1
|
Yeger H. CCN proteins: opportunities for clinical studies-a personal perspective. J Cell Commun Signal 2023:10.1007/s12079-023-00761-y. [PMID: 37195381 DOI: 10.1007/s12079-023-00761-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 05/01/2023] [Indexed: 05/18/2023] Open
Abstract
The diverse members of the CCN family now designated as CCN1(CYR61), CCN2 (CTGF), CCN3(NOV), CCN4(WISP1), CCN5(WISP2), CCN6(WISP3) are a conserved matricellular family of proteins exhibiting a spectrum of functional properties throughout all organs in the body. Interaction with cell membrane receptors such as integrins trigger intracellular signaling pathways. Proteolytically cleaved fragments (constituting the active domains) can be transported to the nucleus and perform transcriptional relevant functional activities. Notably, as also found in other protein families some members act opposite to others creating a system of functionally relevant checks and balances. It has become apparent that these proteins are secreted into the circulation, are quantifiable, and can serve as disease biomarkers. How they might also serve as homeostatic regulators is just becoming appreciated. In this review I have attempted to highlight the most recent evidence under the subcategories of cancer and non-cancer relevant that could lead to potential therapeutic approaches or ideas that can be factored into clinical advances. I have added my own personal perspective on feasibility.
Collapse
Affiliation(s)
- Herman Yeger
- Developmental and Stem Cell Biology, Research Institute, SickKids, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Zhang H, Song W, Ma X, Yu M, Chen L, Tao Y. Acetylation stabilizes the signaling protein WISP2 by preventing its degradation to suppress the progression of acute myeloid leukemia. J Biol Chem 2023; 299:102971. [PMID: 36736423 PMCID: PMC9996369 DOI: 10.1016/j.jbc.2023.102971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Acute myeloid leukemia (AML) is challenging to treat due to its heterogeneity, prompting a deep understanding of its pathogenesis mechanisms, diagnosis, and treatment. Here, we found reduced expression and acetylation levels of WISP2 in bone marrow mononuclear cells from AML patients and that AML patients with lower WISP2 expression tended to have reduced survival. At the functional level, overexpression of WISP2 in leukemia cells (HL-60 and Kasumi-1) suppressed cell proliferation, induced cell apoptosis, and exerted antileukemic effects in an in vivo model of AML. Our mechanistic investigation demonstrated that WISP2 deacetylation was regulated by the deacetylase histone deacetylase (HDAC)3. In addition, we determined that crosstalk between acetylation and ubiquitination was involved in the modulation of WISP2 expression in AML. Deacetylation of WISP2 decreased the stability of the WISP2 protein by boosting its ubiquitination mediated by NEDD4 and proteasomal degradation. Moreover, pan-HDAC inhibitors (valproic acid and trichostatin A) and an HDAC3-specific inhibitor (RGFP966) induced WISP2 acetylation at lysine K6 and prevented WISP2 degradation. This regulation led to inhibition of proliferation and induction of apoptosis in AML cells. In summary, our study revealed that WISP2 contributes to tumor suppression in AML, which provided an experimental framework for WISP2 as a candidate for gene therapy of AML.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China; Institute of Blood and Marrow Transplantation, Jining Medical University, Jining, Shandong, China
| | - Wenjun Song
- Institute of Blood and Marrow Transplantation, Jining Medical University, Jining, Shandong, China; Graduate School, Department of Clinical Medicine, Jining Medical University, Jining, Shandong, China
| | - Xinying Ma
- Institute of Blood and Marrow Transplantation, Jining Medical University, Jining, Shandong, China; Graduate School, Department of Clinical Medicine, Jining Medical University, Jining, Shandong, China
| | - Mingxiao Yu
- Institute of Blood and Marrow Transplantation, Jining Medical University, Jining, Shandong, China; Graduate School, Department of Clinical Medicine, Jining Medical University, Jining, Shandong, China
| | - Lulu Chen
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China; Institute of Blood and Marrow Transplantation, Jining Medical University, Jining, Shandong, China
| | - Yanling Tao
- Department of Pediatric Hematology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China.
| |
Collapse
|
3
|
Zolfaghari S, Kaasbøll OJ, Monsen VT, Sredic B, Hagelin EMV, Attramadal H. The carboxyl-terminal TSP1-homology domain is the biologically active effector peptide of matricellular protein CCN5 that counteracts profibrotic CCN2. J Biol Chem 2022; 299:102803. [PMID: 36529291 PMCID: PMC9860493 DOI: 10.1016/j.jbc.2022.102803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Cellular Communication Network (CCN) proteins have multimodular structures important for their roles in cellular responses associated with organ development and tissue homeostasis. CCN2 has previously been reported to be secreted as a preproprotein that requires proteolytic activation to release its bioactive carboxyl-terminal fragment. Here, our goal was to resolve whether CCN5, a divergent member of the CCN family with converse functions relative to CCN2, releases the TSP1 homology domain as its bioactive signaling entity. The recombinant CCN5 or CCN3 TSP1 homology domains were produced in ExpiCHO-S or DG44 CHO cells as secretory fusion proteins appended to the carboxyl-terminal end of His-Halo-Sumo or amino-terminal end of human albumin and purified from the cell culture medium. We tested these fusion proteins in various phosphokinase signaling pathways or cell physiologic assays. Fusion proteins with the CCN5 TSP1 domain inhibited key signaling pathways previously reported to be stimulated by CCN2, irrespective of fusion partner. The fusion proteins also efficiently inhibited CCN1/2-stimulated cell migration and gap closure following scratch wound of fibroblasts. Fusion protein with the CCN3 TSP1 domain inhibited these functions with similar efficacy and potency as that of the CCN5 TSP1 domain. The CCN5 TSP1 domain also recapitulated a positive regulatory function previously assigned to full-length CCN5, that is, induction of estrogen receptor-α mRNA expression in triple negative MDA-MB-231 mammary adenocarcinoma cells and inhibited epithelial-to-mesenchymal transition and CCN2-induced mammosphere formation of MCF-7 adenocarcinoma cells. In conclusion, the CCN5 TSP1 domain is the bioactive entity that confers the biologic functions of unprocessed CCN5.
Collapse
Affiliation(s)
- Sima Zolfaghari
- Institute for Surgical Research, Oslo University Hospital, Oslo, Norway,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Vivi T. Monsen
- Institute for Surgical Research, Oslo University Hospital, Oslo, Norway,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Bojana Sredic
- Institute for Surgical Research, Oslo University Hospital, Oslo, Norway
| | | | - Håvard Attramadal
- Institute for Surgical Research, Oslo University Hospital, Oslo, Norway,Institute of Clinical Medicine, University of Oslo, Oslo, Norway,For correspondence: Håvard Attramadal
| |
Collapse
|
4
|
Song MH, Jo Y, Kim YK, Kook H, Jeong D, Park WJ. The TSP-1 domain of the matricellular protein CCN5 is essential for its nuclear localization and anti-fibrotic function. PLoS One 2022; 17:e0267629. [PMID: 35476850 PMCID: PMC9045603 DOI: 10.1371/journal.pone.0267629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023] Open
Abstract
The matricellular protein CCN5 exerts anti-fibrotic activity in hearts partly by inducing reverse trans-differentiation of myofibroblasts (MyoFBs) to fibroblasts (FBs). CCN5 consists of three structural domains: an insulin-like growth factor binding protein (IGFBP), a von Willebrand factor type C (VWC), and a thrombospondin type 1 (TSP-1). In this study, we set out to elucidate the roles of these domains in the context of the reverse trans-differentiation of MyoFBs to FBs. First, human cardiac FBs were trans-differentiated to MyoFBs by treatment with TGF-β; this was then reversed by treatment with recombinant human CCN5 protein or various recombinant proteins comprising individual or paired CCN5 domains. Subcellular localization of these recombinant proteins was analyzed by immunocytochemistry, cellular fractionation, and western blotting. Anti-fibrotic activity was also evaluated by examining expression of MyoFB-specific markers, α-SMA and fibronectin. Our data show that CCN5 is taken up by FBs and MyoFBs mainly via clathrin-mediated endocytosis, which is essential for the function of CCN5 during the reverse trans-differentiation of MyoFBs. Furthermore, we showed that the TSP-1 domain is essential and sufficient for endocytosis and nuclear localization of CCN5. However, the TSP-1 domain alone is not sufficient for the anti-fibrotic function of CCN5; either the IGFBP or VWC domain is needed in addition to the TSP-1 domain.
Collapse
Affiliation(s)
- Min Ho Song
- College of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Yongjoon Jo
- College of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Young-Kook Kim
- Department of Biochemistry, Chonnam National University Medical School, Hwasun, Jeollanam-do, Republic of Korea
| | - Hyun Kook
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanam-do, Republic of Korea
| | - Dongtak Jeong
- Department of Molecular & Life Science, College of Science and Convergence Technology, Hanyang University-ERICA, Ansan, Gyeonggi-do, Republic of Korea
- * E-mail: (WJP); (DJ)
| | - Woo Jin Park
- College of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea
- * E-mail: (WJP); (DJ)
| |
Collapse
|
5
|
WISP2/CCN5 Suppresses Vasculogenic Mimicry through Inhibition of YAP/TAZ Signaling in Breast Cancer Cells. Cancers (Basel) 2022; 14:cancers14061487. [PMID: 35326638 PMCID: PMC8945957 DOI: 10.3390/cancers14061487] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Breast cancer is the most frequent malignancy in women worldwide. Advanced breast cancer with distant organ metastases is considered incurable with currently available therapies. The vasculogenic mimicry (VM) process is associated with an invasive and metastatic cancer phenotype and a poor prognosis for human breast cancer patients. Our aim was to study the effect of WISP2, a matricellular protein, on VM. We found that WISP2 inhibits VM through inhibition of CYR61 protein expression and YAP-TAZ signaling. Our finding may open promising candidates for blocking VM in breast cancer. Abstract Vasculogenic mimicry (VM) formed by aggressive tumor cells to create vascular networks connected with the endothelial cells, plays an important role in breast cancer progression. WISP2 has been considered as a tumor suppressor protein; however, the relationship between WISP2 and VM formation remains unclear. We used the in vitro tube formation assay and in vivo immunohistochemical analysis in a mouse model, and human breast tumors were used to evaluate the effect of WISP2 on VM formation. Here we report that WISP2 acts as a potent inhibitor of VM formation in breast cancer. Enforced expression of WISP2 decreased network formation while knockdown of WISP2 increased VM. Mechanistically, WISP2 increased retention of oncogenic activators YAP/TAZ in cytoplasm, leading to decreased expression of the angiogenic factor CYR61. Studies using an in vivo mouse model and human breast tumors confirmed the in vitro cell lines data. In conclusion, our results indicate that WISP2 may play a critical role in VM and highlight the critical role of WISP2 as a tumor suppressor.
Collapse
|
6
|
Bae SJ, Jo Y, Cho MK, Jin JS, Kim JY, Shim J, Kim YH, Park JK, Ryu D, Lee HJ, Joo J, Ha KT. Identification and analysis of novel endometriosis biomarkers via integrative bioinformatics. Front Endocrinol (Lausanne) 2022; 13:942368. [PMID: 36339397 PMCID: PMC9630743 DOI: 10.3389/fendo.2022.942368] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/07/2022] [Indexed: 11/13/2022] Open
Abstract
Endometriosis is a gynecological disease prevalent in women of reproductive age, and it is characterized by the ectopic presence and growth of the eutopic endometrium. The pathophysiology and diagnostic biomarkers of endometriosis have not yet been comprehensively determined. To discover molecular markers and pathways underlying the pathogenesis of endometriosis, we identified differentially expressed genes (DEGs) in three Gene Expression Omnibus microarray datasets (GSE11691, GSE23339, and GSE7305) and performed gene set enrichment analysis (GSEA) and protein-protein interaction (PPI) network analyses. We also validated the identified genes via immunohistochemical analysis of tissues obtained from patients with endometriosis or healthy volunteers. A total of 118 DEGs (79 upregulated and 39 downregulated) were detected in each dataset with a lower (fold change) FC cutoff (log2|FC| > 1), and 17 DEGs (11 upregulated and six downregulated) with a higher FC cutoff (log2|FC| > 2). KEGG and GO functional analyses revealed enrichment of signaling pathways associated with inflammation, complement activation, cell adhesion, and extracellular matrix in endometriotic tissues. Upregulation of seven genes (C7, CFH, FZD7, LY96, PDLIM3, PTGIS, and WISP2) out of 17 was validated via comparison with external gene sets, and protein expression of four genes (LY96, PDLIM3, PTGIS, and WISP2) was further analyzed by immunohistochemistry and western blot analysis. Based on these results, we suggest that TLR4/NF-κB and Wnt/frizzled signaling pathways, as well as estrogen receptors, regulate the progression of endometriosis. These pathways may be therapeutic and diagnostic targets for endometriosis.
Collapse
Affiliation(s)
- Sung-Jin Bae
- Department of Molecular Biology and Immunology, Kosin University College of Medicine, Busan, South Korea
| | - Yunju Jo
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Min Kyoung Cho
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, South Korea
| | - Jung-Sook Jin
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, South Korea
| | - Jin-Young Kim
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, South Korea
| | - Jaewon Shim
- Department of Biochemistry, Kosin University College of Medicine, Busan, South Korea
| | - Yun Hak Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, South Korea
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, South Korea
| | - Jang-Kyung Park
- Department of Korean Medicine Obstetrics and Gynecology, Pusan National University Korean Medicine Hospital, Yangsan, South Korea
| | - Dongryeol Ryu
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Hyun Joo Lee
- Department of Obstetrics and Gynecology, Pusan National University Hospital, Busan, South Korea
| | - Jongkil Joo
- Department of Obstetrics and Gynecology, Pusan National University Hospital, Busan, South Korea
- *Correspondence: Jongkil Joo, ; Ki-Tae Ha,
| | - Ki-Tae Ha
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, South Korea
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, South Korea
- *Correspondence: Jongkil Joo, ; Ki-Tae Ha,
| |
Collapse
|
7
|
Lacombe ML, Lamarche F, De Wever O, Padilla-Benavides T, Carlson A, Khan I, Huna A, Vacher S, Calmel C, Desbourdes C, Cottet-Rousselle C, Hininger-Favier I, Attia S, Nawrocki-Raby B, Raingeaud J, Machon C, Guitton J, Le Gall M, Clary G, Broussard C, Chafey P, Thérond P, Bernard D, Fontaine E, Tokarska-Schlattner M, Steeg P, Bièche I, Schlattner U, Boissan M. The mitochondrially-localized nucleoside diphosphate kinase D (NME4) is a novel metastasis suppressor. BMC Biol 2021; 19:228. [PMID: 34674701 PMCID: PMC8529772 DOI: 10.1186/s12915-021-01155-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 09/17/2021] [Indexed: 12/11/2022] Open
Abstract
Background Mitochondrial nucleoside diphosphate kinase (NDPK-D, NME4, NM23-H4) is a multifunctional enzyme mainly localized in the intermembrane space, bound to the inner membrane. Results We constructed loss-of-function mutants of NDPK-D, lacking either NDP kinase activity or membrane interaction and expressed mutants or wild-type protein in cancer cells. In a complementary approach, we performed depletion of NDPK-D by RNA interference. Both loss-of-function mutations and NDPK-D depletion promoted epithelial-mesenchymal transition and increased migratory and invasive potential. Immunocompromised mice developed more metastases when injected with cells expressing mutant NDPK-D as compared to wild-type. This metastatic reprogramming is a consequence of mitochondrial alterations, including fragmentation and loss of mitochondria, a metabolic switch from respiration to glycolysis, increased ROS generation, and further metabolic changes in mitochondria, all of which can trigger pro-metastatic protein expression and signaling cascades. In human cancer, NME4 expression is negatively associated with markers of epithelial-mesenchymal transition and tumor aggressiveness and a good prognosis factor for beneficial clinical outcome. Conclusions These data demonstrate NME4 as a novel metastasis suppressor gene, the first localizing to mitochondria, pointing to a role of mitochondria in metastatic dissemination. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01155-5.
Collapse
Affiliation(s)
- Marie-Lise Lacombe
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | - Frederic Lamarche
- Université Grenoble Alpes, INSERM U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), and SFR Environmental and Systems Biology (BEeSy), Grenoble, France
| | - Olivier De Wever
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | | | - Alyssa Carlson
- Molecular Biology and Biochemistry Department, Wesleyan University, Middletown, USA
| | - Imran Khan
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, USA
| | - Anda Huna
- Cancer Research Center of Lyon, INSERM U1052, CNRS UMR 5286, Léon Bérard Center, Lyon University, Lyon, France
| | - Sophie Vacher
- Unit of Pharmacogenetics, Department of Genetics, Curie Institute, Paris, France
| | - Claire Calmel
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | - Céline Desbourdes
- Université Grenoble Alpes, INSERM U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), and SFR Environmental and Systems Biology (BEeSy), Grenoble, France
| | - Cécile Cottet-Rousselle
- Université Grenoble Alpes, INSERM U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), and SFR Environmental and Systems Biology (BEeSy), Grenoble, France
| | - Isabelle Hininger-Favier
- Université Grenoble Alpes, INSERM U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), and SFR Environmental and Systems Biology (BEeSy), Grenoble, France
| | - Stéphane Attia
- Université Grenoble Alpes, INSERM U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), and SFR Environmental and Systems Biology (BEeSy), Grenoble, France
| | - Béatrice Nawrocki-Raby
- Reims Champagne Ardenne University, INSERM, P3Cell UMR-S 1250, SFR CAP-SANTE, Reims, France
| | - Joël Raingeaud
- INSERM U1279, Gustave Roussy Institute, Villejuif, France
| | - Christelle Machon
- Cancer Research Center of Lyon, INSERM U1052, CNRS UMR 5286, Léon Bérard Center, Lyon University, Lyon, France
| | - Jérôme Guitton
- Cancer Research Center of Lyon, INSERM U1052, CNRS UMR 5286, Léon Bérard Center, Lyon University, Lyon, France
| | - Morgane Le Gall
- Proteomics Platform 3P5, Paris University, Cochin Institute, INSERM, U1016, CNRS, UMR8104, Paris, France
| | - Guilhem Clary
- Proteomics Platform 3P5, Paris University, Cochin Institute, INSERM, U1016, CNRS, UMR8104, Paris, France
| | - Cedric Broussard
- Proteomics Platform 3P5, Paris University, Cochin Institute, INSERM, U1016, CNRS, UMR8104, Paris, France
| | - Philippe Chafey
- Proteomics Platform 3P5, Paris University, Cochin Institute, INSERM, U1016, CNRS, UMR8104, Paris, France
| | - Patrice Thérond
- AP-HP, CHU Bicêtre, Laboratory of Biochemistry, Le Kremlin-Bicêtre Hospital, Le Kremlin-Bicêtre, France.,EA7537, Paris Saclay University, Châtenay-Malabry, France
| | - David Bernard
- Cancer Research Center of Lyon, INSERM U1052, CNRS UMR 5286, Léon Bérard Center, Lyon University, Lyon, France
| | - Eric Fontaine
- Université Grenoble Alpes, INSERM U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), and SFR Environmental and Systems Biology (BEeSy), Grenoble, France
| | - Malgorzata Tokarska-Schlattner
- Université Grenoble Alpes, INSERM U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), and SFR Environmental and Systems Biology (BEeSy), Grenoble, France
| | - Patricia Steeg
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, USA
| | - Ivan Bièche
- Unit of Pharmacogenetics, Department of Genetics, Curie Institute, Paris, France
| | - Uwe Schlattner
- Université Grenoble Alpes, INSERM U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), Institut Universitaire de France (IUF), Grenoble, France.
| | - Mathieu Boissan
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France. .,AP-HP, Laboratory of Biochemistry and Hormonology, Tenon Hospital, Paris, France.
| |
Collapse
|
8
|
Khalaf K, Hana D, Chou JTT, Singh C, Mackiewicz A, Kaczmarek M. Aspects of the Tumor Microenvironment Involved in Immune Resistance and Drug Resistance. Front Immunol 2021; 12:656364. [PMID: 34122412 PMCID: PMC8190405 DOI: 10.3389/fimmu.2021.656364] [Citation(s) in RCA: 219] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/27/2021] [Indexed: 12/11/2022] Open
Abstract
The tumor microenvironment (TME) is a complex and ever-changing "rogue organ" composed of its own blood supply, lymphatic and nervous systems, stroma, immune cells and extracellular matrix (ECM). These complex components, utilizing both benign and malignant cells, nurture the harsh, immunosuppressive and nutrient-deficient environment necessary for tumor cell growth, proliferation and phenotypic flexibility and variation. An important aspect of the TME is cellular crosstalk and cell-to-ECM communication. This interaction induces the release of soluble factors responsible for immune evasion and ECM remodeling, which further contribute to therapy resistance. Other aspects are the presence of exosomes contributed by both malignant and benign cells, circulating deregulated microRNAs and TME-specific metabolic patterns which further potentiate the progression and/or resistance to therapy. In addition to biochemical signaling, specific TME characteristics such as the hypoxic environment, metabolic derangements, and abnormal mechanical forces have been implicated in the development of treatment resistance. In this review, we will provide an overview of tumor microenvironmental composition, structure, and features that influence immune suppression and contribute to treatment resistance.
Collapse
Affiliation(s)
- Khalil Khalaf
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, Poznań, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
| | - Doris Hana
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, Poznań, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
| | - Jadzia Tin-Tsen Chou
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, Poznań, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
| | - Chandpreet Singh
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, Poznań, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
| | - Andrzej Mackiewicz
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, Poznań, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
| | - Mariusz Kaczmarek
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, Poznań, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
9
|
Tse SW, Tan CF, Park JE, Gnanasekaran J, Gupta N, Low JK, Yeoh KW, Chng WJ, Tay CY, McCarthy NE, Lim SK, Sze SK. Microenvironmental Hypoxia Induces Dynamic Changes in Lung Cancer Synthesis and Secretion of Extracellular Vesicles. Cancers (Basel) 2020; 12:E2917. [PMID: 33050615 PMCID: PMC7601203 DOI: 10.3390/cancers12102917] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/28/2020] [Indexed: 12/27/2022] Open
Abstract
Extracellular vesicles (EVs) mediate critical intercellular communication within healthy tissues, but are also exploited by tumour cells to promote angiogenesis, metastasis, and host immunosuppression under hypoxic stress. We hypothesize that hypoxic tumours synthesize hypoxia-sensitive proteins for packing into EVs to modulate their microenvironment for cancer progression. In the current report, we employed a heavy isotope pulse/trace quantitative proteomic approach to study hypoxia sensitive proteins in tumour-derived EVs protein. The results revealed that hypoxia stimulated cells to synthesize EVs proteins involved in enhancing tumour cell proliferation (NRSN2, WISP2, SPRX1, LCK), metastasis (GOLM1, STC1, MGAT5B), stemness (STC1, TMEM59), angiogenesis (ANGPTL4), and suppressing host immunity (CD70). In addition, functional clustering analyses revealed that tumour hypoxia was strongly associated with rapid synthesis and EV loading of lysosome-related hydrolases and membrane-trafficking proteins to enhance EVs secretion. Moreover, lung cancer-derived EVs were also enriched in signalling molecules capable of inducing epithelial-mesenchymal transition in recipient cancer cells to promote their migration and invasion. Together, these data indicate that lung-cancer-derived EVs can act as paracrine/autocrine mediators of tumorigenesis and metastasis in hypoxic microenvironments. Tumour EVs may, therefore, offer novel opportunities for useful biomarkers discovery and therapeutic targeting of different cancer types and at different stages according to microenvironmental conditions.
Collapse
Affiliation(s)
- Shun Wilford Tse
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; (S.W.T.); (C.F.T.); (J.E.P.); (J.G.); (N.G.)
| | - Chee Fan Tan
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; (S.W.T.); (C.F.T.); (J.E.P.); (J.G.); (N.G.)
- NTU Institute for Health Technologies, Interdisciplinary Graduate School, Nanyang Technological University, Singapore 637553, Singapore
| | - Jung Eun Park
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; (S.W.T.); (C.F.T.); (J.E.P.); (J.G.); (N.G.)
| | - JebaMercy Gnanasekaran
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; (S.W.T.); (C.F.T.); (J.E.P.); (J.G.); (N.G.)
| | - Nikhil Gupta
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; (S.W.T.); (C.F.T.); (J.E.P.); (J.G.); (N.G.)
| | - Jee Keem Low
- Department of Surgery, Tan Tock Seng Hospital, Singapore 308433, Singapore;
| | - Kheng Wei Yeoh
- Department of Radiation Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore;
| | - Wee Joo Chng
- Department of Hematology-Oncology, National University Cancer Institute, National University Health System, Singapore 119228, Singapore;
| | - Chor Yong Tay
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore;
| | - Neil E. McCarthy
- Centre for Immunobiology, The Blizard Institute, Bart’s and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK;
| | - Sai Kiang Lim
- Institute of Medical Biology, Singapore 138648, Singapore;
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; (S.W.T.); (C.F.T.); (J.E.P.); (J.G.); (N.G.)
| |
Collapse
|
10
|
Secondary Metabolites from the Culture of the Marine-derived Fungus Paradendryphiella salina PC 362H and Evaluation of the Anticancer Activity of Its Metabolite Hyalodendrin. Mar Drugs 2020; 18:md18040191. [PMID: 32260204 PMCID: PMC7230232 DOI: 10.3390/md18040191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/24/2022] Open
Abstract
High-throughput screening assays have been designed to identify compounds capable of inhibiting phenotypes involved in cancer aggressiveness. However, most studies used commercially available chemical libraries. This prompted us to explore natural products isolated from marine-derived fungi as a new source of molecules. In this study, we established a chemical library from 99 strains corresponding to 45 molecular operational taxonomic units and evaluated their anticancer activity against the MCF7 epithelial cancer cell line and its invasive stem cell-like MCF7-Sh-WISP2 counterpart. We identified the marine fungal Paradendryphiella salina PC 362H strain, isolated from the brown alga Pelvetia caniculata (PC), as one of the most promising fungi which produce active compounds. Further chemical and biological characterizations of the culture of the Paradendryphiella salina PC 362H strain identified (-)-hyalodendrin as the active secondary metabolite responsible for the cytotoxic activity of the crude extract. The antitumor activity of (-)-hyalodendrin was not only limited to the MCF7 cell lines, but also prominent on cancer cells with invasive phenotypes including colorectal cancer cells resistant to chemotherapy. Further investigations showed that treatment of MCF7-Sh-WISP2 cells with (-)-hyalodendrin induced changes in the phosphorylation status of p53 and altered expression of HSP60, HSP70 and PRAS40 proteins. Altogether, our study reveals that this uninvestigated marine fungal crude extract possesses a strong therapeutic potential against tumor cells with aggressive phenotypes and confirms that members of the epidithiodioxopiperazines are interesting fungal toxins with anticancer activities.
Collapse
|
11
|
Khoo B, Choe S, Siah P, Lim S, Peh K, Ong M. The cellular activities of the subfraction of red onion peel crude ethanolic extract in MDA-MB-231 cells. Pharmacognosy Res 2020. [DOI: 10.4103/pr.pr_20_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
12
|
Bubba F, Pouchol C, Ferrand N, Vidal G, Almeida L, Perthame B, Sabbah M. A chemotaxis-based explanation of spheroid formation in 3D cultures of breast cancer cells. J Theor Biol 2019; 479:73-80. [PMID: 31283914 DOI: 10.1016/j.jtbi.2019.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 05/24/2019] [Accepted: 07/03/2019] [Indexed: 10/26/2022]
Abstract
Three-dimensional cultures of cells are gaining popularity as an in vitro improvement over 2D Petri dishes. In many such experiments, cells have been found to organize in aggregates. We present new results of three-dimensional in vitro cultures of breast cancer cells exhibiting patterns. Understanding their formation is of particular interest in the context of cancer since metastases have been shown to be created by cells moving in clusters. In this paper, we propose that the main mechanism which leads to the emergence of patterns is chemotaxis, i.e., oriented movement of cells towards high concentration zones of a signal emitted by the cells themselves. Studying a Keller-Segel PDE system to model chemotactical auto-organization of cells, we prove that it admits Turing unstable solutions under a time-dependent condition. This result is illustrated by two-dimensional simulations of the model showing spheroidal patterns. They are qualitatively compared to the biological results and their variability is discussed both theoretically and numerically.
Collapse
Affiliation(s)
- Federica Bubba
- Sorbonne Université, CNRS, Université de Paris, Inria, Laboratoire Jacques-Louis Lions, 4 pl. Jussieu, Paris 75005, France
| | - Camille Pouchol
- Sorbonne Université, CNRS, Université de Paris, Inria, Laboratoire Jacques-Louis Lions, 4 pl. Jussieu, Paris 75005, France
| | - Nathalie Ferrand
- Sorbonne Université, INSERM, Laboratoire de Biologie du Cancer et Thérapeutique, Centre de Recherche Saint-Antoine, Paris 75012, France
| | - Guillaume Vidal
- CELENYS, Biopolis 2, 75 route de Lyons-la-forêt, Rouen 76000, France
| | - Luis Almeida
- Sorbonne Université, CNRS, Université de Paris, Inria, Laboratoire Jacques-Louis Lions, 4 pl. Jussieu, Paris 75005, France.
| | - Benoît Perthame
- Sorbonne Université, CNRS, Université de Paris, Inria, Laboratoire Jacques-Louis Lions, 4 pl. Jussieu, Paris 75005, France
| | - Michèle Sabbah
- Sorbonne Université, INSERM, Laboratoire de Biologie du Cancer et Thérapeutique, Centre de Recherche Saint-Antoine, Paris 75012, France
| |
Collapse
|
13
|
Kaddour N, Zhang D, Gao ZH, Liu JL. Recombinant protein CCN5/WISP2 promotes islet cell proliferation and survival in vitro. Growth Factors 2019; 37:120-130. [PMID: 31437074 DOI: 10.1080/08977194.2019.1652400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Pancreatic ß cell proliferation, survival and function are key elements that need to be considered in developing novel antidiabetic therapies. We recently identified CCN5/WISP2 to have potential growth promoting properties when overexpressed in ß cells; however, further investigations are needed to validate those properties. In this study, we demonstrated that exogenous treatment of insulinoma cells and primary islets with recombinant CCN5 (rh-CCN5) protein enhanced the proliferative capacity which was correlated with activation of cell-cycle regulators CDK4 and cyclin D1. Furthermore, pre-incubation of these cells with rh-CCN5 enhanced their survival rate after being exposed to harsh treatments such as streptozotocin and high concentrations of glucose and free fatty acids. CCN5 as well caused an upregulation in the expression of key genes associated with ß cell identity and function such as GLUT-2 and GCK. Finally, CCN5 activated FAK and downstream ERK kinases which are known to stimulate cell proliferation and survival. Hence, our results validate the growth promoting activities of rh-CCN5 in ß cells and open the door for further investigations in vivo.
Collapse
Affiliation(s)
- Nancy Kaddour
- Frasers Laboratories for Diabetes Research, Department of Medicine, McGill University Health Centre, Montreal, Canada
| | - Di Zhang
- Frasers Laboratories for Diabetes Research, Department of Medicine, McGill University Health Centre, Montreal, Canada
- Special Medicine Department, Medical College, Qingdao University, Qingdao, China
| | - Zu-Hua Gao
- Department of Pathology, McGill University Health Centre, Montreal, Canada
| | - Jun-Li Liu
- Frasers Laboratories for Diabetes Research, Department of Medicine, McGill University Health Centre, Montreal, Canada
| |
Collapse
|
14
|
Chai DM, Qin YZ, Wu SW, Ma L, Tan YY, Yong X, Wang XL, Wang ZP, Tao YS. WISP2 exhibits its potential antitumor activity via targeting ERK and E-cadherin pathways in esophageal cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:102. [PMID: 30808397 PMCID: PMC6390602 DOI: 10.1186/s13046-019-1108-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 02/15/2019] [Indexed: 12/12/2022]
Abstract
Backgrounds Emerging evidence has demonstrated that WISP2 is critically involved in cell proliferation, migration, invasion and metastasis in cancers. However, the function of WISP2 in esophageal squamous cell carcinoma (ESCC) is largely unclear. Therefore, we aim to explore the effects and the potential mechanism of WISP2 on proliferation and motility and invasion of ESCC cells. Methods Cell proliferation was detected by MTT assay and apoptosis was measured by FACS in ESCC cells after WISP2 downregulation and overexpression. Cell migration and invasion were analyzed by wound healing assay and transwell migration assay, respectively. The expression of ERK-1/2, Slug and E-cadherin was measured by Western blot respectively. IHC was performed to measure the expression of WISP2 in ESCC tissues. Results WISP2 overexpression is associated with survival in ESCC patients. WISP2 overexpression inhibited cell growth and induced cell apoptosis, suppressed cell migration and invasion in ESCC cells. Moreover, WISP overexpression retarded tumor growth in mouse model. WISP2 downregulation enhanced cell growth, inhibited apoptosis, promoted cell migration and invasion in ESCC cells. Mechanistically, WISP2 exerts its tumor suppressive functions via regulation of ERK1/2, Slug, and E-cadherin in ESCC cells. Conclusions Our findings suggest that activation of WISP2 could be a useful therapeutic strategy for the treatment of ESCC.
Collapse
Affiliation(s)
- Da-Min Chai
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical University, Bengbu Medical College, Changhuai road 287#, Bengbu, Anhui, 233000, People's Republic of China
| | - Yan-Zi Qin
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical University, Bengbu Medical College, Changhuai road 287#, Bengbu, Anhui, 233000, People's Republic of China
| | - Shi-Wu Wu
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical University, Bengbu Medical College, Changhuai road 287#, Bengbu, Anhui, 233000, People's Republic of China
| | - Li Ma
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical University, Bengbu Medical College, Changhuai road 287#, Bengbu, Anhui, 233000, People's Republic of China
| | - Yuan-Yuan Tan
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical University, Bengbu Medical College, Changhuai road 287#, Bengbu, Anhui, 233000, People's Republic of China
| | - Xiang Yong
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical University, Bengbu Medical College, Changhuai road 287#, Bengbu, Anhui, 233000, People's Republic of China
| | - Xiao-Li Wang
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical University, Bengbu Medical College, Changhuai road 287#, Bengbu, Anhui, 233000, People's Republic of China
| | - Z Peter Wang
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Anhui, 233030, China. .,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA.
| | - Yi-Sheng Tao
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical University, Bengbu Medical College, Changhuai road 287#, Bengbu, Anhui, 233000, People's Republic of China.
| |
Collapse
|
15
|
Abstract
The CCN protein family is composed of six matricellular proteins, which serve regulatory roles rather than structural roles in the extracellular matrix. First identified as secreted proteins which are induced by oncogenes, the acronym CCN came from the names of the first three members: CYR61, CTGF, and NOV. All six members of the CCN family consist of four cysteine-rich modular domains. CCN proteins are known to regulate cell adhesion, proliferation, differentiation, and apoptosis. In addition, CCN proteins are associated with cardiovascular and skeletal development, injury repair, inflammation, and cancer. They function either through binding to integrin receptors or by regulating the expression and activity of growth factors and cytokines. Given their diverse roles related to the pathology of certain diseases such as fibrosis, arthritis, atherosclerosis, diabetic nephropathy, retinopathy, and cancer, there are many emerging studies targeting CCN protein signaling pathways in attempts to elucidate their potentials as therapeutic targets. [BMB Reports 2018; 51(10): 486-493].
Collapse
Affiliation(s)
- Hyungjoo Kim
- Department of Life Science, Hanyang University, Seoul 04763, Korea
| | - Seogho Son
- Department of Life Science, Hanyang University, Seoul 04763, Korea
| | - Incheol Shin
- Department of Life Science, Hanyang University, Seoul 04763, and Natural Science Institute, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
16
|
Liu Y, Song Y, Ye M, Hu X, Wang ZP, Zhu X. The emerging role of WISP proteins in tumorigenesis and cancer therapy. J Transl Med 2019; 17:28. [PMID: 30651114 PMCID: PMC6335850 DOI: 10.1186/s12967-019-1769-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 01/02/2019] [Indexed: 12/14/2022] Open
Abstract
Accumulated evidence has demonstrated that WNT1 inducible signaling pathway protein (WISP) genes, which belong to members of the CCN growth factor family, play a pivotal role in tumorigenesis and progression of a broad spectrum of human cancers. Mounting studies have identified that WISP proteins (WISP1-3) exert different biological functions in various human malignancies. Emerging evidence indicates that WISP proteins are critically involved in cell proliferation, apoptosis, invasion and metastasis in cancers. Because the understanding of a direct function of WISP proteins in cancer development and progression has begun to emerge, in this review article, we describe the physiological function of WISP proteins in a variety of human cancers. Moreover, we highlight the current understanding of how the WISP protein is involved in tumorigenesis and cancer progression. Furthermore, we discuss that targeting WISP proteins could be a promising strategy for the treatment of human cancers. Hence, the regulation of WISP proteins could improve treatments for cancer patients.
Collapse
Affiliation(s)
- Yi Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, China
| | - Yizuo Song
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, China
| | - Miaomiao Ye
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, China
| | - Xiaoli Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, China
| | - Z Peter Wang
- Center of Scientific Research, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China. .,Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, 233030, Anhui, China. .,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA.
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, China.
| |
Collapse
|
17
|
Yoon A, Im S, Lee J, Park D, Jo DH, Kim JH, Kim JH, Park WJ. The matricellular protein CCN5 inhibits fibrotic deformation of retinal pigment epithelium. PLoS One 2018; 13:e0208897. [PMID: 30571728 PMCID: PMC6301692 DOI: 10.1371/journal.pone.0208897] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 11/27/2018] [Indexed: 11/18/2022] Open
Abstract
Retinal pigment epithelium (RPE) plays an essential role in maintaining retinal function, and its defect is thought to be critically implicated in various ocular disorders. This study demonstrated that the matricellular protein CCN5 was down-regulated in ARPE-19 cells treated with the pro-fibrotic agent transforming growth factor (TGF)-β. A recombinant adenovirus expressing CCN5 (AdCCN5) was used to restore the level of CCN5 in these cells. AdCCN5 prevented TGF-β-induced fibrotic changes, including disruption of tight junctions, up-regulation of mesenchymal marker proteins, and down-regulation of epithelial marker proteins. In addition, AdCCN5 prevented TGF-β-induced functional defects, including increased migratory activity and reduced phagocytic activity. Notably, AdCCN5 reversed morphological and functional defects pre-established by TGF-β prior to viral infection. The CCN5 level was down-regulated in RPE of 18-month-old Ccl2-/- mice, which exhibited retinal defects. Restoration of the CCN5 level via intravitreal injection of a recombinant adeno-associated virus expressing CCN5 (AAV9-CCN5) normalized the altered expression of mesenchymal, epithelial, and functional marker proteins, as assessed by western blotting and immunohistochemistry. Taken together, these data suggest that down-regulation of CCN5 is associated with fibrotic deformation of RPE under pathological conditions and that restoration of the CCN5 level effectively promotes recovery of deformed RPE.
Collapse
Affiliation(s)
- Aeri Yoon
- College of Life Sciences, Gwangju Institute of Science and Technology, Cheomdangwagi-ro, Buk-gu, Gwangju, Republic of Korea
| | - Sora Im
- College of Life Sciences, Gwangju Institute of Science and Technology, Cheomdangwagi-ro, Buk-gu, Gwangju, Republic of Korea
| | - Juyeon Lee
- College of Life Sciences, Gwangju Institute of Science and Technology, Cheomdangwagi-ro, Buk-gu, Gwangju, Republic of Korea
| | - Daeho Park
- College of Life Sciences, Gwangju Institute of Science and Technology, Cheomdangwagi-ro, Buk-gu, Gwangju, Republic of Korea
| | - Dong Hyun Jo
- Department of Biomedical Sciences, Seoul National University College of Medicine, Daehak-ro, Jongno-gu, Seoul, Republic of Korea
- Fight Against Angiogenesis-Related Blindness Laboratory, Biomedical Research Institute, Seoul National University Hospital, Daehak-ro, Jongno-gu, Seoul, Republic of Korea
| | - Jin Hyoung Kim
- Fight Against Angiogenesis-Related Blindness Laboratory, Biomedical Research Institute, Seoul National University Hospital, Daehak-ro, Jongno-gu, Seoul, Republic of Korea
| | - Jeong Hun Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Daehak-ro, Jongno-gu, Seoul, Republic of Korea
- Fight Against Angiogenesis-Related Blindness Laboratory, Biomedical Research Institute, Seoul National University Hospital, Daehak-ro, Jongno-gu, Seoul, Republic of Korea
| | - Woo Jin Park
- College of Life Sciences, Gwangju Institute of Science and Technology, Cheomdangwagi-ro, Buk-gu, Gwangju, Republic of Korea
| |
Collapse
|
18
|
Li Y, Perera L, Coons LA, Burns KA, Tyler Ramsey J, Pelch KE, Houtman R, van Beuningen R, Teng CT, Korach KS. Differential in Vitro Biological Action, Coregulator Interactions, and Molecular Dynamic Analysis of Bisphenol A (BPA), BPAF, and BPS Ligand-ERα Complexes. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:017012. [PMID: 29389661 PMCID: PMC6014695 DOI: 10.1289/ehp2505] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/22/2017] [Accepted: 11/24/2017] [Indexed: 05/22/2023]
Abstract
BACKGROUND Bisphenol A (BPA) is an endocrine-disrupting chemical (EDC) that might be harmful to human health. Recently, there has been widespread usage of bisphenol chemicals (BPs), such as bisphenol AF (BPAF) and bisphenol S (BPS), as replacements for BPA. However, the potential biological actions, toxicity, and the molecular mechanism of these compounds are still poorly understood. OBJECTIVES Our objective was to examine the estrogenic effects of BPA, BPAF, and BPS and the molecular mechanisms of action in the estrogen receptor alpha (ERα) complex. METHODS In vitro cell models were used to compare the estrogenic effects of BPA, BPAF, and BPS to estrogen. Microarray Assay for Real-Time Coregulator-Nuclear receptor Interaction (MARCoNI) analysis was used to identify coregulators of BPA, BPAF, and BPS, and molecular dynamic (MD) simulations were used to determine the compounds binding in the ERα complex. RESULTS We demonstrated that BPA and BPAF have agonistic activity for both ERα and ERβ, but BPS has ERα-selective specificity. We concluded that coregulators were differentially recruited in the presence of BPA, BPAF, or BPS. Interestingly, BPS recruited more corepressors when compared to BPA and BPAF. From a series of MD analysis, we concluded that BPA, BPAF, and BPS can bind to the ER-ligand-binding domain with differing energetics and conformations. In addition, the binding surface of coregulator interactions on ERα was characterized for the BPA, BPAF, and BPS complexes. CONCLUSION These findings further our understanding of the molecular mechanisms of EDCs, such as BPs, in ER-mediated transcriptional activation, biological activity, and their effects on physiological functions in human health. https://doi.org/10.1289/EHP2505.
Collapse
Affiliation(s)
- Yin Li
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Lalith Perera
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Laurel A Coons
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Katherine A Burns
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - J Tyler Ramsey
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Katherine E Pelch
- National Toxicology Program Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - René Houtman
- PamGene International B.V., NL-5211 HH 's-Hertogenbosch, Netherlands
| | | | - Christina T Teng
- National Toxicology Program Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Kenneth S Korach
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| |
Collapse
|
19
|
Haque I, Ghosh A, Acup S, Banerjee S, Dhar K, Ray A, Sarkar S, Kambhampati S, Banerjee SK. Leptin-induced ER-α-positive breast cancer cell viability and migration is mediated by suppressing CCN5-signaling via activating JAK/AKT/STAT-pathway. BMC Cancer 2018; 18:99. [PMID: 29370782 PMCID: PMC5785848 DOI: 10.1186/s12885-018-3993-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 01/16/2018] [Indexed: 12/15/2022] Open
Abstract
Background In menopausal women, one of the critical risk factors for breast cancer is obesity/adiposity. It is evident from various studies that leptin, a 16 kDa protein hormone overproduced in obese people, plays the critical role in neovascularization and tumorigenesis in breast and other organs. However, the mechanisms by which obesity influences the breast carcinogenesis remained unclear. In this study, by analyzing different estrogen receptor-α (ER-α)-positive and ER-α-negative BC cell lines, we defined the role of CCN5 in the leptin-mediated regulation of growth and invasive capacity. Methods We analyzed the effect of leptin on cell viability of ER-α-positive MCF-7 and ZR-75-1 cell lines and ER-α-negative MDA-MB-231 cell line. Additionally, we also determined the effect of leptin on the epithelial-mesenchymal transition (EMT) bio-markers, in vitro invasion and sphere-formation of MCF-7 and ZR-75-1 cell lines. To understand the mechanism, we determined the impact of leptin on CCN5 expression and the functional role of CCN5 in these cells by the treatment of human recombinant CCN5 protein(hrCCN5). Moreover, we also determined the role of JAK-STAT and AKT in the regulation of leptin-induced suppression of CCN5 in BC cells. Results Present studies demonstrate that leptin can induce cell viability, EMT, sphere-forming ability and migration of MCF-7 and ZR-75-1 cell lines. Furthermore, these studies found that leptin suppresses the expression of CCN5 at the transcriptional level. Although the CCN5 suppression has no impact on the constitutive proliferation of MCF-7 and ZR-75-1 cells, it is critical for leptin-induced viability and necessary for EMT, induction of in vitro migration and sphere formation, as the hrCCN5 treatment significantly inhibits the leptin-induced viability, EMT, migration and sphere-forming ability of these cells. Mechanistically, CCN5-suppression by leptin is mediated via activating JAK/AKT/STAT-signaling pathways. Conclusions These studies suggest that CCN5 serves as a gatekeeper for leptin-dependent growth and progression of luminal-type (ER-positive) BC cells. Leptin may thus need to destroy the CCN5-barrier to promote BC growth and progression via activating JAK/AKT/STAT signaling. Therefore, these observations suggest a therapeutic potency of CCN5 by restoration or treatment in obese-related luminal-type BC growth and progression.
Collapse
Affiliation(s)
- Inamul Haque
- Cancer Research Unit, VA Medical Center, Kansas City, MO, USA.,Department of Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Arnab Ghosh
- Cancer Research Unit, VA Medical Center, Kansas City, MO, USA.,Department of Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Seth Acup
- Cancer Research Unit, VA Medical Center, Kansas City, MO, USA
| | - Snigdha Banerjee
- Cancer Research Unit, VA Medical Center, Kansas City, MO, USA. .,Department of Pathology, University of Kansas Medical Center, Kansas City, KS, USA. .,Cancer Research Unit, Research Division 151, VA Medical Center, 4801 Linwood Boulevard, Kansas City, MO, 64128, USA.
| | - Kakali Dhar
- Cancer Research Unit, VA Medical Center, Kansas City, MO, USA.,Present Address: Syngene International Ltd, Clinical Development, Tower 1, Semicon Park, Phase II, Electronics City, Hosur Road, Bangalore, Karnataka, 560100, India.,Present Address: Saint James School of Medicine, Anguilla, British West Indies, USA
| | - Amitabha Ray
- Cancer Research Unit, VA Medical Center, Kansas City, MO, USA.,Present Address: Syngene International Ltd, Clinical Development, Tower 1, Semicon Park, Phase II, Electronics City, Hosur Road, Bangalore, Karnataka, 560100, India.,Present Address: Saint James School of Medicine, Anguilla, British West Indies, USA
| | - Sandipto Sarkar
- Cancer Research Unit, VA Medical Center, Kansas City, MO, USA.,Department of Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | | | - Sushanta K Banerjee
- Cancer Research Unit, VA Medical Center, Kansas City, MO, USA. .,Department of Medicine, University of Kansas Medical Center, Kansas City, KS, USA. .,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA. .,Department of Pathology, University of Kansas Medical Center, Kansas City, KS, USA. .,Cancer Research Unit, Research Division 151, VA Medical Center, 4801 Linwood Boulevard, Kansas City, MO, 64128, USA.
| |
Collapse
|
20
|
Chen P, Song W, Liu L. Genome-Wide Transcriptome Analysis of Estrogen Receptor-Positive and Human Epithelial Growth Factor Receptor 2-Positive Breast Cancers by Ribonucleic Acid Sequencing. Gynecol Obstet Invest 2017; 83:338-348. [PMID: 29241203 DOI: 10.1159/000484244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/13/2017] [Indexed: 11/19/2022]
Abstract
AIM The aim is to identify complex pathogenesis of breast cancer subtypes and disclose the whole landscape of altered transcriptional activities in these cancers. METHODS We downloaded raw expression data from public database, and performed transcriptome analysis of 8 estrogen receptor-positive (ER+) breast cancer tissue samples, 8 human epithelial growth factor receptor 2-positive (HER2+) breast cancer tissue samples, and 3 normal breast tissues by identification, functional annotation, and prediction of upstream regulators and cell-surface biomarkers of differentially expressed genes (DEGs). RESULTS We identified over 5,000 DEGs in each of ER+ and HER2+ breast cancers compared to normal tissues. Functional enrichment analysis of shared DEGs indicated significant changes in the regulation of immune -systems in the 2 subtypes. We further identified 1,871 DEGs between the 2 subtypes and disclosed great tumor heterogeneity. We identified 533 shared upregulated genes and predicted 17 upstream transcription factors, as well as identified differentially expressed cell-surface biomarkers for distinguishing our ER+ and HER2+ breast cancers. Further analysis also highlighted the limitation of the usage of HER2 alone in breast cancer classification. CONCLUSION Our findings in ER+ and HER2+ breast cancers provided novel insights into heterogeneous transcriptional activities underlying complex mechanisms of oncogenesis in breast cancers.
Collapse
Affiliation(s)
- Pengtao Chen
- Thyroid and Breast Surgery, Zhoukou Central Hospital of Henan Province, Zhoukou, China
| | - Wei Song
- School of Life Science, Shanghai University, Shanghai, China
| | - Liangli Liu
- Intensive Care Unit, Zhoukou Hospital of Traditional Chinese Medicine of Henan Province, Zhoukou, China
| |
Collapse
|
21
|
Terry S, Savagner P, Ortiz-Cuaran S, Mahjoubi L, Saintigny P, Thiery JP, Chouaib S. New insights into the role of EMT in tumor immune escape. Mol Oncol 2017; 11:824-846. [PMID: 28614624 PMCID: PMC5496499 DOI: 10.1002/1878-0261.12093] [Citation(s) in RCA: 280] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/27/2017] [Accepted: 06/02/2017] [Indexed: 01/02/2023] Open
Abstract
Novel immunotherapy approaches have provided durable remission in a significant number of cancer patients with cancers previously considered rapidly lethal. Nonetheless, the high degree of nonresponders, and in some cases the emergence of resistance in patients who do initially respond, represents a significant challenge in the field of cancer immunotherapy. These issues prompt much more extensive studies to better understand how cancer cells escape immune surveillance and resist immune attacks. Here, we review the current knowledge of how cellular heterogeneity and plasticity could be involved in shaping the tumor microenvironment (TME) and in controlling antitumor immunity. Indeed, recent findings have led to increased interest in the mechanisms by which cancer cells undergoing epithelial‐mesenchymal transition (EMT), or oscillating within the EMT spectrum, might contribute to immune escape through multiple routes. This includes shaping of the TME and decreased susceptibility to immune effector cells. Although much remains to be learned on the mechanisms at play, cancer cell clones with mesenchymal features emerging from the TME seem to be primed to face immune attacks by specialized killer cells of the immune system, the natural killer cells, and the cytotoxic T lymphocytes. Recent studies investigating patient tumors have suggested EMT as a candidate predictive marker to be explored for immunotherapy outcome. Promising data also exist on the potential utility of targeting these cancer cell populations to at least partly overcome such resistance. Research is now underway which may lead to considerable progress in optimization of treatments.
Collapse
Affiliation(s)
- Stéphane Terry
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Fac. de médecine - Univ. Paris-Sud, University Paris-Saclay, Villejuif, France
| | - Pierre Savagner
- Institut de Recherche en Cancérologie de Montpellier, France.,U1194, INSERM, Montpellier, France.,Université Montpellier, France.,Institut du Cancer Montpellier, France
| | - Sandra Ortiz-Cuaran
- INSERM U1052, CNRS UMR 5286, Cancer Research Center of Lyon, France.,Université de Lyon, France.,Centre Léon Bérard, Lyon, France.,Faculté de Pharmacie de Lyon, ISPB, Université Lyon 1, France.,LabEx DEVweCAN, Université de Lyon, France
| | - Linda Mahjoubi
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Fac. de médecine - Univ. Paris-Sud, University Paris-Saclay, Villejuif, France
| | - Pierre Saintigny
- INSERM U1052, CNRS UMR 5286, Cancer Research Center of Lyon, France.,Université de Lyon, France.,Centre Léon Bérard, Lyon, France.,Faculté de Pharmacie de Lyon, ISPB, Université Lyon 1, France.,LabEx DEVweCAN, Université de Lyon, France
| | - Jean-Paul Thiery
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Fac. de médecine - Univ. Paris-Sud, University Paris-Saclay, Villejuif, France.,CNRS UMR 7057, Matter and Complex Systems, Paris, France.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Salem Chouaib
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Fac. de médecine - Univ. Paris-Sud, University Paris-Saclay, Villejuif, France
| |
Collapse
|
22
|
Sarkar S, Ghosh A, Banerjee S, Maity G, Das A, Larson MA, Gupta V, Haque I, Tawfik O, Banerjee SK. CCN5/WISP-2 restores ER-∝ in normal and neoplastic breast cells and sensitizes triple negative breast cancer cells to tamoxifen. Oncogenesis 2017; 6:e340. [PMID: 28530705 PMCID: PMC5569333 DOI: 10.1038/oncsis.2017.43] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/27/2017] [Accepted: 04/05/2017] [Indexed: 12/11/2022] Open
Abstract
CCN5/WISP-2 is an anti-invasive molecule and prevents breast cancer (BC)
progression. However, it is not well understood how CCN5 prevents invasive phenotypes
of BC cells. CCN5 protein expression is detected in estrogen receptor-α
(ER-α) -positive normal breast epithelial cells as well as BC cells, which are
weakly invasive and rarely metastasize depending on the functional status of
ER-α. A unique molecular relation between CCN5 and ER-α has been
established as the components of the same signaling pathway that coordinate some
essential signals associated with the proliferation as well as delaying the disease
progression from a non-invasive to invasive phenotypes. Given the importance of this
connection, we determined the role of CCN5 in regulation of ER-α in different
cellular settings and their functional relationship. In a genetically engineered
mouse model, induced expression of CCN5 in the mammary ductal epithelial cells by
doxycycline promotes ER-α expression. Similarly, CCN5 regulates ER-α
expression and activity in normal and neoplastic breast cells, as documented in
various in vitro settings such as mouse mammary gland culture, human mammary
epithelial cell and different BC cell cultures in the presence or absence of human
recombinant CCN5 (hrCCN5) protein. Mechanistically, at least in the BC cells, CCN5 is
sufficient to induce ER-α expression at the transcription level via interacting
with integrins-α6β1 and suppressing Akt followed by activation of FOXO3a.
Moreover, in vitro and in vivo functional assays indicate that CCN5
treatment promotes response to tamoxifen in triple-negative BC (TNBC) cells possibly
via restoring ER-α. Collectively, these studies implicates that the combination
treatments of CCN5 (via activation of CCN5 or hrCCN5 treatment) and tamoxifen as
potential therapies for TNBC.
Collapse
Affiliation(s)
- S Sarkar
- Cancer Research Unit, Kansas City VA Medical Center, Kansas City, MO, USA.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - A Ghosh
- Cancer Research Unit, Kansas City VA Medical Center, Kansas City, MO, USA.,Division of Hematology and Oncology, Department of Medicine, University of Kansas Medical Centre, Kansas City, KS, USA
| | - S Banerjee
- Cancer Research Unit, Kansas City VA Medical Center, Kansas City, MO, USA.,Division of Hematology and Oncology, Department of Medicine, University of Kansas Medical Centre, Kansas City, KS, USA
| | - G Maity
- Cancer Research Unit, Kansas City VA Medical Center, Kansas City, MO, USA.,Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - A Das
- Cancer Research Unit, Kansas City VA Medical Center, Kansas City, MO, USA.,Division of Hematology and Oncology, Department of Medicine, University of Kansas Medical Centre, Kansas City, KS, USA
| | - M A Larson
- Transgenic and Gene-targeting Institutional Facilities, University of Kansas Medical Centre, Kansas City, KS, USA
| | - V Gupta
- Cancer Research Unit, Kansas City VA Medical Center, Kansas City, MO, USA.,Division of Hematology and Oncology, Department of Medicine, University of Kansas Medical Centre, Kansas City, KS, USA
| | - I Haque
- Cancer Research Unit, Kansas City VA Medical Center, Kansas City, MO, USA.,Division of Hematology and Oncology, Department of Medicine, University of Kansas Medical Centre, Kansas City, KS, USA
| | - O Tawfik
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - S K Banerjee
- Cancer Research Unit, Kansas City VA Medical Center, Kansas City, MO, USA.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA.,Division of Hematology and Oncology, Department of Medicine, University of Kansas Medical Centre, Kansas City, KS, USA.,Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
23
|
Ferrand N, Béreziat V, Moldes M, Zaoui M, Larsen AK, Sabbah M. WISP1/CCN4 inhibits adipocyte differentiation through repression of PPARγ activity. Sci Rep 2017; 7:1749. [PMID: 28496206 PMCID: PMC5431985 DOI: 10.1038/s41598-017-01866-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 04/04/2017] [Indexed: 01/18/2023] Open
Abstract
WISP1 (Wnt1-inducible signaling pathway protein-1, also known as CCN4) is a member of the CCN family able to mediate cell growth, transformation and survival in a tissue-specific manner. Here, we report that WISP1 expression was highly increased in preadipocytes and decreased during adipocyte differentiation. Moreover, we observed an increase in WISP1 gene expression in adipose tissue from both diet-induced and leptin-deficient ob/ob obese mice, suggesting that WISP1 could be involved in the pathophysiological onset of obesity. Interestingly, overexpression of WISP1 in 3T3-F442A cells prevented adipocyte differentiation via downregulation of peroxisome proliferator-activated receptor (PPARγ) transcriptional activity thereby attenuating the expression of adipogenic markers. Conversely, silencing of WISP1 enhanced adipocyte differentiation. We further show that the inactivation of PPARγ transcriptional activity was mediated, at least in part, by a direct physical association between WISP1 and PPARγ, followed by proteasome-dependent degradation of PPARγ. These results suggest for the first time that WISP1 interacts with PPARγ and that this interaction results in the inhibition of PPARγ activity. Taken together our results suggest that WISP1 functions as a negative regulator of adipogenesis.
Collapse
Affiliation(s)
- Nathalie Ferrand
- Sorbonne Universités, Cancer Biology and Therapeutics, UPMC Univ Paris 06, INSERM, CNRS, Institut Universitaire de Cancérologie, Saint-Antoine Research Center (CRSA), F-75012, Paris, France
| | - Véronique Béreziat
- Sorbonne Universités, Genetic and Acquired Lipodystrophies, UPMC Univ Paris 06, INSERM, Hospitalo-Universitary Institute, ICAN, Saint-Antoine Research Center (CRSA), F-75012, Paris, France
| | - Marthe Moldes
- Sorbonne Universités, Genetic and Acquired Lipodystrophies, UPMC Univ Paris 06, INSERM, Hospitalo-Universitary Institute, ICAN, Saint-Antoine Research Center (CRSA), F-75012, Paris, France
| | - Maurice Zaoui
- Sorbonne Universités, Cancer Biology and Therapeutics, UPMC Univ Paris 06, INSERM, CNRS, Institut Universitaire de Cancérologie, Saint-Antoine Research Center (CRSA), F-75012, Paris, France
| | - Annette K Larsen
- Sorbonne Universités, Cancer Biology and Therapeutics, UPMC Univ Paris 06, INSERM, CNRS, Institut Universitaire de Cancérologie, Saint-Antoine Research Center (CRSA), F-75012, Paris, France
| | - Michèle Sabbah
- Sorbonne Universités, Cancer Biology and Therapeutics, UPMC Univ Paris 06, INSERM, CNRS, Institut Universitaire de Cancérologie, Saint-Antoine Research Center (CRSA), F-75012, Paris, France.
| |
Collapse
|
24
|
Liu JL, Kaddour N, Chowdhury S, Li Q, Gao ZH. Role of CCN5 (WNT1 inducible signaling pathway protein 2) in pancreatic islets. J Diabetes 2017; 9:462-474. [PMID: 27863006 DOI: 10.1111/1753-0407.12507] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 11/07/2016] [Indexed: 12/15/2022] Open
Abstract
In search of direct targets of insulin-like growth factor (IGF)-1 action, we discovered CCN5 (WNT1 inducible signaling pathway protein 2 [WISP2]) as a novel protein expressed in pancreatic β-cells. As a member of the "CCN" ( C ysteine-rich angiogenic inducer 61 [Cyr61], C onnective tissue growth factor [CTGF in humans], and N ephroblastoma overexpressed [Nov; in chickens]) family, the expression of CCN5/WISP2 is stimulated by IGF-1 together with Wnt signaling. When overexpressed in insulinoma cells, CCN5 promotes cell proliferation and cell survival against streptozotocin-induced cell death. The cell proliferation effect seems to be caused by AKT phosphorylation and increased cyclin D1 levels. These properties resemble those of CCN2/CTGF, another isoform of the CCN family, although CCN5 is the only one within the family of six proteins that lacks the C-terminal repeat. Treatment of primary mouse islets with recombinant CCN5 protein produced similar effects to those of gene transfection, indicating that either as a matricellular protein or a secreted growth factor, CCN5 stimulates β-cell proliferation and regeneration in a paracrine fashion. This review also discusses the regulation of CCN5/WISP2 by estrogen and its involvement in angiogenesis and tumorigenesis.
Collapse
Affiliation(s)
- Jun-Li Liu
- Fraser Laboratories, Department of Medicine, The Research Institute of McGill University Health Centre, Montreal, Canada
| | - Nancy Kaddour
- Fraser Laboratories, Department of Medicine, The Research Institute of McGill University Health Centre, Montreal, Canada
| | - Subrata Chowdhury
- Fraser Laboratories, Department of Medicine, The Research Institute of McGill University Health Centre, Montreal, Canada
| | - Qing Li
- Fraser Laboratories, Department of Medicine, The Research Institute of McGill University Health Centre, Montreal, Canada
| | - Zu-Hua Gao
- Department of Pathology, The Research Institute of McGill University Health Centre, Montreal, Canada
| |
Collapse
|
25
|
Deficiency of CCN5/WISP-2-Driven Program in breast cancer Promotes Cancer Epithelial cells to mesenchymal stem cells and Breast Cancer growth. Sci Rep 2017; 7:1220. [PMID: 28450698 PMCID: PMC5430628 DOI: 10.1038/s41598-017-00916-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/16/2017] [Indexed: 12/31/2022] Open
Abstract
Breast cancer progression and relapse is conceivably due to tumor initiating cells (TICs)/cancer stem cells. EMT (epithelial-mesenchymal-transition)-signaling regulates TICs’ turnover. However, the mechanisms associated with this episode are unclear. We show that, in triple-negative-breast cancer (TNBC) cells enriched with TICs, CCN5 significantly blocks cellular growth via apoptosis, reversing EMT-signaling and impairing mammosphere formation, thereby blocking the tumor-forming ability and invasive capacity of these cells. To corroborate these findings, we isolated tumor-initiating side populations (SP) and non-side population (NSP or main population) from MCF-7 cell line, and evaluated the impact of CCN5 on these subpopulations. CCN5 was overexpressed in the NSP but downregulated in the SP. Characteristically, NSP cells are ER-α positive and epithelial type with little tumorigenic potency, while SP cells are very similar to triple-negative ones that do not express ER-α- and Her-2 and are highly tumorigenic in xenograft models. The overexpression of CCN5 in SP results in EMT reversion, ER-α upregulation and delays in tumor growth in xenograft models. We reasoned that CCN5 distinguishes SP and NSP and could reprogram SP to NSP transition, thereby delaying tumor growth in the xenograft model. Collectively, we reveal how CCN5-signaling underlies the driving force to prevent TNBC growth and progression.
Collapse
|
26
|
Epigenetic activation of the prostaglandin receptor EP4 promotes resistance to endocrine therapy for breast cancer. Oncogene 2016; 36:2319-2327. [PMID: 27869171 PMCID: PMC5398938 DOI: 10.1038/onc.2016.397] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 09/07/2016] [Accepted: 09/08/2016] [Indexed: 12/19/2022]
Abstract
Approximately 75% of breast cancers express estrogen receptor α (ERα) and depend on estrogen signals for continued growth. Aromatase inhibitors (AIs) prevent estrogen production and inhibit ER signaling, resulting in decreased cancer recurrence and mortality. Advanced tumors treated with AIs almost always develop resistance to these drugs via the upregulation of alternative growth signals. The mechanisms that drive this resistance-especially epigenetic events that alter gene expression-are, however, not well understood. Genome-wide DNA methylation and expression analysis of cell line models of acquired AI resistance indicated that prostaglandin E2 receptor 4 (PTGER4) is upregulated after demethylation in resistant cells. Knockdown and inhibitor studies demonstrate that PTGER4 is essential for estrogen-independent growth. Our exploratory analysis of downstream signaling indicates that PTGER4 likely promotes AI resistance via ligand-independent activation of the ERα-cofactor CARM1. We believe that we have discovered a novel epigenetic mechanism for altering cell signaling and acquiring endocrine therapy resistance. Our findings indicate that PTGER4 is a potential drug target in AI-resistant cancers. In addition, the epigenetic component of PTGER4 regulation suggests that further study of PTGER4 may yield valuable insights into how DNA methylation-targeted diagnoses and treatments can improve AI-resistant breast cancer treatment.
Collapse
|
27
|
Kin K, Maziarz J, Chavan AR, Kamat M, Vasudevan S, Birt A, Emera D, Lynch VJ, Ott TL, Pavlicev M, Wagner GP. The Transcriptomic Evolution of Mammalian Pregnancy: Gene Expression Innovations in Endometrial Stromal Fibroblasts. Genome Biol Evol 2016; 8:2459-73. [PMID: 27401177 PMCID: PMC5010902 DOI: 10.1093/gbe/evw168] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The endometrial stromal fibroblast (ESF) is a cell type present in the uterine lining of therian mammals. In the stem lineage of eutherian mammals, ESF acquired the ability to differentiate into decidual cells in order to allow embryo implantation. We call the latter cell type "neo-ESF" in contrast to "paleo-ESF" which is homologous to eutherian ESF but is not able to decidualize. In this study, we compare the transcriptomes of ESF from six therian species: Opossum (Monodelphis domestica; paleo-ESF), mink, rat, rabbit, human (all neo-ESF), and cow (secondarily nondecidualizing neo-ESF). We find evidence for strong stabilizing selection on transcriptome composition suggesting that the expression of approximately 5,600 genes is maintained by natural selection. The evolution of neo-ESF from paleo-ESF involved the following gene expression changes: Loss of expression of genes related to inflammation and immune response, lower expression of genes opposing tissue invasion, increased markers for proliferation as well as the recruitment of FOXM1, a key gene transiently expressed during decidualization. Signaling pathways also evolve rapidly and continue to evolve within eutherian lineages. In the bovine lineage, where invasiveness and decidualization were secondarily lost, we see a re-expression of genes found in opossum, most prominently WISP2, and a loss of gene expression related to angiogenesis. The data from this and previous studies support a scenario, where the proinflammatory paleo-ESF was reprogrammed to express anti-inflammatory genes in response to the inflammatory stimulus coming from the implanting conceptus and thus paving the way for extended, trans-cyclic gestation.
Collapse
Affiliation(s)
- Koryu Kin
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut Yale Systems Biology Institute, Yale University, West Haven, Connecticut
| | - Jamie Maziarz
- Yale Systems Biology Institute, Yale University, West Haven, Connecticut
| | - Arun R Chavan
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut Yale Systems Biology Institute, Yale University, West Haven, Connecticut
| | - Manasi Kamat
- Department of Animal Science, Center for Reproductive Biology and Health, Pennsylvania State University, Stage College, Pennsylvania
| | - Sreelakshmi Vasudevan
- Department of Animal Science, Center for Reproductive Biology and Health, Pennsylvania State University, Stage College, Pennsylvania
| | - Alyssa Birt
- Department of Animal Science, Center for Reproductive Biology and Health, Pennsylvania State University, Stage College, Pennsylvania
| | - Deena Emera
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Vincent J Lynch
- Department of Human Genetics, University of Chicago, Chicago, Illinois
| | - Troy L Ott
- Department of Animal Science, Center for Reproductive Biology and Health, Pennsylvania State University, Stage College, Pennsylvania
| | - Mihaela Pavlicev
- Department of Pediatrics, Cincinnati Children's Hospital and Medical Center, Cincinnati, Ohio
| | - Günter P Wagner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut Yale Systems Biology Institute, Yale University, West Haven, Connecticut Department of Obstetrics, Gynecology and Reproductive Sciences, Yale Medical School, New Haven, Connecticut Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan
| |
Collapse
|
28
|
Dual roles of CCN proteins in breast cancer progression. J Cell Commun Signal 2016; 10:217-222. [PMID: 27520547 DOI: 10.1007/s12079-016-0345-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 07/30/2016] [Indexed: 01/10/2023] Open
Abstract
The tumor microenvironment has a powerful effect on the development and progression of human breast cancer, which may be used therapeutically. Despite efforts to understand the complex role of the tumor microenvironment in breast cancer development, the specific players and their contributions to tumorigenesis need further investigation. The CCN family of matricellular proteins comprises six members (CCN1-6; CYR61, CTGF, NOV, WISP1-3) with central roles in development, inflammation, and tissue repair. CCN proteins also exert functions during pathological processes including fibrosis and cancer by regulating extracellular signals in the cellular environment. Studies have demonstrated that all six CCN proteins exert functions in breast tumorigenesis. Although CCN proteins share a multimodular structure in which most cysteine residues are conserved within structural motifs, they may have opposing functions in breast cancer progression. A better understanding of the functions of each CCN member will assist in the development of specific therapeutic approaches for breast cancer.
Collapse
|
29
|
WISP-2 in human gastric cancer and its potential metastatic suppressor role in gastric cancer cells mediated by JNK and PLC-γ pathways. Br J Cancer 2015; 113:921-33. [PMID: 26291058 PMCID: PMC4578084 DOI: 10.1038/bjc.2015.285] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 07/08/2015] [Accepted: 07/11/2015] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND It has recently been shown that WISP proteins (Wnt-inducted secreted proteins), a group of intra- and extra-cellular regulatory proteins, have been implicated in the initiation and progression of a variety of tumour types including colorectal and breast cancer. However, the role of WISP proteins in gastric cancer (GC) cells and their clinical implications have not yet been elucidated. METHODS The expression of WISP molecules in a cohort of GC patients was analysed using real-time quantitative PCR and immunohistochemistry. The expression of a panel of recognised epithelial-mesenchymal transition (EMT) markers was quantified using Q-PCR in paired tumour and normal tissues. WISP-2 knockdown (kd) sublines using ribozyme transgenes were created in the GC cell lines AGS and HGC27. Subsequently, several biological functions, including cell growth, adhesion, migration and invasion, were studied. Potential pathways for the interaction of EMT, extracellular matrix and MMP were evaluated. RESULTS Overexpression of WISP-2 was detected in GC and significantly correlated with early tumour node-metastasis staging, differentiation status and positively correlated with overall survival and disease-free survival of the patients. WISP-2 expression was inversely correlated with that of Twist and Slug in paired samples. Kd of WISP-2 expression promoted the proliferation, migration and invasion of GC cells. WISP-2 suppressed GC cell metastasis through reversing EMT and suppressing the expression and activity of MMP9 and MMP2 via JNK and ERK. Cell motility analysis indicated that WISP-2 kd contributed to GC cells' motility and can be attenuated by PLC-γ and JNK small inhibitors. CONCLUSIONS Increased expression of WISP-2 in GC is positively correlated with favourable clinical features and the survival of patients with GC and is a negative regulator of growth, migration and invasion in GC cells. These findings suggest that WISP-2 is a potential tumour suppressor in GC.
Collapse
|
30
|
Vantangoli MM, Madnick SJ, Huse SM, Weston P, Boekelheide K. MCF-7 Human Breast Cancer Cells Form Differentiated Microtissues in Scaffold-Free Hydrogels. PLoS One 2015; 10:e0135426. [PMID: 26267486 PMCID: PMC4534042 DOI: 10.1371/journal.pone.0135426] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 07/21/2015] [Indexed: 01/06/2023] Open
Abstract
Three-dimensional (3D) cultures are increasing in use because of their ability to represent in vivo human physiology when compared to monolayer two-dimensional (2D) cultures. When grown in 3D using scaffold-free agarose hydrogels, MCF-7 human breast cancer cells self-organize to form directionally-oriented microtissues that contain a luminal space, reminiscent of the in vivo structure of the mammary gland. When compared to MCF-7 cells cultured in 2D monolayer culture, MCF-7 microtissues exhibit increased mRNA expression of luminal epithelial markers keratin 8 and keratin 19 and decreased expression of basal marker keratin 14 and the mesenchymal marker vimentin. These 3D MCF-7 microtissues remain responsive to estrogens, as demonstrated by induction of known estrogen target mRNAs following exposure to 17β-estradiol. Culture of MCF-7 cells in scaffold-free conditions allows for the formation of more differentiated, estrogen-responsive structures that are a more relevant system for evaluation of estrogenic compounds than traditional 2D models.
Collapse
Affiliation(s)
- Marguerite M. Vantangoli
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, United States of America
| | - Samantha J. Madnick
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, United States of America
| | - Susan M. Huse
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, United States of America
| | - Paula Weston
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, United States of America
| | - Kim Boekelheide
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, United States of America
- * E-mail:
| |
Collapse
|
31
|
Mésange P, Poindessous V, Sabbah M, Escargueil AE, de Gramont A, Larsen AK. Intrinsic bevacizumab resistance is associated with prolonged activation of autocrine VEGF signaling and hypoxia tolerance in colorectal cancer cells and can be overcome by nintedanib, a small molecule angiokinase inhibitor. Oncotarget 2015; 5:4709-21. [PMID: 25015210 PMCID: PMC4148093 DOI: 10.18632/oncotarget.1671] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer (CRC) is a common tumor type with a high mortality rate, in part due to intrinsic drug resistance. Although bevacizumab, a VEGF-directed neutralizing antibody, is particularly active in this pathology, some patients never respond for reasons not well understood. We here wish to clarify the role of autocrine VEGF signaling in the response of CRC cells to angiogenesis inhibition. Our results show that CRC cells with intrinsic bevacizumab-resistance displayed pronounced upregulation of autocrine HIF-VEGF-VEGFR signaling in response to prolonged bevacizumab exposure whereas the same signaling pathway was downregulated in bevacizumab-sensitive xenografts. Importantly, both bevacizumab-sensitive and -resistant CRC xenografts were sensitive to nintedanib, a small molecule angiokinase inhibitor, which was associated with inhibition of mTORC1. In vitro studies revealed that bevacizumab-resistant cells displayed intrinsically higher HIF-VEGF signaling intensity and hypoxia tolerance compared to their bevacizumab-sensitive counterparts. Interestingly, although nintedanib showed comparable activity toward bevacizumab-sensitive cells under normoxia and hypoxia, the drug was three-fold more toxic to the resistant cells under hypoxia, suggesting that nintedanib attenuated the survival signaling that usually protects these cells from hypoxia-mediated cell death. In conclusion, our findings support a role for autocrine VEGF signaling in the survival of CRC cells to hypoxia and thus to angiogenesis inhibition. We further show that nintedanib, a small molecule angiokinase inhibitor, is active toward CRC models with intrinsic bevacizumab resistance supporting clinical trials of nintedanib in patients that do not respond to bevacizumab, alone or in combination with bevacizumab to increase angiogenesis inhibition.
Collapse
Affiliation(s)
- Paul Mésange
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine; Institut National de la Santé et de la Recherche Médicale U938, Paris, France
| | | | | | | | | | - Annette K Larsen
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine; Institut National de la Santé et de la Recherche Médicale U938, Paris, France; Université Pierre et Marie Curie, Paris, France
| |
Collapse
|
32
|
Fang TT, Sun XJ, Chen J, Zhao Y, Sun RX, Ren N, Liu BB. Long Non-coding RNAs are Differentially Expressed in Hepatocellular Carcinoma Cell Lines with Differing Metastatic Potential. Asian Pac J Cancer Prev 2015; 15:10513-24. [DOI: 10.7314/apjcp.2014.15.23.10513] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
33
|
Fsn0503h antibody-mediated blockade of cathepsin S as a potential therapeutic strategy for the treatment of solid tumors. Biochimie 2015; 108:101-7. [DOI: 10.1016/j.biochi.2014.10.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 10/27/2014] [Indexed: 01/20/2023]
|
34
|
Patel P, Brooks C, Seneviratne A, Hess DA, Séguin CA. Investigating microenvironmental regulation of human chordoma cell behaviour. PLoS One 2014; 9:e115909. [PMID: 25541962 PMCID: PMC4277432 DOI: 10.1371/journal.pone.0115909] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 12/01/2014] [Indexed: 12/30/2022] Open
Abstract
The tumour microenvironment is complex and composed of many different constituents, including matricellular proteins such as connective tissue growth factor (CCN2), and is characterized by gradients in oxygen levels. In various cancers, hypoxia and CCN2 promote stem and progenitor cell properties, and regulate the proliferation, migration and phenotype of cancer cells. Our study was aimed at investigating the effects of hypoxia and CCN2 on chordoma cells, using the human U-CH1 cell line. We demonstrate that under basal conditions, U-CH1 cells express multiple CCN family members including CCN1, CCN2, CCN3 and CCN5. Culture of U-CH1 cells in either hypoxia or in the presence of recombinant CCN2 peptide promoted progenitor cell-like characteristics specific to the notochordal tissue of origin. Specifically, hypoxia induced the most robust increase in progenitor-like characteristics in U-CH1 cells, including increased expression of the notochord-associated markers T, CD24, FOXA1, ACAN and CA12, increased cell growth and tumour-sphere formation, and a decrease in the percentage of vacuolated cells present in the heterogeneous population. Interestingly, the effects of recombinant CCN2 peptide on U-CH1 cells were more pronounced under normoxia than hypoxia, promoting increased expression of CCN1, CCN2, CCN3 and CCN5, the notochord-associated markers SOX5, SOX6, T, CD24, and FOXA1 as well as increased tumour-sphere formation. Overall, this study highlights the importance of multiple factors within the tumour microenvironment and how hypoxia and CCN2 may regulate human chordoma cell behaviour.
Collapse
Affiliation(s)
- Priya Patel
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Courtney Brooks
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Ayesh Seneviratne
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
- Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
| | - David A. Hess
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
- Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
| | - Cheryle A. Séguin
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
35
|
Xiao G, Tang Z, Yuan X, Yuan J, Zhao J, Zhang Z, He Z, Liu J. The expression of Wnt-1 inducible signaling pathway protein-2 in astrocytoma: Correlation between pathological grade and clinical outcome. Oncol Lett 2014; 9:235-240. [PMID: 25435966 PMCID: PMC4246620 DOI: 10.3892/ol.2014.2663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 10/15/2014] [Indexed: 01/16/2023] Open
Abstract
Wnt-1 inducible signaling pathway protein-2 (WISP-2) is a member of the CCN family, which is critical for the control of cell morphology, motion, adhesion and other processes involved in tumorigenesis. The expression pattern and clinical significance of WISP-2 in astrocytomas remains unclear. In this study, reverse transcription-polymerase chain reaction was performed to systematically investigate the expression of WISP-2 in 47 astrocytoma tissues of different pathological grades and 10 normal brain tissues. The mRNA expression levels of WISP-2 in the astrocytoma tissues were observed to be significantly higher than those in the normal brain tissues. Furthermore, the upregulation of WISP-2 was found to be associated with astrocytomas of higher pathological grades. Subsequently, 154 astrocytoma and 15 normal brain tissues were analyzed using immunohistochemistry and similar results were obtained. Univariate and multivariate survival analyses were used to determine the correlations between WISP-2 expression and overall survival (OS) and progression-free survival (PFS). The results indicated that the expression of WISP-2 was found to negatively correlate with patient PFS and OS. These results demonstrated that the WISP-2 protein is involved in the pathogenesis and progression of human astrocytomas and may serve as a malignant biomarker of this disease.
Collapse
Affiliation(s)
- Gelei Xiao
- The Institute of Skull Base Surgery and Neurooncology at Hunan, Xiangya Hospital, Changsha, Hunan 410008, P.R. China
| | - Zhi Tang
- Department of Neurosurgery, Hunan Provincial Tumor Hospital, The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013, P.R. China
| | - Xianrui Yuan
- The Institute of Skull Base Surgery and Neurooncology at Hunan, Xiangya Hospital, Changsha, Hunan 410008, P.R. China
| | - Jian Yuan
- The Institute of Skull Base Surgery and Neurooncology at Hunan, Xiangya Hospital, Changsha, Hunan 410008, P.R. China
| | - Jie Zhao
- The Institute of Skull Base Surgery and Neurooncology at Hunan, Xiangya Hospital, Changsha, Hunan 410008, P.R. China
| | - Zhiping Zhang
- The Institute of Skull Base Surgery and Neurooncology at Hunan, Xiangya Hospital, Changsha, Hunan 410008, P.R. China
| | - Zhengwen He
- Department of Neurosurgery, Hunan Provincial Tumor Hospital, The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013, P.R. China
| | - Jingping Liu
- The Institute of Skull Base Surgery and Neurooncology at Hunan, Xiangya Hospital, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
36
|
Haque I, Banerjee S, De A, Maity G, Sarkar S, Majumdar M, Jha SS, McGragor D, Banerjee SK. CCN5/WISP-2 promotes growth arrest of triple-negative breast cancer cells through accumulation and trafficking of p27(Kip1) via Skp2 and FOXO3a regulation. Oncogene 2014; 34:3152-63. [PMID: 25132260 DOI: 10.1038/onc.2014.250] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 04/18/2014] [Accepted: 07/03/2014] [Indexed: 02/07/2023]
Abstract
The matricellular protein CCN5/WISP-2 represents a promising target in triple-negative breast cancer (TNBC) because treatment or induced activation of CCN5 in TNBC cells promotes cell growth arrest at the G0/G1 phase, reduces cell proliferation and delays tumor growth in the xenograft model. Our studies found that the p27(Kip1) tumor suppressor protein is upregulated and relocalized to the nucleus from cytoplasm by CCN5 in these cells and that these two events (upregulation and relocalization of p27(Kip1)) are critical for CCN5-induced growth inhibition of TNBC cells. In the absence of CCN5, p27(Kip1) resides mostly in the cytoplasm, which is associated with the aggressive nature of cancer cells. Mechanistically, CCN5 inhibits Skp2 expression, which seems to stabilize the p27(Kip1) protein in these cells. On the other hand, CCN5 also recruits FOXO3a to mediate the transcriptional regulation of p27(Kip1). The recruitment of FOXO3a is achieved by the induction of its expression and activity through shifting from cytoplasm to the nucleus. Our data indicate that CCN5 blocks PI3K/AKT signaling to dephosphorylate at S318, S253 and Thr32 in FOXO3a for nuclear relocalization and activation of FOXO3a. Moreover, inhibition of α6β1 receptors diminishes CCN5 action on p27(Kip1) in TNBC cells. Collectively, these data suggest that CCN5 effectively inhibits TNBC growth through the accumulation and trafficking of p27(Kip1) via Skp2 and FOXO3a regulation, and thus, activation of CCN5 may have the therapeutic potential to kill TNBC.
Collapse
Affiliation(s)
- I Haque
- 1] Cancer Research Unit, V.A. Medical Center, Kansas City, MO, USA [2] Division of Hematology and Oncology, Department of Medicine, University of Kansas Medical Center, Kansas City, MO, USA
| | - S Banerjee
- 1] Cancer Research Unit, V.A. Medical Center, Kansas City, MO, USA [2] Division of Hematology and Oncology, Department of Medicine, University of Kansas Medical Center, Kansas City, MO, USA
| | - A De
- Cancer Research Unit, V.A. Medical Center, Kansas City, MO, USA
| | - G Maity
- 1] Cancer Research Unit, V.A. Medical Center, Kansas City, MO, USA [2] Division of Hematology and Oncology, Department of Medicine, University of Kansas Medical Center, Kansas City, MO, USA
| | - S Sarkar
- 1] Cancer Research Unit, V.A. Medical Center, Kansas City, MO, USA [2] Department of Anatomy and Cell Biology and Department of Pathology, University of Kansas Medical Center, Kansas City, MO, USA
| | - M Majumdar
- Cancer Research Unit, V.A. Medical Center, Kansas City, MO, USA
| | - S S Jha
- Cancer Research Unit, V.A. Medical Center, Kansas City, MO, USA
| | - D McGragor
- Cancer Research Unit, V.A. Medical Center, Kansas City, MO, USA
| | - S K Banerjee
- 1] Cancer Research Unit, V.A. Medical Center, Kansas City, MO, USA [2] Division of Hematology and Oncology, Department of Medicine, University of Kansas Medical Center, Kansas City, MO, USA [3] Department of Anatomy and Cell Biology and Department of Pathology, University of Kansas Medical Center, Kansas City, MO, USA
| |
Collapse
|
37
|
Astorgues-Xerri L, Riveiro ME, Tijeras-Raballand A, Serova M, Rabinovich GA, Bieche I, Vidaud M, de Gramont A, Martinet M, Cvitkovic E, Faivre S, Raymond E. OTX008, a selective small-molecule inhibitor of galectin-1, downregulates cancer cell proliferation, invasion and tumour angiogenesis. Eur J Cancer 2014; 50:2463-77. [PMID: 25042151 DOI: 10.1016/j.ejca.2014.06.015] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 06/11/2014] [Accepted: 06/16/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND Galectin-1 (Gal1), a carbohydrate-binding protein is implicated in cancer cell proliferation, invasion and tumour angiogenesis. Several Gal1-targeting compounds have recently emerged. OTX008 is a calixarene derivative designed to bind the Gal1 amphipathic β-sheet conformation. Our study contributes to the current understanding of the role of Gal1 in cancer progression, providing mechanistic insights into the anti-tumoural activity of a novel small molecule Gal1-inhibitor. METHODS We evaluated in vitro OTX008 effects in a panel of human cancer cell lines. For in vivo studies, an ovarian xenograft model was employed to analyse the antitumour activity. Finally, combination studies were performed to analyse potential synergistic effects of OTX008. RESULTS In cultured cancer cells, OTX008 inhibited proliferation and invasion at micromolar concentrations. Antiproliferative effects correlated with Gal1 expression across a large panel of cell lines. Furthermore, cell lines expressing epithelial differentiation markers were more sensitive than mesenchymal cells to OTX008. In SQ20B and A2780-1A9 cells, OTX008 inhibited Gal1 expression and ERK1/2 and AKT-dependent survival pathways, and induced G2/M cell cycle arrest through CDK1. OTX008 enhanced the antiproliferative effects of Semaphorin-3A (Sema3A) in SQ20B cells and reversed invasion induced by exogenous Gal1. In vivo, OTX008 inhibited growth of A2780-1A9 xenografts. OTX008 treatment was associated with downregulation of Gal1 and Ki67 in treated tumours, as well as decreased microvessel density and VEGFR2 expression. Finally, combination studies showed OTX008 synergy with several cytotoxic and targeted therapies, principally when OTX008 was administered first. CONCLUSION This study provides insights into the role of Gal1 in cancer progression as well as OTX008 mechanism of action, and supports its further development as an anticancer agent.
Collapse
Affiliation(s)
- Lucile Astorgues-Xerri
- INSERM U728 and Medical Oncology Department, Beaujon University Hospital (AP-HP - PRES Paris 7 Diderot), 100 bd du Général Leclerc, 92110 Clichy, France
| | - Maria E Riveiro
- INSERM U728 and Medical Oncology Department, Beaujon University Hospital (AP-HP - PRES Paris 7 Diderot), 100 bd du Général Leclerc, 92110 Clichy, France; Oncology Therapeutic Development, 100 rue Martre, 92110 Clichy, France
| | - Annemilaï Tijeras-Raballand
- INSERM U728 and Medical Oncology Department, Beaujon University Hospital (AP-HP - PRES Paris 7 Diderot), 100 bd du Général Leclerc, 92110 Clichy, France
| | - Maria Serova
- INSERM U728 and Medical Oncology Department, Beaujon University Hospital (AP-HP - PRES Paris 7 Diderot), 100 bd du Général Leclerc, 92110 Clichy, France
| | - Gabriel A Rabinovich
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Vuelta de Obligado 2490 and Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428, Argentina
| | - Ivan Bieche
- UMR745 INSERM, Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
| | - Michel Vidaud
- UMR745 INSERM, Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
| | - Armand de Gramont
- INSERM U728 and Medical Oncology Department, Beaujon University Hospital (AP-HP - PRES Paris 7 Diderot), 100 bd du Général Leclerc, 92110 Clichy, France
| | - Mathieu Martinet
- INSERM U728 and Medical Oncology Department, Beaujon University Hospital (AP-HP - PRES Paris 7 Diderot), 100 bd du Général Leclerc, 92110 Clichy, France
| | | | - Sandrine Faivre
- INSERM U728 and Medical Oncology Department, Beaujon University Hospital (AP-HP - PRES Paris 7 Diderot), 100 bd du Général Leclerc, 92110 Clichy, France
| | - Eric Raymond
- INSERM U728 and Medical Oncology Department, Beaujon University Hospital (AP-HP - PRES Paris 7 Diderot), 100 bd du Général Leclerc, 92110 Clichy, France.
| |
Collapse
|
38
|
Targeting WNT1-inducible signaling pathway protein 2 alters human breast cancer cell susceptibility to specific lysis through regulation of KLF-4 and miR-7 expression. Oncogene 2014; 34:2261-71. [PMID: 24931170 DOI: 10.1038/onc.2014.151] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 03/17/2014] [Accepted: 03/26/2014] [Indexed: 01/10/2023]
Abstract
The molecular basis for the resistance of tumor cells to cell-mediated cytotoxicity remains poorly understood and thus poses a major challenge for cancer immunotherapy. The present study was designed to determine whether the WNT1-inducible signaling pathway protein 2 (WISP2, also referred to as CCN5), a key regulator of tumor cell plasticity, interferes with tumor susceptibility to cytotoxic T-lymphocyte (CTL)-mediated lysis. We found that silencing WISP2 signaling in human breast adenocarcinoma MCF7 cells impairs CTL-mediated cell killing by a mechanism involving stem cell marker Kruppel-like factor-4 (KLF-4) induction and microRNA-7 (miR-7) downregulation. Inhibition of transforming growth factor beta (TGF-β) signaling using the A83-01 inhibitor in MCF7-shWISP2 cells resulted in a significant reversal of the epithelial-to-mesenchymal-transitioned (EMT) phenotype, the expression of KLF-4 and a partial recovery of target susceptibility to CTLs. More importantly, we showed that silencing KLF-4 was accompanied by a reduction in MCF7-shWISP2 resistance to CTLs. Using human breast cancer tissues, we demonstrated the coexpression of KLF-4 with EMT markers and TGF-β pathway signaling components. More importantly, we found that KLF-4 expression was accompanied by miR-7 inhibition, which is partly responsible for impairing CTL-mediated lysis. Thus, our data indicate that WISP2 has a role in regulating tumor cell susceptibility through EMT by inducing the TGF-β signaling pathway, KLF-4 expression and miR-7 inhibition. These studies indicate for the first time that WISP2 acts as an activator of CTL-induced killing and suggests that the loss of its function promotes evasion of immunosurveillance and the ensuing progression of the tumor.
Collapse
|
39
|
Fuady JH, Bordoli MR, Abreu-Rodríguez I, Kristiansen G, Hoogewijs D, Stiehl DP, Wenger RH. Hypoxia-inducible factor-mediated induction of WISP-2 contributes to attenuated progression of breast cancer. HYPOXIA 2014; 2:23-33. [PMID: 27774464 PMCID: PMC5045054 DOI: 10.2147/hp.s54404] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Hypoxia and the hypoxia-inducible factor (HIF) signaling pathway trigger the expression of several genes involved in cancer progression and resistance to therapy. Transcriptionally active HIF-1 and HIF-2 regulate overlapping sets of target genes, and only few HIF-2 specific target genes are known so far. Here we investigated oxygen-regulated expression of Wnt-1 induced signaling protein 2 (WISP-2), which has been reported to attenuate the progression of breast cancer. WISP-2 was hypoxically induced in low-invasive luminal-like breast cancer cell lines at both the messenger RNA and protein levels, mainly in a HIF-2α-dependent manner. HIF-2-driven regulation of the WISP2 promoter in breast cancer cells is almost entirely mediated by two phylogenetically and only partially conserved functional hypoxia response elements located in a microsatellite region upstream of the transcriptional start site. High WISP-2 tumor levels were associated with increased HIF-2α, decreased tumor macrophage density, and a better prognosis. Silencing WISP-2 increased anchorage-independent colony formation and recovery from scratches in confluent cell layers of normally low-invasive MCF-7 cancer cells. Interestingly, these changes in cancer cell aggressiveness could be phenocopied by HIF-2α silencing, suggesting that direct HIF-2-mediated transcriptional induction of WISP-2 gene expression might at least partially explain the association of high HIF-2α tumor levels with prolonged overall survival of patients with breast cancer.
Collapse
Affiliation(s)
- Jerry H Fuady
- Institute of Physiology and Zurich Center for Human Physiology, University of Zurich, Zurich, Switzerland
| | - Mattia R Bordoli
- Institute of Physiology and Zurich Center for Human Physiology, University of Zurich, Zurich, Switzerland
| | - Irene Abreu-Rodríguez
- Institute of Physiology and Zurich Center for Human Physiology, University of Zurich, Zurich, Switzerland
| | | | - David Hoogewijs
- Institute of Physiology and Zurich Center for Human Physiology, University of Zurich, Zurich, Switzerland
| | - Daniel P Stiehl
- Institute of Physiology and Zurich Center for Human Physiology, University of Zurich, Zurich, Switzerland
| | - Roland H Wenger
- Institute of Physiology and Zurich Center for Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
40
|
Ferrand N, Gnanapragasam A, Dorothee G, Redeuilh G, Larsen AK, Sabbah M. Loss of WISP2/CCN5 in estrogen-dependent MCF7 human breast cancer cells promotes a stem-like cell phenotype. PLoS One 2014; 9:e87878. [PMID: 24498388 PMCID: PMC3912128 DOI: 10.1371/journal.pone.0087878] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 01/05/2014] [Indexed: 01/06/2023] Open
Abstract
It has been proposed that the epithelial-mesenchymal transition (EMT) in mammary epithelial cells and breast cancer cells generates stem cell features. WISP2 (Wnt-1-induced signaling protein-2) plays an important role in maintenance of the differentiated phenotype of estrogen receptor-positive breast cancer cells and loss of WISP2 is associated with EMT. We now report that loss of WISP2 in MCF7 breast cancer cells can also promote the emergence of a cancer stem-like cell phenotype characterized by high expression of CD44, increased aldehyde dehydrogenase activity and mammosphere formation. Higher levels of the stem cell markers Nanog and Oct3/4 were observed in those mammospheres. In addition we show that low-cell inoculums are capable of tumor formation in the mammary fat pad of immunodeficient mice. Gene expression analysis show an enrichment of markers linked to stem cell function such as SOX9 and IGFBP7 which is linked to TGF-β inducible, SMAD3-dependent transcription. Taken together, our data demonstrate that WISP2 loss promotes both EMT and the stem-like cell phenotype.
Collapse
Affiliation(s)
- Nathalie Ferrand
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine, Paris, France
- Institut National de la Santé et de la Recherche Médicale, Paris, France
- Université Pierre et Marie Curie, Paris, France
| | - Anne Gnanapragasam
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine, Paris, France
- Institut National de la Santé et de la Recherche Médicale, Paris, France
- Université Pierre et Marie Curie, Paris, France
| | - Guillaume Dorothee
- Immune system, Neuroinflammation and Neurodegenerative diseases, Centre de Recherche Saint-Antoine, Paris, France
- Institut National de la Santé et de la Recherche Médicale, Paris, France
- Université Pierre et Marie Curie, Paris, France
| | - Gérard Redeuilh
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine, Paris, France
- Institut National de la Santé et de la Recherche Médicale, Paris, France
- Université Pierre et Marie Curie, Paris, France
| | - Annette K. Larsen
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine, Paris, France
- Institut National de la Santé et de la Recherche Médicale, Paris, France
- Université Pierre et Marie Curie, Paris, France
| | - Michèle Sabbah
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine, Paris, France
- Institut National de la Santé et de la Recherche Médicale, Paris, France
- Université Pierre et Marie Curie, Paris, France
- * E-mail:
| |
Collapse
|
41
|
Grünberg JR, Hammarstedt A, Hedjazifar S, Smith U. The Novel Secreted Adipokine WNT1-inducible Signaling Pathway Protein 2 (WISP2) Is a Mesenchymal Cell Activator of Canonical WNT. J Biol Chem 2014; 289:6899-6907. [PMID: 24451367 DOI: 10.1074/jbc.m113.511964] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
WNT1-inducible-signaling pathway protein 2 (WISP2) is primarily expressed in mesenchymal stem cells, fibroblasts, and adipogenic precursor cells. It is both a secreted and cytosolic protein, the latter regulating precursor cell adipogenic commitment and PPARγ induction by BMP4. To examine the effect of the secreted protein, we expressed a full-length and a truncated, non-secreted WISP2 in NIH3T3 fibroblasts. Secreted, but not truncated WISP2 activated the canonical WNT pathway with increased β-catenin levels, its nuclear targeting phosphorylation, and LRP5/6 phosphorylation. It also inhibited Pparg activation and the effect of secreted WISP2 was reversed by the WNT antagonist DICKKOPF-1. Differentiated 3T3-L1 adipose cells were also target cells where extracellular WISP2 activated the canonical WNT pathway, inhibited Pparg and associated adipose genes and, similar to WNT3a, promoted partial dedifferentiation of the cells and the induction of a myofibroblast phenotype with activation of markers of fibrosis. Thus, WISP2 exerts dual actions in mesenchymal precursor cells; secreted WISP2 activates canonical WNT and maintains the cells in an undifferentiated state, whereas cytosolic WISP2 regulates adipogenic commitment.
Collapse
Affiliation(s)
- John R Grünberg
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Center of Excellence for Cardiovascular and Metabolic Research, The Sahlgrenska Academy at the University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Ann Hammarstedt
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Center of Excellence for Cardiovascular and Metabolic Research, The Sahlgrenska Academy at the University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Shahram Hedjazifar
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Center of Excellence for Cardiovascular and Metabolic Research, The Sahlgrenska Academy at the University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Ulf Smith
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Center of Excellence for Cardiovascular and Metabolic Research, The Sahlgrenska Academy at the University of Gothenburg, SE-413 45 Gothenburg, Sweden.
| |
Collapse
|
42
|
Abstract
Tumor invasion is the outcome of a complex interplay between cancer cells and the stromal environment and requires the infiltration of a dense, cross-linked meshwork of collagen type I extracellular matrix. We use a membrane-free single-cell and spheroid-based complementary model to study cancer invasion through native collagen type I matrices. Cell morphology is preserved during the assays allowing real-time monitoring of invasion-induced changes in cell structure and F-actin organization. Combination of these models with computerized quantification permits the calculation of highly reproducible and operator-independent data. These assays are versatile in the use of fluorescent probes and have a flexible kinetic endpoint. Once the optimal experimental conditions are empirically determined, the collagen type I invasion assays can be used for preclinical validation of small-molecule inhibitors targeting invasion. Initiation and monitoring of the single-cell and spheroid invasion model can be achieved in 8 h (over 3 days) and in 14 h (over 5 days), respectively.
Collapse
|
43
|
Ji J, Jia S, Ji K, Jiang WG. Wnt1 inducible signalling pathway protein-2 (WISP‑2/CCN5): roles and regulation in human cancers (review). Oncol Rep 2013; 31:533-9. [PMID: 24337439 DOI: 10.3892/or.2013.2909] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 09/27/2013] [Indexed: 11/05/2022] Open
Abstract
Wnt1 inducible signalling pathway protein-2 (WISP‑2), also known as CCN5, CT58, CTGF-L, CTGF-3, HICP and Cop1, is one of the 3 WNT1 inducible proteins that belongs to the CCN family. This family of members has been shown to play multiple roles in a number of pathophysiological processes, including cell proliferation, adhesion, wound healing, extracellular matrix regulation, epithelial-mesenchymal transition, angiogenesis, fibrosis, skeletal development and embryo implantation. Recent results suggest that WISP-2 is relevant to tumorigenesis and malignant transformation, particularly in breast cancer, colorectal cancer and hepatocarcinoma. Notably, its roles in cancer appear to vary depending on cell/tumour type and the microenvironment. The striking difference in the structure of WISP-2 in comparison with the other 2 family members may contribute to its difference in functions, which leads to the hypothesis that WISP-2 may act as a dominant-negative regulator of other CCN family members. In the present review, we summarise the roles, regulation and underlying mechanism of WISP-2 in human cancers.
Collapse
Affiliation(s)
- Jiafu Ji
- Department of Gastro-enterological Cancers, Peking University Cancer Hospital, Beijing, P.R. China
| | - Shuqin Jia
- Cardiff University-Peking University Joint Cancer Institute, Beijing, P.R. China
| | - Ke Ji
- Cardiff University-Peking University Joint Cancer Institute, Beijing, P.R. China
| | - Wen G Jiang
- Metastasis and Angiogenesis Research Group, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
44
|
Zhang L, Li Y, Liang C, Yang W. CCN5 overexpression inhibits profibrotic phenotypes via the PI3K/Akt signaling pathway in lung fibroblasts isolated from patients with idiopathic pulmonary fibrosis and in an in vivo model of lung fibrosis. Int J Mol Med 2013; 33:478-86. [PMID: 24276150 DOI: 10.3892/ijmm.2013.1565] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 11/21/2013] [Indexed: 11/06/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial lung disease with unknown etiology and undefined treatment modality. Fibroblasts are regarded as the major cell type that mediates the onset and progression of lung fibrosis by secreting large amounts of extracellular matrix (ECM) proteins, such as connective tissue growth factor (CTGF/CCN2). Current knowledge confers a crucial role of CCN2 in lung fibrosis. CCN5, another member of the CCN family, has been suggested to play an inhibitory role in some fibrotic diseases, such as cardiac fibrosis. However, the role of CCN5 in the process of IPF remains unknown. In the present study, using western blot analysis, we demonstrate that CCN2 is highly expressed in fibroblasts derived from IPF tissue, but is only slightly expressed in normal human lung fibroblasts. However, CCN5 was weakly expressed in all the above cells. qRT-PCR revealed that transforming growth factor (TGF)-β1 stimulation increased CCN2 expression in the IPF-derived cultures of primary human lung fibroblasts (PIFs) in a time- and concentration-dependent manner, but only slightly affected the expression of CCN5. The overexpression of CCN5 induced by the transfection of PIFs with recombinant plasmid did not affect cell viability, proliferation and apoptosis; however, it significantly suppressed the expression of CCN2, α-smooth muscle actin (α-SMA) and collagen type I. The TGF-β1-induced upregulation of the phosphorylation of Akt was reversed by CCN5 overexpression. Our results also demonstrated that adenovirus-mediated CCN5 overexpression in a mouse model of bleomycin-induced IPF significantly decreased the hydroxyproline content in the lungs, as well as TGF-β1 expression in bronchoalveolar lavage fluid. Taken together, our data demonstrate that CCN5 exerts an inhibitory effect on the fibrotic phenotypes of pulmonary fibroblasts in vitro and in vivo, and as such may be a promising target for the treatment of IPF.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Geriatrics, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University,Xi'an, Shaanxi 710004, P.R. China
| | - Yingna Li
- Department of Geriatrics, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University,Xi'an, Shaanxi 710004, P.R. China
| | - Chunlian Liang
- Department of Geriatrics, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University,Xi'an, Shaanxi 710004, P.R. China
| | - Weilin Yang
- Department of Geriatrics, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University,Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
45
|
Dings RPM, Levine JI, Brown SG, Astorgues-Xerri L, MacDonald JR, Hoye TR, Raymond E, Mayo KH. Polycationic calixarene PTX013, a potent cytotoxic agent against tumors and drug resistant cancer. Invest New Drugs 2013; 31:1142-50. [PMID: 23392775 PMCID: PMC4242102 DOI: 10.1007/s10637-013-9932-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 01/24/2013] [Indexed: 01/01/2023]
Abstract
Previously, we reported on the anti-tumor activities of two designed calix[4]arene-based topomimetics (PTX008 and PTX009) of the amphipathic, angiostatic peptide Anginex. Here, we chemically modified the hydrophobic and hydrophilic faces of PTX008 and PTX009, and discovered new calixarene compounds that are more potent, cytotoxic anti-tumor agents. One of them, PTX013, is particularly effective at inhibiting the growth of several human cancer cell lines, as well as drug resistant cancer cells. Mechanistically, PTX013 induces cell cycle arrest in sub-G1 and G0/G1 phases of e.g. SQ20B cells, a radio-resistant human head and neck carcinoma model. In the syngeneic B16F10 melanoma tumor mouse model, PTX013 (0.5 mg/Kg) inhibits tumor growth by about 50-fold better than parent PTX008. A preliminary pharmacodynamics study strongly suggests that PTX013 exhibits good in vivo exposure and a relatively long half-life. Overall, this research contributes to the discovery of novel therapeutics as potentially useful agents against cancer in the clinic.
Collapse
Affiliation(s)
- Ruud P. M. Dings
- Department of Biochemistry, Molecular Biology & Biophysics,
University of Minnesota, Minneapolis, MN 55455, USA
| | - Joseph I. Levine
- Department of Biochemistry, Molecular Biology & Biophysics,
University of Minnesota, Minneapolis, MN 55455, USA
- Department of Chemistry, University of Minnesota, Minneapolis, MN
55455, USA
| | - Susan G. Brown
- Department of Chemistry, University of Minnesota, Minneapolis, MN
55455, USA
| | - Lucile Astorgues-Xerri
- INSERM U728 and Department of Medical Oncology, Beaujon University
Hospital, (AP-HP – PRES Paris 7 Diderot), 100 bd du
Général Leclerc, 92110 Paris-Clichy, France
| | | | - Thomas R. Hoye
- Department of Chemistry, University of Minnesota, Minneapolis, MN
55455, USA
| | - Eric Raymond
- INSERM U728 and Department of Medical Oncology, Beaujon University
Hospital, (AP-HP – PRES Paris 7 Diderot), 100 bd du
Général Leclerc, 92110 Paris-Clichy, France
| | - Kevin H. Mayo
- Department of Biochemistry, Molecular Biology & Biophysics,
University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
46
|
Serova M, de Gramont A, Bieche I, Riveiro ME, Galmarini CM, Aracil M, Jimeno J, Faivre S, Raymond E. Predictive factors of sensitivity to elisidepsin, a novel Kahalalide F-derived marine compound. Mar Drugs 2013; 11:944-59. [PMID: 23519149 PMCID: PMC3705381 DOI: 10.3390/md11030944] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 01/21/2013] [Accepted: 02/22/2013] [Indexed: 01/20/2023] Open
Abstract
Elisidepsin (PM02734, Irvalec®) is a synthetic marine-derived cyclic peptide of the Kahalalide F family currently in phase II clinical development. Elisidepsin was shown to induce rapid oncosis in ErbB3-expressing cells. Other predictive factors of elisidepsin sensitivity remained unknown. A panel of 23 cancer cell lines of different origin was assessed for elisidepsin cytotoxicity and correlated with mutational state, mRNA and protein expression of selected genes. Elisidepsin showed potent and broad cytotoxic effects in our cancer cell line panel, being active at concentrations ranging from 0.4 to 2 μM that may be relevant for clinical settings. We have shown that elisidepsin is more active in cells harboring epithelial phenotype with high E-cadherin and low vimentin expression. In addition, high ErbB3 and Muc1 expression was correlated with sensitivity to elisidepsin, whereas the presence of KRAS activating mutations was associated with resistance. In DU-PM cells with acquired resistance to elisidepsin, ErbB3 expression was decreased, while Bcl2 was increased. DU-PM cells displayed higher sensitivity to ErbB1-inhibitors suggesting possible cross-talk of ErbB1 and ErbB3 signaling pathways. Combinations of elisidepsin with lapatinib and several chemotherapies including 5-FU and oxaliplatin resulted in synergistic effects that offer the potential of clinical use of elisidepsin in combination settings.
Collapse
Affiliation(s)
- Maria Serova
- AAREC Filia Research, 1, Paul Verlaine, Boulogne Billancourt 92100, France; E-Mails: (M.S.); (A.G.)
- INSERM U728 and Departments of Medical Oncology, Beaujon University Hospital (AP-HP-Paris 7 Diderot), 100, bd General Leclerc, Clichy 92110, France; E-Mails: (M.E.R.); (S.F.)
| | - Armand de Gramont
- AAREC Filia Research, 1, Paul Verlaine, Boulogne Billancourt 92100, France; E-Mails: (M.S.); (A.G.)
- INSERM U728 and Departments of Medical Oncology, Beaujon University Hospital (AP-HP-Paris 7 Diderot), 100, bd General Leclerc, Clichy 92110, France; E-Mails: (M.E.R.); (S.F.)
| | - Ivan Bieche
- Laboratory of Molecular Genetics, Beaujon University Hospital, Paris 7 Diderot, 100, bd General Leclerc, Clichy 92110, France; E-Mail:
| | - Maria Eugenia Riveiro
- INSERM U728 and Departments of Medical Oncology, Beaujon University Hospital (AP-HP-Paris 7 Diderot), 100, bd General Leclerc, Clichy 92110, France; E-Mails: (M.E.R.); (S.F.)
| | - Carlos Maria Galmarini
- Cell Biology Department, PharmaMar, Avda de los Reyes 1, Pol. Ind. La Mina, Colmenar Viejo (Madrid) 28770, Spain; E-Mails: (C.M.G.); (M.A.); (J.J.)
| | - Miguel Aracil
- Cell Biology Department, PharmaMar, Avda de los Reyes 1, Pol. Ind. La Mina, Colmenar Viejo (Madrid) 28770, Spain; E-Mails: (C.M.G.); (M.A.); (J.J.)
| | - José Jimeno
- Cell Biology Department, PharmaMar, Avda de los Reyes 1, Pol. Ind. La Mina, Colmenar Viejo (Madrid) 28770, Spain; E-Mails: (C.M.G.); (M.A.); (J.J.)
| | - Sandrine Faivre
- INSERM U728 and Departments of Medical Oncology, Beaujon University Hospital (AP-HP-Paris 7 Diderot), 100, bd General Leclerc, Clichy 92110, France; E-Mails: (M.E.R.); (S.F.)
| | - Eric Raymond
- INSERM U728 and Departments of Medical Oncology, Beaujon University Hospital (AP-HP-Paris 7 Diderot), 100, bd General Leclerc, Clichy 92110, France; E-Mails: (M.E.R.); (S.F.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +33-1-4087-5614; Fax: +33-1-4087-5487
| |
Collapse
|
47
|
Glucocorticoids induce CCN5/WISP-2 expression and attenuate invasion in oestrogen receptor-negative human breast cancer cells. Biochem J 2012; 447:71-9. [PMID: 22765757 DOI: 10.1042/bj20120311] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
CCN5 (cysteine-rich 61/connective tissue growth factor/nephroblastoma overexpressed 5)/WISP-2 [WNT1 (wingless-type MMTV integration site family, member 1)-inducible signalling pathway protein 2] is an oestrogen-regulated member of the CCN family. CCN5 is a transcriptional repressor of genes associated with the EMT (epithelial-mesenchymal transition) and plays an important role in maintenance of the differentiated phenotype in ER (oestrogen receptor)-positive breast cancer cells. In contrast, CCN5 is undetectable in more aggressive ER-negative breast cancer cells. We now report that CCN5 is induced in ER-negative breast cancer cells such as MDA-MB-231 following glucocorticoid exposure, due to interaction of the endogenous glucocorticoid receptor with a functional glucocorticoid-response element in the CCN5 gene promoter. Glucocorticoid treatment of MDA-MB-231 cells is accompanied by morphological alterations, decreased invasiveness and attenuated expression of mesenchymal markers, including vimentin, cadherin 11 and ZEB1 (zinc finger E-box binding homeobox 1). Interestingly, glucocorticoid exposure did not increase CCN5 expression in ER-positive breast cancer cells, but rather down-regulated ER expression, thereby attenuating oestrogen pathway signalling. Taken together, our results indicate that glucocorticoid treatment of ER-negative breast cancer cells induces high levels of CCN5 expression and is accompanied by the appearance of a more differentiated and less invasive epithelial phenotype. These findings propose a novel therapeutic strategy for high-risk breast cancer patients.
Collapse
|
48
|
Xu F, Zang J, Chen D, Zhang T, Zhan H, Lu M, Zhuge H. Neohesperidin Induces Cellular Apoptosis in Human Breast Adenocarcinoma MDA-MB-231 Cells via Activating the Bcl-2/Bax-mediated Signaling Pathway. Nat Prod Commun 2012. [DOI: 10.1177/1934578x1200701116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Neohesperidin, a flavonoid compound found in high amounts in Poncirus trifoliata, has free radical scavenging activity. For the first time, our study indicated that neohesperidin also induces cell apoptosis in human breast adenocarcinoma MDA-MB-231 cells, which was possibly mediated by regulating the P53/Bcl-2/Bax pathway. MDA-MB-231 cells were subjected to treatment with neohesperidin. MTT and Trypan blue exclusion assays were applied to assess the cell viability. The morphological changes of cells were observed using an inverted microscope, and cell apoptosis was detected by flow cytometric analysis. Immunoblot analysis was conducted to evaluate the protein expressions of apoptosis-related genes, including P53, Bcl-2 and Bax. Our results indicated that the proliferation of MDA-MB-231 cells was inhibited by the treatment with neohesperidin in a time- and dose-dependent manner. The IC50 values of neohesperidin at 24 and 48 h were 47.4±2.6 μM and 32.5±1.8 μM, respectively. The expressions of P53 and Bax in the neohesperidin-treated cells were significantly up-regulated, while that of Bcl-2 was down-regulated. Our study suggested that neohesperidin could induce apoptosis of MDA-MB-231 cells, a process which was associated with the activation of the Bcl-2/Bax-mediated signaling pathway.
Collapse
Affiliation(s)
- Fei Xu
- Department of Laboratory Medicine, Wuxi Municipal Women and Children Health Hospital, Wuxi214002, Jiangsu Province, China
- Department of Pathogenic Microbiology, Suzhou University, Suzhou215123, Jiangsu Province, China
| | - Jia Zang
- Department of Laboratory Medicine, Wuxi Municipal Women and Children Health Hospital, Wuxi214002, Jiangsu Province, China
| | - Daozhen Chen
- Department of Laboratory Medicine, Wuxi Municipal Women and Children Health Hospital, Wuxi214002, Jiangsu Province, China
| | - Ting Zhang
- Department of Laboratory Medicine, Wuxi Municipal Women and Children Health Hospital, Wuxi214002, Jiangsu Province, China
| | - Huiying Zhan
- Department of Laboratory Medicine, Wuxi Municipal Women and Children Health Hospital, Wuxi214002, Jiangsu Province, China
| | - Mudan Lu
- Department of Laboratory Medicine, Wuxi Municipal Women and Children Health Hospital, Wuxi214002, Jiangsu Province, China
| | - Hongxiang Zhuge
- Department of Pathogenic Microbiology, Suzhou University, Suzhou215123, Jiangsu Province, China
| |
Collapse
|
49
|
Alexander CM, Goel S, Fakhraldeen SA, Kim S. Wnt signaling in mammary glands: plastic cell fates and combinatorial signaling. Cold Spring Harb Perspect Biol 2012; 4:cshperspect.a008037. [PMID: 22661590 DOI: 10.1101/cshperspect.a008037] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The mouse mammary gland is an outstanding developmental model that exemplifies the activities of many of the effector pathways known to organize mammalian morphogenesis; furthermore, there are well-characterized methods for the specific genetic manipulation of various mammary epithelial cell components. Among these signaling pathways, Wnt signaling has been shown to generate plasticity of fate determination, expanding the genetic programs available to cells in the mammary lineage. It is responsible first for the appearance of the mammary fate in embryonic ectoderm and then for maintaining bi-potential basal stem cells in adult mammary ductal trees. Recent technical developments have led to the separate analysis of various mammary epithelial cell subpopulations, spurring the investigation of Wnt-dependent interactions. Although Wnt signaling was shown to be oncogenic for mouse mammary epithelium even before being identified as the principle oncogenic driver for gut epithelium, conclusive data implicating this pathway as a tumor driver for breast cancer lag behind, and we examine potential reasons.
Collapse
Affiliation(s)
- Caroline M Alexander
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin 53706-1599, USA.
| | | | | | | |
Collapse
|
50
|
Khoo BY, Miswan N, Balaram P, Nadarajan K, Elstner E. Modification of MCF-10A cells with pioglitazone and serum-rich growth medium increases soluble factors in the conditioned medium, likely reducing BT-474 cell growth. Int J Mol Sci 2012; 13:5607-5627. [PMID: 22754319 PMCID: PMC3382796 DOI: 10.3390/ijms13055607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 04/25/2012] [Accepted: 04/28/2012] [Indexed: 01/27/2023] Open
Abstract
In the present study, we aimed to preincubate MCF-10A cells with pioglitazone and/or serum-rich growth media and to determine adhesive and non-adhesive interactions of the preincubated MCF-10A cells with BT-474 cells. For this purpose, the MCF-10A cells were preincubated with pioglitazone and/or serum-rich growth media, at appropriate concentrations, for 1 week. The MCF-10A cells preincubated with pioglitazone and/or serum-rich growth media were then co-cultured adhesively and non-adhesively with BT-474 cells for another week. Co-culture of BT-474 cells with the preincubated MCF-10A cells, both adhesively and non-adhesively, reduced the growth of the cancer cells. The inhibitory effect of the preincubated MCF-10A cells against the growth of BT-474 cells was likely produced by increasing levels of soluble factors secreted by the preincubated MCF-10A cells into the conditioned medium, as immunoassayed by ELISA. However, only an elevated level of a soluble factor distinguished the conditioned medium collected from the MCF-10A cells preincubated with pioglitazone and serum-rich growth medium than that with pioglitazone alone. This finding was further confirmed by the induction of the soluble factor transcript expression in the preincubated MCF-10A cells, as determined using real-time PCR, for the above phenomenon. Furthermore, modification of the MCF-10A cells through preincubation did not change the morphology of the cells, indicating that the preincubated cells may potentially be injected into mammary fat pads to reduce cancer growth in patients or to be used for others cell-mediated therapy.
Collapse
Affiliation(s)
- Boon Yin Khoo
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 USM, Penang, Malaysia; E-Mails: (N.M.); (P.B.); (K.N.)
- Division of Oncology and Haematology, Charité Campus Mitte, Humboldt University of Berlin, 10117 Berlin, Germany; E-Mail:
- Author to whom correspondence should be addressed; E-Mails: or ; Tel.: +604-653-481-9; Fax: +604-653-480-3
| | - Noorizan Miswan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 USM, Penang, Malaysia; E-Mails: (N.M.); (P.B.); (K.N.)
| | - Prabha Balaram
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 USM, Penang, Malaysia; E-Mails: (N.M.); (P.B.); (K.N.)
| | - Kalpanah Nadarajan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 USM, Penang, Malaysia; E-Mails: (N.M.); (P.B.); (K.N.)
| | - Elena Elstner
- Division of Oncology and Haematology, Charité Campus Mitte, Humboldt University of Berlin, 10117 Berlin, Germany; E-Mail:
| |
Collapse
|