1
|
King O, Sunyovszki I, Terracciano CM. Vascularisation of pluripotent stem cell-derived myocardium: biomechanical insights for physiological relevance in cardiac tissue engineering. Pflugers Arch 2021; 473:1117-1136. [PMID: 33855631 PMCID: PMC8245389 DOI: 10.1007/s00424-021-02557-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 12/22/2022]
Abstract
The myocardium is a diverse environment, requiring coordination between a variety of specialised cell types. Biochemical crosstalk between cardiomyocytes (CM) and microvascular endothelial cells (MVEC) is essential to maintain contractility and healthy tissue homeostasis. Yet, as myocytes beat, heterocellular communication occurs also through constantly fluctuating biomechanical stimuli, namely (1) compressive and tensile forces generated directly by the beating myocardium, and (2) pulsatile shear stress caused by intra-microvascular flow. Despite endothelial cells (EC) being highly mechanosensitive, the role of biomechanical stimuli from beating CM as a regulatory mode of myocardial-microvascular crosstalk is relatively unexplored. Given that cardiac biomechanics are dramatically altered during disease, and disruption of myocardial-microvascular communication is a known driver of pathological remodelling, understanding the biomechanical context necessary for healthy myocardial-microvascular interaction is of high importance. The current gap in understanding can largely be attributed to technical limitations associated with reproducing dynamic physiological biomechanics in multicellular in vitro platforms, coupled with limited in vitro viability of primary cardiac tissue. However, differentiation of CM from human pluripotent stem cells (hPSC) has provided an unlimited source of human myocytes suitable for designing in vitro models. This technology is now converging with the diverse field of tissue engineering, which utilises in vitro techniques designed to enhance physiological relevance, such as biomimetic extracellular matrix (ECM) as 3D scaffolds, microfluidic perfusion of vascularised networks, and complex multicellular architectures generated via 3D bioprinting. These strategies are now allowing researchers to design in vitro platforms which emulate the cell composition, architectures, and biomechanics specific to the myocardial-microvascular microenvironment. Inclusion of physiological multicellularity and biomechanics may also induce a more mature phenotype in stem cell-derived CM, further enhancing their value. This review aims to highlight the importance of biomechanical stimuli as determinants of CM-EC crosstalk in cardiac health and disease, and to explore emerging tissue engineering and hPSC technologies which can recapitulate physiological dynamics to enhance the value of in vitro cardiac experimentation.
Collapse
Affiliation(s)
- Oisín King
- National Heart & Lung Institute, Imperial College London, Hammersmith Campus, ICTEM 4th floor, Du Cane Road, London, W12 0NN, UK.
| | - Ilona Sunyovszki
- National Heart & Lung Institute, Imperial College London, Hammersmith Campus, ICTEM 4th floor, Du Cane Road, London, W12 0NN, UK
| | - Cesare M Terracciano
- National Heart & Lung Institute, Imperial College London, Hammersmith Campus, ICTEM 4th floor, Du Cane Road, London, W12 0NN, UK
| |
Collapse
|
2
|
Brignone J, Assersen KB, Jensen M, Jensen BL, Kloster B, Jønler M, Lund L. Protection of kidney function and tissue integrity by pharmacologic use of natriuretic peptides and neprilysin inhibitors. Pflugers Arch 2021; 473:595-610. [PMID: 33844072 DOI: 10.1007/s00424-021-02555-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/03/2021] [Accepted: 03/06/2021] [Indexed: 12/11/2022]
Abstract
With variable potencies atrial-, brain-type and c-type natriuretic peptides (NP)s, best documented for ANP and its analogues, promote sodium and water excretion, renal blood flow, lipolysis, lower blood pressure, and suppress renin and aldosterone secretion through interaction predominantly with cGMP-coupled NPR-A receptor. Infusion of especially ANP and its analogues up to 50 ng/kg/min in patients with high risk of acute kidney injury (cardiac vascular bypass surgery, intraabdominal surgery, direct kidney surgery) protects kidney function (GFR, plasma flow, medullary flow, albuminuria, renal replacement therapy, tissue injury) at short term and also long term and likely additively with the diuretic furosemide. This documents a pharmacologic potential for the pathway. Neprilysin (NEP, neutral endopeptidase) degrades NPs, in particular ANP, and angiotensin II. The drug LCZ696, a mixture of the neprilysin inhibitor sacubitril and the ANGII-AT1 receptor blocker valsartan, was FDA approved in 2015 and marketed as Entresto®. In preclinical studies of kidney injury, LCZ696 and NPs lowered plasma creatinine, countered hypoxia and oxidative stress, suppressed proinflammatory cytokines, and inhibited fibrosis. Few randomized clinical studies exist and were designed with primary cardiac outcomes. The studies showed that LCZ696/entresto stabilized and improved glomerular filtration rate in patients with chronic kidney disease. LCZ696 is safe to use concerning kidney function and stabilizes or increases GFR. In perspective, combined AT1 and neprilysin inhibition is a promising approach for long-term renal protection in addition to AT1 receptor blockers in acute kidney injury and chronic kidney disease.
Collapse
Affiliation(s)
- Juan Brignone
- Department of Urology, Aalborg University Hospital, Aalborg, Denmark. .,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
| | - Kasper Bostlund Assersen
- Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Mia Jensen
- Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Boye L Jensen
- Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Brian Kloster
- Department of Urology, Aalborg University Hospital, Aalborg, Denmark
| | - Morten Jønler
- Department of Urology, Aalborg University Hospital, Aalborg, Denmark
| | - Lars Lund
- Department of Urology, Aalborg University Hospital, Aalborg, Denmark.,Department of Urology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
3
|
Meng J, Chen W, Wang J. Interventions in the B-type natriuretic peptide signalling pathway as a means of controlling chronic itch. Br J Pharmacol 2020; 177:1025-1040. [PMID: 31877230 DOI: 10.1111/bph.14952] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/08/2019] [Accepted: 11/19/2019] [Indexed: 12/22/2022] Open
Abstract
Chronic itch poses major health care and economic burdens worldwide. In 2013, B-type natriuretic peptide (BNP) was identified as an itch-selective neuropeptide and shown to be both necessary and sufficient to produce itch behaviour in mice. Since then, mechanistic studies of itch have increased, not only at central levels of the spinal relay of itch signalling but also in the periphery and skin. In this review, we have critically analysed recent findings from complementary pharmacological and physiological approaches, combined with genetic strategies to examine the role of BNP in itch transduction and modulation of other pruritic proteins. Additionally, potential targets and possible strategies against BNP signalling are discussed for developing novel therapeutics in itch. Overall, we aim to provide insights into drug development by altering BNP signalling to modulate disease symptoms in chronic itch, including conditions for which no approved treatment exists.
Collapse
Affiliation(s)
- Jianghui Meng
- School of Life Sciences, Henan University, Henan, China.,National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland.,School of Biotechnology, Faculty of Science and Health, Dublin City University, Dublin, Ireland
| | - Weiwei Chen
- School of Life Sciences, Henan University, Henan, China
| | - Jiafu Wang
- School of Life Sciences, Henan University, Henan, China.,School of Biotechnology, Faculty of Science and Health, Dublin City University, Dublin, Ireland
| |
Collapse
|
4
|
Okamoto R, Ali Y, Hashizume R, Suzuki N, Ito M. BNP as a Major Player in the Heart-Kidney Connection. Int J Mol Sci 2019; 20:ijms20143581. [PMID: 31336656 PMCID: PMC6678680 DOI: 10.3390/ijms20143581] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 02/07/2023] Open
Abstract
Brain natriuretic peptide (BNP) is an important biomarker for patients with heart failure, hypertension and cardiac hypertrophy. Although it is known that BNP levels are relatively higher in patients with chronic kidney disease and no heart disease, the mechanism remains unknown. Here, we review the functions and the roles of BNP in the heart-kidney interaction. In addition, we discuss the relevant molecular mechanisms that suggest BNP is protective against chronic kidney diseases and heart failure, especially in terms of the counterparts of the renin-angiotensin-aldosterone system (RAAS). The renal medulla has been reported to express depressor substances. The extract of the papillary tips from kidneys may induce the expression and secretion of BNP from cardiomyocytes. A better understanding of these processes will help accelerate pharmacological treatments for heart-kidney disease.
Collapse
Affiliation(s)
- Ryuji Okamoto
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan.
| | - Yusuf Ali
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Ryotaro Hashizume
- Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Noboru Suzuki
- Department of Animal Genomics, Functional Genomics Institute, Mie University Life Science Research Center, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Masaaki Ito
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| |
Collapse
|
5
|
Öztop M, Cinar K, Turk S. Immunolocalization of natriuretic peptides and their receptors in goat (Capra hircus) heart. Biotech Histochem 2018; 93:389-404. [PMID: 30124338 DOI: 10.1080/10520295.2018.1425911] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Natriuretic peptides are structurally similar, but genetically distinct, hormones that participate in cardiovascular homeostasis by regulating blood and extracellular fluid volume and blood pressure. We investigated the distribution of natriuretic peptides and their receptors in goat (Capra hircus) heart tissue using the peroxidase-anti-peroxidase (PAP) immunohistochemical method. Strong staining of atrial natriuretic peptide (ANP) was observed in atrial cardiomyocytes, while strong staining for brain natriuretic peptide (BNP) was observed in ventricular cardiomyocytes. Slightly stronger cytoplasmic C-type natriuretic peptide (CNP) immunostaining was detected in the ventricles compared to the atria. Natriuretic peptide receptor-A (NPR-A) immunoreactivity was more prominent in the atria, while natriuretic peptide receptor-B (NPR-B) immunoreactivity was stronger in the ventricles. Cytoplasmic natriuretic peptide receptor-C (NPR-C) immunoreactivity was observed in both the atria and ventricles, although staining was more prominent in the ventricles. ANP immunoreactivity ranged from weak to strong in endothelial and vascular smooth muscle cells. Endothelial cells exhibited moderate to strong BNP immunoreactivity, while vascular smooth cells displayed weak to strong staining. Endothelial cells exhibited weak to strong cytoplasmic CNP immunoreactivity. Vascular smooth muscle cells were labeled moderately to strongly for CNP. Weak to strong cytoplasmic NPR-A immunoreactivity was found in the endothelial cells and vascular smooth muscle cells stained weakly to moderately for NPR-A. Endothelial and vascular smooth cells exhibited weak to strong cytoplasmic NPR-B immunoreactivity. Moderate to strong NPR-C immunoreactivity was observed in the endothelial and smooth muscle cells. Small gender differences in the immunohistochemical distribution of natriuretic peptides and receptors were observed. Our findings suggest that endothelial cells, vascular smooth cells and cardiomyocytes express both natriuretic peptides and their receptors.
Collapse
Affiliation(s)
- M Öztop
- a Department of Biology , Mehmet Akif Ersoy University , Burdur
| | - K Cinar
- b Department of Biology , Süleyman Demirel University , Isparta , Turkey
| | - S Turk
- b Department of Biology , Süleyman Demirel University , Isparta , Turkey
| |
Collapse
|
6
|
Abstract
Natriuretic peptides are structurally related, functionally diverse hormones. Circulating atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) are delivered predominantly by the heart. Two C-type natriuretic peptides (CNPs) are paracrine messengers, notably in bone, brain, and vessels. Natriuretic peptides act by binding to the extracellular domains of three receptors, NPR-A, NPR-B, and NPR-C of which the first two are guanylate cyclases. NPR-C is coupled to inhibitory proteins. Atrial wall stress is the major regulator of ANP secretion; however, atrial pressure changes plasma ANP only modestly and transiently, and the relation between plasma ANP and atrial wall tension (or extracellular volume or sodium intake) is weak. Absence and overexpression of ANP-related genes are associated with modest blood pressure changes. ANP augments vascular permeability and reduces vascular contractility, renin and aldosterone secretion, sympathetic nerve activity, and renal tubular sodium transport. Within the physiological range of plasma ANP, the responses to step-up changes are unimpressive; in man, the systemic physiological effects include diminution of renin secretion, aldosterone secretion, and cardiac preload. For BNP, the available evidence does not show that cardiac release to the blood is related to sodium homeostasis or body fluid control. CNPs are not circulating hormones, but primarily paracrine messengers important to ossification, nervous system development, and endothelial function. Normally, natriuretic peptides are not powerful natriuretic/diuretic hormones; common conclusions are not consistently supported by hard data. ANP may provide fine-tuning of reno-cardiovascular relationships, but seems, together with BNP, primarily involved in the regulation of cardiac performance and remodeling. © 2017 American Physiological Society. Compr Physiol 8:1211-1249, 2018.
Collapse
Affiliation(s)
- Peter Bie
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
7
|
Chen Y, Harty GJ, Huntley BK, Iyer SR, Heublein DM, Harders GE, Meems L, Pan S, Sangaralingham SJ, Ichiki T, Burnett JC. CRRL269: a novel designer and renal-enhancing pGC-A peptide activator. Am J Physiol Regul Integr Comp Physiol 2017; 314:R407-R414. [PMID: 29187381 DOI: 10.1152/ajpregu.00286.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The natriuretic peptides (NPs) B-type NP (BNP) and urodilatin (URO) exert renal protective properties via the particulate guanylyl cyclase A receptor (pGC-A). As a potential renal-enhancing strategy, we engineered a novel designer peptide that we call CRRL269. CRRL269 was investigated in human cell lines and in normal canines to define potential cardiorenal enhancing actions. The mechanism of its cardiorenal selective properties was also investigated. In vitro NP receptor activity was quantified with guanosine 3',5'-cyclic monophosphate generation. In vivo effects were determined in normal canine acute infusion studies. We observed that CRRL269 demonstrated enhanced pGC-A activity in renal compared with nonrenal cell lines. CRRL269 exerted enhanced resistance to neprilysin compared with URO. Importantly, CRRL269 exhibited significant and greater increases in urinary sodium excretion and diuresis, with less blood pressure reduction, than BNP or URO in normal canines. CRRL269 retained potent renin-angiotensin-aldosterone system (RAAS) suppressing properties shared by URO and BNP. Also, CRRL269 exerted less arterial relaxation and higher cAMP cardiomyocytes generation than BNP. CRRL269 possessed superior renal and pGC-A activating properties compared with BNP or URO in vitro. CRRL269 exerted enhanced renal actions while suppressing RAAS in vivo and with less hypotension compared with URO or BNP. Together, our study suggests that CRRL269 is a promising innovative renal-enhancing drug, with favorable protective actions targeting cardiorenal disease states through the pGC-A receptor.
Collapse
Affiliation(s)
- Yang Chen
- Mayo Graduate School and Graduate Program in Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minneapolis , Minnesota.,Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minneapolis , Minnesota
| | - Gail J Harty
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minneapolis , Minnesota
| | - Brenda K Huntley
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minneapolis , Minnesota
| | - Seethalakshmi R Iyer
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minneapolis , Minnesota
| | - Denise M Heublein
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minneapolis , Minnesota
| | - Gerald E Harders
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minneapolis , Minnesota
| | - Laura Meems
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minneapolis , Minnesota
| | - Shuchong Pan
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minneapolis , Minnesota
| | - S Jeson Sangaralingham
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minneapolis , Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minneapolis , Minnesota
| | - Tomoko Ichiki
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minneapolis , Minnesota
| | - John C Burnett
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minneapolis , Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minneapolis , Minnesota
| |
Collapse
|
8
|
Kuang DB, Zhou JP, Li MP, Tang J, Chen XP. Association of NPR3 polymorphism with risk of essential hypertension in a Chinese population. J Clin Pharm Ther 2017; 42:554-560. [PMID: 28497617 DOI: 10.1111/jcpt.12549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 04/05/2017] [Indexed: 12/24/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Essential hypertension (EH) is a common disease exhibiting large individual difference in occurrence, development and treatment response. Genetic factors are implicated in the development and progression of EH. This study aimed to explore the association between NPR3 single nucleotide polymorphism rs2270915 (A/G, Asn521Asp) and the risk of EH in a Chinese Han population by a case-control study. METHODS The study was a single-centre, case-control trial, in which a total of 287 EH patients and 289 age- and sex-matched healthy controls were enrolled. The inclusion criteria were as follows: Han Chinese origin, male or female patients, systolic blood pressure (SBP) ≥140 mm Hg and/or diastolic blood pressure (DBP) ≥90 mm Hg. The healthy controls were subjects without histories of cardiovascular or cerebrovascular diseases. NPR3 rs2270915 polymorphism was genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). In addition, primary human umbilical vein endothelial cells (HUVECs) were isolated from 19 fresh human umbilical cords and cultured. Atrial natriuretic peptide (ANP) concentration in cell medium was determined by enzyme-linked immunosorbent assay (ELISA). NPR3 mRNA expression was determined by real-time semi-quantitative PCR. RESULTS AND DISCUSSION No significant difference in genotype distribution of NPR3 rs2270915 polymorphism was observed between cases and controls (P>.05). Patients carrying the rs2270915 G allele showed decreased SBP, and the difference was marginal. As compared with cells carrying the rs2270915 AA genotype, those with the AG genotype showed significantly lower NPR3 mRNA expression levels (P<.05) and lower medium ANP concentration (P<.001). WHAT IS NEW AND CONCLUSION This study suggested that NPR3 rs2270915 polymorphism was associated with decreased SBP level marginally in EH patients in a Chinese Han population, and the polymorphism may function through decreasing NPR3 mRNA expression and ANP level.
Collapse
Affiliation(s)
- D-B Kuang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
| | - J-P Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - M-P Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
| | - J Tang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
| | - X-P Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
| |
Collapse
|
9
|
Venkatesan B, Tumala A, Subramanian V, Vellaichamy E. Transient silencing of Npr3 gene expression improved the circulatory levels of atrial natriuretic peptides and attenuated β-adrenoceptor activation- induced cardiac hypertrophic growth in experimental rats. Eur J Pharmacol 2016; 782:44-58. [DOI: 10.1016/j.ejphar.2016.04.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/16/2016] [Accepted: 04/18/2016] [Indexed: 10/21/2022]
|
10
|
Egom EE, Feridooni T, Hotchkiss A, Kruzliak P, Pasumarthi KBS. Mechanisms of renal hyporesponsiveness to BNP in heart failure. Can J Physiol Pharmacol 2015; 93:399-403. [PMID: 25881664 DOI: 10.1139/cjpp-2014-0356] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The B-type natriuretic peptide (BNP), a member of the family of vasoactive peptides, is a potent natriuretic, diuretic, and vasodilatory peptide that contributes to blood pressure and volume homeostasis. These attributes make BNP an ideal drug that could aid in diuresing a fluid-overloaded patient who had poor or worsening renal function. Despite the potential benefits of BNP, accumulating evidence suggests that simply increasing the amount of circulating BNP does not necessarily increase natriuresis in patients with heart failure (HF). Moreover, despite high BNP levels, natriuresis falls when HF progresses from a compensated to a decompensated state, suggesting the emergence of renal resistance to BNP. Although likely multifactorial, several mechanisms have been proposed to explain renal hyporesponsiveness in HF, including, but not limited to, decreased renal BNP availability, down-regulation of natriuretic peptide receptors, and altered BNP intracellular signal transduction pathways. Thus, a better understanding of renal hyporesponsiveness in HF is required to devise strategies to develop novel agents and technologies that directly restore renal BNP efficiency. It is hoped that development of these new therapeutic approaches will serve to limit sodium retention in patients with HF, which may ultimately delay the progression to overt HF.
Collapse
Affiliation(s)
- Emmanuel E Egom
- Egom Clinical & Translational Research Services Ltd., 5991 Spring Garden Road, Halifax, NS B3H 4R7, Canada
| | | | | | | | | |
Collapse
|
11
|
Anker SD, Ponikowski P, Mitrovic V, Peacock WF, Filippatos G. Ularitide for the treatment of acute decompensated heart failure: from preclinical to clinical studies. Eur Heart J 2015; 36:715-23. [PMID: 25670819 PMCID: PMC4368857 DOI: 10.1093/eurheartj/ehu484] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The short- and long-term morbidity and mortality in acute heart failure is still unacceptably high. There is an unmet need for new therapy options with new drugs with a new mode of action. One of the drugs currently in clinical testing in Phase III is ularitide, which is the chemically synthesized form of the human natriuretic peptide urodilatin. Urodilatin is produced in humans by differential processing of pro-atrial natriuretic peptide in distal renal tubule cells. Physiologically, urodilatin appears to be the natriuretic peptide involved in sodium homeostasis. Ularitide exerts its pharmacological actions such as vasodilation, diuresis, and natriuresis through the natriuretic peptide receptor/particulate guanylate cyclase/cyclic guanosine monophosphate pathway. In animal models of heart failure as well as Phase I and II clinical studies in heart failure patients, ularitide demonstrated beneficial effects such as symptom relief and vasodilation, while still preserving renal function. Subsequently, the pivotal acute decompensated heart failure (ADHF) Phase III study, called TRUE-AHF, was started with the objectives to evaluate the effects of ularitide infusion on the clinical status and cardiovascular mortality of patients with ADHF compared with placebo. This review summarizes preclinical and clinical data supporting the potential use of ularitide in the treatment of ADHF.
Collapse
Affiliation(s)
- Stefan D Anker
- Department of Innovative Clinical Trials, University Medical Centre Göttingen, Göttingen, Germany
| | | | - Veselin Mitrovic
- Department of Cardiology, Kerckhoff-Klinik, Bad Nauheim, Germany
| | - W Frank Peacock
- Emergency Medicine, Baylor College of Medicine, Houston, TX, USA
| | | |
Collapse
|
12
|
Signaling pathways involved in renal oxidative injury: role of the vasoactive peptides and the renal dopaminergic system. JOURNAL OF SIGNAL TRANSDUCTION 2014; 2014:731350. [PMID: 25436148 PMCID: PMC4243602 DOI: 10.1155/2014/731350] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/16/2014] [Indexed: 12/24/2022]
Abstract
The physiological hydroelectrolytic balance and the redox steady state in the kidney are accomplished by an intricate interaction between signals from extrarenal and intrarenal sources and between antinatriuretic and natriuretic factors. Angiotensin II, atrial natriuretic peptide and intrarenal dopamine play a pivotal role in this interactive network. The balance between endogenous antioxidant agents like the renal dopaminergic system and atrial natriuretic peptide, by one side, and the prooxidant effect of the renin angiotensin system, by the other side, contributes to ensuring the normal function of the kidney. Different pathological scenarios, as nephrotic syndrome and hypertension, where renal sodium excretion is altered, are associated with an impaired interaction between two natriuretic systems as the renal dopaminergic system and atrial natriuretic peptide that may be involved in the pathogenesis of renal diseases. The aim of this review is to update and comment the most recent evidences about the intracellular pathways involved in the relationship between endogenous antioxidant agents like the renal dopaminergic system and atrial natriuretic peptide and the prooxidant effect of the renin angiotensin system in the pathogenesis of renal inflammation.
Collapse
|
13
|
Zhang J, Zhao Z, Wang J. Natriuretic peptide receptor A as a novel target for cancer. World J Surg Oncol 2014; 12:174. [PMID: 24894887 PMCID: PMC4049422 DOI: 10.1186/1477-7819-12-174] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 05/09/2014] [Indexed: 11/22/2022] Open
Abstract
The receptor for the cardiac hormone atrial natriuretic peptide (ANP), natriuretic peptide receptor A (NPR-A), has been reported to be expressed in lung cancer, prostate cancer and ovarian cancer. NPR-A expression and signaling is important for tumor growth; its deficiency protects C57BL/6 mice from lung, skin and ovarian cancers. This suggests that NPR-A is a new marker and a new target for cancer therapy. Recently, NPR-A has been demonstrated to be expressed in pre-implantation embryos and in embryonic stem cells, which has a novel role in the maintenance of self-renewal and pluripotency of embryonic stem cells. A nanoparticle-formulated interfering RNA for NPR-A attenuated B16 melanoma tumors in mice. Ectopic expression of a plasmid encoding NP73-102, the NH2-terminal peptide of the ANP prohormone which downregulates NPR-A expression, also suppressed lung metastasis of A549 cells in nude mice and tumorigenesis of Line 1 cells in immunocompetent BALB/c mice. These results suggest that NPR-A is involved in tumorigenesis and a new target for cancer therapy. This review focuses on structure, abnormal functions and carcinogenic mechanisms of NPR-A to investigate its role in tumorigenesis.
Collapse
Affiliation(s)
| | | | - Jiansheng Wang
- Department of Thoracic Surgery 2, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
14
|
Bice JS, Burley DS, Baxter GF. Novel approaches and opportunities for cardioprotective signaling through 3',5'-cyclic guanosine monophosphate manipulation. J Cardiovasc Pharmacol Ther 2014; 19:269-82. [PMID: 24572031 DOI: 10.1177/1074248413518971] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Limiting the injurious effects of myocardial ischemia-reperfusion is a desirable therapeutic target, which has been investigated extensively over the last three decades. Here we provide an up to date review of the literature documenting the experimental and clinical research demonstrating the effects of manipulating cGMP for the therapeutic targeting of the injurious effects of ischemic heart disease. Augmentation of the cyclic nucleotide cGMP plays a crucial role in many cardioprotective signaling pathways. There is an extensive body of literature which supports pharmacological targeting of cGMP or upstream activators in models of ischemia-reperfusion to limit injury. NO donors have long been utilised to manipulate cGMP, and more recently non-NO synthase derived NOx species have been investigated, resulting in their evaluation in clinical trials for the treatment of ischemic heart disease. Encouraging results demonstrate that natriuretic peptides are worthy candidates in manipulating cGMP and its downstream effectors to afford cytoprotection. Synthetic ligands have been designed which co-activate natriuretic peptide receptors to improve targeting this pathway. Advances have been made in targeting the soluble guanylyl cyclase which catalyzes the production of cGMP independently of the endogenous ligand NO using NO-independent stimulators and activators of sGC. These novel compounds show promise as a new class of drugs that target this signaling cascade specifically under pathological conditions when endogenous NO production may be compromised. Regulating the degradation of cGMP via phosphodiesterase inhibition also shows therapeutic potential. It is clear that production and regulation of cGMP is complex, indeed its spatial production and cellular distribution are only just emerging.
Collapse
Affiliation(s)
- Justin S Bice
- 1School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| | | | | |
Collapse
|
15
|
Chen Y, Chitapanarux T, Wu J, Soon RK, Melton AC, Yee HF. Inducible NOS mediates CNP-induced relaxation of intestinal myofibroblasts. Am J Physiol Gastrointest Liver Physiol 2013; 304:G673-9. [PMID: 23348803 PMCID: PMC3625877 DOI: 10.1152/ajpgi.00214.2012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Contraction of intestinal myofibroblasts (IMF) contributes to the development of strictures and fistulas seen in inflammatory bowel disease, but the mechanisms that regulate tension within these cells are poorly understood. In this study we investigated the role of nitric oxide (NO) signaling in C-type natriuretic peptide (CNP)-induced relaxation of IMF. We found that treatment with ODQ, a soluble guanylyl cyclase (sGC) inhibitor, or N(G)-nitro-L-arginine (L-NNA) or N(G)-monomethyl-L-arginine (L-NMMA), inhibitors of NO production, all impaired the relaxation of human and mouse IMF in response to CNP. ODQ, L-NNA, and L-NMMA also prevented CNP-induced elevations in cGMP concentrations, and L-NNA or L-NMMA blocked CNP-induced decreases in myosin light phosphorylation. IMF isolated from transgenic mice deficient in inducible nitric oxide synthase (iNOS) had reduced relaxation responses to CNP compared with IMF from control mice and were insensitive to the effects of ODQ, L-NNA, and L-NMMA on CNP treatment. Together these data indicate that stimulation of sGC though NO produced by iNOS activation is required for maximal CNP-induced relaxation in IMF.
Collapse
Affiliation(s)
- Yishi Chen
- 1Department of Medicine and Liver Center, University of California San Francisco, San Francisco, California; ,2AllCells, Emeryville, California; and
| | - Taned Chitapanarux
- 3Division of Gastrohepatology, Department of Medicine, Chiang Mai University, Thailand
| | - Jianfeng Wu
- 1Department of Medicine and Liver Center, University of California San Francisco, San Francisco, California;
| | - Russell K. Soon
- 1Department of Medicine and Liver Center, University of California San Francisco, San Francisco, California;
| | - Andrew C. Melton
- 1Department of Medicine and Liver Center, University of California San Francisco, San Francisco, California;
| | - Hal F. Yee
- 1Department of Medicine and Liver Center, University of California San Francisco, San Francisco, California;
| |
Collapse
|
16
|
Zhu H, Li JT, Zheng F, Martin E, Kots AY, Krumenacker JS, Choi BK, McCutcheon IE, Weisbrodt N, Bögler O, Murad F, Bian K. Restoring soluble guanylyl cyclase expression and function blocks the aggressive course of glioma. Mol Pharmacol 2011; 80:1076-84. [PMID: 21908708 PMCID: PMC3228529 DOI: 10.1124/mol.111.073585] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 09/09/2011] [Indexed: 12/11/2022] Open
Abstract
The NO and cGMP signaling pathways are of broad physiological and pathological significance. We compared the NO/soluble guanylyl cyclase (sGC)/cGMP pathway in human glioma tissues and cell lines with that of healthy control samples and demonstrated that sGC expression is significantly lower in glioma preparations. Our analysis of GEO databases (National Cancer Institute) further revealed a statistically significant reduction of sGC transcript levels in human glioma specimens. On the other hand, the expression levels of particulate (membrane) guanylyl cyclases (pGC) and cGMP-specific phosphodiesterase (PDE) were intact in the glioma cells that we have tested. Pharmacologically manipulating endogenous cGMP generation in glioma cells through either stimulating pGC by ANP/BNP, or blocking PDE by 3-isobutyl-1-methylxanthine/zaprinast caused significant inhibition of proliferation and colony formation of glioma cells. Genetically restoring sGC expression also correlated inversely with glioma cells growth. Orthotopic implantation of glioma cells transfected with an active mutant form of sGC (sGCα1β1(Cys105)) in athymic mice increased the survival time by 4-fold over the control. Histological analysis of xenografts overexpressing α1β1(Cys105) sGC revealed changes in cellular architecture that resemble the morphology of normal cells. In addition, a decrease in angiogenesis contributed to glioma inhibition by sGC/cGMP therapy. Our study proposes the new concept that suppressed expression of sGC, a key enzyme in the NO/cGMP pathway, may be associated with an aggressive course of glioma. The sGC/cGMP signaling-targeted therapy may be a favorable alternative to chemotherapy and radiotherapy for glioma and perhaps other tumors.
Collapse
Affiliation(s)
- Haifeng Zhu
- Departments of Hematology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Mapping of NPR-B immunoreactivity in the brainstem of Macaca fascicularis. Brain Struct Funct 2011; 216:387-402. [DOI: 10.1007/s00429-011-0313-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 03/21/2011] [Indexed: 11/25/2022]
|
18
|
|
19
|
Abstract
AbstractNatriuretic peptides (NPs) regulate salt and water homeostasis by inducing natriuresis and diuresis in the kidney. These actions in addition to those via the heart and vascular system play important roles in the regulation of blood pressure. In the central nervous system NPs play a significant role in neuronal development, synaptic transmission and neuroprotection. Currently, six different human NPs have been described: atrial natriuretic peptide (ANP), urodilatin (URO, renal natriuretic peptide), brain natriuretic peptide (BNP), and C-type natriuretic peptide (CNP) as well as guanylin and uroguanylin. ANP, URO and BNP activate the natriuretic peptide receptor A (NPR-A or guanylate cyclase A (GC-A)) while CNP activates natriuretic peptide receptor B (NPR-B or guanylate cyclase B (GC-B)). Guanylin and uroguanylin are known to activate guanylate cyclase C (GC-C). The receptors GC-A, GC-B, and GC-C are widely expressed in the human body. Currently, GC-B and CNP seems to have the highest expression in central nervous system compared to other NPs and their receptors. All known NPs generate intracellular cyclic GMP (cGMP) by activating their specific guanylate cyclase receptors. Subsequently, cGMP is able to activate protein kinase I or II (PKG I or II) and/or directly regulate transmembrane proteins such as ion channels, transporters and pumps. NPs also bind to the natriuretic peptide receptor C (also called clearance receptor NPR-C) which is a major pathway for the degradation of NPs and has no guanylate cyclase activity. In this review we will focus on new insights regarding the physiological effects of NPs in the brain, especially specific areas of their signaling pathways in neurons and glial cells.
Collapse
|
20
|
Tota B, Cerra MC, Gattuso A. Catecholamines, cardiac natriuretic peptides and chromogranin A: evolution and physiopathology of a 'whip-brake' system of the endocrine heart. ACTA ACUST UNITED AC 2010; 213:3081-103. [PMID: 20802109 DOI: 10.1242/jeb.027391] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the past 50 years, extensive evidence has shown the ability of vertebrate cardiac non-neuronal cells to synthesize and release catecholamines (CA). This formed the mindset behind the search for the intrinsic endocrine heart properties, culminating in 1981 with the discovery of the natriuretic peptides (NP). CA and NP, co-existing in the endocrine secretion granules and acting as major cardiovascular regulators in health and disease, have become of great biomedical relevance for their potent diagnostic and therapeutic use. The concept of the endocrine heart was later enriched by the identification of a growing number of cardiac hormonal substances involved in organ modulation under normal and stress-induced conditions. Recently, chromogranin A (CgA), a major constituent of the secretory granules, and its derived cardio-suppressive and antiadrenergic peptides, vasostatin-1 and catestatin, were shown as new players in this framework, functioning as cardiac counter-regulators in 'zero steady-state error' homeostasis, particularly under intense excitatory stimuli, e.g. CA-induced myocardial stress. Here, we present evidence for the hypothesis that is gaining support, particularly among human cardiologists. The actions of CA, NP and CgA, we argue, may be viewed as a hallmark of the cardiac capacity to organize 'whip-brake' connection-integration processes in spatio-temporal networks. The involvement of the nitric oxide synthase (NOS)/nitric oxide (NO) system in this configuration is discussed. The use of fish and amphibian paradigms will illustrate the ways that incipient endocrine-humoral agents have evolved as components of cardiac molecular loops and important intermediates during evolutionary transitions, or in a distinct phylogenetic lineage, or under stress challenges. This may help to grasp the old evolutionary roots of these intracardiac endocrine/paracrine networks and how they have evolved from relatively less complicated designs. The latter can also be used as an intellectual tool to disentangle the experimental complexity of the mammalian and human endocrine hearts, suggesting future investigational avenues.
Collapse
Affiliation(s)
- Bruno Tota
- Department of Cell Biology, University of Calabria, 87030, Arcavacata di Rende, Italy.
| | | | | |
Collapse
|
21
|
Kellner M, Jahn H, Wiedemann K. Natriuretic peptides and panic disorder: therapeutic prospects. Expert Rev Neurother 2010; 3:381-6. [PMID: 19810905 DOI: 10.1586/14737175.3.3.381] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Natriuretic peptides differentially modulate endocrine and behavioral stress responses in preclinical and human studies. While atrial natriuretic peptide inhibits the hypothalamic-pituitary-adrenocortical axis, C-type natriuretic peptide exerts stimulatory activity. In rodents, atrial natriuretic peptide reduces anxiety, whereas C-type natriuretic peptide has anxiogenic effects (mediated via corticotropin-releasing hormone). Patients with panic disorder show lower basal ANP plasma levels but a more pronounced release during experimentally induced panic attacks compared with controls. This could explain the absent pituitary-adrenocortical activation during panic anxiety and its paroxysmal nature. Furthermore, the effects of the panicogen cholecystokinin-tetrapeptide are attenuated by ANP pretreatment in panic patients, while C-type natriuretic peptide demonstrates anxiogenic action in healthy humans. Atrial natriuretic peptide agonists and C-type natriuretic peptide antagonists may have potential as a new class of antipanic and anxiolytic psychotherapeutic medication.
Collapse
Affiliation(s)
- Michael Kellner
- University Hospital Hamburg Eppendorf, Department of Psychiatry and Psychotherapy, Martinistrasse 52, 20246 Hamburg, Germany.
| | | | | |
Collapse
|
22
|
Porzionato A, Macchi V, Rucinski M, Malendowicz LK, De Caro R. Natriuretic Peptides in the Regulation of the Hypothalamic–Pituitary–Adrenal Axis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 280:1-39. [DOI: 10.1016/s1937-6448(10)80001-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
23
|
Beleigoli AMR, Diniz MFHS, Ribeiro ALP. Natriuretic peptides: linking heart and adipose tissue in obesity and related conditions--a systematic review. Obes Rev 2009; 10:617-26. [PMID: 19563456 DOI: 10.1111/j.1467-789x.2009.00624.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The objective of this study was to investigate the association between natriuretic peptides, obesity and related comorbidities. A systematic review of the English language literature from 1996 to 2008 was performed with Pubmed/MEDLINE and the ISI Web of Knowledge. 'Natriuretic peptides', 'atrial natriuretic factor', 'brain natriuretic peptide', 'obesity', 'body mass index', 'lipolysis' and 'adipose tissue' were used as Mesh terms. We also conducted a handle search among the references of the original articles selected. Finally, seventy-five studies were considered eligible for inclusion in the review. Natriuretic peptides are widely known as body homeostasis regulators. Recently, their action as lipolytic agents has been identified. Obese patients, especially those with hypertension and metabolic risk factors, have reduced plasma levels of natriuretic peptides. Whether this precedes or follows obesity and its complications remains undefined. The lipolytic effect of natriuretic peptides indicates that they may be involved in the pathophysiology of obesity. In general, studies with obese patients support paradoxical reduced levels of natriuretic peptides. However, the selection of subjects and classification of obesity and heart failure varied among the reviewed studies, rendering comparison unreliable.
Collapse
Affiliation(s)
- A M R Beleigoli
- Department of Clinical Medicine, Medical School, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | | | | |
Collapse
|
24
|
Nader L, Lahoud L, Chouery E, Aftimos G, Bois P, Farès NA. B-type natriuretic peptide receptors in hypertrophied adult rat cardiomyocytes. Ann Cardiol Angeiol (Paris) 2009; 59:20-4. [PMID: 19969282 DOI: 10.1016/j.ancard.2009.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 09/26/2009] [Indexed: 11/19/2022]
Abstract
Brain natriuretic peptide (BNP) binds to three types of natriuretic peptide receptors, NPR-A, -B and -C (NPRs). The expression shape of BNP and NPRs seems to be an important modulator factor in the pathogenesis of cardiac hypertrophy. The aim of this study was to evaluate the expression of NPRs in an animal model of pressure overload hypertrophy. Left ventricular hypertrophy was induced by chronic abdominal aortic banding in adult male Wistar rats. After six weeks, NPRs gene expression was evaluated with RT-PCR, BNP plasma concentration and BNP positive myocytes were measured with ELISA and immunohistochemistry techniques respectively. NPR-A and NPR-C mRNA expression was significantly increased in left ventricular hypertrophied cardiomyocytes by 1.6-fold and 2.1-fold respectively (P<0.01). Abdominal aortic banding increased significantly BNP plasma concentration (630+/-8pg/ml vs 106+/-4pg/ml; P<0.01). The percentage of BNP positive cells in normal myocardial tissue were 40% while in the hypertrophied one it raised to 80%. The data suggest that in our left ventricular hypertrophy model, the NPR-A and NPR-C receptors were increased in association to the increased BNP level. This relationship may amplify beneficial paracrine/autocrine effects of BNP on cardiac remodelling in response to hemodynamic overload.
Collapse
Affiliation(s)
- L Nader
- Laboratory of Physiology, Faculty of Medicine, University of Saint Joseph, Riad el solh, Beirut, Lebanon
| | | | | | | | | | | |
Collapse
|
25
|
McKie PM, Cataliotti A, Huntley BK, Martin FL, Olson TM, Burnett JC. A human atrial natriuretic peptide gene mutation reveals a novel peptide with enhanced blood pressure-lowering, renal-enhancing, and aldosterone-suppressing actions. J Am Coll Cardiol 2009; 54:1024-32. [PMID: 19729120 DOI: 10.1016/j.jacc.2009.04.080] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 03/31/2009] [Accepted: 04/20/2009] [Indexed: 10/20/2022]
Abstract
OBJECTIVES We sought to determine the physiologic actions and potential therapeutic applications of mutant atrial natriuretic peptide (mANP). BACKGROUND The cardiac hormone atrial natriuretic peptide (ANP) is a 28-amino acid (AA) peptide that consists of a 17-AA ring structure together with a 6-AA N-terminus and a 5-AA C-terminus. In a targeted scan for sequence variants within the human ANP gene, a mutation was identified that results in a 40-AA peptide consisting of native ANP((1-28)) and a C-terminal extension of 12 AA. We have termed this peptide mutant ANP. METHODS In vitro 3',5'-cyclic guanosine monophosphate (cGMP) activation in response to mANP was studied in cultured human cardiac fibroblasts known to express natriuretic peptide receptor A. The cardiorenal and neurohumoral properties of mANP compared with ANP were assessed in vivo in normal dogs. RESULTS We observed an incremental in vitro cGMP dose response with increasing concentrations of mANP. In vivo with high-dose mANP (33 pmol/kg/min), we observed significantly greater plasma cGMP activation, diuretic, natriuretic, glomerular filtration rate enhancing, renin-angiotensin-aldosterone system inhibiting, cardiac unloading, and blood pressure lowering properties when compared with native ANP. Low-dose mANP (2 pmol/kg/min) has natriuretic and diuretic properties without altering systemic hemodynamics compared with no natriuretic or diuretic response with low-dose native ANP. CONCLUSIONS These studies establish that mANP activates cGMP in vitro and exerts greater and more sustained natriuretic, diuretic, glomerular filtration rate, and renal blood flow enhancing actions than native ANP in vivo.
Collapse
Affiliation(s)
- Paul M McKie
- Cardiorenal Research Laboratory, Division of Cardiovascular Diseases, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Hatem SN, Coulombe A, Balse E. Specificities of atrial electrophysiology: Clues to a better understanding of cardiac function and the mechanisms of arrhythmias. J Mol Cell Cardiol 2009; 48:90-5. [PMID: 19744488 DOI: 10.1016/j.yjmcc.2009.08.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 08/14/2009] [Accepted: 08/29/2009] [Indexed: 11/19/2022]
Abstract
The electrical properties of the atria and ventricles differ in several aspects reflecting the distinct role of the atria in cardiac physiology. The study of atrial electrophysiology had greatly contributed to the understanding of the mechanisms of atrial fibrillation (AF). Only the atrial L-type calcium current is regulated by serotonine or, under basal condition, by phosphodiesterases. These distinct regulations can contribute to I(Ca) down-regulation observed during AF, which is an important determinant of action potential refractory period shortening. The voltage-gated potassium current, I(Kur), has a prominent role in the repolarization of the atrial but not ventricular AP. In many species, this current is based on the functional expression of K(V)1.5 channels, which might represent a specific therapeutic target for AF. Mechanisms regulating the trafficking of K(V)1.5 channels to the plasma membrane are being actively investigated. The resting potential of atrial myocytes is maintained by various inward rectifier currents which differ with ventricle currents by a reduced density of I(K1), the presence of a constitutively active I(KACh) and distinct regulation of I(KATP). Stretch-sensitive or mechanosensitive ion channels are particularly active in atrial myocytes and are involved in the secretion of the natriuretic peptide. Integration of knowledge on electrical properties of atrial myocytes in comprehensive schemas is now necessary for a better understanding of the physiology of atria and the mechanisms of AF.
Collapse
|
27
|
Potter LR, Yoder AR, Flora DR, Antos LK, Dickey DM. Natriuretic peptides: their structures, receptors, physiologic functions and therapeutic applications. Handb Exp Pharmacol 2009:341-66. [PMID: 19089336 DOI: 10.1007/978-3-540-68964-5_15] [Citation(s) in RCA: 394] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Natriuretic peptides are a family of three structurally related hormone/ paracrine factors. Atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) are secreted from the cardiac atria and ventricles, respectively. ANP signals in an endocrine and paracrine manner to decrease blood pressure and cardiac hypertrophy. BNP acts locally to reduce ventricular fibrosis. C-type natriuretic peptide (CNP) primarily stimulates long bone growth but likely serves unappreciated functions as well. ANP and BNP activate the transmembrane guanylyl cyclase, natriuretic peptide receptor-A (NPR-A). CNP activates a related cyclase, natriuretic peptide receptor-B (NPR-B). Both receptors catalyze the synthesis of cGMP, which mediates most known effects of natriuretic peptides. A third natriuretic peptide receptor, natriuretic peptide receptor-C (NPR-C), clears natriuretic peptides from the circulation through receptor-mediated internalization and degradation. However, a signaling function for the receptor has been suggested as well. Targeted disruptions of the genes encoding all natriuretic peptides and their receptors have been generated in mice, which display unique physiologies. A few mutations in these proteins have been reported in humans. Synthetic analogs of ANP (anaritide and carperitide) and BNP (nesiritide) have been investigated as potential therapies for the treatment of decompensated heart failure and other diseases. Anaritide and nesiritide are approved for use in acute decompensated heart failure, but recent studies have cast doubt on their safety and effectiveness. New clinical trials are examining the effect of nesiritide and novel peptides, like CD-NP, on these critical parameters. In this review, the history, structure, function, and clinical applications of natriuretic peptides and their receptors are discussed.
Collapse
Affiliation(s)
- Lincoln R Potter
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota-Twin Cities, 321 Church St SE, Minneapolis, MN 55455, USA.
| | | | | | | | | |
Collapse
|
28
|
Abdelalim E, Masuda C, Bellier J, Saito A, Yamamoto S, Mori N, Tooyama I. Distribution of natriuretic peptide receptor-C immunoreactivity in the rat brainstem and its relationship to cholinergic and catecholaminergic neurons. Neuroscience 2008; 155:192-202. [DOI: 10.1016/j.neuroscience.2008.05.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2007] [Revised: 05/09/2008] [Accepted: 05/15/2008] [Indexed: 10/22/2022]
|
29
|
Denef C. Paracrinicity: the story of 30 years of cellular pituitary crosstalk. J Neuroendocrinol 2008; 20:1-70. [PMID: 18081553 PMCID: PMC2229370 DOI: 10.1111/j.1365-2826.2007.01616.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 07/30/2007] [Accepted: 08/13/2007] [Indexed: 11/27/2022]
Abstract
Living organisms represent, in essence, dynamic interactions of high complexity between membrane-separated compartments that cannot exist on their own, but reach behaviour in co-ordination. In multicellular organisms, there must be communication and co-ordination between individual cells and cell groups to achieve appropriate behaviour of the system. Depending on the mode of signal transportation and the target, intercellular communication is neuronal, hormonal, paracrine or juxtacrine. Cell signalling can also be self-targeting or autocrine. Although the notion of paracrine and autocrine signalling was already suggested more than 100 years ago, it is only during the last 30 years that these mechanisms have been characterised. In the anterior pituitary, paracrine communication and autocrine loops that operate during fetal and postnatal development in mammals and lower vertebrates have been shown in all hormonal cell types and in folliculo-stellate cells. More than 100 compounds have been identified that have, or may have, paracrine or autocrine actions. They include the neurotransmitters acetylcholine and gamma-aminobutyric acid, peptides such as vasoactive intestinal peptide, galanin, endothelins, calcitonin, neuromedin B and melanocortins, growth factors of the epidermal growth factor, fibroblast growth factor, nerve growth factor and transforming growth factor-beta families, cytokines, tissue factors such as annexin-1 and follistatin, hormones, nitric oxide, purines, retinoids and fatty acid derivatives. In addition, connective tissue cells, endothelial cells and vascular pericytes may influence paracrinicity by delivering growth factors, cytokines, heparan sulphate proteoglycans and proteases. Basement membranes may influence paracrine signalling through the binding of signalling molecules to heparan sulphate proteoglycans. Paracrine/autocrine actions are highly context-dependent. They are turned on/off when hormonal outputs need to be adapted to changing demands of the organism, such as during reproduction, stress, inflammation, starvation and circadian rhythms. Specificity and selectivity in autocrine/paracrine interactions may rely on microanatomical specialisations, functional compartmentalisation in receptor-ligand distribution and the non-equilibrium dynamics of the receptor-ligand interactions in the loops.
Collapse
Affiliation(s)
- C Denef
- Laboratory of Cell Pharmacology, University of Leuven, Medical School, Leuven, Belgium.
| |
Collapse
|
30
|
Cao LH, Yang XL. Natriuretic peptides and their receptors in the central nervous system. Prog Neurobiol 2007; 84:234-48. [PMID: 18215455 DOI: 10.1016/j.pneurobio.2007.12.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2007] [Revised: 11/05/2007] [Accepted: 12/10/2007] [Indexed: 10/22/2022]
Abstract
Natriuretic peptides (NPs), including atrial, brain and C-type NPs, are a family of structurally related but genetically distinct peptides. These peptides, along with their receptors (NPRs), are long known to be involved in the regulation of various physiological functions, such as diuresis, natriuresis, and blood flow. Recently, abundant evidence shows that NPs and NPRs are widely distributed in the central nervous system (CNS), suggesting possible roles of NPs in modulating physiological functions of the CNS. This review starts with a brief summary of relevant background information, such as molecular structures of NPs and NPRs and general intracellular mechanisms after activation of NPRs. We then provide a detailed description of the expression profiles of NPs and NPRs in the CNS and an in-depth discussion of how NPs are involved in neural development, neurotransmitter release, synaptic transmission and neuroprotection through activation of NPRs.
Collapse
Affiliation(s)
- Li-Hui Cao
- Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | | |
Collapse
|
31
|
Pagel-Langenickel I, Buttgereit J, Bader M, Langenickel TH. Natriuretic peptide receptor B signaling in the cardiovascular system: protection from cardiac hypertrophy. J Mol Med (Berl) 2007; 85:797-810. [PMID: 17429599 DOI: 10.1007/s00109-007-0183-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 02/06/2007] [Accepted: 02/27/2007] [Indexed: 11/28/2022]
Abstract
Natriuretic peptides (NP) represent a family of structurally homologous but genetically distinct peptide hormones involved in regulation of fluid and electrolyte balance, blood pressure, fat metabolism, cell proliferation, and long bone growth. Recent work suggests a role for natriuretic peptide receptor B (NPR-B) signaling in regulation of cardiac growth by either a direct effect on cardiomyocytes or by modulation of other signaling pathways including the autonomic nervous system. The research links NPR-B for the first time to a cardiac phenotype in vivo and underlines the importance of the NP in the cardiovascular system. This manuscript will focus on the role of NPR-B and its ligand C-type natriuretic peptide in cardiovascular physiology and disease and will evaluate these new findings in the context of the known function of this receptor, with a perspective on how future research might further elucidate NPR-B function.
Collapse
Affiliation(s)
- Ines Pagel-Langenickel
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
32
|
Abdelalim EM, Osman AHK, Takada T, Torii R, Tooyama I. Immunohistochemical mapping of natriuretic peptide receptor-A in the brainstem of Macaca fascicularis. Neuroscience 2007; 145:1087-96. [PMID: 17293051 DOI: 10.1016/j.neuroscience.2006.12.062] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 12/26/2006] [Accepted: 12/28/2006] [Indexed: 10/23/2022]
Abstract
Natriuretic peptide receptor-A (NPR-A) mediates the biological effects of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), and is involved in maintaining cardiovascular homeostasis. In this immunohistochemical study we examined the distribution of NPR-A in the brainstem of the cynomolgus monkey. NPR-A immunoreactivity was localized to neurons in specific brainstem regions. NPR-A-immunoreactive perikarya were found in the red nucleus and the oculomotor nucleus in the midbrain, the parabrachial nucleus and the locus coeruleus in the pons, and the dorsal motor nucleus of the vagus, the hypoglossal nucleus, the cuneate nucleus, the gracile nucleus, the nucleus ambiguus, the lateral reticular nucleus, the reticular formation, and the inferior olivary nucleus in the medulla oblongata. Extensive networks of immunoreactive fibers were apparent in the red nucleus, the oculomotor nucleus, the principal sensory trigeminal nucleus, and the parabrachial nucleus. Double immunostaining revealed NPR-A immunoreactivity in cholinergic neurons of the parabrachial nucleus, the dorsal motor nucleus of vagus, the hypoglossal nucleus, and the nucleus ambiguus. However, there was no colocalization of NPR-A and tyrosine hydroxylase in the locus coeruleus. The wide anatomical distribution of NPR-A-immunoreactive structures suggests that natriuretic peptides, besides having a role in the central regulation of endocrine and cardiovascular homeostasis, may also mediate diverse physiological functions.
Collapse
Affiliation(s)
- E M Abdelalim
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | | | | | | | | |
Collapse
|
33
|
Fox BK, Naka T, Inoue K, Takei Y, Hirano T, Grau EG. In vitro effects of homologous natriuretic peptides on growth hormone and prolactin release in the tilapia, Oreochromis mossambicus. Gen Comp Endocrinol 2007; 150:270-7. [PMID: 17107675 DOI: 10.1016/j.ygcen.2006.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 09/14/2006] [Accepted: 09/16/2006] [Indexed: 11/18/2022]
Abstract
C-type natriuretic peptide (CNP) cDNA was cloned from the tilapia brain and its inferred mature sequence was chemically synthesized together with previously cloned tilapia A-type and B-type natriuretic peptides (ANP and BNP). The cloned CNP belongs to the CNP-1 type of teleosts. Reverse-transcription polymerase chain reaction showed that the ANP and BNP genes were hardly expressed in the tilapia brain and pituitary, whereas the CNP gene was expressed strongly in the brain and slightly in the pituitary. Effects of homologous natriuretic peptides (100 nM each) on growth hormone (GH) and prolactin (PRL) release were examined using dispersed tilapia pituitary cells. Tilapia ANP and BNP stimulated GH and PRL release during 4-8, and 8-24 h of incubation. BNP appeared to be more potent than ANP, also stimulating GH and PRL release during 0-4 h of incubation. CNP stimulated GH release only during 4-8 h of incubation; CNP was without effect on PRL release. All three NPs stimulated GH and PRL mRNA expression in dispersed pituitary cells following 24 h of incubation. ANP and BNP significantly elevated intracellular cGMP accumulation in dispersed pituitary cells after 15 min of exposure, whereas no effect of CNP was observed. These results indicate a long-lasting stimulation of GH and PRL release by ANP and BNP that is mediated, at least in part, by the guanylyl cyclase-linked NP receptor.
Collapse
Affiliation(s)
- Bradley K Fox
- Hawaii Institute of Marine Biology, University of Hawaii, P.O. Box 1346, Kaneohe, HI 96744, USA
| | | | | | | | | | | |
Collapse
|
34
|
Jacques D, Sader S, Perreault C, Abdel-Samad D, Provost C. Roles of nuclear NPY and NPY receptors in the regulation of the endocardial endothelium and heart functionThis paper is one of a selection of papers published in this Special issue, entitled Second Messengers and Phosphoproteins—12th International Conference. Can J Physiol Pharmacol 2006; 84:695-705. [PMID: 16998533 DOI: 10.1139/y05-162] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
It is now well accepted that the heart is a multifunctional organ in which endothelial cells, and more particularly endocardial endothelial cells (EECs), seem to play an important role in regulating and maintaining cardiac excitation–contraction coupling. Even if major differences exist between vascular endothelial cells (VECs) and EECs, all endothelial cells including EECs release a variety of auto- and paracrine factors such as nitric oxide, endothelin-1, angiotensin II, and neuropeptide Y. All these factors were reported to affect cardiomyocyte contractile performance and rhythmicity. In this review, findings on the morphology of EECs, differences between EECs and other types of endothelial cells, interactions between EECs and the adjacent cardiomyocytes, and effects of NPY on the heart will be presented. We will also show evidence on the presence and localization of NPY and the Y1receptor in the endocardial endothelium and discuss their role in the regulation of cytosolic and nuclear free calcium.
Collapse
Affiliation(s)
- Danielle Jacques
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Sherbrooke, 3001 12th Avenue North, Sherbrooke, QC J1H 5N4, Canada.
| | | | | | | | | |
Collapse
|
35
|
Christoffersen TEH, Aplin M, Strom CC, Sheikh SP, Skott O, Busk PK, Haunso S, Nielsen LB. Increased natriuretic peptide receptor A and C gene expression in rats with pressure-overload cardiac hypertrophy. Am J Physiol Heart Circ Physiol 2006; 290:H1635-41. [PMID: 16272201 DOI: 10.1152/ajpheart.00612.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Both atrial (ANP) and brain (BNP) natriuretic peptide affect development of cardiac hypertrophy and fibrosis via binding to natriuretic peptide receptor (NPR)-A in the heart. A putative clearance receptor, NPR-C, is believed to regulate cardiac levels of ANP and BNP. The renin-angiotensin system also affects cardiac hypertrophy and fibrosis. In this study we examined the expression of genes for the NPRs in rats with pressure-overload cardiac hypertrophy. The ANG II type 1 receptor was blocked with losartan (10 mg·kg−1·day−1) to investigate a possible role of the renin-angiotensin system in regulation of natriuretic peptide and NPR gene expression. The ascending aorta was banded in 84 rats during Hypnorm/Dormicum-isoflurane anesthesia; after 4 wk the rats were randomized to treatment with losartan or placebo. The left ventricle of the heart was removed 1, 2, or 4 wk later. Aortic banding increased left ventricular expression of NPR-A and NPR-C mRNA by 110% ( P < 0.001) and 520% ( P < 0.01), respectively, after 8 wk; as expected, it also increased the expression of ANP and BNP mRNAs. Losartan induced a slight reduction of left ventricular weight but did not affect the expression of mRNAs for the natriuretic peptides or their receptors. Although increased gene expression does not necessarily convey a higher concentration of the protein, the data suggest that pressure overload is accompanied by upregulation of not only ANP and BNP but also their receptors NPR-A and NPR-C in the left ventricle.
Collapse
Affiliation(s)
- Tue E H Christoffersen
- Laboratory of Molecular Cardiology, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Potter LR, Abbey-Hosch S, Dickey DM. Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions. Endocr Rev 2006; 27:47-72. [PMID: 16291870 DOI: 10.1210/er.2005-0014] [Citation(s) in RCA: 704] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Natriuretic peptides are a family of structurally related but genetically distinct hormones/paracrine factors that regulate blood volume, blood pressure, ventricular hypertrophy, pulmonary hypertension, fat metabolism, and long bone growth. The mammalian members are atrial natriuretic peptide, B-type natriuretic peptide, C-type natriuretic peptide, and possibly osteocrin/musclin. Three single membrane-spanning natriuretic peptide receptors (NPRs) have been identified. Two, NPR-A/GC-A/NPR1 and NPR-B/GC-B/NPR2, are transmembrane guanylyl cyclases, enzymes that catalyze the synthesis of cGMP. One, NPR-C/NPR3, lacks intrinsic enzymatic activity and controls the local concentrations of natriuretic peptides through constitutive receptor-mediated internalization and degradation. Single allele-inactivating mutations in the promoter of human NPR-A are associated with hypertension and heart failure, whereas homozygous inactivating mutations in human NPR-B cause a form of short-limbed dwarfism known as acromesomelic dysplasia type Maroteaux. The physiological effects of natriuretic peptides are elicited through three classes of cGMP binding proteins: cGMP-dependent protein kinases, cGMP-regulated phosphodiesterases, and cyclic nucleotide-gated ion channels. In this comprehensive review, the structure, function, regulation, and biological consequences of natriuretic peptides and their associated signaling proteins are described.
Collapse
Affiliation(s)
- Lincoln R Potter
- Department of Biochemistry, Molecular Biology, and Biophysics, 6-155 Jackson Hall, 321 Church Street SE, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | |
Collapse
|
37
|
Jacques D, Sader S, Perreault C, Abdel-Samad D. NPY and NPY receptors: presence, distribution and roles in the regulation of the endocardial endothelium and cardiac function. EXS 2006:77-87. [PMID: 16382998 DOI: 10.1007/3-7643-7417-9_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Affiliation(s)
- Danielle Jacques
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.
| | | | | | | |
Collapse
|
38
|
Potthast R, Potter LR. Phosphorylation-dependent regulation of the guanylyl cyclase-linked natriuretic peptide receptors. Peptides 2005; 26:1001-8. [PMID: 15911068 DOI: 10.1016/j.peptides.2004.08.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2004] [Accepted: 08/05/2004] [Indexed: 11/21/2022]
Abstract
Natriuretic peptides are a family of hormones/paracrine factors that regulate blood pressure, cardiovascular homeostasis and bone growth. The mammalian family consists of atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and C-type natriuretic peptide (CNP). A family of three cell surface receptors mediates their physiologic effects. Two are receptor guanylyl cyclases known as NPR-A/GC-A and NPR-B/GC-B. Peptide binding to these enzymes stimulates the synthesis of the intracellular second messenger, cGMP, whereas a third receptor, NPR-C, lacks enzymatic activity and functions primarily as a clearance receptor. Here, we provide a brief review of how various desensitizing agents and/or conditions inhibit NPR-A and NPR-B by decreasing their phosphorylation state.
Collapse
Affiliation(s)
- Regine Potthast
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Twin Cities, 6-155 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, USA
| | | |
Collapse
|
39
|
Shanshan P, Yan Z, Aiyun L, Chen P. Effect of exercise on gene expression of atrial natriuretic peptide receptor of kidney. Life Sci 2005; 76:1921-8. [PMID: 15707875 DOI: 10.1016/j.lfs.2004.07.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Accepted: 07/13/2004] [Indexed: 10/25/2022]
Abstract
To study the effect of exercise on gene expression of natriuretic peptide receptors (NPRs) in the kidney, with in situ hybridization and the computerized image analysis, we investigated the alterations of gene expression of NPRs on the animal model of exercise training of different intensity. We found that after exercise training of different intensity, renal NPR-A mRNA and NPR-C mRNA expression showed different changes, the expression of NPR-A mRNA upregulated and NPR-C mRNA downregulated in the kidney. With the increase exercise intensity, change in NPR-A mRNA expression was insignificant, but downregulation in NPR-C mRNA expression was more significant. The result suggested that the effect of exercise on renal NPRs mRNA expression was mainly on the modulation level of NPR-C mRNA, it could reduce the clearance rate of ANP, increase the level of ANP, and enhance the biological effect of ANP on the kidney and regulative action of kidney in exercise.
Collapse
Affiliation(s)
- Pan Shanshan
- Department of Exercise Science, Shanghai Institute of Physical Education, Shanghai, 200438 China.
| | | | | | | |
Collapse
|
40
|
Campese VM, Nadim MK. Natriuretic Peptides. Hypertension 2005. [DOI: 10.1016/b978-0-7216-0258-5.50108-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
41
|
Heimeier RA, Donald JA. Renal C-type natriuretic peptide and natriuretic peptide receptor B mRNA expression are affected by water deprivation in the Spinifex Hopping mouse. Comp Biochem Physiol A Mol Integr Physiol 2004; 136:565-75. [PMID: 14613785 DOI: 10.1016/s1095-6433(03)00207-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This study investigated the effect of water deprivation on the expression of C-type natriuretic peptide (CNP) and natriuretic peptide receptor B (NPR-B) mRNA, and the ability of NPR-B to generate cGMP in the Spinifex Hopping mouse, Notomys alexis. This rodent is a native of central and western Australia that is well adapted to survive in arid environments. Initially, CNP and NPR-B cDNAs (partial for NPR-B) were cloned and sequenced, and were shown to have high homology with those of rat and mouse. RT-PCR analysis showed CNP mRNA expression in the kidney, proximal and distal colon and small intestine, whilst NPR-B mRNA expression was found in the kidney, proximal and distal colon and the atria. Using a semi-quantitative multiplex PCR technique, the expression of renal CNP and NPR-B mRNA was determined in 7- and 14-day water-deprived hopping mice, in parallel with control hopping mice (access to water). Water deprivation significantly decreased the relative levels of CNP and NPR-B mRNA expression in both the 7- and 14-day water-deprived hopping mice, when compared to control hopping mice. In contrast, the ability of CNP to stimulate cGMP production was significantly increased after 14 days of water deprivation. This study shows that alterations in the renal CNP/NPR-B system may be an important physiological adjustment when water is scarce.
Collapse
Affiliation(s)
- Rachel A Heimeier
- School of Biological and Chemical Sciences, Deakin University, Geelong, Vic. 3217, Australia.
| | | |
Collapse
|
42
|
Vasavada N, Agarwal R. Role of excess volume in the pathophysiology of hypertension in chronic kidney disease. Kidney Int 2003; 64:1772-9. [PMID: 14531810 DOI: 10.1046/j.1523-1755.2003.00273.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The pathophysiology of hypertension in patients with chronic kidney disease (CKD) is largely attributed to positive sodium balance. It is unclear how loop diuretics affect fluid volume compartments, especially with respect to their antihypertensive effect. METHODS Subjects with CKD were administered a single therapeutically equivalent dose of an oral loop diuretic (furosemide or torsemide in randomized crossover design). We measured acute volume changes over 12 hours using biophysical and hormonal biomarkers and then 24-hour ambulatory blood pressure after daily diuretic therapy for 3 weeks. RESULTS Single-dose administration of loop diuretic decreased extracellular water (ECW) by 1.7 L [95% confidence interval (95% CI) 1.2, 2.2, P < 0.001], total body water (TBW) by 1.2 L (95% CI 0.5, 1.9, P < 0.001), and increased natural log (ln) plasma renin activity (PRA) from -1.2 +/- 1.3 ng/mL/hour to -0.5 +/- 1.5 ng/mL/hour (P < 0.001). Daily loop diuretic administration resulted in reduced ECW from 24.2 +/- 6.4 L to 22.3 +/- 5.2 L (P = 0.02) and TBW from 54.3 +/- 12.7 L to 51.6 +/- 11.9 L (P < 0.001) in 1 week. After 3 weeks of diuretic therapy, whereas ECW reduction persisted at 22.8 +/- 5.1 L (P = 0.05), TBW trended toward baseline level at 52.7 +/- 11.8 L. A concomitant increase in ln PRA from -1.0 +/- 1.3 ng/mL/hour to 0.4 +/- 1.9 ng/mL/hour (P < 0.001) and ln plasma aldosterone (PA) from 2.0 +/- 0.8 ng/dL to 2.3 +/- 0.8 ng/dL (P < 0.005) and fall in ln brain natriuretic peptide (BNP) from 4.3 +/- 0.9 pg/mL to 3.7 +/- 1.0 pg/mL (P < 0.01) were seen at 1 week. Despite a trend toward restoration of TBW, changes in hormonal biomarkers were maintained at 3 weeks. Over these 3 weeks, furosemide reduced 24-hour ambulatory blood pressure from 147 +/- 17/78 +/- 11 mm Hg to 138 +/- 21/74 +/- 12 mm Hg (P = 0.021) and torsemide reduced it from 143 +/- 18/75 +/- 10 mm Hg to 133 +/- 19/71 +/- 10 mm Hg (P = 0.007). CONCLUSION Patients with CKD have elevated extracellular fluid volume that can be corrected acutely with loop diuretics. Persistent diuretic use results in dynamic changes in ECW and other body fluid compartments that translate into chronic blood pressure reduction.
Collapse
Affiliation(s)
- Nina Vasavada
- Division of Nephrology and Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | |
Collapse
|
43
|
Brutsaert DL. Cardiac endothelial-myocardial signaling: its role in cardiac growth, contractile performance, and rhythmicity. Physiol Rev 2003; 83:59-115. [PMID: 12506127 DOI: 10.1152/physrev.00017.2002] [Citation(s) in RCA: 491] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Experimental work during the past 15 years has demonstrated that endothelial cells in the heart play an obligatory role in regulating and maintaining cardiac function, in particular, at the endocardium and in the myocardial capillaries where endothelial cells directly interact with adjacent cardiomyocytes. The emerging field of targeted gene manipulation has led to the contention that cardiac endothelial-cardiomyocytal interaction is a prerequisite for normal cardiac development and growth. Some of the molecular mechanisms and cellular signals governing this interaction, such as neuregulin, vascular endothelial growth factor, and angiopoietin, continue to maintain phenotype and survival of cardiomyocytes in the adult heart. Cardiac endothelial cells, like vascular endothelial cells, also express and release a variety of auto- and paracrine agents, such as nitric oxide, endothelin, prostaglandin I(2), and angiotensin II, which directly influence cardiac metabolism, growth, contractile performance, and rhythmicity of the adult heart. The synthesis, secretion, and, most importantly, the activities of these endothelium-derived substances in the heart are closely linked, interrelated, and interactive. It may therefore be simplistic to try and define their properties independently from one another. Moreover, in relation specifically to the endocardial endothelium, an active transendothelial physicochemical gradient for various ions, or blood-heart barrier, has been demonstrated. Linkage of this blood-heart barrier to the various other endothelium-mediated signaling pathways or to the putative vascular endothelium-derived hyperpolarizing factors remains to be determined. At the early stages of cardiac failure, all major cardiovascular risk factors may cause cardiac endothelial activation as an adaptive response often followed by cardiac endothelial dysfunction. Because of the interdependency of all endothelial signaling pathways, activation or disturbance of any will necessarily affect the others leading to a disturbance of their normal balance, leading to further progression of cardiac failure.
Collapse
|
44
|
Pemberton CJ, Yandle TG, Espiner EA. Immunoreactive forms of natriuretic peptides in ovine brain: response to heart failure. Peptides 2002; 23:2235-44. [PMID: 12535704 DOI: 10.1016/s0196-9781(02)00263-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In order to elucidate how brain natriuretic peptides (NPs) are affected by experimentally induced heart failure, we have measured the immunoreactive (IR) levels of the NP in extracts from 10 regions of ovine brain, including pituitary, and clarified their molecular forms using high performance liquid chromatography (HPLC). Using species-specific radioimmunoassay (RIA), atrial natriuretic peptide (ANP), B-type natriuretic peptide (BNP) and C-type natriuretic peptide (CNP) were all detected in extracts taken from control animals and sheep that had undergone rapid ventricular pacing for 7 days to induce heart failure. CNP was the most abundant NP as assessed by specific RIA, and the pituitary contained the highest IR levels for all three NP. Compared with control animals, the pituitary content of BNP in animals with heart failure was reduced by 40% (control, 0.26+/-0.02 pmol/g wet weight versus heart failure 0.16+/-0.01; P<0.01, n=7). No other significant changes were observed. The molecular forms of ANP and CNP in whole brain extracts as assessed by HPLC were proANP and CNP22, CNP53 and proCNP, respectively. BNP in pituitary extracts was assessed to be primarily proBNP with a minor component of mature BNP26.
Collapse
Affiliation(s)
- Chris J Pemberton
- Christchurch Cardioendocrine Research Group, Christchurch School of Medicine, University of Otago, Christchurch 8001, New Zealand.
| | | | | |
Collapse
|
45
|
Dzimiri N, Moorji A, Afrane B, Al-Halees Z. Differential regulation of atrial and brain natriuretic peptides and its implications for the management of left ventricular volume overload. Eur J Clin Invest 2002; 32:563-9. [PMID: 12190955 DOI: 10.1046/j.1365-2362.2002.01035.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND In this study, we investigated the possibility that the atrial and brain natriuretic peptide expression in left ventricular volume overload (VOL) is transcriptionally regulated. We further evaluated the diagnostic and/or prognostic potential of this expression for the management of patients with this disorder. DESIGN We compared the myocardial mRNA expression and plasma levels of the two peptides in VOL patients using donor hearts and in healthy blood donors as controls. RESULTS The atrial natriuretic peptide (ANP) mRNA was elevated by 38% (P < 0.03) in the right atrium and by 53% (P < 0.003) in the left atrium, but was unchanged in the ventricular chambers of the patient group (n = 19) compared with controls (n = 8). Plasma ANP concentration was elevated by 62% (P < 0.001) compared with blood donor controls (n = 79). It increased slightly (by 36%) 2 h following surgery, and remained at 64% higher (P < 0.03 vs. presurgery) for the 5 days following surgery. The brain natriuretic peptide (BNP) mRNA was elevated by approximately one-fold in both the left ventricle (P < 0.02) and right atrium (P < 0.05), by 94% (P < 0.02) in the right ventricle and by 89% (P < 0.05) in the left atrium. Its plasma level in the patients was 3.4-fold (P < 0.00003) higher than in control subjects. It increased significantly by 1.2-fold (P < 0.01) 2 h following surgery, but dropped significantly (P < 0.05 vs. 2 h post surgery) to presurgical levels 5 days following surgery. CONCLUSION The results show chamber-specific elevation in both atrial and brain natriuretic peptide expression and differences in their circulating levels in VOL, suggesting that BNP is a potential prognostic indicator in the postsurgical management of these patients.
Collapse
Affiliation(s)
- N Dzimiri
- Pharmacology Division, Biological and Medical Research Department, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia.
| | | | | | | |
Collapse
|
46
|
Féthière J, Graihle R, De Léan A. Identification of the atrial natriuretic factor-RICreceptor subtype (B-clone) in cultured rat aortic smooth muscle cells. FEBS Lett 2002; 305:77-80. [PMID: 1352262 DOI: 10.1016/0014-5793(92)80868-h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The present report demonstrates the presence in cultured rat aortic smooth muscle cells of a natriuretic factor receptor subtype with a specificity typical of the ANF-R1C (B-clone) receptor subtype. To prove the existence of this receptor subtype in this cell line we show that pCNP-(82-103) is the most potent activator of the intrinsic guanylate cyclase activity, and that [125I]pCNP-(82-103) binds to a specific receptor subtype which is insensitive to the ANF-R2 specific ligand, C-ANF. The investigation of its binding characteristics show the rank potency order of the natriuretic factors in competing for pCNP binding to be pCNP greater than pBNP greater than rANF. Furthermore it was possible to covalently photolabel this receptor subtype with underivatized]125I]pCNP and show that it is composed of a single subunit of 130 kDa with very high specificity for pCNP.
Collapse
Affiliation(s)
- J Féthière
- Department of Pharmacology, University of Montreal, Canada
| | | | | |
Collapse
|
47
|
McKenzie JC, Juan YW, Thomas CR, Berman NE, Klein RM. Atrial natriuretic peptide-like immunoreactivity in neurons and astrocytes of human cerebellum and inferior olivary complex. J Histochem Cytochem 2001; 49:1453-67. [PMID: 11668198 DOI: 10.1177/002215540104901113] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Atrial natriuretic peptide (ANP) has previously been localized in areas of mammalian brain associated with olfaction, cardiovascular function, and fluid/electrolyte homeostasis. Despite the presence of several types of natriuretic peptide receptors in mammalian cerebellum, neither intrinsic nor extrinsic sources of the natriuretic peptides have been described. In this report we describe the immunohistochemical localization of both intrinsic and extrinsic sources for ANP in human cerebellum. ANP-like immunoreactivity (ANP-LIR) was observed in climbing fibers in the cerebellar molecular layer that probably originated from isolated immunopositive neurons of the inferior olivary complex. Intrinsic sources of ANP-LIR included small subpopulations of protoplasmic and fibrous astrocytes and Bergmann glia, as well as Golgi and Lugaro neurons of the granule cell layer. These results suggest that, in addition to its presumptive roles in local vasoregulation, ANP may serve as a modulator of the activity of Purkinje neurons.
Collapse
Affiliation(s)
- J C McKenzie
- Department of Anatomy, College of Medicine, Howard University, Washington, DC 20059, USA
| | | | | | | | | |
Collapse
|
48
|
Kim SW, Lee JU, Choi KC. Increased expression of atrial natriuretic peptide in ureteral obstructed kidneys in rats. SCANDINAVIAN JOURNAL OF UROLOGY AND NEPHROLOGY 2001; 35:163-8. [PMID: 11487065 DOI: 10.1080/003655901750291890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
OBJECTIVES Whether the natriuresis in the previously ureteral obstructed kidney may be related to an altered regulation of local atrial natriuretic peptide (ANP) was investigated. MATERIALS AND METHODS Male Sprague-Dawley rats were unilaterally obstructed of the left ureters for 48 hours. The left and right ureters were separately cannulated to collect urine samples. In some rats, both kidneys were removed without releasing the obstruction. Control rats were treated the same except that no ureteral obstruction was made. The mRNA expression of ANP and natriuretic peptide receptor (NPR)-A was determined in the kidney by reverse transcription-polymerase chain reaction. The guanylyl cyclase activity was measured by the amount of cGMP generated in response to ANP. Plasma levels of ANP were measured by radioimmunoassay. RESULTS The ureteral obstruction did not significantly affect the plasma ANP levels. In the obstructed kidney, the creatinine clearance was decreased, while the fractional excretion of sodium increased. The expression of ANP mRNA was increased in the obstructed kidney. The NPR-A mRNA expression was not altered in the glomerulus, but was decreased in the papilla of the obstructed kidney. Nor was the guanylyl cyclase activity in the glomerulus altered. Although the guanylyl cyclase activity in the papilla was significantly decreased in the obstructed kidney, it was rapidly resumed upon releasing the obstruction. CONCLUSIONS An increased local expression of ANP may, at least in part, account for the natriuresis in the previously ureteral obstructed kidney.
Collapse
Affiliation(s)
- S W Kim
- Department of Physiology, Chonnam National University Medical School, Kwangju, Korea
| | | | | |
Collapse
|
49
|
Silberbach M, Roberts CT. Natriuretic peptide signalling: molecular and cellular pathways to growth regulation. Cell Signal 2001; 13:221-31. [PMID: 11306239 DOI: 10.1016/s0898-6568(01)00139-5] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The natriuretic peptides (NPs) constitute a family of polypeptide hormones that regulate mammalian blood volume and blood pressure. The ability of the NPs to modulate cardiac hypertrophy and cell proliferation as well is now beginning to be recognized. The NPs interact with three membrane-bound receptors, all of which contain a well-characterized extracellular ligand-binding domain. The R1 subclass of NP receptors (NPR-A and NPR-B) contains a C-terminal guanylyl cyclase domain and is responsible for most of the NPs downstream actions through their ability to generate cGMP. The R2 subclass lacks an obvious catalytic domain and functions primarily as a clearance receptor. This review focuses on the signal transduction pathways initiated by ligand binding and other factors that help to determine signalling specificities, including allosteric factors modulating cGMP generation, receptor desensitization, the activation and function of cGMP-dependent protein kinase (PKG), and identification of potential nuclear or cytoplasmic targets such as the mitogen-activated protein kinase signalling (MAPK) cascade. The inhibition of cardiac growth and hypertrophy may be an important but underappreciated action of the NP signalling system.
Collapse
Affiliation(s)
- M Silberbach
- Division of Pediatric Cardiology, Department of Pediatrics, Doernbecher Children's Hospital, UHN-60, 3181 SW Sam Jackson Park Road, 97201, Portland, OR, USA.
| | | |
Collapse
|
50
|
Kim SW, Lee J, Park JW, Hong JH, Kook H, Choi C, Choi KC. Increased expression of atrial natriuretic peptide in the kidney of rats with bilateral ureteral obstruction. Kidney Int 2001; 59:1274-82. [PMID: 11260388 DOI: 10.1046/j.1523-1755.2001.0590041274.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Whether the postobstructive diuresis can be related to an altered regulation of local atrial natriuretic peptide (ANP) in the kidney was investigated. METHODS Three groups of rats had both of their ureters obstructed for 48 hours. The kidneys were taken without releasing the obstruction in one group [bilateral ureteral obstruction (BUO)]. The obstruction was released in the other two groups and the animals were kept for 4 and 24 hours thereafter to collect urinary data (BUR-4 and BUR-24, respectively). Plasma and urine ANP levels were measured by radioimmunoassay. The mRNA expression of ANP, natriuretic peptide receptor-A (NPR-A), and NPR-C was determined by reverse transcription-polymerase chain reaction. ANP receptors were also quantitated by in vitro autoradiography. The activity of guanylyl cyclase was determined by the amount of cGMP generated in response to ANP. RESULTS Urinary volume and sodium excretion increased in BUR-4, along with the ANP mRNA expression in the kidney and the urinary ANP excretion. The ANP excretion positively correlated with the urinary volume and sodium excretion. The mRNA expression of both NPR-A and NPR-C was decreased by BUO, the latter being far more prominently affected. The maximal binding capacity of radiolabeled ANP was decreased in the glomerulus and papilla in BUO. Not only the urinary parameters but also the mRNA expression of ANP, NPR-A, and NPR-C were comparable between BUR-24 and control rats. ANP-stimulated cGMP generation was reduced in the glomerulus and papilla in BUO animals, which was rapidly resumed following the release of the obstruction. CONCLUSIONS Postobstructive diuresis may be due partially to an increased ANP activity in the kidney.
Collapse
Affiliation(s)
- S W Kim
- Chonnam University Research Institute of Medical Sciences and Hormone Research Center, Kwangju, Korea
| | | | | | | | | | | | | |
Collapse
|