] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/09/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022] Open
Abstract
AU-rich element-binding proteins (AUBPs) represent important post-transcriptional regulators of gene expression. AUBPs can bind to the AU-rich elements present in the 3'-UTR of more than 8% of all mRNAs and are thereby able to control the stability and/or translation of numerous target mRNAs. The regulation of the stability and the translation of mRNA transcripts by AUBPs are highly complex processes that occur through multiple mechanisms depending on the cell type and the cellular context. While AUBPs have been shown to be involved in inflammatory processes and the development of various cancers, their important role and function in the development of chronic metabolic and inflammatory fatty liver diseases (FLDs), as well as in the progression of these disorders toward cancers such as hepatocellular carcinoma (HCC), has recently started to emerge. Alterations of either the expression or activity of AUBPs are indeed significantly associated with FLDs and HCC, and accumulating evidence indicates that several AUBPs are deeply involved in a significant number of cellular processes governing hepatic metabolic disorders, inflammation, fibrosis, and carcinogenesis. Herein, we discuss our current knowledge of the roles and functions of AUBPs in liver diseases and cancer. The relevance of AUBPs as potential biomarkers for different stages of FLD and HCC, or as therapeutic targets for these diseases, are also highlighted.
Collapse
|
12
|
RNA-Binding Proteins in Acute Leukemias. Int J Mol Sci 2020; 21:ijms21103409. [PMID: 32408494 PMCID: PMC7279408 DOI: 10.3390/ijms21103409] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/07/2020] [Accepted: 05/10/2020] [Indexed: 12/12/2022] Open
Abstract
Acute leukemias are genetic diseases caused by translocations or mutations, which dysregulate hematopoiesis towards malignant transformation. However, the molecular mode of action is highly versatile and ranges from direct transcriptional to post-transcriptional control, which includes RNA-binding proteins (RBPs) as crucial regulators of cell fate. RBPs coordinate RNA dynamics, including subcellular localization, translational efficiency and metabolism, by binding to their target messenger RNAs (mRNAs), thereby controlling the expression of the encoded proteins. In view of the growing interest in these regulators, this review summarizes recent research regarding the most influential RBPs relevant in acute leukemias in particular. The reported RBPs, either dysregulated or as components of fusion proteins, are described with respect to their functional domains, the pathways they affect, and clinical aspects associated with their dysregulation or altered functions.
Collapse
|
13
|
Otsuka H, Fukao A, Tomohiro T, Adachi S, Suzuki T, Takahashi A, Funakami Y, Natsume T, Yamamoto T, Duncan KE, Fujiwara T. ARE-binding protein ZFP36L1 interacts with CNOT1 to directly repress translation via a deadenylation-independent mechanism. Biochimie 2020; 174:49-56. [PMID: 32311426 DOI: 10.1016/j.biochi.2020.04.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 10/24/2022]
Abstract
Eukaryotic gene expression can be spatiotemporally tuned at the post-transcriptional level by cis-regulatory elements in mRNA sequences. An important example is the AU-rich element (ARE), which induces mRNA destabilization in a variety of biological contexts in mammals and can also mediate translational control. Regulation is mediated by trans-acting factors that recognize the ARE, such as Tristetraprolin (TTP) and BRF1/ZFP36L1. Although both proteins can destabilize their target mRNAs through the recruitment of the CCR4-NOT deadenylation complex, TTP also directly regulates translation. Whether ZFP36L1 can directly repress translation remains unknown. Here, we used an in vitro translation system derived from mammalian cell lines to address this key mechanistic issue in ARE regulation by ZFP36L1. Functional assays with mutant proteins reveal that ZFP36L1 can repress translation via AU-Rich elements independent of deadenylation. ZFP36L1-mediated translation repression requires interaction between ZFP36L1 and CNOT1, suggesting that it might use a repression mechanism similar to either TPP or miRISC. However, several lines of evidence suggest that the similarity ends there. Unlike, TTP, it does not efficiently interact with either 4E-HP or GIGYF2, suggesting it does not repress translation by recruiting these proteins to the mRNA cap. Moreover, ZFP36L1 could not repress ECMV-IRES driven translation and was resistant to pharmacological eIF4A inhibitor silvestrol, suggesting fundamental differences with miRISC repression via eIF4A. Collectively, our results reveal that ZFP36L1 represses translation directly and suggest that it does so via a novel mechanism distinct from other translational regulators that interact with the CCR4-NOT deadenylase complex.
Collapse
Affiliation(s)
- Hiroshi Otsuka
- Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan
| | | | - Takumi Tomohiro
- Laboratory of RNA Function, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shungo Adachi
- Molecular Profiling Research Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Toru Suzuki
- Laboratory for Immunogenetics, Center for Integrative Medical Sciences, RIKEN, 1-7-22, Suehiro-cho, Yokohama, Japan
| | - Akinori Takahashi
- Cell Signal Unit, Okinawa Institute of Science and Technology, Onna-son, Kunigami-gun, Okinawa, Japan
| | | | - Toru Natsume
- Molecular Profiling Research Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Tadashi Yamamoto
- Laboratory for Immunogenetics, Center for Integrative Medical Sciences, RIKEN, 1-7-22, Suehiro-cho, Yokohama, Japan; Cell Signal Unit, Okinawa Institute of Science and Technology, Onna-son, Kunigami-gun, Okinawa, Japan
| | - Kent E Duncan
- Neuronal Translational Control Group, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | | |
Collapse
|
14
|
Sarwade RD, Khalique A, Kulkarni SD, Pandey PR, Gaikwad N, Seshadri V. Translation of insulin granule proteins are regulated by PDI and PABP. Biochem Biophys Res Commun 2020; 526:618-625. [PMID: 32248978 DOI: 10.1016/j.bbrc.2020.03.106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/11/2020] [Accepted: 03/18/2020] [Indexed: 01/21/2023]
Abstract
Glucose mediated insulin biosynthesis is tightly regulated and shared between insulin granule proteins such as its processing enzymes, prohormone convertases, PC1/3 and PC2. However, the molecular players involved in the co-ordinated translation remain elusive. The trans-acting factors like PABP (Poly A Binding Protein) and PDI (Protein Disulphide Isomerize) binds to a conserved sequence in the 5'UTR of insulin mRNA and regulates its translation. Here, we demonstrate that 5'UTR of PC1/3 and PC2 also associate with PDI and PABP. We show that a' and RRM 3-4 domains of PDI and PABP respectively, are necessary for RNA binding activity to the 5'UTRs of insulin and its processing enzymes.
Collapse
Affiliation(s)
- Rucha D Sarwade
- National Centre of Cell Science, Ganeshkhind, Pune, 411007, India; Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| | - Abdul Khalique
- National Centre of Cell Science, Ganeshkhind, Pune, 411007, India; Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| | - Shardul D Kulkarni
- National Centre of Cell Science, Ganeshkhind, Pune, 411007, India; Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| | - Poonam R Pandey
- National Centre of Cell Science, Ganeshkhind, Pune, 411007, India; Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| | - Naina Gaikwad
- National Centre of Cell Science, Ganeshkhind, Pune, 411007, India; Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| | | |
Collapse
|
15
|
Salerno F, Turner M, Wolkers MC. Dynamic Post-Transcriptional Events Governing CD8+ T Cell Homeostasis and Effector Function. Trends Immunol 2020; 41:240-254. [DOI: 10.1016/j.it.2020.01.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 12/31/2022]
|
16
|
Loh XY, Sun QY, Ding LW, Mayakonda A, Venkatachalam N, Yeo MS, Silva TC, Xiao JF, Doan NB, Said JW, Ran XB, Zhou SQ, Dakle P, Shyamsunder P, Koh APF, Huang RYJ, Berman BP, Tan SY, Yang H, Lin DC, Koeffler HP. RNA-Binding Protein ZFP36L1 Suppresses Hypoxia and Cell-Cycle Signaling. Cancer Res 2019; 80:219-233. [PMID: 31551365 DOI: 10.1158/0008-5472.can-18-2796] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 06/28/2019] [Accepted: 09/16/2019] [Indexed: 11/16/2022]
Abstract
ZFP36L1 is a tandem zinc-finger RNA-binding protein that recognizes conserved adenylate-uridylate-rich elements (ARE) located in 3'untranslated regions (UTR) to mediate mRNA decay. We hypothesized that ZFP36L1 is a negative regulator of a posttranscriptional hub involved in mRNA half-life regulation of cancer-related transcripts. Analysis of in silico data revealed that ZFP36L1 was significantly mutated, epigenetically silenced, and downregulated in a variety of cancers. Forced expression of ZFP36L1 in cancer cells markedly reduced cell proliferation in vitro and in vivo, whereas silencing of ZFP36L1 enhanced tumor cell growth. To identify direct downstream targets of ZFP36L1, systematic screening using RNA pull-down of wild-type and mutant ZFP36L1 as well as whole transcriptome sequencing of bladder cancer cells {plus minus} tet-on ZFP36L1 was performed. A network of 1,410 genes was identified as potential direct targets of ZFP36L1. These targets included a number of key oncogenic transcripts such as HIF1A, CCND1, and E2F1. ZFP36L1 specifically bound to the 3'UTRs of these targets for mRNA degradation, thus suppressing their expression. Dual luciferase reporter assays and RNA electrophoretic mobility shift assays showed that wild-type, but not zinc-finger mutant ZFP36L1, bound to HIF1A 3'UTR and mediated HIF1A mRNA degradation, leading to reduced expression of HIF1A and its downstream targets. Collectively, our findings reveal an indispensable role of ZFP36L1 as a posttranscriptional safeguard against aberrant hypoxic signaling and abnormal cell-cycle progression. SIGNIFICANCE: RNA-binding protein ZFP36L1 functions as a tumor suppressor by regulating the mRNA stability of a number of mRNAs involved in hypoxia and cell-cycle signaling.
Collapse
Affiliation(s)
- Xin-Yi Loh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Qiao-Yang Sun
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Ling-Wen Ding
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.
| | - Anand Mayakonda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | | | - Mei-Shi Yeo
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Tiago C Silva
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Bioinformatics and Functional Genomics, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Jin-Fen Xiao
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Ngan B Doan
- Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center, Los Angeles, California
| | - Jonathan W Said
- Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center, Los Angeles, California
| | - Xue-Bin Ran
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Si-Qin Zhou
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Pushkar Dakle
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Pavithra Shyamsunder
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Angele Pei-Fern Koh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Ruby Yun-Ju Huang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Benjamin P Berman
- Center for Bioinformatics and Functional Genomics, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California.,Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Soo-Yong Tan
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - De-Chen Lin
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - H Phillip Koeffler
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California.,National University Cancer Institute of Singapore, National University Hospital, Singapore
| |
Collapse
|
17
|
Ryu I, Kim YK. AU-rich element-mediated mRNA decay via the butyrate response factor 1 controls cellular levels of polyadenylated replication-dependent histone mRNAs. J Biol Chem 2019; 294:7558-7565. [PMID: 30962286 DOI: 10.1074/jbc.ac118.006766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 04/03/2019] [Indexed: 11/06/2022] Open
Abstract
Replication-dependent histone (RDH) mRNAs have a nonpolyadenylated 3'-UTR that ends in a highly conserved stem-loop structure. Nonetheless, a subset of RDH mRNAs has a poly(A) tail under physiological conditions. The biological meaning of poly(A)-containing (+) RDH mRNAs and details of their biosynthesis remain elusive. Here, using HeLa cells and Western blotting, qRT-PCR, and biotinylated RNA pulldown assays, we show that poly(A)+ RDH mRNAs are post-transcriptionally regulated via adenylate- and uridylate-rich element-mediated mRNA decay (AMD). We observed that the rapid degradation of poly(A)+ RDH mRNA is driven by butyrate response factor 1 (BRF1; also known as ZFP36 ring finger protein-like 1) under normal conditions. Conversely, cellular stresses such as UV C irradiation promoted BRF1 degradation, increased the association of Hu antigen R (HuR; also known as ELAV-like RNA-binding protein 1) with the 3'-UTR of poly(A)+ RDH mRNAs, and eventually stabilized the poly(A)+ RDH mRNAs. Collectively, our results provide evidence that AMD surveils poly(A)+ RDH mRNAs via BRF1-mediated degradation under physiological conditions.
Collapse
Affiliation(s)
- Incheol Ryu
- From the Creative Research Initiatives Center for Molecular Biology of Translation and Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Yoon Ki Kim
- From the Creative Research Initiatives Center for Molecular Biology of Translation and Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
18
|
Otsuka H, Fukao A, Funakami Y, Duncan KE, Fujiwara T. Emerging Evidence of Translational Control by AU-Rich Element-Binding Proteins. Front Genet 2019; 10:332. [PMID: 31118942 PMCID: PMC6507484 DOI: 10.3389/fgene.2019.00332] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/28/2019] [Indexed: 12/27/2022] Open
Abstract
RNA-binding proteins (RBPs) are key regulators of posttranscriptional gene expression and control many important biological processes including cell proliferation, development, and differentiation. RBPs bind specific motifs in their target mRNAs and regulate mRNA fate at many steps. The AU-rich element (ARE) is one of the major cis-regulatory elements in the 3′ untranslated region (UTR) of labile mRNAs. Many of these encode factors requiring very tight regulation, such as inflammatory cytokines and growth factors. Disruption in the control of these factors’ expression can cause autoimmune diseases, developmental disorders, or cancers. Therefore, these mRNAs are strictly regulated by various RBPs, particularly ARE-binding proteins (ARE-BPs). To regulate mRNA metabolism, ARE-BPs bind target mRNAs and affect some factors on mRNAs directly, or recruit effectors, such as mRNA decay machinery and protein kinases to target mRNAs. Importantly, some ARE-BPs have stabilizing roles, whereas others are destabilizing, and ARE-BPs appear to compete with each other when binding to target mRNAs. The function of specific ARE-BPs is modulated by posttranslational modifications (PTMs) including methylation and phosphorylation, thereby providing a means for cellular signaling pathways to regulate stability of specific target mRNAs. In this review, we summarize recent studies which have revealed detailed molecular mechanisms of ARE-BP-mediated regulation of gene expression and also report on the importance of ARE-BP function in specific physiological contexts and how this relates to disease. We also propose an mRNP regulatory network based on competition between stabilizing ARE-BPs and destabilizing ARE-BPs.
Collapse
Affiliation(s)
- Hiroshi Otsuka
- Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan
| | | | | | - Kent E Duncan
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | |
Collapse
|
19
|
Huang C, Zhang Y, Zhong S. Alcohol Intake and Abnormal Expression of Brf1 in Breast Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4818106. [PMID: 31781337 PMCID: PMC6874981 DOI: 10.1155/2019/4818106] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 09/28/2019] [Indexed: 02/07/2023]
Abstract
Breast cancer is the most common malignant disease of females. Overall, one woman in every nine will get breast cancer at some time in her life. Epidemiological studies have indicated that alcohol consumption has most consistently been associated with breast cancer risk. However, the mechanism of alcohol-associated breast cancer remains to be addressed. Little is known about the effects of alcohol consumption on Brf1 (TFIIIB-related factor 1) expression and RNA Pol III gene (RNA polymerase III-dependent gene) transcription, which are responsible for protein synthesis and tightly linked to cell proliferation, cell transformation, and tumor development. Emerging evidences have indicated that alcohol induces deregulation of Brf1 and Pol III genes to cause the alterations of cell phenotypes and tumor formation. In this paper, we summarize the progresses regarding alcohol-caused increase in the expression of Brf1 and Pol III genes and analysis of its molecular mechanism of breast cancer. As the earlier and accurate diagnosis approach of breast cancer is not available yet, exploring the molecular mechanism and identifying the biomarker of alcohol-associated breast cancer are especially important. Recent studies have demonstrated that Brf1 is overexpressed in most ER+ (estrogen receptor positive) cases of breast cancer and the change in cellular levels of Brf1 reflects the therapeutic efficacy and prognosis of this disease. It suggests that Brf1 may be a potential diagnosis biomarker and a therapeutic target of alcohol-associated breast cancer.
Collapse
Affiliation(s)
- Chenghao Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, China
| | - Yanmei Zhang
- Department of Pharmacology of Shantou University Medical College, China
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shuping Zhong
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
20
|
McCarthy PC, Phair IR, Greger C, Pardali K, McGuire VA, Clark AR, Gaestel M, Arthur JSC. IL-33 regulates cytokine production and neutrophil recruitment via the p38 MAPK-activated kinases MK2/3. Immunol Cell Biol 2018; 97:54-71. [PMID: 30171775 PMCID: PMC6378613 DOI: 10.1111/imcb.12200] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/28/2018] [Accepted: 08/28/2018] [Indexed: 12/11/2022]
Abstract
IL-33 is an IL-1-related cytokine that can act as an alarmin when released from necrotic cells. Once released, it can target various immune cells including mast cells, innate lymphoid cells and T cells to elicit a Th2-like immune response. We show here that bone marrow-derived mast cells produce IL-13, IL-6, TNF, GM-CSF, CCL3 and CCL4 in response to IL-33 stimulation. Inhibition of the p38 MAPK, or inhibition or knockout of its downstream kinases MK2 and MK3, blocked the production of these cytokines in response to IL-33. The mechanism downstream of MK2/3 was cytokine specific; however, MK2 and MK3 were able to regulate TNF and GM-CSF mRNA stability. Previous studies in macrophages have shown that MK2 regulates mRNA stability via phosphorylation of the RNA-binding protein TTP (Zfp36). The regulation of cytokine production in mast cells was, however, independent of TTP. MK2/3 were able to phosphorylate the TTP-related protein Brf1 (Zfp36 l1) in IL-33-stimulated mast cells, suggesting a mechanism by which MK2/3 might control mRNA stability in these cells. In line with its ability to regulate in vitro IL-33-stimulated cytokine production, double knockout of MK2 and 3 in mice prevented neutrophil recruitment following intraperitoneal injection of IL-33.
Collapse
Affiliation(s)
- Pierre C McCarthy
- Division of Cell Signalling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dow St, Dundee, DD1 5EH, UK.,MRC Protein Phosphorylation Unit, School of Life Sciences, Sir James Black Centre, University of Dundee, Dow St, Dundee, DD1 5EH, UK
| | - Iain R Phair
- Division of Cell Signalling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dow St, Dundee, DD1 5EH, UK
| | - Corinna Greger
- Division of Cell Signalling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dow St, Dundee, DD1 5EH, UK
| | - Katerina Pardali
- Respiratory, Inflammation & Autoimmunity IMED Biotech Unit, AstraZeneca, Gothenburg, Mölndal, 43183, Sweden
| | - Victoria A McGuire
- Division of Cell Signalling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dow St, Dundee, DD1 5EH, UK.,Photobiology Unit, Scottish Cutaneous Porphyria Service, Ninewells Hospital and Medical School, Dundee, DD1 9SY, UK
| | - Andrew R Clark
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Matthias Gaestel
- Division of Cell Signalling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dow St, Dundee, DD1 5EH, UK.,Institute for Cell Biochemistry, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, 30623, Germany
| | - J Simon C Arthur
- Division of Cell Signalling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dow St, Dundee, DD1 5EH, UK
| |
Collapse
|
21
|
The control of inflammation via the phosphorylation and dephosphorylation of tristetraprolin: a tale of two phosphatases. Biochem Soc Trans 2017; 44:1321-1337. [PMID: 27911715 PMCID: PMC5095909 DOI: 10.1042/bst20160166] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/25/2016] [Accepted: 07/28/2016] [Indexed: 12/14/2022]
Abstract
Twenty years ago, the first description of a tristetraprolin (TTP) knockout mouse highlighted the fundamental role of TTP in the restraint of inflammation. Since then, work from several groups has generated a detailed picture of the expression and function of TTP. It is a sequence-specific RNA-binding protein that orchestrates the deadenylation and degradation of several mRNAs encoding inflammatory mediators. It is very extensively post-translationally modified, with more than 30 phosphorylations that are supported by at least two independent lines of evidence. The phosphorylation of two particular residues, serines 52 and 178 of mouse TTP (serines 60 and 186 of the human orthologue), has profound effects on the expression, function and localisation of TTP. Here, we discuss the control of TTP biology via its phosphorylation and dephosphorylation, with a particular focus on recent advances and on questions that remain unanswered.
Collapse
|
22
|
Fukao A, Fujiwara T. The coupled and uncoupled mechanisms by which trans-acting factors regulate mRNA stability and translation. J Biochem 2017; 161:309-314. [PMID: 28039391 DOI: 10.1093/jb/mvw086] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 10/11/2016] [Indexed: 12/25/2022] Open
Abstract
In mammals, spatiotemporal control of protein synthesis plays a key role in the post-transcriptional regulation of gene expression during cell proliferation, development and differentiation and RNA-binding proteins (RBPs) and microRNAs (miRNAs) are required for this phenomenon. RBPs and miRNAs control the levels of mRNA protein products by regulating mRNA stability and translation. Recent studies have shown that RBPs and miRNAs simultaneously regulate mRNA stability and translation, and that the differential functions of RBPs and miRNAs are dependent on their interaction partners. Here, we summarize the coupled- and uncoupled mechanisms by which trans-acting factors regulate mRNA stability and translation.
Collapse
|
23
|
Galloway A, Turner M. Cell cycle RNA regulons coordinating early lymphocyte development. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 8. [PMID: 28231639 PMCID: PMC5574005 DOI: 10.1002/wrna.1419] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 01/19/2023]
Abstract
Lymphocytes undergo dynamic changes in gene expression as they develop from progenitor cells lacking antigen receptors, to mature cells that are prepared to mount immune responses. While transcription factors have established roles in lymphocyte development, they act in concert with post-transcriptional and post-translational regulators to determine the proteome. Furthermore, the post-transcriptional regulation of RNA regulons consisting of mRNAs whose protein products act cooperatively allows RNA binding proteins to exert their effects at multiple points in a pathway. Here, we review recent evidence demonstrating the importance of RNA binding proteins that control the cell cycle in lymphocyte development and discuss the implications for tumorigenesis. WIREs RNA 2017, 8:e1419. doi: 10.1002/wrna.1419 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Alison Galloway
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Martin Turner
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, UK
| |
Collapse
|
24
|
Rataj F, Planel S, Desroches-Castan A, Le Douce J, Lamribet K, Denis J, Feige JJ, Cherradi N. The cAMP pathway regulates mRNA decay through phosphorylation of the RNA-binding protein TIS11b/BRF1. Mol Biol Cell 2016; 27:3841-3854. [PMID: 27708140 PMCID: PMC5170607 DOI: 10.1091/mbc.e16-06-0379] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 02/01/2023] Open
Abstract
TIS11b belongs to the tristetraprolin family of zinc-finger proteins, which target short-lived mRNA for degradation. This study shows that the cAMP pathway up-regulates TIS11b expression and modulates its function in mRNA decay through PKA-dependent phosphorylation of two highly conserved phosphosites. TPA-inducible sequence 11b/butyrate response factor 1 (TIS11b/BRF1) belongs to the tristetraprolin (TTP) family of zinc-finger proteins, which bind to mRNAs containing AU-rich elements in their 3′-untranslated region and target them for degradation. Regulation of TTP family function through phosphorylation by p38 MAP kinase and Akt/protein kinase B signaling pathways has been extensively studied. In contrast, the role of cAMP-dependent protein kinase (PKA) in the control of TTP family activity in mRNA decay remains largely unknown. Here we show that PKA activation induces TIS11b gene expression and protein phosphorylation. Site-directed mutagenesis combined with kinase assays and specific phosphosite immunodetection identified Ser-54 (S54) and Ser-334 (S334) as PKA target amino acids in vitro and in vivo. Phosphomimetic mutation of the C-terminal S334 markedly increased TIS11b half-life and, unexpectedly, enhanced TIS11b activity on mRNA decay. Examination of protein–protein interactions between TIS11b and components of the mRNA decay machinery revealed that mimicking phosphorylation at S334 enhances TIS11b interaction with the decapping coactivator Dcp1a, while preventing phosphorylation at S334 potentiates its interaction with the Ccr4-Not deadenylase complex subunit Cnot1. Collectively our findings establish for the first time that cAMP-elicited phosphorylation of TIS11b plays a key regulatory role in its mRNA decay-promoting function.
Collapse
Affiliation(s)
- Felicitas Rataj
- Institut National de la Santé et de la Recherche Médicale, INSERM U1036, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biosciences et Biotechnologies de Grenoble, Laboratoire Biologie du Cancer et de l'Infection, and Université Grenoble Alpes, Unité Mixte de Recherche-S1036, F-38000 Grenoble, France
| | - Séverine Planel
- Institut National de la Santé et de la Recherche Médicale, INSERM U1036, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biosciences et Biotechnologies de Grenoble, Laboratoire Biologie du Cancer et de l'Infection, and Université Grenoble Alpes, Unité Mixte de Recherche-S1036, F-38000 Grenoble, France
| | - Agnès Desroches-Castan
- Institut National de la Santé et de la Recherche Médicale, INSERM U1036, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biosciences et Biotechnologies de Grenoble, Laboratoire Biologie du Cancer et de l'Infection, and Université Grenoble Alpes, Unité Mixte de Recherche-S1036, F-38000 Grenoble, France
| | - Juliette Le Douce
- Institut National de la Santé et de la Recherche Médicale, INSERM U1036, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biosciences et Biotechnologies de Grenoble, Laboratoire Biologie du Cancer et de l'Infection, and Université Grenoble Alpes, Unité Mixte de Recherche-S1036, F-38000 Grenoble, France
| | - Khadija Lamribet
- Institut National de la Santé et de la Recherche Médicale, INSERM U1036, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biosciences et Biotechnologies de Grenoble, Laboratoire Biologie du Cancer et de l'Infection, and Université Grenoble Alpes, Unité Mixte de Recherche-S1036, F-38000 Grenoble, France
| | - Josiane Denis
- Institut National de la Santé et de la Recherche Médicale, INSERM U1036, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biosciences et Biotechnologies de Grenoble, Laboratoire Biologie du Cancer et de l'Infection, and Université Grenoble Alpes, Unité Mixte de Recherche-S1036, F-38000 Grenoble, France
| | - Jean-Jacques Feige
- Institut National de la Santé et de la Recherche Médicale, INSERM U1036, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biosciences et Biotechnologies de Grenoble, Laboratoire Biologie du Cancer et de l'Infection, and Université Grenoble Alpes, Unité Mixte de Recherche-S1036, F-38000 Grenoble, France
| | - Nadia Cherradi
- Institut National de la Santé et de la Recherche Médicale, INSERM U1036, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biosciences et Biotechnologies de Grenoble, Laboratoire Biologie du Cancer et de l'Infection, and Université Grenoble Alpes, Unité Mixte de Recherche-S1036, F-38000 Grenoble, France
| |
Collapse
|
25
|
Ganguly K, Giddaluru J, August A, Khan N. Post-transcriptional Regulation of Immunological Responses through Riboclustering. Front Immunol 2016; 7:161. [PMID: 27199986 PMCID: PMC4850162 DOI: 10.3389/fimmu.2016.00161] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 04/15/2016] [Indexed: 12/22/2022] Open
Abstract
Immunological programing of immune cells varies in response to changing environmental signals. This process is facilitated by modifiers that regulate the translational fate of mRNAs encoding various immune mediators, including cytokines and chemokines, which in turn determine the rapid activation, tolerance, and plasticity of the immune system. RNA-binding proteins (RBPs) recruited by the specific sequence elements in mRNA transcripts are one such modifiers. These RBPs form RBP-RNA complexes known as "riboclusters." These riboclusters serve as RNA sorting machinery, where depending upon the composition of the ribocluster, translation, degradation, or storage of mRNA is controlled. Recent findings suggest that this regulation of mRNA homeostasis is critical for controlling the immune response. Here, we present the current knowledge of the ribocluster-mediated post-transcriptional regulation of immune mediators and highlight recent findings regarding their implications for the pathogenesis of acute or chronic inflammatory diseases.
Collapse
Affiliation(s)
- Koelina Ganguly
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad , Hyderabad , India
| | - Jeevan Giddaluru
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad , Hyderabad , India
| | - Avery August
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University , New York, NY , USA
| | - Nooruddin Khan
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad , Hyderabad , India
| |
Collapse
|
26
|
Newman R, McHugh J, Turner M. RNA binding proteins as regulators of immune cell biology. Clin Exp Immunol 2015. [PMID: 26201441 DOI: 10.1111/cei.12684] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Sequence-specific RNA binding proteins (RBP) are important regulators of the immune response. RBP modulate gene expression by regulating splicing, polyadenylation, localization, translation and decay of target mRNAs. Increasing evidence suggests that RBP play critical roles in the development, activation and function of lymphocyte populations in the immune system. This review will discuss the post-transcriptional regulation of gene expression by RBP during lymphocyte development, with particular focus on the Tristetraprolin family of RBP.
Collapse
Affiliation(s)
- R Newman
- Babraham Institute, Cambridge, UK
| | - J McHugh
- Babraham Institute, Cambridge, UK
| | - M Turner
- Babraham Institute, Cambridge, UK
| |
Collapse
|
27
|
Herranz N, Gallage S, Mellone M, Wuestefeld T, Klotz S, Hanley CJ, Raguz S, Acosta JC, Innes AJ, Banito A, Georgilis A, Montoya A, Wolter K, Dharmalingam G, Faull P, Carroll T, Martínez-Barbera JP, Cutillas P, Reisinger F, Heikenwalder M, Miller RA, Withers D, Zender L, Thomas GJ, Gil J. mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype. Nat Cell Biol 2015; 17:1205-17. [PMID: 26280535 PMCID: PMC4589897 DOI: 10.1038/ncb3225] [Citation(s) in RCA: 537] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/20/2015] [Indexed: 12/15/2022]
Abstract
Senescent cells secrete a combination of factors collectively known as the senescence-associated secretory phenotype (SASP). The SASP reinforces senescence and activates an immune surveillance response, but it can also show pro-tumorigenic properties and contribute to age-related pathologies. In a drug screen to find new SASP regulators, we uncovered the mTOR inhibitor rapamycin as a potent SASP suppressor. Here we report a mechanism by which mTOR controls the SASP by differentially regulating the translation of the MK2 (also known as MAPKAPK2) kinase through 4EBP1. In turn, MAPKAPK2 phosphorylates the RNA-binding protein ZFP36L1 during senescence, inhibiting its ability to degrade the transcripts of numerous SASP components. Consequently, mTOR inhibition or constitutive activation of ZFP36L1 impairs the non-cell-autonomous effects of senescent cells in both tumour-suppressive and tumour-promoting contexts. Altogether, our results place regulation of the SASP as a key mechanism by which mTOR could influence cancer, age-related diseases and immune responses.
Collapse
Affiliation(s)
- Nicolás Herranz
- Cell Proliferation Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
- Epigenetics Section, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Suchira Gallage
- Cell Proliferation Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
- Epigenetics Section, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
- Metabolic Signalling Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Massimiliano Mellone
- Cancer Sciences Unit, Cancer Research UK Centre, Somers Building, University of Southampton, Southampton SO16 6YD, UK
| | - Torsten Wuestefeld
- Division of Molecular Oncology of Solid Tumors, Dept. of Internal Medicine I, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Sabrina Klotz
- Division of Molecular Oncology of Solid Tumors, Dept. of Internal Medicine I, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Christopher J. Hanley
- Cancer Sciences Unit, Cancer Research UK Centre, Somers Building, University of Southampton, Southampton SO16 6YD, UK
| | - Selina Raguz
- Cell Proliferation Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
- Epigenetics Section, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Juan Carlos Acosta
- Cell Proliferation Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
- Epigenetics Section, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Andrew J Innes
- Cell Proliferation Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
- Epigenetics Section, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Ana Banito
- Cell Proliferation Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
- Epigenetics Section, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Athena Georgilis
- Cell Proliferation Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
- Epigenetics Section, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Alex Montoya
- Proteomics Facility; MRC Clinical Sciences Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Katharina Wolter
- Division of Molecular Oncology of Solid Tumors, Dept. of Internal Medicine I, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Gopuraja Dharmalingam
- Epigenetics Section, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Peter Faull
- Proteomics Facility; MRC Clinical Sciences Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Thomas Carroll
- Epigenetics Section, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | | | - Pedro Cutillas
- Proteomics Facility; MRC Clinical Sciences Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Florian Reisinger
- Institute for Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany
| | - Mathias Heikenwalder
- Institute for Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany
- Division of Chronic Inflammation and Cancer, German Cancer Research (DKFZ), Heidelberg, Germany
| | - Richard A. Miller
- Department of Pathology and Geriatrics Center, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Dominic Withers
- Metabolic Signalling Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Lars Zender
- Division of Molecular Oncology of Solid Tumors, Dept. of Internal Medicine I, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Gareth J. Thomas
- Cancer Sciences Unit, Cancer Research UK Centre, Somers Building, University of Southampton, Southampton SO16 6YD, UK
| | - Jesús Gil
- Cell Proliferation Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
- Epigenetics Section, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| |
Collapse
|
28
|
Nakamura S, Kahyo T, Tao H, Shibata K, Kurabe N, Yamada H, Shinmura K, Ohnishi K, Sugimura H. Novel roles for LIX1L in promoting cancer cell proliferation through ROS1-mediated LIX1L phosphorylation. Sci Rep 2015; 5:13474. [PMID: 26310847 PMCID: PMC4550850 DOI: 10.1038/srep13474] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 07/27/2015] [Indexed: 11/25/2022] Open
Abstract
Herein, we report the characterization of Limb expression 1-like, (LIX1L), a putative RNA-binding protein (RBP) containing a double-stranded RNA binding motif, which is highly expressed in various cancer tissues. Analysis of MALDI-TOF/TOF mass spectrometry and RNA immunoprecipitation-sequencing of interacting proteins and the microRNAs (miRNAs) bound to LIX1L revealed that LIX1L interacts with proteins (RIOK1, nucleolin and PABPC4) and miRNAs (has-miRNA-520a-5p, −300, −216b, −326, −190a, −548b-3p, −7–5p and −1296) in HEK-293 cells. Moreover, the reduction of phosphorylated Tyr136 (pTyr136) in LIX1L through the homeodomain peptide, PY136, inhibited LIX1L-induced cell proliferation in vitro, and PY136 inhibited MKN45 cell proliferation in vivo. We also determined the miRNA-targeted genes and showed that was apoptosis induced through the reduction of pTyr136. Moreover, ROS1, HCK, ABL1, ABL2, JAK3, LCK and TYR03 were identified as candidate kinases responsible for the phosphorylation of Tyr136 of LIX1L. These data provide novel insights into the biological significance of LIX1L, suggesting that this protein might be an RBP, with implications for therapeutic approaches for targeting LIX1L in LIX1L-expressing cancer cells.
Collapse
Affiliation(s)
- Satoki Nakamura
- Department of Tumor Pathology, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Tomoaki Kahyo
- Department of Tumor Pathology, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Hong Tao
- Department of Tumor Pathology, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Kiyoshi Shibata
- Equipment Center, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Nobuya Kurabe
- Department of Tumor Pathology, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Hidetaka Yamada
- Department of Tumor Pathology, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Kazuya Shinmura
- Department of Tumor Pathology, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Kazunori Ohnishi
- Cancer Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Haruhiko Sugimura
- Department of Tumor Pathology, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| |
Collapse
|
29
|
Shen ZJ, Malter JS. Regulation of AU-Rich Element RNA Binding Proteins by Phosphorylation and the Prolyl Isomerase Pin1. Biomolecules 2015; 5:412-34. [PMID: 25874604 PMCID: PMC4496679 DOI: 10.3390/biom5020412] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 03/23/2015] [Accepted: 03/31/2015] [Indexed: 01/19/2023] Open
Abstract
The accumulation of 3' untranslated region (3'-UTR), AU-rich element (ARE) containing mRNAs, are predominantly controlled at the post-transcriptional level. Regulation appears to rely on a variable and dynamic interaction between mRNA target and ARE-specific binding proteins (AUBPs). The AUBP-ARE mRNA recognition is directed by multiple intracellular signals that are predominantly targeted at the AUBPs. These include (but are unlikely limited to) methylation, acetylation, phosphorylation, ubiquitination and isomerization. These regulatory events ultimately affect ARE mRNA location, abundance, translation and stability. In this review, we describe recent advances in our understanding of phosphorylation and its impact on conformation of the AUBPs, interaction with ARE mRNAs and highlight the role of Pin1 mediated prolyl cis-trans isomerization in these biological process.
Collapse
Affiliation(s)
- Zhong-Jian Shen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390-8548, USA.
| | - James S Malter
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390-8548, USA.
| |
Collapse
|
30
|
Abstract
Chronic inflammatory diseases, such as asthma and chronic obstructive pulmonary disease (COPD), are clinically and socioeconomically important diseases globally. Currently the mainstay of anti-inflammatory therapy in respiratory diseases is corticosteroids. Although corticosteroids have proven clinical efficacy in asthma, many asthmatic inflammatory conditions (e.g., infection, exacerbation, and severe asthma) are not responsive to corticosteroids. Moreover, despite an understanding that COPD progression is driven by inflammation, we currently do not have effective anti-inflammatory strategies to combat this disease. Hence, alternative anti-inflammatory strategies are required. p38 mitogen-activated protein kinase (MAPK) has emerged as an important signaling molecule driving airway inflammation, and pharmacological inhibitors against p38 MAPK may provide potential therapies for chronic respiratory disease. In this review, we discuss some of the recent in vitro and in vivo studies targeting p38 MAPK, but suggest that p38 MAPK inhibitors may prove less effective than originally considered because they may block anti-inflammatory molecules along with proinflammatory responses. We propose that an alternative strategy may be to target an anti-inflammatory molecule farther downstream of p38 MAPK, i.e., tristetraprolin (TTP). TTP is an mRNA-destabilizing, RNA-binding protein that enhances the decay of mRNAs, including those encoding proteins implicated in chronic respiratory diseases. We suggest that understanding the molecular mechanism of TTP expression and its temporal regulation will guide future development of novel anti-inflammatory pharmacotherapeutic approaches to combat respiratory disease.
Collapse
Affiliation(s)
- Pavan Prabhala
- Faculty of Pharmacy, University of Sydney, Sydney, New South Wales, Australia
| | - Alaina J Ammit
- Faculty of Pharmacy, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
31
|
The Role of p110δ in the Development and Activation of B Lymphocytes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 850:119-35. [DOI: 10.1007/978-3-319-15774-0_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
32
|
Rapid proteasomal degradation of posttranscriptional regulators of the TIS11/tristetraprolin family is induced by an intrinsically unstructured region independently of ubiquitination. Mol Cell Biol 2014; 34:4315-28. [PMID: 25246635 DOI: 10.1128/mcb.00643-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The TIS11/tristetraprolin (TTP) CCCH tandem zinc finger proteins are major effectors in the destabilization of mRNAs bearing AU-rich elements (ARE) in their 3' untranslated regions. In this report, we demonstrate that the Drosophila melanogaster dTIS11 protein is short-lived due to its rapid ubiquitin-independent degradation by the proteasome. Our data indicate that this mechanism is tightly associated with the intrinsically unstructured, disordered N- and C-terminal domains of the protein. Furthermore, we show that TTP, the mammalian TIS11/TTP protein prototype, shares the same three-dimensional characteristics and is degraded by the same proteolytic pathway as dTIS11, thereby indicating that this mechanism has been conserved across evolution. Finally, we observed a phosphorylation-dependent inhibition of dTIS11 and TTP degradation by the proteasome in vitro, raising the possibility that such modifications directly affect proteasomal recognition for these proteins. As a group, RNA-binding proteins (RNA-BPs) have been described as enriched in intrinsically disordered regions, thus raising the possibility that the mechanism that we uncovered for TIS11/TTP turnover is widespread among other RNA-BPs.
Collapse
|
33
|
Kafasla P, Skliris A, Kontoyiannis DL. Post-transcriptional coordination of immunological responses by RNA-binding proteins. Nat Immunol 2014; 15:492-502. [PMID: 24840980 DOI: 10.1038/ni.2884] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 04/01/2014] [Indexed: 12/22/2022]
Abstract
Immunological reactions are propelled by ever-changing signals that alter the translational ability of the RNA in the cells involved. Such alterations are considered to be consequential modifications in the transcriptomic decoding of the genetic blueprint. The identification of RNA-binding protein (RBP) assemblies engaged in the coordinative regulation of state-specific RNAs indicates alternative and exclusive means for determining the activation, plasticity and tolerance of cells of the immune system. Here we review current knowledge about RBP-regulated post-transcriptional events involved in the reactivity of cells of the immune system and the importance of their alteration during chronic inflammatory pathology and autoimmunity.
Collapse
Affiliation(s)
- Panagiota Kafasla
- Division of Immunology, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Antonis Skliris
- Division of Immunology, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Dimitris L Kontoyiannis
- Division of Immunology, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| |
Collapse
|
34
|
Vindry C, Vo Ngoc L, Kruys V, Gueydan C. RNA-binding protein-mediated post-transcriptional controls of gene expression: integration of molecular mechanisms at the 3' end of mRNAs? Biochem Pharmacol 2014; 89:431-40. [PMID: 24735612 DOI: 10.1016/j.bcp.2014.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 04/02/2014] [Accepted: 04/03/2014] [Indexed: 01/17/2023]
Abstract
Initially identified as an occasional and peculiar mode of gene regulation in eukaryotes, RNA-binding protein-mediated post-transcriptional control of gene expression has emerged, over the last two decades, as a major contributor in the control of gene expression. A large variety of RNA-binding proteins (RBPs) allows the recognition of very diverse messenger RNA sequences and participates in the regulation of basically all cellular processes. Nevertheless, the rapid outcome of post-transcriptional regulations on the level of gene expression has favored the expansion of this type of regulation in cellular processes prone to rapid and frequent modulations such as the control of the inflammatory response. At the molecular level, the 3'untranslated region (3'UTR) of mRNA is a favored site of RBP recruitment. RBPs binding to these regions control gene expression through two major modes of regulation, namely mRNA decay and modulation of translational activity. Recent progresses suggest that these two mechanisms are often interdependent and might result one from the other. Therefore, different RBPs binding distinct RNA subsets could share similar modes of action at the molecular level. RBPs are frequent targets of post-translational modifications, thereby disclosing numerous possibilities for pharmacological interventions. However, redundancies of the transduction pathways controlling these modifications have limited the perspectives to define RBPs as new therapeutic targets. Through the analysis of several examples of RBPs binding to 3'untranslated region of mRNA, we present here recent progress and perspectives regarding this rapidly evolving field of molecular biology.
Collapse
Affiliation(s)
- Caroline Vindry
- Laboratoire de Biologie moléculaire du gène, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, 12 rue des Profs. Jeener et Brachet, Gosselies 6041, Belgium
| | - Long Vo Ngoc
- Laboratoire de Biologie moléculaire du gène, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, 12 rue des Profs. Jeener et Brachet, Gosselies 6041, Belgium
| | - Véronique Kruys
- Laboratoire de Biologie moléculaire du gène, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, 12 rue des Profs. Jeener et Brachet, Gosselies 6041, Belgium
| | - Cyril Gueydan
- Laboratoire de Biologie moléculaire du gène, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, 12 rue des Profs. Jeener et Brachet, Gosselies 6041, Belgium.
| |
Collapse
|
35
|
Ciais D, Cherradi N, Feige JJ. Multiple functions of tristetraprolin/TIS11 RNA-binding proteins in the regulation of mRNA biogenesis and degradation. Cell Mol Life Sci 2013; 70:2031-44. [PMID: 22968342 PMCID: PMC11113850 DOI: 10.1007/s00018-012-1150-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 08/27/2012] [Accepted: 08/28/2012] [Indexed: 02/06/2023]
Abstract
Members of the tristetraprolin (TTP/TIS11) family are important RNA-binding proteins initially characterized as mediators of mRNA degradation. They act via their interaction with AU-rich elements present in the 3'UTR of regulated transcripts. However, it is progressively appearing that the different steps of mRNA processing and fate including transcription, splicing, polyadenylation, translation, and degradation are coordinately regulated by multifunctional integrator proteins that possess a larger panel of functions than originally anticipated. Tristetraprolin and related proteins are very good examples of such integrators. This review gathers the present knowledge on the functions of this family of RNA-binding proteins, including their role in AU-rich element-mediated mRNA decay and focuses on recent advances that support the concept of their broader involvement in distinct steps of mRNA biogenesis and degradation.
Collapse
Affiliation(s)
- Delphine Ciais
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1036, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Institut de Recherches en Technologies et Sciences pour le Vivant (iRTSV)/Biologie du Cancer et de l’Infection (BCI), 38054 Grenoble, France
- Université Joseph Fourier-Grenoble 1, 38041 Grenoble, France
| | - Nadia Cherradi
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1036, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Institut de Recherches en Technologies et Sciences pour le Vivant (iRTSV)/Biologie du Cancer et de l’Infection (BCI), 38054 Grenoble, France
- Université Joseph Fourier-Grenoble 1, 38041 Grenoble, France
| | - Jean-Jacques Feige
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1036, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Institut de Recherches en Technologies et Sciences pour le Vivant (iRTSV)/Biologie du Cancer et de l’Infection (BCI), 38054 Grenoble, France
- Université Joseph Fourier-Grenoble 1, 38041 Grenoble, France
| |
Collapse
|
36
|
Brooks SA, Blackshear PJ. Tristetraprolin (TTP): interactions with mRNA and proteins, and current thoughts on mechanisms of action. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1829:666-79. [PMID: 23428348 PMCID: PMC3752887 DOI: 10.1016/j.bbagrm.2013.02.003] [Citation(s) in RCA: 308] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 01/25/2013] [Accepted: 02/04/2013] [Indexed: 12/14/2022]
Abstract
Changes in mRNA stability and translation are critical control points in the regulation of gene expression, particularly genes encoding growth factors, inflammatory mediators, and proto-oncogenes. Adenosine and uridine (AU)-rich elements (ARE), often located in the 3' untranslated regions (3'UTR) of mRNAs, are known to target transcripts for rapid decay. They are also involved in the regulation of mRNA stability and translation in response to extracellular cues. This review focuses on one of the best characterized ARE binding proteins, tristetraprolin (TTP), the founding member of a small family of CCCH tandem zinc finger proteins. In this survey, we have reviewed the current status of TTP interactions with mRNA and proteins, and discussed current thinking about TTP's mechanism of action to promote mRNA decay. We also review the proposed regulation of TTP's functions by phosphorylation. Finally, we have discussed emerging evidence for TTP operating as a translational regulator. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
Affiliation(s)
- Seth A. Brooks
- Veterans Affairs Medical Center, White River Junction, Vermont, USA
- Department of Medicine, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Perry J. Blackshear
- The Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
- Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, North Carolina USA
| |
Collapse
|
37
|
Ribonucleoprotein complexes that control circadian clocks. Int J Mol Sci 2013; 14:9018-36. [PMID: 23698761 PMCID: PMC3676770 DOI: 10.3390/ijms14059018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 04/07/2013] [Accepted: 04/15/2013] [Indexed: 12/03/2022] Open
Abstract
Circadian clocks are internal molecular time-keeping mechanisms that enable organisms to adjust their physiology and behavior to the daily surroundings. Misalignment of circadian clocks leads to both physiological and health impairment. Post-transcriptional regulation and translational regulation of circadian clocks have been extensively investigated. In addition, accumulating evidence has shed new light on the involvement of ribonucleoprotein complexes (RNPs) in the post-transcriptional regulation of circadian clocks. Numerous RNA-binding proteins (RBPs) and RNPs have been implicated in the post-transcriptional modification of circadian clock proteins in different model organisms. Herein, we summarize the advances in the current knowledge on the role of RNP complexes in circadian clock regulation.
Collapse
|
38
|
Venigalla RKC, Turner M. RNA-binding proteins as a point of convergence of the PI3K and p38 MAPK pathways. Front Immunol 2012; 3:398. [PMID: 23272005 PMCID: PMC3530045 DOI: 10.3389/fimmu.2012.00398] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 12/10/2012] [Indexed: 12/26/2022] Open
Abstract
Understanding the mechanisms by which signal transduction pathways mediate changes in RNA abundance requires the examination of the fate of RNA from its transcription to its degradation. Evidence suggests that RNA abundance is partly regulated by post-transcriptional mechanisms affecting RNA decay and this in turn is modulated by some of the same signaling pathways that control transcription. Furthermore, the translation of mRNA is a key regulatory step that is influenced by signal transduction. These processes are regulated, in part, by RNA-binding proteins (RBPs) which bind to sequence-specific RNA elements. The function of RBPs is controlled and co-ordinated by phosphorylation. Based on the current literature we hypothesize that RBPs may be a point of convergence for the activity of different kinases such as phosphoinositide-3-kinase and mitogen-activated protein kinase which regulate RBP localization and function.
Collapse
Affiliation(s)
- Ram K C Venigalla
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute Babraham, UK
| | | |
Collapse
|
39
|
Xia YJ, Zhao SH, Mao BY. Involvement of XZFP36L1, an RNA-binding protein, in Xenopus neural development. DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2012; 33:E82-8. [PMID: 23266986 DOI: 10.3724/sp.j.1141.2012.e05-06e82] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Xenopus ZFP36L1 (zinc finger protein 36, C3H type-like 1) belongs to the ZFP36 family of RNA-binding proteins, which contains two characteristic tandem CCCH-type zinc-finger domains. The ZFP36 proteins can bind AU-rich elements in 3' untranslated regions of target mRNAs and promote their turnover. However, the expression and role of ZFP36 genes during neural development in Xenopus embryos remains largely unknown. The present study showed that Xenopus ZFP36L1 was expressed at the dorsal part of the forebrain, forebrain-midbrain boundary, and midbrain-hindbrain boundary from late neurula stages to tadpole stages of embryonic development. Overexpression of XZFP36L1 in Xenopus embryos inhibited neural induction and differentiation, leading to severe neural tube defects. The function of XZP36L1 requires both its zinc finger and C terminal domains, which also affect its subcellular localization. These results suggest that XZFP36L1 is likely involved in neural development in Xenopus and might play an important role in post-transcriptional regulation.
Collapse
Affiliation(s)
- Ying-Jie Xia
- Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, China
| | | | | |
Collapse
|
40
|
Lin NY, Lin TY, Yang WH, Wang SC, Wang KT, Su YL, Jiang YW, Chang GD, Chang CJ. Differential expression and functional analysis of the tristetraprolin family during early differentiation of 3T3-L1 preadipocytes. Int J Biol Sci 2012; 8:761-77. [PMID: 22701344 PMCID: PMC3371571 DOI: 10.7150/ijbs.4036] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 05/15/2012] [Indexed: 01/09/2023] Open
Abstract
The tristetraprolin (TTP) family comprises zinc finger-containing AU-rich element (ARE)-binding proteins consisting of three major members: TTP, ZFP36L1, and ZFP36L2. The present study generated specific antibodies against each TTP member to evaluate its expression during differentiation of 3T3-L1 preadipocytes. In contrast to the inducible expression of TTP, results indicated constitutive expression of ZFP36L1 and ZFP36L2 in 3T3-L1 preadipocytes and their phosphorylation in response to differentiation signals. Physical RNA pull-down and functional luciferase assays revealed that ZFP36L1 and ZFP36L2 bound to the 3' untranslated region (UTR) of MAPK phosphatase-1 (MKP-1) mRNA and downregulated Mkp-1 3'UTR-mediated luciferase activity. Mkp-1 is an immediate early gene for which the mRNA is transiently expressed in response to differentiation signals. The half-life of Mkp-1 mRNA was longer at 30 min of induction than at 1 h and 2 h of induction. Knockdown of TTP or ZFP36L2 increased the Mkp-1 mRNA half-life at 1 h of induction. Knockdown of ZFP36L1, but not ZFP36L2, increased Mkp-1 mRNA basal levels via mRNA stabilization and downregulated ERK activation. Differentiation induced phosphorylation of ZFP36L1 through ERK and AKT signals. Phosphorylated ZFP36L1 then interacted with 14-3-3, which might decrease its mRNA destabilizing activity. Inhibition of adipogenesis also occurred in ZFP36L1 and TTP knockdown cells. The findings indicate that the differential expression of TTP family members regulates immediate early gene expression and modulates adipogenesis.
Collapse
Affiliation(s)
- Nien-Yi Lin
- 1. Institute of Biological Chemistry, Academia Sinica, 128, Academia Road Sec 2, Nankang, Taipei 115, Taiwan
| | - Tzi-Yang Lin
- 2. Graduate Institute of Biochemical Sciences, College of Life Science, National Taiwan University, 1 Roosevelt Road Sec 4, Taipei 106, Taiwan
| | - Wen-Hsuan Yang
- 2. Graduate Institute of Biochemical Sciences, College of Life Science, National Taiwan University, 1 Roosevelt Road Sec 4, Taipei 106, Taiwan
| | - Shun-Chang Wang
- 1. Institute of Biological Chemistry, Academia Sinica, 128, Academia Road Sec 2, Nankang, Taipei 115, Taiwan
| | - Kuan-Ting Wang
- 2. Graduate Institute of Biochemical Sciences, College of Life Science, National Taiwan University, 1 Roosevelt Road Sec 4, Taipei 106, Taiwan
| | - Yu-Lun Su
- 2. Graduate Institute of Biochemical Sciences, College of Life Science, National Taiwan University, 1 Roosevelt Road Sec 4, Taipei 106, Taiwan
| | - Yu-Wun Jiang
- 2. Graduate Institute of Biochemical Sciences, College of Life Science, National Taiwan University, 1 Roosevelt Road Sec 4, Taipei 106, Taiwan
| | - Geen-Dong Chang
- 2. Graduate Institute of Biochemical Sciences, College of Life Science, National Taiwan University, 1 Roosevelt Road Sec 4, Taipei 106, Taiwan
| | - Ching-Jin Chang
- 1. Institute of Biological Chemistry, Academia Sinica, 128, Academia Road Sec 2, Nankang, Taipei 115, Taiwan
- 2. Graduate Institute of Biochemical Sciences, College of Life Science, National Taiwan University, 1 Roosevelt Road Sec 4, Taipei 106, Taiwan
| |
Collapse
|
41
|
Sanduja S, Blanco FF, Dixon DA. The roles of TTP and BRF proteins in regulated mRNA decay. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 2:42-57. [PMID: 21278925 DOI: 10.1002/wrna.28] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adenylate- and uridylate-rich element (ARE) motifs are cis-acting elements present in the 3′ untranslated region of mRNA transcripts that encode many inflammation- and cancer-associated genes. The TIS11 family of RNA-binding proteins, composed of tristetraprolin (TTP) and butyrate response factors 1 and 2 (BRF-1 and -2), plays a critical role in regulating the expression of ARE-containing mRNAs. Through their ability to bind and target ARE-containing mRNAs for rapid degradation, this class of RNA-binding proteins serves a fundamental role in limiting the expression of a number of critical genes, thereby exerting anti-inflammatory and anti-cancer effects. Regulation of TIS11 family members occurs on a number of levels through cellular signaling events to control their transcription, mRNA turnover, phosphorylation status, cellular localization, association with other proteins, and proteosomal degradation, all of which impact TIS11 members' ability to promote ARE-mediated mRNA decay along with decay-independent functions. This review summarizes our current understanding of posttranscriptional regulation of ARE-containing gene expression by TIS11 family members and discusses their role in maintaining normal physiological processes and the pathological consequences in their absence.
Collapse
Affiliation(s)
- Sandhya Sanduja
- Department of Biological Sciences and Cancer Research Center, University of South Carolina, Columbia, SC, USA
| | | | | |
Collapse
|
42
|
Wu X, Brewer G. The regulation of mRNA stability in mammalian cells: 2.0. Gene 2012; 500:10-21. [PMID: 22452843 DOI: 10.1016/j.gene.2012.03.021] [Citation(s) in RCA: 175] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 02/20/2012] [Accepted: 03/04/2012] [Indexed: 12/24/2022]
Abstract
Messenger RNA decay is an essential step in gene expression to set mRNA abundance in the cytoplasm. The binding of proteins and/or noncoding RNAs to specific recognition sequences or secondary structures within mRNAs dictates mRNA decay rates by recruiting specific enzyme complexes that perform the destruction processes. Often, the cell coordinates the degradation or stabilization of functional subsets of mRNAs encoding proteins collectively required for a biological process. As well, extrinsic or intrinsic stimuli activate signal transduction pathways that modify the mRNA decay machinery with consequent effects on decay rates and mRNA abundance. This review is an update to our 2001 Gene review on mRNA stability in mammalian cells, and we survey the enormous progress made over the past decade.
Collapse
Affiliation(s)
- Xiangyue Wu
- Department of Molecular Genetics, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | |
Collapse
|
43
|
Schott J, Stoecklin G. Networks controlling mRNA decay in the immune system. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 1:432-56. [PMID: 21956941 DOI: 10.1002/wrna.13] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The active control of mRNA degradation has emerged as a key regulatory mechanism required for proper gene expression in the immune system. An adenosine/uridine (AU)-rich element (ARE) is at the heart of a first regulatory system that promotes the rapid degradation of a multitude of cytokine and chemokine mRNAs. AREs serve as binding sites for a number of regulatory proteins that either destabilize or stabilize the mRNA. Several kinase pathways regulate the activity of ARE-binding proteins and thereby coordinate the expression of their target mRNAs. Small regulatory micro (mi)-RNAs represent a second system that enhances the degradation of several mRNAs encoding important components of signal transduction cascades that are activated during adaptive and innate immune responses. Specific miRNAs are important for the differentiation of T helper cells, class switch recombination in B cells, and the maturation of dendritic cells. Excitement in this area of research is fueled by the discovery of novel RNA elements and regulatory proteins that exert control over specific mRNAs, as exemplified by an endonuclease that was found to directly cleave interleukin-6 mRNA. Together, these systems make up an extensive regulatory network that controls decay rates of individual mRNAs in a precise manner and thereby orchestrates the dynamic expression of many factors essential for adaptive and innate immune responses. In this review, we provide an overview of relevant factors regulated at the level of mRNA stability, summarize RNA-binding proteins and miRNAs that control their degradation rates, and discuss signaling pathways operating within this regulatory network.
Collapse
Affiliation(s)
- Johanna Schott
- Helmholtz Junior Research Group Posttranscriptional Control of Gene Expression, German Cancer Research Center, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | |
Collapse
|
44
|
Regulation of lymphocyte development and function by RNA-binding proteins. Curr Opin Immunol 2012; 24:160-5. [PMID: 22326859 DOI: 10.1016/j.coi.2012.01.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 01/07/2012] [Indexed: 11/23/2022]
Abstract
Lymphocyte development requires cells to progress through a series of stages, each associated with changes in gene expression. Intense effort has been invested into characterising the dynamic networks of transcription factors underlying these regulated changes. Whilst transcription factors determine the tempo at which mRNA is produced, recent results highlight the importance of the selective regulation of mRNA decay and translation in regulating gene expression. These processes are regulated by sequence-specific RNA-binding proteins (RBP) as well as noncoding RNA such as microRNAs. RNA-binding proteins are emerging as important regulators of cell fate and function in both developing and mature lymphocytes. At the molecular level the function of RNA-binding proteins is integrated with signal transduction pathways that also govern gene transcription.
Collapse
|
45
|
Turner M, Hodson DJ. An emerging role of RNA-binding proteins as multifunctional regulators of lymphocyte development and function. Adv Immunol 2012; 115:161-85. [PMID: 22608259 DOI: 10.1016/b978-0-12-394299-9.00006-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Sequence-specific RNA-binding proteins (RBP) and the regulation of RNA decay have long been recognized as important regulators of the inflammatory response. RBP influence gene expression throughout the lifespan of the mRNA by regulating splicing, polyadenylation, cellular localization, translation, and decay. Increasing evidence now indicates that these proteins, together with the RNA decay machinery that they recruit, also regulate the development and activation of lymphocytes. The activity of RBP is regulated by the same signal transduction pathways that govern lymphocyte development and differentiation in response to antigen and cytokine receptor engagement. Roles for these proteins in regulating the diverse functions of lymphocytes are becoming increasingly apparent.
Collapse
Affiliation(s)
- Martin Turner
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | | |
Collapse
|
46
|
14-3-3 proteins in neurodegeneration. Semin Cell Dev Biol 2011; 22:696-704. [PMID: 21920445 DOI: 10.1016/j.semcdb.2011.08.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 08/11/2011] [Indexed: 11/23/2022]
Abstract
Among the first reported functions of 14-3-3 proteins was the regulation of tyrosine hydroxylase (TH) activity suggesting a possible involvement of 14-3-3 proteins in Parkinson's disease. Since then the relevance of 14-3-3 proteins in the pathogenesis of chronic as well as acute neurodegenerative diseases, including Alzheimer's disease, polyglutamine diseases, amyotrophic lateral sclerosis and stroke has been recognized. The reported function of 14-3-3 proteins in this context are as diverse as the mechanism involved in neurodegeneration, reaching from basal cellular processes like apoptosis, over involvement in features common to many neurodegenerative diseases, like protein stabilization and aggregation, to very specific processes responsible for the selective vulnerability of cellular populations in single neurodegenerative diseases. Here, we review what is currently known of the function of 14-3-3 proteins in nervous tissue focussing on the properties of 14-3-3 proteins important in neurodegenerative disease pathogenesis.
Collapse
|
47
|
Desroches-Castan A, Cherradi N, Feige JJ, Ciais D. A novel function of Tis11b/BRF1 as a regulator of Dll4 mRNA 3'-end processing. Mol Biol Cell 2011; 22:3625-33. [PMID: 21832157 PMCID: PMC3183017 DOI: 10.1091/mbc.e11-02-0149] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We report the characterization of Delta-like-4 (Dll4), an angiogenesis-related gene for which haploinsufficiency is lethal, as an additional target of Tis11b-mediated regulation. Unexpectedly, we show that Tis11b does not alter mRNA stability but rather seems to modulate 3′-processing of Dll4 mRNA in endothelial cells. Tis11b/BRF1 belongs to the tristetraprolin family, the members of which are involved in AU-rich-dependent regulation of mRNA stability/degradation. Mouse inactivation of the Tis11b gene has revealed disorganization of the vascular network and up-regulation of the proangiogenic factor VEGF. However, the VEGF deregulation alone cannot explain the phenotype of Tis11b knockouts. Therefore we investigated the role of Tis11b in expression of Dll4, another angiogenic gene for which haploinsufficiency is lethal. In this paper, we show that Tis11b silencing in endothelial cells leads to up-regulation of Dll4 protein and mRNA expressions, indicating that Dll4 is a physiological target of Tis11b. Tis11b protein binds to endogenous Dll4 mRNA, and represses mRNA expression without affecting its stability. In the Dll4 mRNA 3′ untranslated region, we identified one particular AUUUA motif embedded in a weak noncanonical polyadenylation (poly(A)) signal as the major Tis11b-binding site. Moreover, we observed that inhibition of Tis11b expression changes the ratio between mRNAs that are cleaved or read through at the poly(A) signal position, suggesting that Tis11b can interfere with mRNA cleavage and poly(A) efficiency. Last, we report that this Tis11b-mediated mechanism is used by endothelial cells under hypoxia for controlling Dll4 mRNA levels. This work constitutes the first description of a new function for Tis11b in mammalian cell mRNA 3′-end maturation.
Collapse
Affiliation(s)
- Agnès Desroches-Castan
- Institut National de la Santé et de la Recherche Médicale, Unité 1036, Biologie du Cancer et de l'Infection, Grenoble F-38054, France
| | | | | | | |
Collapse
|
48
|
Zucconi BE, Wilson GM. Modulation of neoplastic gene regulatory pathways by the RNA-binding factor AUF1. FRONT BIOSCI-LANDMRK 2011; 16:2307-25. [PMID: 21622178 PMCID: PMC3589912 DOI: 10.2741/3855] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The mRNA-binding protein AUF1 regulates the expression of many key players in cancer including proto-oncogenes, regulators of apoptosis and the cell cycle, and pro-inflammatory cytokines, principally by directing the decay kinetics of their encoded mRNAs. Most studies support an mRNA-destabilizing role for AUF1, although other findings suggest additional functions for this factor. In this review, we explore how changes in AUF1 isoform distribution, subcellular localization, and post-translational protein modifications can influence the metabolism of targeted mRNAs. However, several lines of evidence also support a role for AUF1 in the initiation and/or development of cancer. Many AUF1-targeted transcripts encode products that control pro- and anti-oncogenic processes. Also, overexpression of AUF1 enhances tumorigenesis in murine models, and AUF1 levels are enhanced in some tumors. Finally, signaling cascades that modulate AUF1 function are deregulated in some cancerous tissues. Together, these features suggest that AUF1 may play a prominent role in regulating the expression of many genes that can contribute to tumorigenic phenotypes, and that this post-transcriptional regulatory control point may be subverted by diverse mechanisms in neoplasia.
Collapse
Affiliation(s)
- Beth E. Zucconi
- Department of Biochemistry and Molecular Biology and Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, 108 N. Greene St., Baltimore, MD 21201
| | - Gerald M. Wilson
- Department of Biochemistry and Molecular Biology and Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, 108 N. Greene St., Baltimore, MD 21201
| |
Collapse
|
49
|
Abstract
Studies of epilepsy have mainly focused on the membrane proteins that control neuronal excitability. Recently, attention has been shifting to intracellular proteins and their interactions, signaling cascades and feedback regulation as they relate to epilepsy. The mTOR (mammalian target of rapamycin) signal transduction pathway, especially, has been suggested to play an important role in this regard. These pathways are involved in major physiological processes as well as in numerous pathological conditions. Here, involvement of the mTOR pathway in epilepsy will be reviewed by presenting; an overview of the pathway, a brief description of key signaling molecules, a summary of independent reports and possible implications of abnormalities of those molecules in epilepsy, a discussion of the lack of experimental data, and questions raised for the understanding its epileptogenic mechanism.
Collapse
Affiliation(s)
- Chang Hoon Cho
- Epilepsy Research Laboratory Department of Pediatrics Children's Hospital of Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
50
|
Turner M. Is transcription the dominant force during dynamic changes in gene expression? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 780:1-13. [PMID: 21842360 DOI: 10.1007/978-1-4419-5632-3_1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Dynamic changes in gene expression punctuate lymphocyte development and are a characteristic of lymphocyte activation. A prevailing view has been that these changes are driven by DNA transcription factors, which are the dominant force in gene expression. Accumulating evidence is challenging this DNA centric view and has highlighted the prevalence and dynamic nature of RNA handling mechanisms. Alternative splicing and differential polyadenylation appear to be more widespread than first thought. Changes in mRNA decay rates also affect the abundance of transcripts and this mechanism may contribute significantly to gene expression. Additional RNA handling mechanisms that control the intracellular localization of mRNA and association with translating ribosomes are also important. Thus, gene expression is regulated through the coordination of transcriptional and post-transcriptional mechanisms. Developing a more "RNA centric" view of gene expression will allow a more systematic understanding of how gene expression and cell function are integrated.
Collapse
Affiliation(s)
- Martin Turner
- The Babraham Institute, Babraham, Cambridge, CB22 3AT, UK.
| |
Collapse
|