1
|
Qin K, Yu M, Fan J, Wang H, Zhao P, Zhao G, Zeng W, Chen C, Wang Y, Wang A, Schwartz Z, Hong J, Song L, Wagstaff W, Haydon RC, Luu HH, Ho SH, Strelzow J, Reid RR, He TC, Shi LL. Canonical and noncanonical Wnt signaling: Multilayered mediators, signaling mechanisms and major signaling crosstalk. Genes Dis 2024; 11:103-134. [PMID: 37588235 PMCID: PMC10425814 DOI: 10.1016/j.gendis.2023.01.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/01/2022] [Accepted: 01/29/2023] [Indexed: 08/18/2023] Open
Abstract
Wnt signaling plays a major role in regulating cell proliferation and differentiation. The Wnt ligands are a family of 19 secreted glycoproteins that mediate their signaling effects via binding to Frizzled receptors and LRP5/6 coreceptors and transducing the signal either through β-catenin in the canonical pathway or through a series of other proteins in the noncanonical pathway. Many of the individual components of both canonical and noncanonical Wnt signaling have additional functions throughout the body, establishing the complex interplay between Wnt signaling and other signaling pathways. This crosstalk between Wnt signaling and other pathways gives Wnt signaling a vital role in many cellular and organ processes. Dysregulation of this system has been implicated in many diseases affecting a wide array of organ systems, including cancer and embryological defects, and can even cause embryonic lethality. The complexity of this system and its interacting proteins have made Wnt signaling a target for many therapeutic treatments. However, both stimulatory and inhibitory treatments come with potential risks that need to be addressed. This review synthesized much of the current knowledge on the Wnt signaling pathway, beginning with the history of Wnt signaling. It thoroughly described the different variants of Wnt signaling, including canonical, noncanonical Wnt/PCP, and the noncanonical Wnt/Ca2+ pathway. Further description involved each of its components and their involvement in other cellular processes. Finally, this review explained the various other pathways and processes that crosstalk with Wnt signaling.
Collapse
Affiliation(s)
- Kevin Qin
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael Yu
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Hongwei Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Piao Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Guozhi Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Zeng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Interventional Neurology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong 523475, China
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Clinical Laboratory Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Annie Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Zander Schwartz
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- School of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Jeffrey Hong
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lily Song
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Sherwin H. Ho
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jason Strelzow
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lewis L. Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
2
|
Ward BJH, Prasai K, Schaal DL, Wang J, Scott RS. A distinct isoform of lymphoid enhancer binding factor 1 (LEF1) epigenetically restricts EBV reactivation to maintain viral latency. PLoS Pathog 2023; 19:e1011873. [PMID: 38113273 PMCID: PMC10763950 DOI: 10.1371/journal.ppat.1011873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 01/03/2024] [Accepted: 11/29/2023] [Indexed: 12/21/2023] Open
Abstract
As a human tumor virus, EBV is present as a latent infection in its associated malignancies where genetic and epigenetic changes have been shown to impede cellular differentiation and viral reactivation. We reported previously that levels of the Wnt signaling effector, lymphoid enhancer binding factor 1 (LEF1) increased following EBV epithelial infection and an epigenetic reprogramming event was maintained even after loss of the viral genome. Elevated LEF1 levels are also observed in nasopharyngeal carcinoma and Burkitt lymphoma. To determine the role played by LEF1 in the EBV life cycle, we used in silico analysis of EBV type 1 and 2 genomes to identify over 20 Wnt-response elements, which suggests that LEF1 may bind directly to the EBV genome and regulate the viral life cycle. Using CUT&RUN-seq, LEF1 was shown to bind the latent EBV genome at various sites encoding viral lytic products that included the immediate early transactivator BZLF1 and viral primase BSLF1 genes. The LEF1 gene encodes various long and short protein isoforms. siRNA depletion of specific LEF1 isoforms revealed that the alternative-promoter derived isoform with an N-terminal truncation (ΔN LEF1) transcriptionally repressed lytic genes associated with LEF1 binding. In addition, forced expression of the ΔN LEF1 isoform antagonized EBV reactivation. As LEF1 repression requires histone deacetylase activity through either recruitment of or direct intrinsic histone deacetylase activity, siRNA depletion of LEF1 resulted in increased histone 3 lysine 9 and lysine 27 acetylation at LEF1 binding sites and across the EBV genome. Taken together, these results indicate a novel role for LEF1 in maintaining EBV latency and restriction viral reactivation via repressive chromatin remodeling of critical lytic cycle factors.
Collapse
Affiliation(s)
- B. J. H. Ward
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America
| | - Kanchanjunga Prasai
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America
| | - Danielle L. Schaal
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America
| | - Jian Wang
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America
| | - Rona S. Scott
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America
| |
Collapse
|
3
|
Pavičić I, Rokić F, Vugrek O. Effects of S-Adenosylhomocysteine Hydrolase Downregulation on Wnt Signaling Pathway in SW480 Cells. Int J Mol Sci 2023; 24:16102. [PMID: 38003292 PMCID: PMC10671441 DOI: 10.3390/ijms242216102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
S-adenosylhomocysteine hydrolase (AHCY) deficiency results mainly in hypermethioninemia, developmental delay, and is potentially fatal. In order to shed new light on molecular aspects of AHCY deficiency, in particular any changes at transcriptome level, we enabled knockdown of AHCY expression in the colon cancer cell line SW480 to simulate the environment occurring in AHCY deficient individuals. The SW480 cell line is well known for elevated AHCY expression, and thereby represents a suitable model system, in particular as AHCY expression is regulated by MYC, which, on the other hand, is involved in Wnt signaling and the regulation of Wnt-related genes, such as the β-catenin co-transcription factor LEF1 (lymphoid enhancer-binding factor 1). We selected LEF1 as a potential target to investigate its association with S-adenosylhomocysteine hydrolase deficiency. This decision was prompted by our analysis of RNA-Seq data, which revealed significant changes in the expression of genes related to the Wnt signaling pathway and genes involved in processes responsible for epithelial-mesenchymal transition (EMT) and cell proliferation. Notably, LEF1 emerged as a common factor in these processes, showing increased expression both on mRNA and protein levels. Additionally, we show alterations in interconnected signaling pathways linked to LEF1, causing gene expression changes with broad effects on cell cycle regulation, tumor microenvironment, and implications to cell invasion and metastasis. In summary, we provide a new link between AHCY deficiency and LEF1 serving as a mediator of changes to the Wnt signaling pathway, thereby indicating potential connections of AHCY expression and cancer cell phenotype, as Wnt signaling is frequently associated with cancer development, including colorectal cancer (CRC).
Collapse
Affiliation(s)
| | | | - Oliver Vugrek
- Laboratory for Advanced Genomics, Divison of Molecular Medicine, Institute Ruđer Bošković, Bijenička Cesta 54, 10000 Zagreb, Croatia; (I.P.); (F.R.)
| |
Collapse
|
4
|
Zhang T, Wang B, Su F, Gu B, Xiang L, Gao L, Zheng P, Li XM, Chen H. TCF7L2 promotes anoikis resistance and metastasis of gastric cancer by transcriptionally activating PLAUR. Int J Biol Sci 2022; 18:4560-4577. [PMID: 35864968 PMCID: PMC9295057 DOI: 10.7150/ijbs.69933] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 06/14/2022] [Indexed: 12/04/2022] Open
Abstract
Gastric cancer (GC) is the most common gastrointestinal malignant tumor, and distant metastasis is a critical factor in the prognosis of patients with GC. Understanding the mechanism of GC metastasis will help improve patient prognosis. Studies have confirmed that urokinase-type plasminogen activator receptor (PLAUR) promotes GC metastasis; however, its relationship with anoikis resistance and associated mechanisms remains unclear. In this study, we demonstrated that PLAUR promotes the anoikis resistance and metastasis of GC cells and identified transcription Factor 7 Like 2 (TCF7L2) as an important transcriptional regulator of PLAUR. We also revealed that TCF7L2 is highly expressed in GC and promotes the anoikis resistance and metastasis of GC cells. Moreover, we found that TCF7L2 transcription activates PLAUR. Finally, we confirmed that TCF7L2 is an independent risk factor for poor prognosis of patients with GC. Our results show that TCF7L2 and PLAUR are candidate targets for developing therapeutic strategies for GC metastasis.
Collapse
Affiliation(s)
- Tao Zhang
- Department of oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China.,The second clinical medical college of Lanzhou university, Lanzhou , Gansu, China.,Key laboratory of digestive system tumors, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Bofang Wang
- The second clinical medical college of Lanzhou university, Lanzhou , Gansu, China.,Key laboratory of digestive system tumors, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Fei Su
- Department of oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Baohong Gu
- The second clinical medical college of Lanzhou university, Lanzhou , Gansu, China.,Key laboratory of digestive system tumors, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Lin Xiang
- The second clinical medical college of Lanzhou university, Lanzhou , Gansu, China.,Key laboratory of digestive system tumors, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Lei Gao
- The second clinical medical college of Lanzhou university, Lanzhou , Gansu, China.,Key laboratory of digestive system tumors, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Peng Zheng
- The second clinical medical college of Lanzhou university, Lanzhou , Gansu, China.,Key laboratory of digestive system tumors, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Xue-Mei Li
- The second clinical medical college of Lanzhou university, Lanzhou , Gansu, China.,Key laboratory of digestive system tumors, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Hao Chen
- The second clinical medical college of Lanzhou university, Lanzhou , Gansu, China.,Key laboratory of digestive system tumors, Lanzhou University Second Hospital, Lanzhou, Gansu, China.,Cancer center, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
5
|
Dufour W, Alawbathani S, Jourdain AS, Asif M, Baujat G, Becker C, Budde B, Gallacher L, Georgomanolis T, Ghoumid J, Höhne W, Lyonnet S, Ba-Saddik IA, Manouvrier-Hanu S, Motameny S, Noegel AA, Pais L, Vanlerberghe C, Wagle P, White SM, Willems M, Nürnberg P, Escande F, Petit F, Hussain MS. Monoallelic and biallelic variants in LEF1 are associated with a new syndrome combining ectodermal dysplasia and limb malformations caused by altered WNT signaling. Genet Med 2022; 24:1708-1721. [PMID: 35583550 DOI: 10.1016/j.gim.2022.04.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 11/25/2022] Open
Abstract
PURPOSE LEF1 encodes a transcription factor acting downstream of the WNT-β-catenin signaling pathway. It was recently suspected as a candidate for ectodermal dysplasia in 2 individuals carrying 4q35 microdeletions. We report on 12 individuals harboring LEF1 variants. METHODS High-throughput sequencing was employed to delineate the genetic underpinnings of the disease. Cellular consequences were characterized by immunofluorescence, immunoblotting, pulldown assays, and/or RNA sequencing. RESULTS Monoallelic variants in LEF1 were detected in 11 affected individuals from 4 unrelated families, and a biallelic variant was detected in an affected individual from a consanguineous family. The phenotypic spectrum includes various limb malformations, such as radial ray defects, polydactyly or split hand/foot, and ectodermal dysplasia. Depending on the type and location of LEF1 variants, the inheritance of this novel Mendelian condition can be either autosomal dominant or recessive. Our functional data indicate that 2 molecular mechanisms are at play: haploinsufficiency or loss of DNA binding are responsible for a mild to moderate phenotype, whereas loss of β-catenin binding caused by biallelic variants is associated with a severe phenotype. Transcriptomic studies reveal an alteration of WNT signaling. CONCLUSION Our findings establish mono- and biallelic variants in LEF1 as a cause for a novel syndrome comprising limb malformations and ectodermal dysplasia.
Collapse
Affiliation(s)
- William Dufour
- University of Lille, EA7364 RADEME, Lille, France; CHU Lille, Clinique de génétique Guy Fontaine, Lille, France
| | - Salem Alawbathani
- Cologne Center for Genomics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Anne-Sophie Jourdain
- University of Lille, EA7364 RADEME, Lille, France; CHU Lille, Institut de Biochimie et Biologie Moléculaire, Lille, France
| | - Maria Asif
- Cologne Center for Genomics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Geneviève Baujat
- Hôpital Necker Enfants Malades, Service de génétique, CHU Paris, Paris, France
| | - Christian Becker
- Cologne Center for Genomics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Birgit Budde
- Cologne Center for Genomics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Lyndon Gallacher
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Theodoros Georgomanolis
- Cologne Center for Genomics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Jamal Ghoumid
- University of Lille, EA7364 RADEME, Lille, France; CHU Lille, Clinique de génétique Guy Fontaine, Lille, France
| | - Wolfgang Höhne
- Cologne Center for Genomics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Stanislas Lyonnet
- Hôpital Necker Enfants Malades, Service de génétique, CHU Paris, Paris, France
| | - Iman Ali Ba-Saddik
- Department of Pediatrics, Faculty of Medicine and Health Sciences, University of Aden, Aden, Yemen
| | - Sylvie Manouvrier-Hanu
- University of Lille, EA7364 RADEME, Lille, France; CHU Lille, Clinique de génétique Guy Fontaine, Lille, France
| | - Susanne Motameny
- Cologne Center for Genomics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Angelika A Noegel
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Lynn Pais
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Clémence Vanlerberghe
- University of Lille, EA7364 RADEME, Lille, France; CHU Lille, Clinique de génétique Guy Fontaine, Lille, France
| | - Prerana Wagle
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Susan M White
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Marjolaine Willems
- Service de génétique, Hôpital Arnaud de Villeneuve, CHU de Montpellier, Montpellier, France
| | - Peter Nürnberg
- Cologne Center for Genomics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Fabienne Escande
- University of Lille, EA7364 RADEME, Lille, France; CHU Lille, Institut de Biochimie et Biologie Moléculaire, Lille, France
| | - Florence Petit
- University of Lille, EA7364 RADEME, Lille, France; CHU Lille, Clinique de génétique Guy Fontaine, Lille, France.
| | - Muhammad Sajid Hussain
- Cologne Center for Genomics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
6
|
Torres-Aguila NP, Salonna M, Hoppler S, Ferrier DEK. Evolutionary diversification of the canonical Wnt signaling effector TCF/LEF in chordates. Dev Growth Differ 2022; 64:120-137. [PMID: 35048372 PMCID: PMC9303524 DOI: 10.1111/dgd.12771] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 12/29/2022]
Abstract
Wnt signaling is essential during animal development and regeneration, but also plays an important role in diseases such as cancer and diabetes. The canonical Wnt signaling pathway is one of the most conserved signaling cascades in the animal kingdom, with the T‐cell factor/lymphoid enhancer factor (TCF/LEF) proteins being the major mediators of Wnt/β‐catenin‐regulated gene expression. In comparison with invertebrates, vertebrates possess a high diversity of TCF/LEF family genes, implicating this as a possible key change to Wnt signaling at the evolutionary origin of vertebrates. However, the precise nature of this diversification is only poorly understood. The aim of this study is to clarify orthology, paralogy, and isoform relationships within the TCF/LEF gene family within chordates via in silico comparative study of TCF/LEF gene structure, molecular phylogeny, and gene synteny. Our results support the notion that the four TCF/LEF paralog subfamilies in jawed vertebrates (gnathostomes) evolved via the two rounds of whole‐genome duplications that occurred during early vertebrate evolution. Importantly, gene structure comparisons and synteny analysis of jawless vertebrate (cyclostome) TCFs suggest that a TCF7L2‐like form of gene structure is a close proxy for the ancestral vertebrate structure. In conclusion, we propose a detailed evolutionary path based on a new pre‐whole‐genome duplication vertebrate TCF gene model. This ancestor gene model highlights the chordate and vertebrate innovations of TCF/LEF gene structure, providing the foundation for understanding the role of Wnt/β‐catenin signaling in vertebrate evolution.
Collapse
Affiliation(s)
- Nuria P Torres-Aguila
- Gatty Marine Laboratory, The Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, UK
| | - Marika Salonna
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Stefan Hoppler
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - David E K Ferrier
- Gatty Marine Laboratory, The Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, UK
| |
Collapse
|
7
|
Ramos-García P, González-Moles MÁ. Prognostic and Clinicopathological Significance of the Aberrant Expression of β-Catenin in Oral Squamous Cell Carcinoma: A Systematic Review and Meta-Analysis. Cancers (Basel) 2022; 14:cancers14030479. [PMID: 35158747 PMCID: PMC8833491 DOI: 10.3390/cancers14030479] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary β-catenin is a multifunctional protein whose physiological functions are mainly related to the maintenance of cell-cell adhesion by forming complexes with the adhesion molecule E-cadherin, both responsible for the preservation of squamous epithelia homeostasis. The loss of β-catenin expression in the cell membrane, the failure of cytoplasmic degradation mechanisms—essentially related to the activation of Wnt canonical oncogenic pathway—and/or its translocation to the nucleus—developing actions as a transcription factor of oncogenes—are aberrant mechanisms with oncogenic implications in oral carcinogenesis. In this systematic review and meta-analysis on 41 studies and 2746 oral squamous cell carcinoma (OSCC) patients we demonstrate that the aberrant expression of β-catenin—mainly the immunohistochemical analysis of its loss in the cell membrane—behaves as a prognostic biomarker, significantly associated with poor survival, essentially linked to the increased risk for the development of lymph node metastases, higher tumour size and clinical stage in these patients. Abstract This systematic review and meta-analysis aims to evaluate the prognostic and clinicopathological significance of the aberrant expression of β-catenin (assessed through the immunohistochemical loss of membrane expression, cytoplasmic and nuclear expression) in oral squamous cell carcinoma (OSCC). We searched for primary-level studies published before October-2021 through PubMed, Embase, Web of Science, Scopus, and Google Scholar, with no limitation in regard to their publication date or language. We evaluated the methodological quality and risk of bias of the studies included using the QUIPS tool, carried out meta-analyses, explored heterogeneity and their sources across subgroups and meta-regression, and conducted sensitivity and small-study effects analyses. Forty-one studies (2746 patients) met inclusion criteria. The aberrant immunohistochemical expression of β-catenin was statistically associated with poor overall survival (HR = 1.77, 95% CI = 1.20–2.60, p = 0.004), disease-free survival (HR = 2.44, 95% CI = 1.10–5.50, p = 0.03), N+ status (OR = 2.39, 95% CI = 1.68–3.40, p < 0.001), higher clinical stage (OR = 2.40, 95% CI = 1.58–3.63, p < 0.001), higher tumour size (OR = 1.76, 95% CI = 1.23–2.53, p = 0.004), and moderately-poorly differentiated OSCC (OR = 1.57, 95% CI = 1.09–2.25, p = 0.02). The loss of β-catenin in the cell membrane showed the largest effect size in most of meta-analyses (singularly for poor overall survival [HR = 2.37, 95% CI = 1.55–3.62, p < 0.001], N+ status [OR = 3.44, 95% CI = 2.40–4.93, p < 0.001] and higher clinical stage [OR = 2.51, 95% CI = 1.17–5.35, p = 0.02]). In conclusion, our findings indicate that immunohistochemical assessment of the aberrant expression of β-catenin could be incorporated as an additional and complementary routine prognostic biomarker for the assessment of patients with OSCC.
Collapse
Affiliation(s)
- Pablo Ramos-García
- School of Dentistry, University of Granada, 18011 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Correspondence: (P.R.-G.); (M.Á.G.-M.)
| | - Miguel Á. González-Moles
- School of Dentistry, University of Granada, 18011 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Correspondence: (P.R.-G.); (M.Á.G.-M.)
| |
Collapse
|
8
|
Bou-Rouphael J, Durand BC. T-Cell Factors as Transcriptional Inhibitors: Activities and Regulations in Vertebrate Head Development. Front Cell Dev Biol 2021; 9:784998. [PMID: 34901027 PMCID: PMC8651982 DOI: 10.3389/fcell.2021.784998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/28/2021] [Indexed: 11/22/2022] Open
Abstract
Since its first discovery in the late 90s, Wnt canonical signaling has been demonstrated to affect a large variety of neural developmental processes, including, but not limited to, embryonic axis formation, neural proliferation, fate determination, and maintenance of neural stem cells. For decades, studies have focused on the mechanisms controlling the activity of β-catenin, the sole mediator of Wnt transcriptional response. More recently, the spotlight of research is directed towards the last cascade component, the T-cell factor (TCF)/Lymphoid-Enhancer binding Factor (LEF), and more specifically, the TCF/LEF-mediated switch from transcriptional activation to repression, which in both embryonic blastomeres and mouse embryonic stem cells pushes the balance from pluri/multipotency towards differentiation. It has been long known that Groucho/Transducin-Like Enhancer of split (Gro/TLE) is the main co-repressor partner of TCF/LEF. More recently, other TCF/LEF-interacting partners have been identified, including the pro-neural BarH-Like 2 (BARHL2), which belongs to the evolutionary highly conserved family of homeodomain-containing transcription factors. This review describes the activities and regulatory modes of TCF/LEF as transcriptional repressors, with a specific focus on the functions of Barhl2 in vertebrate brain development. Specific attention is given to the transcriptional events leading to formation of the Organizer, as well as the roles and regulations of Wnt/β-catenin pathway in growth of the caudal forebrain. We present TCF/LEF activities in both embryonic and neural stem cells and discuss how alterations of this pathway could lead to tumors.
Collapse
Affiliation(s)
| | - Béatrice C. Durand
- Sorbonne Université, CNRS UMR7622, IBPS Developmental Biology Laboratory, Campus Pierre et Marie Curie, Paris, France
| |
Collapse
|
9
|
Li J, Zhou L, Ouyang X, He P. Transcription Factor-7-Like-2 (TCF7L2) in Atherosclerosis: A Potential Biomarker and Therapeutic Target. Front Cardiovasc Med 2021; 8:701279. [PMID: 34568447 PMCID: PMC8459927 DOI: 10.3389/fcvm.2021.701279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/09/2021] [Indexed: 01/07/2023] Open
Abstract
Transcription factor-7-like-2 (TCF7L2), a vital member of the T-cell factor/lymphoid enhancer factor (TCF/LEF) family, plays an important role in normal human physiological and pathological processes. TCF7L2 exhibits multiple anti-atherosclerotic effects through the activation of specific molecular mechanisms, including regulation of metabolic homeostasis, macrophage polarization, and neointimal hyperplasia. A single-nucleotide substitution of TCF7L2, rs7903146, is a genetic high-risk factor for type 2 diabetes and indicates susceptibility to cardiovascular disease as a link between metabolic disorders and atherosclerosis. In this review, we summarize the anti-atherosclerosis effect and novel mechanisms underlying the function of TCF7L2 to elucidate its potential as an anti-atherosclerosis biomarker and provide a novel therapeutic target for cardiovascular diseases.
Collapse
Affiliation(s)
- Junyi Li
- School of Nursing, Hengyang Medical College, University of South China, Hengyang, China
| | - Li Zhou
- Department of Pathology, Chongqing Public Health Medical Center, Southwest University Public Health Hospital, Chongqing, China
| | - Xinping Ouyang
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Department of Physiology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, The Neuroscience Institute, University of South China, Hengyang, China
| | - Pingping He
- School of Nursing, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
10
|
Wang C, Ruan L, Shi H, Lin W, Liu L, Li S. Phosphorylation of Shrimp Tcf by a Viral Protein Kinase WSV083 Suppresses Its Antiviral Effect. Front Immunol 2021; 12:698697. [PMID: 34408747 PMCID: PMC8365339 DOI: 10.3389/fimmu.2021.698697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/21/2021] [Indexed: 12/17/2022] Open
Abstract
Nuclear DNA-binding TCF proteins, which act as the main downstream effectors of Wnt signaling, are essential for the regulation of cell fate and innate immunity. However, their role during viral infection in shrimp remains unknown. Herein, we demonstrated that Litopenaeus vannamei TCF (LvTcf) acts independently of Lvβ-catenin to promote interferon-like protein LvVago1 production, thus mounting the response to WSSV infection. Further, we observed that WSV083, a WSSV serine/threonine protein kinase, bound to LvTcf and phosphorylated it. Phosphorylated LvTcf was then recognized and degraded via the ubiquitin-proteasome pathway. Moreover, mass spectrometry analyses indicated that the T39 and T104 residues of LvTcf were target sites phosphorylated by WSV083. Point mutation analyses suggested that additional sites of LvTcf may undergo phosphorylation via WSV083. Taken together, the current work provides valuable insights into host immunity and viral pathogenesis. LvTcf is not only a modulator of shrimp innate immunity but is also an important target for WSSV immune evasion. Thus, the current findings will help improve disease control in shrimps.
Collapse
Affiliation(s)
- Chuanqi Wang
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Third Institute of Oceanography, Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China.,School of Life Science, Xiamen University, Xiamen, China
| | - Lingwei Ruan
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Third Institute of Oceanography, Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China
| | - Hong Shi
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Third Institute of Oceanography, Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China
| | - Wenyang Lin
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Third Institute of Oceanography, Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China.,School of Life Science, Xiamen University, Xiamen, China
| | - Linmin Liu
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Third Institute of Oceanography, Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China
| | - Sujie Li
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Third Institute of Oceanography, Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China
| |
Collapse
|
11
|
Ramakrishnan AB, Chen L, Burby PE, Cadigan KM. Wnt target enhancer regulation by a CDX/TCF transcription factor collective and a novel DNA motif. Nucleic Acids Res 2021; 49:8625-8641. [PMID: 34358319 PMCID: PMC8421206 DOI: 10.1093/nar/gkab657] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 07/10/2021] [Accepted: 07/23/2021] [Indexed: 01/01/2023] Open
Abstract
Transcriptional regulation by Wnt signalling is primarily thought to be accomplished by a complex of β-catenin and TCF family transcription factors (TFs). Although numerous studies have suggested that additional TFs play roles in regulating Wnt target genes, their mechanisms of action have not been investigated in detail. We characterised a Wnt-responsive element (WRE) downstream of the Wnt target gene Axin2 and found that TCFs and Caudal type homeobox (CDX) proteins were required for its activation. Using a new separation-of-function TCF mutant, we found that WRE activity requires the formation of a TCF/CDX complex. Our systematic mutagenesis of this enhancer identified other sequences essential for activation by Wnt signalling, including several copies of a novel CAG DNA motif. Computational and experimental evidence indicates that the TCF/CDX/CAG mode of regulation is prevalent in multiple WREs. Put together, our results demonstrate the complex nature of cis- and trans- interactions required for signal-dependent enhancer activity.
Collapse
Affiliation(s)
| | - Lisheng Chen
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Peter E Burby
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Ken M Cadigan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109 USA
| |
Collapse
|
12
|
Zhu L, Zhang S, Hou C, Liang X, Saif Dehwah MA, Tan B, Shi L. The T cell factor, pangolin, from Litopenaeus vannamei play a positive role in the immune responses against white spot syndrome virus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 119:104041. [PMID: 33577842 DOI: 10.1016/j.dci.2021.104041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
As a downstream interactor of β-catenin, Pangolin which is the homologous protein of the T cell factor/lymphoid enhancer factor (TCF/LEF) in vertebrates is less understood in the research field of immunity. In this study, two isoforms of Litopenaeus vannamei Pangolin (LvPangolin1 and LvPangolin2) were identified. Phylogenetic tree analysis revealed that all of the Pangolin proteins from invertebrates were represented the same lineage. The mRNA expression profiles of the LvPangolin1 and LvPangolin2 genes differed across different tissues. The expression of LvPangolin1 and the amount of LvPangolin1and LvPangolin2 combined (LvPangolinComb) were significantly increased in the haemocyte, intestine and gill but reduced in the hepatopancreas after white spot syndrome virus (WSSV) challenge. The inhibition of LvPangolin1 but not LvPangolinComb significantly reduced the survival rates of L. vannamei after WSSV infection, while significantly higher WSSV viral loads in both LvPangolin1-inhibited and LvPangolinComb-inhibited L. vannamei were observed. Knockdown of LvPangolin by RNAi could distinctly decrease the expression of antimicrobial peptide (AMP) genes and their related transcription factors. All of these results indicate that LvPangolin plays a positive role in the response to WSSV infection and that this may be mediated through regulating the immune signalling pathways which control the expression of AMPs with antiviral abilities.
Collapse
Affiliation(s)
- Lulu Zhu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Shuang Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China; Key Laboratory of Aquatic Non-grain-based Feed Resources, Ministry of Agriculture, Zhanjiang, China
| | - Cuihong Hou
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Xueping Liang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Mustafa Abdo Saif Dehwah
- Department of Medical Laboratories, Faculty of Medical and Health Science, Taiz University/AL-Turba Branch, Taiz, 3191, Republic of Yemen
| | - Beiping Tan
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China; Key Laboratory of Aquatic Non-grain-based Feed Resources, Ministry of Agriculture, Zhanjiang, China
| | - Lili Shi
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China; Key Laboratory of Aquatic Non-grain-based Feed Resources, Ministry of Agriculture, Zhanjiang, China.
| |
Collapse
|
13
|
T FH cells depend on Tcf1-intrinsic HDAC activity to suppress CTLA4 and guard B-cell help function. Proc Natl Acad Sci U S A 2021; 118:2014562118. [PMID: 33372138 DOI: 10.1073/pnas.2014562118] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Precise regulation of coinhibitory receptors is essential for maintaining immune tolerance without interfering with protective immunity, yet the mechanism underlying such a balanced act remains poorly understood. In response to protein immunization, T follicular helper (TFH) cells lacking Tcf1 and Lef1 transcription factors were phenotypically normal but failed to promote germinal center formation and antibody production. Transcriptomic profiling revealed that Tcf1/Lef1-deficient TFH cells aberrantly up-regulated CTLA4 and LAG3 expression, and treatment with anti-CTLA4 alone or combined with anti-LAG3 substantially rectified B-cell help defects by Tcf1/Lef1-deficient TFH cells. Mechanistically, Tcf1 and Lef1 restrain chromatin accessibility at the Ctla4 and Lag3 loci. Groucho/Tle corepressors, which are known to cooperate with Tcf/Lef factors, were essential for TFH cell expansion but dispensable for repressing coinhibitory receptors. In contrast, mutating key amino acids in histone deacetylase (HDAC) domain in Tcf1 resulted in CTLA4 derepression in TFH cells. These findings demonstrate that Tcf1-instrinsic HDAC activity is necessary for preventing excessive CTLA4 induction in protein immunization-elicited TFH cells and hence guarding their B-cell help function.
Collapse
|
14
|
Duan B, Fu D, Zhang C, Ding P, Dong X, Xia B. Selective Nonmethylated CpG DNA Recognition Mechanism of Cysteine Clamp Domains. J Am Chem Soc 2021; 143:7688-7697. [PMID: 33983734 DOI: 10.1021/jacs.1c00599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Methylation of DNA at CpG sites is a major mark for epigenetic regulation, but how transcription factors are influenced by CpG methylation is not well understood. Here, we report the molecular mechanisms of how the TCF (T-cell factor) and GEF (glucose transporter 4 enhancer factor) families of proteins selectively target unmethylated DNA sequences with a C-clamp type zinc finger domain. The structure of the C-clamp domain from human GEF family protein HDBP1 (C-clampHDBP1) in complex with DNA was determined using NMR spectroscopy, which adopts a unique zinc finger fold and selectively binds RCCGG (R = A/G) DNA sequences with an "Arg···Trp-Lys-Lys" DNA recognition motif inserted in the major groove. The CpG base pairs are central to the binding due to multiple hydrogen bonds formed with the backbone carbonyl groups of Trp378 and Lys379, as well as the side chain ε-amino groups of Lys379 and Lys380 from C-clampHDBP1. Consequently, methylation of the CpG dinucleotide almost abolishes the binding. Homology modeling reveals that the C-clamp domain from human TCF1E (C-clampTCF1E) binds DNA through essentially the same mechanism, with a similar "Arg···Arg-Lys-Lys" DNA recognition motif. The substitution of tryptophan by arginine makes C-clampHDBP1 prefer RCCGC DNA sequences. The two signature DNA recognition motifs are invariant in the GEF and TCF families of proteins, respectively, from fly to human. The recognition of the CpG dinucleotide through two consecutive backbone carbonyl groups is the same as that of the CXXC type unmethylated CpG DNA binding domains, suggesting a common mechanism shared by unmethylated CpG binding proteins.
Collapse
Affiliation(s)
- Bo Duan
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Dihong Fu
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Chaoqun Zhang
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Pengfei Ding
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Xianzhi Dong
- Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China
| | - Bin Xia
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, and School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
15
|
Zhang Z, Xu L, Xu X. The role of transcription factor 7-like 2 in metabolic disorders. Obes Rev 2021; 22:e13166. [PMID: 33615650 DOI: 10.1111/obr.13166] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022]
Abstract
Transcription factor 7-like 2 (TCF7L2), a member of the T cell factor/lymphoid enhancer factor family, generally forms a complex with β-catenin to regulate the downstream target genes as an effector of the canonical Wnt signalling pathway. TCF7L2 plays a vital role in various biological processes and functions in many organs and tissues, including the liver, islet and adipose tissues. Further, TCF7L2 down-regulates hepatic gluconeogenesis and promotes lipid accumulation. In islets, TCF7L2 not only affects the insulin secretion of the β-cells but also has an impact on other cells. In addition, TCF7L2 influences adipogenesis in adipose tissues. Thus, an out-of-control TCF7L2 expression can result in metabolic disorders. The TCF7L2 gene is composed of 17 exons, generating 13 different transcripts, and has many single-nucleotide polymorphisms (SNPs). The discovery that these SNPs have an impact on the risk of type 2 diabetes (T2D) has attracted thorough investigations in the study of TCF7L2. Apart from T2D, TCF7L2 SNPs are also associated with type 1, posttransplant and other types of diabetes. Furthermore, TCF7L2 variants affect the progression of other disorders, such as obesity, cancers, metabolic syndrome and heart diseases. Finally, the interaction between TCF7L2 variants and diet also needs to be investigated.
Collapse
Affiliation(s)
- Zhensheng Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Zhejiang University School of Medicine, Hangzhou, China
| | - Li Xu
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China
| |
Collapse
|
16
|
Yuan H, Li M, Feng X, Zhu E, Wang B. miR-142a-5p promoted osteoblast differentiation via targeting nuclear factor IA. J Cell Physiol 2021; 236:1810-1821. [PMID: 32700780 DOI: 10.1002/jcp.29963] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 07/13/2020] [Indexed: 12/27/2022]
Abstract
miR-142a-5p plays critical roles in multiple biological processes and diseases, such as inflammation and tumorigenesis. However, it remains to be explored if and how miR-142a-5p contributes to osteoblast differentiation. In this study, our results showed that miR-142a-5p was highly expressed in bone tissue of mice and increased during osteogenesis in preosteoblast MC3T3-E1 cells. Supplementing miR-142a-5p activity using miR-142a-5p agomir promoted osteogenic differentiation in stromal cell line ST2 and preosteoblastic line MC3T3-E1. Conversely, miR-142a-5p antagomir, an inhibitor of endogenous miR-142a-5p, could reduce osteoblast differentiation in ST2 and MC3T3-E1 cells. Nuclear factor IA (NFIA), a site-specific transcriptional factor, was demonstrated to be directly targeted by miR-142a-5p. Overexpression of NFIA inhibited miR-142a-5p-mediated osteoblast differentiation in ST2 cells. Furthermore, mechanism explorations revealed that Wnt/β-catenin signaling transcriptionally regulated the expression of miR-142a-5p during osteogenic differentiation. β-catenin binds to the T-cell factor/lymphoid enhancer factor binding motif within the promoter of miR-142 and positively regulates its transcriptional activity. Our findings suggested that miR-142a-5p promoted osteoblast differentiation via targeting NFIA.
Collapse
Affiliation(s)
- Hairui Yuan
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Mengyue Li
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Xue Feng
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Endong Zhu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Baoli Wang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
17
|
Jridi I, Canté-Barrett K, Pike-Overzet K, Staal FJT. Inflammation and Wnt Signaling: Target for Immunomodulatory Therapy? Front Cell Dev Biol 2021; 8:615131. [PMID: 33614624 PMCID: PMC7890028 DOI: 10.3389/fcell.2020.615131] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022] Open
Abstract
Wnt proteins comprise a large family of highly conserved glycoproteins known for their role in development, cell fate specification, tissue regeneration, and tissue homeostasis. Aberrant Wnt signaling is linked to developmental defects, malignant transformation, and carcinogenesis as well as to inflammation. Mounting evidence from recent research suggests that a dysregulated activation of Wnt signaling is involved in the pathogenesis of chronic inflammatory diseases, such as neuroinflammation, cancer-mediated inflammation, and metabolic inflammatory diseases. Recent findings highlight the role of Wnt in the modulation of inflammatory cytokine production, such as NF-kB signaling and in innate defense mechanisms as well as in the bridging of innate and adaptive immunity. This sparked the development of novel therapeutic treatments against inflammatory diseases based on Wnt modulation. Here, we summarize the role and function of the Wnt pathway in inflammatory diseases and focus on Wnt signaling as underlying master regulator of inflammation that can be therapeutically targeted.
Collapse
Affiliation(s)
- Imen Jridi
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Karin Pike-Overzet
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Frank J T Staal
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
18
|
Danek P, Kardosova M, Janeckova L, Karkoulia E, Vanickova K, Fabisik M, Lozano-Asencio C, Benoukraf T, Tirado-Magallanes R, Zhou Q, Burocziova M, Rahmatova S, Pytlik R, Brdicka T, Tenen DG, Korinek V, Alberich-Jorda M. β-Catenin-TCF/LEF signaling promotes steady-state and emergency granulopoiesis via G-CSF receptor upregulation. Blood 2020; 136:2574-2587. [PMID: 32822472 PMCID: PMC7714095 DOI: 10.1182/blood.2019004664] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 08/09/2020] [Indexed: 12/11/2022] Open
Abstract
The canonical Wnt signaling pathway is mediated by interaction of β-catenin with the T-cell factor/lymphoid enhancer-binding factor (TCF/LEF) transcription factors and subsequent transcription activation of Wnt-target genes. In the hematopoietic system, the function of the pathway has been mainly investigated by rather unspecific genetic manipulations of β-catenin that yielded contradictory results. Here, we used a mouse expressing a truncated dominant negative form of the human TCF4 transcription factor (dnTCF4) that specifically abrogates β-catenin-TCF/LEF interaction. Disruption of the β-catenin-TCF/LEF interaction resulted in the accumulation of immature cells and reduced granulocytic differentiation. Mechanistically, dnTCF4 progenitors exhibited downregulation of the Csf3r gene, reduced granulocyte colony-stimulating factor (G-CSF) receptor levels, attenuation of downstream Stat3 phosphorylation after G-CSF treatment, and impaired G-CSF-mediated differentiation. Chromatin immunoprecipitation assays confirmed direct binding of TCF/LEF factors to the promoter and putative enhancer regions of CSF3R. Inhibition of β-catenin signaling compromised activation of the emergency granulopoiesis program, which requires maintenance and expansion of myeloid progenitors. Consequently, dnTCF4 mice were more susceptible to Candida albicans infection and more sensitive to 5-fluorouracil-induced granulocytic regeneration. Importantly, genetic and chemical inhibition of β-catenin-TCF/LEF signaling in human CD34+ cells reduced granulocytic differentiation, whereas its activation enhanced myelopoiesis. Altogether, our data indicate that the β-catenin-TCF/LEF complex directly regulates G-CSF receptor levels, and consequently controls proper differentiation of myeloid progenitors into granulocytes in steady-state and emergency granulopoiesis. Our results uncover a role for the β-catenin signaling pathway in fine tuning the granulocytic production, opening venues for clinical intervention that require enhanced or reduced production of neutrophils.
Collapse
Affiliation(s)
- Petr Danek
- Department of Hemato-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Miroslava Kardosova
- Department of Hemato-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Childhood Leukemia Investigation Prague, Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | | | - Elena Karkoulia
- Department of Hemato-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Karolina Vanickova
- Department of Hemato-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Matej Fabisik
- Department of Leukocyte Cell Signaling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Carlos Lozano-Asencio
- Department of Hemato-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Touati Benoukraf
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | | | - Qiling Zhou
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Monika Burocziova
- Department of Hemato-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Sarka Rahmatova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic; and
| | - Robert Pytlik
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic; and
| | - Tomas Brdicka
- Department of Leukocyte Cell Signaling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Daniel G Tenen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA
| | | | - Meritxell Alberich-Jorda
- Department of Hemato-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Childhood Leukemia Investigation Prague, Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| |
Collapse
|
19
|
Chikhirzhina E, Starkova T, Beljajev A, Polyanichko A, Tomilin A. Functional Diversity of Non-Histone Chromosomal Protein HmgB1. Int J Mol Sci 2020; 21:E7948. [PMID: 33114717 PMCID: PMC7662367 DOI: 10.3390/ijms21217948] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/27/2022] Open
Abstract
The functioning of DNA in the cell nucleus is ensured by a multitude of proteins, whose interactions with DNA as well as with other proteins lead to the formation of a complicated, organized, and quite dynamic system known as chromatin. This review is devoted to the description of properties and structure of the progenitors of the most abundant non-histone protein of the HMGB family-the HmgB1 protein. The proteins of the HMGB family are also known as "architectural factors" of chromatin, which play an important role in gene expression, transcription, DNA replication, and repair. However, as soon as HmgB1 goes outside the nucleus, it acquires completely different functions, post-translational modifications, and change of its redox state. Despite a lot of evidence of the functional activity of HmgB1, there are still many issues to be solved related to the mechanisms of the influence of HmgB1 on the development and treatment of different diseases-from oncological and cardiovascular diseases to pathologies during pregnancy and childbirth. Here, we describe molecular structure of the HmgB1 protein and discuss general mechanisms of its interactions with other proteins and DNA in cell.
Collapse
Affiliation(s)
| | | | | | - Alexander Polyanichko
- Laboratory of Molecular Biology of Stem Cells, Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Tikhoretsky Av. 4, Russia; (T.S.); (A.B.); (A.T.)
| | | |
Collapse
|
20
|
Diverse LEF/TCF Expression in Human Colorectal Cancer Correlates with Altered Wnt-Regulated Transcriptome in a Meta-Analysis of Patient Biopsies. Genes (Basel) 2020; 11:genes11050538. [PMID: 32403323 PMCID: PMC7288467 DOI: 10.3390/genes11050538] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/27/2020] [Accepted: 05/07/2020] [Indexed: 12/28/2022] Open
Abstract
Aberrantly activated Wnt signaling causes cellular transformation that can lead to human colorectal cancer. Wnt signaling is mediated by Lymphoid Enhancer Factor/T-Cell Factor (LEF/TCF) DNA-binding factors. Here we investigate whether altered LEF/TCF expression is conserved in human colorectal tumor sample and may potentially be correlated with indicators of cancer progression. We carried out a meta-analysis of carefully selected publicly available gene expression data sets with paired tumor biopsy and adjacent matched normal tissues from colorectal cancer patients. Our meta-analysis confirms that among the four human LEF/TCF genes, LEF1 and TCF7 are preferentially expressed in tumor biopsies, while TCF7L2 and TCF7L1 in normal control tissue. We also confirm positive correlation of LEF1 and TCF7 expression with hallmarks of active Wnt signaling (i.e., AXIN2 and LGR5). We are able to correlate differential LEF/TCF gene expression with distinct transcriptomes associated with cell adhesion, extracellular matrix organization, and Wnt receptor feedback regulation. We demonstrate here in human colorectal tumor sample correlation of altered LEF/TCF gene expression with quantitatively and qualitatively different transcriptomes, suggesting LEF/TCF-specific transcriptional regulation of Wnt target genes relevant for cancer progression and survival. This bioinformatics analysis provides a foundation for future more detailed, functional, and molecular analyses aimed at dissecting such functional differences.
Collapse
|
21
|
Chikhirzhina EV, Starkova TY, Polyanichko AM. The Role of Linker Histones in Chromatin Structural Organization. 2. Interaction with DNA and Nuclear Proteins. Biophysics (Nagoya-shi) 2020. [DOI: 10.1134/s0006350920020049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
22
|
Gan S, Ye J, Li J, Hu C, Wang J, Xu D, Pan X, Chu C, Chu J, Zhang J, Zheng J, Zhang X, Xu J, Zhang H, Qu F, Cui X. LRP11 activates β-catenin to induce PD-L1 expression in prostate cancer. J Drug Target 2019; 28:508-515. [PMID: 31865764 DOI: 10.1080/1061186x.2019.1687710] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Prostate cancer (PRAD) is associated with abnormal cholesterol metabolism and low-density lipoprotein (LDL) receptor-related protein (LRP) family is essential for the homeostasis of cholesterol. Immune check points like PD-L1 are vital for tumour cells to evade immune attack. However, the potential cross-talk between these two pathways has not been explored before in PRAD. Insight from the regulation mechanism of PD-L1 in PRAD may help to optimise PD-L1 based immunotherapy. In this study, we investigated a regulation network of LRP11/β-catenin/PD-L1 in PRAD. We showed that the expression of LRP11 and PD-L1 was up-regulated in PRAD compared to paired normal tissues. LRP11 expression was positively correlated to PD-L1 expression in PRAD tissues. Further experiments in two PRAD cell lines with LRP11 over-expression and knockdown showed that LRP11 induced PD-L1 expression through β-catenin signalling. In addition, LRP11 over-expression in PRAD cell line induced immunosuppression of Jurkat cell in in-vitro co-culture system. The effects of LRP11 could be blocked by neutralising LRP11 or PD-L1 antibody. Our results provide evidence for a novel regulation mechanism of PD-L1 expression in PRAD and LRP11 may be a potential therapeutic target in PRAD.
Collapse
Affiliation(s)
- Sishun Gan
- Department of Urology, Third Affiliated Hospital of Second Military Medical University, Shanghai, PR China
| | - Jianqing Ye
- Department of Urology, Third Affiliated Hospital of Second Military Medical University, Shanghai, PR China
| | - Jian Li
- Department of Urology, Gongli Hospital of the Second Military Medical University, Shanghai, PR China
| | - Chuanyi Hu
- Department of Urology, Gongli Hospital of the Second Military Medical University, Shanghai, PR China
| | - Junkai Wang
- Department of Urology, Changzheng Hospital of Second Military Medical University, Shanghai, PR China
| | - Da Xu
- Department of Urology, Third Affiliated Hospital of Second Military Medical University, Shanghai, PR China
| | - Xiuwu Pan
- Department of Urology, Third Affiliated Hospital of Second Military Medical University, Shanghai, PR China
| | - Chuanmin Chu
- Department of Urology, Third Affiliated Hospital of Second Military Medical University, Shanghai, PR China
| | - Jian Chu
- Department of Urology, Gongli Hospital of the Second Military Medical University, Shanghai, PR China
| | - Jing Zhang
- Department of Urology, Gongli Hospital of the Second Military Medical University, Shanghai, PR China
| | - Jingcun Zheng
- Department of Urology, Gongli Hospital of the Second Military Medical University, Shanghai, PR China
| | - Xiangmin Zhang
- Department of Urology, Gongli Hospital of the Second Military Medical University, Shanghai, PR China
| | - Jidong Xu
- Department of Urology, Gongli Hospital of the Second Military Medical University, Shanghai, PR China
| | - He Zhang
- Department of Urology, Gongli Hospital of the Second Military Medical University, Shanghai, PR China
| | - Fajun Qu
- Department of Urology, Gongli Hospital of the Second Military Medical University, Shanghai, PR China
| | - Xingang Cui
- Department of Urology, Third Affiliated Hospital of Second Military Medical University, Shanghai, PR China
| |
Collapse
|
23
|
Young RM, Ewan KB, Ferrer VP, Allende ML, Godovac-Zimmermann J, Dale TC, Wilson SW. Developmentally regulated Tcf7l2 splice variants mediate transcriptional repressor functions during eye formation. eLife 2019; 8:e51447. [PMID: 31829936 PMCID: PMC6908431 DOI: 10.7554/elife.51447] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/24/2019] [Indexed: 12/11/2022] Open
Abstract
Tcf7l2 mediates Wnt/β-Catenin signalling during development and is implicated in cancer and type-2 diabetes. The mechanisms by which Tcf7l2 and Wnt/β-Catenin signalling elicit such a diversity of biological outcomes are poorly understood. Here, we study the function of zebrafish tcf7l2alternative splice variants and show that only variants that include exon five or an analogous human tcf7l2 variant can effectively provide compensatory repressor function to restore eye formation in embryos lacking tcf7l1a/tcf7l1b function. Knockdown of exon five specific tcf7l2 variants in tcf7l1a mutants also compromises eye formation, and these variants can effectively repress Wnt pathway activity in reporter assays using Wnt target gene promoters. We show that the repressive activities of exon5-coded variants are likely explained by their interaction with Tle co-repressors. Furthermore, phosphorylated residues in Tcf7l2 coded exon5 facilitate repressor activity. Our studies suggest that developmentally regulated splicing of tcf7l2 can influence the transcriptional output of the Wnt pathway.
Collapse
Affiliation(s)
- Rodrigo M Young
- Department of Cell and Developmental BiologyUCLLondonUnited Kingdom
| | - Kenneth B Ewan
- School of Bioscience, Cardiff UniversityCardiffUnited Kingdom
| | | | - Miguel L Allende
- FONDAP Center for Genome Regulation, Facultad de Ciencias, Universidad de ChileSantiagoChile
| | | | - Trevor C Dale
- School of Bioscience, Cardiff UniversityCardiffUnited Kingdom
| | - Stephen W Wilson
- Department of Cell and Developmental BiologyUCLLondonUnited Kingdom
| |
Collapse
|
24
|
Krivtsova O, Makarova A, Lazarevich N. Aberrant expression of alternative isoforms of transcription factors in hepatocellular carcinoma. World J Hepatol 2018; 10:645-661. [PMID: 30386458 PMCID: PMC6206146 DOI: 10.4254/wjh.v10.i10.645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/08/2018] [Accepted: 06/28/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies worldwide and the second leading cause of death among all cancer types. Deregulation of the networks of tissue-specific transcription factors (TFs) observed in HCC leads to profound changes in the hepatic transcriptional program that facilitates tumor progression. In addition, recent reports suggest that substantial aberrations in the production of TF isoforms occur in HCC. In vitro experiments have identified distinct isoform-specific regulatory functions and related biological effects of liver-specific TFs that are implicated in carcinogenesis, which may be relevant for tumor progression and clinical outcome. This study reviews available data on the expression of isoforms of liver-specific and ubiquitous TFs in the liver and HCC and their effects, including HNF4α, C/EBPs, p73 and TCF7L2, and indicates that assessment of the ratio of isoforms and targeting specific TF variants may be beneficial for the prognosis and treatment of HCC.
Collapse
Affiliation(s)
- Olga Krivtsova
- Federal State Budgetary Institution, “N. N. Blokhin Medical Research Center of Oncology” of the Ministry of Health of the Russian Federation, Moscow 115478, Russian
- M. V. Lomonosov Moscow State University, Moscow 119991, Russian
| | - Anna Makarova
- Federal State Budgetary Institution, “N. N. Blokhin Medical Research Center of Oncology” of the Ministry of Health of the Russian Federation, Moscow 115478, Russian
| | - Natalia Lazarevich
- Federal State Budgetary Institution, “N. N. Blokhin Medical Research Center of Oncology” of the Ministry of Health of the Russian Federation, Moscow 115478, Russian
- M. V. Lomonosov Moscow State University, Moscow 119991, Russian
| |
Collapse
|
25
|
Žídek R, Machoň O, Kozmik Z. Wnt/β-catenin signalling is necessary for gut differentiation in a marine annelid, Platynereis dumerilii. EvoDevo 2018; 9:14. [PMID: 29942461 PMCID: PMC5996498 DOI: 10.1186/s13227-018-0100-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/20/2018] [Indexed: 11/10/2022] Open
Abstract
Background Wnt/β-catenin (or canonical) signalling pathway activity is necessary and used independently several times for specification of vegetal fate and endoderm, gut differentiation, maintenance of epithelium in adult intestine and the development of gut-derived organs in various vertebrate and non-vertebrate organisms. However, its conservation in later stages of digestive tract development still remains questionable due to the lack of detailed data, mainly from Spiralia. Results Here we characterize the Pdu-Tcf gene, a Tcf/LEF orthologue and a component of Wnt/β-catenin pathway from Platynereis dumerilii, a spiralian, marine annelid worm. Pdu-Tcf undergoes extensive alternative splicing in the C-terminal region of the gene generating as many as eight mRNA isoforms some of which differ in the presence or absence of a C-clamp domain which suggests a distinct DNA binding activity of individual protein variants. Pdu-Tcf is broadly expressed throughout development which is indicative of many functions. One of the most prominent domains that exhibits rather strong Pdu-Tcf expression is in the putative precursors of endodermal gut cells which are detected after 72 h post-fertilization (hpf). At day 5 post-fertilization (dpf), Pdu-Tcf is expressed in the hindgut and pharynx (foregut), whereas at 7 dpf stage, it is strongly transcribed in the now-cellularized midgut for the first time. In order to gain insight into the role of Wnt/β-catenin signalling, we disrupted its activity using pharmacological inhibitors between day 5 and 7 of development. The inhibition of Wnt/β-catenin signalling led to the loss of midgut marker genes Subtilisin-1, Subtilisin-2, α-Amylase and Otx along with a drop in β-catenin protein levels, Axin expression in the gut and nearly the complete loss of proliferative activity throughout the body of larva. At the same time, a hindgut marker gene Legumain was expanded to the midgut compartment under the same conditions. Conclusions Our findings suggest that high Wnt/β-catenin signalling in the midgut might be necessary for proper differentiation of the endoderm to an epithelium capable of secreting digestive enzymes. Together, our data provide evidence for the role of Wnt/β-catenin signalling in gut differentiation in Platynereis.
Collapse
Affiliation(s)
- Radim Žídek
- 1Institute of Molecular Genetics, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Ondřej Machoň
- 1Institute of Molecular Genetics, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic.,2Present Address: Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Zbyněk Kozmik
- 1Institute of Molecular Genetics, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| |
Collapse
|
26
|
Li Z, Xu Z, Duan C, Liu W, Sun J, Han B. Role of TCF/LEF Transcription Factors in Bone Development and Osteogenesis. Int J Med Sci 2018; 15:1415-1422. [PMID: 30275770 PMCID: PMC6158667 DOI: 10.7150/ijms.26741] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/29/2018] [Indexed: 11/05/2022] Open
Abstract
Bone formation occurs by two distinct mechanisms, namely, periosteal ossification and endochondral ossification. In both mechanisms, osteoblasts play an important role in the secretion and mineralization of bone-specific extracellular matrix. Differentiation and maturation of osteoblasts is a prerequisite to bone formation and is regulated by many factors. Recent experiments have shown that transcription factors play an important role in regulating osteoblast differentiation, proliferation, and function. Osteogenesis related transcription factors are the central targets and key mediators of the function of growth factors, such as cytokines. Transcription factors play a key role in the transformation of mesenchymal progenitor cells into functional osteoblasts. These transcription factors are closely linked with each other and in conjunction with bone-related signaling pathways form a complex network that regulates osteoblast differentiation and bone formation. In this paper, we discuss the structure of T-cell factor/lymphoid enhancer factor (TCF/LEF) and its role in embryonic skeletal development and the crosstalk with related signaling pathways and factors.
Collapse
Affiliation(s)
- Zhengqiang Li
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Jilin University, Changchun 130021, China.,Stomatological Hospital of Southern Medical University & Guangdong Provincial Stomatological Hospital, Guangzhou 510280, China
| | - Zhimin Xu
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Jilin University, Changchun 130021, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| | - Congcong Duan
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Jilin University, Changchun 130021, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| | - Weiwei Liu
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Jilin University, Changchun 130021, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| | - Jingchun Sun
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Jilin University, Changchun 130021, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| | - Bing Han
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Jilin University, Changchun 130021, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| |
Collapse
|
27
|
Kovacs D, Migliano E, Muscardin L, Silipo V, Catricalà C, Picardo M, Bellei B. The role of Wnt/β-catenin signaling pathway in melanoma epithelial-to-mesenchymal-like switching: evidences from patients-derived cell lines. Oncotarget 2017; 7:43295-43314. [PMID: 27175588 PMCID: PMC5190024 DOI: 10.18632/oncotarget.9232] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 04/10/2016] [Indexed: 12/13/2022] Open
Abstract
Deregulations or mutations of WNT/β-catenin signaling have been associated to both tumour formation and progression. However, contradictory results concerning the role of β-catenin in human melanoma address an open question on its oncogenic nature and prognostic value in this tumour. Changes in WNT signaling pathways have been linked to phenotype switching of melanoma cells between a highly proliferative/non-invasive and a slow proliferative/metastatic condition. We used a novel panel of cell lines isolated from melanoma specimens, at initial passages, to investigate phenotype differences related to the levels and activity of WNT/β-catenin signaling pathway. This in vitro cell system revealed a marked heterogeneity that comprises, in some cases, two distinct tumour-derived subpopulations of cells presenting a different activation level and cellular distribution of β-catenin. In cells derived from the same tumor, we demonstrated that the prevalence of LEF1 (high β-catenin expressing cells) or TCF4 (low β-catenin expressing cells) as β-catenin partner for DNA binding, is associated to the expression of two distinct profiles of WNT-responsive genes. Interestingly, melanoma cells expressing relative low level of β-catenin and an invasive markers signature were associated to the TNF-α-induced pro-inflammatory pathway and to the chemotherapy resistance, suggesting that the co-existence of melanoma subpopulations with distinct biological properties could influence the impact of chemo- and immunotherapy.
Collapse
Affiliation(s)
- Daniela Kovacs
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatologic Institute, IRCCS, Rome, Italy
| | - Emilia Migliano
- Department of Plastic and Reconstructive Surgery, San Gallicano Dermatologic Institute, IRCCS, Rome, Italy
| | - Luca Muscardin
- Dermatopathological Laboratory, San Gallicano Dermatologic Institute, IRCCS, Rome, Italy
| | - Vitaliano Silipo
- Department of Oncologic Dermatology, San Gallicano Dermatologic Institute, IRCCS, Rome, Italy
| | - Caterina Catricalà
- Department of Oncologic Dermatology, San Gallicano Dermatologic Institute, IRCCS, Rome, Italy
| | - Mauro Picardo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatologic Institute, IRCCS, Rome, Italy
| | - Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatologic Institute, IRCCS, Rome, Italy
| |
Collapse
|
28
|
Gaillard D, Bowles SG, Salcedo E, Xu M, Millar SE, Barlow LA. β-catenin is required for taste bud cell renewal and behavioral taste perception in adult mice. PLoS Genet 2017; 13:e1006990. [PMID: 28846687 PMCID: PMC5591015 DOI: 10.1371/journal.pgen.1006990] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 09/08/2017] [Accepted: 08/21/2017] [Indexed: 02/07/2023] Open
Abstract
Taste stimuli are transduced by taste buds and transmitted to the brain via afferent gustatory fibers. Renewal of taste receptor cells from actively dividing progenitors is finely tuned to maintain taste sensitivity throughout life. We show that conditional β-catenin deletion in mouse taste progenitors leads to rapid depletion of progenitors and Shh+ precursors, which in turn causes taste bud loss, followed by loss of gustatory nerve fibers. In addition, our data suggest LEF1, TCF7 and Wnt3 are involved in a Wnt pathway regulatory feedback loop that controls taste cell renewal in the circumvallate papilla epithelium. Unexpectedly, taste bud decline is greater in the anterior tongue and palate than in the posterior tongue. Mutant mice with this regional pattern of taste bud loss were unable to discern sweet at any concentration, but could distinguish bitter stimuli, albeit with reduced sensitivity. Our findings are consistent with published reports wherein anterior taste buds have higher sweet sensitivity while posterior taste buds are better tuned to bitter, and suggest β-catenin plays a greater role in renewal of anterior versus posterior taste buds. By remaining relatively constant throughout adult life, the sense of taste helps keep the body healthy. However, taste perception can be disrupted by various environmental factors, including cancer therapies. Here, we show that Wnt/β-catenin signaling, a pathway known to control normal tissue maintenance and associated with the development of cancers, is required for taste cell renewal and behavioral taste sensitivity in mice. Our findings are significant as they suggest that chemotherapies targeting the Wnt pathway in cancerous tissues may cause taste dysfunction and further diminish the quality of life of patients.
Collapse
Affiliation(s)
- Dany Gaillard
- Department of Cell & Developmental Biology and the Rocky Mountain Taste & Smell Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Spencer G. Bowles
- Department of Cell & Developmental Biology and the Rocky Mountain Taste & Smell Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Ernesto Salcedo
- Department of Cell & Developmental Biology and the Rocky Mountain Taste & Smell Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Mingang Xu
- Departments of Dermatology and Cell & Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sarah E. Millar
- Departments of Dermatology and Cell & Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Linda A. Barlow
- Department of Cell & Developmental Biology and the Rocky Mountain Taste & Smell Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
29
|
Tortelote GG, Reis RR, de Almeida Mendes F, Abreu JG. Complexity of the Wnt/β‑catenin pathway: Searching for an activation model. Cell Signal 2017; 40:30-43. [PMID: 28844868 DOI: 10.1016/j.cellsig.2017.08.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/08/2017] [Accepted: 08/23/2017] [Indexed: 12/13/2022]
Abstract
Wnt signaling refers to a conserved signaling pathway, widely studied due to its roles in cellular communication, cell fate decisions, development and cancer. However, the exact mechanism underlying inhibition of the GSK phosphorylation towards β-catenin and activation of the pathway after biding of Wnt ligand to its cognate receptors at the plasma membrane remains unclear. Wnt target genes are widely spread over several animal phyla. They participate in a plethora of functions during the development of an organism, from axial specification, gastrulation and organogenesis all the way to regeneration and repair in adults. Temporal and spatial oncogenetic re-activation of Wnt signaling almost certainly leads to cancer. Wnt signaling components have been extensively studied as possible targets in anti-cancer therapies. In this review we will discuss one of the most intriguing questions in this field, that is how β-catenin, a major component in this pathway, escapes the destruction complex, gets stabilized in the cytosol and it is translocated to the nucleus where it acts as a co-transcription factor. Four major models have evolved during the past 20years. We dissected each of them along with current views and future perspectives on this pathway. This review will focus on the molecular mechanisms by which Wnt proteins modulate β-catenin cytoplasmic levels and the relevance of this pathway for the development and cancer.
Collapse
Affiliation(s)
- Giovane G Tortelote
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Renata R Reis
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio de Almeida Mendes
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jose Garcia Abreu
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
30
|
Franz A, Shlyueva D, Brunner E, Stark A, Basler K. Probing the canonicity of the Wnt/Wingless signaling pathway. PLoS Genet 2017; 13:e1006700. [PMID: 28369070 PMCID: PMC5393890 DOI: 10.1371/journal.pgen.1006700] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 04/17/2017] [Accepted: 03/15/2017] [Indexed: 02/02/2023] Open
Abstract
The hallmark of canonical Wnt signaling is the transcriptional induction of Wnt target genes by the beta-catenin/TCF complex. Several studies have proposed alternative interaction partners for beta-catenin or TCF, but the relevance of potential bifurcations in the distal Wnt pathway remains unclear. Here we study on a genome-wide scale the requirement for Armadillo (Arm, Drosophila beta-catenin) and Pangolin (Pan, Drosophila TCF) in the Wnt/Wingless(Wg)-induced transcriptional response of Drosophila Kc cells. Using somatic genetics, we demonstrate that both Arm and Pan are absolutely required for mediating activation and repression of target genes. Furthermore, by means of STARR-sequencing we identified Wnt/Wg-responsive enhancer elements and found that all responsive enhancers depend on Pan. Together, our results confirm the dogma of canonical Wnt/Wg signaling and argue against the existence of distal pathway branches in this system. Our manuscript addresses the question of whether either of the canonical transduction components, beta-catenin or TCF, can be bypassed when the Wnt pathway is activated. By using somatic cell genetics in Drosophila cells (via CRISPR/Cas9 editing) in combination with RNA-seq and STARR-seq (Self-transcribing-active-regulatory-region-sequencing) as functional read-outs, we provide firm evidence against the existence of distal branches in the Wnt pathway.
Collapse
Affiliation(s)
- Alexandra Franz
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Daria Shlyueva
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, Vienna, Austria
| | - Erich Brunner
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Alexander Stark
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, Vienna, Austria
| | - Konrad Basler
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
31
|
Forés M, Simón-Carrasco L, Ajuria L, Samper N, González-Crespo S, Drosten M, Barbacid M, Jiménez G. A new mode of DNA binding distinguishes Capicua from other HMG-box factors and explains its mutation patterns in cancer. PLoS Genet 2017; 13:e1006622. [PMID: 28278156 PMCID: PMC5344332 DOI: 10.1371/journal.pgen.1006622] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 02/08/2017] [Indexed: 11/19/2022] Open
Abstract
HMG-box proteins, including Sox/SRY (Sox) and TCF/LEF1 (TCF) family members, bind DNA via their HMG-box. This binding, however, is relatively weak and both Sox and TCF factors employ distinct mechanisms for enhancing their affinity and specificity for DNA. Here we report that Capicua (CIC), an HMG-box transcriptional repressor involved in Ras/MAPK signaling and cancer progression, employs an additional distinct mode of DNA binding that enables selective recognition of its targets. We find that, contrary to previous assumptions, the HMG-box of CIC does not bind DNA alone but instead requires a distant motif (referred to as C1) present at the C-terminus of all CIC proteins. The HMG-box and C1 domains are both necessary for binding specific TGAATGAA-like sites, do not function via dimerization, and are active in the absence of cofactors, suggesting that they form a bipartite structure for sequence-specific binding to DNA. We demonstrate that this binding mechanism operates throughout Drosophila development and in human cells, ensuring specific regulation of multiple CIC targets. It thus appears that HMG-box proteins generally depend on auxiliary DNA binding mechanisms for regulating their appropriate genomic targets, but that each sub-family has evolved unique strategies for this purpose. Finally, the key role of C1 in DNA binding also explains the fact that this domain is a hotspot for inactivating mutations in oligodendroglioma and other tumors, while being preserved in oncogenic CIC-DUX4 fusion chimeras associated to Ewing-like sarcomas.
Collapse
Affiliation(s)
- Marta Forés
- Institut de Biologia Molecular de Barcelona-CSIC, Barcelona, Spain
| | - Lucía Simón-Carrasco
- Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Leiore Ajuria
- Institut de Biologia Molecular de Barcelona-CSIC, Barcelona, Spain
| | - Núria Samper
- Institut de Biologia Molecular de Barcelona-CSIC, Barcelona, Spain
| | | | - Matthias Drosten
- Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Mariano Barbacid
- Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Gerardo Jiménez
- Institut de Biologia Molecular de Barcelona-CSIC, Barcelona, Spain
- ICREA, Barcelona, Spain
- * E-mail:
| |
Collapse
|
32
|
ZNF395 Is an Activator of a Subset of IFN-Stimulated Genes. Mediators Inflamm 2017; 2017:1248201. [PMID: 28316371 PMCID: PMC5339479 DOI: 10.1155/2017/1248201] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/05/2017] [Indexed: 11/17/2022] Open
Abstract
Activation of the interferon (IFN) pathway in response to infection with pathogens results in the induction of IFN-stimulated genes (ISGs) including proinflammatory cytokines, which mount the proper antiviral immune response. However, aberrant expression of these genes is pathogenic to the host. In addition to IFN-induced transcription factors non-IFN-regulated factors contribute to the transcriptional control of ISGs. Here, we show by genome wide expression analysis, siRNA-mediated suppression and Doxycycline-induced overexpression that the cellular transcription factor ZNF395 activates a subset of ISGs including the chemokines CXCL10 and CXCL11 in keratinocytes. We found that ZNF395 acts independently of IFN but enhances the IFN-induced expression of CXCL10 and CXCL11. Luciferase reporter assays revealed a requirement of intact NFκB-binding sites for ZNF395 to stimulate the CXCL10 promoter. The transcriptional activation of CXCL10 and CXCL11 by ZNF395 was abolished after inhibition of IKK by BMS-345541, which increased the stability of ZNF395. ZNF395 encodes at least two motifs that mediate the enhanced degradation of ZNF395 in response to IKK activation. Thus, IKK is required for ZNF395-mediated activation of transcription and enhances its turn-over to keep the activity of ZNF395 low. Our results support a previously unrecognized role of ZNF395 in the innate immune response and inflammation.
Collapse
|
33
|
Katoh I, Fukunishi N, Fujimuro M, Kasai H, Moriishi K, Hata RI, Kurata SI. Repression of Wnt/β-catenin response elements by p63 (TP63). Cell Cycle 2016; 15:699-710. [PMID: 26890356 PMCID: PMC4845946 DOI: 10.1080/15384101.2016.1148837] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Submitted: TP63 (p63), a member of the tumor suppressor TP53 (p53) gene family, is expressed in keratinocyte stem cells and well-differentiated squamous cell carcinomas to maintain cellular potential for growth and differentiation. Controversially, activation of the Wnt/β-catenin signaling by p63 (Patturajan M. et al., 2002, Cancer Cells) and inhibition of the target gene expression (Drewelus I. et al., 2010, Cell Cycle) have been reported. Upon p63 RNA-silencing in squamous cell carcinoma (SCC) lines, a few Wnt target gene expression substantially increased, while several target genes moderately decreased. Although ΔNp63α, the most abundant isoform of p63, appeared to interact with protein phosphatase PP2A, neither GSK-3β phosphorylation nor β-catenin nuclear localization was altered by the loss of p63. As reported earlier, ΔNp63α enhanced β-catenin-dependent luc gene expression from pGL3-OT having 3 artificial Wnt response elements (WREs). However, this activation was detectable only in HEK293 cells examined so far, and involved a p53 family-related sequence 5' to the WREs. In Wnt3-expressing SAOS-2 cells, ΔNp63α rather strongly inhibited transcription of pGL3-OT. Importantly, ΔNp63α repressed WREs isolated from the regulatory regions of MMP7. ΔNp63α-TCF4 association occurred in their soluble forms in the nucleus. Furthermore, p63 and TCF4 coexisted at a WRE of MMP7 on the chromatin, where β-catenin recruitment was attenuated. The combined results indicate that ΔNp63α serves as a repressor that regulates β-catenin-mediated gene expression.
Collapse
Affiliation(s)
- Iyoko Katoh
- a Center for Medical Education and Sciences, Faculty of Medicine, University of Yamanashi , Chuo , Yamanashi , Japan.,b Oral Health Science Research Center, Kanagawa Dental University , Yokosuka , Japan
| | - Nahoko Fukunishi
- c Medical Research Institute, Tokyo Medical and Dental University , Tokyo , Japan
| | - Masahiro Fujimuro
- d Department of Cell Biology , Kyoto Pharmaceutical University , Yamashina , Kyoto , Japan
| | - Hirotake Kasai
- e Department of Microbiology , Faculty of Medicine, University of Yamanashi , Chuo , Yamanashi , Japan
| | - Kohji Moriishi
- e Department of Microbiology , Faculty of Medicine, University of Yamanashi , Chuo , Yamanashi , Japan
| | - Ryu-Ichiro Hata
- b Oral Health Science Research Center, Kanagawa Dental University , Yokosuka , Japan
| | - Shun-Ichi Kurata
- b Oral Health Science Research Center, Kanagawa Dental University , Yokosuka , Japan.,c Medical Research Institute, Tokyo Medical and Dental University , Tokyo , Japan
| |
Collapse
|
34
|
Enhancer decommissioning by Snail1-induced competitive displacement of TCF7L2 and down-regulation of transcriptional activators results in EPHB2 silencing. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1353-1367. [PMID: 27504909 DOI: 10.1016/j.bbagrm.2016.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 07/25/2016] [Accepted: 08/04/2016] [Indexed: 12/20/2022]
Abstract
Transcriptional silencing is a major cause for the inactivation of tumor suppressor genes, however, the underlying mechanisms are only poorly understood. The EPHB2 gene encodes a receptor tyrosine kinase that controls epithelial cell migration and allocation in intestinal crypts. Through its ability to restrict cell spreading, EPHB2 functions as a tumor suppressor in colorectal cancer whose expression is frequently lost as tumors progress to the carcinoma stage. Previously we reported that EPHB2 expression depends on a transcriptional enhancer whose activity is diminished in EPHB2 non-expressing cells. Here we investigated the mechanisms that lead to EPHB2 enhancer inactivation. We show that expression of EPHB2 and SNAIL1 - an inducer of epithelial-mesenchymal transition (EMT) - is anti-correlated in colorectal cancer cell lines and tumors. In a cellular model of Snail1-induced EMT, we observe that features of active chromatin at the EPHB2 enhancer are diminished upon expression of murine Snail1. We identify the transcription factors FOXA1, MYB, CDX2 and TCF7L2 as EPHB2 enhancer factors and demonstrate that Snail1 indirectly inactivates the EPHB2 enhancer by downregulation of FOXA1 and MYB. In addition, Snail1 induces the expression of Lymphoid enhancer factor 1 (LEF1) which competitively displaces TCF7L2 from the EPHB2 enhancer. In contrast to TCF7L2, however, LEF1 appears to repress the EPHB2 enhancer. Our findings underscore the importance of transcriptional enhancers for gene regulation under physiological and pathological conditions and show that SNAIL1 employs a combinatorial mechanism to inactivate the EPHB2 enhancer based on activator deprivation and competitive displacement of transcription factors.
Collapse
|
35
|
Ravindranath AJ, Cadigan KM. The Role of the C-Clamp in Wnt-Related Colorectal Cancers. Cancers (Basel) 2016; 8:cancers8080074. [PMID: 27527215 PMCID: PMC4999783 DOI: 10.3390/cancers8080074] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/28/2016] [Accepted: 07/29/2016] [Indexed: 12/25/2022] Open
Abstract
T-cell Factor/Lymphoid Enhancer Factor (TCF/LEF) transcription factors are major regulators of Wnt targets, and the products of the TCF7 and TCF7L2 genes have both been implicated in the progression of colorectal cancer in animal models and humans. TCFs recognize specific DNA sequences through their high mobility group (HMG) domains, but invertebrate TCFs and some isoforms of vertebrate TCF7 and TCF7L2 contain a second DNA binding domain known as the C-clamp. This review will cover the basic properties of C-clamps and their importance in Wnt signaling, using data from Drosophila, C. elegans, and mammalian cell culture. The connection between C-clamp containing TCFs and colorectal cancer will also be discussed.
Collapse
Affiliation(s)
- Aditi J Ravindranath
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Ken M Cadigan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
36
|
Aktary Z, Bertrand JU, Larue L. The WNT-less wonder: WNT-independent β-catenin signaling. Pigment Cell Melanoma Res 2016; 29:524-40. [PMID: 27311806 DOI: 10.1111/pcmr.12501] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/14/2016] [Indexed: 12/18/2022]
Abstract
β-catenin is known as an Armadillo protein that regulates gene expression following WNT pathway activation. However, WNT-independent pathways also activate β-catenin. During the establishment of the melanocyte lineage, β-catenin plays an important role. In the context of physiopathology, β-catenin is activated genetically or transiently in various cancers, including melanoma, where it can be found in the nucleus of tumors. In this review, we discuss alternative pathways that activate β-catenin independent of WNTs and highlight what is known regarding these pathways in melanoma. We also discuss the role of β-catenin as a transcriptional regulator in various cell types, with emphasis on the different transcription factors it associates with independent of WNT induction. Finally, the role of WNT-independent β-catenin in melanocyte development and melanomagenesis is also discussed.
Collapse
Affiliation(s)
- Zackie Aktary
- Normal and Pathological Development of Melanocytes, INSERM U1021, Institut Curie, PSL Research University, Orsay, France.,CNRS UMR 3347, Univ Paris-Sud, Univ Paris-Saclay, Orsay, France.,Equipe Labellisée Ligue Contre le Cancer, Orsay, France
| | - Juliette U Bertrand
- Normal and Pathological Development of Melanocytes, INSERM U1021, Institut Curie, PSL Research University, Orsay, France.,CNRS UMR 3347, Univ Paris-Sud, Univ Paris-Saclay, Orsay, France.,Equipe Labellisée Ligue Contre le Cancer, Orsay, France
| | - Lionel Larue
- Normal and Pathological Development of Melanocytes, INSERM U1021, Institut Curie, PSL Research University, Orsay, France. .,CNRS UMR 3347, Univ Paris-Sud, Univ Paris-Saclay, Orsay, France. .,Equipe Labellisée Ligue Contre le Cancer, Orsay, France.
| |
Collapse
|
37
|
Hrckulak D, Kolar M, Strnad H, Korinek V. TCF/LEF Transcription Factors: An Update from the Internet Resources. Cancers (Basel) 2016; 8:cancers8070070. [PMID: 27447672 PMCID: PMC4963812 DOI: 10.3390/cancers8070070] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 07/11/2016] [Accepted: 07/14/2016] [Indexed: 12/18/2022] Open
Abstract
T-cell factor/lymphoid enhancer-binding factor (TCF/LEF) proteins (TCFs) from the High Mobility Group (HMG) box family act as the main downstream effectors of the Wnt signaling pathway. The mammalian TCF/LEF family comprises four nuclear factors designated TCF7, LEF1, TCF7L1, and TCF7L2 (also known as TCF1, LEF1, TCF3, and TCF4, respectively). The proteins display common structural features and are often expressed in overlapping patterns implying their redundancy. Such redundancy was indeed observed in gene targeting studies; however, individual family members also exhibit unique features that are not recapitulated by the related proteins. In the present viewpoint, we summarized our current knowledge about the specific features of individual TCFs, namely structural-functional studies, posttranslational modifications, interacting partners, and phenotypes obtained upon gene targeting in the mouse. In addition, we employed several publicly available databases and web tools to evaluate the expression patterns and production of gene-specific isoforms of the TCF/LEF family members in human cells and tissues.
Collapse
Affiliation(s)
- Dusan Hrckulak
- Department of Cell and Developmental Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4 14220, Czech Republic.
| | - Michal Kolar
- Department of Genomics and Bioinformatics, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4 14220, Czech Republic.
| | - Hynek Strnad
- Department of Genomics and Bioinformatics, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4 14220, Czech Republic.
| | - Vladimir Korinek
- Department of Cell and Developmental Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4 14220, Czech Republic.
| |
Collapse
|
38
|
Alternative splicing within the Wnt signaling pathway: role in cancer development. Cell Oncol (Dordr) 2016; 39:1-13. [PMID: 26762488 DOI: 10.1007/s13402-015-0266-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The Wnt signaling cascade plays a fundamental role in embryonic development, adult tissue regeneration, homeostasis and stem cell maintenance. Abnormal Wnt signaling has been found to be prevalent in various human cancers. Also, a role of Wnt signaling in the regulation of alternative splicing of several cancer-related genes has been established. In addition, accumulating evidence suggests the existence of multiple splice isoforms of Wnt signaling cascade components, including Wnt ligands, receptors, components of the destruction complex and transcription activators/suppressors. The presence of multiple Wnt signaling-related isoforms may affect the functionality of the Wnt pathway, including its deregulation in cancer. As such, specific Wnt pathway isoform components may serve as therapeutic targets or as biomarkers for certain human cancers. Here, we review the role of alternative splicing of Wnt signaling components during the onset and progression of cancer. CONCLUSIONS Splice isoforms of components of the Wnt signaling pathway play distinct roles in cancer development. Isoforms of the same component may function in a tissue- and/or cancer-specific manner. Splice isoform expression analyses along with deregulated Wnt signaling pathway analyses may be of help to design efficient diagnostic and therapeutic strategies.
Collapse
|
39
|
Nakano N, Kato M, Itoh S. Regulation of the TMEPAI promoter by TCF7L2: the C-terminal tail of TCF7L2 is essential to activate the TMEPAI gene. J Biochem 2015; 159:27-30. [PMID: 26590303 DOI: 10.1093/jb/mvv117] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 11/15/2015] [Indexed: 11/14/2022] Open
Abstract
We previously found that TCF7L2 could activate the TMEPAI gene efficiently, whereas LEF1 could not nearly augment its transcription. When we comprehended the functional difference(s) between TCF7L2 and LEF1 with respect to the activation of the TMEPAI gene, the C-terminal tail of TCF7L2 was needed to reveal its transcriptional activity as well as its interaction with Smad3. Consistently, both TCF7/TCF7L2 and LEF1/TCF7L2 chimeric proteins exhibited an activity similar to TCF7L2 in transcription and Smad3 binding in contrast with LEF1 and TCF7. Our data elaborated on the diverse activity among TCF/LEF family members with respect to the transcriptional regulation of the TMEPAI gene.
Collapse
Affiliation(s)
- Naoko Nakano
- Laboratory of Biochemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan; Laboratory of Experimental Pathology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Mitsuyasu Kato
- Laboratory of Experimental Pathology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Susumu Itoh
- Laboratory of Biochemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan;
| |
Collapse
|
40
|
Xu Z, Chen Y, Yu J, Yin D, Liu C, Chen X, Zhang D. TCF4 Mediates the Maintenance of Neuropathic Pain Through Wnt/β-Catenin Signaling Following Peripheral Nerve Injury in Rats. J Mol Neurosci 2015; 56:397-408. [PMID: 25963533 DOI: 10.1007/s12031-015-0565-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/14/2015] [Indexed: 01/20/2023]
Abstract
Neuropathic pain is elicited after a serious disorder of the nervous system and is along with the neural damage. It is usually chronic and challenging to treat. Transcription factor 4 (TCF4) is a key transcription factor of Wnt signaling system. Recent studies have shown that TCF4 interacts with β-catenin in the Wnt signaling pathway and coactivates downstream target genes in diverse systems. However, it is not well elucidated in the pathogenesis of neuropathic pain. In the present study, we investigated the role of TCF4 in the maintenance of neuropathic pain after chronic constriction injury (CCI) in rats. CCI induced persistent TCF4 upregulation in the dorsal root ganglion and spinal cord. Interestingly, TCF4 was mainly colocalized with neurons in the injured dorsal root ganglion and spinal cord on CCI day 7. Moreover, the expression patterns of β-catenin and glycogen synthase kinase-3β (GSK-3β) were parallel with that of TCF4 in vivo studies. Intrathecal injection of Wnt/β-catenin pathway inhibitor IWR-1-endo and TCF4 small interfering RNA (siRNA) significantly attenuated CCI-induced mechanical allodynia and heat hyperalgesia. The results suggest that TCF4 in the dorsal root ganglion and spinal cord is involved in the maintenance of CCI-induced neuropathic pain. Targeting TCF4 or Wnt/β-catenin signaling may be a potential treatment for chronic neuropathic pain.
Collapse
Affiliation(s)
- Zhongling Xu
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | | | | | | | | | | | | |
Collapse
|
41
|
Klomp J, Athy D, Kwan CW, Bloch NI, Sandmann T, Lemke S, Schmidt-Ott U. Embryo development. A cysteine-clamp gene drives embryo polarity in the midge Chironomus. Science 2015; 348:1040-2. [PMID: 25953821 DOI: 10.1126/science.aaa7105] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 04/27/2015] [Indexed: 12/19/2022]
Abstract
In the fruit fly Drosophila, head formation is driven by a single gene, bicoid, which generates head-to-tail polarity of the main embryonic axis. Bicoid deficiency results in embryos with tail-to-tail polarity and no head. However, most insects lack bicoid, and the molecular mechanism for establishing head-to-tail polarity is poorly understood. We have identified a gene that establishes head-to-tail polarity of the mosquito-like midge, Chironomus riparius. This gene, named panish, encodes a cysteine-clamp DNA binding domain and operates through a different mechanism than bicoid. This finding, combined with the observation that the phylogenetic distributions of panish and bicoid are limited to specific families of flies, reveals frequent evolutionary changes of body axis determinants and a remarkable opportunity to study gene regulatory network evolution.
Collapse
Affiliation(s)
- Jeff Klomp
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Derek Athy
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Chun Wai Kwan
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Natasha I Bloch
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Thomas Sandmann
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Steffen Lemke
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Urs Schmidt-Ott
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
42
|
Park MS, Kausar R, Kim MW, Cho SY, Lee YS, Lee MA. Tcf7l1-mediated transcriptional regulation of Krüppel-like factor 4 gene. Anim Cells Syst (Seoul) 2015. [DOI: 10.1080/19768354.2014.991351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
43
|
Hoverter NP, Zeller MD, McQuade MM, Garibaldi A, Busch A, Selwan EM, Hertel KJ, Baldi P, Waterman ML. The TCF C-clamp DNA binding domain expands the Wnt transcriptome via alternative target recognition. Nucleic Acids Res 2014; 42:13615-32. [PMID: 25414359 PMCID: PMC4267635 DOI: 10.1093/nar/gku1186] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 11/01/2014] [Accepted: 11/04/2014] [Indexed: 12/17/2022] Open
Abstract
LEF/TCFs direct the final step in Wnt/β-catenin signalling by recruiting β-catenin to genes for activation of transcription. Ancient, non-vertebrate TCFs contain two DNA binding domains, a High Mobility Group box for recognition of the Wnt Response Element (WRE; 5'-CTTTGWWS-3') and the C-clamp domain for recognition of the GC-rich Helper motif (5'-RCCGCC-3'). Two vertebrate TCFs (TCF-1/TCF7 and TCF-4/TCF7L2) use the C-clamp as an alternatively spliced domain to regulate cell-cycle progression, but how the C-clamp influences TCF binding and activity genome-wide is not known. Here, we used a doxycycline inducible system with ChIP-seq to assess how the C-clamp influences human TCF1 binding genome-wide. Metabolic pulse-labeling of nascent RNA with 4'Thiouridine was used with RNA-seq to connect binding to the Wnt transcriptome. We find that the C-clamp enables targeting to a greater number of gene loci for stronger occupancy and transcription regulation. The C-clamp uses Helper sites concurrently with WREs for gene targeting, but it also targets TCF1 to sites that do not have readily identifiable canonical WREs. The coupled ChIP-seq/4'Thiouridine-seq analysis identified new Wnt target genes, including additional regulators of cell proliferation. Thus, C-clamp containing isoforms of TCFs are potent transcriptional regulators with an expanded transcriptome directed by C-clamp-Helper site interactions.
Collapse
Affiliation(s)
- Nate P Hoverter
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92697, USA
| | - Michael D Zeller
- Department of Information and Computer Science, University of California, Irvine, Irvine, CA 92697, USA
| | - Miriam M McQuade
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92697, USA
| | - Angela Garibaldi
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92697, USA
| | - Anke Busch
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92697, USA
| | - Elizabeth M Selwan
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92697, USA
| | - Klemens J Hertel
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92697, USA
| | - Pierre Baldi
- Department of Information and Computer Science, University of California, Irvine, Irvine, CA 92697, USA
| | - Marian L Waterman
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
44
|
Tiemessen MM, Baert MRM, Kok L, van Eggermond MCJA, van den Elsen PJ, Arens R, Staal FJT. T Cell factor 1 represses CD8+ effector T cell formation and function. THE JOURNAL OF IMMUNOLOGY 2014; 193:5480-7. [PMID: 25355919 DOI: 10.4049/jimmunol.1303417] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The Wnt-responsive transcription factor T cell factor 1 (Tcf1) is well known for its role in thymic T cell development and the formation of memory CD8(+) T cells. However, its role in the initial phases of CD8(+) T effector cell formation has remained unexplored. We report that high levels of Wnt signaling and Tcf1 are operational in naive and memory CD8(+) T cells, whereas Wnt signaling and Tcf1 were low in effector CD8(+) T cells. CD8(+) T cells deficient in Tcf1 produce IFN-γ more rapidly, coinciding with increased demethylation of the IFN-γ enhancer and higher expression of the transcription factors Tbet and Blimp1. Moreover, virus-specific Tcf1(-/-) CD8(+) T cells show accelerated expansion in acute infection, which is associated with increased IFN-γ and TNF production and lower viral load. Genetic complementation experiments with various Tcf1 isoforms indicate that Tcf1 dosage and protein stability are critical in suppressing IFN-γ production. Isoforms lacking the β-catenin binding domain are equally effective in inhibiting CD8(+) effector T cell formation. Thus, Tcf1 functions as a repressor of CD8(+) effector T cell formation in a β-catenin/Wnt-independent manner.
Collapse
Affiliation(s)
- Machteld M Tiemessen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2300 RC/Leiden, the Netherlands
| | - Miranda R M Baert
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2300 RC/Leiden, the Netherlands
| | - Lianne Kok
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2300 RC/Leiden, the Netherlands
| | - Marja C J A van Eggermond
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2300 RC/Leiden, the Netherlands
| | - Peter J van den Elsen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2300 RC/Leiden, the Netherlands
| | - Ramon Arens
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2300 RC/Leiden, the Netherlands
| | - Frank J T Staal
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2300 RC/Leiden, the Netherlands
| |
Collapse
|
45
|
Bipartite recognition of DNA by TCF/Pangolin is remarkably flexible and contributes to transcriptional responsiveness and tissue specificity of wingless signaling. PLoS Genet 2014; 10:e1004591. [PMID: 25188465 PMCID: PMC4154663 DOI: 10.1371/journal.pgen.1004591] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 07/08/2014] [Indexed: 11/19/2022] Open
Abstract
The T-cell factor (TCF) family of transcription factors are major mediators of Wnt/β-catenin signaling in metazoans. All TCFs contain a High Mobility Group (HMG) domain that possesses specific DNA binding activity. In addition, many TCFs contain a second DNA binding domain, the C-clamp, which binds to DNA motifs referred to as Helper sites. While HMG and Helper sites are both important for the activation of several Wnt dependent cis-regulatory modules (W-CRMs), the rules of what constitutes a functional HMG-Helper site pair are unknown. In this report, we employed a combination of in vitro binding, reporter gene analysis and bioinformatics to address this question, using the Drosophila family member TCF/Pangolin (TCF/Pan) as a model. We found that while there were constraints for the orientation and spacing of HMG-Helper pairs, the presence of a Helper site near a HMG site in any orientation increased binding and transcriptional response, with some orientations displaying tissue-specific patterns. We found that altering an HMG-Helper site pair from a sub-optimal to optimal orientation/spacing dramatically increased the responsiveness of a W-CRM in several fly tissues. In addition, we used the knowledge gained to bioinformatically identify two novel W-CRMs, one that was activated by Wnt/β-catenin signaling in the prothoracic gland, a tissue not previously connected to this pathway. In sum, this work extends the importance of Helper sites in fly W-CRMs and suggests that the type of HMG-Helper pair is a major factor in setting the threshold for Wnt activation and tissue-responsiveness. Regulation of gene expression is controlled in large part by proteins known as transcription factors, which bind to specific DNA sequences in the genome. The DNA binding domains of transcription factors recognize short stretches (5–11 base pairs) of DNA with considerable sequence degeneracy. This means that a single DNA binding domain, on its own, cannot find its targets in the vast excess of genomic sequence. We are studying this question using TCF/Pangolin, a Drosophila transcription factor that mediates Wnt/β-catenin signaling, an important developmental cell-cell communication pathway. TCF/Pangolin contains two DNA binding domains that bind to a pair of DNA motifs known as HMG and Helper sites. We used a combination of biochemistry, genetics and bioinformatics to elucidate the spacing and orientation constraints of HMG-Helper site pairs. We found that HMG-Helper site spacing/orientation influenced the sensitivity of a target to Wnt signaling, as well as its tissue-responsiveness. We used this information to improve our ability to search the Drosophila genome for Wnt targets, one of which was activated by the pathway in the fly ring gland, the major endocrine organ in insects. Our work is relevant to related mammalian TCF family members, which are implicated in development, stem cell biology and the progression of cancer.
Collapse
|
46
|
Robertson SM, Medina J, Lin R. Uncoupling different characteristics of the C. elegans E lineage from differentiation of intestinal markers. PLoS One 2014; 9:e106309. [PMID: 25181289 PMCID: PMC4152275 DOI: 10.1371/journal.pone.0106309] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 08/04/2014] [Indexed: 11/29/2022] Open
Abstract
In the 4-cell C. elegans embryo, a signal from P2 to its anterior sister, EMS, specifies the posterior daughter of EMS, E, as the sole founder cell for intestine. The P2-to-EMS signal restricts high level zygotic expression of the redundant GATA transcription factors, END-1 and END-3, to only the E lineage. Expression of END-1 or END-3 in early blastomeres is sufficient to drive intestinal differentiation. We show here that a number of E lineage characteristics, which are also regulated through P2-EMS signaling, can be uncoupled from intestine development, and each with a different sensitivity to specific perturbations of the P2-EMS signal. For example, we show that the extended cell cycle in Ea and Ep depends on the P2-induced high level expression of the cell cycle regulator, WEE-1.1, in E. A mutation in wee-1.1 results in shortened Ea and Ep cell cycles, but has no effect upon intestinal differentiation or embryogenesis. Furthermore, it has been shown previously that the total number of E lineage cell divisions is regulated by a mechanism dependent upon E being specified as the intestinal founder cell. We now show, however, that cell division counting can be uncoupled from intestine differentiation in the E lineage. Many mutations in P2-EMS signal genes exhibit nonfully-penetrant defects in intestinal differentiation. When embryos with those mutations generate intestinal cells, they often make too many intestinal cells. In addition, at the level of individual embryos, expression of end-1 and end-3, and another very early E-specific zygotic gene, sdz-23, exhibit stochastic and discordant defects in P2-EMS signaling mutants. We show here that sdz-23 is expressed close to wildtype levels in embryos deleted of both end-1 and end-3. sdz-23 does not appear to function in intestine development, raising the intriguing possibility that the P2-EMS interaction has downstream molecular consequences within the E lineage independent of end-1/3 and intestinal development.
Collapse
Affiliation(s)
- Scott M. Robertson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail:
| | - Jessica Medina
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Rueyling Lin
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
47
|
Zhang CU, Blauwkamp TA, Burby PE, Cadigan KM. Wnt-mediated repression via bipartite DNA recognition by TCF in the Drosophila hematopoietic system. PLoS Genet 2014; 10:e1004509. [PMID: 25144371 PMCID: PMC4140642 DOI: 10.1371/journal.pgen.1004509] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 05/30/2014] [Indexed: 11/18/2022] Open
Abstract
The Wnt/β-catenin signaling pathway plays many important roles in animal development, tissue homeostasis and human disease. Transcription factors of the TCF family mediate many Wnt transcriptional responses, promoting signal-dependent activation or repression of target gene expression. The mechanism of this specificity is poorly understood. Previously, we demonstrated that for activated targets in Drosophila, TCF/Pangolin (the fly TCF) recognizes regulatory DNA through two DNA binding domains, with the High Mobility Group (HMG) domain binding HMG sites and the adjacent C-clamp domain binding Helper sites. Here, we report that TCF/Pangolin utilizes a similar bipartite mechanism to recognize and regulate several Wnt-repressed targets, but through HMG and Helper sites whose sequences are distinct from those found in activated targets. The type of HMG and Helper sites is sufficient to direct activation or repression of Wnt regulated cis-regulatory modules, and protease digestion studies suggest that TCF/Pangolin adopts distinct conformations when bound to either HMG-Helper site pair. This repressive mechanism occurs in the fly lymph gland, the larval hematopoietic organ, where Wnt/β-catenin signaling controls prohemocytic differentiation. Our study provides a paradigm for direct repression of target gene expression by Wnt/β-catenin signaling and allosteric regulation of a transcription factor by DNA. During development and in adult tissues, cells communicate with each other through biochemical cascades known as signaling pathways. In this report, we study the Wnt signaling pathway, using the fruit fly Drosophila as a model system. This pathway is known to activate gene expression in cells receiving the Wnt signal, working through a transcription factor known as TCF. But sometimes Wnt signaling also instructs TCF to repress target gene expression. What determines whether TCF will positively or negatively regulate Wnt targets? We demonstrate that activated and repressed targets have distinct DNA sequences that dock TCF on their regulatory DNA. The type of site determines the output, i.e., activation or repression. We find that TCF adopts different conformations when bound to either DNA sequence, which most likely influences its regulatory activity. In addition, we demonstrate that Wnt-dependent repression occurs robustly in the fly larval lymph gland, the tissue responsible for generating macrophage-like cells known as hemocytes.
Collapse
Affiliation(s)
- Chen U. Zhang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Timothy A. Blauwkamp
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Peter E. Burby
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ken M. Cadigan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
48
|
González-Moles MA, Ruiz-Ávila I, Gil-Montoya JA, Plaza-Campillo J, Scully C. β-catenin in oral cancer: an update on current knowledge. Oral Oncol 2014; 50:818-24. [PMID: 24998198 DOI: 10.1016/j.oraloncology.2014.06.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 06/06/2014] [Indexed: 12/12/2022]
Abstract
β-Catenin is a multiple function protein. These functions derive from its interactions with other cell proteins, both on the cell membrane, in the cytoplasm and in the nucleus. β-Catenin forms a complex with the adhesion molecule E-cadherin, promoting cell-cell adhesion and thereby preventing the cell dissociation that is required for cancer invasion and progression mechanisms. There is also a dynamic pool of cytoplasmic β-catenin that serves as connection between the extracellular microenvironment and the nucleus. Cytoplasmic β-catenin acts as a transcription factor for the nucleus in the canonical Wnt pathway, activating the transcription of various genes. Structural or functional alterations of β-catenin can promote cancer progression. This review addresses the current knowledge on the implications of β-catenin in the development of oral cancer.
Collapse
Affiliation(s)
- M A González-Moles
- School of Dentistry, Instituto de Biomedicina de Granada, University of Granada, Spain.
| | - I Ruiz-Ávila
- Unidad de Gestión Clínica de Anatomía Patológica, Instituto de Biomedicina de Granada Complejo Hospitalario san Cecilio, Granada, Spain
| | - J A Gil-Montoya
- School of Dentistry, Instituto de Biomedicina de Granada, University of Granada, Spain
| | - J Plaza-Campillo
- School of Dentistry, Instituto de Biomedicina de Granada, University of Granada, Spain
| | - C Scully
- University College of London, London, United Kingdom
| |
Collapse
|
49
|
Himeda CL, Debarnot C, Homma S, Beermann ML, Miller JB, Jones PL, Jones TI. Myogenic enhancers regulate expression of the facioscapulohumeral muscular dystrophy-associated DUX4 gene. Mol Cell Biol 2014; 34:1942-55. [PMID: 24636994 PMCID: PMC4019064 DOI: 10.1128/mcb.00149-14] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 02/12/2014] [Accepted: 03/11/2014] [Indexed: 11/20/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is linked to epigenetic dysregulation of the chromosome 4q35 D4Z4 macrosatellite. However, this does not account for the tissue specificity of FSHD pathology, which requires stable expression of an alternative full-length mRNA splice form of DUX4 (DUX4-fl) from the D4Z4 array in skeletal muscle. Here, we describe the identification of two enhancers, DUX4 myogenic enhancer 1 (DME1) and DME2 which activate DUX4-fl expression in skeletal myocytes but not fibroblasts. Analysis of the chromatin revealed histone modifications and RNA polymerase II occupancy consistent with DME1 and DME2 being functional enhancers. Chromosome conformation capture analysis confirmed association of DME1 and DME2 with the DUX4 promoter in vivo. The strong interaction between DME2 and the DUX4 promoter in both FSHD and unaffected primary myocytes was greatly reduced in fibroblasts, suggesting a muscle-specific interaction. Nucleosome occupancy and methylome sequencing analysis indicated that in most FSHD myocytes, both enhancers are associated with nucleosomes but have hypomethylated DNA, consistent with a permissive transcriptional state, sporadic occupancy, and the observed DUX4 expression in rare myonuclei. Our data support a model in which these myogenic enhancers associate with the DUX4 promoter in skeletal myocytes and activate transcription when epigenetically derepressed in FSHD, resulting in the pathological misexpression of DUX4-fl.
Collapse
Affiliation(s)
- Charis L. Himeda
- Wellstone Program, Departments of Cell and Developmental Biology and Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Céline Debarnot
- Ecole Supérieure de Biotechnologie Strasbourg, Illkirch, France
| | - Sachiko Homma
- Neuromuscular Biology and Disease Group, Departments of Neurology and Physiology Biophysics, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Mary Lou Beermann
- Neuromuscular Biology and Disease Group, Departments of Neurology and Physiology Biophysics, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Jeffrey B. Miller
- Neuromuscular Biology and Disease Group, Departments of Neurology and Physiology Biophysics, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Peter L. Jones
- Wellstone Program, Departments of Cell and Developmental Biology and Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Takako I. Jones
- Wellstone Program, Departments of Cell and Developmental Biology and Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
50
|
Pate KT, Stringari C, Sprowl-Tanio S, Wang K, TeSlaa T, Hoverter NP, McQuade MM, Garner C, Digman MA, Teitell MA, Edwards RA, Gratton E, Waterman ML. Wnt signaling directs a metabolic program of glycolysis and angiogenesis in colon cancer. EMBO J 2014; 33:1454-73. [PMID: 24825347 DOI: 10.15252/embj.201488598] [Citation(s) in RCA: 334] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Much of the mechanism by which Wnt signaling drives proliferation during oncogenesis is attributed to its regulation of the cell cycle. Here, we show how Wnt/β-catenin signaling directs another hallmark of tumorigenesis, namely Warburg metabolism. Using biochemical assays and fluorescence lifetime imaging microscopy (FLIM) to probe metabolism in vitro and in living tumors, we observe that interference with Wnt signaling in colon cancer cells reduces glycolytic metabolism and results in small, poorly perfused tumors. We identify pyruvate dehydrogenase kinase 1 (PDK1) as an important direct target within a larger gene program for metabolism. PDK1 inhibits pyruvate flux to mitochondrial respiration and a rescue of its expression in Wnt-inhibited cancer cells rescues glycolysis as well as vessel growth in the tumor microenvironment. Thus, we identify an important mechanism by which Wnt-driven Warburg metabolism directs the use of glucose for cancer cell proliferation and links it to vessel delivery of oxygen and nutrients.
Collapse
Affiliation(s)
- Kira T Pate
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA, USA
| | - Chiara Stringari
- Laboratory of Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, CA, USA
| | - Stephanie Sprowl-Tanio
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA, USA
| | - Kehui Wang
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, USA
| | - Tara TeSlaa
- Departments of Pathology, Pediatrics, and Bioengineering, David Geffen School of Medicine University of California, Los Angeles, CA, USA
| | - Nate P Hoverter
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA, USA
| | - Miriam M McQuade
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA, USA
| | - Chad Garner
- Department of Epidemiology, University of California, Irvine, CA, USA
| | - Michelle A Digman
- Laboratory of Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, CA, USA
| | - Michael A Teitell
- Departments of Pathology, Pediatrics, and Bioengineering, David Geffen School of Medicine University of California, Los Angeles, CA, USA
| | - Robert A Edwards
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, USA
| | - Enrico Gratton
- Laboratory of Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, CA, USA
| | - Marian L Waterman
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA, USA
| |
Collapse
|