1
|
Borini Etichetti CM, Arel Zalazar E, Cocordano N, Girardini J. Beyond the Mevalonate Pathway: Control of Post-Prenylation Processing by Mutant p53. Front Oncol 2020; 10:595034. [PMID: 33224889 PMCID: PMC7674641 DOI: 10.3389/fonc.2020.595034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/08/2020] [Indexed: 12/21/2022] Open
Abstract
Missense mutations in the TP53 gene are among the most frequent alterations in human cancer. Consequently, many tumors show high expression of p53 point mutants, which may acquire novel activities that contribute to develop aggressive tumors. An unexpected aspect of mutant p53 function was uncovered by showing that some mutants can increase the malignant phenotype of tumor cells through alteration of the mevalonate pathway. Among metabolites generated through this pathway, isoprenoids are of particular interest, since they participate in a complex process of posttranslational modification known as prenylation. Recent evidence proposes that mutant p53 also enhances this process through transcriptional activation of ICMT, the gene encoding the methyl transferase responsible for the last step of protein prenylation. In this way, mutant p53 may act at different levels to promote prenylation of key proteins in tumorigenesis, including several members of the RAS and RHO families. Instead, wild type p53 acts in the opposite way, downregulating mevalonate pathway genes and ICMT. This oncogenic circuit also allows to establish potential connections with other metabolic pathways. The demand of acetyl-CoA for the mevalonate pathway may pose limitations in cell metabolism. Likewise, the dependence on S-adenosyl methionine for carboxymethylation, may expose cells to methionine stress. The involvement of protein prenylation in tumor progression offers a novel perspective to understand the antitumoral effects of mevalonate pathway inhibitors, such as statins, and to explore novel therapeutic strategies.
Collapse
Affiliation(s)
| | - Evelyn Arel Zalazar
- Instituto de Inmunología Clínica y Experimental de Rosario, IDICER, CONICET-UNR, Rosario, Argentina
| | - Nabila Cocordano
- Instituto de Inmunología Clínica y Experimental de Rosario, IDICER, CONICET-UNR, Rosario, Argentina
| | - Javier Girardini
- Instituto de Inmunología Clínica y Experimental de Rosario, IDICER, CONICET-UNR, Rosario, Argentina
| |
Collapse
|
2
|
Degirmenci U, Wang M, Hu J. Targeting Aberrant RAS/RAF/MEK/ERK Signaling for Cancer Therapy. Cells 2020; 9:E198. [PMID: 31941155 PMCID: PMC7017232 DOI: 10.3390/cells9010198] [Citation(s) in RCA: 341] [Impact Index Per Article: 68.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 12/29/2019] [Accepted: 01/10/2020] [Indexed: 12/13/2022] Open
Abstract
The RAS/RAF/MEK/ERK (MAPK) signaling cascade is essential for cell inter- and intra-cellular communication, which regulates fundamental cell functions such as growth, survival, and differentiation. The MAPK pathway also integrates signals from complex intracellular networks in performing cellular functions. Despite the initial discovery of the core elements of the MAPK pathways nearly four decades ago, additional findings continue to make a thorough understanding of the molecular mechanisms involved in the regulation of this pathway challenging. Considerable effort has been focused on the regulation of RAF, especially after the discovery of drug resistance and paradoxical activation upon inhibitor binding to the kinase. RAF activity is regulated by phosphorylation and conformation-dependent regulation, including auto-inhibition and dimerization. In this review, we summarize the recent major findings in the study of the RAS/RAF/MEK/ERK signaling cascade, particularly with respect to the impact on clinical cancer therapy.
Collapse
Affiliation(s)
- Ufuk Degirmenci
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Mei Wang
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Jiancheng Hu
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| |
Collapse
|
3
|
Reilly JE, Zhou X, Tong H, Kuder CH, Wiemer DF, Hohl RJ. In vitro studies in a myelogenous leukemia cell line suggest an organized binding of geranylgeranyl diphosphate synthase inhibitors. Biochem Pharmacol 2015; 96:83-92. [PMID: 25952057 DOI: 10.1016/j.bcp.2015.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 04/16/2015] [Indexed: 10/23/2022]
Abstract
A small set of isoprenoid bisphosphonates ethers has been tested in the K562 chronic myelogenous leukemia cell line to determine their impact on isoprenoid biosynthesis. Five of these compounds inhibit geranylgeranyl diphosphate synthase (GGDPS) with IC50 values below 1 μM in enzyme assays, but in cells their apparent activity is more varied. In particular, the isomeric C-geranyl-O-prenyl and C-prenyl-O-geranyl bisphosphonates are quite different in their activity with the former consistently demonstrating greater impairment of geranylgeranylation in cells but the latter showing greater impact in the enzyme assays with GGDPS. Together, these findings suggest an organized binding of these inhibitors in the two hydrophobic channels of the geranylgeranyl diphosphate synthase enzyme.
Collapse
Affiliation(s)
- Jacqueline E Reilly
- Department of Pharmacology, University of Iowa, 375 Newton Rd, 5219 MERF, Iowa City, IA 52242, USA.
| | - Xiang Zhou
- Department of Chemistry, E531 Chemistry Building, University of Iowa, Iowa City, IA 52242, USA.
| | - Huaxiang Tong
- Department of Internal Medicine, University of Iowa, 375 Newton Rd, 5219 MERF, Iowa City, IA 52242, USA.
| | - Craig H Kuder
- Department of Internal Medicine, University of Iowa, 375 Newton Rd, 5219 MERF, Iowa City, IA 52242, USA.
| | - David F Wiemer
- Department of Chemistry, E531 Chemistry Building, University of Iowa, Iowa City, IA 52242, USA.
| | - Raymond J Hohl
- Department of Pharmacology, University of Iowa, 375 Newton Rd, 5219 MERF, Iowa City, IA 52242, USA; Department of Internal Medicine, University of Iowa, 375 Newton Rd, 5219 MERF, Iowa City, IA 52242, USA; Department of Medicine, Pennsylvania State University, Penn State Hershey Cancer Institute, 500 University Dr, Hershey, PA 17033-0850, USA; Department of Pharmacology, Pennsylvania State University, Penn State Hershey Cancer Institute, 500 University Dr, Hershey, PA 17033-0850, USA.
| |
Collapse
|
4
|
Zhou X, Reilly JE, Loerch KA, Hohl RJ, Wiemer DF. Synthesis of isoprenoid bisphosphonate ethers through C-P bond formations: Potential inhibitors of geranylgeranyl diphosphate synthase. Beilstein J Org Chem 2014; 10:1645-50. [PMID: 25161722 PMCID: PMC4142842 DOI: 10.3762/bjoc.10.171] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 06/25/2014] [Indexed: 12/03/2022] Open
Abstract
A set of bisphosphonate ethers has been prepared through sequential phosphonylation and alkylation of monophosphonate ethers. After formation of the corresponding phosphonic acid salts, these compounds were tested for their ability to inhibit the enzyme geranylgeranyl diphosphate synthase (GGDPS). Five of the new compounds show IC50 values of less than 1 μM against GGDPS with little to no activity against the related enzyme farnesyl diphosphate synthase (FDPS). The most active compound displayed an IC50 value of 82 nM when assayed with GGDPS, and no activity against FDPS even at a 10 μM concentration.
Collapse
Affiliation(s)
- Xiang Zhou
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, USA
| | - Jacqueline E Reilly
- Department of Pharmacology, University of Iowa, Iowa City, Iowa 52242-1294, USA
| | - Kathleen A Loerch
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, USA
| | - Raymond J Hohl
- Department of Pharmacology, University of Iowa, Iowa City, Iowa 52242-1294, USA
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242-1294, USA
| | - David F Wiemer
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, USA
- Department of Pharmacology, University of Iowa, Iowa City, Iowa 52242-1294, USA
| |
Collapse
|
5
|
Berg TJ, Gastonguay AJ, Lorimer EL, Kuhnmuench JR, Li R, Fields AP, Williams CL. Splice variants of SmgGDS control small GTPase prenylation and membrane localization. J Biol Chem 2010; 285:35255-66. [PMID: 20709748 PMCID: PMC2975149 DOI: 10.1074/jbc.m110.129916] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ras and Rho small GTPases possessing a C-terminal polybasic region (PBR) are vital signaling proteins whose misregulation can lead to cancer. Signaling by these proteins depends on their ability to bind guanine nucleotides and their prenylation with a geranylgeranyl or farnesyl isoprenoid moiety and subsequent trafficking to cellular membranes. There is little previous evidence that cellular signals can restrain nonprenylated GTPases from entering the prenylation pathway, leading to the general belief that PBR-possessing GTPases are prenylated as soon as they are synthesized. Here, we present evidence that challenges this belief. We demonstrate that insertion of the dominant negative mutation to inhibit GDP/GTP exchange diminishes prenylation of Rap1A and RhoA, enhances prenylation of Rac1, and does not detectably alter prenylation of K-Ras. Our results indicate that the entrance and passage of these small GTPases through the prenylation pathway is regulated by two splice variants of SmgGDS, a protein that has been reported to promote GDP/GTP exchange by PBR-possessing GTPases and to be up-regulated in several forms of cancer. We show that the previously characterized 558-residue SmgGDS splice variant (SmgGDS-558) selectively associates with prenylated small GTPases and facilitates trafficking of Rap1A to the plasma membrane, whereas the less well characterized 607-residue SmgGDS splice variant (SmgGDS-607) associates with nonprenylated GTPases and regulates the entry of Rap1A, RhoA, and Rac1 into the prenylation pathway. These results indicate that guanine nucleotide exchange and interactions with SmgGDS splice variants can regulate the entrance and passage of PBR-possessing small GTPases through the prenylation pathway.
Collapse
Affiliation(s)
- Tracy J Berg
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Schmandke A, Schmandke A, Strittmatter SM. ROCK and Rho: biochemistry and neuronal functions of Rho-associated protein kinases. Neuroscientist 2007; 13:454-69. [PMID: 17901255 PMCID: PMC2849133 DOI: 10.1177/1073858407303611] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Rho-associated protein kinases (ROCKs) play key roles in mediating the control of the actin cytoskeleton by Rho family GTPases in response to extracellular signals. Such signaling pathways contribute to diverse neuronal functions from cell migration to axonal guidance to dendritic spine morphology to axonal regeneration to cell survival. In this review, the authors summarize biochemical knowledge of ROCK function and categorize neuronal ROCK-dependent signaling pathways. Further study of ROCK signal transduction mechanisms and specificities will enhance our understanding of brain development, plasticity, and repair. The ROCK pathway also provides a potential site for therapeutic intervention to promote neuronal regeneration and to limit degeneration.
Collapse
Affiliation(s)
- André Schmandke
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Department of Neurology Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | |
Collapse
|
7
|
Elam C, Hesson L, Vos MD, Eckfeld K, Ellis CA, Bell A, Krex D, Birrer MJ, Latif F, Clark GJ. RRP22 is a farnesylated, nucleolar, Ras-related protein with tumor suppressor potential. Cancer Res 2005; 65:3117-25. [PMID: 15833841 DOI: 10.1158/0008-5472.can-04-0749] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ras proteins are members of a superfamily of related small GTPases. Some members, such as Ras, are oncogenic. However, other members seem to serve as tumor suppressors, such as Rig and Noey2. We now identify and characterize a novel member of the Ras superfamily, RRP22. Like Ras, RRP22 can be posttranslationally modified by farnesyl. Unlike Ras, RRP22 inhibits cell growth and promotes caspase-independent cell death. Examination of human tumor cells shows that RRP22 is frequently down-regulated due to promoter methylation. Moreover, reexpression of RRP22 in an RRP22-negative neural tumor cell line impairs its growth in soft agar. Unusually for a Ras-related protein, RRP22 localizes to the nucleolus in a GTP-dependent manner, suggesting a novel mechanism of action. Thus, we identify a new member of the Ras superfamily that can serve as a potential tumor suppressor.
Collapse
Affiliation(s)
- Candice Elam
- Department of Cell and Cancer Biology, National Cancer Institute, 9610 Medical Center Drive, Rockville, MD 20820, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Ellis CA, Vos MD, Howell H, Vallecorsa T, Fults DW, Clark GJ. Rig is a novel Ras-related protein and potential neural tumor suppressor. Proc Natl Acad Sci U S A 2002; 99:9876-81. [PMID: 12107278 PMCID: PMC125049 DOI: 10.1073/pnas.142193799] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Ras superfamily consists of a large group of monomeric GTPases demonstrating homology to Ras oncoproteins. Although structurally similar, Ras-superfamily proteins are functionally diverse. Whereas some members exhibit oncogenic properties, others may serve as tumor suppressors. We have identified a novel Ras-related protein that suppresses cell growth and have designated it Rig (Ras-related inhibitor of cell growth). Overexpression of Rig inhibited Ras-mediated cellular transformation and activation of downstream signaling in NIH 3T3 cells. rig mRNA is expressed at high levels in normal cardiac and neural tissue. However, Rig protein expression is frequently lost or down-regulated in neural tumor-derived cell lines and primary human neural tumors. Moreover, expression of exogenous Rig in human astrocytoma cells suppressed growth. Rig has a C-terminal CAAX motif that codes for posttranslational modification by both farnesyl and geranylgeranyl isoprenoid lipids. Consequently, Rig may play a role in the cellular response to farnesyl transferase inhibitors. Rig bears 63% overall sequence homology to a recently described Ras-family member Noey2, a tumor suppressor in breast and ovarian tissue. Therefore, Rig and Noey2 may represent a new subfamily of Ras-like tumor suppressors.
Collapse
Affiliation(s)
- Chad A Ellis
- Department of Cell and Cancer Biology, National Cancer Institute, National Institutes of Health, 9610 Medical Center Drive, Suite 307, Rockville, MD 20850-3300, USA
| | | | | | | | | | | |
Collapse
|
9
|
Moura IC, Wunderlich G, Uhrig ML, Couto AS, Peres VJ, Katzin AM, Kimura EA. Limonene arrests parasite development and inhibits isoprenylation of proteins in Plasmodium falciparum. Antimicrob Agents Chemother 2001; 45:2553-8. [PMID: 11502528 PMCID: PMC90691 DOI: 10.1128/aac.45.9.2553-2558.2001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2000] [Accepted: 06/18/2001] [Indexed: 11/20/2022] Open
Abstract
Isoprenylation is an essential protein modification in eukaryotic cells. Herein, we report that in Plasmodium falciparum, a number of proteins were labeled upon incubation of intraerythrocytic forms with either [(3)H]farnesyl pyrophosphate or [(3)H]geranylgeranyl pyrophosphate. By thin-layer chromatography, we showed that attached isoprenoids are partially modified to dolichol and other, uncharacterized, residues, confirming active isoprenoid metabolism in this parasite. Incubation of blood-stage P. falciparum treated with the isoprenylation inhibitor limonene significantly decreased the parasites' progression from the ring stage to the trophozoite stage and at 1.22 mM, 50% of the parasites died after the first cycle. Using Ras- and Rap-specific monoclonal antibodies, putative Rap and Ras proteins of P. falciparum were immunoprecipitated. Upon treatment with 0.5 mM limonene, isoprenylation of these proteins was significantly decreased, possibly explaining the observed arrest of parasite development.
Collapse
Affiliation(s)
- I C Moura
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
10
|
Baron R, Fourcade E, Lajoie-Mazenc I, Allal C, Couderc B, Barbaras R, Favre G, Faye JC, Pradines A. RhoB prenylation is driven by the three carboxyl-terminal amino acids of the protein: evidenced in vivo by an anti-farnesyl cysteine antibody. Proc Natl Acad Sci U S A 2000; 97:11626-31. [PMID: 11027361 PMCID: PMC17251 DOI: 10.1073/pnas.97.21.11626] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein isoprenylation is a lipid posttranslational modification required for the function of many proteins that share a carboxyl-terminal CAAX motif. The X residue determines which isoprenoid will be added to the cysteine. When X is a methionine or serine, the farnesyl-transferase transfers a farnesyl, and when X is a leucine or isoleucine, the geranygeranyl-transferase I, a geranylgeranyl group. But despite its CKVL motif, RhoB was reported to be both geranylgeranylated and farnesylated. Thus, the determinants of RhoB prenylation appear more complex than initially thought. To determine the role of RhoB CAAX motif, we designed RhoB mutants with modified CAAX sequence expressed in baculovirus-infected insect cells. We demonstrated that RhoB was prenylated as a function of the three terminal amino acids, i.e., RhoB bearing the CAIM motif of lamin B or CLLL motif of Rap1A was farnesylated or geranylgeranylated, respectively. Next, we produced a specific polyclonal antibody against farnesyl cysteine methyl ester allowing prenylation analysis avoiding the metabolic labeling restrictions. We confirmed that the unique modification of the RhoB CAAX box was sufficient to direct the RhoB distinct prenylation in mammalian cells and, inversely, that a RhoA-CKVL chimera could be alternatively prenylated. Moreover, the immunoprecipitation of endogenous RhoB from cells with the anti-farnesyl cysteine antibody suggested that wild-type RhoB is farnesylated in vivo. Taken together, our results demonstrated that the three last carboxyl amino acids are the main determinants for RhoB prenylation and described an anti-farnesyl cysteine antibody as a useful tool for understanding the cellular control of protein farnesylation.
Collapse
Affiliation(s)
- R Baron
- Endocrinologie et Communications Cellulaires Institut National de la Santé et de la Recherche Médicale Unité 397, Toulouse, France
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Cha K, Bruel C, Inglese J, Khorana HG. Rhodopsin kinase: expression in baculovirus-infected insect cells, and characterization of post-translational modifications. Proc Natl Acad Sci U S A 1997; 94:10577-82. [PMID: 9380677 PMCID: PMC23407 DOI: 10.1073/pnas.94.20.10577] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/1997] [Indexed: 02/05/2023] Open
Abstract
Structure-function studies of rhodopsin kinase (RK; EC 2.7.1.125) require a variety of mutants. Therefore, there is need for a suitable system for the expression of RK mutant genes. Here we report on a study of expression of the RK gene in baculovirus-infected Sf21 cells and characterization of the enzyme produced as purified to near homogeneity. Particular attention has been paid to the post-translational modifications, autophosphorylation and isoprenylation, found in the native bovine RK. The protein produced has been purified using, successively, heparin-Sepharose, Mono Q, and Mono S FPLC (fast protein liquid chromatography) and was obtained in amounts of about 2 mg from 1 liter of cell culture. The enzyme from the last step of purification was obtained in two main fractions that differ in the level of phosphorylation. The protein peak eluted first carries two phosphate groups per protein, whereas the second protein peak is monophosphorylated. Further, while both peaks are isoprenylated, the isoprenyl groups consist of mixtures of C5, C10, C15, and C20 isoprenyl moieties. From these results, we conclude that the above expression system is suitable for some but not all aspects of structure-function studies.
Collapse
Affiliation(s)
- K Cha
- Departments of Biology and Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
12
|
Foster R, Hu KQ, Lu Y, Nolan KM, Thissen J, Settleman J. Identification of a novel human Rho protein with unusual properties: GTPase deficiency and in vivo farnesylation. Mol Cell Biol 1996; 16:2689-99. [PMID: 8649376 PMCID: PMC231259 DOI: 10.1128/mcb.16.6.2689] [Citation(s) in RCA: 219] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have identified a human Rho protein, RhoE, which has unusual structural and biochemical properties that suggest a novel mechanism of regulation. Within a region that is highly conserved among small GTPases, RhoE contains amino acid differences specifically at three positions that confer oncogenicity to Ras (12, 59, and 61). As predicted by these substitutions, which impair GTP hydrolysis in Ras, RhoE binds GTP but lacks intrinsic GTPase activity and is resistant to Rho-specific GTPase-activating proteins. Replacing all three positions in RhoE with conventional amino acids completely restores GTPase activity. In vivo, RhoE is found exclusively in the GTP-bound form, suggesting that unlike previously characterized small GTPases, RhoE may be normally maintained in an activated state. Thus, amino acid changes in Ras that are selected during tumorigenesis have evolved naturally in this Rho protein and have similar consequences for catalytic function. All previously described Rho family proteins are modified by geranylgeranylation, a lipid attachment required for proper membrane localization. In contrast, the carboxy-terminal sequence of RhoE predicts that, like Ras proteins, RhoE is normally farnesylated. Indeed, we have found that RhoE in farnesylated in vivo and that this modification is required for association with the plasma membrane and with an unidentified cellular structure that may play a role in adhesion. Thus, two unusual structural features of this novel Rho protein suggest a striking evolutionary divergence from the Rho family of GTPases.
Collapse
Affiliation(s)
- R Foster
- Massachusetts General Hospital Cancer Center, Charlestown 02129, USA
| | | | | | | | | | | |
Collapse
|
13
|
Aberrant function of the Ras-related protein TC21/R-Ras2 triggers malignant transformation. Mol Cell Biol 1994. [PMID: 8196649 DOI: 10.1128/mcb.14.6.4108] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although the human Ras proteins are members of a large superfamily of Ras-related proteins, to date, only the proteins encoded by the three mammalian ras genes have been found to possess oncogenic potential. Among the known Ras-related proteins, TC21/R-Ras2 exhibits the most significant amino acid identity (55%) to Ras proteins. We have generated mutant forms of TC21 that possess amino acid substitutions analogous to those that activate Ras oncogenic potential [designated TC21(22V) and TC21(71L)] and compared the biological properties of TC21 with those of Ras proteins in NIH 3T3 and Rat-1 transformation assays. Whereas wild-type TC21 did not show any transforming potential in vitro, both TC21(22V) and TC21(71L) displayed surprisingly potent transforming activities that were comparable to the strong transforming activity of oncogenic Ras proteins. Like Ras-transformed cells, NIH 3T3 cells expressing mutant TC21 proteins formed foci of morphologically transformed cells in monolayer cultures, proliferated in low serum, formed colonies in soft agar, and developed progressive tumors in nude mice. Thus, TC21 is the first Ras-related protein to exhibit potent transforming activity equivalent to that of Ras. Furthermore, mutant TC21 proteins also stimulated constitutive activation of mitogen-activated protein kinases as well as transcriptional activation from Ras-responsive promoter elements (Ets/AP-1 and NF-kappa B). We conclude that aberrant TC21 function may trigger cellular transformation via a signal transduction pathway similar to that of oncogenic Ras and suggest that deregulated TC21 activity may contribute significantly to human oncogenesis.
Collapse
|
14
|
Graham SM, Cox AD, Drivas G, Rush MG, D'Eustachio P, Der CJ. Aberrant function of the Ras-related protein TC21/R-Ras2 triggers malignant transformation. Mol Cell Biol 1994; 14:4108-15. [PMID: 8196649 PMCID: PMC358776 DOI: 10.1128/mcb.14.6.4108-4115.1994] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Although the human Ras proteins are members of a large superfamily of Ras-related proteins, to date, only the proteins encoded by the three mammalian ras genes have been found to possess oncogenic potential. Among the known Ras-related proteins, TC21/R-Ras2 exhibits the most significant amino acid identity (55%) to Ras proteins. We have generated mutant forms of TC21 that possess amino acid substitutions analogous to those that activate Ras oncogenic potential [designated TC21(22V) and TC21(71L)] and compared the biological properties of TC21 with those of Ras proteins in NIH 3T3 and Rat-1 transformation assays. Whereas wild-type TC21 did not show any transforming potential in vitro, both TC21(22V) and TC21(71L) displayed surprisingly potent transforming activities that were comparable to the strong transforming activity of oncogenic Ras proteins. Like Ras-transformed cells, NIH 3T3 cells expressing mutant TC21 proteins formed foci of morphologically transformed cells in monolayer cultures, proliferated in low serum, formed colonies in soft agar, and developed progressive tumors in nude mice. Thus, TC21 is the first Ras-related protein to exhibit potent transforming activity equivalent to that of Ras. Furthermore, mutant TC21 proteins also stimulated constitutive activation of mitogen-activated protein kinases as well as transcriptional activation from Ras-responsive promoter elements (Ets/AP-1 and NF-kappa B). We conclude that aberrant TC21 function may trigger cellular transformation via a signal transduction pathway similar to that of oncogenic Ras and suggest that deregulated TC21 activity may contribute significantly to human oncogenesis.
Collapse
Affiliation(s)
- S M Graham
- University of North Carolina at Chapel Hill 27599
| | | | | | | | | | | |
Collapse
|
15
|
Farrell FX, Yamamoto K, Lapetina EG. Prenyl group identification of rap2 proteins: a ras superfamily member other than ras that is farnesylated. Biochem J 1993; 289 ( Pt 2):349-55. [PMID: 8424780 PMCID: PMC1132174 DOI: 10.1042/bj2890349] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Rap proteins comprise a subset of the large family of ras-related proteins. They contain the C-terminal tetrapeptide sequence motif Cys-Ali-Ali-Xaa (Ali is an aliphatic amino acid and X is any amino acid), which has been found to be the site of membrane attachment via isoprenylation for ras, nuclear lamins and the gamma subunits of the heterotrimeric G-proteins. To investigate the isoprenylation of rap2a and rap2b, human cDNAs coding for these proteins were expressed in COS cells incubated in the presence of [3H]mevalonolactone. Both proteins incorporated a product of [3H]mevalonolactone, as judged by Western blot analysis. To identify the specific isoprenoid attached to each protein, the cDNAs were transcribed in vitro and the rap2 specific RNA was translated in a rabbit reticulocyte lysate system in the presence of [3H]mevalonolactone. The translation products were treated with methyl iodide and the released isoprenoid groups were analysed by h.p.l.c. Rap2b, which terminates in Cys-Val-Ile-Leu, is geranylgeranylated as predicted while rap2a, which terminates in Cys-Asn-Ile-Gln, incorporated farnesyl. A mutant construct generated by site-directed mutagenesis of rap2a cDNA yielding a protein terminating in leucine instead of glutamine incorporated geranylgeranyl, lending further support to the notion that isoprenoid specificity is governed by the terminal amino acid. In addition, when the CAAX motif cysteine at position 180 of rap2a was replaced by a serine residue no isoprenoid incorporation was observed. Thus rap2a and rap2b, despite showing 90% sequence identity, incorporate different isoprenoid groups. Thus glutamine is a signal for farnesylation, and rap2a is the first non-ras member of the ras superfamily that is farnesylated.
Collapse
Affiliation(s)
- F X Farrell
- Division of Cell Biology, Burroughs Wellcome Co., Research Triangle Park, NC 27709
| | | | | |
Collapse
|
16
|
Bokoch GM. Biology of the Rap proteins, members of the ras superfamily of GTP-binding proteins. Biochem J 1993; 289 ( Pt 1):17-24. [PMID: 8424755 PMCID: PMC1132124 DOI: 10.1042/bj2890017] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- G M Bokoch
- Department of Immunology and Cell Biology, Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
17
|
Functional interaction between p21rap1A and components of the budding pathway in Saccharomyces cerevisiae. Mol Cell Biol 1992. [PMID: 1508205 DOI: 10.1128/mcb.12.9.4084] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rap1A gene encodes a 21-kDa, ras-related GTP-binding protein (p21rap1A) of unknown function. A close structural homolog of p21rap1A (65% identity in the amino-terminal two-thirds) is the RSR1 gene product (Rsr1p) of Saccharomyces cerevisiae. Although Rsr1p is not essential for growth, its presence is required for nonrandom selection of bud sites. To assess the similarity of these proteins at the functional level, wild-type and mutant forms of p21rap1A were tested for complementation of activities known to be fulfilled by Rsr1p. Expression of p21rap1A, like multicopy expression of RSR1, suppressed the conditional lethality of a temperature-sensitive cdc24 mutation. Point mutations predicted to affect the localization of p21rap1A or its ability to cycle between GDP and GTP-bound states disrupted suppression of cdc24ts, while other mutations in the 61-65 loop region improved suppression. Expression of p21rap1A could not, however, suppress the random budding phenotype of rsr1 cells. p21rap1A also apparently interfered with the normal activity of Rsrlp, causing random budding in diploid wild-type cells, suggesting an inability of p21rap1A to interact appropriately with Rsr1p regulatory proteins. Consistent with this hypothesis, we found an Rsr1p-specific GTPase-activating protein (GAP) activity in yeast membranes which was not active toward p21rap1A, indicating that p21rap1A may be predominantly GTP bound in yeast cells. Coexpression of human Rap1-specific GAP suppressed the random budding due to expression of p21rap1A or its derivatives, including Rap1AVal-12. Although Rap1-specific GAP stimulated the GTPase of Rsr1p in vitro, it did not dominantly interfere with Rsr1p function in vivo. A chimera consisting of Rap1A1-165::Rsr1p166-272 did not exhibit normal Rsr1p function in the budding pathway. These results indicated that p21rap1A and Rsr1p share at least partial functional homology, which may have implications for p21rap1A function in mammalian cells.
Collapse
|
18
|
Robishaw JD, Kalman VK, Proulx KL. Production, processing and partial purification of functional G protein beta gamma subunits in baculovirus-infected insect cells. Biochem J 1992; 286 ( Pt 3):677-80. [PMID: 1417725 PMCID: PMC1132956 DOI: 10.1042/bj2860677] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
As a result of the inability to resolve the heterogeneous mixture of G protein beta gamma subunits present in tissues, it has not been possible to compare different beta gamma subunits of the G proteins in terms of their proposed roles in receptor-effector coupling. This study was undertaken to establish the utility of the baculovirus expression system in producing homogeneous beta gamma subunits of defined composition for the comparative analysis of these subunits in reconstitution systems. In this study we report the expression, and appropriate post-translational processing, of recombinant beta 2, gamma 2 and gamma 3 subunits. In addition, we show that the recombinant beta gamma subunits can be readily purified, and can functionally interact with the alpha subunits of the G proteins.
Collapse
Affiliation(s)
- J D Robishaw
- Weis Center for Research, Geisinger Clinic, Danville, PA 17822
| | | | | |
Collapse
|
19
|
McCabe PC, Haubruck H, Polakis P, McCormick F, Innis MA. Functional interaction between p21rap1A and components of the budding pathway in Saccharomyces cerevisiae. Mol Cell Biol 1992; 12:4084-92. [PMID: 1508205 PMCID: PMC360304 DOI: 10.1128/mcb.12.9.4084-4092.1992] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The rap1A gene encodes a 21-kDa, ras-related GTP-binding protein (p21rap1A) of unknown function. A close structural homolog of p21rap1A (65% identity in the amino-terminal two-thirds) is the RSR1 gene product (Rsr1p) of Saccharomyces cerevisiae. Although Rsr1p is not essential for growth, its presence is required for nonrandom selection of bud sites. To assess the similarity of these proteins at the functional level, wild-type and mutant forms of p21rap1A were tested for complementation of activities known to be fulfilled by Rsr1p. Expression of p21rap1A, like multicopy expression of RSR1, suppressed the conditional lethality of a temperature-sensitive cdc24 mutation. Point mutations predicted to affect the localization of p21rap1A or its ability to cycle between GDP and GTP-bound states disrupted suppression of cdc24ts, while other mutations in the 61-65 loop region improved suppression. Expression of p21rap1A could not, however, suppress the random budding phenotype of rsr1 cells. p21rap1A also apparently interfered with the normal activity of Rsrlp, causing random budding in diploid wild-type cells, suggesting an inability of p21rap1A to interact appropriately with Rsr1p regulatory proteins. Consistent with this hypothesis, we found an Rsr1p-specific GTPase-activating protein (GAP) activity in yeast membranes which was not active toward p21rap1A, indicating that p21rap1A may be predominantly GTP bound in yeast cells. Coexpression of human Rap1-specific GAP suppressed the random budding due to expression of p21rap1A or its derivatives, including Rap1AVal-12. Although Rap1-specific GAP stimulated the GTPase of Rsr1p in vitro, it did not dominantly interfere with Rsr1p function in vivo. A chimera consisting of Rap1A1-165::Rsr1p166-272 did not exhibit normal Rsr1p function in the budding pathway. These results indicated that p21rap1A and Rsr1p share at least partial functional homology, which may have implications for p21rap1A function in mammalian cells.
Collapse
Affiliation(s)
- P C McCabe
- Department of Molecular Biology, Cetus Corporation, Emeryville, California 94608
| | | | | | | | | |
Collapse
|
20
|
Lerner S, Haklai R, Kloog Y. Isoprenylation and carboxylmethylation in small GTP-binding proteins of pheochromocytoma (PC-12) cells. Cell Mol Neurobiol 1992; 12:333-51. [PMID: 1394371 DOI: 10.1007/bf00734934] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
1. A group of 21 to 24-kDa proteins of pheochromocytoma (PC-12) cells was found in blot overlay assays to bind specifically [alpha-32P]GTP. Binding was inhibited by GTP analogues but not by ATP. Such small GTP-binding proteins were found in the cytosolic and in the particulate fraction of the cells, but they were unevenly distributed: about 75% of the small GTP-binding proteins were localized within the particulate fraction of the cells. Separation of these proteins by two-dimensional gel electrophoresis revealed the existence of seven distinct [alpha-32P]GTP-binding proteins. 2. Targeting of the small GTP-binding proteins to the particulate fraction of PC-12 cells requires modification by isoprenoids, since depleting the cells of the isoprenoid precursor mevalonic acid (MVA) by the use of lovastatin resulted in a 50% decrease in membrane-bound small GTP-binding proteins, with a proportionate increase in the cytosolic form. This blocking effect of lovastatin was reversed by exogenously added MVA. 3. In addition, metabolic labeling of PC-12 cells with [3H]MVA revealed incorporation of [3H]MVA metabolites into the cluster of 21 to 24-kDa proteins in a form typical of isoprenoids; the label was not removed from the proteins by hydroxylamine, and labeling was enhanced in cells incubated with lovastatin. The latter effect reflects a decrease in the isotopic dilution of the exogenously added [3H]MVA, as the addition of exogenous MVA reversed the effect of lovastatin on [3H]MVA-metabolite incorporation into the 21 to 24-kDa proteins. 4. Additional experiments demonstrated that isoprenylation is required not only for membrane association of small GTP-binding proteins, but also for their further modification by a methylation enzyme. This was evident in experiments in which the cells were metabolically labeled with [methyl-3H]methionine, a methylation precursor. The group of 21 to 24-kDa proteins was labeled with a methyl-3H group in a form typical of C-terminal-cysteinyl carboxylmethyl esters. Their methylation was blocked by the methylation inhibitors methylthioadenosine (MTA), 3-deazadenosine and homocysteine thiolactone as well as by lovastatin. MVA reversed the lovastatin block of methylation. 5. Two-dimensional gel analysis of the [3H]methylated proteins detected seven methylated small GTP-binding proteins that correspond to the isoprenylated proteins. Levels of the small GTP-binding proteins as well as isoprenylation and methylation were reduced by cycloheximide. 6. Distribution of the methylated proteins between particulate and cytosolic fractions was found to be similar to that of the small GTP-binding proteins (i.e., a 4:1 ratio).(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- S Lerner
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel
| | | | | |
Collapse
|
21
|
Kato K, Cox AD, Hisaka MM, Graham SM, Buss JE, Der CJ. Isoprenoid addition to Ras protein is the critical modification for its membrane association and transforming activity. Proc Natl Acad Sci U S A 1992; 89:6403-7. [PMID: 1631135 PMCID: PMC49509 DOI: 10.1073/pnas.89.14.6403] [Citation(s) in RCA: 428] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We have introduced a variety of amino acid substitutions into carboxyl-terminal CA1A2X sequence (C = cysteine; A = aliphatic; X = any amino acid) of the oncogenic [Val12]Ki-Ras4B protein to identify the amino acids that permit Ras processing (isoprenylation, proteolysis, and carboxyl methylation), membrane association, and transformation in cultured mammalian cells. While all substitutions were tolerated at the A1 position, substitutions at A2 and X reduced transforming activity. The A2 residue was important for both isoprenylation and AAX proteolysis, whereas the X residue dictated the extent and specificity of isoprenoid modification only. Differences were observed between Ras processing in living cells and farnesylation efficiency in a cell-free system. Finally, one farnesylated mutant did not undergo either proteolysis or carboxyl methylation but still displayed efficient membrane association (approximately 50%) and transforming activity, indicating that farnesylation alone can support Ras transforming activity. Since both farnesylation and carboxyl methylation are critical for yeast a-factor biological activity, the three CAAX-signaled modifications may have different contributions to the function of different CAAX-containing proteins.
Collapse
Affiliation(s)
- K Kato
- La Jolla Cancer Research Foundation, CA 92037
| | | | | | | | | | | |
Collapse
|
22
|
Specific isoprenoid modification is required for function of normal, but not oncogenic, Ras protein. Mol Cell Biol 1992. [PMID: 1375323 DOI: 10.1128/mcb.12.6.2606] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While the Ras C-terminal CAAX sequence signals modification by a 15-carbon farnesyl isoprenoid, the majority of isoprenylated proteins in mammalian cells are modified instead by a 20-carbon geranylgeranyl moiety. To determine the structural and functional basis for modification of proteins by a specific isoprenoid group, we have generated chimeric Ras proteins containing C-terminal CAAX sequences (CVLL and CAIL) from geranylgeranyl-modified proteins and a chimeric Krev-1 protein containing the H-Ras C-terminal CAAX sequence (CVLS). Our results demonstrate that both oncogenic Ras transforming activity and Krev-1 antagonism of Ras transforming activity can be promoted by either farnesyl or geranylgeranyl modification. Similarly, geranylgeranyl-modified normal Ras [Ras(WT)CVLL], when overexpressed, exhibited the same level of transforming activity as the authentic farnesyl-modified normal Ras protein. Therefore, farnesyl and geranylgeranyl moieties are functionally interchangeable for these biological activities. In contrast, expression of moderate levels of geranylgeranyl-modified normal Ras inhibited the growth of untransformed NIH 3T3 cells. This growth inhibition was overcome by coexpression of the mutant protein with oncogenic Ras or Raf, but not with oncogenic Src or normal Ras. The similar growth-inhibiting activities of Ras(WT)CVLL and the previously described Ras(17N) dominant inhibitory mutant suggest that geranylgeranyl-modified normal Ras may exert its growth-inhibiting action by perturbing endogenous Ras function. These results suggest that normal Ras function may specifically require protein modification by a farnesyl, but not a geranylgeranyl, isoprenoid.
Collapse
|
23
|
Cox AD, Hisaka MM, Buss JE, Der CJ. Specific isoprenoid modification is required for function of normal, but not oncogenic, Ras protein. Mol Cell Biol 1992; 12:2606-15. [PMID: 1375323 PMCID: PMC364454 DOI: 10.1128/mcb.12.6.2606-2615.1992] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
While the Ras C-terminal CAAX sequence signals modification by a 15-carbon farnesyl isoprenoid, the majority of isoprenylated proteins in mammalian cells are modified instead by a 20-carbon geranylgeranyl moiety. To determine the structural and functional basis for modification of proteins by a specific isoprenoid group, we have generated chimeric Ras proteins containing C-terminal CAAX sequences (CVLL and CAIL) from geranylgeranyl-modified proteins and a chimeric Krev-1 protein containing the H-Ras C-terminal CAAX sequence (CVLS). Our results demonstrate that both oncogenic Ras transforming activity and Krev-1 antagonism of Ras transforming activity can be promoted by either farnesyl or geranylgeranyl modification. Similarly, geranylgeranyl-modified normal Ras [Ras(WT)CVLL], when overexpressed, exhibited the same level of transforming activity as the authentic farnesyl-modified normal Ras protein. Therefore, farnesyl and geranylgeranyl moieties are functionally interchangeable for these biological activities. In contrast, expression of moderate levels of geranylgeranyl-modified normal Ras inhibited the growth of untransformed NIH 3T3 cells. This growth inhibition was overcome by coexpression of the mutant protein with oncogenic Ras or Raf, but not with oncogenic Src or normal Ras. The similar growth-inhibiting activities of Ras(WT)CVLL and the previously described Ras(17N) dominant inhibitory mutant suggest that geranylgeranyl-modified normal Ras may exert its growth-inhibiting action by perturbing endogenous Ras function. These results suggest that normal Ras function may specifically require protein modification by a farnesyl, but not a geranylgeranyl, isoprenoid.
Collapse
Affiliation(s)
- A D Cox
- La Jolla Cancer Research Foundation, California 92037
| | | | | | | |
Collapse
|
24
|
Bokoch GM, Prossnitz V. Isoprenoid metabolism is required for stimulation of the respiratory burst oxidase of HL-60 cells. J Clin Invest 1992; 89:402-8. [PMID: 1310693 PMCID: PMC442866 DOI: 10.1172/jci115599] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The formation of oxygen radicals by phagocytic cells occurs through the activation of a multiple-component NADPH oxidase system. An unidentified low molecular weight GTP-binding protein has been proposed to modulate the activity of the NADPH oxidase. The low molecular weight GTP-binding proteins undergo posttranslational processing, including an initial covalent incorporation of an isoprenyl group. To test whether such an isoprenylation reaction might be required for the activity of the oxidase, we utilized compactin and lovastatin as inhibitors of the isoprenylation pathway. Treatment of DMSO-differentiated HL-60 cells with compactin produced a concentration-dependent inhibition of O2- formation in response to FMLP or phorbol myristate acetate. Cell viability was not affected nor was normal differentiation of the HL-60 cells into a neutrophil-like cell. The inhibitory effect of compactin was specifically prevented by addition of exogenous mevalonic acid to the HL-60 cells, indicating that the inhibitory effects of the drug were due to blockade of the pathway leading to isoprenoid synthesis. Addition of cholesterol, ubiquinone, or dolichol, which are also downstream products of the isoprenoid pathway, did not override the inhibitory effects of the drug. Subcellular fractions were prepared from compactin-treated cells, and the location of the compactin-sensitive factor was determined by complementation analysis in a cell-free NADPH oxidase system. The inhibited factor was localized to the HL-60 cytosol. These data suggest that an isoprenoid pathway intermediate is necessary for activation of the phagocyte NADPH oxidase. This is likely to represent the requirement for an isoprenoid moiety in the posttranslational modification of a low molecular weight GTP-binding protein. Our studies provide support for the involvement of such a low molecular weight GTP-binding protein in NADPH oxidase activation.
Collapse
Affiliation(s)
- G M Bokoch
- Department of Immunology, Research Institute of Scripps Clinic, La Jolla, California 92037
| | | |
Collapse
|
25
|
Kinsella BT, Erdman RA, Maltese WA. Posttranslational modification of Ha-ras p21 by farnesyl versus geranylgeranyl isoprenoids is determined by the COOH-terminal amino acid. Proc Natl Acad Sci U S A 1991; 88:8934-8. [PMID: 1924354 PMCID: PMC52625 DOI: 10.1073/pnas.88.20.8934] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
ras proteins undergo posttranslational modification by a 15-carbon farnesyl isoprenoid at a cysteine within a defined COOH-terminal amino acid motif; i.e., Cys-Ali-Ali-Ser/Met (where Ali represents an aliphatic residue). In other low molecular mass GTP-binding proteins, cysteines are modified by 20-carbon geranylgeranyl groups within a Cys-Ali-Ali-Leu motif. We changed the terminal Ser-189 of Ha-ras p21 to Leu-189 by site-directed mutagenesis and found that the protein was modified by [3H]geranylgeranyl instead of [3H]farnesyl in an in vitro assay. Gel-permeation chromatography of [3H]mevalonate-labeled hydrocarbons released from immunoprecipitated ras proteins overexpressed in COS cells indicated that Ha-ras p21(Leu-189) was also a substrate for 20-carbon isoprenyl modification in vivo. Additional steps in Ha-ras p21 processing, normally initiated by farnesylation, appear to be supported by geranylgeranylation, based on metabolic labeling of Ha-ras p21(Leu-189) with [3H]palmitate and its subcellular localization in a particulate fraction from COS cells. These observations indicate that the amino acid occupying the terminal position (Xaa) in the Cys-Ali-Ali-Xaa motif constitutes a key structural feature by which Ha-ras p21 and other proteins with ras-like COOH-terminal isoprenylation sites are distinguished as substrates for farnesyl- or geranylgeranyltransferases.
Collapse
Affiliation(s)
- B T Kinsella
- Weis Center for Research, Geisinger Clinic, Danville, PA 17822
| | | | | |
Collapse
|
26
|
Casey PJ, Thissen JA, Moomaw JF. Enzymatic modification of proteins with a geranylgeranyl isoprenoid. Proc Natl Acad Sci U S A 1991; 88:8631-5. [PMID: 1924324 PMCID: PMC52563 DOI: 10.1073/pnas.88.19.8631] [Citation(s) in RCA: 132] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The prenylation of several proteins involved in oncogenesis and signal transduction plays an essential role in regulating their biological activities. Two distinct isoprenoids are known to be involved in this modification, the 15-carbon farnesyl and 20-carbon geranylgeranyl groups. Thus far, identified farnesylated proteins contain methionine or serine at the COOH terminus, while those modified by geranylgeranyl end in leucine. This report describes the characterization of an enzyme activity that transfers the geranylgeranyl group to candidate proteins. The enzyme, termed a "protein geranylgeranyltransferase," exhibits a marked preference for substrate proteins that contain leucine at the COOH terminus. In fact, the enzyme will efficiently modify a normally farnesylated protein, Ha-ras, if its COOH-terminal amino acid is switched from serine to leucine. Additional studies characterize this enzyme and suggest that it is responsible for the geranylgeranyl modification of a number of GTP-binding proteins (or their subunits) that contain a consensus prenylation sequence ending in leucine.
Collapse
Affiliation(s)
- P J Casey
- Section of Cell Growth, Regulation and Oncogenesis, Duke University Medical Center, Durham, NC 27710
| | | | | |
Collapse
|
27
|
Abstract
The Krev-1 gene has been shown to suppress ras-mediated transformation in vitro. Both ras and Krev-1 proteins have identical effector domains (ras residues 32 to 40), which are required for biological activity and for the interaction of Ras p21 with Ras GTPase-activating protein (GAP). In this study, five amino acid residues flanking the ras effector domain, which are not conserved with the Krev-1 protein, were shown to be required for normal protein-protein interactions and biological activity. The substitution of Krev-1 p21 residues 26, 27, 30, 31, and 45 with the corresponding amino acid residues from Ras p21 resulted in a Krev-1 protein which had ras function in both mammalian and yeast biological assays. Replacement of these residues in Ras p21 with the corresponding Krev-1 p21 amino acids resulted in ras proteins which were impaired biologically or reduced in their affinity for in vitro GAP binding. Evaluation of these mutant ras proteins have implications for Ras p21-GAP interactions in vivo.
Collapse
|
28
|
Marshall MS, Davis LJ, Keys RD, Mosser SD, Hill WS, Scolnick EM, Gibbs JB. Identification of amino acid residues required for Ras p21 target activation. Mol Cell Biol 1991; 11:3997-4004. [PMID: 1906576 PMCID: PMC361200 DOI: 10.1128/mcb.11.8.3997-4004.1991] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The Krev-1 gene has been shown to suppress ras-mediated transformation in vitro. Both ras and Krev-1 proteins have identical effector domains (ras residues 32 to 40), which are required for biological activity and for the interaction of Ras p21 with Ras GTPase-activating protein (GAP). In this study, five amino acid residues flanking the ras effector domain, which are not conserved with the Krev-1 protein, were shown to be required for normal protein-protein interactions and biological activity. The substitution of Krev-1 p21 residues 26, 27, 30, 31, and 45 with the corresponding amino acid residues from Ras p21 resulted in a Krev-1 protein which had ras function in both mammalian and yeast biological assays. Replacement of these residues in Ras p21 with the corresponding Krev-1 p21 amino acids resulted in ras proteins which were impaired biologically or reduced in their affinity for in vitro GAP binding. Evaluation of these mutant ras proteins have implications for Ras p21-GAP interactions in vivo.
Collapse
Affiliation(s)
- M S Marshall
- Department of Cancer Research, Merck Sharp and Dohme Research Laboratories, West Point, Pennsylvania 19486
| | | | | | | | | | | | | |
Collapse
|
29
|
Farnsworth CC, Kawata M, Yoshida Y, Takai Y, Gelb MH, Glomset JA. C terminus of the small GTP-binding protein smg p25A contains two geranylgeranylated cysteine residues and a methyl ester. Proc Natl Acad Sci U S A 1991; 88:6196-200. [PMID: 1906176 PMCID: PMC52049 DOI: 10.1073/pnas.88.14.6196] [Citation(s) in RCA: 138] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
smg p25A, also known as the rab3A protein, is a small GTP-binding protein that has been implicated in intracellular vesicle transport and the secretion of neurotransmitters. It has been shown to bind reversibly to membranes, though its cDNA-predicted sequence contains no obvious membrane-binding domains. However, smg p25A does contain a cDNA-predicted C-terminal Cys-Ala-Cys sequence at positions 218 through 220, which suggests that it may be posttranslationally modified. In the present study we used two different approaches to investigate this possibility. First, we incubated pheochromocytoma cells with [3H]mevalonolactone, examined the proteins that became labeled by two-dimensional gel electrophoresis, and demonstrated that two of these proteins exactly corresponded to smg p25A. Second, we purified smg p25A from bovine brain membranes and analyzed both the full-length protein and a proteolytically derived C-terminal peptide by a combination of high performance liquid chromatography and mass spectrometry. This approach revealed that the protein's C-terminal region is methyl-esterified and contains two geranylgeranyl groups linked via thioether bonds to Cys-218 and Cys-220. Since smg p25A is one of several small GTP-binding proteins that share a C-terminal Cys-Xaa-Cys consensus sequence (where Xaa is an unspecified amino acid), our results suggest that these proteins may be similarly geranylgeranylated and methyl-esterified.
Collapse
Affiliation(s)
- C C Farnsworth
- Howard Hughes Medical Institute Laboratory, University of Washington, Seattle, WA 98195
| | | | | | | | | | | |
Collapse
|
30
|
Khosravi-Far R, Lutz RJ, Cox AD, Conroy L, Bourne JR, Sinensky M, Balch WE, Buss JE, Der CJ. Isoprenoid modification of rab proteins terminating in CC or CXC motifs. Proc Natl Acad Sci U S A 1991; 88:6264-8. [PMID: 1648736 PMCID: PMC52063 DOI: 10.1073/pnas.88.14.6264] [Citation(s) in RCA: 142] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mevalonate starvation of hamster fibroblasts resulted in a shift of rab1b from the membrane to the cytosolic fraction, suggesting that rab1b depends upon an isoprenoid modification for its membrane localization. rab1b and rab3a proteins expressed in insect cells incorporated a product of [3H]mevalonate, and gas chromatography analysis of material released by Raney nickel cleavage demonstrated that rab1b and rab3a are modified by geranylgeranyl groups. Additionally, in vitro prenylation analysis demonstrated farnesyl modification of H-ras but geranylgeranyl modification of five rab proteins (1a, 1b, 2, 3a, and 6). Together, these results suggest that the carboxyl-terminal CC/CXC motifs (X = any amino acid) specifically signal for addition of geranylgeranyl, but not farnesyl, groups. A rab1b mutant protein lacking the two carboxyl-terminal cysteine residues was not prenylated in vitro. However, since a mutant H-ras protein that terminates with tandem cysteine residues was also not modified, the CC motif may be essential, but not sufficient, to signal prenylation of rab1b. Finally, rab1b and rab3a proteins were not efficient substrates for either farnesyl- or geranylgeranyltransferase activities that modify CAAX-containing proteins (A = any aliphatic amino acid). Therefore, rab proteins may be modified by a prenyltransferase(s) distinct from the prenyltransferases that modify carboxyl-terminal CAAX proteins.
Collapse
|
31
|
Yokoyama K, Goodwin GW, Ghomashchi F, Glomset JA, Gelb MH. A protein geranylgeranyltransferase from bovine brain: implications for protein prenylation specificity. Proc Natl Acad Sci U S A 1991; 88:5302-6. [PMID: 2052607 PMCID: PMC51860 DOI: 10.1073/pnas.88.12.5302] [Citation(s) in RCA: 179] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A protein geranylgeranyltransferase (PGT) that catalyzes the transfer of a 20-carbon prenyl group from geranylgeranyl pyrophosphate to a cysteine residue in protein and peptide acceptors was detected in bovine brain cytosol and partially purified. The enzyme was shown to be distinct from a previously characterized protein farnesyltransferase (PFT). The PGT selectively geranylgeranylated a synthetic peptide corresponding to the C terminus of the gamma 6 subunit of bovine brain G proteins, which have previously been shown to contain a 20-carbon prenyl modification. Likewise, a peptide corresponding to the C terminus of human lamin B, a known farnesylated protein, selectively served as a substrate for farnesylation by the PFT. However, with high concentrations of peptide acceptors, both prenyl transferases were able to use either peptide as substrates and the PGT was able to catalyze farnesyl transfer. Among the prenyl acceptors tested, peptides and proteins with leucine or phenylalanine at their C termini served as geranylgeranyl acceptors, whereas those with C-terminal serine were preferentially farnesylated. These results suggest that the C-terminal amino acid is an important structural determinant in controlling the specificity of protein prenylation.
Collapse
Affiliation(s)
- K Yokoyama
- Department of Chemistry, University of Washington, Seattle, WA 98195
| | | | | | | | | |
Collapse
|
32
|
Finegold AA, Johnson DI, Farnsworth CC, Gelb MH, Judd SR, Glomset JA, Tamanoi F. Protein geranylgeranyltransferase of Saccharomyces cerevisiae is specific for Cys-Xaa-Xaa-Leu motif proteins and requires the CDC43 gene product but not the DPR1 gene product. Proc Natl Acad Sci U S A 1991; 88:4448-52. [PMID: 2034682 PMCID: PMC51677 DOI: 10.1073/pnas.88.10.4448] [Citation(s) in RCA: 116] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Protein prenylation occurs by modification of proteins with one of at least two isoprenoids, the farnesyl group and the geranylgeranyl group. Protein farnesyltransferases have been identified, but no such enzyme has been identified for geranylgeranylation. We report the identification of an activity in crude soluble yeast extracts that catalyzes the transfer of a geranylgeranyl moiety from geranylgeranyl pyrophosphate to proteins having the C-terminal sequence Cys-Ile-Ile-Leu or Cys-Val-Leu-Leu but not to a similar protein ending with Cys-Ile-Ile-Ser. This activity is dependent upon the CDC43/CAL1 gene, which is involved in budding and the control of cell polarity, but does not require the DPR1/RAM1 gene, which is known to be required for the farnesylation of Ras proteins. These results indicate that the protein geranylgeranyltransferase activity is distinct from the protein farnesyltransferase activity and that its specificity depends in part on the extreme C-terminal leucine in the protein to be prenylated.
Collapse
Affiliation(s)
- A A Finegold
- Department of Biochemistry and Molecular Biology, University of Chicago, IL 60637
| | | | | | | | | | | | | |
Collapse
|