1
|
Lebdy R, Canut M, Patouillard J, Cadoret JC, Letessier A, Ammar J, Basbous J, Urbach S, Miotto B, Constantinou A, Abou Merhi R, Ribeyre C. The nucleolar protein GNL3 prevents resection of stalled replication forks. EMBO Rep 2023; 24:e57585. [PMID: 37965896 DOI: 10.15252/embr.202357585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/16/2023] Open
Abstract
Faithful DNA replication requires specific proteins that protect replication forks and so prevent the formation of DNA lesions that may damage the genome. Identification of new proteins involved in this process is essential to understand how DNA lesions accumulate in cancer cells and how they tolerate them. Here, we show that human GNL3/nucleostemin, a GTP-binding protein localized mostly in the nucleolus and highly expressed in cancer cells, prevents nuclease-dependent resection of nascent DNA in response to replication stress. We demonstrate that inhibiting origin firing reduces resection. This suggests that the heightened replication origin activation observed upon GNL3 depletion largely drives the observed DNA resection probably due to the exhaustion of the available RPA pool. We show that GNL3 and DNA replication initiation factor ORC2 interact in the nucleolus and that the concentration of GNL3 in the nucleolus is required to limit DNA resection. We propose that the control of origin firing by GNL3 through the sequestration of ORC2 in the nucleolus is critical to prevent nascent DNA resection in response to replication stress.
Collapse
Affiliation(s)
- Rana Lebdy
- Institut de Génétique Humaine (UMR9002), CNRS, Université de Montpellier, Montpellier Cedex 5, France
- Faculty of Sciences, Genomics and Surveillance Biotherapy (GSBT) Laboratory, R. Hariri Campus, Lebanese University, Hadath, Lebanon
| | - Marine Canut
- Institut de Génétique Humaine (UMR9002), CNRS, Université de Montpellier, Montpellier Cedex 5, France
| | - Julie Patouillard
- Institut de Génétique Humaine (UMR9002), CNRS, Université de Montpellier, Montpellier Cedex 5, France
| | | | - Anne Letessier
- Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | - Josiane Ammar
- Institut de Génétique Humaine (UMR9002), CNRS, Université de Montpellier, Montpellier Cedex 5, France
| | - Jihane Basbous
- Institut de Génétique Humaine (UMR9002), CNRS, Université de Montpellier, Montpellier Cedex 5, France
| | - Serge Urbach
- Institut de Génomique Fonctionnelle, CNRS UMR 5203, Inserm U1191, Université de Montpellier, Montpellier Cedex 5, France
| | - Benoit Miotto
- Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | - Angelos Constantinou
- Institut de Génétique Humaine (UMR9002), CNRS, Université de Montpellier, Montpellier Cedex 5, France
| | - Raghida Abou Merhi
- Faculty of Sciences, Genomics and Surveillance Biotherapy (GSBT) Laboratory, R. Hariri Campus, Lebanese University, Hadath, Lebanon
| | - Cyril Ribeyre
- Institut de Génétique Humaine (UMR9002), CNRS, Université de Montpellier, Montpellier Cedex 5, France
| |
Collapse
|
2
|
REZAPOUR N, KAMALABADI-FARAHANI M, ATASHI A, ZARRINPOUR V. Paclitaxel resistance and nucleostemin upregulation in metastatic mouse breast cancer cells. MINERVA BIOTECHNOLOGY AND BIOMOLECULAR RESEARCH 2023. [DOI: 10.23736/s2724-542x.23.02945-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
3
|
Quiroga-Artigas G, de Jong D, Schnitzler CE. GNL3 is an evolutionarily conserved stem cell gene influencing cell proliferation, animal growth and regeneration in the hydrozoan Hydractinia. Open Biol 2022; 12:220120. [PMID: 36069077 PMCID: PMC9449814 DOI: 10.1098/rsob.220120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Nucleostemin (NS) is a vertebrate gene preferentially expressed in stem and cancer cells, which acts to regulate cell cycle progression, genome stability and ribosome biogenesis. NS and its paralogous gene, GNL3-like (GNL3L), arose in the vertebrate clade after a duplication event from their orthologous gene, G protein Nucleolar 3 (GNL3). Research on invertebrate GNL3, however, has been limited. To gain a greater understanding of the evolution and functions of the GNL3 gene, we have performed studies in the hydrozoan cnidarian Hydractinia symbiolongicarpus, a colonial hydroid that continuously generates pluripotent stem cells throughout its life cycle and presents impressive regenerative abilities. We show that Hydractinia GNL3 is expressed in stem and germline cells. The knockdown of GNL3 reduces the number of mitotic and S-phase cells in Hydractinia larvae of different ages. Genome editing of Hydractinia GNL3 via CRISPR/Cas9 resulted in colonies with reduced growth rates, polyps with impaired regeneration capabilities, gonadal morphological defects, and low sperm motility. Collectively, our study shows that GNL3 is an evolutionarily conserved stem cell and germline gene involved in cell proliferation, animal growth, regeneration and sexual reproduction in Hydractinia, and sheds new light into the evolution of GNL3 and of stem cell systems.
Collapse
Affiliation(s)
- Gonzalo Quiroga-Artigas
- Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL 32080, USA
| | - Danielle de Jong
- Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL 32080, USA
| | - Christine E Schnitzler
- Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL 32080, USA.,Department of Biology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
4
|
GNL3 Regulates SIRT1 Transcription and Promotes Hepatocellular Carcinoma Stem Cell-Like Features and Metastasis. JOURNAL OF ONCOLOGY 2022; 2022:1555670. [PMID: 35432540 PMCID: PMC9010172 DOI: 10.1155/2022/1555670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/05/2022] [Indexed: 12/02/2022]
Abstract
The expression of GNL3 in hepatocellular carcinoma was detected, and its effect on the proliferation and metastasis of hepatocellular carcinoma cells was investigated. Hepatocellular carcinoma and adjacent tissues were collected. The mRNA and protein expression levels of GNL3 were detected by qRT-PCR, Western blot, and immunohistochemistry. The relationship between GNL3 and the prognosis of liver cancer was analysed using public databases. A GNL3 interfering plasmid was constructed, and the effects of GNL3 on the proliferation of HepG2 and PLC-PRF-5 hepatoma cells were detected by the CCK-8 method. Transwell chamber assays were used to detect the effects of GNL3 on the migration and invasion of hepatocellular carcinoma cells. The effects of GNL3 on SIRT1 expression and stem cell markers were analysed. The effect of GNL3 on the proliferation of hepatocellular carcinoma was detected in a subcutaneous tumor-bearing animal model. The results showed that the mRNA and protein levels of GNL3 were higher than those of adjacent tissues. The overall survival (OS) of HCC patients with high GNL3 expression was worse. In vivo and in vitro experiments confirmed that silencing GNL3 could inhibit the proliferation, migration, and invasion of hepatocellular carcinoma cells. Mechanistic studies have shown that GNL3 regulates SIRT1 expression. GNL3 mediates the stem cell-like properties of HCC cells through SIRT1. In conclusion, this study found that GNL3 increased expression in hepatocellular carcinoma, which promoted the malignant biological behavior of hepatocellular carcinoma cells and was related to the cell dry phenotype. This study has certain significance in evaluating the prognosis of HCC patients.
Collapse
|
5
|
Velloso FJ, Shankar S, Parpura V, Rakic P, Levison SW. Neural Stem Cells in Adult Mammals are not Astrocytes. ASN Neuro 2022; 14:17590914221134739. [PMID: 36330653 PMCID: PMC9638700 DOI: 10.1177/17590914221134739] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/27/2022] [Accepted: 10/01/2022] [Indexed: 11/06/2022] Open
Abstract
At the turn of the 21st century studies of the cells that resided in the adult mammalian subventricular zone (SVZ) characterized the neural stem cells (NSCs) as a subtype of astrocyte. Over the ensuing years, numerous studies have further characterized the properties of these NSCs and compared them to parenchymal astrocytes. Here we have evaluated the evidence collected to date to establish whether classifying the NSCs as astrocytes is appropriate and useful. We also performed a meta-analysis with 4 previously published datasets that used cell sorting and unbiased single-cell RNAseq to highlight the distinct gene expression profiles of adult murine NSCs and niche astrocytes. On the basis of our understanding of the properties and functions of astrocytes versus the properties and functions of NSCs, and from our comparative transcriptomic analyses we conclude that classifying the adult mammalian NSC as an astrocyte is potentially misleading. From our vantage point, it is more appropriate to refer to the cells in the adult mammalian SVZ that retain the capacity to produce new neurons and macroglia as NSCs without attaching the term "astrocyte-like."
Collapse
Affiliation(s)
- Fernando Janczur Velloso
- Department of Pharmacology, Physiology & Neuroscience, New
Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Sandhya Shankar
- Department of Pharmacology, Physiology & Neuroscience, New
Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham,
Birmingham, AL, USA
| | - Pasko Rakic
- Department of Neuroscience, Yale School of Medicine, New Haven, CT,
USA
- Kavli Institute for Neuroscience, Yale School of Medicine, New
Haven, CT, USA
| | - Steven W. Levison
- Department of Pharmacology, Physiology & Neuroscience, New
Jersey Medical School, Rutgers University, Newark, NJ, USA
| |
Collapse
|
6
|
Tan GK, Pryce BA, Stabio A, Keene DR, Tufa SF, Schweitzer R. Cell autonomous TGFβ signaling is essential for stem/progenitor cell recruitment into degenerative tendons. Stem Cell Reports 2021; 16:2942-2957. [PMID: 34822771 PMCID: PMC8693658 DOI: 10.1016/j.stemcr.2021.10.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/03/2022] Open
Abstract
Understanding cell recruitment in damaged tendons is critical for improvements in regenerative therapy. We recently reported that targeted disruption of transforming growth factor beta (TGFβ) type II receptor in the tendon cell lineage (Tgfbr2ScxCre) resulted in resident tenocyte dedifferentiation and tendon deterioration in postnatal stages. Here we extend the analysis and identify direct recruitment of stem/progenitor cells into the degenerative mutant tendons. Cre-mediated lineage tracing indicates that these cells are not derived from tendon-ensheathing tissues or from a Scleraxis-expressing lineage, and they turned on tendon markers only upon entering the mutant tendons. Through immunohistochemistry and inducible gene deletion, we further find that the recruited cells originated from a Sox9-expressing lineage and their recruitment was dependent on cell autonomous TGFβ signaling. The cells identified in this study thus differ from previous reports of cell recruitment into injured tendons and suggest a critical role for TGFβ signaling in cell recruitment, providing insights that may support improvements in tendon repair. Targeted deletion of TGFβ signaling led to degenerative changes in mouse tendons Stem/progenitor cells were recruited into the degenerative mutant tendons The recruited cells are different from the ones so far reported in tendon injury Recruitment was dependent on cell autonomous TGFβ signaling in the recruited cells
Collapse
Affiliation(s)
- Guak-Kim Tan
- Research Division, Shriners Hospital for Children, Portland, OR 97239, USA; Department of Orthopaedics and Rehabilitation, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Brian A Pryce
- Research Division, Shriners Hospital for Children, Portland, OR 97239, USA
| | - Anna Stabio
- Research Division, Shriners Hospital for Children, Portland, OR 97239, USA
| | - Douglas R Keene
- Research Division, Shriners Hospital for Children, Portland, OR 97239, USA
| | - Sara F Tufa
- Research Division, Shriners Hospital for Children, Portland, OR 97239, USA
| | - Ronen Schweitzer
- Research Division, Shriners Hospital for Children, Portland, OR 97239, USA; Department of Orthopaedics and Rehabilitation, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
7
|
Bora P, Gahurova L, Hauserova A, Stiborova M, Collier R, Potěšil D, Zdráhal Z, Bruce AW. DDX21 is a p38-MAPK-sensitive nucleolar protein necessary for mouse preimplantation embryo development and cell-fate specification. Open Biol 2021; 11:210092. [PMID: 34255976 PMCID: PMC8277471 DOI: 10.1098/rsob.210092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Successful navigation of the mouse preimplantation stages of development, during which three distinct blastocyst lineages are derived, represents a prerequisite for continued development. We previously identified a role for p38-mitogen-activated kinases (p38-MAPK) regulating blastocyst inner cell mass (ICM) cell fate, specifically primitive endoderm (PrE) differentiation, that is intimately linked to rRNA precursor processing, polysome formation and protein translation regulation. Here, we develop this work by assaying the role of DEAD-box RNA helicase 21 (DDX21), a known regulator of rRNA processing, in the context of p38-MAPK regulation of preimplantation mouse embryo development. We show nuclear DDX21 protein is robustly expressed from the 16-cell stage, becoming exclusively nucleolar during blastocyst maturation, a localization dependent on active p38-MAPK. siRNA-mediated clonal Ddx21 knockdown within developing embryos is associated with profound cell-autonomous and non-autonomous proliferation defects and reduced blastocyst volume, by the equivalent peri-implantation blastocyst stage. Moreover, ICM residing Ddx21 knockdown clones express the EPI marker NANOG but rarely express the PrE differentiation marker GATA4. These data contribute further significance to the emerging importance of lineage-specific translation regulation, as identified for p38-MAPK, during mouse preimplantation development.
Collapse
Affiliation(s)
- Pablo Bora
- Laboratory of Early Mammalian Developmental Biology (LEMDB), Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Lenka Gahurova
- Laboratory of Early Mammalian Developmental Biology (LEMDB), Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic.,Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics, CAS, Rumburská 89, 27721 Liběchov, Czech Republic
| | - Andrea Hauserova
- Laboratory of Early Mammalian Developmental Biology (LEMDB), Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Martina Stiborova
- Laboratory of Early Mammalian Developmental Biology (LEMDB), Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Rebecca Collier
- Laboratory of Early Mammalian Developmental Biology (LEMDB), Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - David Potěšil
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic
| | - Zbyněk Zdráhal
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic
| | - Alexander W Bruce
- Laboratory of Early Mammalian Developmental Biology (LEMDB), Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
| |
Collapse
|
8
|
Radhakrishnan S, Trentz OA, Reddy MS, Rela M, Kandasamy M, Sellathamby S. In vitro transdifferentiation of human adipose tissue-derived stem cells to neural lineage cells - a stage-specific incidence. Adipocyte 2019; 8:164-177. [PMID: 31033391 PMCID: PMC6768268 DOI: 10.1080/21623945.2019.1607424] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The present Study investigated the intrinsic ability of adipose tissue-derived stem cells (ADSCs) and their neural transdifferentiation in a stage-specific manner. Woodbury’s Chemical induction was implemented with modifications to achieve neural transdifferentiation. In Group I, ADSCs were preinduced with β-mercaptoethanol (β-ME) and later, with neural induction medium (NIM). In Group II, ADSCs were directly treated with NIM. In Group III, a DNA methyltransferase (DNMT) inhibitor 5-azacytidine was applied to understand whether transdifferentiation is controlled by epigenetic marks. Irrespective of the presence of (β-ME), the differentiation protocol resulted in glial-lineage cells. Group III produced poorly -differentiated neural cells with neuron-specific enolase positivity. A neuroprogenitor stage (NPC) was identified at d 11 after induction only in Group I. In other groups, this stage was not morphologically distinct. We explored the stage-specific incidence NPC, by alternatively treating them with basic fibroblast growth factor (bFGF), and antioxidants to validate if different signalling could cause varied outcomes (Group IV). They differentiated into neurons, as defined by cell polarity and expression of specific proteins. Meanwhile, neuroprogenitors exposed to NIM (Group I) produced glial-lineage cells. Further refinement and study of the occurrence and terminal differentiation of neuroprogenitors would identify a promising source for neural tissue replacement.
Collapse
Affiliation(s)
- Subathra Radhakrishnan
- National Foundation for Liver Research (NFLR), Gleneagles Global Health City, Chennai, India
- Department of Biomedical Science, Bharathidasan University, Tiruchirappalli, India
| | - Omana Anna Trentz
- MIOT Institute of Research (MIR), MIOT International, Chennai, India
| | - Mettu Srinivas Reddy
- National Foundation for Liver Research (NFLR), Gleneagles Global Health City, Chennai, India
- Institute of Liver Disease and Transplantation, Gleneagles Global Health City, Chennai, India
| | - Mohamed Rela
- National Foundation for Liver Research (NFLR), Gleneagles Global Health City, Chennai, India
- Institute of Liver Disease and Transplantation, Gleneagles Global Health City, Chennai, India
| | - Mahesh Kandasamy
- Department of Animal Science, Bharathidasan University, Tiruchirappalli, India
| | | |
Collapse
|
9
|
Radhakrishnan S, Trentz OA, Martin CA, Reddy MS, Rela M, Chinnarasu M, Kalkura N, Sellathamby S. Effect of passaging on the stemness of infrapatellar fat pad‑derived stem cells and potential role of nucleostemin as a prognostic marker of impaired stemness. Mol Med Rep 2019; 20:813-829. [PMID: 31115526 PMCID: PMC6579983 DOI: 10.3892/mmr.2019.10268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 04/09/2019] [Indexed: 12/13/2022] Open
Abstract
Infrapatellar fat pad‑derived stem cells (IFPSCs) are emerging as an alternative to adipose tissue‑derived stem cells (ADSCs) from other sources. They are a reliable source of autologous stem cells obtained from medical waste that are suitable for use in cell‑based therapy, tissue engineering and regenerative medicine. Such clinical applications require a vast number of high‑quality IFPSCs. Unlike embryonic stem cells (ESCs), ADSCs and IFPSCs have limited population doubling capacity; however, in vitro expansion of primary IFPSCs through multiple passages (referred to as P) is a crucial step to acquire the desired population of cells. The present study investigated the effect of multiple passages on the stemness of IFPSCs during expansion and the possibility of predicting the loss of stemness using certain markers. IFPSCs were isolated from infrapatellar fat pad tissue resected during knee arthroplasty performed on aged patients (>65 years old). These cells from the stromal vascular fraction were serially passaged to at least to P7, and their stemness characteristics were examined at each passage. It was observed that IFPSCs maintained their spindle‑shaped morphology, self‑renewability and homogeneity at P2‑4. Furthermore, immunostaining revealed that these cells expressed mesenchymal stem cell (CD166, CD90 and CD105) and ESC markers [Sox2, Nanog, Oct4 and nucleostemin (NS)], whereas the hematopoietic stem cell marker CD45 was absent. These cells were also able to differentiate into the three germ layer cell types, thus confirming their ability to generate clinical grade cells. The findings indicated that prolonged culture of IFPSCs (P>6) led to the loss of the stem cell proliferative marker NS, with an increased population doubling time and progression toward neuronal differentiation, acquiring a neurogenic phenotype. Additionally, IFPSCs demonstrated an inherent ability to secrete neurotrophic factors and express receptors for these factors, which is the cause of neuronal differentiation at later passages. Therefore, these findings validated NS as a prognostic indicator for impaired stemness and identified IFPSCs as a promising source for cell‑based therapy, particularly for neurodegenerative diseases.
Collapse
Affiliation(s)
- Subathra Radhakrishnan
- National Foundation for Liver Research, Cell Laboratory, Gleneagles Global Health City, Chennai 600100, India
- Department of Biomedical Science, Bharathidasan University, Tiruchirappalli 620024, India
| | - Omana Anna Trentz
- MIOT Institute of Research, MIOT International, Chennai 600089, India
| | - Catherine Ann Martin
- National Foundation for Liver Research, Cell Laboratory, Gleneagles Global Health City, Chennai 600100, India
- Crystal Growth Centre, Anna University, Chennai 600025, India
| | - Mettu Srinivas Reddy
- National Foundation for Liver Research, Cell Laboratory, Gleneagles Global Health City, Chennai 600100, India
- Institute of Liver Disease and Transplantation, Gleneagles Global Health City, Chennai 600100, India
| | - Mohamed Rela
- National Foundation for Liver Research, Cell Laboratory, Gleneagles Global Health City, Chennai 600100, India
- Institute of Liver Disease and Transplantation, Gleneagles Global Health City, Chennai 600100, India
| | - Marimuthu Chinnarasu
- Institute of Liver Disease and Transplantation, Gleneagles Global Health City, Chennai 600100, India
| | | | | |
Collapse
|
10
|
Martin CA, Radhakrishnan S, Nagarajan S, Muthukoori S, Dueñas JMM, Gómez Ribelles JL, Lakshmi BS, E A K N, Gómez-Tejedor JA, Reddy MS, Sellathamby S, Rela M, Subbaraya NK. An innovative bioresorbable gelatin based 3D scaffold that maintains the stemness of adipose tissue derived stem cells and the plasticity of differentiated neurons. RSC Adv 2019; 9:14452-14464. [PMID: 35519343 PMCID: PMC9064131 DOI: 10.1039/c8ra09688k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 04/05/2019] [Indexed: 12/02/2022] Open
Abstract
Neural tissue engineering aims at producing a simulated environment using a matrix that is suitable to grow specialized neurons/glial cells pertaining to CNS/PNS which replace damaged or lost tissues. The primary goal of this study is to design a compatible scaffold that supports the development of neural-lineage cells which aids in neural regeneration. The fabricated, freeze-dried scaffolds consisted of biocompatible, natural and synthetic polymers: gelatin and polyvinyl pyrrolidone. Physiochemical characterization was carried out using Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning Electron Microscopy (SEM) imaging. The 3D construct retains good swelling proficiency and holds the integrated structure that supports cell adhesion and proliferation. The composite of PVP-gelatin is blended in such a way that it matches the mechanical strength of the brain tissue. The cytocompatibility analysis shows that the scaffolds are compatible and permissible for the growth of both stem cells as well as differentiated neurons. A change in the ratios of the scaffold components resulted in varied sizes of pores giving diverse surface morphology, greatly influencing the properties of the neurons. However, there is no change in stem cell properties. Different types of neurons are characterized by the type of gene associated with the neurotransmitter secreted by them. The change in the neuron properties could be attributed to neuroplasticity. The plasticity of the neurons was analyzed using quantitative gene expression studies. It has been observed that the gelatin-rich construct supports the prolonged proliferation of stem cells and multiple neurons along with their plasticity.
Collapse
Affiliation(s)
- Catherine Ann Martin
- Crystal Growth Centre, Anna University Chennai India
- National Foundation for Liver Research, Global Hospitals & Health City Chennai India
| | - Subathra Radhakrishnan
- National Foundation for Liver Research, Global Hospitals & Health City Chennai India
- Department of Biomedicine, Bharathidasan University India
| | | | | | - J M Meseguer Dueñas
- Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València Camino de Vera s/n. 46022 Valencia Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) Spain
| | - José Luis Gómez Ribelles
- Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València Camino de Vera s/n. 46022 Valencia Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) Spain
| | | | | | - José Antonio Gómez-Tejedor
- Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València Camino de Vera s/n. 46022 Valencia Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) Spain
| | - Mettu Srinivas Reddy
- National Foundation for Liver Research, Global Hospitals & Health City Chennai India
| | | | - Mohamed Rela
- National Foundation for Liver Research, Global Hospitals & Health City Chennai India
| | | |
Collapse
|
11
|
Expression of nucleostemin gene in primary osteoarthritis. Gene 2016; 587:27-32. [DOI: 10.1016/j.gene.2016.04.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 02/15/2016] [Accepted: 04/04/2016] [Indexed: 12/14/2022]
|
12
|
Sun X, Jia Y, Wei Y, Liu S, Yue B. Gene expression profiling of NB4 cells following knockdown of nucleostemin using DNA microarrays. Mol Med Rep 2016; 14:175-83. [PMID: 27374947 PMCID: PMC4918620 DOI: 10.3892/mmr.2016.5213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 12/18/2015] [Indexed: 11/05/2022] Open
Abstract
Nucleostemin (NS) is mainly expressed in stem and tumor cells, and is necessary for the maintenance of their self-renewal and proliferation. Originally, NS was thought to exert its effects through inhibiting p53, while recent studies have revealed that NS is also able to function independently of p53. The present study performed a gene expression profiling analysis of p53‑mutant NB4 leukeima cells following knockdown of NS in order to elucidate the p53‑independent NS pathway. NS expression was silenced using lentivirus‑mediated RNA interference technology, and gene expression profiling of NB4 cells was performed by DNA microarray analysis. A total of 1,953 genes were identified to be differentially expressed (fold change ≥2 or ≤0.5) following knockdown of NS expression. Furthermore, reverse‑transcription quantitative polymerase chain reaction analysis was used to detect the expression of certain candidate genes, and the results were in agreement with the micaroarray data. Pathway analysis indicated that aberrant genes were enhanced in endoplasmic, c‑Jun N‑terminal kinase and mineral absorption pathways. The present study shed light on the mechanisms of the p54‑independent NS pathway in NB4 cells and provided a foundation for the discovery of promising targets for the treatment of p53-mutant leukemia.
Collapse
Affiliation(s)
- Xiaoli Sun
- Department of Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yu Jia
- Department of Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yuanyu Wei
- Department of Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Shuai Liu
- Department of Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Baohong Yue
- Department of Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
13
|
Tsai RYL. Balancing self-renewal against genome preservation in stem cells: How do they manage to have the cake and eat it too? Cell Mol Life Sci 2016; 73:1803-23. [PMID: 26886024 PMCID: PMC5040593 DOI: 10.1007/s00018-016-2152-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 01/18/2016] [Accepted: 01/28/2016] [Indexed: 01/22/2023]
Abstract
Stem cells are endowed with the awesome power of self-renewal and multi-lineage differentiation that allows them to be major contributors to tissue homeostasis. Owing to their longevity and self-renewal capacity, they are also faced with a higher risk of genomic damage compared to differentiated cells. Damage on the genome, if not prevented or repaired properly, will threaten the survival of stem cells and culminate in organ failure, premature aging, or cancer formation. It is therefore of paramount importance that stem cells remain genomically stable throughout life. Given their unique biological and functional requirement, stem cells are thought to manage genotoxic stress somewhat differently from non-stem cells. The focus of this article is to review the current knowledge on how stem cells escape the barrage of oxidative and replicative DNA damage to stay in self-renewal. A clear statement on this subject should help us better understand tissue regeneration, aging, and cancer.
Collapse
Affiliation(s)
- Robert Y L Tsai
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University Health Science Center, 2121 W. Holcombe Blvd, Houston, TX, 77030, USA.
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, TX, 77843, USA.
| |
Collapse
|
14
|
Sia PI, Wood JP, Chidlow G, Sharma S, Craig J, Casson RJ. Role of the nucleolus in neurodegenerative diseases with particular reference to the retina: a review. Clin Exp Ophthalmol 2016; 44:188-95. [PMID: 26427048 DOI: 10.1111/ceo.12661] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/17/2015] [Accepted: 09/21/2015] [Indexed: 01/20/2023]
Abstract
The nucleolus has emerged as a key regulator of cellular growth and the response to stress, in addition to its traditionally understood function in ribosome biogenesis. The association between nucleolar function and neurodegenerative disease is increasingly being explored. There is also recent evidence indicating that the nucleolus may well be crucial in the development of the eye. In this present review, the role of the nucleolus in retinal development as well as in neurodegeneration with an emphasis on the retina is discussed.
Collapse
Affiliation(s)
- Paul I Sia
- Ophthalmic Research Laboratories, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Department of Ophthalmology and Visual Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - John Pm Wood
- Ophthalmic Research Laboratories, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Department of Ophthalmology and Visual Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Glyn Chidlow
- Ophthalmic Research Laboratories, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Department of Ophthalmology and Visual Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Shiwani Sharma
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Adelaide, South Australia, Australia
| | - Jamie Craig
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Adelaide, South Australia, Australia
| | - Robert J Casson
- Ophthalmic Research Laboratories, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Department of Ophthalmology and Visual Sciences, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
15
|
Katano M, Ema M, Nakachi Y, Mizuno Y, Hirasaki M, Suzuki A, Ueda A, Nishimoto M, Takahashi S, Okazaki Y, Okuda A. Forced expression of Nanog or Esrrb preserves the ESC status in the absence of nucleostemin expression. Stem Cells 2016; 33:1089-101. [PMID: 25522312 PMCID: PMC4409032 DOI: 10.1002/stem.1918] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 11/04/2014] [Accepted: 11/21/2014] [Indexed: 12/21/2022]
Abstract
Nucleostemin (NS) is a nucleolar GTP-binding protein that is involved in a plethora of functions including ribosomal biogenesis and maintenance of telomere integrity. In addition to its expression in cancerous cells, the NS gene is expressed in stem cells including embryonic stem cells (ESCs). Previous knockdown and knockout studies have demonstrated that NS is important to preserve the self-renewality and high expression levels of pluripotency marker genes in ESCs. Here, we found that forced expression of Nanog or Esrrb, but not other pluripotency factors, resulted in the dispensability of NS expression in ESCs. However, the detrimental phenotypes of ESCs associated with ablation of NS expression were not mitigated by forced expression of Rad51 or a nucleolar localization-defective NS mutant that counteracts the damage associated with loss of NS expression in other NS-expressing cells such as neural stem/progenitor cells. Thus, our results indicate that NS participates in preservation of the viability and integrity of ESCs, which is distinct from that in other NS-expressing cells. Stem Cells2015;33:1089–1101
Collapse
Affiliation(s)
- Miyuki Katano
- Division of Developmental Biology, Saitama Medical University, Yamane, Hidaka, Saitama, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Nucleostemin (NS) protects the genome from replication-induced DNA damage and has an indispensable role in maintaining the continuous proliferation of both p53-wild-type and mutant cells. Yet, some outcomes of NS-deficient cells appear to be shaped by their p53 status, which stimulates conflicting claims on the role of p53 in executing the NS function. This disparity was conveniently attributed to the usual suspect of cell-type variations. To provide a definitive resolution, we investigated the interplay between NS and p53 in two pairs of isogenic cells, that is, genetically modified mouse embryonic fibroblast (MEF) cells and HCT116 human colon cancer cells. In MEF cells, p53 deletion further compromises rather than rescues the proliferative potential of NS-depleted cells without changing their G2/M arrest fate before prophase entry. The detrimental effect of p53 loss in NS-depleted MEF cells correlates with a dramatic increase of polyploid giant cells (PGCs) (up to 24%), which indicates aberrant mitosis. To determine how p53 shapes the response of cells to NS depletion at the molecular level, we showed that p53 turns on the expression of reprimo and MDM2 in NS-deficient MEF cells. In absence of p53, NS-deficient MEF cells exhibit increased levels of phosphorylated cdc2 (Y15) protein and cyclin B1. In cancer (HCT116) cells, NS loss leads to G2/M arrest under both p53wt and p53ko conditions and increases phosphorylated cdc2 more in p53ko than in p53wt cells, as it does in MEF cells. Unlike its effect in MEF cells, NS depletion decreases tumor growth and increases the expression of reprimo and cyclin B1 in a p53-independent manner in HCT116 cells. Our data indicate that the p53 status of NS-deficient cells orchestrates how they respond to G2/M arrest in a normal versus cancer cell distinct fashion.
Collapse
Affiliation(s)
- Guanqun Huang
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA; Department of general surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510700, China
| | - Lingjun Meng
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA
| | - Robert Y L Tsai
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA; Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, TX 77054, USA
| |
Collapse
|
17
|
Yuan F, Cheng Q, Li G, Tong T. Nucleostemin Knockdown Sensitizes Hepatocellular Carcinoma Cells to Ultraviolet and Serum Starvation-Induced Apoptosis. PLoS One 2015; 10:e0141678. [PMID: 26517370 PMCID: PMC4627730 DOI: 10.1371/journal.pone.0141678] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 10/12/2015] [Indexed: 11/20/2022] Open
Abstract
Nucleostemin (NS) is a GTP-binding protein that is predominantly expressed in embryonic and adult stem cells but not in terminally differentiated cells. NS plays an essential role in maintaining the continuous proliferation of stem cells and some types of cancer cells. However, the role of NS in hepatocellular carcinoma (HCC) remains unclear. Therefore, this study aimed to clarify the role of NS in HCC. First, we demonstrated high expression of NS in most HCC cell lines and liver cancer tissues. NS knockdown induced a severe decline in cell viability of MHCC97H cells as detected by MTT and cell proliferation assays. Next, we used ultraviolet (UV) and serum starvation-induced apoptosis models to investigate whether NS suppression or up-regulation affects HCC cell apoptosis. After UV treatment or serum starvation, apoptosis was strongly enhanced in MHCC97H and Bel7402 cells transfected with small interfering RNA against NS, whereas NS overexpression inhibited UV- and serum-induced apoptosis of HCC cells. Furthermore, after UV irradiation, inhibition of NS increased the expression of pro-apoptosis protein caspase 3 and decreased the expression of anti-apoptosis protein Bcl-2. A caspase 3 inhibitor could obviously prevent NS knockdown-induced apoptosis. In conclusion, our study demonstrated overexpression of NS in most HCC tissues compared with their matched surrounding tissues, and silencing NS promoted UV- and serum starvation-induced apoptosis of MHCC97H and Bel7402 cells. Therefore, the NS gene might be a potential therapeutic target of HCC.
Collapse
Affiliation(s)
- Fuwen Yuan
- Research Center on Aging, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University, Beijing, China
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing, China
| | - Qian Cheng
- Research Center on Aging, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University, Beijing, China
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing, China
| | - Guodong Li
- Research Center on Aging, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University, Beijing, China
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing, China
| | - Tanjun Tong
- Research Center on Aging, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University, Beijing, China
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing, China
- * E-mail:
| |
Collapse
|
18
|
Chen J, Dong S, Hu J, Duan B, Yao J, Zhang R, Zhou H, Sheng H, Gao H, Li S, Zhang X. Guanine nucleotide binding protein-like 3 is a potential prognosis indicator of gastric cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:13273-13278. [PMID: 26722529 PMCID: PMC4680474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 09/28/2015] [Indexed: 06/05/2023]
Abstract
Guanine nucleotide binding protein-like 3 (GNL3) is a GIP-binding nuclear protein that has been reported to be involved in various biological processes, including cell proliferation, cellular senescence and tumorigenesis. This study aimed to investigate the expression level of GNL3 in gastric cancer and to evaluate the relationship between its expression and clinical variables and overall survival of gastric cancer patients. The expression level of GNL3 was examined in 89 human gastric cancer samples using immunohistochemistry (IHC) staining. GNL3 in gastric cancer tissues was significantly upregulated compared with paracancerous tissues. GNL3 expression in adjacent non-cancerous tissues was associated with sex and tumor size. Survival analyses showed that GNL3 expression in both gastric cancer and adjacent non-cancerous tissues were not related to overall survival. However, in the subgroup of patients with larger tumor size (≥ 6 cm), a close association was found between GNL3 expression in gastric cancer tissues and overall survival. GNL3-positive patients had a shorter survival than GNL3-negative patients. Our study suggests that GNL3 might play an important role in the progression of gastric cancer and serve as a biomarker for poor prognosis in gastric cancer patients.
Collapse
Affiliation(s)
- Jing Chen
- Department of Pathology, Jingjiang People’s HospitalTaizhou, Jiangsu, China
| | - Shuang Dong
- Department of Gastroenterology, Tongji Hospital of Tongji UniversityShanghai, China
| | - Jiangfeng Hu
- Department of Gastroenterology, Tongji Hospital of Tongji UniversityShanghai, China
| | - Bensong Duan
- Department of Gastroenterology, Tongji Hospital of Tongji UniversityShanghai, China
| | - Jian Yao
- CMC Biobank and Translational Medicine InstituteTaizhou, Jiangsu, China
- National Engineering Center for Biochip at ShanghaiShanghai, China
- Taizhou Outdo Clinical laboratoryTaizhou, Jiangsu, China
| | - Ruiyun Zhang
- CMC Biobank and Translational Medicine InstituteTaizhou, Jiangsu, China
- National Engineering Center for Biochip at ShanghaiShanghai, China
- Taizhou Outdo Clinical laboratoryTaizhou, Jiangsu, China
| | - Hongmei Zhou
- CMC Biobank and Translational Medicine InstituteTaizhou, Jiangsu, China
- National Engineering Center for Biochip at ShanghaiShanghai, China
- Taizhou Outdo Clinical laboratoryTaizhou, Jiangsu, China
| | - Haihui Sheng
- CMC Biobank and Translational Medicine InstituteTaizhou, Jiangsu, China
- National Engineering Center for Biochip at ShanghaiShanghai, China
- Taizhou Outdo Clinical laboratoryTaizhou, Jiangsu, China
| | - Hengjun Gao
- Department of Gastroenterology, Tongji Hospital of Tongji UniversityShanghai, China
- National Engineering Center for Biochip at ShanghaiShanghai, China
| | - Shunlong Li
- Department of Science and Education, Taizhou People’s HospitalTaizhou, Jiangsu, China
| | - Xianwen Zhang
- Department of Oncology, Subei People’s Hospital, Clinical Medical College of Yangzhou UniversityYangzhou, Jiangsu, China
| |
Collapse
|
19
|
Jeon Y, Park YJ, Cho HK, Jung HJ, Ahn TK, Kang H, Pai HS. The nucleolar GTPase nucleostemin-like 1 plays a role in plant growth and senescence by modulating ribosome biogenesis. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6297-310. [PMID: 26163696 PMCID: PMC4588883 DOI: 10.1093/jxb/erv337] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Nucleostemin is a nucleolar GTP-binding protein that is involved in stem cell proliferation, embryonic development, and ribosome biogenesis in mammals. Plant nucleostemin-like 1 (NSN1) plays a role in embryogenesis, and apical and floral meristem development. In this study, a nucleolar function of NSN1 in the regulation of ribosome biogenesis was identified. Green fluorescent protein (GFP)-fused NSN1 localized to the nucleolus, which was primarily determined by its N-terminal domain. Recombinant NSN1 and its N-terminal domain (NSN1-N) bound to RNA in vitro. Recombinant NSN1 expressed GTPase activity in vitro. NSN1 silencing in Arabidopsis thaliana and Nicotiana benthamiana led to growth retardation and premature senescence. NSN1 interacted with Pescadillo and EBNA1 binding protein 2 (EBP2), which are nucleolar proteins involved in ribosome biogenesis, and with several ribosomal proteins. NSN1, NSN1-N, and EBP2 co-fractionated primarily with the 60S ribosomal large subunit in vivo. Depletion of NSN1 delayed 25S rRNA maturation and biogenesis of the 60S ribosome subunit, and repressed global translation. NSN1-deficient plants exhibited premature leaf senescence, excessive accumulation of reactive oxygen species, and senescence-related gene expression. Taken together, these results suggest that NSN1 plays a crucial role in plant growth and senescence by modulating ribosome biogenesis.
Collapse
Affiliation(s)
- Young Jeon
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| | - Yong-Joon Park
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| | - Hui Kyung Cho
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| | - Hyun Ju Jung
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Korea
| | - Tae-Kyu Ahn
- Department of Energy Science, Sungkyunkwan University, Suwon 440-746, Korea
| | - Hunseung Kang
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Korea
| | - Hyun-Sook Pai
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| |
Collapse
|
20
|
Markitantova YV, Avdonin PP, Grigoryan EN. Identification of the gene encoding nucleostemin in the eye tissues of Pleurodeles waltl. BIOL BULL+ 2015. [DOI: 10.1134/s1062359015050088] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Datta D, Anbarasu K, Rajabather S, Priya RS, Desai P, Mahalingam S. Nucleolar GTP-binding Protein-1 (NGP-1) Promotes G1 to S Phase Transition by Activating Cyclin-dependent Kinase Inhibitor p21 Cip1/Waf1. J Biol Chem 2015. [PMID: 26203195 DOI: 10.1074/jbc.m115.637280] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nucleolar GTP-binding protein (NGP-1) is overexpressed in various cancers and proliferating cells, but the functional significance remains unknown. In this study, we show that NGP-1 promotes G1 to S phase transition of cells by enhancing CDK inhibitor p21(Cip-1/Waf1) expression through p53. In addition, our results suggest that activation of the cyclin D1-CDK4 complex by NGP-1 via maintaining the stoichiometry between cyclin D1-CDK4 complex and p21 resulted in hyperphosphorylation of retinoblastoma protein at serine 780 (p-RB(Ser-780)) followed by the up-regulation of E2F1 target genes required to promote G1 to S phase transition. Furthermore, our data suggest that ribosomal protein RPL23A interacts with NGP-1 and abolishes NGP-1-induced p53 activity by enhancing Mdm2-mediated p53 polyubiquitination. Finally, reduction of p-RB(Ser-780) levels and E2F1 target gene expression upon ectopic expression of RPL23a resulted in arrest at the G1 phase of the cell cycle. Collectively, this investigation provides evidence that NGP-1 promotes cell cycle progression through the activation of the p53/p21(Cip-1/Waf1) pathway.
Collapse
Affiliation(s)
- Debduti Datta
- From the Laboratory of Molecular Virology and Cell Biology, National Cancer Tissue Biobank, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai 600 036, India
| | - Kumaraswamy Anbarasu
- From the Laboratory of Molecular Virology and Cell Biology, National Cancer Tissue Biobank, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai 600 036, India
| | - Suryaraja Rajabather
- From the Laboratory of Molecular Virology and Cell Biology, National Cancer Tissue Biobank, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai 600 036, India
| | - Rangasamy Sneha Priya
- From the Laboratory of Molecular Virology and Cell Biology, National Cancer Tissue Biobank, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai 600 036, India
| | - Pavitra Desai
- From the Laboratory of Molecular Virology and Cell Biology, National Cancer Tissue Biobank, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai 600 036, India
| | - Sundarasamy Mahalingam
- From the Laboratory of Molecular Virology and Cell Biology, National Cancer Tissue Biobank, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai 600 036, India
| |
Collapse
|
22
|
Zhang C, Shi J, Qian L, Zhang C, Wu K, Yang C, Yan D, Wu X, Liu X. Nucleostemin exerts anti-apoptotic function via p53 signaling pathway in cardiomyocytes. In Vitro Cell Dev Biol Anim 2015; 51:1064-71. [DOI: 10.1007/s11626-015-9934-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 06/14/2015] [Indexed: 12/15/2022]
|
23
|
Kimura M, Abe H, Mizukami S, Tanaka T, Itahashi M, Onda N, Yoshida T, Shibutani M. Onset of hepatocarcinogen-specific cell proliferation and cell cycle aberration during the early stage of repeated hepatocarcinogen administration in rats. J Appl Toxicol 2015; 36:223-37. [DOI: 10.1002/jat.3163] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 03/08/2015] [Accepted: 03/17/2015] [Indexed: 01/26/2023]
Affiliation(s)
- Masayuki Kimura
- Laboratory of Veterinary Pathology; Tokyo University of Agriculture and Technology; Fuchu-shi Tokyo Japan
- Pathogenetic Veterinary Science; United Graduate School of Veterinary Sciences, Gifu University; Gifu-shi Gifu Japan
| | - Hajime Abe
- Laboratory of Veterinary Pathology; Tokyo University of Agriculture and Technology; Fuchu-shi Tokyo Japan
- Pathogenetic Veterinary Science; United Graduate School of Veterinary Sciences, Gifu University; Gifu-shi Gifu Japan
| | - Sayaka Mizukami
- Laboratory of Veterinary Pathology; Tokyo University of Agriculture and Technology; Fuchu-shi Tokyo Japan
- Pathogenetic Veterinary Science; United Graduate School of Veterinary Sciences, Gifu University; Gifu-shi Gifu Japan
| | - Takeshi Tanaka
- Laboratory of Veterinary Pathology; Tokyo University of Agriculture and Technology; Fuchu-shi Tokyo Japan
- Pathogenetic Veterinary Science; United Graduate School of Veterinary Sciences, Gifu University; Gifu-shi Gifu Japan
| | - Megu Itahashi
- Laboratory of Veterinary Pathology; Tokyo University of Agriculture and Technology; Fuchu-shi Tokyo Japan
- Pathogenetic Veterinary Science; United Graduate School of Veterinary Sciences, Gifu University; Gifu-shi Gifu Japan
| | - Nobuhiko Onda
- Laboratory of Veterinary Pathology; Tokyo University of Agriculture and Technology; Fuchu-shi Tokyo Japan
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology; Tokyo University of Agriculture and Technology; Fuchu-shi Tokyo Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology; Tokyo University of Agriculture and Technology; Fuchu-shi Tokyo Japan
| |
Collapse
|
24
|
Hariharan N, Quijada P, Mohsin S, Joyo A, Samse K, Monsanto M, De La Torre A, Avitabile D, Ormachea L, McGregor MJ, Tsai EJ, Sussman MA. Nucleostemin rejuvenates cardiac progenitor cells and antagonizes myocardial aging. J Am Coll Cardiol 2015; 65:133-47. [PMID: 25593054 DOI: 10.1016/j.jacc.2014.09.086] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/03/2014] [Accepted: 09/23/2014] [Indexed: 12/16/2022]
Abstract
BACKGROUND Functional decline in stem cell-mediated regeneration contributes to aging associated with cellular senescence in c-kit+ cardiac progenitor cells (CPCs). Clinical implementation of CPC-based therapy in elderly patients would benefit tremendously from understanding molecular characteristics of senescence to antagonize aging. Nucleostemin (NS) is a nucleolar protein regulating stem cell proliferation and pluripotency. OBJECTIVES This study sought to demonstrate that NS preserves characteristics associated with "stemness" in CPCs and antagonizes myocardial senescence and aging. METHODS CPCs isolated from human fetal (fetal human cardiac progenitor cell [FhCPC]) and adult failing (adult human cardiac progenitor cell [AhCPC]) hearts, as well as young (young cardiac progenitor cell [YCPC]) and old mice (old cardiac progenitor cell [OCPC]), were studied for senescence characteristics and NS expression. Heterozygous knockout mice with 1 functional allele of NS (NS+/-) were used to demonstrate that NS preserves myocardial structure and function and slows characteristics of aging. RESULTS NS expression is decreased in AhCPCs relative to FhCPCs, correlating with lowered proliferation potential and shortened telomere length. AhCPC characteristics resemble those of OCPCs, which have a phenotype induced by NS silencing, resulting in cell flattening, senescence, multinucleated cells, decreased S-phase progression, diminished expression of stemness markers, and up-regulation of p53 and p16. CPC senescence resulting from NS loss is partially p53 dependent and is rescued by concurrent silencing of p53. Mechanistically, NS induction correlates with Pim-1 kinase-mediated stabilization of c-Myc. Engineering OCPCs and AhCPCs to overexpress NS decreases senescent and multinucleated cells, restores morphology, and antagonizes senescence, thereby preserving phenotypic properties of "stemness." Early cardiac aging with a decline in cardiac function, an increase in senescence markers p53 and p16, telomere attrition, and accompanied CPC exhaustion is evident in NS+/- mice. CONCLUSIONS Youthful properties and antagonism of senescence in CPCs and the myocardium are consistent with a role for NS downstream from Pim-1 signaling that enhances cardiac regeneration.
Collapse
Affiliation(s)
- Nirmala Hariharan
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, California
| | - Pearl Quijada
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, California
| | - Sadia Mohsin
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, California
| | - Anya Joyo
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, California
| | - Kaitlen Samse
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, California
| | - Megan Monsanto
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, California
| | - Andrea De La Torre
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, California
| | - Daniele Avitabile
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, California; Department of Clinical and Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Lucia Ormachea
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, California
| | - Michael J McGregor
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, California
| | - Emily J Tsai
- Section in Cardiology and Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Mark A Sussman
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, California.
| |
Collapse
|
25
|
Grigoryan EN. Competence factors of retinal pigment epithelium cells for reprogramming in the neuronal direction during retinal regeneration in newts. BIOL BULL+ 2015. [DOI: 10.1134/s1062359015010045] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Abstract
A quintessential trait of stem cells is embedded in their ability to self-renew without incurring DNA damage as a result of genome replication. One key self-renewal factor is the nucleolar GTP-binding protein nucleostemin (also known as guanine-nucleotide-binding protein-like 3, GNL3, in invertebrate species). Several studies have recently pointed to an unexpected role of nucleostemin in safeguarding the genome integrity of stem and cancer cells. Since its discovery, the predominant presence of nucleostemin in the nucleolus has led to the notion that it might function in the card-carrying event of the nucleolus--the biogenesis of ribosomes. As tantalizing as this might be, a ribosomal role of nucleostemin is refuted by evidence from recent studies, which argues that nucleostemin depletion triggers a primary event of DNA damage in S phase cells that then leads to ribosomal perturbation. Furthermore, there have been conflicting reports regarding the p53 dependency of nucleostemin activity and the cell cycle arrest profile of nucleostemin-depleted cells. In this Commentary, I propose a model that explains how the many contradictory observations surrounding nucleostemin can be reconciled and suggest that this protein might not be as multi-tasking as has been previously perceived. The story of nucleostemin highlights the complexity of the underlying molecular events associated with the appearance of any cell biological phenotype and also signifies a new understanding of the genome maintenance program in stem cells.
Collapse
Affiliation(s)
- Robert Y L Tsai
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA
| |
Collapse
|
27
|
Li C, Zhao H, Liu Z, McMahon C. Deer antler--a novel model for studying organ regeneration in mammals. Int J Biochem Cell Biol 2014; 56:111-22. [PMID: 25046387 DOI: 10.1016/j.biocel.2014.07.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/30/2014] [Accepted: 07/10/2014] [Indexed: 12/26/2022]
Abstract
Deer antler is the only mammalian organ that can fully grow back once lost from its pedicle - the base from which it grows. Therefore, antlers probably offer the most pertinent model for studying organ regeneration in mammals. This paper reviews our current understanding of the mechanisms underlying regeneration of antlers, and provides insights into the possible use for human regenerative medicine. Based on the definition, antler renewal belongs to a special type of regeneration termed epimorphic. However, histological examination failed to detect dedifferentiation of any cell type on the pedicle stump and the formation of a blastema, which are hallmark features of classic epimorphic regeneration. Instead, antler regeneration is achieved through the recruitment, proliferation and differentiation of the single cell type in the pedicle periosteum (PP). The PP cells are the direct derivatives of cells resident in the antlerogenic periosteum (AP), a tissue that exists in prepubertal deer calves and can induce ectopic antler formation when transplanted elsewhere on the deer body. Both the AP and PP cells express key embryonic stem cell markers and can be induced to differentiate into multiple cell lineages in vitro and, therefore, they are termed antler stem cells, and antler regeneration is a stem cell-based epimorphic regeneration. Comparisons between the healing process on the stumps from an amputated mouse limb and early regeneration of antlers suggest that the stump of a mouse limb cannot regenerate because of the limited potential of periosteal cells in long bones to proliferate. If we can impart a greater potential of these periosteal cells to proliferate, we might at least be able to partially regenerate limbs lost from humans. Taken together, a greater understanding of the mechanisms that regulate the regeneration of antlers may provide a valuable insight to aid the field of regenerative medicine. This article is part of a Directed Issue entitled: Regenerative Medicine: the challenge of translation.
Collapse
Affiliation(s)
- Chunyi Li
- State Key Laboratory for Molecular Biology of Special Economic Animals, Changchun, China; Institute of Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, China.
| | - Haiping Zhao
- State Key Laboratory for Molecular Biology of Special Economic Animals, Changchun, China; Institute of Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zhen Liu
- State Key Laboratory for Molecular Biology of Special Economic Animals, Changchun, China; Institute of Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Chris McMahon
- AgResearch Ruakura Agricultural Centre, Private Bag 3123, Hamilton, New Zealand
| |
Collapse
|
28
|
SUN XIAOLI, JIA YU, WEI YUANYU, LIU SHUAI, YUE BAOHONG. Gene expression profiling of HL-60 cells following knockdown of nucleostemin using DNA microarrays. Oncol Rep 2014; 32:739-47. [DOI: 10.3892/or.2014.3240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 04/29/2014] [Indexed: 11/05/2022] Open
|
29
|
Hariharan N, Sussman MA. Stressing on the nucleolus in cardiovascular disease. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1842:798-801. [PMID: 24514103 PMCID: PMC3972279 DOI: 10.1016/j.bbadis.2013.09.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 09/18/2013] [Indexed: 12/23/2022]
Abstract
The nucleolus is a multifunctional organelle with multiple roles involving cell proliferation, growth, survival, ribosome biogenesis and stress response signaling. Alteration of nucleolar morphology and architecture signifies an early response to increased cellular stress. This review briefly summarizes nucleolar response to cardiac stress signals and details the role played by nucleolar proteins in cardiovascular pathophysiology. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease.
Collapse
Affiliation(s)
- Nirmala Hariharan
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, CA 92182, USA
| | - Mark A Sussman
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, CA 92182, USA.
| |
Collapse
|
30
|
Lo D, Zhang Y, Dai MS, Sun XX, Zeng SX, Lu H. Nucleostemin stabilizes ARF by inhibiting the ubiquitin ligase ULF. Oncogene 2014; 34:1688-97. [PMID: 24769896 PMCID: PMC4212020 DOI: 10.1038/onc.2014.103] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 02/02/2014] [Accepted: 03/13/2014] [Indexed: 12/18/2022]
Abstract
Up-regulated expression of nucleolar GTPase Nucleostemin (NS) has been associated with increased cellular proliferation potential and tumor malignancy during cancer development. Recent reports attribute the growth regulatory effects of NS protein to its role in facilitating ribosome production. However, the oncogenic potential of NS remains unclear since imbalanced levels of NS have been reported to exert growth inhibitory effect by modulating p53 tumor suppressor activity. It also remains in questions if aberrant NS levels might play a p53-independent role in regulation of cell proliferation and growth. In this study, we performed affinity purification and mass spectrometry analysis to explore protein-protein interactions influencing NS growth regulatory properties independently of p53 tumor suppressor. We identified the Alternative Reading Frame (ARF) protein as a key protein associating with NS and further verified the interaction through in vitro and in vivo assays. We demonstrated that NS is able to regulate cell cycle progression by regulating the stability of the ARF tumor suppressor. Furthermore, overexpression of NS suppressed ARF polyubiquitination by its E3 ligase ULF and elongated its half-life, while knockdown of NS led to the decrease of ARF levels. Also, we found that NS can enhance NPM stabilization of ARF. Thus, we propose that in the absence of p53, ARF can be stabilized by NS and NPM to serve as an alternative tumor suppressor surveillance, preventing potential cellular transformation resulting from the growth inducing effects of NS overexpression.
Collapse
Affiliation(s)
- D Lo
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, USA
| | - Y Zhang
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, USA
| | - M-S Dai
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | - X-X Sun
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | - S X Zeng
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, USA
| | - H Lu
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
31
|
Asadi MH, Derakhshani A, Mowla SJ. Concomitant upregulation of nucleostemin and downregulation of Sox2 and Klf4 in gastric adenocarcinoma. Tumour Biol 2014; 35:7177-85. [PMID: 24763828 DOI: 10.1007/s13277-014-1966-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 04/11/2014] [Indexed: 02/04/2023] Open
Abstract
Nucleostemin (NS) is a nucleolar protein involved in stem cell (SC) self-renewal by controlling cell cycle progression. In addition to SCs, NS is also expressed in some highly proliferating cells including several adult stem cells and cancer cell lines. NS knock-down in different cell lines demonstrated its cell type-dependent function in arresting cell cycle in either G1 or G2/M phases. Here, we have evaluated the expression of NS and iPS genes in 36 gastric cancer and their matched marginal nontumor tissues by means of real-time polymerase chain reaction (RT-PCR). We have also examined a potential causative role of NS in gastric tumorigenesis by suppressing its expression in a gastric cancer cell line, AGS. Our data revealed that NS expression level is much higher in tumor tissues (p = 0.046), especially in high-grade ones (p < 0.001), whereas the expression of Klf4 and Sox2 is downregulated in tumor tissues compared to marginal nontumor samples (p < 0.001). Furthermore, NS suppression in the AGS cell line caused some morphological alterations, a cell cycle arrest at G1 phase, and an upregulation of iPS genes: Nanog, Sox2, and Klf4. Based on our results, NS overexpression seems to have a causative role in gastric tumorigenesis and/or progression, and it could be considered as a potential tumor marker for diagnosis, molecular classification, and molecular therapy of gastric adenocarcinoma.
Collapse
Affiliation(s)
- Malek Hossein Asadi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | | | | |
Collapse
|
32
|
Lin T, Meng L, Lin TC, Wu LJ, Pederson T, Tsai RYL. Nucleostemin and GNL3L exercise distinct functions in genome protection and ribosome synthesis, respectively. J Cell Sci 2014; 127:2302-12. [PMID: 24610951 DOI: 10.1242/jcs.143842] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The mammalian nucleolar proteins nucleostemin and GNL3-like (GNL3L) are encoded by paralogous genes that arose from an ancestral invertebrate gene, GNL3. Invertebrate GNL3 has been implicated in ribosome biosynthesis, as has its mammalian descendent, GNL3L. The paralogous mammalian nucleostemin protein has, instead, been implicated in cell renewal. Here, we found that depletion of nucleostemin in a human breast carcinoma cell line triggers prompt and significant DNA damage in S-phase cells without perturbing the initial step of ribosomal (r)RNA synthesis and only mildly affects the total ribosome production. By contrast, GNL3L depletion markedly impairs ribosome production without inducing appreciable DNA damage. These results indicate that, during vertebrate evolution, GNL3L retained the role of the ancestral gene in ribosome biosynthesis, whereas the paralogous nucleostemin acquired a novel genome-protective function. Our results provide a coherent explanation for what had seemed to be contradictory findings about the functions of the invertebrate versus vertebrate genes and are suggestive of how the nucleolus was fine-tuned for a role in genome protection and cell-cycle control as the vertebrates evolved.
Collapse
Affiliation(s)
- Tao Lin
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA
| | - Lingjun Meng
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA
| | - Tsung-Chin Lin
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA
| | - Laura J Wu
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA
| | - Thoru Pederson
- Program in Cell and Developmental Dynamics, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Robert Y L Tsai
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA
| |
Collapse
|
33
|
Essers PB, Pereboom TC, Goos YJ, Paridaen JT, Macinnes AW. A comparative study of nucleostemin family members in zebrafish reveals specific roles in ribosome biogenesis. Dev Biol 2013; 385:304-15. [PMID: 24211311 DOI: 10.1016/j.ydbio.2013.10.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 10/24/2013] [Accepted: 10/28/2013] [Indexed: 01/05/2023]
Abstract
Nucleostemin (NS) is an essential protein for the growth and viability of developmental stem cells. Its functions are multi-faceted, including important roles in ribosome biogenesis and in the p53-induced apoptosis pathway. While NS has been well studied, the functions of its family members GNL2 and GNL3-like (GNL3L) remain relatively obscure despite a high degree of sequence and domain homology. Here, we use zebrafish lines carrying mutations in the ns family to compare and contrast their functions in vertebrates. We find the loss of zebrafish ns or gnl2 has a major impact on 60S large ribosomal subunit formation and/or function due to cleavage impairments at distinct sites of pre-rRNA transcript. In both cases this leads to a reduction of total protein synthesis. In contrast, gnl3l loss shows relatively minor rRNA processing delays that ultimately have no appreciable effects on ribosome biogenesis or protein synthesis. However, the loss of gnl3l still results in p53 stabilization, apoptosis, and lethality similarly to ns and gnl2 loss. The depletion of p53 in all three of the mutants led to partial rescues of the morphological phenotypes and surprisingly, a rescue of the 60S subunit collapse in the ns mutants. We show that this rescue is due to an unexpected effect of p53 loss that even in wild type embryos results in an increase of 60S subunits. Our study presents an in-depth description of the mechanisms through which ns and gnl2 function in vertebrate ribosome biogenesis and shows that despite the high degree of sequence and domain homology, gnl3l has critical functions in development that are unrelated to the ribosome.
Collapse
Affiliation(s)
- Paul B Essers
- Hubrecht Institute, KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584CT Utrecht, The Netherlands.
| | - Tamara C Pereboom
- Hubrecht Institute, KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584CT Utrecht, The Netherlands.
| | - Yvonne J Goos
- Hubrecht Institute, KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584CT Utrecht, The Netherlands.
| | - Judith T Paridaen
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, D-01307 Dresden, Germany.
| | - Alyson W Macinnes
- Hubrecht Institute, KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584CT Utrecht, The Netherlands.
| |
Collapse
|
34
|
Yamashita M, Nitta E, Nagamatsu G, Ikushima YM, Hosokawa K, Arai F, Suda T. Nucleostemin is indispensable for the maintenance and genetic stability of hematopoietic stem cells. Biochem Biophys Res Commun 2013; 441:196-201. [DOI: 10.1016/j.bbrc.2013.10.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 10/08/2013] [Indexed: 01/10/2023]
|
35
|
Uema N, Ooshio T, Harada K, Naito M, Naka K, Hoshii T, Tadokoro Y, Ohta K, Ali MAE, Katano M, Soga T, Nakanuma Y, Okuda A, Hirao A. Abundant nucleostemin expression supports the undifferentiated properties of germ cell tumors. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:592-603. [PMID: 23885716 DOI: 10.1016/j.ajpath.2013.04.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 03/21/2013] [Accepted: 04/30/2013] [Indexed: 12/23/2022]
Abstract
Nucleostemin (NS) is a nucleolar GTP-binding protein that is involved in ribosomal biogenesis and protection of telomeres. We investigated the expression of NS in human germ cell tumors and its function in a mouse germ cell tumor model. NS was abundantly expressed in undifferentiated, but not differentiated, types of human testicular germ cell tumors. NS was expressed concomitantly with OCT3/4, a critical regulator of the undifferentiated status of pluripotent stem cells in primordial germ cells and embryonal carcinomas. To investigate the roles of NS in tumor growth in vivo, we used a mouse teratoma model. Analysis of teratomas derived from embryonic stem cells in which the NS promoter drives GFP expression showed that cells highly expressing NS were actively proliferating and exhibited the characteristics of tumor-initiating cells, including the ability to initiate and propagate tumor cells in vivo. NS-expressing cells exhibited higher levels of GTP than non-NS-expressing cells. Because NS protein is stabilized by intracellular GTP, metabolic changes may contribute to abundant NS expression in the undifferentiated cells. OCT3/4 deficiency in teratomas led to loss of NS expression, resulting in growth retardation. Finally, we found that teratomas deficient in NS lost their undifferentiated characteristics, resulting in defective tumor proliferation. These data indicate that abundant expression of NS supports the undifferentiated properties of germ cell tumors.
Collapse
Affiliation(s)
- Noriyuki Uema
- Division of Molecular Genetics, Cancer and Stem Cell Program, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
During newt lens regeneration a unique transdifferentiation event occurs. In this process, dorsal iris pigmented epithelial cells transdifferentiate into lens cells. This system should provide a new insight into cellular plasticity in basic and applied research. Recently, a series of approaches to study epigenetic reprogramming during transdifferentiation have been performed. In this review, we introduce the regulation of dynamic regulation of core-histone modifications and the emergence of an oocyte-type linker histone during transdifferentiation. Finally, we show supporting evidence that there are common strategies of reprogramming between newt somatic cell in transdifferentiation and oocytes after somatic cell nuclear transfer.
Collapse
Affiliation(s)
- Nobuyasu Maki
- Institute of Protein Research, Osaka University, Osaka, Japan.
| | | |
Collapse
|
37
|
Nucleostemin deletion reveals an essential mechanism that maintains the genomic stability of stem and progenitor cells. Proc Natl Acad Sci U S A 2013; 110:11415-20. [PMID: 23798389 DOI: 10.1073/pnas.1301672110] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Stem and progenitor cells maintain a robust DNA replication program during the tissue expansion phase of embryogenesis. The unique mechanism that protects them from the increased risk of replication-induced DNA damage, and hence permits self-renewal, remains unclear. To determine whether the genome integrity of stem/progenitor cells is safeguarded by mechanisms involving molecules beyond the core DNA repair machinery, we created a nucleostemin (a stem and cancer cell-enriched protein) conditional-null allele and showed that neural-specific knockout of nucleostemin predisposes embryos to spontaneous DNA damage that leads to severe brain defects in vivo. In cultured neural stem cells, depletion of nucleostemin triggers replication-dependent DNA damage and perturbs self-renewal, whereas overexpression of nucleostemin shows a protective effect against hydroxyurea-induced DNA damage. Mechanistic studies performed in mouse embryonic fibroblast cells showed that loss of nucleostemin triggers DNA damage and growth arrest independently of the p53 status or rRNA synthesis. Instead, nucleostemin is directly recruited to DNA damage sites and regulates the recruitment of the core repair protein, RAD51, to hydroxyurea-induced foci. This work establishes the primary function of nucleostemin in maintaining the genomic stability of actively dividing stem/progenitor cells by promoting the recruitment of RAD51 to stalled replication-induced DNA damage foci.
Collapse
|
38
|
De Nevi E, Marco-Salazar P, Fondevila D, Blasco E, Pérez L, Pumarola M. Immunohistochemical study of doublecortin and nucleostemin in canine brain. Eur J Histochem 2013; 57:e9. [PMID: 23549468 PMCID: PMC3683616 DOI: 10.4081/ejh.2013.e9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 12/14/2012] [Accepted: 12/18/2012] [Indexed: 01/05/2023] Open
Abstract
Finding a marker of neural stem cells remains a medical research priority. It was reported that the proteins doublecortin and nucleostemin were related with stem/progenitor cells in central nervous system. The aim of the present immunohistochemical study was to evaluate the expression of these proteins and their pattern of distribution in canine brain, including age-related changes, and in non-nervous tissues. We found that doublecortin had a more specific expression pattern, related with neurogenesis and neuronal migration, while nucleostemin was expressed in most cells of almost every tissue studied. The immunolabeling of both proteins decreased with age. We may conclude that nucleostemin is not a specific marker of stem/progenitor cells in the dog. Doublecortin, however, is not an exclusive marker of neural stem cells, but also of neuronal precursors.
Collapse
Affiliation(s)
- E De Nevi
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
39
|
Shugo H, Ooshio T, Naito M, Naka K, Hoshii T, Tadokoro Y, Muraguchi T, Tamase A, Uema N, Yamashita T, Nakamoto Y, Suda T, Kaneko S, Hirao A. Nucleostemin in Injury-Induced Liver Regeneration. Stem Cells Dev 2012; 21:3044-54. [DOI: 10.1089/scd.2011.0725] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Haruhiko Shugo
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
- Disease Control and Homeostasis, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Takako Ooshio
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Masako Naito
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Kazuhito Naka
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Takayuki Hoshii
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Yuko Tadokoro
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Teruyuki Muraguchi
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Akira Tamase
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Noriyuki Uema
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Taro Yamashita
- Disease Control and Homeostasis, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Yasunari Nakamoto
- Disease Control and Homeostasis, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Toshio Suda
- Department of Cell Differentiation, The Sakaguchi Laboratory of Developmental Biology, Keio University School of Medicine, Tokyo, Japan
| | - Shuichi Kaneko
- Disease Control and Homeostasis, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Atsushi Hirao
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
40
|
Qu J, Bishop JM. Nucleostemin maintains self-renewal of embryonic stem cells and promotes reprogramming of somatic cells to pluripotency. ACTA ACUST UNITED AC 2012; 197:731-45. [PMID: 22689653 PMCID: PMC3373402 DOI: 10.1083/jcb.201103071] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nucleostemin is a novel cell reprogramming factor that promotes self-renewal and pluripotency through effects on gene expression and cell cycle progression. Nucleostemin (NS) is a nucleolar GTP-binding protein that was first identified in neural stem cells, the functions of which remain poorly understood. Here, we report that NS is required for mouse embryogenesis to reach blastulation, maintenance of embryonic stem cell (ESC) self-renewal, and mammary epithelial cell (MEC) reprogramming to induced pluripotent stem (iPS) cells. Ectopic NS also cooperates with OCT4 and SOX2 to reprogram MECs and mouse embryonic fibroblasts to iPS cells. NS promotes ESC self-renewal by sustaining rapid transit through the G1 phase of the cell cycle. Depletion of NS in ESCs retards transit through G1 and induces gene expression changes and morphological differentiation through a mechanism that involves the MEK/ERK protein kinases and that is active only during a protracted G1. Suppression of cell cycle inhibitors mitigates these effects. Our results implicate NS in the maintenance of ESC self-renewal, demonstrate the importance of rapid transit through G1 for this process, and expand the known classes of reprogramming factors.
Collapse
Affiliation(s)
- Jian Qu
- G.W. Hooper Foundation and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | | |
Collapse
|
41
|
Markitantova YV, Zinovieva RD. Expression of nucleostemin in proliferating and differentiating cells of the human retina during prenatal development. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2012; 445:244-6. [PMID: 22945526 DOI: 10.1134/s0012496612040084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Indexed: 11/23/2022]
Affiliation(s)
- Yu V Markitantova
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
42
|
Zeggini E, Panoutsopoulou K, Southam L, Rayner NW, Day-Williams AG, Lopes MC, Boraska V, Esko T, Evangelou E, Hoffman A, Houwing-Duistermaat JJ, Ingvarsson T, Jonsdottir I, Jonnson H, Kerkhof HJ, Kloppenburg M, Bos SD, Mangino M, Metrustry S, Slagboom PE, Thorleifsson G, Raine EVA, Ratnayake M, Ricketts M, Beazley C, Blackburn H, Bumpstead S, Elliott KS, Hunt SE, Potter SC, Shin SY, Yadav VK, Zhai G, Sherburn K, Dixon K, Arden E, Aslam N, Battley PK, Carluke I, Doherty S, Gordon A, Joseph J, Keen R, Koller NC, Mitchell S, O'Neill F, Paling E, Reed MR, Rivadeneira F, Swift D, Walker K, Watkins B, Wheeler M, Birrell F, Ioannidis JPA, Meulenbelt I, Metspalu A, Rai A, Salter D, Stefansson K, Stykarsdottir U, Uitterlinden AG, van Meurs JBJ, Chapman K, Deloukas P, Ollier WER, Wallis GA, Arden N, Carr A, Doherty M, McCaskie A, Willkinson JM, Ralston SH, Valdes AM, Spector TD, Loughlin J. Identification of new susceptibility loci for osteoarthritis (arcOGEN): a genome-wide association study. Lancet 2012; 380:815-23. [PMID: 22763110 PMCID: PMC3443899 DOI: 10.1016/s0140-6736(12)60681-3] [Citation(s) in RCA: 293] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Osteoarthritis is the most common form of arthritis worldwide and is a major cause of pain and disability in elderly people. The health economic burden of osteoarthritis is increasing commensurate with obesity prevalence and longevity. Osteoarthritis has a strong genetic component but the success of previous genetic studies has been restricted due to insufficient sample sizes and phenotype heterogeneity. METHODS We undertook a large genome-wide association study (GWAS) in 7410 unrelated and retrospectively and prospectively selected patients with severe osteoarthritis in the arcOGEN study, 80% of whom had undergone total joint replacement, and 11,009 unrelated controls from the UK. We replicated the most promising signals in an independent set of up to 7473 cases and 42,938 controls, from studies in Iceland, Estonia, the Netherlands, and the UK. All patients and controls were of European descent. FINDINGS We identified five genome-wide significant loci (binomial test p≤5·0×10(-8)) for association with osteoarthritis and three loci just below this threshold. The strongest association was on chromosome 3 with rs6976 (odds ratio 1·12 [95% CI 1·08-1·16]; p=7·24×10(-11)), which is in perfect linkage disequilibrium with rs11177. This SNP encodes a missense polymorphism within the nucleostemin-encoding gene GNL3. Levels of nucleostemin were raised in chondrocytes from patients with osteoarthritis in functional studies. Other significant loci were on chromosome 9 close to ASTN2, chromosome 6 between FILIP1 and SENP6, chromosome 12 close to KLHDC5 and PTHLH, and in another region of chromosome 12 close to CHST11. One of the signals close to genome-wide significance was within the FTO gene, which is involved in regulation of bodyweight-a strong risk factor for osteoarthritis. All risk variants were common in frequency and exerted small effects. INTERPRETATION Our findings provide insight into the genetics of arthritis and identify new pathways that might be amenable to future therapeutic intervention. FUNDING arcOGEN was funded by a special purpose grant from Arthritis Research UK.
Collapse
|
43
|
Hsu JK, Lin T, Tsai RYL. Nucleostemin prevents telomere damage by promoting PML-IV recruitment to SUMOylated TRF1. ACTA ACUST UNITED AC 2012; 197:613-24. [PMID: 22641345 PMCID: PMC3365494 DOI: 10.1083/jcb.201109038] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A novel telomere-protection mechanism relies upon nucleostemin-mediated recruitment of PML-IV to telomeres and subsequent recruitment of RAD51 in both ALT and telomerase-active cells. Continuously dividing cells must be protected from telomeric and nontelomeric DNA damage in order to maintain their proliferative potential. Here, we report a novel telomere-protecting mechanism regulated by nucleostemin (NS). NS depletion increased the number of telomere damage foci in both telomerase-active (TA+) and alternative lengthening of telomere (ALT) cells and decreased the percentage of damaged telomeres associated with ALT-associated PML bodies (APB) and the number of APB in ALT cells. Mechanistically, NS could promote the recruitment of PML-IV to SUMOylated TRF1 in TA+ and ALT cells. This event was stimulated by DNA damage. Supporting the importance of NS and PML-IV in telomere protection, we demonstrate that loss of NS or PML-IV increased the frequency of telomere damage and aberration, reduced telomeric length, and perturbed the TRF2ΔBΔM-induced telomeric recruitment of RAD51. Conversely, overexpression of either NS or PML-IV protected ALT and TA+ cells from telomere damage. This work reveals a novel mechanism in telomere protection.
Collapse
Affiliation(s)
- Joseph K Hsu
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA
| | | | | |
Collapse
|
44
|
Abstract
Full regeneration of deer antlers, a bona fide epimorphic process in mammals, is in defiance of the general rule of nature. Revealing the mechanism underlying this unique exception would place us in a better position to promote organ regeneration in humans. Antler regeneration takes place in yearly cycles from its pedicle, a permanent protuberance on the frontal bone. Both growing antlers and pedicles consist of internal (cartilage and bone) and external components (skin, blood vessels, and nerves). Recent studies have demonstrated that the regeneration of both internal and external components relies on the presence of pedicle periosteum (PP). PP cells express key embryonic stem cell markers (Oct4, Nanog, and SOX2) and are multipotent, so are termed antler stem cells. Now it is clear that proliferation and differentiation of PP cells directly forms internal antler components; however, how PP initiates and maintains the regeneration of external antler components is thus far not known. Based on the direct as well as indirect evidence that is presented in this review, I put forward the following hypothesis to address this issue. The full regenerative ability of external antler tissue components is achieved through PP-derived chemical induction and PP-derived mechanical stimulation: the former triggers the regeneration of these external components, whereas the latter drives their rapid elongation. Eventual identification of the putative PP-derived chemical factors would open up a new avenue for devising effective therapies for lesions involving each of these tissue components, be they traumatic, degenerative, or linked to developmental (genetic) anomalies.
Collapse
Affiliation(s)
- Chunyi Li
- AgResearch Invermay Agricultural Center, Mosgiel, New Zealand.
| |
Collapse
|
45
|
Deshmukh RS, Østrup O, Strejcek F, Vejlsted M, Lucas-Hahn A, Petersen B, Li J, Callesen H, Niemann H, Hyttel P. Early aberrations in chromatin dynamics in embryos produced under in vitro conditions. Cell Reprogram 2012; 14:225-34. [PMID: 22468997 DOI: 10.1089/cell.2011.0069] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In vitro production of porcine embryos by means of in vitro fertilization (IVF) or somatic cell nuclear transfer (SCNT) is limited by great inefficienciy. The present study investigated chromatin and nucleolar dynamics in porcine embryos developed in vivo (IV) and compared this physiological standard to that of embryos produced by IVF, parthenogenetic activation (PA), or SCNT. In contrast to IV embryos, chromatin spatial and temporal dynamics in PA, IVF, and SCNT embryos were altered; starting with aberrant chromatin-nuclear envelope interactions at the two-cell stage, delayed chromatin decondensation and nucleolar development at the four-cell stage, and ultimately culminating in failure of proper first lineage segregation at the blastocyst stage, demonstrated by poorly defined inner cell mass. Interestingly, in vitro produced (IVP) embryos also lacked a heterochromatin halo around nucleolar precursors, indicating imperfections in global chromatin remodeling after fertilization/activation. Porcine IV-produced zygotes and embryos display a well-synchronized pattern of chromatin dynamics compatible with genome activation and regular nucleolar formation at the four-cell stage. Production of porcine embryos under in vitro conditions by IVF, PA, or SCNT is associated with altered chromatin remodeling, delayed nucleolar formation, and poorly defined lineage segregation at the blastocyst stage, which in turn may impair their developmental capacity.
Collapse
Affiliation(s)
- Rahul S Deshmukh
- Department of Basic Animal and Veterinary Sciences, Faculty of Life Sciences, University of Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Wang X, Gingrich DK, Deng Y, Hong Z. A nucleostemin-like GTPase required for normal apical and floral meristem development in Arabidopsis. Mol Biol Cell 2012; 23:1446-56. [PMID: 22357616 PMCID: PMC3327326 DOI: 10.1091/mbc.e11-09-0797] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Stem cell activities have to be terminated during flower development. A nucleostemin-like 1 gene, NSN1, is described in Arabidopsis. NSN1 is a midsize nucleolar GTPase required for proper termination of stem cell activities during flower development. Mammalian nucleostemin (NS) is preferentially expressed in stem cells and acts to promote cell cycle progression. In plants, stem cell activities have to be terminated during flower development, and this process requires the activation of AGAMOUS (AG) gene expression. Here, a nucleostemin-like 1 gene, NSN1, is shown to be required for flower development in Arabidopsis. The NSN1 mRNA was found in the inflorescence meristem and floral primordia, and its protein was localized to the nucleoli. Both heterozygous and homozygous plants developed defective flowers on inflorescences that were eventually terminated by the formation of carpelloid flowers. Overexpression of NSN1 resulted in loss of apical dominance and formation of defective flowers. Expression of the AG gene was found to be up-regulated in nsn1. The carpelloid flower defect of nsn1 was suppressed by the ag mutation in the nsn1 ag double mutant, whereas double mutants of nsn1 apetala2 (ap2) displayed enhanced defective floral phenotypes. These results suggest that in the delicately balanced regulatory network, NSN1 acts to repress AG and plays an additive role with AP2 in floral organ specification. As a midsize nucleolar GTPase, NSN1 represents a new class of regulatory proteins required for flower development in Arabidopsis.
Collapse
Affiliation(s)
- Xiaomin Wang
- Department of Plant, Soil, and Entomological Sciences and Program of Microbiology, Molecular Biology and Biochemistry, University of Idaho, Moscow, ID 83844
| | | | | | | |
Collapse
|
47
|
Lo D, Dai MS, Sun XX, Zeng SX, Lu H. Ubiquitin- and MDM2 E3 ligase-independent proteasomal turnover of nucleostemin in response to GTP depletion. J Biol Chem 2012; 287:10013-10020. [PMID: 22318725 DOI: 10.1074/jbc.m111.335141] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Nucleostemin (NS) is a nucleolar GTP-binding protein essential for ribosomal biogenesis, proliferation, and animal embryogenesis. It remains largely unclear how this protein is regulated. While working on its role in suppression of MDM2 and activation of p53, we observed that NS protein (but not mRNA) levels decreased drastically in response to GTP depletion. When trying to further elucidate the molecular mechanism(s) underlying this unusual phenomenon, we found that NS was degraded independently of ubiquitin and MDM2 upon GTP depletion. First, depletion of GTP by treating cells with mycophenolic acid decreased the level of NS without apparently affecting the levels of other nucleolar proteins. Second, mutant NS defective in GTP binding and exported to the nucleoplasm was much less stable than wild-type NS. Although NS was ubiquitinated in cells, its polyubiquitination was independent of Lys-48 or Lys-63 in the ubiquitin molecule. Inactivation of E1 in E1 temperature-sensitive mouse embryonic fibroblast (MEF) cells failed to prevent the proteasomal degradation of NS. The proteasomal turnover of NS was also MDM2-independent, as its half-life in p53/MDM2 double knock-out MEF cells was the same as that in wild-type MEF cells. Moreover, NS ubiquitination was MDM2-independent. Mycophenolic acid or doxorubicin induced NS degradation in various human cancerous cells regardless of the status of MDM2. Hence, these results indicate that NS undergoes a ubiquitin- and MDM2-independent proteasomal degradation when intracellular GTP levels are markedly reduced and also suggest that ubiquitination of NS may be involved in regulation of its function rather than stability.
Collapse
Affiliation(s)
- Dorothy Lo
- Department of Biochemistry and Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana 70112 and
| | - Mu-Shui Dai
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon 97239
| | - Xiao-Xin Sun
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon 97239
| | - Shelya X Zeng
- Department of Biochemistry and Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana 70112 and
| | - Hua Lu
- Department of Biochemistry and Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana 70112 and.
| |
Collapse
|
48
|
Wang X, Xie B, Zhu M, Zhang Z, Hong Z. Nucleostemin-like 1 is required for embryogenesis and leaf development in Arabidopsis. PLANT MOLECULAR BIOLOGY 2012; 78:31-44. [PMID: 22058024 DOI: 10.1007/s11103-011-9840-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 10/19/2011] [Indexed: 05/31/2023]
Abstract
Arabidopsis NSN1 encodes a nucleolar GTP-binding protein and is required for flower development. Defective flowers were formed in heterozygous nsn1/+ plants. Homozygous nsn1 plants were dwarf and exhibited severe defects in reproduction. Arrests in embryo development in nsn1 could occur at any stage of embryogenesis. Cotyledon initiation and development during embryogenesis were distorted in nsn1 plants. At the seedling stage, cotyledons and leaves of nsn1 formed upward curls. The curled leaves developed meristem-like outgrowths or hyperplasia tissues in the adaxial epidermis. Long and enlarged pavement cells, characteristic of the abaxial epidermis of wild type plants, were found in the adaxial epidermis in nsn1 leaves, suggesting a disoriented leaf polarity in the mutant. The important role of NSN1 in embryo development and leaf differentiation was consistent with the high level expression of the NSN1 gene in the developing embryos and the primordia of cotyledons and leaves. The CLAVATA 3 (CLV3) gene, a stem cell marker in the Arabidopsis shoot apical meristem (SAM), was expressed in expanded regions surrounding the SAM of nsn1 plants, and induced ectopically in the meristem-like outgrowths in cotyledons and leaves. The nsn1 mutation up-regulated the expression levels of several genes implicated in the meristem identity and the abaxial cell fate, and repressed the expression of other genes related to the specification of cotyledon boundary and abaxial identity. These results demonstrate that NSN1 represents a novel GTPase required for embryogenesis, leaf development and leaf polarity establishment in Arabidopsis.
Collapse
Affiliation(s)
- Xiaomin Wang
- Department of Plant, Soil and Entomological Sciences and Program of Microbiology, Molecular Biology and Biochemistry, University of Idaho, Moscow, ID 83844-3052, USA
| | | | | | | | | |
Collapse
|
49
|
Taniai E, Yafune A, Hayashi H, Itahashi M, Hara-Kudo Y, Suzuki K, Mitsumori K, Shibutani M. Aberrant activation of ubiquitin D at G 2 phase and apoptosis by carcinogens that evoke cell proliferation after 28-day administration in rats. J Toxicol Sci 2012. [DOI: 10.2131/jts.37.1093] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Eriko Taniai
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
- Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University
| | - Atsunori Yafune
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
- Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University
- Gotemba Laboratory, Bozo Research Center Inc
| | - Hitomi Hayashi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
- Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University
| | - Megu Itahashi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
- Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University
| | | | - Kazuhiko Suzuki
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| | - Kunitoshi Mitsumori
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| |
Collapse
|
50
|
Gil-Ranedo J, Mendiburu-Eliçabe M, García-Villanueva M, Medina D, del Álamo M, Izquierdo M. An off-target nucleostemin RNAi inhibits growth in human glioblastoma-derived cancer stem cells. PLoS One 2011; 6:e28753. [PMID: 22174890 PMCID: PMC3236221 DOI: 10.1371/journal.pone.0028753] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 11/14/2011] [Indexed: 12/03/2022] Open
Abstract
Glioblastomas (GBM) may contain a variable proportion of active cancer stem cells (CSCs) capable of self-renewal, of aggregating into CD133+ neurospheres, and to develop intracranial tumors that phenocopy the original ones. We hypothesized that nucleostemin may contribute to cancer stem cell biology as these cells share characteristics with normal stem cells. Here we report that nucleostemin is expressed in GBM-CSCs isolated from patient samples, and that its expression, conversely to what it has been described for ordinary stem cells, does not disappear when cells are differentiated. The significance of nucleostemin expression in CSCs was addressed by targeting the corresponding mRNA using lentivirally transduced short hairpin RNA (shRNA). In doing so, we found an off-target nucleostemin RNAi (shRNA22) that abolishes proliferation and induces apoptosis in GBM-CSCs. Furthermore, in the presence of shRNA22, GBM-CSCs failed to form neurospheres in vitro or grow on soft agar. When these cells are xenotransplanted into the brains of nude rats, tumor development is significantly delayed. Attempts were made to identify the primary target/s of shRNA22, suggesting a transcription factor involved in one of the MAP-kinases signaling-pathways or multiple targets. The use of this shRNA may contribute to develop new therapeutic approaches for this incurable type of brain tumor.
Collapse
Affiliation(s)
- Jon Gil-Ranedo
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Instituto Sanitario Ramón y Cajal, Madrid, Spain
| | - Marina Mendiburu-Eliçabe
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Instituto Sanitario Ramón y Cajal, Madrid, Spain
| | | | - Diego Medina
- Servicio de Neurocirugía, Hospital Universitario Ramón y Cajal, Instituto Sanitario Ramón y Cajal, Madrid, Spain
| | - Marta del Álamo
- Servicio de Neurocirugía, Hospital Universitario Ramón y Cajal, Instituto Sanitario Ramón y Cajal, Madrid, Spain
| | - Marta Izquierdo
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Instituto Sanitario Ramón y Cajal, Madrid, Spain
- * E-mail:
| |
Collapse
|