1
|
Characterization of porcine skeletal α-actin gene promoter: expression specificity and regulatory elements. Genes Genomics 2015. [DOI: 10.1007/s13258-015-0288-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
2
|
Abstract
Since the seminal discovery of the cell-fate regulator Myod, studies in skeletal myogenesis have inspired the search for cell-fate regulators of similar potential in other tissues and organs. It was perplexing that a similar transcription factor for other tissues was not found; however, it was later discovered that combinations of molecular regulators can divert somatic cell fates to other cell types. With the new era of reprogramming to induce pluripotent cells, the myogenesis paradigm can now be viewed under a different light. Here, we provide a short historical perspective and focus on how the regulation of skeletal myogenesis occurs distinctly in different scenarios and anatomical locations. In addition, some interesting features of this tissue underscore the importance of reconsidering the simple-minded view that a single stem cell population emerges after gastrulation to assure tissuegenesis. Notably, a self-renewing long-term Pax7+ myogenic stem cell population emerges during development only after a first wave of terminal differentiation occurs to establish a tissue anlagen in the mouse. How the future stem cell population is selected in this unusual scenario will be discussed. Recently, a wealth of information has emerged from epigenetic and genome-wide studies in myogenic cells. Although key transcription factors such as Pax3, Pax7, and Myod regulate only a small subset of genes, in some cases their genomic distribution and binding are considerably more promiscuous. This apparent nonspecificity can be reconciled in part by the permissivity of the cell for myogenic commitment, and also by new roles for some of these regulators as pioneer transcription factors acting on chromatin state.
Collapse
Affiliation(s)
- Glenda Comai
- Stem Cells and Development, CNRS URA 2578, Department of Developmental & Stem Cell Biology, Institut Pasteur, Paris, France
| | - Shahragim Tajbakhsh
- Stem Cells and Development, CNRS URA 2578, Department of Developmental & Stem Cell Biology, Institut Pasteur, Paris, France.
| |
Collapse
|
3
|
Lemonnier M, Buckingham ME. Characterization of a cardiac-specific enhancer, which directs {alpha}-cardiac actin gene transcription in the mouse adult heart. J Biol Chem 2004; 279:55651-8. [PMID: 15491989 DOI: 10.1074/jbc.m411082200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Expression of the mouse alpha-cardiac actin gene in skeletal and cardiac muscle is regulated by enhancers lying 5' to the proximal promoter. Here we report the characterization of a cardiac-specific enhancer located within -2.354/-1.36 kbp of the gene, which is active in cardiocytes but not in C2 skeletal muscle cells. In vivo it directs reporter gene expression to the adult heart, where the proximal promoter alone is inactive. An 85-bp region within the enhancer is highly conserved between human and mouse and contains a central AT-rich site, which is essential for enhancer activity. This site binds myocyte enhancer factor (MEF)2 factors, principally MEF2D and MEF2A in cardiocyte nuclear extracts. These results are discussed in the context of MEF2 activity and of the regulation of the alpha-cardiac actin locus.
Collapse
MESH Headings
- Actins/chemistry
- Animals
- Animals, Genetically Modified
- Base Sequence
- Binding Sites
- Binding, Competitive
- Cell Line
- Cell Nucleus/metabolism
- Cells, Cultured
- DNA/metabolism
- DNA-Binding Proteins/metabolism
- Enhancer Elements, Genetic
- Gene Expression Regulation
- Gene Expression Regulation, Developmental
- Genes, Reporter
- Genome
- Heart/embryology
- Heart/physiology
- Humans
- MADS Domain Proteins
- MEF2 Transcription Factors
- Mice
- Mice, Inbred C3H
- Mice, Transgenic
- Models, Genetic
- Molecular Sequence Data
- Muscle, Skeletal/metabolism
- Mutagenesis, Site-Directed
- Mutation
- Myocardium/metabolism
- Myogenic Regulatory Factors
- Promoter Regions, Genetic
- Rats
- Rats, Wistar
- Time Factors
- Transcription Factors/metabolism
- Transcription, Genetic
- Transfection
- beta-Galactosidase/metabolism
Collapse
Affiliation(s)
- Marguerite Lemonnier
- CNRS URA 2578, Département de Biologie du Développement, Institut Pasteur, 25-28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | | |
Collapse
|
4
|
Nielsen PA, Baruch A, Shestopalov VI, Giepmans BNG, Dunia I, Benedetti EL, Kumar NM. Lens connexins alpha3Cx46 and alpha8Cx50 interact with zonula occludens protein-1 (ZO-1). Mol Biol Cell 2003; 14:2470-81. [PMID: 12808044 PMCID: PMC194895 DOI: 10.1091/mbc.e02-10-0637] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Connexin alpha1Cx43 has previously been shown to bind to the PDZ domain-containing protein ZO-1. The similarity of the carboxyl termini of this connexin and the lens fiber connexins alpha3Cx46 and alpha8Cx50 suggested that these connexins may also interact with ZO-1. ZO-1 was shown to be highly expressed in mouse lenses. Colocalization of ZO-1 with alpha3Cx46 and alpha8Cx50 connexins in fiber cells was demonstrated by immunofluorescence and by fracture-labeling electron microscopy but showed regional variations throughout the lens. ZO-1 was found to coimmunoprecipitate with alpha3Cx46 and alpha8Cx50, and pull-down experiments showed that the second PDZ domain of ZO-1 was involved in this interaction. Transiently expressed alpha3Cx46 and alpha8Cx50 connexins lacking the COOH-terminal residues did not bind to the second PDZ domain but still formed structures resembling gap junctions by immunofluorescence. These results indicate that ZO-1 interacts with lens fiber connexins alpha3Cx46 and alpha8Cx50 in a manner similar to that previously described for alpha1Cx43. The spatial variation in the interaction of ZO-1 with lens gap junctions is intriguing and is suggestive of multiple dynamic roles for this association.
Collapse
Affiliation(s)
- Peter A Nielsen
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Miinalainen IJ, Chen ZJ, Torkko JM, Pirilä PL, Sormunen RT, Bergmann U, Qin YM, Hiltunen JK. Characterization of 2-enoyl thioester reductase from mammals. An ortholog of YBR026p/MRF1'p of the yeast mitochondrial fatty acid synthesis type II. J Biol Chem 2003; 278:20154-61. [PMID: 12654921 DOI: 10.1074/jbc.m302851200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A data base search with YBR026c/MRF1', which encodes trans-2-enoyl thioester reductase of the intramitochondrial fatty acid synthesis (FAS) type II in yeast (Torkko, J. M., Koivuranta, K. T., Miinalainen, I. J., Yagi, A. I., Schmitz, W., Kastaniotis, A. J., Airenne, T. T., Gurvitz, A., and Hiltunen, K. J. (2001) Mol. Cell. Biol. 21, 6243-6253), revealed the clone AA393871 (HsNrbf-1, nuclear receptor binding factor 1) in human EST data bank. Expression of HsNrbf-1, tagged C-terminally with green fluorescent protein, in HeLa cells, resulted in a punctated fluorescence signal, superimposable with the MitoTracker Red dye. Wild-type polypeptide was immunoisolated from the extract of bovine heart mitochondria. Recombinant HsNrbf-1p reduces trans-2-enoyl-CoA to acyl-CoA with chain length from C6 to C16 in an NADPH-dependent manner with preference to medium chain length substrate. Furthermore, expression of HsNRBF-1 in the ybr026cDelta yeast strain restored mitochondrial respiratory function allowing growth on glycerol. These findings provide evidence that Nrbf-1ps act as a mitochondrial 2-enoyl thioester reductase, and mammalian cells may possess bacterial type fatty acid synthetase (FAS type II) in mitochondria, in addition to FAS type I in the cytoplasm.
Collapse
|
6
|
Weiskirchen R, Moser M, Günther K, Weiskirchen S, Gressner AM. The murine latent transforming growth factor-beta binding protein (Ltbp-1) is alternatively spliced, and maps to a region syntenic to human chromosome 2p21-22. Gene 2003; 308:43-52. [PMID: 12711389 DOI: 10.1016/s0378-1119(03)00464-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The latent transforming growth factor-beta (TGF-beta) binding protein-1 belongs to a family of matrix glycoproteins that is functionally associated with the assembly and secretion of TGF-beta. We have isolated and sequenced a murine approximately 15-kbp contig containing part of Ltbp-1 and used a mouse-hamster radiation hybrid panel to determine its chromosomal localization on distal mouse chromosome 17. This map location is syntenic to human chromosomal subband 2p21-22. Similarly, human LTBP-1 was mapped to 2p21-22 by fluorescence in situ hybridization. Like in humans, the murine Ltbp-1 gene directs the synthesis of two different transcript sizes encoding two alternatively spliced isoforms (Ltbp-1S and Ltbp-1L), which are regulated in a tissue-and stage-dependent manner. Sequence analysis and database searches further reveal that the upstream regions of both isoforms are devoid of TATA and CAAT boxes but contain other putative binding sites for several transcription factors conserved in mouse and human. The utilization of different promoters and their evolutionarily conservation further emphasize the complex regulation of Ltbp-1.
Collapse
Affiliation(s)
- Ralf Weiskirchen
- Institute of Clinical Chemistry and Pathobiochemistry, RWTH-University Hospital Aachen, Pauwelsstrasse 30, Aachen 52074, Germany.
| | | | | | | | | |
Collapse
|
7
|
Günther K, Stoll D, Jakse G, Gressner AM, Weiskirchen R. Rapid detection of CSRP2 mRNA in mouse, rat, and human using LightCycler-based quantitative real-time polymerase chain reaction. Anal Biochem 2003; 314:144-8. [PMID: 12633614 DOI: 10.1016/s0003-2697(02)00627-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Kalle Günther
- Urological Clinic, RWTH-University Hospital, Pauwelsstr.30, D-52074 Aachen, Germany
| | | | | | | | | |
Collapse
|
8
|
Nielsen PA, Beahm DL, Giepmans BNG, Baruch A, Hall JE, Kumar NM. Molecular cloning, functional expression, and tissue distribution of a novel human gap junction-forming protein, connexin-31.9. Interaction with zona occludens protein-1. J Biol Chem 2002; 277:38272-83. [PMID: 12154091 DOI: 10.1074/jbc.m205348200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A novel human connexin gene (GJA11) was cloned from a genomic library. The open reading frame encoded a hypothetical protein of 294 amino acid residues with a predicted molecular mass of 31,933, hence referred to as connexin-31.9 (Cx31.9) or alpha 11 connexin. A clone in GenBank containing the Cx31.9 gene localized to chromosome 17q21.2. Northern analysis of Cx31.9 showed a major 4.4-kilobase transcript, which was expressed at varying levels in all tissues analyzed. Two monoclonal antibodies generated against different domains of Cx31.9 recognized a 30-33-kDa protein from cells overexpressing Cx31.9. Immunofluorescence of overexpressing cells indicated the presence of Cx31.9 between adjacent cells, consistent with its localization to gap junctions. Double voltage clamp analyses of Cx31.9-overexpressing cells, and of paired Xenopus oocytes injected with Cx31.9 cRNA, demonstrated junctional currents indicative of gap junction channel formation. In contrast to previously characterized connexins, Cx31.9 showed no voltage-dependent gating within a physiologically relevant range. Cx31.9 was detected in human tissues by immunoblot analysis, and immunofluorescence localized Cx31.9 expression to vascular smooth muscle cells. Furthermore, it was demonstrated that Cx31.9 interacted with ZO-1. Thus, Cx31.9 represents a novel connexin gene that in vivo generates a protein with unique voltage gating properties.
Collapse
Affiliation(s)
- Peter A Nielsen
- Department of Cell Biology, Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Kroczynska B, Blond SY. Cloning and characterization of a new soluble murine J-domain protein that stimulates BiP, Hsc70 and DnaK ATPase activity with different efficiencies. Gene 2001; 273:267-74. [PMID: 11595173 DOI: 10.1016/s0378-1119(01)00583-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Hsp70s perform many functions in the cell through their ATPase activity that is stimulated by a genuine partner that contains a highly conserved so called J-domain. Here we report the cloning and characterization of a new J-domain protein named MmDjC7. The complete cDNA encodes a putative soluble 22 kDa protein that contains a conserved J-domain, but lacks the G/F- and C-rich regions found in the bacterial Escherichia coli DnaJ. Northern analysis revealed that mmDjC7 mRNA (0.9 kb) is most abundant in the heart and liver tissues. Recombinant hexahistidine tagged MmDjC7 (25 kDa) was efficiently expressed in E. coli and purified to homogeneity. MmDjC7 stimulates the ATPase activity of murine BiP, Hsc70 and E. coli DnaK, albeit with very different molar ratios that vary from 1:2 (for BiP/MmDjC7) to 1:10 (for DnaK/MmDjC7). MmDjC7 thus appears to be a new J-domain protein that can possibly interact with more than one Hsp70.
Collapse
Affiliation(s)
- B Kroczynska
- Department of Medicinal Chemistry and Pharmacognosy, Molecular Biology Research Building, University of Illinois at Chicago, USA
| | | |
Collapse
|
10
|
Latinkic BV, Mo FE, Greenspan JA, Copeland NG, Gilbert DJ, Jenkins NA, Ross SR, Lau LF. Promoter function of the angiogenic inducer Cyr61gene in transgenic mice: tissue specificity, inducibility during wound healing, and role of the serum response element. Endocrinology 2001; 142:2549-57. [PMID: 11356704 DOI: 10.1210/endo.142.6.8208] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The cysteine-rich angiogenic protein 61 (Cyr61) is an extracellular matrix-associated, heparin-binding protein that mediates cell adhesion, stimulates cell migration, and enhances growth factor-induced cell proliferation. Cyr61 also promotes chondrogenic differentiation and induces neovascularization. In this study, we show that a 2-kb fragment of the Cyr61 promoter, which confers growth factor-inducible expression in cultured fibroblasts, is able to drive accurate expression of the reporter gene lacZ in transgenic mice. Thus, transgene expression was observed in the developing placenta and embryonic cardiovascular, skeletal, and central and peripheral nervous systems. The sites of transgene expression are consistent with those observed of the endogenous Cyr61 gene as determined by in situ hybridization and immunohistochemistry. The transgene expression in the cardiovascular system does not require the serum response element, a promoter sequence essential for transcriptional activation of Cyr61 by serum growth factors in cultured fibroblasts. Because the serum response element contains the CArG box, a sequence element implicated in cardiovascular-specific gene expression, the nonessential nature of this sequence for cardiovascular expression of Cyr61 is unexpected. Furthermore, the Cyr61 promoter-driven lacZ expression is inducible in granulation tissue during wound healing, as is synthesis of the endogenous Cyr61 protein, suggesting a role for Cyr61 in wound healing. Consistent with this finding, purified Cyr61 protein promotes the healing of a wounded fibroblast monolayer in culture. In addition, we mapped the mouse Cyr61 gene to the distal region of chromosome 3. Together, these results define the functional Cyr61 promoter in vivo, and suggest a role of Cyr61 in wound healing through its demonstrated angiogenic activities upon endothelial cells and its chemotactic and growth promoting activities upon fibroblasts.
Collapse
Affiliation(s)
- B V Latinkic
- Department of Molecular Genetics, University of Illinois at Chicago College of Medicine, 60607-7170, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Eriksson M, Ansved T, Anvret M, Carey N. A mammalian radial spokehead-like gene, RSHL1, at the myotonic dystrophy-1 locus. Biochem Biophys Res Commun 2001; 281:835-41. [PMID: 11237735 DOI: 10.1006/bbrc.2001.4465] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ciliary function is essential for normal cellular activity in all species from simple protozoa upwards. In humans, ciliary dysmotility or complete immobility have been identified in autosomal recessive multisystemic diseases characterized by recurrent respiratory tract infections and male subfertility due to impaired sperm mobility. Linkage to human chromosome 19q13.3 has been published for some families but no candidate genes have been identified. We report the first identification of a mammalian homolog of a radial spokehead-like protein, with high homology to proteins of sea urchins and the protozoan Chlamydomonas reinhardtii, at the myotonic dystrophy-1 locus (chromosome19q13.3). In the lower organisms, these proteins are important in normal ciliary or flagellar action, including that of sea urchin spermatozoa. Expression of the mammalian homolog was detected in the adult testis. We suggest that this gene, which we have called Radial Spokehead-Like 1 (RSHL1), is a candidate gene for familial primary ciliary dyskinesia.
Collapse
Affiliation(s)
- M Eriksson
- Department of Molecular Medicine and Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | | | | |
Collapse
|
12
|
Abstract
The mitogen-activated protein kinases (MAPKs) and the cyclin-dependent kinases (CDKs) are key mediators of cell proliferation in response to extracellular signals. Recent additions to each of these families and the identification of kinases with structural features of both have provided insights into fundamental processes, such as cell division and differentiation. To identify novel serine kinases with features of MAPKs or CDKs, a degenerate PCR-based amplification approach was undertaken. The 57- and 52-kDa isoforms of a novel protein kinase, termed NKIATRE, were molecularly cloned from rat brain and jejunum cDNA libraries. Like the MAPKs, NKIATRE has a Thr-Xaa-Tyr motif in kinase subdomain VIII. NKIATRE also shows close homology to the cyclin-dependent kinase class of protein kinases and the cdc2-related kinases NKIAMRE, KKIALRE, and KKIAMRE, containing both conserved inhibitory phosphorylation sites and a putative cyclin-binding domain. Two isoforms of NKIATRE that differ in their carboxy-terminal ends have been identified. A functional nuclear localization signal is specific to the longer 57-kDa alpha isoform. Sequence similarity to the putative human tumor suppressor gene NKIAMRE, which is lost in leukemic patients with chromosome 5q deletions, suggests that NKIATRE may have a role in restricting cell growth or maintaining differentiation.
Collapse
Affiliation(s)
- R Haq
- Institute of Medical Science, University of Toronto, Ontario, M5G 2M9, Canada
| | | | | | | | | |
Collapse
|
13
|
Ridgeway AG, Petropoulos H, Wilton S, Skerjanc IS. Wnt signaling regulates the function of MyoD and myogenin. J Biol Chem 2000; 275:32398-405. [PMID: 10915791 DOI: 10.1074/jbc.m004349200] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The myogenic regulatory factors (MRFs), MyoD and myogenin, can induce myogenesis in a variety of cell lines but not efficiently in monolayer cultures of P19 embryonal carcinoma stem cells. Aggregation of cells expressing MRFs, termed P19[MRF] cells, results in an approximately 30-fold enhancement of myogenesis. Here we examine molecular events occurring during P19 cell aggregation to identify potential mechanisms regulating MRF activity. Although myogenin protein was continually present in the nuclei of >90% of P19[myogenin] cells, only a fraction of these cells differentiated. Consequently, it appears that post-translational regulation controls myogenin activity in a cell lineage-specific manner. A correlation was obtained between the expression of factors involved in somite patterning, including Wnt3a, Wnt5b, BMP-2/4, and Pax3, and the induction of myogenesis. Co-culturing P19[Wnt3a] cells with P19[MRF] cells in monolayer resulted in a 5- to 8-fold increase in myogenesis. Neither BMP-4 nor Pax3 was efficient in enhancing MRF activity in unaggregated P19 cultures. Furthermore, BMP-4 abrogated the enhanced myogenesis induced by Wnt signaling. Consequently, signaling events resulting from Wnt3a expression but not BMP-4 signaling or Pax3 expression, regulate MRF function. Therefore, the P19 cell culture system can be used to study the link between somite patterning events and myogenesis.
Collapse
Affiliation(s)
- A G Ridgeway
- Department of Biochemistry, Medical Sciences Building, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | | | |
Collapse
|
14
|
Petropoulos H, Skerjanc IS. Analysis of the inhibition of MyoD activity by ITF-2B and full-length E12/E47. J Biol Chem 2000; 275:25095-101. [PMID: 10833525 DOI: 10.1074/jbc.m004251200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MyoD heterodimerizes with E type factors (E12/E47 and ITF-2A/ITF-2B) and binds E box sequences within promoters of muscle-specific genes. In transient transfection assays, MyoD activates transcription in the presence of ITF-2A but not ITF-2B, which contains a 182-amino acid N-terminal extension. The first 83 amino acids of the inhibitory N terminus of ITF-2B show high sequence homology to the N terminus of full-length E12/E47. Previous studies that showed activation of MyoD by E12 used an artificially N-terminally truncated form. Here we show that the full-length form of E12 inhibits MyoD function. A conserved alpha-helix motif, capable of interacting with the transcriptional machinery, was not essential for inhibition. Furthermore, the fusion of N-terminal ITF-2B sequences or non-inhibiting ITF-2A sequences to truncated E12 was sufficient in converting the activator into an inhibitor. Overexpression of ITF-2B did not inhibit C2C12 myogenesis or affect levels of endogenous muscle gene expression, consistent with the finding that inhibitory E type proteins are present in muscle. Furthermore, we found that MyoD co-transfected with either ITF-2B or ITF-2A converted fibroblasts into myoblasts with the same frequency. Our findings suggest that the ability of E type proteins to inhibit MyoD activity is dependent on the context of the E box.
Collapse
Affiliation(s)
- H Petropoulos
- Department of Biochemistry, University of Western Ontario, London, Canada
| | | |
Collapse
|
15
|
Weiskirchen R, Gressner AM. The cysteine- and glycine-rich LIM domain protein CRP2 specifically interacts with a novel human protein (CRP2BP). Biochem Biophys Res Commun 2000; 274:655-63. [PMID: 10924333 DOI: 10.1006/bbrc.2000.3187] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We used the interaction trap to isolate a novel human protein that specifically interacts with the double LIM domain protein CRP2. This protein, designated CRP2BP (for CRP2 binding partner), was previously postulated by sequencing contigs of human chromosome 20. The observed interaction is mediated via the LIM1 domain of CRP2 and is of functional relevance in cellular environment. This novel single copy gene spans approximately 45-bp and is organized into at least ten exons. CRP2BP is expressed in all human tissues tested, with a major mRNA of 4-kb in size and an additional 3.2-kb transcript in placenta.
Collapse
Affiliation(s)
- R Weiskirchen
- Central Laboratory, Institute of Clinical Chemistry and Pathobiochemistry, RWTH-University Hospital, Pauwelstrasse 30, Aachen, D-52074, Germany.
| | | |
Collapse
|
16
|
Kotti TJ, Savolainen K, Helander HM, Yagi A, Novikov DK, Kalkkinen N, Conzelmann E, Hiltunen JK, Schmitz W. In mouse alpha -methylacyl-CoA racemase, the same gene product is simultaneously located in mitochondria and peroxisomes. J Biol Chem 2000; 275:20887-95. [PMID: 10770938 DOI: 10.1074/jbc.m002067200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
alpha-Methylacyl-CoA racemase, an enzyme of the bile acid biosynthesis and branched chain fatty acid degradation pathway, was studied at the protein, cDNA, and genomic levels in mouse liver. Immunoelectron microscopy and subcellular fractionation located racemase to mitochondria and peroxisomes. The enzymes were purified from both organelles with immunoaffinity chromatography. The isolated proteins were of the same size, with identical N-terminal amino acid sequences, and the existence of additional proteins with alpha-methylacyl-CoA racemase activity was excluded. A racemase gene of about 15 kilobases was isolated. Southern blot analysis and chromosomal localization showed that only one racemase gene is present, on chromosome 15, region 15B1. The putative initial ATG in the racemase gene was preceded by a functional promotor as shown with the luciferase reporter gene assay. The corresponding cDNAs were isolated from rat and mouse liver. The recombinant rat protein was overexpressed in active form in Pichia pastoris. The presented data suggest that the polypeptide encoded by the racemase gene can alternatively be targeted to peroxisomes or mitochondria without modifications. It is concluded that the noncleavable N-terminal sequence of the polypeptide acts as a weak mitochondrial and that the C-terminal sequence acts as a peroxisomal targeting signal.
Collapse
Affiliation(s)
- T J Kotti
- Biocenter Oulu and Department of Biochemistry, University of Oulu, Linnanmaa, Oulu FIN-90014, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kemp PR, Metcalfe JC. Four isoforms of serum response factor that increase or inhibit smooth-muscle-specific promoter activity. Biochem J 2000; 345 Pt 3:445-51. [PMID: 10642500 PMCID: PMC1220776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Serum response factor (SRF) is a key transcriptional activator of the c-fos gene and of muscle-specific gene expression. We have identified four forms of the SRF coding sequence, SRF-L (the previously identified form), SRF-M, SRF-S and SRF-I, that are produced by alternative splicing. The new forms of SRF lack regions of the C-terminal transactivation domain by splicing out of exon 5 (SRF-M), exons 4 and 5 (SRF-S) and exons 3, 4 and 5 (SRF-I). SRF-M is expressed at similar levels to SRF-L in differentiated vascular smooth-muscle cells and skeletal-muscle cells, whereas SRF-L is the predominant form in many other tissues. SRF-S expression is restricted to vascular smooth muscle and SRF-I expression is restricted to the embryo. Transfection of SRF-L and SRF-M into C(2)C(12) cells showed that both forms are transactivators of the promoter of the smooth-muscle-specific gene SM22alpha, whereas SRF-I acted as a dominant negative form of SRF.
Collapse
MESH Headings
- Alternative Splicing
- Animals
- Carcinoma, Embryonal
- Cell Line
- Cloning, Molecular
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Gene Expression Regulation, Developmental
- Mice
- Microfilament Proteins/genetics
- Microfilament Proteins/metabolism
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Muscle, Smooth/cytology
- Muscle, Smooth/physiology
- Muscle, Smooth, Vascular/metabolism
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Promoter Regions, Genetic
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- RNA, Messenger/metabolism
- Serum Response Factor
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- P R Kemp
- Section of Cardiovascular Biology, Department of Biochemistry, University of Cambridge, The Downing Site, Tennis Court Road, Cambridge CB2 1QW, U.K.
| | | |
Collapse
|
18
|
Armour C, Garson K, McBurney MW. Cell-cell interaction modulates myoD-induced skeletal myogenesis of pluripotent P19 cells in vitro. Exp Cell Res 1999; 251:79-91. [PMID: 10438573 DOI: 10.1006/excr.1999.4567] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
P19 embryonal carcinoma cells can be induced to differentiate in culture to develop into a wide variety of cell types that include skeletal muscle. Skeletal myogenesis is controlled by transcription factors of the bHLH class, such as myoD. Expression of myoD from transfected genes did not induce significant amounts of myogenesis in P19 cells and it was possible to establish lines of undifferentiated P19[myoD] cells that express high levels of myoD mRNA. These P19[myoD] cells remained undifferentiated when cultured on solid surfaces but when allowed to aggregate, P19[myoD] cells differentiated efficiently into skeletal muscle. Aggregation did not increase the amount of myoD mRNA or the amount of myoD protein in P19[myoD] cells. The myoD protein was present in the nucleus in cells grown as attached or aggregated cultures and, in both culture conditions, the myoD protein was associated with transcription factors of the E2A family and was able to bind DNA at E-box sequences. Thus, the aggregation-induced myogenesis of P19[myoD] cells occurs in the absence of change in the myoD protein, suggesting that the cell-cell contact achieved in aggregates may result in the induction of an activity that increases accessibility of the myoD transcription factor to muscle-specific genes in chromatin.
Collapse
Affiliation(s)
- C Armour
- Departments of Biochemistry and Medicine, University of Ottawa and the Ottawa Regional Cancer Centre, 501 Smyth Road, Ottawa, Ontario, K1H 8L6, Canada
| | | | | |
Collapse
|
19
|
Jiang SW, Wu K, Eberhardt NL. Human placental TEF-5 transactivates the human chorionic somatomammotropin gene enhancer. Mol Endocrinol 1999; 13:879-89. [PMID: 10379887 DOI: 10.1210/mend.13.6.0288] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Human chorionic somatomammotropin (hCS) gene expression in the placenta is controlled by an enhancer (CSEn) containing SV40-related GT-IIC and SphI/SphII enhansons. These enhancers are controlled by members of the transcription enhancer factor-1 (TEF-1) family. Recently TEF-5, whose mRNA is abundant in placenta, was shown to bind cooperatively to a unique, tandemly repeated element in CSEn2, suggesting that TEF-5 regulates CSEn activity. However, expression of TEF-5 using a cDNA lacking the 5'-untranslated region and containing a modified translation initiation site was not accompanied by CSEn activation. Using nested, degenerate PCR primers corresponding to conserved TEF domains, several novel TEF-1-related cDNAs have been cloned from a human placental cDNA library. The open reading frame of one 3033-bp clone was identical to TEF-5 and contained 300- and 1423-bp 5'- and 3'-untranslated regions, respectively. The in vitro generated approximately 53-kDa TEF-5 polypeptide binds specifically to GT-IIC and SphI/SphII oligonucleotides. Overexpression of TEF-5 in BeWo cells using the intact 3033-bp cDNA transactivates the hCS and SV40 enhancers and artificial enhancers comprised of tandemly repeated GT-IIC enhansons, but not OCT enhansons. The data demonstrate that TEF-5 is a transactivator that is likely involved in the transactivation of CSEn enhancer function. Further, the data suggest that elements within the untranslated regions, initiation site, or both control TEF-5 expression in ways that influence its transactivation function.
Collapse
Affiliation(s)
- S W Jiang
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
20
|
Bremer S, Van Dooren M, Paparella M, Kossolov E, Fleischmann B, Hescheler J. Establishment of an Embryotoxicity Assay with Green Fluorescence Protein-expressing Embryonic Cell-derived Cardiomyocytes. Altern Lab Anim 1999; 27:471-84. [DOI: 10.1177/026119299902700303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Transgenic embryonic stem cells were used to determine the embryotoxic effects of chemicals on the development of embryonic tissues. This investigation supports an ongoing validation study, aimed at reducing the time-consuming procedure currently in use, and at providing more-objective and more-detailed information on the embryotoxic potentials of chemicals. Green fluorescence protein (GFP) was used as a reporter gene and was linked to a human α-cardiac-specific promoter. The expression of GFP was switched on after specific activation of the human α-actin promoter. This permitted the easy quantification of cardiac cells by using a fluorescence-activated cell sorter (FACS). The percentage of cardiac precursor cells was calculated from the FACS-distribution pattern of cells which fluoresced versus the total number of cells. The percentage of cardiac precursor cells increased from 25% in embryoid bodies on day 3, to 86% on day 7. However, in 11-day-old embryoid bodies, the percentage decreased to 35%. Five chemicals with known embryotoxic potentials were compared with respect to the IC50 (concentration causing 50% inhibition of measured effect) values obtained by various in vitro endpoints (for example, cytotoxicity, morphology). The results showed a higher sensitivity of endpoints used for the analysis of specific effects on the selected target tissue. The data also showed the need to develop in vitro methods with specific endpoints which account for the complexity of embryotoxicology.
Collapse
Affiliation(s)
- Susanne Bremer
- ECVAM, Institute for Health & Consumer Protection, Joint Research Centre, European Commission, 21020 Ispra, Italy
| | - Maaike Van Dooren
- ECVAM, Institute for Health & Consumer Protection, Joint Research Centre, European Commission, 21020 Ispra, Italy
| | - Martin Paparella
- ECVAM, Institute for Health & Consumer Protection, Joint Research Centre, European Commission, 21020 Ispra, Italy
| | - Eugen Kossolov
- University of Cologne, Department of Neurophysiology, Robert-Koch-Strasse 39, 50931 Cologne, Germany
| | - Bernd Fleischmann
- University of Cologne, Department of Neurophysiology, Robert-Koch-Strasse 39, 50931 Cologne, Germany
| | - Juergen Hescheler
- University of Cologne, Department of Neurophysiology, Robert-Koch-Strasse 39, 50931 Cologne, Germany
| |
Collapse
|
21
|
Stoss O, Schwaiger FW, Cooper TA, Stamm S. Alternative splicing determines the intracellular localization of the novel nuclear protein Nop30 and its interaction with the splicing factor SRp30c. J Biol Chem 1999; 274:10951-62. [PMID: 10196175 DOI: 10.1074/jbc.274.16.10951] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report on the molecular cloning of a novel human cDNA by its interaction with the splicing factor SRp30c in a yeast two-hybrid screen. This cDNA is predominantly expressed in muscle and encodes a protein that is present in the nucleoplasm and concentrated in nucleoli. It was therefore termed Nop30 (nucleolar protein of 30 kDa). We have also identified a related cDNA with a different carboxyl terminus. Sequencing of the NOP gene demonstrated that both cDNAs are generated by alternative 5' splice site usage from a single gene that consists of four exons, spans at least 1800 nucleotides, and is located on chromosome 16q21-q23. The alternative 5' splice site usage introduces a frameshift creating two different carboxyl termini. The carboxyl terminus of Nop30 is rich in serines and arginines and has been found to target the protein into the nucleus, whereas its isoform is characterized by proline/glutamic acid dipeptides in its carboxyl terminus and is predominantly found in the cytosol. Interaction studies in yeast, in vitro protein interaction assays, and co-immunoprecipitations demonstrated that Nop30 multimerizes and binds to the RS domain of SRp30c but not to other splicing factors tested. Overexpression of Nop30 changes alternative exon usage in preprotachykinin and SRp20 reporter genes, suggesting that Nop30 influences alternative splice site selection in vivo.
Collapse
Affiliation(s)
- O Stoss
- Max-Planck Institute of Neurobiology, Am Klopferspitz 18a, D-82152 Martinsried, Germany
| | | | | | | |
Collapse
|
22
|
Pickard RT, Strifler BA, Kramer RM, Sharp JD. Molecular cloning of two new human paralogs of 85-kDa cytosolic phospholipase A2. J Biol Chem 1999; 274:8823-31. [PMID: 10085124 DOI: 10.1074/jbc.274.13.8823] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two new cloned human cDNAs encode paralogs of the 85-kDa cytosolic phospholipase A2 (cPLA2). We propose to call these cPLA2beta (114 kDa) and cPLA2gamma (61 kDa), giving the name cPLA2alpha to the well known 85-kDa enzyme. cPLA2beta mRNA is expressed more highly in cerebellum and pancreas and cPLA2gamma more highly in cardiac and skeletal muscle. Sequence-tagged site mapping places cPLA2beta on chromosome 15 in a region near a phosphoinositol bisphosphate phosphatase. The mRNA for cPLA2beta is spliced only at a very low level, and Northern blots in 24 tissues show exclusively the unspliced form. cPLA2beta has much lower activity on 2-arachidonoyl-phosphatidylcholine liposomes than either of the other two enzymes. Its sequence contains a histidine motif characteristic of the catalytic center of caspase proteases of the apoptotic cascade but no region characteristic of the catalytic cysteine. Sequence-tagged site mapping places cPLA2gamma on chromosome 19 near calmodulin. cPLA2gamma lacks the C2 domain, which gives cPLA2alpha its Ca2+ sensitivity, and accordingly cPLA2gamma has no dependence upon calcium, although cPLA2beta does. cPLA2gamma contains a prenyl group-binding site motif and appears to be largely membrane-bound. cPLA2alpha residues activated by phosphorylation do not appear to be well conserved in either new enzyme. In contrast, all three previously known catalytic residues, as well as one additional essential arginine, Arg-566 in cPLA2alpha, are conserved in both new enzyme sequences. Mutagenesis shows strong dependence on these residues for catalytic activity of all three enzymes.
Collapse
Affiliation(s)
- R T Pickard
- Lilly Research Laboratory, Indianapolis, Indiana 46285, USA
| | | | | | | |
Collapse
|
23
|
Gemel J, Jacobsen C, MacArthur CA. Fibroblast growth factor-8 expression is regulated by intronic engrailed and Pbx1-binding sites. J Biol Chem 1999; 274:6020-6. [PMID: 10026229 DOI: 10.1074/jbc.274.9.6020] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fibroblast growth factor-8 (FGF8) plays a critical role in vertebrate development and is expressed normally in temporally and spatially restricted regions of the vertebrate embryo. We now report on the identification of regions of Fgf8 important for its transcriptional regulation in murine ES cell-derived embryoid bodies. Stable transfection of ES cells, using a human growth hormone reporter gene, was employed to identify regions of the Fgf8 gene with promoter/enhancer activity. A 2-kilobase 5' region of Fgf8 was shown to contain promoter activity. A 0.8-kilobase fragment derived from the large intron of Fgf8 was found to enhance human growth hormone expressed from the Fgf8 promoter 3-4-fold in an orientation dependent manner. The intronic fragment contains DNA-binding sites for the AP2, Pbx1, and Engrailed transcription factors. Gel shift and Western blot experiments documented the presence of these transcription factors in nuclear extracts from ES cell embryoid bodies. In vitro mutagenesis of the Engrailed or Pbx1 site demonstrated that these sites modulate the activity of the intronic fragment. In addition, in vitro mutagenesis of both Engrailed and Pbx1 sites indicated that other unidentified sites are responsible for the transcriptional enhancement observed with the intronic fragment.
Collapse
Affiliation(s)
- J Gemel
- Department of Pediatrics and Pathology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
24
|
Kumagai H, Kawamura Y, Yanagisawa K, Komano H. Identification of a human cDNA encoding a novel protein structurally related to the yeast membrane-associated metalloprotease, Ste24p. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1426:468-74. [PMID: 10076063 DOI: 10.1016/s0304-4165(98)00170-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Recently, a novel membrane-associated metalloprotease, designated Ste24p, has been identified in Saccharomyces cerevisiae [K. Fujimura-Kamada, F.J. Nouvet, S. Michaelis, J. Cell Biol. 27 (1997) 271-285]. We cloned a human brain cDNA encoding a protein homologous to Ste24p (designated Hs Ste24p). The predicted 475-amino acid product of its open reading frame exhibited 62% similarity to Ste24p, and contained a zinc metalloprotease motif (HEXXH) and multiple predicted membrane spans. Northern blot analysis showed that this gene was expressed in most tissues. Immunofluorescence analysis of epitope-tagged Hs Ste24p constructs suggested that it is localized in the ER and possibly also in the Golgi compartment. A search of the expression sequence tag database identified a fragment of DNA encoding a segment homologous to the segment of Hs Ste24p containing the HEXXH motif in insects and nematodes. Thus, Hs Ste24p could be a member of a new family of Ste24p-like membrane-associated metalloproteases which are widely conserved in eukaryotes.
Collapse
Affiliation(s)
- H Kumagai
- Chugai Pharmaceutical Co., Ltd., Central Research Labs., Takada 3-4/-8, Toshima, Tokyo 171-8545, Japan
| | | | | | | |
Collapse
|
25
|
Kolossov E, Fleischmann BK, Liu Q, Bloch W, Viatchenko-Karpinski S, Manzke O, Ji GJ, Bohlen H, Addicks K, Hescheler J. Functional characteristics of ES cell-derived cardiac precursor cells identified by tissue-specific expression of the green fluorescent protein. J Cell Biol 1998; 143:2045-56. [PMID: 9864374 PMCID: PMC2175221 DOI: 10.1083/jcb.143.7.2045] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In contrast to terminally differentiated cardiomyocytes, relatively little is known about the characteristics of mammalian cardiac cells before the initiation of spontaneous contractions (precursor cells). Functional studies on these cells have so far been impossible because murine embryos of the corresponding stage are very small, and cardiac precursor cells cannot be identified because of the lack of cross striation and spontaneous contractions. In the present study, we have used the murine embryonic stem (ES, D3 cell line) cell system for the in vitro differentiation of cardiomyocytes. To identify the cardiac precursor cells, we have generated stably transfected ES cells with a vector containing the gene of the green fluorescent protein (GFP) under control of the cardiac alpha-actin promoter. First, fluorescent areas in ES cell-derived cell aggregates (embryoid bodies [EBs]) were detected 2 d before the initiation of contractions. Since Ca2+ homeostasis plays a key role in cardiac function, we investigated how Ca2+ channels and Ca2+ release sites were built up in these GFP-labeled cardiac precursor cells and early stage cardiomyocytes. Patch clamp and Ca2+ imaging experiments proved the functional expression of the L-type Ca2+ current (ICa) starting from day 7 of EB development. On day 7, using 10 mM Ca2+ as charge carrier, ICa was expressed at very low densities 4 pA/pF. The biophysical and pharmacological properties of ICa proved similar to terminally differentiated cardiomyocytes. In cardiac precursor cells, ICa was found to be already under control of cAMP-dependent phosphorylation since intracellular infusion of the catalytic subunit of protein kinase A resulted in a 1.7-fold stimulation. The adenylyl cyclase activator forskolin was without effect. IP3-sensitive intracellular Ca2+ stores and Ca2+-ATPases are present during all stages of differentiation in both GFP-positive and GFP-negative cells. Functional ryanodine-sensitive Ca2+ stores, detected by caffeine-induced Ca2+ release, appeared in most GFP-positive cells 1-2 d after ICa. Coexpression of both ICa and ryanodine-sensitive Ca2+ stores at day 10 of development coincided with the beginning of spontaneous contractions in most EBs. Thus, the functional expression of voltage-dependent L-type Ca2+ channel (VDCC) is a hallmark of early cardiomyogenesis, whereas IP3 receptors and sarcoplasmic Ca2+-ATPases are expressed before the initiation of cardiomyogenesis. Interestingly, the functional expression of ryanodine receptors/sensitive stores is delayed as compared with VDCC.
Collapse
MESH Headings
- 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology
- Actins/biosynthesis
- Actins/genetics
- Animals
- Caffeine/pharmacology
- Calcium/physiology
- Calcium Channels/biosynthesis
- Calcium Channels/genetics
- Calcium Channels/physiology
- Calcium Channels, L-Type
- Calcium Signaling
- Calcium-Transporting ATPases/physiology
- Cell Differentiation
- Colforsin/pharmacology
- Fetal Heart/cytology
- Fetal Proteins/biosynthesis
- Fetal Proteins/genetics
- Gene Expression Regulation, Developmental
- Genes, Reporter
- Green Fluorescent Proteins
- Inositol 1,4,5-Trisphosphate Receptors
- Luminescent Proteins/biosynthesis
- Luminescent Proteins/genetics
- Mice
- Muscle Proteins/biosynthesis
- Muscle Proteins/genetics
- Myocardial Contraction
- Organ Specificity
- Patch-Clamp Techniques
- Promoter Regions, Genetic
- Receptors, Cytoplasmic and Nuclear/physiology
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/genetics
- Ryanodine Receptor Calcium Release Channel/biosynthesis
- Ryanodine Receptor Calcium Release Channel/genetics
- Stem Cells/physiology
Collapse
Affiliation(s)
- E Kolossov
- Institute of Neurophysiology, University of Cologne, D-50931 Cologne, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Fleischmann M, Bloch W, Kolossov E, Andressen C, Müller M, Brem G, Hescheler J, Addicks K, Fleischmann BK. Cardiac specific expression of the green fluorescent protein during early murine embryonic development. FEBS Lett 1998; 440:370-6. [PMID: 9872405 DOI: 10.1016/s0014-5793(98)01476-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We demonstrate the establishment of transgenic mice, where the expression of the green fluorescent protein (GFP) is under control of the human cardiac alpha-actin promoter. These mice display cardiac specific GFP expression already during early embryonic development. Prominent GFP fluorescence was observed at the earliest stage of the murine heart anlage (E8). Cardiomyocytes of different developmental stages proved GFP positive, but the intensity varied between cells. We further show that contractions of single GFP positive cardiomyocytes can be monitored within the intact embryo. At later stages of embryonic development, the skeletal musculature was also GFP positive, in line with the known expression pattern of cardiac alpha-actin. The tissue specific labeling of organs is a powerful new tool for embryological as well as functional investigations in vivo.
Collapse
Affiliation(s)
- M Fleischmann
- Department of Biotechnology in Animal Production, Interuniversitäres Forschungsinstitut für Agrarbiotechnologie, Tulln, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Land T, Rouault TA. Targeting of a human iron-sulfur cluster assembly enzyme, nifs, to different subcellular compartments is regulated through alternative AUG utilization. Mol Cell 1998; 2:807-15. [PMID: 9885568 DOI: 10.1016/s1097-2765(00)80295-6] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Iron-sulfur clusters are prosthetic groups that are required for the function of numerous enzymes in the cell, including enzymes important in respiration, photosynthesis, and nitrogen fixation. Here we report cloning of the human homolog of NifS, a cysteine desulfurase that is proposed to supply the inorganic sulfur in iron-sulfur clusters. In human cells, different forms of NifS that localize either to mitochondria or to the cytosol and nucleus are synthesized from a single transcript through initiation at alternative inframe AUGs, and initiation site selection varies according to the pH of the medium or cytosol. Thus, a novel form of translational regulation permits rapid redistribution of NifS proteins into different compartments of the cell in response to changes in metabolic status.
Collapse
Affiliation(s)
- T Land
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
28
|
Hoke DE, Regisford EG, Julian J, Amin A, Bègue-Kirn C, Carson DD. Murine HIP/L29 is a heparin-binding protein with a restricted pattern of expression in adult tissues. J Biol Chem 1998; 273:25148-57. [PMID: 9737974 DOI: 10.1074/jbc.273.39.25148] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heparin/heparan sulfate (Hp/HS)-binding proteins are implicated in a variety of cell biological processes including cell adhesion, modulation of blood coagulation, and cytokine/growth factor action. Hp/HS-interacting protein (HIP) has been identified in various adult tissues in humans. HIP supports high affinity, selective binding to Hp/HS, promotes cell adhesion, and modulates blood coagulation activities via Hp/HS-dependent mechanisms. Herein, a murine ortholog of human HIP is described that is 78.8% identical to human HIP and 99.8% identical at the cDNA level and identical at the amino acid level to a previously described murine ribosomal protein, L29. Western blot analyses and immunohistological staining with affinity-purified antibodies generated against two distinct peptide sequences of murine HIP/L29 indicate that HIP/L29 is differentially expressed in adult murine tissues and cell types. In the normal murine mammary epithelial cell line, NMuMG, HIP/L29 is enriched in the 100,000 x g particulate fraction. HIP/L29 can be solubilized from the 100,000 x g particulate fraction with 0.8 M NaCl, suggesting that it is a peripheral membrane protein. HIP/L29 directly binds 125I-Hp in gel overlay assays and requires 0.75 M NaCl for elution from Hp-agarose. In addition, recombinant murine HIP expressed in Escherichia coli binds Hp in a saturable and highly selective manner, compared with other glycosaminoglycans including dermatan sulfate, chondroitin sulfate, keratan sulfate, and hyaluronic acid. Collectively, these data indicate that murine HIP/L29, like its human ortholog, is a Hp-binding protein expressed in a restricted manner in adult tissues.
Collapse
Affiliation(s)
- D E Hoke
- Department of Biochemistry and Molecular Biology, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
29
|
Kimura S, Fujishita S, Ikezawa M, Ogawa M, Abe K, Miike T. Muscle type promoter and its first intron abnormalities in dystrophin gene in patients with Duchenne muscular dystrophy. J Child Neurol 1998; 13:290-2. [PMID: 9660515 DOI: 10.1177/088307389801300611] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- S Kimura
- Department of Child Development, Kumamoto University School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Developmental Expression of Mouse Erythrocyte Protein 4.2 mRNA: Evidence for Specific Expression in Erythroid Cells. Blood 1998. [DOI: 10.1182/blood.v91.2.695] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractErythrocyte protein 4.2 (P4.2) is an important component of the erythrocyte membrane skeletal network with an undefined biologic function. Presently, very little is known about the expression of the P4.2 gene during mouse embryonic development and in adult animals. By using the Northern blot and in situ hybridization techniques, we have examined the spatial and temporal expression of the P4.2 gene during mouse development. We show that expression of the mouse P4.2 gene is temporally regulated during embryogenesis and that the P4.2 mRNA expression pattern coincides with the timing of erythropoietic activity in hematopoietic organs. P4.2 transcripts are first detected in embryos on day 7.5 of gestation and are localized exclusively in primitive erythroid cells of yolk sac origin. These erythroid cells remain to be the only source for P4.2 expression until the switch of the hematopoietic producing site to fetal liver. In mid- and late-gestation periods, P4.2 mRNA expression is restricted to the erythroid cells in fetal liver and to circulating erythrocytes. Around and after birth, the site for P4.2 expression is switched from liver to spleen and bone marrow, and P4.2 transcripts are only detected in cells of the erythroid lineage. These results provide the evidence for specific P4.2 expression in erythroid cells. In addition, the timing and pattern of expression of the P4.2 gene suggest the specific regulation of the P4.2 gene.
Collapse
|
31
|
Developmental Expression of Mouse Erythrocyte Protein 4.2 mRNA: Evidence for Specific Expression in Erythroid Cells. Blood 1998. [DOI: 10.1182/blood.v91.2.695.695_695_705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Erythrocyte protein 4.2 (P4.2) is an important component of the erythrocyte membrane skeletal network with an undefined biologic function. Presently, very little is known about the expression of the P4.2 gene during mouse embryonic development and in adult animals. By using the Northern blot and in situ hybridization techniques, we have examined the spatial and temporal expression of the P4.2 gene during mouse development. We show that expression of the mouse P4.2 gene is temporally regulated during embryogenesis and that the P4.2 mRNA expression pattern coincides with the timing of erythropoietic activity in hematopoietic organs. P4.2 transcripts are first detected in embryos on day 7.5 of gestation and are localized exclusively in primitive erythroid cells of yolk sac origin. These erythroid cells remain to be the only source for P4.2 expression until the switch of the hematopoietic producing site to fetal liver. In mid- and late-gestation periods, P4.2 mRNA expression is restricted to the erythroid cells in fetal liver and to circulating erythrocytes. Around and after birth, the site for P4.2 expression is switched from liver to spleen and bone marrow, and P4.2 transcripts are only detected in cells of the erythroid lineage. These results provide the evidence for specific P4.2 expression in erythroid cells. In addition, the timing and pattern of expression of the P4.2 gene suggest the specific regulation of the P4.2 gene.
Collapse
|
32
|
Lin L, Sahr KE, Chishti AH. Identification of the mouse homologue of human discs large and rat SAP97 genes. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1362:1-5. [PMID: 9434093 DOI: 10.1016/s0925-4439(97)00059-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The human homologue of the Drosophila discs large (dlg) tumor suppressor gene encodes a 926 amino acid protein, hDlg, which is a member of the MAGUK (Membrane Associated GUanylate Kinase homologues) family of proteins. To facilitate the development of murine model system for functional studies in vivo, the primary structure of the mouse homologue of hDlg has been determined. Dlgh1 encodes a approximately 5.5 kb transcript that is ubiquitously expressed in murine tissues. Mouse mDlg is a 927 amino acid protein that is 95% identical to hDlg and 94% identical to rat synapse associated protein, SAP97. The unusually high conservation of the primary structure of murine and human Dlg proteins across their distinct protein domains suggests a conserved function in vivo.
Collapse
Affiliation(s)
- L Lin
- Laboratory of Tumor Cell Biology, St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA 02135, USA
| | | | | |
Collapse
|
33
|
Odermatt A, Taschner PE, Scherer SW, Beatty B, Khanna VK, Cornblath DR, Chaudhry V, Yee WC, Schrank B, Karpati G, Breuning MH, Knoers N, MacLennan DH. Characterization of the gene encoding human sarcolipin (SLN), a proteolipid associated with SERCA1: absence of structural mutations in five patients with Brody disease. Genomics 1997; 45:541-53. [PMID: 9367679 DOI: 10.1006/geno.1997.4967] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Sarcolipin (SLN) is a low-molecular-weight protein that copurifies with the fast-twitch skeletal muscle sarcoplasmic reticulum Ca2+ ATPase (SERCA1). Genomic DNA and cDNA encoding human sarcolipin (SLN) were isolated and characterized and the SLN gene was mapped to chromosome 11q22-q23. Human, rabbit, and mouse cDNAs encode a protein of 31 amino acids. Homology of SLN with phospholamban (PLN) suggests that the first 7 hydrophilic amino acids are cytoplasmic, the next 19 hydrophobic amino acids form a single transmembrane helix, and the last 5 hydrophilic amino acids are lumenal. The cytoplasmic and transmembrane sequences are not well conserved among the three species, but the lumenal sequence is highly conserved. Like SERCA1, SLN is highly expressed in rabbit fast-twitch skeletal muscle, but it is expressed to a lower extent in slow-twitch muscle and to an even lower extent in cardiac muscle, where SERCA2a and PLN are highly expressed. It is expressed in only trace amounts in pancreas and prostate. SLN and PLN genes resemble each other in having two small exons, with their entire coding sequences lying in exon 2 and a large intron separating the two segments. Brody disease is an inherited disorder of skeletal muscle function, characterized by exercise-induced impairment of muscle relaxation. Mutations in the ATP2A1 gene encoding SERCA1 have been associated with the autosomal recessive inheritance of Brody disease in three families, but not with autosomal dominant inheritance of the disease. A search for mutations in the SLN gene in five Brody families, four of which were not linked to ATP2A1, did not reveal any alterations in coding, splice junction or promoter sequences. The homozygous deletion of C438 in the coding sequence of ATP2A1 in Brody disease family 3, leading to a frameshift and truncation following Pro147 in SERCA1, is the fourth ATP2A1 mutation to be associated with autosomal recessive Brody disease.
Collapse
Affiliation(s)
- A Odermatt
- Charles H. Best Institute, University of Toronto, 112 College Street, Toronto, Ontario, M5G 1L6, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kim AT, Sarafian TA, Shau H. Characterization of antioxidant properties of natural killer-enhancing factor-B and induction of its expression by hydrogen peroxide. Toxicol Appl Pharmacol 1997; 147:135-42. [PMID: 9356316 DOI: 10.1006/taap.1997.8270] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Natural killer-enhancing factor B (NKEF-B) belongs to a highly conserved family of recently discovered antioxidants. The role of NKEF-B as an antioxidant was demonstrated by its protection of transfected cells to oxidative damage by hydrogen peroxide. To further characterize the antioxidant properties of NKEF-B, we compared the sensitivity of a human endothelial cell line ECV304 and its transfectant, B/1 that hyperexpresses NKEF-B, to various oxidants. In addition, we investigated the changes in the expression of NKEF-B mRNA upon oxidative stress. We found that B/1 was significantly more resistant than the control cells to the oxidative stresses caused by t-butyl hydroperoxide (t-BHP) and methyl mercury (MeHg). In contrast, there was no difference in the sensitivity of B/1 and the control cells to sulfhydryl reactive agents, diethyl maleate and diamide. B/1 was also as sensitive as the control cells to buthionine sulfoximine. The expression of NKEF-B mRNA was induced when the parental cell line ECV304 was treated with 2 mm HP. The induction reached a maximum level around 2 hr and decreased to the basal level around 4 hr. NKEF-A mRNA was not induced by HP. These results demonstrate antioxidant activities of NKEF-B toward prooxidants such as alkyl hydroperoxide and MeHg. Together with its antioxidant activity, the induction of NKEF-B by HP indicates that NKEF-B is an important oxidative stress protein providing protection against a variety of xenobiotic toxic agents.
Collapse
Affiliation(s)
- A T Kim
- Division of Surgical Oncology, UCLA School of Medicine, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
35
|
Kim Y, Glatt H, Xie W, Sinnett D, Lalande M. Human gamma-aminobutyric acid-type A receptor alpha5 subunit gene (GABRA5): characterization and structural organization of the 5' flanking region. Genomics 1997; 42:378-87. [PMID: 9205108 DOI: 10.1006/geno.1997.4770] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The gamma-aminobutyric acid-type A receptor alpha5 subunit gene (GABRA5) is widely expressed in brain and localized to the imprinted human chromosome 15q11-q13. A combination of cDNA library screening and 5' RACE analysis led to identification of three distinct mRNA isoforms of GABRA5 in human adult and fetal brain tissues, each of which differs only in the noncoding 5' UTR sequence. Alignment of the genomic and cDNA sequences of GABRA5 revealed that the mRNA isoforms resulted from three alternative first exons 1A, 1B, and 1C. Northern blot analysis showed that the expression of GABRA5 was not only tissue specific but region specific in brain. CAT reporter assays revealed promoter elements in the 5' proximity of each first exon. The GABRA5 promoter regions lacked TATA and CCAAT boxes but contained several other consensus transcriptional factor recognition sequences. These findings suggest that the differential exon 1 usage of GABRA5 arises as a consequence of alternative promoter activation.
Collapse
Affiliation(s)
- Y Kim
- Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
36
|
Kimura S, Abe K, Suzuki M, Ogawa M, Yoshioka K, Kaname T, Miike T, Yamamura K. A 900 bp genomic region from the mouse dystrophin promoter directs lacZ reporter expression only to the right heart of transgenic mice. Dev Growth Differ 1997; 39:257-65. [PMID: 9227892 DOI: 10.1046/j.1440-169x.1997.t01-2-00001.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In order to study the regulatory mechanism of developmental and tissue-specific expression of the muscle type dystrophin gene in mice, transgenic mice were generated carrying the 900 bp genomic fragment derived from the muscle type dystrophin promoter region fused to the bacterial lacZ gene. Six independent transgenic mouse lines showed specific reporter gene expression in the right heart, but not in skeletal or smooth muscle. The reporter gene expression was first detected in the presumptive right ventricle of the embryos at 8.5 days post coitum and the expression continued only in the right ventricle throughout the development and at the adult stage. The results indicate that the 900 bp genomic fragment contains the regulatory element required for expression of dystrophin only in the right heart, suggesting that distinct elements are responsible for the expression in the left and right compartments of the heart, and/or in skeletal and smooth muscle cells. Based on these findings, the relationship between defects in muscle type promoter and the diseases caused by abnormal dystrophin expression is discussed.
Collapse
Affiliation(s)
- S Kimura
- Institute of Molecular Embryology and Genetics, Kumamoto University School of Medicine, Kumamoto 862, Japan
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Penolazzi L, Facciolo MC, Aguiari G, del Senno L, Piva R. Direct transfection of polymerase chain reaction-generated DNA fragments into mammalian cells employing ethidium bromide indicator and ultrafiltration. Anal Biochem 1997; 248:190-3. [PMID: 9177743 DOI: 10.1006/abio.1997.2107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- L Penolazzi
- Dipartimento di Biochimica e Biologia Molecolare, Universita Degli Studi di Ferrara, Italy
| | | | | | | | | |
Collapse
|
38
|
Chen LS, Lo CF, Numann R, Cuddy M. Characterization of the human and rat phospholemman (PLM) cDNAs and localization of the human PLM gene to chromosome 19q13.1. Genomics 1997; 41:435-43. [PMID: 9169143 DOI: 10.1006/geno.1997.4665] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Previous reports have demonstrated that the phospholemman (PLM), a 72-residue plasma-membrane protein enriched in skeletal muscle and heart, is a major substrate phosphorylated in response to insulin and adrenergic stimulation. Here we describe the isolation and characterization of human and rat PLM cDNA from the heart. Both PLM proteins share significant nucleotide and amino acid sequence and structural similarities with the previously published canine PLM and, to a lesser degree, with Na+/K(+)-ATPase gamma subunit, Mat-8 protein, and CHIF protein. Despite the functional diversity, all these proteins are quite small and possess a single transmembrane domain. Human PLM appears to be a unique gene localized on chromosome 19q13.1. The PLM mRNA is widely distributed in human tissues, with the highest expression in skeletal muscle and heart, suggesting a functional role in muscle contraction. Like canine PLM, both human and rat PLM induce a hyperpolarization-activated chloride current when expressed in Xenopus oocytes. The high degree of sequence and functional conservation among the mammalian PLM proteins indicates that this gene is conserved throughout evolution.
Collapse
Affiliation(s)
- L S Chen
- Division of Cardiovascular and Metabolic Diseases, Wyeth-Ayerst Research, Princeton, New Jersey 08543-8000, USA.
| | | | | | | |
Collapse
|
39
|
Madsen CS, Hershey JC, Hautmann MB, White SL, Owens GK. Expression of the smooth muscle myosin heavy chain gene is regulated by a negative-acting GC-rich element located between two positive-acting serum response factor-binding elements. J Biol Chem 1997; 272:6332-40. [PMID: 9045653 DOI: 10.1074/jbc.272.10.6332] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
To identify cis- and trans-acting factors that regulate smooth muscle-specific gene expression, we studied the smooth muscle myosin heavy chain gene, a rigorous marker of differentiated smooth muscle. A comparison of smooth muscle myosin heavy chain promoter sequences from multiple species revealed the presence of a highly conserved 227-base pair domain (nucleotides -1321 to -1095 in rat). Results of a deletion analysis of a 4.3-kilobase pair segment of the rat promoter (nucleotides -4220 to +88) demonstrated that this domain was necessary for maximal transcriptional activity in smooth muscle cells. Gel-shift analysis and site-directed mutagenesis demonstrated that one true CArG and another CArG-like element contained within this domain were both recognized by the serum response factor and were both required for the positive activity attributable to this domain. Additional studies demonstrated that mutation of a GC-rich sequence within the 227-base pair conserved domain resulted in a nearly 100% increase in transcriptional activity. Gel-shift analysis showed that this GC-rich repressor element was recognized by both Sp1 and Sp3. These data demonstrate that transcriptional control of the smooth muscle myosin heavy chain gene is highly complex, involving both negative and positive regulatory elements, including CArG sequences found in the promoters of multiple smooth muscle differentiation marker genes.
Collapse
Affiliation(s)
- C S Madsen
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | |
Collapse
|
40
|
Southey MC, Hammet F, Hutchins AM, Paidhungat M, Somers GR, Venter DJ. Molecular cloning and sequencing of a novel human P2 nucleotide receptor. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1309:77-80. [PMID: 8950181 DOI: 10.1016/s0167-4781(96)00148-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A novel human P2 nucleotide receptor has been cloned from a T-cell cDNA library. The predicted amino acid sequence shows characteristics of a G-protein-coupled receptor, and shares 88% homology with a recently characterised rat P2 nucleotide receptor sequence. Distinctive features include an extremely short cytoplasmic tail with only one putative protein kinase C phosphorylation site. Northern blot analysis revealed a 1.9 kb transcript expressed in the placenta.
Collapse
Affiliation(s)
- M C Southey
- Department of Pathology, Peter MacCallum Cancer Institute, Melbourne, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
41
|
Rowles J, Scherer SW, Xi T, Majer M, Nickle DC, Rommens JM, Popov KM, Harris RA, Riebow NL, Xia J, Tsui LC, Bogardus C, Prochazka M. Cloning and characterization of PDK4 on 7q21.3 encoding a fourth pyruvate dehydrogenase kinase isoenzyme in human. J Biol Chem 1996; 271:22376-82. [PMID: 8798399 DOI: 10.1074/jbc.271.37.22376] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Different isoenzymes of pyruvate dehydrogenase kinase (PDK) inhibit the mitochondrial pyruvate dehydrogenase complex by phosphorylation of the E1alpha subunit, thus contributing to the regulation of glucose metabolism. By positional cloning in the 7q21.3-q22.1 region linked with insulin resistance and non-insulin-dependent diabetes mellitus in the Pima Indians, we identified a gene encoding an additional human PDK isoform, as evidenced by its amino acid sequence identity (>65%) with other mammalian PDKs, and confirmed by biochemical analyses of the recombinant protein. We performed detailed comparative analyses of the gene, termed PDK4, in insulin-resistant and insulin-sensitive Pima Indians, and detected five DNA variants with comparable frequencies in both subject groups. Using quantitative reverse transcription polymerase chain reaction, we found that the variants identified in the promoter and 5'-untranslated region did not correlate with differences in mRNA level in skeletal muscle and adipose tissue. We conclude that alterations in PDK4 are unlikely to be the molecular basis underlying the observed linkage at 7q21.3-q22.1 in the Pima Indians. Information about the genomic organization and promoter sequences of PDK4 will be useful in studies of other members of this family of mitochondrial protein kinases that are important for the regulation of glucose metabolism.
Collapse
MESH Headings
- Adipose Tissue/chemistry
- Amino Acid Sequence
- Base Sequence
- Chromosomes, Human, Pair 7
- Cloning, Molecular
- DNA, Complementary/chemistry
- Diabetes Mellitus, Type 2/enzymology
- Diabetes Mellitus, Type 2/genetics
- Humans
- Indians, North American
- Isoenzymes/genetics
- Molecular Sequence Data
- Muscle, Skeletal/chemistry
- Polymerase Chain Reaction
- Protein Kinases/genetics
- Protein Serine-Threonine Kinases
- Pyruvate Dehydrogenase Acetyl-Transferring Kinase
- RNA, Messenger/analysis
- Sequence Homology, Amino Acid
- Tissue Distribution
Collapse
Affiliation(s)
- J Rowles
- Clinical Diabetes and Nutrition Section, Phoenix Epidemiology and Clinical Research Branch, NIDDK, National Institutes of Health, Phoenix, Arizona 85016, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Metzger JM, Lin WI, Samuelson LC. Vital staining of cardiac myocytes during embryonic stem cell cardiogenesis in vitro. Circ Res 1996; 78:547-52. [PMID: 8635211 DOI: 10.1161/01.res.78.4.547] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Mouse embryonic stem (ES) cells differentiate in vitro into a variety of cell types, including spontaneously contracting cardiac myocytes. The primary aim of this work was to use vital stain techniques for real-time detection of developing cardiac myocytes in ES cell differentiation cultures. The -440 to +6 human cardiac alpha-actin promoter was used to direct expression of the Escherichia coli reporter gene lacZ (pHCActlacZ) into ES cell-derived cardiac myocytes during cardiogenesis in vitro. Undifferentiated ES cells were electroporated with HCActlacZ together with a plasmid containing the neomycin gene under the direction of the phosphoglycerate kinase promoter, and stable transformants were selected in G418. Individual clones were screened for activation of lacZ gene expression in cardiac myocytes developing in vitro. Results showed that expression of the HCActlacZ reporter construct was activated very early during the ES cell differentiation program, at a time point before the appearance of spontaneous contractile activity. The earliest detection was at day 6 of differentiation, when approximately 25% of the differentiation cultures expressed the reporter construct, with expression increasing to approximately 70% at day 9 and continuing throughout the duration of spontaneous contractile activity exhibited by the ES cell-derived cardiac myocytes. Indirect immunofluorescence assays provide evidence that expression was restricted to the cardiac myocytes in culture. In the present study, we show vital staining of transgene expression in living cardiac myocytes using lipophilic fluorogenic beta-galactopyranoside substrates for real-time detection of the reporter gene during continuous contraction of the ES cell myocytes in vitro. The vital stain approach used in the present study will permit the identification of differentiating ES cells that are committed to the cardiac lineage for analysis of gene expression at early time points of ES cell cardiogenesis and, in addition, will aid in selecting genetically modified ES cell cardiac myocytes for use in functional studies.
Collapse
Affiliation(s)
- J M Metzger
- Department of Physiology, School of Medicine, University of Michigan, Ann Arbor 48109-0622, USA
| | | | | |
Collapse
|
43
|
Suzuki T, Kim HS, Kurabayashi M, Hamada H, Fujii H, Aikawa M, Watanabe M, Watanabe N, Sakomura Y, Yazaki Y, Nagai R. Preferential differentiation of P19 mouse embryonal carcinoma cells into smooth muscle cells. Use of retinoic acid and antisense against the central nervous system-specific POU transcription factor Brn-2. Circ Res 1996; 78:395-404. [PMID: 8593698 DOI: 10.1161/01.res.78.3.395] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Investigation of the molecular mechanisms that control smooth muscle cell (SMC) development and differentiation is a prerequisite in understanding the regulatory mechanisms of physiological and pathological SMC-associated vascular processes. The pluripotent murine embryonal carcinoma P19 cell, whose developmental potential resembles that of early embryonic cells, can develop into cell types derived from the neuroectoderm, mesoderm, and endoderm. In the present study, we have shown a unique strategy to enhance SMC differentiation in P19 cells. Under chemical induction of high concentrations of retinoic acid (1 micromol/L), P19 cells showed optimum differentiation into SMCs. Because the P19 cells thus induced also showed differentiation into neuronal cells, a strategy to block neuronal lineage differentiation was developed using a stable transformant antisense RNA construct against Brn-2, a neuronal lineage-specific POU-domain transcription factor; thus, by specifically inhibiting neuronal differentiation, enhanced SMC differentiation by P19 cells was attained. SMC expression was confirmed by immunohistochemical staining, RNA analysis (RNase protection assay), and protein analysis (Western blot) using SMC-specific markers (eg, SM1 and calponin) and alpha-smooth muscle actin. Our results show that the pathway of SMC differentiation may provide an in vitro system useful in the investigation of SMC regulatory mechanisms (eg, transcriptional regulation) and in the further understanding of SMC development and differentiation.
Collapse
Affiliation(s)
- T Suzuki
- Third Department of Internal Medicine, University of Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Skerjanc IS, Truong J, Filion P, McBurney MW. A splice variant of the ITF-2 transcript encodes a transcription factor that inhibits MyoD activity. J Biol Chem 1996; 271:3555-61. [PMID: 8631961 DOI: 10.1074/jbc.271.7.3555] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Proteins of the basic helix-loop-helix (bHLH) family are transcription factors that bind DNA containing the E box motif (CANNTG) found in the promoters of many muscle-specific genes. ITF-2 is a bHLH protein with widespread expression that is thought to form active heterodimers with MyoD, a muscle-specific bHLH transcription factor. We have isolated cDNAs derived from two alternatively spliced forms of mouse ITF-2, termed MITF-2A and -2B. These proteins differ in their N termini. Neither MITF-2A nor -2B transactivated the cardiac alpha-actin promoter, which contains an E box, when transfected into nonmuscle cells. In fact, MITF-2B inhibited MyoD activation of the cardiac alpha-actin promoter. This inhibitory activity required the N-terminal 83 amino acids since MITF-2A showed no inhibitory activity, and a mutant MITF-2B with deletion of the N-terminal 83 amino acids failed to inhibit MyoD-mediated transcriptional activation. MyoD activity was also inhibited by Id, a HLH protein, and this inhibition was reversed by the addition of excess E12 or MITF-2A. However, the inhibition of MyoD activity by MITF-2B was not reversed with E12 or MITF-2A. While Id is thought to inhibit MyoD by binding and sequestering potential dimerization partners, MITF-2B appears to inhibit MyoD activity by forming an inactive heterodimer with MyoD. Thus, differentially spliced transcripts of mouse ITF-2 encode different proteins that appear to dimerize with MyoD and activate or repress transcription.
Collapse
Affiliation(s)
- I S Skerjanc
- Department of Biochemistry, Health Sciences Building, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | | | |
Collapse
|
45
|
Frestedt JL, Hilden JM, Moore RO, Kersey JH. Differential expression of AF4/FEL mRNA in human tissues. GENETIC ANALYSIS : BIOMOLECULAR ENGINEERING 1996; 12:147-9. [PMID: 8673740 DOI: 10.1016/1050-3862(95)00127-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This manuscript reports the differential expression of the AF4 gene among human tissues. AF4 mRNA is highly expressed in normal placental tissue which correlates with the newborn age of patients presenting with leukemia characterized by the MLL/AF4 gene rearrangement.
Collapse
Affiliation(s)
- J L Frestedt
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis 55455, USA.
| | | | | | | |
Collapse
|
46
|
Kim Y, Boyd CD, Csiszar K. A new gene with sequence and structural similarity to the gene encoding human lysyl oxidase. J Biol Chem 1995; 270:7176-82. [PMID: 7706256 DOI: 10.1074/jbc.270.13.7176] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have isolated a number of recombinant clones from a human skin fibroblast cDNA library that contain extensive sequence homology to several coding domains within the human lysyl oxidase mRNA. Using one of these lysyl oxidase-like cDNAs, we obtained several overlapping genomic DNA recombinants. Restriction mapping and DNA sequence analysis revealed that the complete sequence of the lysyl oxidase-like mRNA was encoded by seven exons distributed throughout 25 kilobases of genomic DNA. Exons 2-6 encoded the region of greatest homology to lysyl oxidase. The size of these five exons, moreover, was exactly the same as the size of the corresponding exons within the lysyl oxidase gene. Northern blot analysis also revealed the concomitant appearance of lysyl oxidase and lysyl oxidase-like mRNA in several human tissues. It appears therefore that the genes encoding lysyl oxidase and a lysyl oxidase-like protein share a common evolutionary origin and may also be functionally related.
Collapse
Affiliation(s)
- Y Kim
- Department of Surgery, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Brunswick 08903, USA
| | | | | |
Collapse
|
47
|
McBurney MW, Fournier S, Schmidt-Kastner PK, Jardine K, Craig J. Unstable integration of transfected DNAs into embryonal carcinoma cells. SOMATIC CELL AND MOLECULAR GENETICS 1994; 20:529-40. [PMID: 7892650 DOI: 10.1007/bf02255843] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Plasmid DNA can be efficiently transfected into embryonal carcinoma cells but it is difficult to isolate clones of cells stably expressing genes present on the transfected plasmids. Even in clonal populations derived from transfected cells, the introduced genes are expressed in some but not all cells. Cotransfection with a region of the Pgk-1 gene results in more efficient, stable cotransformation due to increased numbers of copies of the transfected plasmids integrated into the genomic DNA. The PgK-1 genomic sequences did not allow the plasmid DNA to replicate autonomously but seemed to enhance the ligation of transfected plasmids before their integration into the host genome. Our results suggest a model in which the plasmid DNAs are able to integrate and subsequently excise from the host genome by recombination events enhanced by transcription through the tandemly repeated sequences of the transfected plasmids.
Collapse
Affiliation(s)
- M W McBurney
- University of Ottawa, Department of Medicine, Ontario, Canada
| | | | | | | | | |
Collapse
|
48
|
McBurney MW, Fournier S, Jardine K, Sutherland L. Intragenic regions of the murine Pgk-1 locus enhance integration of transfected DNAs into genomes of embryonal carcinoma cells. SOMATIC CELL AND MOLECULAR GENETICS 1994; 20:515-28. [PMID: 7892649 DOI: 10.1007/bf02255842] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Introduction of recombinant genes into mammalian cells in culture has been an important procedure in establishing the molecular mechanisms of various cellular processes. The efficiency with which plasmid borne recombinant genes are expressed following stable integration into genomes of embryonal carcinoma cells is low. Using the P19 embryonal carcinoma cells as recipients, we found that constructs carrying the promoter and intragenic regions of the murine Pgk-1 gene were expressed with high efficiency. This elevated expression was associated with increased numbers of copies of the transfected plasmid DNA stably associated with the genomes of recipient cells. The elevated plasmid copy numbers may result from enhanced ligation of transfected plasmids because cotransfected plasmids were also integrated in increased numbers. The enhanced integration and expression of transfected plasmids required active transcription through an intragenic region of Pgk-1, perhaps resulting in more recombinogenic plasmid DNAs.
Collapse
Affiliation(s)
- M W McBurney
- University of Ottawa, Department of Medicine, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
49
|
Onno M, Guillaudeux T, Amiot L, Renard I, Drenou B, Hirel B, Girr M, Semana G, Le Bouteiller P, Fauchet R. The HLA-G gene is expressed at a low mRNA level in different human cells and tissues. Hum Immunol 1994; 41:79-86. [PMID: 7836069 DOI: 10.1016/0198-8859(94)90089-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Recently, HLA-G transgenic mice were shown to exhibit transgene transcription in several extraembryonic tissues. To determine whether HLA-G mRNAs are also expressed in other human tissues, we have undertaken Northern blot and RT-PCR assays using HLA-G locus-specific probe and primers. These studies demonstrate that the HLA-G gene is transcribed in a variety of cells and adult tissues obtained from different individuals (peripheral blood leukocytes, placenta, skin, spleen, thymus, prostate, testicle, ovary, small intestine, colon, heart, brain, lung, liver, and kidney), as well as in fetal tissues (heart, lung, liver, and kidney). The HLA-G mRNA level observed in most tissues is orders of magnitude lower than the level of classic class I genes in the same tissues. RT-PCR studies have demonstrated that alternative splicing of the HLA-G primary transcript is different from tissue to tissue and could be regulated in a tissue-specific fashion. Sequencing of keratinocyte transcripts has confirmed previous observations: (a) three different alternative splicing transcripts are produced (a full-length transcript, an mRNA lacking exon 3, and a transcript devoid of exon 3 and 4) and (b) HLA-G polymorphism is limited in the coding regions. In view of this wide HLA-G tissue distribution, a new hypothesis dealing with possible HLA-G function is proposed.
Collapse
Affiliation(s)
- M Onno
- University Laboratory for Hematology and Biology of Blood Cells, University of Rennes I, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Dunwoodie S, Joya J, Arkell R, Hardeman E. Multiple regions of the human cardiac actin gene are necessary for maturation-based expression in striated muscle. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32703-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|