1
|
Radi SH, Vemuri K, Martinez-Lomeli J, Sladek FM. HNF4α isoforms: the fraternal twin master regulators of liver function. Front Endocrinol (Lausanne) 2023; 14:1226173. [PMID: 37600688 PMCID: PMC10438950 DOI: 10.3389/fendo.2023.1226173] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
In the more than 30 years since the purification and cloning of Hepatocyte Nuclear Factor 4 (HNF4α), considerable insight into its role in liver function has been gleaned from its target genes and mouse experiments. HNF4α plays a key role in lipid and glucose metabolism and intersects with not just diabetes and circadian rhythms but also with liver cancer, although much remains to be elucidated about those interactions. Similarly, while we are beginning to elucidate the role of the isoforms expressed from its two promoters, we know little about the alternatively spliced variants in other portions of the protein and their impact on the 1000-plus HNF4α target genes. This review will address how HNF4α came to be called the master regulator of liver-specific gene expression with a focus on its role in basic metabolism, the contributions of the various isoforms and the intriguing intersection with the circadian clock.
Collapse
Affiliation(s)
- Sarah H. Radi
- Department of Biochemistry, University of California, Riverside, Riverside, CA, United States
| | - Kiranmayi Vemuri
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
- Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Jose Martinez-Lomeli
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, United States
| | - Frances M. Sladek
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
2
|
Beinsteiner B, Billas IML, Moras D. Structural insights into the HNF4 biology. Front Endocrinol (Lausanne) 2023; 14:1197063. [PMID: 37404310 PMCID: PMC10315846 DOI: 10.3389/fendo.2023.1197063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/01/2023] [Indexed: 07/06/2023] Open
Abstract
Hepatocyte Nuclear Factor 4 (HNF4) is a transcription factor (TF) belonging to the nuclear receptor (NR) family that is expressed in liver, kidney, intestine and pancreas. It is a master regulator of liver-specific gene expression, in particular those genes involved in lipid transport and glucose metabolism and is crucial for the cellular differentiation during development. Dysregulation of HNF4 is linked to human diseases, such as type I diabetes (MODY1) and hemophilia. Here, we review the structures of the isolated HNF4 DNA binding domain (DBD) and ligand binding domain (LBD) and that of the multidomain receptor and compare them with the structures of other NRs. We will further discuss the biology of the HNF4α receptors from a structural perspective, in particular the effect of pathological mutations and of functionally critical post-translational modifications on the structure-function of the receptor.
Collapse
Affiliation(s)
- Brice Beinsteiner
- Laboratory IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre for Integrative Biology (CBI), Illkirch, France
- Université de Strasbourg (Unistra), Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France
| | - Isabelle M. L. Billas
- Laboratory IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre for Integrative Biology (CBI), Illkirch, France
- Université de Strasbourg (Unistra), Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France
| | - Dino Moras
- Laboratory IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre for Integrative Biology (CBI), Illkirch, France
- Université de Strasbourg (Unistra), Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France
| |
Collapse
|
3
|
Activation of COUP-TFI by a Novel Diindolylmethane Derivative. Cells 2019; 8:cells8030220. [PMID: 30866413 PMCID: PMC6468570 DOI: 10.3390/cells8030220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 12/11/2022] Open
Abstract
Chicken ovalbumin upstream promoter-transcription factor I (COUP-TFI) is an orphan receptor and member of the nuclear receptor superfamily. Among a series of methylene substituted diindolylmethanes (C-DIMs) containing substituted phenyl and heteroaromatic groups, we identified 1,1-bis(3'-indolyl)-1-(4-pyridyl)-methane (DIM-C-Pyr-4) as an activator of COUP-TFI. Structure activity studies with structurally diverse heteroaromatic C-DIMs showed that the pyridyl substituted compound was active and the 4-pyridyl substituent was more potent than the 2- or 3-pyridyl analogs in transactivation assays in breast cancer cells. The DIM-C-Pyr-4 activated chimeric GAL4-COUP-TFI constructs containing full length, C- or N-terminal deletions, and transactivation was inhibited by phosphatidylinositol-3-kinase and protein kinase A inhibitors. However, DIM-C-Pyr-4 also induced transactivation and interactions of COUP-TFI and steroid receptor coactivators-1 and -2 in mammalian two-hybrid assays, and ligand-induced interactions of the C-terminal region of COUP-TFI were not affected by kinase inhibitors. We also showed that DIM-C-Pyr-4 activated COUP-TFI-dependent early growth response 1 (Egr-1) expression and this response primarily involved COUP-TFI interactions with Sp3 and to a lesser extent Sp1 bound to the proximal region of the Egr-1 promoter. Modeling studies showed interactions of DIM-C-Pyr-4 within the ligand binding domain of COUP-TFI. This report is the first to identify a COUP-TFI agonist and demonstrate activation of COUP-TFI-dependent Egr-1 expression.
Collapse
|
4
|
Zhang R, Wang Y, Li R, Chen G. Transcriptional Factors Mediating Retinoic Acid Signals in the Control of Energy Metabolism. Int J Mol Sci 2015; 16:14210-44. [PMID: 26110391 PMCID: PMC4490549 DOI: 10.3390/ijms160614210] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/10/2015] [Accepted: 06/11/2015] [Indexed: 02/07/2023] Open
Abstract
Retinoic acid (RA), an active metabolite of vitamin A (VA), is important for many physiological processes including energy metabolism. This is mainly achieved through RA-regulated gene expression in metabolically active cells. RA regulates gene expression mainly through the activation of two subfamilies in the nuclear receptor superfamily, retinoic acid receptors (RARs) and retinoid X receptors (RXRs). RAR/RXR heterodimers or RXR/RXR homodimers bind to RA response element in the promoters of RA target genes and regulate their expressions upon ligand binding. The development of metabolic diseases such as obesity and type 2 diabetes is often associated with profound changes in the expressions of genes involved in glucose and lipid metabolism in metabolically active cells. RA regulates some of these gene expressions. Recently, in vivo and in vitro studies have demonstrated that status and metabolism of VA regulate macronutrient metabolism. Some studies have shown that, in addition to RARs and RXRs, hepatocyte nuclear factor 4α, chicken ovalbumin upstream promoter-transcription factor II, and peroxisome proliferator activated receptor β/δ may function as transcriptional factors mediating RA response. Herein, we summarize current progresses regarding the VA metabolism and the role of nuclear receptors in mediating RA signals, with an emphasis on their implication in energy metabolism.
Collapse
Affiliation(s)
- Rui Zhang
- State Food and Drug Administration Hubei Center for Medical Equipment Quality Supervision and Testing, 666 High-Tech Avenue, Wuhan 430000, China.
| | - Yueqiao Wang
- Department of Nutrition and Food Hygiene, Wuhan University, 185 East Lake Road, Wuhan 430071, China.
| | - Rui Li
- Department of Nutrition and Food Hygiene, Wuhan University, 185 East Lake Road, Wuhan 430071, China.
| | - Guoxun Chen
- Department of Nutrition, University of Tennessee at Knoxville, 1215 West Cumberland Avenue, Knoxville, TN 37996, USA.
| |
Collapse
|
5
|
Kyithar MP, Bonner C, Bacon S, Kilbride SM, Schmid J, Graf R, Prehn JHM, Byrne MM. Effects of hepatocyte nuclear factor-1A and -4A on pancreatic stone protein/regenerating protein and C-reactive protein gene expression: implications for maturity-onset diabetes of the young. J Transl Med 2013; 11:156. [PMID: 23803251 PMCID: PMC3707779 DOI: 10.1186/1479-5876-11-156] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 06/13/2013] [Indexed: 12/21/2022] Open
Abstract
Background There is a significant clinical overlap between patients with hepatocyte nuclear factor (HNF)-1A and HNF4A maturity-onset diabetes of the young (MODY), two forms of monogenic diabetes. HNF1A and HNF4A are transcription factors that control common and partly overlapping sets of target genes. We have previously shown that elevated serum pancreatic stone protein / regenerating protein A (PSP/reg1A) levels can be detected in subjects with HNF1A-MODY. In this study, we investigated whether PSP/reg is differentially regulated by HNF1A and HNF4A. Methods Quantitative real-time PCR (qPCR) and Western blotting were used to validate gene and protein expression in cellular models of HNF1A- and HNF4A-MODY. Serum PSP/reg1A levels and high-sensitivity C-reactive protein (hsCRP) were measured by ELISA in 31 HNF1A- and 9 HNF4A-MODY subjects. The two groups were matched for age, body mass index, diabetes duration, blood pressure, lipid profile and aspirin and statin use. Results Inducible repression of HNF1A and HNF4A function in INS-1 cells suggested that PSP/reg induction required HNF4A, but not HNF1A. In contrast, crp gene expression was significantly reduced by repression of HNF1A, but not HNF4A function. PSP/reg levels were significantly lower in HNF4A subjects when compared to HNF1A subjects [9.25 (7.85-12.85) ng/ml vs. 12.5 (10.61-17.87) ng/ml, U-test P = 0.025]. hsCRP levels were significantly lower in HNF1A-MODY [0.22 (0.17-0.35) mg/L] compared to HNF4A-MODY group [0.81 (0.38-1.41) mg/L, U-test P = 0.002], Parallel measurements of serum PSP/reg1A and hsCRP levels were able to discriminate HNF1A- and HNF4A-MODY subjects. Conclusion Our study demonstrates that two distinct target genes, PSP/reg and crp, are differentially regulated by HNF1A and HNF4A, and provides clinical proof-of-concept that serum PSP/reg1A and hsCRP levels may distinguish HNF1A-MODY from HNF4A-MODY subjects.
Collapse
Affiliation(s)
- Ma P Kyithar
- Department of Endocrinology, Mater Misericordiae University Hospital, 30 Eccles Street, Dublin 7, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Chicken ovalbumin upstream promoter transcription factor II (COUP-TFII) is an orphan nuclear receptor that acts as a transcriptional activator or repressor in a cell type-dependent manner. Best characterized for its role in the regulation of angiogenesis during mouse development, COUP-TFII also plays important roles in glucose metabolism and cancer. Expression of COUP-TFII is altered in various endocrine conditions. Cell type-specific functions and the regulation of COUP-TFII expression result in its varying physiological and pathological actions in diverse systems. Evidence will be reviewed for oncogenic and tumor-suppressive functions of COUP-TFII, with roles in angiogenesis, metastasis, steroidogenesis, and endocrine sensitivity of breast cancer described. The applicability of current data to our understanding of the role of COUP-TFII in cancer will be discussed.
Collapse
Affiliation(s)
- Lacey M Litchfield
- Department of Biochemistry and Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | | |
Collapse
|
7
|
Angrish MM, Mets BD, Jones AD, Zacharewski TR. Dietary fat is a lipid source in 2,3,7,8-tetrachlorodibenzo-ρ-dioxin (TCDD)-elicited hepatic steatosis in C57BL/6 mice. Toxicol Sci 2012; 128:377-86. [PMID: 22539624 DOI: 10.1093/toxsci/kfs155] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-ρ-dioxin (TCDD) increases fatty acid (FA) transport and FA levels resulting in hepatic steatosis in mice. Diet as a source of lipids was investigated using customized diets, stearoyl-CoA desaturase 1 (Scd1) null mice, and (14)C-oleate (18:1n9) uptake studies. C57BL/6 mice fed with 5, 10, or 15% fat or 50, 60 or 70% carbohydrate diets exhibited increased relative liver weight following gavage with 30 µg/kg TCDD for 168 h. Hepatic lipid extract analysis from mice fed with 5, 10, and 15% fat diets identified a dose-dependent increase in total FAs induced by TCDD. Mice fed with fat diet also exhibited a dose-dependent increase in the dietary essential linoleic (18:2n6) and α-linolenic (18:3n3) acids. No dose-dependent FA increase was detected on carbohydrate diets, suggesting dietary fat as a source of lipids in TCDD-induced steatosis as opposed to de novo lipogenesis. TCDD also induced oleate levels threefold in Scd1 null mice that are incapable of desaturating stearate (18:0). This is consistent with oleate representing > 90% of all monounsaturated FAs in rodent chow. Moreover, TCDD increased hepatic (14)C-oleate levels twofold in wild type and 2.4-fold in Scd1 null mice concurrent with the induction of intestinal and hepatic lipid transport genes (Slc27a, Fabp, Ldlr, Cd36, and Apob). In addition, computational scanning identified putative dioxin response elements and in vivo ChIP-chip analysis revealed regions of aryl hydrocarbon receptor (AhR) enrichment in lipid transport genes differentially regulated by TCDD. Collectively, these results suggest the AhR mediates increased uptake of dietary fats that contribute to TCDD-elicited hepatic steatosis.
Collapse
|
8
|
Fang B, Mane-Padros D, Bolotin E, Jiang T, Sladek FM. Identification of a binding motif specific to HNF4 by comparative analysis of multiple nuclear receptors. Nucleic Acids Res 2012; 40:5343-56. [PMID: 22383578 PMCID: PMC3384313 DOI: 10.1093/nar/gks190] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Nuclear receptors (NRs) regulate gene expression by binding specific DNA sequences consisting of AG[G/T]TCA or AGAACA half site motifs in a variety of configurations. However, those motifs/configurations alone do not adequately explain the diversity of NR function in vivo. Here, a systematic examination of DNA binding specificity by protein-binding microarrays (PBMs) of three closely related human NRs—HNF4α, retinoid X receptor alpha (RXRα) and COUPTF2—reveals an HNF4-specific binding motif (H4-SBM), xxxxCAAAGTCCA, as well as a previously unrecognized polarity in the classical DR1 motif (AGGTCAxAGGTCA) for HNF4α, RXRα and COUPTF2 homodimers. ChIP-seq data indicate that the H4-SBM is uniquely bound by HNF4α but not 10 other NRs in vivo, while NRs PXR, FXRα, Rev-Erbα appear to bind adjacent to H4-SBMs. HNF4-specific DNA recognition and transactivation are mediated by residues Asp69 and Arg76 in the DNA-binding domain; this combination of amino acids is unique to HNF4 among all human NRs. Expression profiling and ChIP data predict ∼100 new human HNF4α target genes with an H4-SBM site, including several Co-enzyme A-related genes and genes with links to disease. These results provide important new insights into NR DNA binding.
Collapse
Affiliation(s)
- Bin Fang
- Department of Cell Biology and Neuroscience, University of California Riverside, Riverside, CA 92521, USA
| | | | | | | | | |
Collapse
|
9
|
Bonzo JA, Ferry CH, Matsubara T, Kim JH, Gonzalez FJ. Suppression of hepatocyte proliferation by hepatocyte nuclear factor 4α in adult mice. J Biol Chem 2012; 287:7345-56. [PMID: 22241473 DOI: 10.1074/jbc.m111.334599] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hepatocyte nuclear factor 4α (HNF4α) regulates genes involved in lipid and bile acid synthesis, gluconeogenesis, amino acid metabolism, and blood coagulation. In addition to its metabolic role, HNF4α is critical for hepatocyte differentiation, and loss of HNF4α is associated with hepatocellular carcinoma. The hepatocyte-specific Hnf4a knock-out mouse develops severe hepatomegaly and steatosis resulting in premature death, thereby limiting studies of the role of this transcription factor in the adult animal. In addition, gene compensation may complicate analysis of the phenotype of these mice. To overcome these issues, an acute Hnf4a knock-out mouse model was generated through use of the tamoxifen-inducible ErT2cre coupled to the serum albumin gene promoter. Microarray expression analysis revealed up-regulation of genes associated with proliferation and cell cycle control only in the acute liver-specific Hnf4α-null mouse. BrdU and ki67 staining confirmed extensive hepatocyte proliferation in this model. Proliferation was associated with induction of the hepatomitogen Bmp7 as well as reduced basal apoptotic activity. The p53/p63 apoptosis effector gene Perp was further identified as a direct HNF4α target gene. These data suggest that HNF4α maintains hepatocyte differentiation in the adult healthy liver, and its loss may directly contribute to hepatocellular carcinoma development, thus indicating this factor as a possible liver tumor suppressor gene.
Collapse
Affiliation(s)
- Jessica A Bonzo
- Laboratory of Metabolism, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
10
|
Nitz I, Kruse ML, Klapper M, Döring F. Specific regulation of low-abundance transcript variants encoding human Acyl-CoA binding protein (ACBP) isoforms. J Cell Mol Med 2011; 15:909-27. [PMID: 20345851 PMCID: PMC3922676 DOI: 10.1111/j.1582-4934.2010.01055.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Despite intensive efforts on annotation of eukaryotic transcriptoms, little is known about the regulation of low-abundance transcripts. To address this question, we analysed the regulation of novel low-abundance transcript variants of human acyl-CoA binding protein (ACBP), an important multifunctional housekeeping protein, which we have identified by screening of human expressed sequence tags in combination with ab initio gene prediction. By using RT-, real-time RT- and rapid amplification of cDNA ends-PCR in five human tissues, we find these transcripts, which are generated by a consequent use of alternative promoters and alternate first or first two exons, to be authentic ones. They show a tissue-specific distribution and intrinsic responsiveness to glucose and insulin. Promoter analyses of the corresponding transcripts revealed a differential regulation mediated by sterol regulatory element-binding protein-2, hepatocyte nuclear factor-4α and nuclear factor κB (NF-κB), central transcription factors of fat and glucose metabolism and inflammation. Subcellular localization studies of deduced isoforms in liver HepG2 cells showed that they are distributed in different compartments. By demonstrating that ACBP is a target of NF-κB, our findings link fatty acid metabolism with inflammation. Furthermore, our findings show that low-abundance transcripts are regulated in a similar mode than their high-abundance counterparts.
Collapse
Affiliation(s)
- Inke Nitz
- Institute of Human Nutrition and Food Science, Department of Molecular Prevention, Christian-Albrechts University, Kiel, Germany
| | | | | | | |
Collapse
|
11
|
Dere E, Lo R, Celius T, Matthews J, Zacharewski TR. Integration of genome-wide computation DRE search, AhR ChIP-chip and gene expression analyses of TCDD-elicited responses in the mouse liver. BMC Genomics 2011; 12:365. [PMID: 21762485 PMCID: PMC3160422 DOI: 10.1186/1471-2164-12-365] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 07/15/2011] [Indexed: 12/20/2022] Open
Abstract
Background The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor (TF) that mediates responses to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Integration of TCDD-induced genome-wide AhR enrichment, differential gene expression and computational dioxin response element (DRE) analyses further elucidate the hepatic AhR regulatory network. Results Global ChIP-chip and gene expression analyses were performed on hepatic tissue from immature ovariectomized mice orally gavaged with 30 μg/kg TCDD. ChIP-chip analysis identified 14,446 and 974 AhR enriched regions (1% false discovery rate) at 2 and 24 hrs, respectively. Enrichment density was greatest in the proximal promoter, and more specifically, within ± 1.5 kb of a transcriptional start site (TSS). AhR enrichment also occurred distal to a TSS (e.g. intergenic DNA and 3' UTR), extending the potential gene expression regulatory roles of the AhR. Although TF binding site analyses identified over-represented DRE sequences within enriched regions, approximately 50% of all AhR enriched regions lacked a DRE core (5'-GCGTG-3'). Microarray analysis identified 1,896 number of TCDD-responsive genes (|fold change| ≥ 1.5, P1(t) > 0.999). Integrating this gene expression data with our ChIP-chip and DRE analyses only identified 625 differentially expressed genes that involved an AhR interaction at a DRE. Functional annotation analysis of differentially regulated genes associated with AhR enrichment identified overrepresented processes related to fatty acid and lipid metabolism and transport, and xenobiotic metabolism, which are consistent with TCDD-elicited steatosis in the mouse liver. Conclusions Details of the AhR regulatory network have been expanded to include AhR-DNA interactions within intragenic and intergenic genomic regions. Moreover, the AhR can interact with DNA independent of a DRE core suggesting there are alternative mechanisms of AhR-mediated gene regulation.
Collapse
Affiliation(s)
- Edward Dere
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | |
Collapse
|
12
|
Stegmaier P, Voss N, Meier T, Kel A, Wingender E, Borlak J. Advanced computational biology methods identify molecular switches for malignancy in an EGF mouse model of liver cancer. PLoS One 2011; 6:e17738. [PMID: 21464922 PMCID: PMC3065454 DOI: 10.1371/journal.pone.0017738] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 02/09/2011] [Indexed: 01/04/2023] Open
Abstract
The molecular causes by which the epidermal growth factor receptor tyrosine kinase induces malignant transformation are largely unknown. To better understand EGFs' transforming capacity whole genome scans were applied to a transgenic mouse model of liver cancer and subjected to advanced methods of computational analysis to construct de novo gene regulatory networks based on a combination of sequence analysis and entrained graph-topological algorithms. Here we identified transcription factors, processes, key nodes and molecules to connect as yet unknown interacting partners at the level of protein-DNA interaction. Many of those could be confirmed by electromobility band shift assay at recognition sites of gene specific promoters and by western blotting of nuclear proteins. A novel cellular regulatory circuitry could therefore be proposed that connects cell cycle regulated genes with components of the EGF signaling pathway. Promoter analysis of differentially expressed genes suggested the majority of regulated transcription factors to display specificity to either the pre-tumor or the tumor state. Subsequent search for signal transduction key nodes upstream of the identified transcription factors and their targets suggested the insulin-like growth factor pathway to render the tumor cells independent of EGF receptor activity. Notably, expression of IGF2 in addition to many components of this pathway was highly upregulated in tumors. Together, we propose a switch in autocrine signaling to foster tumor growth that was initially triggered by EGF and demonstrate the knowledge gain form promoter analysis combined with upstream key node identification.
Collapse
Affiliation(s)
| | - Nico Voss
- BIOBASE GmbH, Wolfenbuettel, Germany
| | - Tatiana Meier
- Department Molecular Medicine and Medical Biotechnology, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
- Centre for Pharmacology and Toxicology, Hannover Medical School, Hannover, Germany
| | - Alexander Kel
- BIOBASE GmbH, Wolfenbuettel, Germany
- GeneXplain GmbH, Wolfenbuettel, Germany
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Edgar Wingender
- BIOBASE GmbH, Wolfenbuettel, Germany
- GeneXplain GmbH, Wolfenbuettel, Germany
- Department of Bioinformatics, University of Goettingen, Goettingen, Germany
| | - Juergen Borlak
- Department Molecular Medicine and Medical Biotechnology, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
- Centre for Pharmacology and Toxicology, Hannover Medical School, Hannover, Germany
- * E-mail:
| |
Collapse
|
13
|
Wang X, Gulhati P, Li J, Dobner PR, Weiss H, Townsend CM, Evers BM. Characterization of promoter elements regulating the expression of the human neurotensin/neuromedin N gene. J Biol Chem 2010; 286:542-54. [PMID: 21030593 DOI: 10.1074/jbc.m110.145664] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Expression of the gene encoding neurotensin/neuromedin N (NT/N) is mostly limited to the brain and specialized enteroendocrine N cells in the distal small intestine. We have identified key regulatory elements in the promoter region that are involved in human NT/N (hNT/N) gene expression in the novel human endocrine cell line, BON, which resembles intestinal N cells in several important aspects including NT/N precursor protein processing, ratios of different NT/N mRNA isoforms, and high levels of constitutive expression of the NT/N gene. In this study, we demonstrated multiple cis-regulatory elements including a proximal region containing a cAMP-responsive element (CRE)/AP-1-like element that binds both the AP-1 and CRE-binding protein (CREB)/ATF proteins (c-Jun, ATF-1, ATF-2, JunD, and CREB). Similar to the rat NT/N gene, this region is critical for constitutive hNT/N gene expression. Moreover, we identified a novel region that binds the orphan hormone receptor, NR2F2. We have demonstrated that the C terminus of NR2F2 strongly represses hNT/N transcription, whereas an N-terminal domain antagonizes this repressive effect. Regulation of NT/N expression by NR2F2 may have important consequences for lipid metabolism. We speculate that a complex interplay between the proximal CRE/AP-1-like motif and NR2F2 binding region exists to regulate hNT/N expression, which is critical for the high level of constitutive expression of NT/N in enteroendocrine cells. Finally, the BON cell line provides a unique model to characterize the factors regulating expression of the hNT/N gene and to better understand the mechanisms responsible for terminal differentiation of the N cell lineage in the gut.
Collapse
Affiliation(s)
- Xiaofu Wang
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Marcil V, Seidman E, Sinnett D, Boudreau F, Gendron FP, Beaulieu JF, Ménard D, Precourt LP, Amre D, Levy E. Modification in oxidative stress, inflammation, and lipoprotein assembly in response to hepatocyte nuclear factor 4alpha knockdown in intestinal epithelial cells. J Biol Chem 2010; 285:40448-60. [PMID: 20871093 DOI: 10.1074/jbc.m110.155358] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Hepatocyte nuclear factor 4α (HNF4α) is a nuclear transcription factor mainly expressed in the liver, intestine, kidney, and pancreas. Many of its hepatic and pancreatic functions have been described, but limited information is available on its role in the gastrointestinal tract. The objectives of this study were to evaluate the anti-inflammatory and antioxidant functions of HNF4α as well as its implication in intestinal lipid transport and metabolism. To this end, the HNF4A gene was knocked down by transfecting Caco-2 cells with a pGFP-V-RS lentiviral vector containing an shRNA against HNF4α. Inactivation of HNF4α in Caco-2 cells resulted in the following: (a) an increase in oxidative stress as demonstrated by the levels of malondialdehyde and conjugated dienes; (b) a reduction in secondary endogenous antioxidants (catalase, glutathione peroxidase, and heme oxygenase-1); (c) a lower protein expression of nuclear factor erythroid 2-related factor that controls the antioxidant response elements-regulated antioxidant enzymes; (d) an accentuation of cellular inflammatory activation as shown by levels of nuclear factor-κB, interleukin-6, interleukin-8, and leukotriene B4; (e) a decrease in the output of high density lipoproteins and of their anti-inflammatory and anti-oxidative components apolipoproteins (apo) A-I and A-IV; (f) a diminution in cellular lipid transport revealed by a lower cellular secretion of chylomicrons and their apoB-48 moiety; and (g) alterations in the transcription factors sterol regulatory element-binding protein 2, peroxisome proliferator-activated receptor α, and liver X receptor α and β. In conclusion, HNF4α appears to play a key role in intestinal lipid metabolism as well as intestinal anti-oxidative and anti-inflammatory defense mechanisms.
Collapse
Affiliation(s)
- Valérie Marcil
- Research Institute, McGill University, Campus MGH, C10.148.6, Montreal H3G 1A4, Quebec
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Chiang JYL. Hepatocyte nuclear factor 4alpha regulation of bile acid and drug metabolism. Expert Opin Drug Metab Toxicol 2010; 5:137-47. [PMID: 19239393 DOI: 10.1517/17425250802707342] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The hepatocyte nuclear factor 4alpha (HNF4alpha) is a liver-enriched nuclear receptor that plays a critical role in early morphogenesis, fetal liver development, liver differentiation and metabolism. Human HNF4alpha gene mutations cause maturity on-set diabetes of the young type 1, an autosomal dominant non-insulin-dependent diabetes mellitus. HNF4alpha is an orphan nuclear receptor because of which the endogenous ligand has not been firmly identified. The trans-activating activity of HNF4alpha is enhanced by interacting with co-activators and inhibited by corepressors. Recent studies have revealed that HNF4alpha plays a central role in regulation of bile acid metabolism in the liver. Bile acids are required for biliary excretion of cholesterol and metabolites, and intestinal absorption of fat, nutrients, drug and xenobiotics for transport and distribution to liver and other tissues. Bile acids are signaling molecules that activate nuclear receptors to control lipids and drug metabolism in the liver and intestine. Therefore, HNF4alpha plays a central role in coordinated regulation of bile acid and xenobiotics metabolism. Drugs that specifically activate HNF4alpha could be developed for treating metabolic diseases such as diabetes, dyslipidemia and cholestasis, as well as drug metabolism and detoxification.
Collapse
Affiliation(s)
- John Y L Chiang
- Northeastern Ohio Universities Colleges of Medicine and Pharmacy, Department of Integrative Medical Sciences, Rootstown, Ohio 44272, USA.
| |
Collapse
|
16
|
Ahn JE, Guarino LA, Zhu-Salzman K. Coordination of hepatocyte nuclear factor 4 and seven-up controls insect counter-defense cathepsin B expression. J Biol Chem 2010; 285:6573-84. [PMID: 20048156 PMCID: PMC2825453 DOI: 10.1074/jbc.m109.095596] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 01/04/2010] [Indexed: 12/12/2022] Open
Abstract
CmCatB, a cathepsin B-type cysteine protease, is insensitive to inhibition by the soybean cysteine protease inhibitor (scN). Cowpea bruchids dramatically induce CmCatB expression when major digestive proteases are inactivated by dietary scN, which is presumably an adaptive strategy that insects use to minimize effects of nutrient deficiency. In this study, we cloned the cowpea bruchid hepatocyte nuclear factor 4 (CmHNF-4) and demonstrated its involvement in transcriptional activation of CmCatB in the digestive tract of scN-adapted bruchids. Electrophoretic mobility shift assays demonstrated that CmHNF-4 binds to a CmCatB promoter region containing two tandem chicken ovalbumin upstream promoter (COUP) sites, which is also the cis-element for Seven-up (CmSvp), a previously identified transcriptional repressor of CmCatB. Although CmSvp is predominantly expressed in unadapted insect midgut, CmHNF-4 is more abundant in adapted bruchids. When transiently expressed in Drosophila S2 cells, CmHNF-4 substantially increased CmCatB expression through COUP binding. CmSvp inhibited CmHNF-4-mediated transcriptional activation even in the absence of its DNA-binding domain. Thus antagonism resulted, at least in part, from protein-protein interactions between CmSvp and CmHNF-4. Association of the two transcription factors was subsequently confirmed by glutathione S-transferase pulldown assays. Interestingly, anti-CmHNF-4 serum caused a supershift not only with nuclear extracts of scN-adapted insect midgut but with that of unadapted control insects as well. The presence of CmHNF-4 in unadapted insects further supported the idea that interplay between CmSvp and CmHNF-4 controls CmCatB transcription activation. Together, these results suggest that coordination between CmHNF-4 and CmSvp is important in counter-defense gene regulation in insects.
Collapse
Affiliation(s)
| | | | - Keyan Zhu-Salzman
- From the Department of Entomology and
- Vegetable & Fruit Improvement Center, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
17
|
Ungaro P, Teperino R, Mirra P, Cassese A, Fiory F, Perruolo G, Miele C, Laakso M, Formisano P, Beguinot F. Molecular cloning and characterization of the human PED/PEA-15 gene promoter reveal antagonistic regulation by hepatocyte nuclear factor 4alpha and chicken ovalbumin upstream promoter transcription factor II. J Biol Chem 2008; 283:30970-9. [PMID: 18765665 PMCID: PMC2662169 DOI: 10.1074/jbc.m803895200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 08/27/2008] [Indexed: 11/06/2022] Open
Abstract
Overexpression of the ped/pea-15 gene in mice impairs glucose tolerance and leads to diabetes in conjunction with high fat diet treatment. PED/PEA-15 is also overexpressed in type 2 diabetics as well as in euglycemic offspring from these subjects. The cause(s) of this abnormality remains unclear. In the present work we have cloned and localized the promoter region of the human PED/PEA-15 gene within the first 230 bp of the 5(R)-flanking region. A cis-acting regulatory element located between -320 and -335 bps upstream the PED/PEA-15 gene transcriptional start site (+1) is recognized by both the hepatocyte nuclear factor 4alpha (HNF-4alpha) and the chicken ovalbumin upstream promoter transcription factor II (COUP-TFII), two members of the steroid/thyroid superfamily of transcription factors, both of which are involved in the control of lipid and glucose homeostasis. HNF-4alpha represses PED/PEA-15 expression in HeLa cells, whereas COUP-TFII activates its expression. In hepatocytes, the activation of PED/PEA-15 gene transcription is paralleled by the establishment of a partially dedifferentiated phenotype accompanied by a reduction in mRNA levels encoded by genes normally expressed during liver development. Cotransfection of HeLa cells with a reporter construct containing the PED/PEA-15 response element and various combinations of HNF-4alpha and COUP-TFII expression vectors indicated that COUP-TFII antagonizes the repression of the PED/PEA-15 gene by HNF-4alpha. Thus, at least in part, transcription of the PED/PEA-15 gene in vivo is dependent upon the intracellular balance of these positive and negative regulatory factors. Abnormalities in HNF-4alpha and COUP-TFII balance might have important consequences on glucose tolerance in humans.
Collapse
Affiliation(s)
- Paola Ungaro
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università di Napoli Federico II, 80131 Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
The MODY1 gene for hepatocyte nuclear factor 4alpha and a feedback loop control COUP-TFII expression in pancreatic beta cells. Mol Cell Biol 2008; 28:4588-97. [PMID: 18474611 DOI: 10.1128/mcb.01191-07] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pancreatic islet beta cell differentiation and function are dependent upon a group of transcription factors that maintain the expression of key genes and suppress others. Knockout mice with the heterozygous deletion of the gene for chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) or the complete disruption of the gene for hepatocyte nuclear factor 4alpha (HNF4alpha) in pancreatic beta cells have similar insulin secretion defects, leading us to hypothesize that there is transcriptional cross talk between these two nuclear receptors. Here, we demonstrate specific HNF4alpha activation of a reporter plasmid containing the COUP-TFII gene promoter region in transfected pancreatic beta cells. The stable association of the endogenous HNF4alpha with a region of the COUP-TFII gene promoter that contains a direct repeat 1 (DR-1) binding site was revealed by chromatin immunoprecipitation. Mutation experiments showed that this DR-1 site is essential for HNF4alpha transactivation of COUP-TFII. The dominant negative suppression of HNF4alpha function decreased endogenous COUP-TFII expression, and the specific inactivation of COUP-TFII by small interfering RNA caused HNF4alpha mRNA levels in 832/13 INS-1 cells to decrease. This positive regulation of HNF4alpha by COUP-TFII was confirmed by the adenovirus-mediated overexpression of human COUP-TFII (hCOUP-TFII), which increased HNF4alpha mRNA levels in 832/13 INS-1 cells and in mouse pancreatic islets. Finally, hCOUP-TFII overexpression showed that there is direct COUP-TFII autorepression, as COUP-TFII occupies the proximal DR-1 binding site of its own gene in vivo. Therefore, COUP-TFII may contribute to the control of insulin secretion through the complex HNF4alpha/maturity-onset diabetes of the young 1 (MODY1) transcription factor network operating in beta cells.
Collapse
|
19
|
Schäfer G, Wißmann C, Hertel J, Lunyak V, Höcker M. Regulation of Vascular Endothelial Growth Factor D by Orphan Receptors Hepatocyte Nuclear Factor-4α and Chicken Ovalbumin Upstream Promoter Transcription Factors 1 and 2. Cancer Res 2008; 68:457-66. [DOI: 10.1158/0008-5472.can-07-5136] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Aerts S, Thijs G, Coessens B, Staes M, Moreau Y, De Moor B. Toucan: deciphering the cis-regulatory logic of coregulated genes. Nucleic Acids Res 2003; 31:1753-64. [PMID: 12626717 PMCID: PMC152870 DOI: 10.1093/nar/gkg268] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
TOUCAN is a Java application for the rapid discovery of significant cis-regulatory elements from sets of coexpressed or coregulated genes. Biologists can automatically (i) retrieve genes and intergenic regions, (ii) identify putative regulatory regions, (iii) score sequences for known transcription factor binding sites, (iv) identify candidate motifs for unknown binding sites, and (v) detect those statistically over-represented sites that are characteristic for a gene set. Genes or intergenic regions are retrieved from Ensembl or EMBL, together with orthologs and supporting information. Orthologs are aligned and syntenic regions are selected as candidate regulatory regions. Putative sites for known transcription factors are detected using our MotifScanner, which scores position weight matrices using a probabilistic model. New motifs are detected using our MotifSampler based on Gibbs sampling. Binding sites characteristic for a gene set--and thus statistically over-represented with respect to a reference sequence set--are found using a binomial test. We have validated Toucan by analyzing muscle-specific genes, liver-specific genes and E2F target genes; we have easily detected many known binding sites within intergenic DNA and identified new biologically plausible sites for known and unknown transcription factors. Software available at http://www.esat.kuleuven.ac. be/ approximately dna/BioI/Software.html.
Collapse
Affiliation(s)
- Stein Aerts
- Department of Electrical Engineering (ESAT-SCD), Katholieke Universiteit Leuven, Kasteelpark Arenberg 10, 3001 Heverlee, Leuven, Belgium.
| | | | | | | | | | | |
Collapse
|
21
|
Roth U, Jungermann K, Kietzmann T. Activation of glucokinase gene expression by hepatic nuclear factor 4alpha in primary hepatocytes. Biochem J 2002; 365:223-8. [PMID: 11950391 PMCID: PMC1222650 DOI: 10.1042/bj20020340] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2002] [Revised: 04/04/2002] [Accepted: 04/12/2002] [Indexed: 12/19/2022]
Abstract
Glucokinase (GK) is a key enzyme for glucose utilization in liver and shows a higher expression in the perivenous zone. In primary rat hepatocytes, the GK gene expression was activated by HNF (hepatic nuclear factor)-4alpha via the sequence -52/-39 of the GK promoter. Venous pO2 enhanced HNF-4 levels and HNF-4 binding to the GK-HNF-4 element. Thus, HNF-4alpha could play the role of a regulator for zonated GK expression.
Collapse
Affiliation(s)
- Ulrike Roth
- Institut für Biochemie und Molekulare Zellbiologie, Georg-August-Universität Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany
| | | | | |
Collapse
|
22
|
Bailly A, Torres-Padilla ME, Tinel AP, Weiss MC. An enhancer element 6 kb upstream of the mouse HNF4alpha1 promoter is activated by glucocorticoids and liver-enriched transcription factors. Nucleic Acids Res 2001; 29:3495-505. [PMID: 11522818 PMCID: PMC55877 DOI: 10.1093/nar/29.17.3495] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We have characterized a 700 bp enhancer element around -6 kb relative to the HNF4alpha1 transcription start. This element increases activity and confers glucocorticoid induction to a heterologous as well as the homologous promoters in differentiated hepatoma cells and is transactivated by HNF4alpha1, HNF4alpha7, HNF1alpha and HNF1beta in dedifferentiated hepatoma cells. A 240 bp sub-region conserves basal and hormone-induced enhancer activity. It contains HNF1, HNF4, HNF3 and C/EBP binding sites as shown by DNase I footprinting and electrophoretic mobility shift assays using nuclear extracts and/or recombinant HNF1alpha and HNF4alpha1. Mutation analyses showed that the HNF1 site is essential for HNF1alpha transactivation and is required for full basal enhancer activity, as is the C/EBP site. Glucocorticoid response element consensus sites which overlap the C/EBP, HNF4 and HNF3 sites are crucial for optimal hormonal induction. We present a model that accounts for weak expression of HNF4alpha1 in the embryonic liver and strong expression in the newborn/adult liver via the binding sites identified in the enhancer.
Collapse
Affiliation(s)
- A Bailly
- Unité de Génétique de la Différenciation, FRE 2364 du CNRS, Institut Pasteur, 25 Rue du Dr Roux, 75724 Paris Cedex 15, France
| | | | | | | |
Collapse
|
23
|
Kistanova E, Dell H, Tsantili P, Falvey E, Cladaras C, Hadzopoulou-Cladaras M. The activation function-1 of hepatocyte nuclear factor-4 is an acidic activator that mediates interactions through bulky hydrophobic residues. Biochem J 2001; 356:635-42. [PMID: 11368795 PMCID: PMC1221879 DOI: 10.1042/0264-6021:3560635] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The hepatocyte nuclear factor-4 (HNF-4) contains two transcription activation domains. One domain, activation function-1 (AF-1), consists of the extreme N-terminal 24 amino acids and functions as a constitutive autonomous activator of transcription. This short transactivator belongs to the class of acidic activators, and it is predicted to adopt an amphipathic alpha-helical structure. Transcriptional analysis of sequential point mutations of the negatively charged residues (Asp and Glu) revealed a stepwise decrease in activity, while mutation of all acidic residues resulted in complete loss of transcriptional activity. Mutations of aromatic and hydrophobic amino acids surrounding the negatively charged residues had a much more profound effect than mutations of acidic amino acids, since even a single mutation of these residues resulted in a dramatic decrease in transactivation, thus demonstrating the importance of hydrophobic residues in AF-1 activity. Like other acidic activators, the AF-1 of HNF-4 binds the transcription factor IIB and the TATA-binding protein directly in vitro. In addition, the cAMP-response-element-binding-protein, a transcriptional adapter involved in the transactivation of a plethora of transcription factors, interacts with the AF-1 of HNF-4 and co-operates in the process of transactivation by HNF-4. The different protein targets of AF-1 suggest that the AF-1 of HNF-4 may be involved in recruiting both general transcription factors and chromatin remodelling proteins during activation of gene expression.
Collapse
Affiliation(s)
- E Kistanova
- Department of Medicine, Section of Molecular Genetics, Cardiovascular Institute, Boston University School of Medicine, Center for Advanced Biomedical Research, 700 Albany Street, W-509 Boston, MA 02118-2394, USA
| | | | | | | | | | | |
Collapse
|
24
|
Harish S, Khanam T, Mani S, Rangarajan P. Transcriptional activation by hepatocyte nuclear factor-4 in a cell-free system derived from rat liver nuclei. Nucleic Acids Res 2001; 29:1047-53. [PMID: 11222753 PMCID: PMC29722 DOI: 10.1093/nar/29.5.1047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hepatocyte nuclear factor-4 (HNF4) regulates gene expression by binding to direct repeat motifs of the RG(G/T)TCA sequence separated by one nucleotide (DR1). In this study we demonstrate that endogenous HNF4 present in rat liver nuclear extracts, as well as purified recombinant HNF4, activates transcription from naked DNA templates containing multiple copies of the DR1 element linked to the adenovirus major late promoter. Recombinant HNF4 also activates transcription from the rat cellular retinol binding protein II (CRBPII) promoter in vitro. The region between -105 and -63 bp of this promoter is essential for HNF-mediated transactivation. The addition of a peptide containing the LXXLL motif abolished HNF4-mediated transactivation in vitro suggesting that LXXLL-containing protein factor(s) are involved in HNF4-mediated transactivation in rat liver nuclear extracts. This is the first report on transactivation by HNF4 in a cell-free system derived from rat liver nuclei.
Collapse
Affiliation(s)
- S Harish
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | | | | | | |
Collapse
|
25
|
Hayhurst GP, Lee YH, Lambert G, Ward JM, Gonzalez FJ. Hepatocyte nuclear factor 4alpha (nuclear receptor 2A1) is essential for maintenance of hepatic gene expression and lipid homeostasis. Mol Cell Biol 2001; 21:1393-403. [PMID: 11158324 PMCID: PMC99591 DOI: 10.1128/mcb.21.4.1393-1403.2001] [Citation(s) in RCA: 865] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The numerous functions of the liver are controlled primarily at the transcriptional level by the concerted actions of a limited number of hepatocyte-enriched transcription factors (hepatocyte nuclear factor 1alpha [HNF1alpha], -1beta, -3alpha, -3beta, -3gamma, -4alpha, and -6 and members of the c/ebp family). Of these, only HNF4alpha (nuclear receptor 2A1) and HNF1alpha appear to be correlated with the differentiated phenotype of cultured hepatoma cells. HNF1alpha-null mice are viable, indicating that this factor is not an absolute requirement for the formation of an active hepatic parenchyma. In contrast, HNF4alpha-null mice die during embryogenesis. Moreover, recent in vitro experiments using tetraploid aggregation suggest that HNF4alpha is indispensable for hepatocyte differentiation. However, the function of HNF4alpha in the maintenance of hepatocyte differentiation and function is less well understood. To address the function of HNF4alpha in the mature hepatocyte, a conditional gene knockout was produced using the Cre-loxP system. Mice lacking hepatic HNF4alpha expression accumulated lipid in the liver and exhibited greatly reduced serum cholesterol and triglyceride levels and increased serum bile acid concentrations. The observed phenotypes may be explained by (i) a selective disruption of very-low-density lipoprotein secretion due to decreased expression of genes encoding apolipoprotein B and microsomal triglyceride transfer protein, (ii) an increase in hepatic cholesterol uptake due to increased expression of the major high-density lipoprotein receptor, scavenger receptor BI, and (iii) a decrease in bile acid uptake to the liver due to down-regulation of the major basolateral bile acid transporters sodium taurocholate cotransporter protein and organic anion transporter protein 1. These data indicate that HNF4alpha is central to the maintenance of hepatocyte differentiation and is a major in vivo regulator of genes involved in the control of lipid homeostasis.
Collapse
Affiliation(s)
- G P Hayhurst
- Laboratory of Metabolism, Division of Basic Sciences, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
26
|
Georgopoulos S, Kan HY, Reardon-Alulis C, Zannis V. The SP1 sites of the human apoCIII enhancer are essential for the expression of the apoCIII gene and contribute to the hepatic and intestinal expression of the apoA-I gene in transgenic mice. Nucleic Acids Res 2000; 28:4919-29. [PMID: 11121483 PMCID: PMC115241 DOI: 10.1093/nar/28.24.4919] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2000] [Revised: 10/29/2000] [Accepted: 10/29/2000] [Indexed: 11/12/2022] Open
Abstract
We have generated transgenic mice carrying wild-type and mutant forms of the apolipoprotein (apo)A-I/apoCIII gene cluster. Mutations were introduced either in one or in three SP1 binding sites of the apoCIII enhancer. In mice carrying the wild-type transgene, major sites of apoA-I mRNA synthesis were liver and intestine and minor sites were kidney and, to a lesser extent, other tissues. The major site of chloramphenicol acetyl transferase (CAT) activity (used as a reporter for the apoCIII gene) was liver and minor sites intestine and kidney. A mutation in one SP1 binding site reduced the expression of the apoA-I gene to approximately 23 and 19% in the liver and intestine, respectively, as compared to the control wild-type. The hepatic expression of the CAT gene was not affected whereas the intestinal expression was nearly abolished. Mutations in three SP1 binding sites reduced the hepatic and intestinal expression of the apoA-I and CAT genes to 14 and 4%, respectively, as compared to the wild-type control, and abolished CAT expression in all tissues. The findings suggest that the SP1 sites of the apoCIII enhancer are required for the expression of the apoCIII gene and also contribute significantly to the hepatic and intestinal expression of the apoA-I gene in vivo.
Collapse
Affiliation(s)
- S Georgopoulos
- Section of Molecular Genetics, Whitaker Cardiovascular Institute, Departments of Medicine and Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | | | | | | |
Collapse
|
27
|
Srivastava RA, Srivastava N. High density lipoprotein, apolipoprotein A-I, and coronary artery disease. Mol Cell Biochem 2000; 209:131-44. [PMID: 10942211 DOI: 10.1023/a:1007111830472] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
High density lipoproteins (HDL), one of the main lipoprotein particles circulating in plasma, is involved in the reverse cholesterol transport. Several lines of evidence suggest that elevated levels of HDL is protective against coronary heart disease. The role of HDL in the removal of body cholesterol and in the regression of atherosclerosis add to the importance of understanding the molecular-cellular processes that determine plasma levels of HDL. Factors modulating plasma levels of HDL may have influence on the predisposition of an individual to premature coronary artery disease. Apolipoprotein (apo) A-I is the main apolipoprotein component of HDL and, to a large extent, sets the plasma levels of HDL. Thus, understanding the regulation of apoA-I gene expression may provide clues to raise plasma levels of HDL. This review discusses the various pathways that alter plasma levels of HDL. Since apoA-I is the main protein component of HDL and determines the plasma levels of HDL, this review also covers the regulation of apoA-I gene expression.
Collapse
Affiliation(s)
- R A Srivastava
- Department of Internal Medicine, Washington University School of Medicine, Saint Louis, MO, USA.
| | | |
Collapse
|
28
|
Avram D, Ishmael JE, Nevrivy DJ, Peterson VJ, Lee SH, Dowell P, Leid M. Heterodimeric interactions between chicken ovalbumin upstream promoter-transcription factor family members ARP1 and ear2. J Biol Chem 1999; 274:14331-6. [PMID: 10318855 PMCID: PMC2823254 DOI: 10.1074/jbc.274.20.14331] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Members of the chicken ovalbumin upstream promoter-transcription factor (COUP-TF) subfamily of orphan nuclear receptors, which minimally includes COUP-TFI and ARP1, are highly expressed in brain and are generally considered to be constitutive repressors of transcription. We have used a yeast two-hybrid system to isolate proteins expressed in brain that interact with ARP1. One of the proteins isolated in this screen was Ear2, another orphan receptor that has been suggested to be a member of the COUP-TF subfamily. Here we demonstrate that ARP1 and Ear2 form heterodimers in solution and on directly repeated response elements with high efficiency and a specificity differing from that of homodimeric complexes composed of either receptor. ARP1 and Ear2 were observed to interact in mammalian cells, and the tissue distribution of Ear2 transcripts was found to overlap precisely with the expression pattern of ARP1 in several mouse tissues and embryonal carcinoma cell lines. Heterodimeric interactions between ARP1 and Ear2 may define a distinct pathway of orphan receptor signaling.
Collapse
Affiliation(s)
- D Avram
- Laboratory of Molecular Pharmacology, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331-3507, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Hayashi Y, Wang W, Ninomiya T, Nagano H, Ohta K, Itoh H. Liver enriched transcription factors and differentiation of hepatocellular carcinoma. Mol Pathol 1999; 52:19-24. [PMID: 10439834 PMCID: PMC395665 DOI: 10.1136/mp.52.1.19] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The development of a complex organism relies on the precise temporal and spacial expression of its genome in many different cell types. The unique phenotype of hepatocytes arises from the expression of genes in a liver specific fashion, which is controlled primarily at the level of mRNA synthesis. By analysing DNA sequences implicated in liver specific transcription, it has been possible to identify members of the nuclear proteins, such as the liver enriched transactivating factors, hepatic nuclear factor 1(HNF-1), HNF-3, HNF-4, HNF-6, CCAAT/enhancer binding protein (C/EBP), and D binding protein (DBP), which are key elements in the liver specific transcriptional regulation of genes. Each of these factors is characterised by DNA binding domains that bind to unique DNA sequences (cis-acting factors) in the promoter and enhancer regions of genes expressed in terminally differentiated hepatocytes (such as, albumin, alpha 1-antitrypsin, transthyretin, alpha-fetoprotein). The determination of the tissue distribution of these factors and analysis of their hierarchical relations has led to the hypothesis that the cooperation of liver enriched transcription factors with the ubiquitous transactivating factors is necessary, and possibly even sufficient, for the maintenance of liver specific gene transcription. With the increase in information about transcriptional regulation, it should be possible to evaluate fully the clinicopathological usefulness of transcription factors in the diagnosis and treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Y Hayashi
- First Division of Pathology, Kobe University School of Medicine, Japan.
| | | | | | | | | | | |
Collapse
|
30
|
Rouet P, Raguenez G, Ruminy P, Salier JP. An array of binding sites for hepatocyte nuclear factor 4 of high and low affinities modulates the liver-specific enhancer for the human alpha1-microglobulin/bikunin precursor. Biochem J 1998; 334 ( Pt 3):577-84. [PMID: 9729465 PMCID: PMC1219726 DOI: 10.1042/bj3340577] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Alpha1-Microglobulin and bikunin are two plasma glycoproteins encoded by a gene for alpha1-microglobulin/bikunin precursor (AMBP). The strict liver-specific transcription of the AMBP gene is controlled by an elaborate and remote enhancer made of six clustered boxes numbered 1 to 6 (core enhancer) that are binding sites for the hepatocyte-enriched nuclear factors HNF-1, HNF-4, HNF-3, HNF-1, HNF-3 and HNF-4 respectively. Three further boxes, 7 to 9, have now been found in the enhancer area in a position 5' of box 2, 5' of box 1 and 3' of box 6, respectively. Electrophoretic mobility-shift assays with nuclear extracts from the HepG2 hepatoma cell line demonstrated that boxes 7 and 8 are both functional HNF-4-binding sites of high and low affinity respectively, whereas no binding capacity of box 9 was detected by this method. Transfection of HepG2 and Chinese hamster ovary cells with chloramphenicol acetyltransferase constructs harbouring the core or extended AMBP enhancer with wild-type or mutated boxes and co-transfection with expression plasmids for a wild-type or defective HNF-4 identified box 7 as an essential element for the basal activity of this enhancer. The response of boxes 7 and 8 varies with the level of HNF-4 in cells. Box 9 exhibits a repressor activity that can be detected when box 8 is ablated. In vivo this corresponds to conditions of low box 8 occupancy when the intracellular level of HNF-4 is limited. These results reinforce the view that the AMBP enhancer is a quite elaborate and unusual example of a modular enhancer whose activity is fine-tuned by the level of cognate nuclear factors in the cell.
Collapse
Affiliation(s)
- P Rouet
- INSERM Unit-78 and Institut Fédératif de Recherches Multidisciplinaires sur les Peptides, Faculté de Médecine-Pharmacie, 22 Boulevard Gambetta, 76000 Rouen, France
| | | | | | | |
Collapse
|
31
|
Vu-Dac N, Gervois P, Torra IP, Fruchart JC, Kosykh V, Kooistra T, Princen HM, Dallongeville J, Staels B. Retinoids increase human apo C-III expression at the transcriptional level via the retinoid X receptor. Contribution to the hypertriglyceridemic action of retinoids. J Clin Invest 1998; 102:625-32. [PMID: 9691099 PMCID: PMC508923 DOI: 10.1172/jci1581] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Hypertriglyceridemia is a metabolic complication of retinoid therapy. In this study, we analyzed whether retinoids increase the expression of apo C-III, an antagonist of plasma triglyceride catabolism. In men, isotretinoin treatment (80 mg/d; 5 d) resulted in elevated plasma apo C-III, but not apo E concentrations. In human hepatoma HepG2 cells, retinoids increased apo C-III mRNA and protein production. Transient transfection experiments indicated that retinoids increase apo C-III expression at the transcriptional level. This increased apo C-III transcription is mediated by the retinoid X receptor (RXR), since LG1069 (4-[1-(5,6,7,8-tetrahydro-3,5,5,8, 8-pentamethyl-2-naphtalenyl)ethenyl]benzoic acid), a RXR-specific agonist, but not TTNPB ((E)- 4-[2-(5,6,7,8-tetrahydro-5,5,8, 8-tetramethyl-2-naphtalenyl)propenyl]benzoic acid), a retinoic acid receptor (RAR)-specific agonist, induced apo C-III mRNA in HepG2 cells and primary human hepatocytes. Mutagenesis experiments localized the retinoid responsiveness to a cis-element consisting of two imperfect AGGTCA sequences spaced by one oligonucleotide (DR-1), within the previously identified C3P footprint site. Cotransfection assays showed that RXR, but not RAR, activates apo C-III transcription through this element either as a homo- or as a heterodimer with the peroxisome proliferator-activated receptor. Thus, apo C-III is a target gene for retinoids acting via RXR. Increased apo C-III expression may contribute to the hypertriglyceridemia and atherogenic lipoprotein profile observed after retinoid therapy.
Collapse
MESH Headings
- Adult
- Apolipoprotein C-III
- Apolipoproteins C/biosynthesis
- Apolipoproteins C/genetics
- Benzoates/pharmacology
- Bexarotene
- Carcinoma, Hepatocellular/pathology
- Cells, Cultured/drug effects
- Cells, Cultured/metabolism
- Dimerization
- Double-Blind Method
- Gene Expression Regulation/drug effects
- HeLa Cells/drug effects
- HeLa Cells/metabolism
- Humans
- Hypertriglyceridemia/chemically induced
- Isotretinoin/adverse effects
- Isotretinoin/pharmacology
- Liver/cytology
- Liver Neoplasms/pathology
- Male
- Mutagenesis, Site-Directed
- Promoter Regions, Genetic
- Receptors, Cytoplasmic and Nuclear/chemistry
- Receptors, Retinoic Acid/chemistry
- Receptors, Retinoic Acid/drug effects
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/physiology
- Recombinant Fusion Proteins/biosynthesis
- Regulatory Sequences, Nucleic Acid
- Retinoid X Receptors
- Retinoids/pharmacology
- Tetrahydronaphthalenes/pharmacology
- Transcription Factors/chemistry
- Transcription Factors/drug effects
- Transcription Factors/genetics
- Transcription Factors/physiology
- Transcription, Genetic/drug effects
- Transfection
- Tumor Cells, Cultured/drug effects
- Tumor Cells, Cultured/metabolism
Collapse
Affiliation(s)
- N Vu-Dac
- U.325 Institut National de la Santé et de la Recherche Médicale, Département d'Athérosclérose, Institut Pasteur de Lille, 59019 Lille, France
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Fraser JD, Martinez V, Straney R, Briggs MR. DNA binding and transcription activation specificity of hepatocyte nuclear factor 4. Nucleic Acids Res 1998; 26:2702-7. [PMID: 9592157 PMCID: PMC147588 DOI: 10.1093/nar/26.11.2702] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hepatocyte nuclear factor 4 (HNF-4) is an orphan intracellular receptor that appears to be a key factor in the regulation of energy metabolism. In order to gain greater understanding of the binding and activation requirements of HNF-4, we performed genetic analysis of the apoCIII promoter, a promoter that has previously been shown to be highly sensitive to HNF-4-induced transcription. We identified two elements within the apoCIII promoter that bind HNF-4, either of which are sufficient to confer promoter induction in response to HNF-4. These two elements are both direct repeat-like in nature, but they differ significantly in motif sequence and the repeats are separated by either 1 or 2 nt. Therefore, to better define the DNA sequence recognition requirements of HNF-4, we utilized PCR-based binding site selection. HNF-4 selected for direct repeat-like elements with either 1 or 2 nt between the repeats. Surprisingly, the strongest selection was for a core motif that included the nucleotides between the repeats. Mutation of the nucleotide between the repeats resulted in a 6-fold reduction in affinity, indicating that the interaction between HNF-4 and the intervening nucleotide(s) is critical for high affinity binding.
Collapse
Affiliation(s)
- J D Fraser
- Ligand Pharmaceuticals Inc., 10255 Science Center Drive, San Diego, CA 92121, USA.
| | | | | | | |
Collapse
|
33
|
Nakshatri H, Bhat-Nakshatri P. Multiple parameters determine the specificity of transcriptional response by nuclear receptors HNF-4, ARP-1, PPAR, RAR and RXR through common response elements. Nucleic Acids Res 1998; 26:2491-9. [PMID: 9580705 PMCID: PMC147560 DOI: 10.1093/nar/26.10.2491] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A number of nuclear receptors, including retinoic acid receptors (RARs), retinoid-X receptors (RXRs), hepatocyte nuclear factor 4 (HNF-4), chicken ovalbumin upstream promoter transcription factor I (COUP-TFI), apolipoprotein regulatory protein 1 (ARP-1) and peroxisome proliferator-activated receptor (PPAR), bind to response elements comprised of two core motifs, 5'-RG(G/T)TCA, or a closely related sequence separated by 1 nt (DR1 elements). The potential role of the precise sequence of the core motif as well as the spacer nucleotide in determining specificity and promiscuity of receptor-response element interactions was investigated. We show here that nucleotides at base positions 1, 2 and 4 of the core motif as well as the spacer nucleotide determine the binding preference of HNF-4 and ARP-1 homodimers and RAR:RXR and PPAR:RXR heterodimers. In transfection experiments transcriptional activation by HNF-4 and PPAR:RXR and repression by ARP-1 correlated with the relative in vitro binding affinity provided the element was located within the proper promoter context. Furthermore, promoter context also determined whether an element that binds to HNF-4 and PPAR:RXR with equal affinity functions as an HNF-4 response element or PPAR response element. Thus, apart from the element-specific differences in affinity for the receptors, additional promoter-specific transcription factors that interact with HNF-4 and PPAR:RXR determine the specificity of transcriptional response through DR1-type elements.
Collapse
Affiliation(s)
- H Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | |
Collapse
|
34
|
Gao X, Sedgwick T, Shi YB, Evans T. Distinct functions are implicated for the GATA-4, -5, and -6 transcription factors in the regulation of intestine epithelial cell differentiation. Mol Cell Biol 1998; 18:2901-11. [PMID: 9566909 PMCID: PMC110669 DOI: 10.1128/mcb.18.5.2901] [Citation(s) in RCA: 188] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Based on conserved expression patterns, three members of the GATA family of transcriptional regulatory proteins, GATA-4, -5, and -6, are thought to be involved in the regulation of cardiogenesis and gut development. Functions for these factors are known in the heart, but relatively little is understood regarding their possible roles in the regulation of gut-specific gene expression. In this study, we analyze the expression and function of GATA-4, -5, and -6 using three separate but complementary vertebrate systems, and the results support a function for these proteins in regulating the terminal-differentiation program of intestinal epithelial cells. We show that xGATA-4, -5, and -6 can stimulate directly activity of the promoter for the intestinal fatty acid-binding protein (xIFABP) gene, which is a marker for differentiated enterocytes. This is the first direct demonstration of a target for GATA factors in the vertebrate intestinal epithelium. Transactivation by xGATA-4, -5, and -6 is mediated at least in part by a defined proximal IFABP promoter element. The expression patterns for cGATA-4, -5, and -6 are markedly distinct along the proximal-distal villus axis. Transcript levels for cGATA-4 increase along the axis toward the villus tip; likewise, cGATA-5 transcripts are largely restricted to the distal tip containing differentiated cells. In contrast, the pattern of cGATA-6 transcripts is complementary to cGATA-5, with highest levels detected in the region of proliferating progenitor cells. Undifferentiated and proliferating human HT-29 cells express hGATA-6 but not hGATA-4 or hGATA-5. Upon stimulation to differentiate, the transcript levels for hGATA-5 increase, and this occurs prior to increased transcription of the terminal differentiation marker intestinal alkaline phosphatase. At the same time, hGATA-6 steady-state transcript levels decline appreciably. All of the data are consistent with evolutionarily conserved but distinct roles for these factors in regulating the differentiation program of intestinal epithelium. Based on this data, we suggest that GATA-6 might function primarily within the proliferating progenitor population, while GATA-4 and GATA-5 function during differentiation to activate terminal-differentiation genes including IFABP.
Collapse
Affiliation(s)
- X Gao
- Department of Development and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | | | | |
Collapse
|
35
|
Kilbourne EJ, Evans MJ, Karathanasis SK. E1A represses apolipoprotein AI enhancer activity in liver cells through a pRb- and CBP-independent pathway. Nucleic Acids Res 1998; 26:1761-8. [PMID: 9512550 PMCID: PMC147459 DOI: 10.1093/nar/26.7.1761] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The apolipoprotein AI (apoAI) promoter/enhancer contains multiple cis -acting elements on which a variety of hepatocyte-enriched and ubiquitous transcription factors function synergistically to regulate liver-specific transcription. Adenovirus E1A proteins repress tissue-specific gene expression and disrupt the differentiated state in a variety of cell types. In this study expression of E1A 12Sor 13S in hepatoblastoma HepG2 cells repressed apoAI enhancer activity 8-fold. Deletion mapping analysis showed that inhibition by E1A was mediated by the apoAI promoter site B. E1A selectively inhibited the ability of HNF3beta and HNF3alpha to transactivate reporter genes controlled by the apoAI site B and the HNF3 binding site from the transthyretin promoter. The E1A-mediated repression of HNF3 activity was not reversed by overexpression of HNF3beta nor did E1A alter nuclear HNF3beta protein levels or inhibit HNF3 binding to DNA in mobility shift assays. Overexpression of two cofactors known to interact with E1A, pRb and CBP failed to overcome inhibition of HNF3 activity. Similarly, mutations in E1A that disrupt its interaction with pRb or CBP did not compromise its ability to repress HNF3beta transcriptional activity. These data suggest that E1A inhibits HNF3 activity by inactivating a limiting cofactor(s) distinct from pRb or CBP.
Collapse
Affiliation(s)
- E J Kilbourne
- Department of Nuclear Receptors, Wyeth-Ayerst Research, 145 King of Prussia Road, Radnor, PA 19087, USA
| | | | | |
Collapse
|
36
|
Stoffel M, Duncan SA. The maturity-onset diabetes of the young (MODY1) transcription factor HNF4alpha regulates expression of genes required for glucose transport and metabolism. Proc Natl Acad Sci U S A 1997; 94:13209-14. [PMID: 9371825 PMCID: PMC24288 DOI: 10.1073/pnas.94.24.13209] [Citation(s) in RCA: 289] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hepatocyte nuclear factor 4alpha (HNF4alpha) plays a critical role in regulating the expression of many genes essential for normal functioning of liver, gut, kidney, and pancreatic islets. A nonsense mutation (Q268X) in exon 7 of the HNF4alpha gene is responsible for an autosomal dominant, early-onset form of non-insulin-dependent diabetes mellitus (maturity-onset diabetes of the young; gene named MODY1). Although this mutation is predicted to delete 187 C-terminal amino acids of the HNF4alpha protein the molecular mechanism by which it causes diabetes is unknown. To address this, we first studied the functional properties of the MODY1 mutant protein. We show that it has lost its transcriptional transactivation activity, fails to dimerize and bind DNA, implying that the MODY1 phenotype is because of a loss of HNF4alpha function. The effect of loss of function on HNF4alpha target gene expression was investigated further in embryonic stem cells, which are amenable to genetic manipulation and can be induced to form visceral endoderm. Because the visceral endoderm shares many properties with the liver and pancreatic beta-cells, including expression of genes for glucose transport and metabolism, it offers an ideal system to investigate HNF4-dependent gene regulation in glucose homeostasis. By exploiting this system we have identified several genes encoding components of the glucose-dependent insulin secretion pathway whose expression is dependent upon HNF4alpha. These include glucose transporter 2, and the glycolytic enzymes aldolase B and glyceraldehyde-3-phosphate dehydrogenase, and liver pyruvate kinase. In addition we have found that expression of the fatty acid binding proteins and cellular retinol binding protein also are down-regulated in the absence of HNF4alpha. These data provide direct evidence that HNF4alpha is critical for regulating glucose transport and glycolysis and in doing so is crucial for maintaining glucose homeostasis.
Collapse
Affiliation(s)
- M Stoffel
- Laboratory of Metabolic Diseases, The Rockefeller University, New York, NY 10021, USA.
| | | |
Collapse
|
37
|
Chaya D, Fougère-Deschatrette C, Weiss MC. Liver-enriched transcription factors uncoupled from expression of hepatic functions in hepatoma cell lines. Mol Cell Biol 1997; 17:6311-20. [PMID: 9343392 PMCID: PMC232482 DOI: 10.1128/mcb.17.11.6311] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Among the liver-enriched transcription factors identified to date, only expression of hepatocyte nuclear factor 4 (HNF4) and hepatocyte nuclear factor 1 (HNF1) is in strict correlation with hepatic differentiation in cultured rat hepatoma cells. Indeed, differentiated hepatoma cells that stably express an extensive set of adult hepatic functions express liver-enriched transcription factors, while dedifferentiated cells that have lost expression of all these hepatic functions no longer express HNF4 and HNF1. We describe a new heritable phenotype, designated as uncoupled, in which there is a spontaneous dissociation between the expression of these transcription factors and that of the hepatic functions. Cells presenting this phenotype, isolated from differentiated hepatoma cells, cease to accumulate all transcripts coding for hepatic functions but nevertheless maintain expression of HNF4 and HNF1. Transitory transfection experiments indicate that these two factors present in these cells have transcriptional activity similar to that of differentiated hepatoma cells. Characterization of the appropriate intertypic cell hybrids demonstrates that this new phenotype is recessive to the dedifferentiated state and fails to be complemented by differentiated cells. These results indicate the existence of mechanisms that inhibit transcription of genes coding for hepatocyte functions in spite of the presence of functional HNF4 and HNF1. Cells of the uncoupled phenotype present certain properties of oval cells described for pathological states of the liver.
Collapse
Affiliation(s)
- D Chaya
- UMR 0321 du CNRS, Département de Biologie Moléculaire, Institut Pasteur, Paris, France
| | | | | |
Collapse
|
38
|
Achatz G, Hölzl B, Speckmayer R, Hauser C, Sandhofer F, Paulweber B. Functional domains of the human orphan receptor ARP-1/COUP-TFII involved in active repression and transrepression. Mol Cell Biol 1997; 17:4914-32. [PMID: 9271371 PMCID: PMC232344 DOI: 10.1128/mcb.17.9.4914] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The orphan receptor ARP-1/COUP-TFII, a member of the chicken ovalbumin upstream promoter transcription factor (COUP-TF) subfamily of nuclear receptors, strongly represses transcriptional activity of numerous genes, including several apolipoprotein-encoding genes. Recently it has been demonstrated that the mechanism by which COUP-TFs reduce transcriptional activity involves active repression and transrepression. To map the domains of ARP-1/COUP-TFII required for repressor activity, a detailed deletion analysis of the protein was performed. Chimeric proteins in which various segments of the ARP-1/COUP-TFII carboxy terminus were fused to the GAL4 DNA binding domain were used to characterize its active repression domain. The smallest segment confering active repressor activity to a heterologous DNA binding domain was found to comprise residues 210 to 414. This domain encompasses the region of ARP-1/COUP-TFII corresponding to helices 3 to 12 in the recently published crystal structure of other members of the nuclear receptor superfamily. It includes the AF-2 AD core domain formed by helix 12 but not the hinge region, which is essential for interaction with a corepressor in the case of the thyroid hormone and retinoic acid receptor. Attachment of the nuclear localization signal from the simian virus 40 large T antigen (Flu tag) to the amino terminus of ARP-1/COUP-TFII abolished its ability to bind to DNA without affecting its repressor activity. By using a series of Flu-tagged mutants, the domains required for transrepressor activity of the protein were mapped. They include the DNA binding domain and the segment spanning residues 193 to 399. Transcriptional activity induced by liver-enriched transactivators such as hepatocyte nuclear factor 3 (HNF-3), C/EBP, or HNF-4 was repressed by ARP-1/COUP-TFII independent of the presence of its cognate binding site, while basal transcription or transcriptional activity induced by ATF or Sp1 was not perturbed by the protein. In conclusion, our results demonstrate that the domains of ARP-1/COUP-TFII required for active repression and transrepression do not coincide. Moreover, they strongly suggest that transrepression is the predominant mechanism underlying repressor activity of ARP-1/COUP-TFII. This mechanism most likely involves interaction of the protein with one or several transcriptional coactivator proteins which are employed by various liver-enriched transactivators but not by ubiquitous factors such as Sp1 or ATF.
Collapse
Affiliation(s)
- G Achatz
- First Department of Internal Medicine, General Hospital of Salzburg, Austria
| | | | | | | | | | | |
Collapse
|
39
|
Qiu Y, Pereira FA, DeMayo FJ, Lydon JP, Tsai SY, Tsai MJ. Null mutation of mCOUP-TFI results in defects in morphogenesis of the glossopharyngeal ganglion, axonal projection, and arborization. Genes Dev 1997; 11:1925-37. [PMID: 9271116 PMCID: PMC316414 DOI: 10.1101/gad.11.15.1925] [Citation(s) in RCA: 182] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The COUP-TFs are orphan members of the steroid/thyroid hormone receptor superfamily. Multiple COUP-TF members have been cloned and they share a high degree of sequence homology between species as divergent as Drosophila and humans, suggesting a conservation of function through evolution. The COUP-TFs are highly expressed in the developing nervous systems of several species examined, indicating their possible involvement in neuronal development and differentiation. In the mouse, there are two very homologous COUP-TF genes (I and II) and their expression patterns overlap extensively. To study the physiological function of mCOUP-TFI, a gene-targeting approach was undertaken. We report here that mCOUP-TFI null animals die perinataly. Mutant embryos display an altered morphogenesis of the ninth cranial ganglion and nerve. The aberrant formation of the ninth ganglion is most possibly attributable to extra cell death in the neuronal precursor cell population. In addition, at midgestation, aberrant nerve projection and arborization were oberved in several other regions of mutant embryos. These results indicate that mCOUP-TFI is required for proper fetal development and is essential for postnatal development. Furthermore, mCOUP-TFI possesses vital physiological functions that are distinct from mCOUP-TFII despite of their high degree of homology and extensive overlapping expression patterns.
Collapse
Affiliation(s)
- Y Qiu
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
40
|
Viollet B, Kahn A, Raymondjean M. Protein kinase A-dependent phosphorylation modulates DNA-binding activity of hepatocyte nuclear factor 4. Mol Cell Biol 1997; 17:4208-19. [PMID: 9234678 PMCID: PMC232274 DOI: 10.1128/mcb.17.8.4208] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Hepatocyte nuclear factor 4 (HNF4), a liver-enriched transcription factor of the nuclear receptor superfamily, is critical for development and liver-specific gene expression. Here, we demonstrate that its DNA-binding activity is modulated posttranslationally by phosphorylation in vivo, ex vivo, and in vitro. In vivo, HNF4 DNA-binding activity is reduced by fasting and by inducers of intracellular cyclic AMP (cAMP) accumulation. A consensus protein kinase A (PKA) phosphorylation site located within the A box of its DNA-binding domain has been identified, and its role in phosphorylation-dependent inhibition of HNF4 DNA-binding activity has been investigated. Mutants of HNF4 in which two potentially phosphorylatable serines have been replaced by either neutral or charged amino acids were able to bind DNA in vitro with affinity similar to that of the wild-type protein. However, phosphorylation by PKA strongly repressed the binding affinity of the wild-type factor but not that of HNF4 mutants. Accordingly, in transfection assays, expression vectors for the mutated HNF4 proteins activated transcription more efficiently than that for the wild-type protein-when cotransfected with the PKA catalytic subunit expression vector. Therefore, HNF4 is a direct target of PKA which might be involved in the transcriptional inhibition of liver genes by cAMP inducers.
Collapse
Affiliation(s)
- B Viollet
- Institut Cochin de Génétique Moléculaire, U.129 INSERM, Universite René Descartes, Paris, France
| | | | | |
Collapse
|
41
|
Zavacki AM, Lehmann JM, Seol W, Willson TM, Kliewer SA, Moore DD. Activation of the orphan receptor RIP14 by retinoids. Proc Natl Acad Sci U S A 1997; 94:7909-14. [PMID: 9223286 PMCID: PMC21528 DOI: 10.1073/pnas.94.15.7909] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Retinoids are crucial regulators of a wide variety of processes in both developing and adult animals. These effects are thought to be mediated by the retinoic acid (RA) receptors and the retinoid X receptors (RXRs). We have identified an additional retinoid-activated receptor that is neither a retinoic acid receptors nor an RXR. RXR-interacting protein 14 (RIP14), a recently described orphan member of the nuclear receptor superfamily, can be activated by either all-trans-RA (tRA) or the synthetic retinoid TTNPB [[E]-4-[2-(5, 6, 7, 8-tetrahydro-5, 5, 8, 8-tetramethyl-2-naphthalenyl)propen-1-yl]benzoic acid].RIP14 binds to DNA as a heterodimer with RXR. In the presence of either tRA or TTNPB, the addition of 9-cis-RA or the RXR-specific agonist LG1069 [4-[1-(3, 5, 5, 8, 8-pentamethyl-5, 6, 7, 8-tertrahydro-2-naphthyl)ethenyl]benzoic acid] results in additional activation. Mutations of the ligand-dependent transcriptional activation functions indicate that TTNPB activates the RIP14 component of the RIP14-RXR heterodimer, that 9-cis-RA and LG1069 activate RXR, and that tRA activates via both RIP14 and RXR. Despite the very effective activation of RIP14 by tRA or TTNPB, relatively high concentrations of these compounds are required, and no evidence for direct binding of either compound was obtained using several approaches. These results suggest that RIP14 is the receptor for an as-yet-unidentified retinoid metabolite.
Collapse
Affiliation(s)
- A M Zavacki
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | |
Collapse
|
42
|
Ktistaki E, Talianidis I. Chicken ovalbumin upstream promoter transcription factors act as auxiliary cofactors for hepatocyte nuclear factor 4 and enhance hepatic gene expression. Mol Cell Biol 1997; 17:2790-7. [PMID: 9111350 PMCID: PMC232130 DOI: 10.1128/mcb.17.5.2790] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Chicken ovalbumin upstream promoter transcription factors (COUP-TFs) strongly inhibit transcriptional activation mediated by nuclear hormone receptors, including hepatocyte nuclear factor 4 (HNF-4). COUP-TFs repress HNF-4-dependent gene expression by competition with HNF-4 for common binding sites found in several regulatory regions. Here we show that promoters, such as the HNF-1 promoter, which are recognized by HNF-4 but not by COUP-TFs are activated by COUP-TFI and COUP-TFII in conjunction with HNF-4 more than 100-fold above basal levels, as opposed to about 8-fold activation by HNF-4 alone. This enhancement was strictly dependent on an intact HNF-4 E domain. In vitro and in vivo evidence suggests that COUP-TFs enhance HNF-4 activity by a mechanism that involves their physical interaction with the amino acid 227 to 271 region of HNF-4. Our results indicate that in certain promoters, COUP-TFs act as auxiliary cofactors for HNF-4, orienting the HNF-4 activation domain in a more efficient configuration to achieve enhanced transcriptional activity. These findings provide new insights into the regulatory functions of COUP-TFs, suggesting their involvement in the initial activation and subsequent high-level expression of hepatic regulators, as well as in the positive and negative modulation of downstream target genes.
Collapse
Affiliation(s)
- E Ktistaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Herakleion, Crete, Greece
| | | |
Collapse
|
43
|
Machleder D, Ivandic B, Welch C, Castellani L, Reue K, Lusis AJ. Complex genetic control of HDL levels in mice in response to an atherogenic diet. Coordinate regulation of HDL levels and bile acid metabolism. J Clin Invest 1997; 99:1406-19. [PMID: 9077551 PMCID: PMC507957 DOI: 10.1172/jci119300] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Inbred strains of mice differ in susceptibility to atherogenesis when challenged with a high fat, high cholesterol diet containing 0.5% cholic acid. Studies of recombinant inbred (RI) strains derived from the susceptible strain C57BL/6J (B6) and the resistant strains C3H/HeJ (C3H) and BALB/cJ have revealed an association between fatty streak lesion size and a decrease in high density lipoprotein (HDL) levels on the diet. To better understand the genetic factors contributing to HDL metabolism and atherogenesis in response to the diet, we studied mice derived from an intercross between B6 and C3H using a complete linkage map approach. A total of 185 female progeny were typed for 134 genetic markers spanning the mouse genome, resulting in an average interval of about 10 cM between markers. A locus on distal chromosome 1 containing the apolipoprotein AII gene was linked to HDL-cholesterol levels on both the chow and the atherogenic diets, but this locus did not contribute to the decrease in HDL-cholesterol in response to the diet. At least three distinct genetic loci, on chromosomes 3, 5, and 11, exhibited evidence of linkage to a decrease in HDL-cholesterol after a dietary challenge. Since a bile acid (cholic acid) is required for the diet induced changes in HDL levels and for atherogenesis in these strains, we examined cholesterol-7-alpha hydroxylase (C7AH) expression. Whereas B6 mice exhibited a large decrease in C7AH mRNA levels in response to the diet, C3H showed an increase. Among the intercross mice, multiple loci contributed to the regulation of C7AH mRNA levels in response to the diet, the most notable of which coincided with the loci on chromosomes 3, 5, and 11 controlling HDL levels in response to the diet. None of these loci were linked to the C7AH structural gene which we mapped to proximal chromosome 4. These studies reveal coordinate regulation of C7AH expression and HDL levels, and they indicate that the genetic factors controlling HDL levels are more complex than previously suggested by studies of RI strains. Furthermore, we observed that two of the loci for C7AH expression contributed to differences in gallstone formation between these strains.
Collapse
Affiliation(s)
- D Machleder
- Department of Medicine, University of California, Los Angeles 90095, USA
| | | | | | | | | | | |
Collapse
|
44
|
Ye H, Kelly TF, Samadani U, Lim L, Rubio S, Overdier DG, Roebuck KA, Costa RH. Hepatocyte nuclear factor 3/fork head homolog 11 is expressed in proliferating epithelial and mesenchymal cells of embryonic and adult tissues. Mol Cell Biol 1997; 17:1626-41. [PMID: 9032290 PMCID: PMC231888 DOI: 10.1128/mcb.17.3.1626] [Citation(s) in RCA: 303] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The hepatocyte nuclear factor 3alpha (HNF-3alpha) and 3beta proteins have homology in the winged helix/fork head DNA binding domain and regulate cell-specific transcription in hepatocytes and in respiratory and intestinal epithelia. In this study, we describe two novel isoforms of the winged helix transcription factor family, HNF-3/fork head homolog 11A (HFH-11A) and HFH-11B, isolated from the human colon carcinoma HT-29 cell line. We show that these isoforms arise via differential splicing and are expressed in a number of epithelial cell lines derived from tumors (HT-29, Caco-2, HepG2, HeLa, A549, and H441). We demonstrate that differentiation of Caco-2 cells toward the enterocyte lineage results in decreased HFH-11 expression and reciprocal increases in HNF-3alpha and HNF-3beta mRNA levels. In situ hybridization of 16 day postcoitus mouse embryos demonstrates that HFH-11 expression is found in the mesenchymal and epithelial cells of the liver, lung, intestine, renal cortex, and urinary tract. Although HFH-11 exhibits a wide cellular expression pattern in the embryo, its adult expression pattern is restricted to epithelial cells of Lieberkühn's crypts of the intestine, the spermatocytes and spermatids of the testis, and the thymus and colon. HFH-11 expression is absent in adult hepatocytes, but its expression is reactivated in proliferating hepatocytes at 4, 24, and 48 h after partial hepatectomy. Consistent with these findings, we demonstrate that HFH-11 mRNA levels are stimulated by intratracheal administration of keratinocyte growth factor in adult lung and its expression in an adult endothelial cell line is reactivated in response to oxidative stress. These experiments show that the HFH-11 transcription factor is expressed in embryonic mesenchymal and epithelial cells and its expression is reactivated in these adult cell types by proliferative signals or oxidative stress.
Collapse
Affiliation(s)
- H Ye
- Department of Biochemistry, University of Illinois at Chicago, 60612-7334, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Yu X, Mertz JE. Promoters for synthesis of the pre-C and pregenomic mRNAs of human hepatitis B virus are genetically distinct and differentially regulated. J Virol 1996; 70:8719-26. [PMID: 8970999 PMCID: PMC190967 DOI: 10.1128/jvi.70.12.8719-8726.1996] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Two similar, yet functionally distinct genomic RNAs are transcribed from the DNA genome of the human hepatitis B virus. The pre-C RNAs encode the precore protein which is proteolytically processed to yield e antigen. The pregenomic RNAs encode both the nucleocapsid protein and reverse transcriptase and serve as the templates for viral DNA replication. To determine whether synthesis of these two RNAs is directed from a single or a closely spaced pair of promoters, we introduced point and insertion mutations into the basal elements of the promoter that directs their synthesis. Transcription from these mutants was examined both in cell-free transcription systems derived from hepatoma (HepG2) and nonliver (HeLa) cell lines and by transient transfection of hepatoma cell lines (Huh7 and HepG2). The data from these experiments indicated that synthesis of the pre-C and pregenomic RNAs is directed by two distinct promoters and that the basal elements of these two promoters partially overlap, yet are genetically separable, with each consisting of its own transcriptional initiator and a TATA box-like sequence situated approximately 25 to 30 bp upstream of its sites of initiation. A 15-bp insertion was found to be sufficient to physically separate these two promoters. Furthermore, these two promoters can be differentially regulated, with the transcriptional activator Sp1 specifically activating transcription from the pregenomic promoter and the hepatocyte nuclear factor 4 specifically repressing transcription from the pre-C promoter. Thus, we conclude that the promoters used in synthesis of the pre-C and pregenomic mRNAs are genetically distinct and separately regulated.
Collapse
Affiliation(s)
- X Yu
- McArdle Laboratory for Cancer Research, University of Wisconsin Medical School, Madison 53706-1599, USA
| | | |
Collapse
|
46
|
Taylor DG, Haubenwallner S, Leff T. Characterization of a dominant negative mutant form of the HNF-4 orphan receptor. Nucleic Acids Res 1996; 24:2930-5. [PMID: 8760876 PMCID: PMC146029 DOI: 10.1093/nar/24.15.2930] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The HNF-4 orphan receptor is a member of the nuclear receptor family of transcription factors and a major regulator of genes involved in carbohydrate and lipid metabolism. As an initial step in characterizing the role of HNF-4 in the regulation of metabolism, we have generated a dominant negative form of HNF-4 (DN-HNF-4) that contains a defective DNA-binding domain. In gel mobility shift assays, DN-HNF-4 did not bind an oligonucleotide probe representing an essential HNF-4 binding site, C3P contained in the human apo CIII promoter, but did prevent the binding of two recombinant isoforms, HNF-4alpha1 and HNF-4alpha2, as well as naturally-occurring HNF-4. DN-HNF-4 had no effect on the binding of PPARgamma-RXRalpha heterodimers to a PPAR response element. In transfected HepG2 cells, DN-HNF-4 dramatically reduced constitutive transcriptional activity of the human apo CIII promoter and abolished the positive transcriptional activity caused by plasmids expressing either isoform of HNF-4. These results indicate that DN-HNF-4 is a selective dominant negative mutant which forms defective heterodimers with wild-type HNF-4, thereby preventing DNA binding and subsequent transcriptional activation by HNF-4.
Collapse
Affiliation(s)
- D G Taylor
- Department of Biotechnology, Parke-Davis Pharmaceutical Research, Ann Arbor, MI 48105, USA
| | | | | |
Collapse
|
47
|
Marten NW, Sladek FM, Straus DS. Effect of dietary protein restriction on liver transcription factors. Biochem J 1996; 317 ( Pt 2):361-70. [PMID: 8713059 PMCID: PMC1217496 DOI: 10.1042/bj3170361] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The transcription of several genes that are preferentially expressed in the liver, including the serum albumin, transthyretin and carbamyl phosphate synthetase-I genes, is specifically decreased in animals consuming inadequate amounts of dietary protein. The high level of transcription of these genes in the liver is directed in part by a number of liver-enriched transcription factors, including hepatocyte nuclear factors (HNF)-1, -3, and -4, and proteins of the CCAAT/enhancer-binding protein (C/EBP) family. In the present study, we investigated the possibility that the co-ordinate decrease in transcription of the nutritionally sensitive genes in protein-deprived rats results from altered activity of one or more of the liver-enriched transcription factors. For HNF-4, Western blots indicated no change in the level of nuclear HNF-4 protein in liver of protein-deprived animals, whereas we observed a 40% reduction in the DNA binding activity of HNF-4 as measured by electrophoretic mobility shift assay (EMSA). Furthermore, the binding affinity of HNF-4 for DNA was unaltered by dietary protein deprivation, while the number of HNF-4 molecules able to bind to DNA (Bmax) was reduced, as determined by Scatchard analysis. This indicates that in the protein-restricted rats a portion of the pool of HNF-4 protein is inactivated or otherwise prevented from binding to DNA. The overall DNA binding activity of C/EBP alpha and beta was increased in protein-restricted animals. This change occurred in the absence of a change in the amount of the full-length forms of these two proteins, quantified by Western blotting. Interestingly, dietary protein restriction specifically increased the level of a truncated form of C/EBP beta (liver-enriched transcriptional inhibitory protein, LIP), which is a protein dominant negative inhibitor of C/EBP function. Analysis of HNF-3 DNA-binding activity by EMSA revealed that HNF-3 alpha and beta DNA binding was increased and that HNF-3 gamma DNA-binding activity was unchanged in protein-restricted animals. We also detected two apparently novel shift complexes with the HNF-3 probe by EMSA, both of which were decreased in protein-restricted animals. HNF-1 DNA-binding activity was increased by dietary protein restriction. We also examined the effect of protein restriction on the DNA-binding activity of two ubiquitous transcription factors, NF1 and Sp1. The DNA binding activity of the major NF1 isoforms was unchanged whereas the binding activity of Sp1 was increased in the protein-restricted animals. In summary, restriction of dietary protein resulted in a number of specific changes in the DNA-binding activity of various transcription factors. Because transcriptional activation typically involves the synergistic action of more than one transcription factor, small changes in the amount/activity of several factors, could have a strong net effect on the transcription of many genes.
Collapse
Affiliation(s)
- N W Marten
- Biology Department, University of California, Riverside 92521-0121, USA
| | | | | |
Collapse
|
48
|
Malik S, Karathanasis SK. TFIIB-directed transcriptional activation by the orphan nuclear receptor hepatocyte nuclear factor 4. Mol Cell Biol 1996; 16:1824-31. [PMID: 8657158 PMCID: PMC231169 DOI: 10.1128/mcb.16.4.1824] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The orphan nuclear receptor hepatocyte nuclear factor 4 (HNF-4) is required for development and maintenance of the liver phenotype. HNF-4 activates several hepatocyte-specific genes, including the gene encoding apolipoprotein AI (apoAI), the major protein component of plasma high-density lipoprotein. The apoAI gene is activated by HNF-4 through a nuclear receptor binding element (site A) located in its liver-specific enhancer. To decipher the mechanism whereby HNF-4 enhances apoAI gene transcription, we have reconstituted its activity in a cell-free system. Functional HNF-4 was purified to homogeneity from a bacterial expression system. In in vitro transcription assays employing nuclear extract from HeLa cells, which do not contain HNF-4, recombinant HNF-4 stimulated transcription from basal promoters linked to site A. Activation by HNF-4 did not exhibit a ligand requirement, but phosphorylation of HNF-4 in the in vitro transcription system was observed. The activation function of HNF-4 was localized to a domain displaying strong homology to the conserved AF-2 region of nuclear receptors. Dissection of the transcription cycle revealed that HNF-4 activated transcription by facilitating assembly of a preinitiation complex intermediate consisting of TBP, the TATA box-binding protein component of TFIID and TFIID, via direct physical interactions with TFIIB. However, recruitment of TFIIB by HNF-4 was not sufficient for activation, since HNF-4 deletion derivatives lacking AF-2 bound TFIIB. On the basis of these results, HNF-4 appears to activate transcription at two distinct levels. The first step involves AF-2-independent recruitment of TFIIB to the promoter complex; the second step is AF-2 dependent and entails entry of preinitiation complex components acting downstream of TFIIB.
Collapse
Affiliation(s)
- S Malik
- Department of Cardiovascular Molecular Biology, Lederle Laboratories, Pearl River, New York 10965, USA
| | | |
Collapse
|
49
|
Power SC, Cereghini S. Positive regulation of the vHNF1 promoter by the orphan receptors COUP-TF1/Ear3 and COUP-TFII/Arp1. Mol Cell Biol 1996; 16:778-91. [PMID: 8622679 PMCID: PMC231058 DOI: 10.1128/mcb.16.3.778] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
vHNF1 (also termed HNF1 beta) is a member of the hepatocyte nuclear fa ctor 1 (HNF1; also termed HNF1 alpha) family of homeodomain-containing transcription factors that interact with a sequence motif found in the regulatory regions of a large number of genes expressed mainly in the liver. It has been suggested that vHNF1 plays a role in early differentiation of specialized epithelia of several endoderm- and mesoderm-derived organs, with HNF1 playing a role in later stages. In support of this idea, expression of vHNF1 but not HNF1 is induced upon treatment of the embryonal carcinoma cell line F9 with retinoic acid. We have cloned and analyzed the vHNF1 promoter to gain a better understanding of the regulation of vHNF1 expression and how it relates to the expression of HNF1. We have identified five sites of DNA-protein interaction within the first 260 bp upstream of the transcription start site, which involve at least three different families of transcription factors. Two sites, a distal DR-1 motif and a proximal octamer motif, are the most important for promoter activity. The DR-1 motif interacts with several members of the steroid hormone receptor superfamily including HNF4, COUP-TFI/Ear3, COUP-TFII/Arp1, and RAR alpha/RXR alpha heterodimers. The vHNF1 promoter is transactivated by COUP-TFI/Ear3 and COUP-TFII/Arp1 and, unlike the HNF1 promoter, is virtually unaffected by HNF4. Interestingly, the proximal octamer site and not the DR-1 site is required for COUP-TFI/Ear3 and COUP-TFII/Arp1 transactivation of the vHNF1 promoter. COUP-TFI/Ear3 does not bind directly to this proximal octamer site. We present evidence of an interaction between COUP-TFI/Ear3 and the octamer-binding proteins in vitro and in the cell, suggesting that COUP-TFI and COUP-TFII activate the vHNF1 promoter via an indirect mechanism.
Collapse
Affiliation(s)
- S C Power
- URA Centre National de la Recherche Scientifique, Institut Pasteur, Paris, France
| | | |
Collapse
|
50
|
Salerno AJ, He Z, Goos-Nilsson A, Ahola H, Mak P. Differential transcriptional regulation of the apoAI gene by retinoic acid receptor homo- and heterodimers in yeast. Nucleic Acids Res 1996; 24:566-72. [PMID: 8604295 PMCID: PMC145681 DOI: 10.1093/nar/24.4.566] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Several members of the nuclear receptor superfamily including RXR (retinoid X receptor) bind to a specific retinoic acid response element (site A) of the apoAI promoter. However, transcriptional activation of the apoAI gene by different homo- and heterodimeric forms of RXR or RAR (retinoic acid receptors) cannot be evaluated in mammalian cells, which contain endogenous RXR or RAR. In order to circumvent this limitation, we assessed the DNA-binding activities and transcriptional activation of different homo- and heterodimers of these receptors in yeast. Electrophoretic mobility shift assays (EMSA) demonstrated that yeast expressed RARalpha does not bind to site A of the apoAl promoter, whereas binding of RARbeta to site A is ligand-dependent. Both RARalpha and RARbeta form heterodimers with RXRalpha and bind to site A with high affinity. These DNA-binding studies correlate with the transcriptional data, which indicated that RARbeta but not RARalpha activates transcription from site A in response equally well to 9-cis and all-trans retinoic acids. 9-cis RA is a more potent ligand than all-trans RA to activate transcription via RXR/RAR heterodimers. We conclude that this yeast expression system is a useful tool to elucidate the 'transactivation code' for apoAl site A via specific combinations of different homo and heterodimeric versions of RXR and RAR.
Collapse
Affiliation(s)
- A J Salerno
- Wyeth-Ayerst Research, Lederle Laboratories, Pearl River, NY 10965, USA
| | | | | | | | | |
Collapse
|