1
|
Novak JSS, Polak L, Baksh SC, Barrows DW, Schernthanner M, Jackson BT, Thompson EAN, Gola A, Abdusselamoglu MD, Bonny AR, Gonzales KAU, Brunner JS, Bridgeman AE, Stewart KS, Hidalgo L, Dela Cruz-Racelis J, Luo JD, Gur-Cohen S, Pasolli HA, Carroll TS, Finley LWS, Fuchs E. The integrated stress response fine-tunes stem cell fate decisions upon serine deprivation and tissue injury. Cell Metab 2025:S1550-4131(25)00266-9. [PMID: 40513561 DOI: 10.1016/j.cmet.2025.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 03/11/2025] [Accepted: 05/19/2025] [Indexed: 06/16/2025]
Abstract
Epidermal stem cells produce the skin's barrier that excludes pathogens and prevents dehydration. Hair follicle stem cells (HFSCs) are dedicated to bursts of hair regeneration, but upon injury, they can also reconstruct, and thereafter maintain, the overlying epidermis. How HFSCs balance these fate choices to restore physiologic function to damaged tissue remains poorly understood. Here, we uncover serine as an unconventional, non-essential amino acid that impacts this process. When dietary serine dips, endogenous biosynthesis in HFSCs fails to meet demands (and vice versa), slowing hair cycle entry. Serine deprivation also alters wound repair, further delaying hair regeneration while accelerating re-epithelialization kinetics. Mechanistically, we show that HFSCs sense each fitness challenge by triggering the integrated stress response, which acts as a rheostat of epidermal-HF identity. As stress levels rise, skin barrier restoration kinetics accelerate while hair growth is delayed. Our findings offer potential for dietary and pharmacological intervention to accelerate wound healing.
Collapse
Affiliation(s)
- Jesse S S Novak
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Lisa Polak
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Sanjeethan C Baksh
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Douglas W Barrows
- Bioinformatics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Marina Schernthanner
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Benjamin T Jackson
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elizabeth A N Thompson
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Anita Gola
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - M Deniz Abdusselamoglu
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Alain R Bonny
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Kevin A U Gonzales
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Julia S Brunner
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anna E Bridgeman
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Katie S Stewart
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Lynette Hidalgo
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - June Dela Cruz-Racelis
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Ji-Dung Luo
- Bioinformatics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Shiri Gur-Cohen
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - H Amalia Pasolli
- Electron Microscopy Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Thomas S Carroll
- Bioinformatics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Lydia W S Finley
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elaine Fuchs
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
2
|
Nugent PJ, Park H, Wladyka CL, Yelland JN, Sinha S, Chen KY, Bynum C, Quarterman G, Lee SC, Hsieh AC, Subramaniam AR. Decoding post-transcriptional regulatory networks by RNA-linked CRISPR screening in human cells. Nat Methods 2025; 22:1237-1246. [PMID: 40442371 DOI: 10.1038/s41592-025-02702-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 04/11/2025] [Indexed: 06/16/2025]
Abstract
RNAs undergo a complex choreography of metabolic processes that are regulated by thousands of RNA-associated proteins. Here we introduce ReLiC, a scalable and high-throughput RNA-linked CRISPR approach to measure the responses of diverse RNA metabolic processes to knockout of 2,092 human genes encoding all known RNA-associated proteins. ReLiC relies on an iterative strategy to integrate genes encoding Cas9, single-guide RNAs (sgRNAs) and barcoded reporter libraries into a defined genomic locus. Combining ReLiC with polysome fractionation reveals key regulators of ribosome occupancy, uncovering links between translation and proteostasis. Isoform-specific ReLiC captures differential regulation of intron retention and exon skipping by SF3B complex subunits. Chemogenomic ReLiC screens decipher translational regulators upstream of messenger RNA (mRNA) decay and identify a role for the ribosome collision sensor GCN1 during treatment with the anti-leukemic drug homoharringtonine. Our work demonstrates ReLiC as a powerful framework for discovering and dissecting post-transcriptional regulatory networks in human cells.
Collapse
Affiliation(s)
- Patrick J Nugent
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, USA
| | - Heungwon Park
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Cynthia L Wladyka
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - James N Yelland
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Sayantani Sinha
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Katharine Y Chen
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, USA
| | - Christine Bynum
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Biology, Spelman College, Atlanta, GA, USA
| | - Grace Quarterman
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Biology, Spelman College, Atlanta, GA, USA
| | - Stanley C Lee
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Andrew C Hsieh
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Medicine and Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Arvind Rasi Subramaniam
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Department of Biochemistry and Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
3
|
Zhang H, Ling J. Serine mistranslation induces the integrated stress response through the P stalk. J Biol Chem 2025; 301:108447. [PMID: 40147769 PMCID: PMC12022490 DOI: 10.1016/j.jbc.2025.108447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/10/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are essential enzymes that support robust and accurate protein synthesis. A rapidly expanding number of studies show that mutations in aaRSs lead to multiple human diseases, including neurological disorders and cancer. How aaRS mutations impact human health is not fully understood. In particular, our knowledge of how aminoacylation errors affect stress responses and fitness in eukaryotic cells remains limited. The integrated stress response (ISR) is an adaptive mechanism in response to multiple stresses. However, chronic activation of the ISR contributes to the development of multiple diseases such as neuropathies. In this study, we show that Ser misincorporation into Ala and Thr codons, resulting from either aaRS-editing defects or mutations in tRNAs, activates the ISR. We further demonstrate that activation of the ISR by Ser mistranslation does not depend on the accumulation of uncharged tRNAs but rather requires the P stalk associated with the ribosome, implying that ribosome stalling and collision are involved. Our work highlights that certain types of aminoacylation errors can lead to chronic activation of the ISR, potentially affecting fitness and disease progression.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, Maryland, USA.
| | - Jiqiang Ling
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, Maryland, USA.
| |
Collapse
|
4
|
Román-Trufero M, Kleijn IT, Blighe K, Zhou J, Saavedra-García P, Gaffar A, Christoforou M, Bellotti A, Abrahams J, Atrih A, Lamont D, Gierlinski M, Jayaprakash P, Michel AM, Aboagye EO, Yuneva M, Masson GR, Shahrezaei V, Auner HW. An ISR-independent role of GCN2 prevents excessive ribosome biogenesis and mRNA translation. Life Sci Alliance 2025; 8:e202403014. [PMID: 40032489 PMCID: PMC11876863 DOI: 10.26508/lsa.202403014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 03/05/2025] Open
Abstract
The integrated stress response (ISR) is a corrective physiological programme to restore cellular homeostasis that is based on the attenuation of global protein synthesis and a resource-enhancing transcriptional programme. GCN2 is the oldest of four kinases that are activated by diverse cellular stresses to trigger the ISR and acts as the primary responder to amino acid shortage and ribosome collisions. Here, using a broad multi-omics approach, we uncover an ISR-independent role of GCN2. GCN2 inhibition or depletion in the absence of discernible stress causes excessive protein synthesis and ribosome biogenesis, perturbs the cellular translatome, and results in a dynamic and broad loss of metabolic homeostasis. Cancer cells that rely on GCN2 to keep protein synthesis in check under conditions of full nutrient availability depend on GCN2 for survival and unrestricted tumour growth. Our observations describe an ISR-independent role of GCN2 in regulating the cellular proteome and translatome and suggest new avenues for cancer therapies based on unleashing excessive mRNA translation.
Collapse
Affiliation(s)
- Mónica Román-Trufero
- Division of Haematology and Central Haematology Laboratory, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- Hugh and Josseline Langmuir Centre for Myeloma Research, Department of Immunology and Inflammation, Imperial College London, London, UK
- The Francis Crick Institute, London, UK
| | - Istvan T Kleijn
- Department of Mathematics, Imperial College London, London, UK
| | | | - Jinglin Zhou
- Hugh and Josseline Langmuir Centre for Myeloma Research, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Paula Saavedra-García
- Hugh and Josseline Langmuir Centre for Myeloma Research, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Abigail Gaffar
- Hugh and Josseline Langmuir Centre for Myeloma Research, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Marilena Christoforou
- Hugh and Josseline Langmuir Centre for Myeloma Research, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Axel Bellotti
- Division of Haematology and Central Haematology Laboratory, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Joel Abrahams
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Abdelmadjid Atrih
- FingerPrints Proteomics Facility, School of Life Sciences, University of Dundee, Dundee, UK
| | - Douglas Lamont
- FingerPrints Proteomics Facility, School of Life Sciences, University of Dundee, Dundee, UK
| | - Marek Gierlinski
- Data Analysis Group, Division of Computational Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | | | | | - Eric O Aboagye
- Department of Surgery and Cancer, Imperial College London, London, UK
| | | | - Glenn R Masson
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee, UK
| | | | - Holger W Auner
- Division of Haematology and Central Haematology Laboratory, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- Hugh and Josseline Langmuir Centre for Myeloma Research, Department of Immunology and Inflammation, Imperial College London, London, UK
- The Francis Crick Institute, London, UK
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Paternoga H, Xia L, Dimitrova-Paternoga L, Li S, Yan LL, Oestereich M, Kasvandik S, Nanjaraj Urs AN, Beckert B, Tenson T, Zaher H, Inada T, Wilson DN. Structure of a Gcn2 dimer in complex with the large 60S ribosomal subunit. Proc Natl Acad Sci U S A 2025; 122:e2415807122. [PMID: 40198700 PMCID: PMC12012509 DOI: 10.1073/pnas.2415807122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 03/11/2025] [Indexed: 04/10/2025] Open
Abstract
The integrated stress response (ISR) is a central signaling network that enables eukaryotic cells to respond to a variety of different environmental stresses. Such stresses cause ribosome collisions that lead to activation of the kinase Gcn2, resulting in the phosphorylation and inactivation of eukaryotic initiation factor 2 and thereby promoting selective translation of mRNAs to restore homeostasis. Despite the importance of the ISR and intensive study over the past decades, structural insight into how Gcn2 interacts with ribosomal particles has been lacking. Using ex vivo affinity purification approaches, we have obtained a cryoelectron microscopy structure of a yeast Gcn2 dimer in complex with the ribosomal 60S subunit. The Gcn2 dimer is formed by dimerization of the histidine tRNA synthetase-like domains, which establish extensive interactions with the stalk-base and sarcin-ricin loop of the 60S subunit. The C-terminal domain of Gcn2 is also dimerized and occupies the A- and P-site tRNA binding sites at the peptidyl-transferase center of the 60S subunit. Complementary functional studies indicate that binding of Gcn2 to the 60S subunit does not require the coactivators Gcn1 or Gcn20, nor does it lead to phosphorylation of eIF2α. Instead, upon stress, we observe a shift of Gcn2 from the 60S subunit into the colliding ribosome fraction, suggesting that the Gcn2-60S complex represents an inactive stand-by state to enable a rapid redistribution to collided ribosomes, and thereby facilitating a quick and efficient response to stress.
Collapse
Affiliation(s)
- Helge Paternoga
- Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg20146, Germany
| | - Lu Xia
- Division of Ribonucleic Acid (RNA) and Gene Regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku, Tokyo108-8639, Japan
| | - Lyudmila Dimitrova-Paternoga
- Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg20146, Germany
| | - Sihan Li
- Division of Ribonucleic Acid (RNA) and Gene Regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku, Tokyo108-8639, Japan
| | - Liewei L. Yan
- Department of Biology, Washington University in St. Louis, St. Louis, MO63130
| | - Malte Oestereich
- Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg20146, Germany
| | - Sergo Kasvandik
- Faculty of Science and Technology, Institute of Technology, University of Tartu, Tartu50411, Estonia
| | | | - Bertrand Beckert
- Dubochet Center for Imaging at the Ecole Polytechnique Fédérale de Lausanne and the Université de Lausanne (DCI EPFL-UNIL), Quartier UNIL-Sorge, Bâtiment Génopode, Lausanne1015, Switzerland
| | - Tanel Tenson
- Faculty of Science and Technology, Institute of Technology, University of Tartu, Tartu50411, Estonia
| | - Hani Zaher
- Department of Biology, Washington University in St. Louis, St. Louis, MO63130
| | - Toshifumi Inada
- Division of Ribonucleic Acid (RNA) and Gene Regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku, Tokyo108-8639, Japan
| | - Daniel N. Wilson
- Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg20146, Germany
| |
Collapse
|
6
|
Kim DH, Kim DJ, Park SJ, Jang WJ, Jeong CH. Inhibition of GLS1 and ASCT2 Synergistically Enhances the Anticancer Effects in Pancreatic Cancer Cells. J Microbiol Biotechnol 2025; 35:e2412032. [PMID: 40223274 PMCID: PMC12010092 DOI: 10.4014/jmb.2412.12032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/14/2025] [Accepted: 02/15/2025] [Indexed: 04/15/2025]
Abstract
Pancreatic cancer, a leading cause of cancer-related deaths, is characterized by increased dependence on glutamine metabolism. Telaglenastat (CB-839), a glutaminase (GLS) inhibitor targets glutamine metabolism; however, its efficacy as monotherapy is limited owing to metabolic adaptations. In this study, we demonstrated that CB-839 effectively inhibited cell growth in pancreatic cancer cells, but activated the general control nonderepressible 2 (GCN2)-activating transcription factor 4 (ATF4) signaling pathway. ATF4 knockdown reduced glutamine transporter alanine, serine, and cysteine transporter 2 (ASCT2) expression, glutamine uptake, and cell viability under glutamine deprivation-recovery conditions, confirming its protective role in mitigating glutamine-related metabolic stress. Notably, the combination of CB-839 and the ASCT2 inhibitor V-9302 demonstrated a synergistic effect, significantly suppressing pancreatic cancer cell survival. These findings highlight ATF4 and ASCT2 as crucial therapeutic targets and indicate that dual inhibition of GLS and ASCT2 may enhance treatment outcomes for pancreatic cancer.
Collapse
Affiliation(s)
- Dong-Hwan Kim
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Dong Joon Kim
- Department of Microbiology, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Seong-Jun Park
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Won-Jun Jang
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Chul-Ho Jeong
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| |
Collapse
|
7
|
Baymiller M, Helton NS, Dodd B, Moon SL. tRNA synthetase activity is required for stress granule and P-body assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.10.642431. [PMID: 40161773 PMCID: PMC11952412 DOI: 10.1101/2025.03.10.642431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
In response to stress, translation initiation is suppressed and ribosome runoff via translation elongation drives mRNA assembly into ribonucleoprotein (RNP) granules including stress granules and P-bodies. Defects in translation elongation activate the integrated stress response. If and how stalled ribosomes are removed from mRNAs during translation elongation stress to drive RNP granule assembly is not clear. We demonstrate the integrated stress response is induced upon tRNA synthetase inhibition in part via ribosome collision sensing. However, saturating levels of tRNA synthetase inhibitors do not induce stress granules or P-bodies and prevent RNP granule assembly upon exogenous stress. The loss of tRNA synthetase activity causes persistent ribosome stalls that can be released with puromycin but are not rescued by ribosome-associated quality control pathways. Therefore, tRNA synthetase activity is required for ribosomes to run off mRNAs during stress to scaffold cytoplasmic RNP granules. Our findings suggest ribosome stalls can persist in human cells and uniquely uncouple ribonucleoprotein condensate assembly from the integrated stress response.
Collapse
Affiliation(s)
- Max Baymiller
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
- Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Noah S. Helton
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
- Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Benjamin Dodd
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
- Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stephanie L. Moon
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
- Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
8
|
Ali RH, Orellana EA, Lee SH, Chae YC, Chen Y, Clauwaert J, Kennedy AL, Gutierrez AE, Papke DJ, Valenzuela M, Silverman B, Falzetta A, Ficarro SB, Marto JA, Fletcher CDM, Perez-Atayde A, Alcindor T, Shimamura A, Prensner JR, Gregory RI, Gutierrez A. A methyltransferase-independent role for METTL1 in tRNA aminoacylation and oncogenic transformation. Mol Cell 2025; 85:948-961.e11. [PMID: 39892392 PMCID: PMC11925124 DOI: 10.1016/j.molcel.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/04/2024] [Accepted: 01/06/2025] [Indexed: 02/03/2025]
Abstract
Amplification of chromosomal material derived from 12q13-15 is common in human cancer and believed to result in overexpression of multiple collaborating oncogenes. To define the oncogenes involved, we overexpressed genes recurrently amplified in human liposarcoma using a zebrafish model of the disease. We found several genes whose overexpression collaborated with AKT in sarcomagenesis, including the tRNA methyltransferase METTL1. This was surprising, because AKT phosphorylates METTL1 to inactivate its enzymatic activity. Indeed, phosphomimetic S27D or catalytically dead alleles phenocopied the oncogenic activity of wild-type METTL1. We found that METTL1 binds the multi-tRNA synthetase complex, which contains many of the cellular aminoacyl-tRNA synthetases and promotes tRNA aminoacylation, polysome formation, and protein synthesis independent of its methyltransferase activity. METTL1-amplified liposarcomas were hypersensitive to actinomycin D, a clinical inhibitor of ribosome biogenesis. We propose that METTL1 overexpression promotes sarcomagenesis by stimulating tRNA aminoacylation, protein synthesis, and tumor cell growth independent of its methyltransferase activity.
Collapse
Affiliation(s)
- Raja H Ali
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Esteban A Orellana
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Stem Cell Program, Boston Children's Hospital, Boston, MA, USA; Department of Molecular and Systems Biology, The Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Su Hyun Lee
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yun-Cheol Chae
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yantao Chen
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jim Clauwaert
- Department of Pediatrics, Division of Pediatric Hematology/Oncology and Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Alyssa L Kennedy
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ashley E Gutierrez
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - David J Papke
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Mateo Valenzuela
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Brianna Silverman
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Amanda Falzetta
- Department of Pediatrics, Division of Pediatric Hematology/Oncology and Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Scott B Ficarro
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Cancer Biology, Linde Program in Cancer Chemical Biology, Center for Emerging Drug Targets and Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jarrod A Marto
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Cancer Biology, Linde Program in Cancer Chemical Biology, Center for Emerging Drug Targets and Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Christopher D M Fletcher
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Thierry Alcindor
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Akiko Shimamura
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - John R Prensner
- Department of Pediatrics, Division of Pediatric Hematology/Oncology and Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Richard I Gregory
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Stem Cell Program, Boston Children's Hospital, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA; Harvard Initiative for RNA Medicine, Boston, MA, USA; Department of Molecular, Cell & Cancer Biology, UMass Chan Medical School, Worcester, MA, USA
| | - Alejandro Gutierrez
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
9
|
Bravo-Jimenez MA, Sharma S, Karimi-Abdolrezaee S. The integrated stress response in neurodegenerative diseases. Mol Neurodegener 2025; 20:20. [PMID: 39972469 PMCID: PMC11837473 DOI: 10.1186/s13024-025-00811-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 02/07/2025] [Indexed: 02/21/2025] Open
Abstract
The integrated stress response (ISR) is a conserved network in eukaryotic cells that mediates adaptive responses to diverse stressors. The ISR pathway ensures cell survival and homeostasis by regulating protein synthesis in response to internal or external stresses. In recent years, the ISR has emerged as an important regulator of the central nervous system (CNS) development, homeostasis and pathology. Dysregulation of ISR signaling has been linked to several neurodegenerative diseases. Intriguingly, while acute ISR provide neuroprotection through the activation of cell survival mechanisms, prolonged ISR can promote neurodegeneration through protein misfolding, oxidative stress, and mitochondrial dysfunction. Understanding the molecular mechanisms and dynamics of the ISR in neurodegenerative diseases aids in the development of effective therapies. Here, we will provide a timely review on the cellular and molecular mechanisms of the ISR in neurodegenerative diseases. We will highlight the current knowledge on the dual role that ISR plays as a protective or disease worsening pathway and will discuss recent advances on the therapeutic approaches that have been developed to target ISR activity in neurodegenerative diseases.
Collapse
Affiliation(s)
- Maria Astrid Bravo-Jimenez
- Department of Physiology and Pathophysiology, Multiple Sclerosis Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Children Hospital Research Institute of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada
| | - Shivangi Sharma
- Department of Physiology and Pathophysiology, Multiple Sclerosis Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Children Hospital Research Institute of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Multiple Sclerosis Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Children Hospital Research Institute of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada.
| |
Collapse
|
10
|
Ramasamy VS, Nathan ABP, Choi MC, Kim SH, Ohn T. Aβ 42 induces stress granule formation via PACT/PKR pathway. Sci Rep 2025; 15:5829. [PMID: 39966464 PMCID: PMC11836309 DOI: 10.1038/s41598-025-88380-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 01/28/2025] [Indexed: 02/20/2025] Open
Abstract
Stress granule (SG) formation has been linked to several neurodegenerative disorders, such as Alzheimer's disease (AD). Amyloid-β42 (Aβ42) is a key player in the pathogenesis of AD and is known to trigger various stress-related signaling pathways. However, the impact of Aβ on SG formation has not been fully understood. The primary aim of this study is to analyze the SG-inducing properties of Aβ42 and to uncover the molecular mechanisms underlying this process. Our results revealed that exposure to 20 μM Aβ42 led to a significant SG formation in neuroblastoma-derived (SH-SY5Y) and glioma-derived (U87) cell lines. Interestingly, we observed elevated levels of p-eIF2α, while overall protein translation levels remained unchanged. Monomeric and oligomeric forms of Aβ42 exhibited a 4-5 times stronger ability to induce SG formation compared to fibrillar forms. Additionally, treatment with familial mutants of Aβ42 (Dutch and Flemish) showed distinct effects on SG induction. Moreover, our findings using eIF2α kinases knockout (KO) cell lines demonstrated that Aβ-induced SG formation is primarily dependent on Protein Kinase R (PKR). Subsequent proximity ligation assay (PLA) analysis revealed a close proximity of PACT and PKR in Aβ-treated cells and in AD mouse hippocampus. Taken together, our study suggests that Aβ42 promotes SG formation through PKR kinase activation, which in turn requires PACT involvement.
Collapse
Affiliation(s)
- Vijay Sankar Ramasamy
- Department of Cellular and Molecular Medicine, College of Medicine, Chosun University, Gwangju, 61452, Republic of Korea.
| | | | - Moon-Chang Choi
- Department of Cellular and Molecular Medicine, College of Medicine, Chosun University, Gwangju, 61452, Republic of Korea
| | - Sung-Hak Kim
- Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Takbum Ohn
- Department of Cellular and Molecular Medicine, College of Medicine, Chosun University, Gwangju, 61452, Republic of Korea.
| |
Collapse
|
11
|
Preh EO, Ramirez MA, Mohan S, Guy CR, Bell-Pedersen D. Circadian clock control of interactions between eIF2α kinase CPC-3 and GCN1 with ribosomes regulates rhythmic translation initiation. Proc Natl Acad Sci U S A 2025; 122:e2411916122. [PMID: 39903114 PMCID: PMC11831163 DOI: 10.1073/pnas.2411916122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 12/31/2024] [Indexed: 02/06/2025] Open
Abstract
Misregulation of the activity of GCN2, the kinase that phosphorylates and inactivates translation initiation factor eIF2α, has been implicated in several health disorders, underscoring the need to determine the mechanisms controlling GCN2 activation. During nutrient starvation, increased uncharged tRNA levels trigger GCN1 and GCN20 proteins to mediate the binding of uncharged tRNA to GCN2 to activate the kinase to phosphorylate eIF2α. Under constant conditions, activation of the Neurospora crassa homolog of GCN2, CPC-3, is controlled by the circadian clock. However, how the circadian clock controls the rhythmic activity of CPC-3 was not known. We found that the clock regulates CPC-3 and GCN1 interaction with ribosomes and show that these interactions are necessary for clock regulation of CPC-3 activity. CPC-3 activity rhythms, and the rhythmic interaction of CPC-3 and GCN1 with ribosomes, are abolished in a temperature-sensitive valyl-tRNA synthetase mutant (un-3ts) that has high levels of uncharged tRNAVal at all times of the day. Disrupting the interaction between GCN1 and uncharged tRNA in the absence of GCN20 altered rhythmic CPC-3 activity, indicating that the clock controls the interaction between uncharged tRNA and GCN1. Together, these data support that circadian rhythms in mRNA translation through CPC-3 activity require rhythms in uncharged tRNA levels that drive the rhythmic interaction between CPC-3 and GCN1 with ribosomes. This regulation uncovers a fundamental mechanism to ensure temporal coordination between peak cellular energy levels and the energetically demanding process of mRNA translation.
Collapse
Affiliation(s)
- Ebimobowei O. Preh
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX77843
| | - Manuel A. Ramirez
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX77843
| | - Sidharth Mohan
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX77843
| | - Chanté R. Guy
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX77843
| | - Deborah Bell-Pedersen
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX77843
| |
Collapse
|
12
|
Hanada K, Kawada K, Obama K. Targeting Asparagine Metabolism in Solid Tumors. Nutrients 2025; 17:179. [PMID: 39796613 PMCID: PMC11722615 DOI: 10.3390/nu17010179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/31/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Reprogramming of energy metabolism to support cellular growth is a "hallmark" of cancer, allowing cancer cells to balance the catabolic demands with the anabolic needs of producing the nucleotides, amino acids, and lipids necessary for tumor growth. Metabolic alterations, or "addiction", are promising therapeutic targets and the focus of many drug discovery programs. Asparagine metabolism has gained much attention in recent years as a novel target for cancer therapy. Asparagine is widely used in the production of other nutrients and plays an important role in cancer development. Nutritional inhibition therapy targeting asparagine has been used as an anticancer strategy and has shown success in the treatment of leukemia. However, in solid tumors, asparagine restriction alone does not provide ideal therapeutic efficacy. Tumor cells initiate reprogramming processes in response to asparagine deprivation. This review provides a comprehensive overview of asparagine metabolism in cancers. We highlight the physiological role of asparagine and current advances in improving survival and overcoming therapeutic resistance.
Collapse
Affiliation(s)
- Keita Hanada
- Department of Gastrointestinal Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (K.H.); (K.O.)
- Department of Surgery, Rakuwakai Otowa Hospital, Kyoto 607-8062, Japan
| | - Kenji Kawada
- Department of Gastrointestinal Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (K.H.); (K.O.)
- Department of General Surgery, Kurashiki Central Hospital, Kurashiki 710-8602, Japan
| | - Kazutaka Obama
- Department of Gastrointestinal Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (K.H.); (K.O.)
| |
Collapse
|
13
|
Gupta R, Gaikwad S, Qui H, Bou-Nader C, Zhang J, Hinnebusch AG. Purification and Analysis of eIF2α Phosphorylation by Stress-Activated Protein Kinase Gcn2 from S. cerevisiae. Methods Mol Biol 2025; 2882:195-220. [PMID: 39992511 DOI: 10.1007/978-1-0716-4284-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Gcn2 is the sole eIF2α kinase in budding yeast, responsible for inhibiting general translation while inducing translation of transcriptional activator Gcn4, a master regulator of amino acid biosynthesis, in nutrient-starved cells. Gcn2 is activated by interactions between multiple regulatory domains that overcome the inherent latency of its protein kinase domain, including a pseudokinase domain, one related to histidyl-tRNA synthetase, a ribosome-binding and dimerization domain, and a region that binds the trans-acting activators Gcn1/Gcn20, which respond to deacylated tRNAs engendered by amino acid starvation or other impediments to translation elongation that lead to ribosome stalling and collisions. Here, we describe methods for purifying Gcn2 from yeast cells and assaying its protein kinase activity against a recombinant segment of eIF2α.
Collapse
Affiliation(s)
- Ritu Gupta
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Swati Gaikwad
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Hongfang Qui
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Charles Bou-Nader
- Laboratory of Molecular Biology, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jinwei Zhang
- Laboratory of Molecular Biology, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alan G Hinnebusch
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
14
|
Liao K, Liu K, Wang Z, Zhao K, Mei Y. TRIM2 promotes metabolic adaptation to glutamine deprivation via enhancement of CPT1A activity. FEBS J 2025; 292:275-293. [PMID: 38949993 DOI: 10.1111/febs.17218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 05/14/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024]
Abstract
Cancer cells undergo metabolic adaptation to promote their survival and growth under energy stress conditions, yet the underlying mechanisms remain largely unclear. Here, we report that tripartite motif-containing protein 2 (TRIM2) is upregulated in response to glutamine deprivation by the transcription factor cyclic AMP-dependent transcription factor (ATF4). TRIM2 is shown to specifically interact with carnitine O-palmitoyltransferase 1 (CPT1A), a rate-limiting enzyme of fatty acid oxidation. Via this interaction, TRIM2 enhances the enzymatic activity of CPT1A, thereby regulating intracellular lipid levels and protecting cells from glutamine deprivation-induced apoptosis. Furthermore, TRIM2 is able to promote both in vitro cell proliferation and in vivo xenograft tumor growth via CPT1A. Together, these findings establish TRIM2 as an important regulator of the metabolic adaptation of cancer cells to glutamine deprivation and implicate TRIM2 as a potential therapeutic target for cancer.
Collapse
Affiliation(s)
- Kaimin Liao
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Kaiyue Liu
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhongyu Wang
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Kailiang Zhao
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yide Mei
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
15
|
Kim KQ, Li JJ, Nanjaraj Urs AN, Pacheco ME, Lasehinde V, Denk T, Tesina P, Tomomatsu S, Matsuo Y, McDonald E, Beckmann R, Inada T, Green R, Zaher HS. Multiprotein bridging factor 1 is required for robust activation of the integrated stress response on collided ribosomes. Mol Cell 2024; 84:4594-4611.e9. [PMID: 39566505 PMCID: PMC11626711 DOI: 10.1016/j.molcel.2024.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/20/2024] [Accepted: 10/23/2024] [Indexed: 11/22/2024]
Abstract
In yeast, multiprotein bridging factor 1 (Mbf1) has been proposed to function in the integrated stress response (ISR) as a transcriptional coactivator by mediating a direct interaction between general transcription machinery and the process's key effector, Gcn4. However, mounting evidence has demonstrated that Mbf1 (and its human homolog EDF1) is recruited to collided ribosomes, a known activator of the ISR. In this study, we connect these otherwise seemingly disparate functions of Mbf1. Our biochemical and structural analyses reveal that Mbf1 functions as a core ISR factor by interacting with collided ribosomes to mediate Gcn2 activation. We further show that Mbf1 serves no role as a transcriptional coactivator of Gcn4. Instead, Mbf1 is required for optimal stress-induced eukaryotic initiation factor 2α (eIF2α) phosphorylation and downstream de-repression of GCN4 translation. Collectively, our data establish that Mbf1 functions in ISR signaling by acting as a direct sensor of stress-induced ribosome collisions.
Collapse
Affiliation(s)
- Kyusik Q Kim
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jeffrey J Li
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Miguel E Pacheco
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Victor Lasehinde
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Timo Denk
- Gene Center, Department of Biochemistry, Ludwig-Maximilians-Universität München, München, Germany
| | - Petr Tesina
- Gene Center, Department of Biochemistry, Ludwig-Maximilians-Universität München, München, Germany
| | - Shota Tomomatsu
- Division of RNA and Gene Regulation, Institute of Medical Science, The University of Tokyo, Minato-ku 108-8639, Japan
| | - Yoshitaka Matsuo
- Division of RNA and Gene Regulation, Institute of Medical Science, The University of Tokyo, Minato-ku 108-8639, Japan
| | - Elesa McDonald
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Roland Beckmann
- Gene Center, Department of Biochemistry, Ludwig-Maximilians-Universität München, München, Germany
| | - Toshifumi Inada
- Division of RNA and Gene Regulation, Institute of Medical Science, The University of Tokyo, Minato-ku 108-8639, Japan
| | - Rachel Green
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Hani S Zaher
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
16
|
Filipek K, Blanchet S, Molestak E, Zaciura M, Wu CCC, Horbowicz-Drożdżal P, Grela P, Zalewski M, Kmiecik S, González-Ibarra A, Krokowski D, Latoch P, Starosta AL, Mołoń M, Shao Y, Borkiewicz L, Michalec-Wawiórka B, Wawiórka L, Kubiński K, Socała K, Wlaź P, Cunningham KW, Green R, Rodnina MV, Tchórzewski M. Phosphorylation of P-stalk proteins defines the ribosomal state for interaction with auxiliary protein factors. EMBO Rep 2024; 25:5478-5506. [PMID: 39468350 PMCID: PMC11624264 DOI: 10.1038/s44319-024-00297-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/03/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024] Open
Abstract
Ribosomal action is facilitated by the orchestrated work of trans-acting factors and ribosomal elements, which are subject to regulatory events, often involving phosphorylation. One such element is the ribosomal P-stalk, which plays a dual function: it activates translational GTPases, which support basic ribosomal functions, and interacts with the Gcn2 kinase, linking the ribosomes to the ISR pathway. We show that P-stalk proteins, which form a pentamer, exist in the cell exclusively in a phosphorylated state at five C-terminal domains (CTDs), ensuring optimal translation (speed and accuracy) and may play a role in the timely regulation of the Gcn2-dependent stress response. Phosphorylation of the CTD induces a structural transition from a collapsed to a coil-like structure, and the CTD gains conformational freedom, allowing specific but transient binding to various protein partners, optimizing the ribosome action. The report reveals a unique feature of the P-stalk proteins, indicating that, unlike most ribosomal proteins, which are regulated by phosphorylation in an on/off manner, the P-stalk proteins exist in a constantly phosphorylated state, which optimizes their interaction with auxiliary factors.
Collapse
Affiliation(s)
- Kamil Filipek
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Sandra Blanchet
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Institute for Integrative Biology of the Cell, I2BC, CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Eliza Molestak
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Monika Zaciura
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Colin Chih-Chien Wu
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Section of Translational Control of Gene Expression, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Patrycja Horbowicz-Drożdżal
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Przemysław Grela
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Mateusz Zalewski
- Biological and Chemical Research Center, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Sebastian Kmiecik
- Biological and Chemical Research Center, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Alan González-Ibarra
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Dawid Krokowski
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Przemysław Latoch
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Agata L Starosta
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Mateusz Mołoń
- Institute of Biology, University of Rzeszow, Rzeszow, Poland
| | - Yutian Shao
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Lidia Borkiewicz
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Aleje Racławickie 1, 20-059, Lublin, Poland
| | - Barbara Michalec-Wawiórka
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Leszek Wawiórka
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Konrad Kubiński
- Department of Molecular Biology, Institute of Biological Sciences, John Paul II Catholic University of Lublin, Lublin, Poland
| | - Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Kyle W Cunningham
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA.
| | - Rachel Green
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| | - Marek Tchórzewski
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland.
| |
Collapse
|
17
|
Cordova RA, Sommers NR, Law AS, Klunk AJ, Brady KE, Goodrich DW, Anthony TG, Brault JJ, Pili R, Wek RC, Staschke KA. Coordination between the eIF2 kinase GCN2 and p53 signaling supports purine metabolism and the progression of prostate cancer. Sci Signal 2024; 17:eadp1375. [PMID: 39591412 PMCID: PMC11826925 DOI: 10.1126/scisignal.adp1375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024]
Abstract
Cancers invoke various pathways to mitigate external and internal stresses to continue their growth and progression. We previously reported that the eIF2 kinase GCN2 and the integrated stress response are constitutively active in prostate cancer (PCa) and are required to maintain amino acid homeostasis needed to fuel tumor growth. However, although loss of GCN2 function reduces intracellular amino acid availability and PCa growth, there is no appreciable cell death. Here, we discovered that the loss of GCN2 in PCa induces prosenescent p53 signaling. This p53 activation occurred through GCN2 inhibition-dependent reductions in purine nucleotides that impaired ribosome biogenesis and, consequently, induced the impaired ribosome biogenesis checkpoint. p53 signaling induced cell cycle arrest and senescence that promoted the survival of GCN2-deficient PCa cells. Depletion of GCN2 combined with loss of p53 or pharmacological inhibition of de novo purine biosynthesis reduced proliferation and enhanced cell death in PCa cell lines, organoids, and xenograft models. Our findings highlight the coordinated interplay between GCN2 and p53 regulation during nutrient stress and provide insight into how they could be targeted in developing new therapeutic strategies for PCa.
Collapse
Affiliation(s)
- Ricardo A. Cordova
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine; Indianapolis, IN 46202, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center; Indianapolis, IN 46202, USA
| | - Noah R. Sommers
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine; Indianapolis, IN 46202, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center; Indianapolis, IN 46202, USA
| | - Andrew S. Law
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine; Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health; Indianapolis, IN 46202, USA
| | - Angela J. Klunk
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine; Indianapolis, IN 46202, USA
| | - Katherine, E. Brady
- Department of Biology, Indiana University School of Science; Indianapolis, IN 46202, USA
| | - David W. Goodrich
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center; Buffalo, NY, 14203, USA
| | - Tracy G. Anthony
- Department of Nutritional Sciences and the New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, NJ 08901, USA
| | - Jeffrey J. Brault
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine; Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health; Indianapolis, IN 46202, USA
| | - Roberto Pili
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo; Buffalo, NY 14203, USA
| | - Ronald C. Wek
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine; Indianapolis, IN 46202, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center; Indianapolis, IN 46202, USA
| | - Kirk A. Staschke
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine; Indianapolis, IN 46202, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center; Indianapolis, IN 46202, USA
| |
Collapse
|
18
|
Piecyk M, Ferraro-Peyret C, Laville D, Perros F, Chaveroux C. Novel insights into the GCN2 pathway and its targeting. Therapeutic value in cancer and lessons from lung fibrosis development. FEBS J 2024; 291:4867-4889. [PMID: 38879870 DOI: 10.1111/febs.17203] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/19/2024] [Accepted: 06/06/2024] [Indexed: 11/14/2024]
Abstract
Defining the mechanisms that allow cells to adapt to environmental stress is critical for understanding the progression of chronic diseases and identifying relevant drug targets. Among these, activation of the pathway controlled by the eIF2-alpha kinase GCN2 is critical for translational and metabolic reprogramming of the cell in response to various metabolic, proteotoxic, and ribosomal stressors. However, its role has frequently been investigated through the lens of a stress pathway signaling via the eIF2α-activating transcription factor 4 (ATF4) downstream axis, while recent advances in the field have revealed that the GCN2 pathway is more complex than previously thought. Indeed, this kinase can be activated through a variety of mechanisms, phosphorylate substrates other than eIF2α, and regulate cell proliferation in a steady state. This review presents recent findings regarding the fundamental mechanisms underlying GCN2 signaling and function, as well as the development of drugs that modulate its activity. Furthermore, by comparing the literature on GCN2's antagonistic roles in two challenging pathologies, cancer and pulmonary diseases, the benefits, and drawbacks of GCN2 targeting, particularly inhibition, are discussed.
Collapse
Affiliation(s)
- Marie Piecyk
- Department of Biochemistry and Molecular Biology, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
- Center for Innovation in Cancerology of Lyon (CICLY) EA 3738, Faculty of Medicine and Maieutic Lyon Sud, University Lyon I, Oullins, France
| | - Carole Ferraro-Peyret
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, France
- Hospices Civils de Lyon, Plateforme AURAGEN, France
| | - David Laville
- Department of Pathology, Hospices Civils de Lyon, East Hospital Group, Bron, France
| | - Frédéric Perros
- Laboratoire CarMeN, UMR INSERM U1060/INRA U1397, University of Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, France
| | - Cedric Chaveroux
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, France
| |
Collapse
|
19
|
Lidonnici J, Oberkersch RE. Reciprocal Dynamics of Metabolism and mRNA Translation in Tumor Angiogenesis. Int J Mol Sci 2024; 25:11284. [PMID: 39457064 PMCID: PMC11508371 DOI: 10.3390/ijms252011284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Angiogenesis, the process of formation of new blood vessels from pre-existing vasculature, is essential for tumor growth and metastasis. Anti-angiogenic treatment targeting vascular endothelial growth factor (VEGF) signaling is a powerful tool to combat tumor growth; however, anti-tumor angiogenesis therapy has shown limited efficacy, with survival benefits ranging from only a few weeks to months. Compensation by upregulation of complementary growth factors and switches to different modes of vascularization have made these types of therapies less effective. Recent evidence suggests that targeting specific players in endothelial metabolism is a valuable therapeutic strategy against tumor angiogenesis. Although it is clear that metabolism can modulate the translational machinery, the reciprocal relationship between metabolism and mRNA translational control during tumor angiogenesis is not fully understood. In this review, we explore emerging examples of how endothelial cell metabolism affects mRNA translation during the formation of blood vessels. A deeper comprehension of these mechanisms could lead to the development of innovative therapeutic strategies for both physiological and pathological angiogenesis.
Collapse
Affiliation(s)
- Jacopo Lidonnici
- Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padova, 35128 Padova, Italy;
| | | |
Collapse
|
20
|
Zhu MM, Dai J, Dai Z, Peng Y, Zhao YY. GCN2 kinase activation mediates pulmonary vascular remodeling and pulmonary arterial hypertension. JCI Insight 2024; 9:e177926. [PMID: 39316438 PMCID: PMC11530134 DOI: 10.1172/jci.insight.177926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 09/04/2024] [Indexed: 09/26/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by progressive increase of pulmonary vascular resistance and remodeling that result in right heart failure. Recessive mutations of EIF2AK4 gene (encoding general control nonderepressible 2 kinase, GCN2) are linked to heritable pulmonary veno-occlusive disease (PVOD) in patients but rarely in patients with PAH. The role of GCN2 kinase activation in the pathogenesis of PAH remains unclear. Here, we show that GCN2 was hyperphosphorylated and activated in pulmonary vascular endothelial cells (ECs) of hypoxic mice, monocrotaline-treated rats, and patients with idiopathic PAH. Unexpectedly, loss of GCN2 kinase activity in Eif2ak4-/- mice with genetic disruption of the kinase domain induced neither PVOD nor pulmonary hypertension (PH) but inhibited hypoxia-induced PH. RNA-sequencing analysis suggested endothelin-1 (Edn1) as a downstream target of GCN2. GCN2 mediated hypoxia-induced Edn1 expression in human lung ECs via HIF-2α. Restored Edn1 expression in ECs of Eif2ak4-/- mice partially reversed the reduced phenotype of hypoxia-induced PH. Furthermore, GCN2 kinase inhibitor A-92 treatment attenuated PAH in monocrotaline-treated rats. These studies demonstrate that GCN2 kinase activation mediates pulmonary vascular remodeling and PAH at least partially through Edn1. Thus, targeting GCN2 kinase activation is a promising therapeutic strategy for treatment of PAH in patients without EIF2AK4 loss-of-function mutations.
Collapse
Affiliation(s)
- Maggie M. Zhu
- Program for Lung and Vascular Biology, Section for Injury Repair and Regeneration Research, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, Division of Critical Care, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jingbo Dai
- Program for Lung and Vascular Biology, Section for Injury Repair and Regeneration Research, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, Division of Critical Care, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Zhiyu Dai
- Program for Lung and Vascular Biology, Section for Injury Repair and Regeneration Research, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, Division of Critical Care, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Yi Peng
- Program for Lung and Vascular Biology, Section for Injury Repair and Regeneration Research, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, Division of Critical Care, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - You-Yang Zhao
- Program for Lung and Vascular Biology, Section for Injury Repair and Regeneration Research, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, Division of Critical Care, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Genetic Medicine and Nanotechnology Development Center (GeneMeNDer), Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
- Departments of Pharmacology and Medicine and
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
21
|
Li JJ, Xin N, Yang C, Tavizon LA, Hong R, Park J, Moore TI, Tharyan RG, Antebi A, Kim HE. Unveiling the Intercompartmental Signaling Axis: Mitochondrial to ER Stress Response (MERSR) and its Impact on Proteostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.07.556674. [PMID: 38187690 PMCID: PMC10769184 DOI: 10.1101/2023.09.07.556674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Maintaining protein homeostasis is essential for cellular health. Our previous research uncovered a cross-compartmental Mitochondrial to Cytosolic Stress Response, activated by the perturbation of mitochondrial proteostasis, which ultimately results in the improvement of proteostasis in the cytosol. Here, we found that this signaling axis also influences the unfolded protein response of the endoplasmic reticulum (UPR ER ), suggesting the presence of a Mitochondria to ER Stress Response (MERSR). During MERSR, the IRE1 branch of UPR ER is inhibited, introducing a previously unknown regulatory component of MCSR. Moreover, proteostasis is enhanced through the upregulation of the PERK-eIF2α signaling pathway, increasing phosphorylation of eIF2α and improving the ER's ability to handle proteostasis. MERSR activation in both polyglutamine and amyloid-beta peptide-expressing C. elegans disease models also led to improvement in both aggregate burden and overall disease outcome. These findings shed light on the coordination between the mitochondria and the ER in maintaining cellular proteostasis and provide further evidence for the importance of intercompartmental signaling.
Collapse
|
22
|
Altintas O, MacArthur MR. General control nonderepressible 2 (GCN2) as a therapeutic target in age-related diseases. FRONTIERS IN AGING 2024; 5:1447370. [PMID: 39319345 PMCID: PMC11420162 DOI: 10.3389/fragi.2024.1447370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/28/2024] [Indexed: 09/26/2024]
Abstract
The function of General Control Nonderepressible 2 (GCN2), an evolutionary-conserved component of the integrated stress response (ISR), has been well-documented across organisms from yeast to mammals. Recently GCN2 has also gained attention for its role in health and disease states. In this review, we provide a brief overview of GCN2, including its structure, activation mechanisms and interacting partners, and explore its potential significance as a therapeutic target in various age-related diseases including neurodegeneration, inflammatory disorders and cancer. Finally, we summarize the barriers to effectively targeting GCN2 for the treatment of disease and to promote a healthier aging process.
Collapse
Affiliation(s)
- Ozlem Altintas
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Michael R. MacArthur
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, United States
| |
Collapse
|
23
|
Bou-Nader C, Gaikwad S, Bahmanjah S, Zhang F, Hinnebusch AG, Zhang J. Gcn2 structurally mimics and functionally repurposes the HisRS enzyme for the integrated stress response. Proc Natl Acad Sci U S A 2024; 121:e2409628121. [PMID: 39163341 PMCID: PMC11363354 DOI: 10.1073/pnas.2409628121] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024] Open
Abstract
Protein kinase Gcn2 attenuates protein synthesis in response to amino acid starvation while stimulating translation of a transcriptional activator of amino acid biosynthesis. Gcn2 activation requires a domain related to histidyl-tRNA synthetase (HisRS), the enzyme that aminoacylates tRNAHis. While evidence suggests that deacylated tRNA binds the HisRS domain for kinase activation, ribosomal P-stalk proteins have been implicated as alternative activating ligands on stalled ribosomes. We report crystal structures of the HisRS domain of Chaetomium thermophilum Gcn2 that reveal structural mimicry of both catalytic (CD) and anticodon-binding (ABD) domains, which in authentic HisRS bind the acceptor stem and anticodon loop of tRNAHis. Elements for forming histidyl adenylate and aminoacylation are lacking, suggesting that Gcn2HisRS was repurposed for kinase activation, consistent with mutations in the CD that dysregulate yeast Gcn2 function. Substituting conserved ABD residues well positioned to contact the anticodon loop or that form a conserved ABD-CD interface impairs Gcn2 function in starved cells. Mimicry in Gcn2HisRS of two highly conserved structural domains for binding both ends of tRNA-each crucial for Gcn2 function-supports that deacylated tRNAs activate Gcn2 and exemplifies how a metabolic enzyme is repurposed to host new local structures and sequences that confer a novel regulatory function.
Collapse
Affiliation(s)
- Charles Bou-Nader
- Laboratory of Molecular Biology, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD20892
| | - Swati Gaikwad
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD20892
| | - Soheila Bahmanjah
- Laboratory of Molecular Biology, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD20892
| | - Fan Zhang
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD20892
| | - Alan G. Hinnebusch
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD20892
| | - Jinwei Zhang
- Laboratory of Molecular Biology, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD20892
| |
Collapse
|
24
|
Grobben Y. Targeting amino acid-metabolizing enzymes for cancer immunotherapy. Front Immunol 2024; 15:1440269. [PMID: 39211039 PMCID: PMC11359565 DOI: 10.3389/fimmu.2024.1440269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Despite the immune system's role in the detection and eradication of abnormal cells, cancer cells often evade elimination by exploitation of various immune escape mechanisms. Among these mechanisms is the ability of cancer cells to upregulate amino acid-metabolizing enzymes, or to induce these enzymes in tumor-infiltrating immunosuppressive cells. Amino acids are fundamental cellular nutrients required for a variety of physiological processes, and their inadequacy can severely impact immune cell function. Amino acid-derived metabolites can additionally dampen the anti-tumor immune response by means of their immunosuppressive activities, whilst some can also promote tumor growth directly. Based on their evident role in tumor immune escape, the amino acid-metabolizing enzymes glutaminase 1 (GLS1), arginase 1 (ARG1), inducible nitric oxide synthase (iNOS), indoleamine 2,3-dioxygenase 1 (IDO1), tryptophan 2,3-dioxygenase (TDO) and interleukin 4 induced 1 (IL4I1) each serve as a promising target for immunotherapeutic intervention. This review summarizes and discusses the involvement of these enzymes in cancer, their effect on the anti-tumor immune response and the recent progress made in the preclinical and clinical evaluation of inhibitors targeting these enzymes.
Collapse
|
25
|
Qu M, He Q, Bao H, Ji X, Shen T, Barkat MQ, Wu X, Zeng LH. Multiple roles of arsenic compounds in phase separation and membraneless organelles formation determine their therapeutic efficacy in tumors. J Pharm Anal 2024; 14:100957. [PMID: 39253293 PMCID: PMC11381784 DOI: 10.1016/j.jpha.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/23/2024] [Accepted: 02/21/2024] [Indexed: 09/11/2024] Open
Abstract
Arsenic compounds are widely used for the therapeutic intervention of multiple diseases. Ancient pharmacologists discovered the medicinal utility of these highly toxic substances, and modern pharmacologists have further recognized the specific active ingredients in human diseases. In particular, Arsenic trioxide (ATO), as a main component, has therapeutic effects on various tumors (including leukemia, hepatocellular carcinoma, lung cancer, etc.). However, its toxicity limits its efficacy, and controlling the toxicity has been an important issue. Interestingly, recent evidence has pointed out the pivotal roles of arsenic compounds in phase separation and membraneless organelles formation, which may determine their toxicity and therapeutic efficacy. Here, we summarize the arsenic compounds-regulating phase separation and membraneless organelles formation. We further hypothesize their potential involvement in the therapy and toxicity of arsenic compounds, highlighting potential mechanisms underlying the clinical application of arsenic compounds.
Collapse
Affiliation(s)
- Meiyu Qu
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Qiangqiang He
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Hangyang Bao
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xing Ji
- Department of Pharmacology, Hangzhou City University School of Medicine, Hangzhou, 310015, China
| | - Tingyu Shen
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Muhammad Qasim Barkat
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Ximei Wu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Ling-Hui Zeng
- Department of Pharmacology, Hangzhou City University School of Medicine, Hangzhou, 310015, China
| |
Collapse
|
26
|
Park J, Desai H, Liboy-Lugo JM, Gu S, Jowhar Z, Xu A, Floor SN. IGHMBP2 deletion suppresses translation and activates the integrated stress response. Life Sci Alliance 2024; 7:e202302554. [PMID: 38803225 PMCID: PMC11109757 DOI: 10.26508/lsa.202302554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/29/2024] Open
Abstract
IGHMBP2 is a nonessential, superfamily 1 DNA/RNA helicase that is mutated in patients with rare neuromuscular diseases SMARD1 and CMT2S. IGHMBP2 is implicated in translational and transcriptional regulation via biochemical association with ribosomal proteins, pre-rRNA processing factors, and tRNA-related species. To uncover the cellular consequences of perturbing IGHMBP2, we generated full and partial IGHMBP2 deletion K562 cell lines. Using polysome profiling and a nascent protein synthesis assay, we found that IGHMBP2 deletion modestly reduces global translation. We performed Ribo-seq and RNA-seq and identified diverse gene expression changes due to IGHMBP2 deletion, including ATF4 up-regulation. With recent studies showing the integrated stress response (ISR) can contribute to tRNA metabolism-linked neuropathies, we asked whether perturbing IGHMBP2 promotes ISR activation. We generated ATF4 reporter cell lines and found IGHMBP2 knockout cells demonstrate basal, chronic ISR activation. Our work expands upon the impact of IGHMBP2 in translation and elucidates molecular mechanisms that may link mutant IGHMBP2 to severe clinical phenotypes.
Collapse
Affiliation(s)
- Jesslyn Park
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Hetvee Desai
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - José M Liboy-Lugo
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Sohyun Gu
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Ziad Jowhar
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Albert Xu
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Stephen N Floor
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
27
|
Fulton TL, Wansbrough MR, Mirth CK, Piper MDW. Short-term fasting of a single amino acid extends lifespan. GeroScience 2024; 46:3607-3615. [PMID: 38305939 PMCID: PMC11229437 DOI: 10.1007/s11357-024-01078-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/16/2024] [Indexed: 02/03/2024] Open
Abstract
Diet and health are strongly linked, though the strict changes in diet required to improve health outcomes are usually difficult to sustain. We sought to understand whether short-term bouts of amino acid-specific modifications to the diet of Drosophila melanogaster could mimic the lifespan and stress resistance benefits of dietary restriction, without the requirement for drastic reductions in food intake. We found that flies that were transiently fed diets lacking the essential amino acid isoleucine, but otherwise nutritionally complete, exhibited enhanced nicotine tolerance, indicating elevated detoxification capacity. The protection from isoleucine deprivation increased with the duration of exposure, up to a maximum at 7-day isoleucine deprivation for flies 2, 3, or 4 weeks of age, and a 5-day deprivation when flies were 5 weeks of age. Because of these beneficial effects on toxin resistance, we intermittently deprived flies of isoleucine during the first 6 weeks of adulthood and monitored the effect on lifespan. Lifespan was significantly extended when flies experienced short-term isoleucine deprivation at 3 and 5 weeks of age, regardless of whether they were also deprived at 1 week. These results indicate that short-term bouts of isoleucine deprivation can extend lifespan and highlight its cumulative and time-dependent benefits. Interestingly, we found that isoleucine-deprived flies lost their protection against nicotine within 3 days of returning to fully fed conditions. Therefore, the mechanisms underlying lifespan extension may involve transient damage clearance during the bouts of isoleucine deprivation rather than sustained enhanced detoxification capacity. These data highlight a new time-restricted, nutritionally precise method to extend life in Drosophila melanogaster and point to a more manageable dietary method to combat ageing.
Collapse
Affiliation(s)
- Tahlia L Fulton
- School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | - Mia R Wansbrough
- School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | - Christen K Mirth
- School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | - Matthew D W Piper
- School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
28
|
Nugent PJ, Park H, Wladyka CL, Chen KY, Bynum C, Quarterman G, Hsieh AC, Subramaniam AR. Decoding RNA Metabolism by RNA-linked CRISPR Screening in Human Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.25.605204. [PMID: 39091804 PMCID: PMC11291135 DOI: 10.1101/2024.07.25.605204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
RNAs undergo a complex choreography of metabolic processes in human cells that are regulated by thousands of RNA-associated proteins. While the effects of individual RNA-associated proteins on RNA metabolism have been extensively characterized, the full complement of regulators for most RNA metabolic events remain unknown. Here we present a massively parallel RNA-linked CRISPR (ReLiC) screening approach to measure the responses of diverse RNA metabolic events to knockout of 2,092 human genes encoding all known RNA-associated proteins. ReLiC screens highlight modular interactions between gene networks regulating splicing, translation, and decay of mRNAs. When combined with biochemical fractionation of polysomes, ReLiC reveals striking pathway-specific coupling between growth fitness and mRNA translation. Perturbing different components of the translation and proteostasis machineries have distinct effects on ribosome occupancy, while perturbing mRNA transcription leaves ribosome occupancy largely intact. Isoform-selective ReLiC screens capture differential regulation of intron retention and exon skipping by SF3b complex subunits. Chemogenomic screens using ReLiC decipher translational regulators upstream of mRNA decay and uncover a role for the ribosome collision sensor GCN1 during treatment with the anti-leukemic drug homoharringtonine. Our work demonstrates ReLiC as a versatile platform for discovering and dissecting regulatory principles of human RNA metabolism.
Collapse
Affiliation(s)
- Patrick J Nugent
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle WA, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle WA, USA
| | - Heungwon Park
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle WA, USA
| | - Cynthia L Wladyka
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle WA, USA
| | - Katharine Y Chen
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle WA, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle WA, USA
| | - Christine Bynum
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle WA, USA
- Department of Biology, Spelman College, Atlanta GA, USA
| | - Grace Quarterman
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle WA, USA
- Department of Biology, Spelman College, Atlanta GA, USA
| | - Andrew C Hsieh
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle WA, USA
- Department of Medicine and Department of Genome Sciences, University of Washington, Seattle WA, USA
| | - Arvind Rasi Subramaniam
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle WA, USA
- Department of Biochemistry and Department of Genome Sciences, University of Washington, Seattle WA, USA
| |
Collapse
|
29
|
Gibbs VJ, Lin YH, Ghuge AA, Anderson RA, Schiemann AH, Conaglen L, Sansom BJM, da Silva RC, Sattlegger E. GCN2 in Viral Defence and the Subversive Tactics Employed by Viruses. J Mol Biol 2024; 436:168594. [PMID: 38724002 DOI: 10.1016/j.jmb.2024.168594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/01/2024] [Accepted: 05/01/2024] [Indexed: 06/10/2024]
Abstract
The recent SARS-CoV-2 pandemic and associated COVID19 disease illustrates the important role of viral defence mechanisms in ensuring survival and recovery of the host or patient. Viruses absolutely depend on the host's protein synthesis machinery to replicate, meaning that impeding translation is a powerful way to counteract viruses. One major approach used by cells to obstruct protein synthesis is to phosphorylate the alpha subunit of eukaryotic translation initiation factor 2 (eIF2α). Mammals possess four different eIF2α-kinases: PKR, HRI, PEK/PERK, and GCN2. While PKR is currently considered the principal eIF2α-kinase involved in viral defence, the other eIF2α-kinases have also been found to play significant roles. Unsurprisingly, viruses have developed mechanisms to counteract the actions of eIF2α-kinases, or even to exploit them to their benefit. While some of these virulence factors are specific to one eIF2α-kinase, such as GCN2, others target all eIF2α-kinases. This review critically evaluates the current knowledge of viral mechanisms targeting the eIF2α-kinase GCN2. A detailed and in-depth understanding of the molecular mechanisms by which viruses evade host defence mechanisms will help to inform the development of powerful anti-viral measures.
Collapse
Affiliation(s)
- Victoria J Gibbs
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Yu H Lin
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Aditi A Ghuge
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Reuben A Anderson
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Anja H Schiemann
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Layla Conaglen
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Bianca J M Sansom
- School of Natural Sciences, Massey University, Auckland, New Zealand
| | - Richard C da Silva
- School of Natural Sciences, Massey University, Auckland, New Zealand; Genome Biology and Epigenetics, Department of Biology, Utrecht University, Utrecht, the Netherlands
| | - Evelyn Sattlegger
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand; School of Natural Sciences, Massey University, Auckland, New Zealand; Maurice Wilkins Centre for Molecular BioDiscovery, Palmerston North, New Zealand.
| |
Collapse
|
30
|
Li X, Yang Y, Bai X, Wang X, Tan H, Chen Y, Zhu Y, Liu Q, Wu MN, Li Y. A brain-derived insulin signal encodes protein satiety for nutrient-specific feeding inhibition. Cell Rep 2024; 43:114282. [PMID: 38795342 PMCID: PMC11220824 DOI: 10.1016/j.celrep.2024.114282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 04/08/2024] [Accepted: 05/10/2024] [Indexed: 05/27/2024] Open
Abstract
The suppressive effect of insulin on food intake has been documented for decades. However, whether insulin signals can encode a certain type of nutrients to regulate nutrient-specific feeding behavior remains elusive. Here, we show that in female Drosophila, a pair of dopaminergic neurons, tritocerebrum 1-dopaminergic neurons (T1-DANs), are directly activated by a protein-intake-induced insulin signal from insulin-producing cells (IPCs). Intriguingly, opto-activating IPCs elicits feeding inhibition for both protein and sugar, while silencing T1-DANs blocks this inhibition only for protein food. Elevating insulin signaling in T1-DANs or opto-activating these neurons is sufficient to mimic protein satiety. Furthermore, this signal is conveyed to local neurons of the protocerebral bridge (PB-LNs) and specifically suppresses protein intake. Therefore, our findings reveal that a brain-derived insulin signal encodes protein satiety and suppresses feeding behavior in a nutrient-specific manner, shedding light on the functional specificity of brain insulin signals in regulating behaviors.
Collapse
Affiliation(s)
- Xiaoyu Li
- Institute of Biophysics, State Key Laboratory of Brain and Cognitive Science, Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Yang
- Institute of Biophysics, State Key Laboratory of Brain and Cognitive Science, Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaobing Bai
- Institute of Biophysics, State Key Laboratory of Brain and Cognitive Science, Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish Center for Education and Research, Beijing 100190, China
| | - Xiaotong Wang
- Institute of Biophysics, State Key Laboratory of Brain and Cognitive Science, Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Houqi Tan
- Institute of Biophysics, State Key Laboratory of Brain and Cognitive Science, Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanbo Chen
- Institute of Biophysics, State Key Laboratory of Brain and Cognitive Science, Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Zhu
- Institute of Biophysics, State Key Laboratory of Brain and Cognitive Science, Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish Center for Education and Research, Beijing 100190, China
| | - Qili Liu
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Mark N Wu
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yan Li
- Institute of Biophysics, State Key Laboratory of Brain and Cognitive Science, Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish Center for Education and Research, Beijing 100190, China.
| |
Collapse
|
31
|
Yin JZ, Keszei AFA, Houliston S, Filandr F, Beenstock J, Daou S, Kitaygorodsky J, Schriemer DC, Mazhab-Jafari MT, Gingras AC, Sicheri F. The HisRS-like domain of GCN2 is a pseudoenzyme that can bind uncharged tRNA. Structure 2024; 32:795-811.e6. [PMID: 38531363 DOI: 10.1016/j.str.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 01/09/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024]
Abstract
GCN2 is a stress response kinase that phosphorylates the translation initiation factor eIF2α to inhibit general protein synthesis when activated by uncharged tRNA and stalled ribosomes. The presence of a HisRS-like domain in GCN2, normally associated with tRNA aminoacylation, led to the hypothesis that eIF2α kinase activity is regulated by the direct binding of this domain to uncharged tRNA. Here we solved the structure of the HisRS-like domain in the context of full-length GCN2 by cryoEM. Structure and function analysis shows the HisRS-like domain of GCN2 has lost histidine and ATP binding but retains tRNA binding abilities. Hydrogen deuterium exchange mass spectrometry, site-directed mutagenesis and computational docking experiments support a tRNA binding model that is partially shifted from that employed by bona fide HisRS enzymes. These results demonstrate that the HisRS-like domain of GCN2 is a pseudoenzyme and advance our understanding of GCN2 regulation and function.
Collapse
Affiliation(s)
- Jay Z Yin
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Alexander F A Keszei
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Scott Houliston
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON M5G 1L7, Canada; Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Frantisek Filandr
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Jonah Beenstock
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Salima Daou
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Julia Kitaygorodsky
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - David C Schriemer
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Mohammad T Mazhab-Jafari
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Frank Sicheri
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
32
|
Boon NJ, Oliveira RA, Körner PR, Kochavi A, Mertens S, Malka Y, Voogd R, van der Horst SEM, Huismans MA, Smabers LP, Draper JM, Wessels LFA, Haahr P, Roodhart JML, Schumacher TNM, Snippert HJ, Agami R, Brummelkamp TR. DNA damage induces p53-independent apoptosis through ribosome stalling. Science 2024; 384:785-792. [PMID: 38753784 DOI: 10.1126/science.adh7950] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/11/2024] [Indexed: 05/18/2024]
Abstract
In response to excessive DNA damage, human cells can activate p53 to induce apoptosis. Cells lacking p53 can still undergo apoptosis upon DNA damage, yet the responsible pathways are unknown. We observed that p53-independent apoptosis in response to DNA damage coincided with translation inhibition, which was characterized by ribosome stalling on rare leucine-encoding UUA codons and globally curtailed translation initiation. A genetic screen identified the transfer RNAse SLFN11 and the kinase GCN2 as factors required for UUA stalling and global translation inhibition, respectively. Stalled ribosomes activated a ribotoxic stress signal conveyed by the ribosome sensor ZAKα to the apoptosis machinery. These results provide an explanation for the frequent inactivation of SLFN11 in chemotherapy-unresponsive tumors and highlight ribosome stalling as a signaling event affecting cell fate in response to DNA damage.
Collapse
Affiliation(s)
- Nicolaas J Boon
- Oncode Institute, Utrecht, Netherlands
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Rafaela A Oliveira
- Oncode Institute, Utrecht, Netherlands
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Pierré-René Körner
- Oncode Institute, Utrecht, Netherlands
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Adva Kochavi
- Oncode Institute, Utrecht, Netherlands
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Sander Mertens
- Oncode Institute, Utrecht, Netherlands
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Yuval Malka
- Oncode Institute, Utrecht, Netherlands
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Rhianne Voogd
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Suzanne E M van der Horst
- Oncode Institute, Utrecht, Netherlands
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Maarten A Huismans
- Oncode Institute, Utrecht, Netherlands
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Lidwien P Smabers
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Jonne M Draper
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Lodewyk F A Wessels
- Oncode Institute, Utrecht, Netherlands
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Peter Haahr
- Oncode Institute, Utrecht, Netherlands
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, Netherlands
- Center for Gene Expression, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jeanine M L Roodhart
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Ton N M Schumacher
- Oncode Institute, Utrecht, Netherlands
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Hugo J Snippert
- Oncode Institute, Utrecht, Netherlands
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Reuven Agami
- Oncode Institute, Utrecht, Netherlands
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Thijn R Brummelkamp
- Oncode Institute, Utrecht, Netherlands
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
33
|
Mir DA, Ma Z, Horrocks J, Rogers AN. Stress-induced Eukaryotic Translational Regulatory Mechanisms. ARXIV 2024:arXiv:2405.01664v1. [PMID: 38745702 PMCID: PMC11092689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The eukaryotic protein synthesis process entails intricate stages governed by diverse mechanisms to tightly regulate translation. Translational regulation during stress is pivotal for maintaining cellular homeostasis, ensuring the accurate expression of essential proteins crucial for survival. This selective translational control mechanism is integral to cellular adaptation and resilience under adverse conditions. This review manuscript explores various mechanisms involved in selective translational regulation, focusing on mRNA-specific and global regulatory processes. Key aspects of translational control include translation initiation, which is often a rate-limiting step, and involves the formation of the eIF4F complex and recruitment of mRNA to ribosomes. Regulation of translation initiation factors, such as eIF4E, eIF4E2, and eIF2, through phosphorylation and interactions with binding proteins, modulates translation efficiency under stress conditions. This review also highlights the control of translation initiation through factors like the eIF4F complex and the ternary complex and also underscores the importance of eIF2α phosphorylation in stress granule formation and cellular stress responses. Additionally, the impact of amino acid deprivation, mTOR signaling, and ribosome biogenesis on translation regulation and cellular adaptation to stress is also discussed. Understanding the intricate mechanisms of translational regulation during stress provides insights into cellular adaptation mechanisms and potential therapeutic targets for various diseases, offering valuable avenues for addressing conditions associated with dysregulated protein synthesis.
Collapse
Affiliation(s)
- Dilawar Ahmad Mir
- Kathryn W. Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Bar Harbor, ME
| | - Zhengxin Ma
- Kathryn W. Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Bar Harbor, ME
| | - Jordan Horrocks
- Kathryn W. Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Bar Harbor, ME
| | - Aric N Rogers
- Kathryn W. Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Bar Harbor, ME
| |
Collapse
|
34
|
Nanjaraj Urs AN, Lasehinde V, Kim L, McDonald E, Yan LL, Zaher HS. Inability to rescue stalled ribosomes results in overactivation of the integrated stress response. J Biol Chem 2024; 300:107290. [PMID: 38636664 PMCID: PMC11106528 DOI: 10.1016/j.jbc.2024.107290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/20/2024] Open
Abstract
Endogenous and exogenous chemical agents are known to compromise the integrity of RNA and cause ribosome stalling and collisions. Recent studies have shown that collided ribosomes serve as sensors for multiple processes, including ribosome quality control (RQC) and the integrated stress response (ISR). Since RQC and the ISR have distinct downstream consequences, it is of great importance that organisms activate the appropriate process. We previously showed that RQC is robustly activated in response to collisions and suppresses the ISR activation. However, the molecular mechanics behind this apparent competition were not immediately clear. Here we show that Hel2 does not physically compete with factors of the ISR, but instead its ribosomal-protein ubiquitination activity, and downstream resolution of collided ribosomes, is responsible for suppressing the ISR. Introducing a mutation in the RING domain of Hel2-which inhibits its ubiquitination activity and downstream RQC but imparts higher affinity of the factor for collided ribosomes-resulted in increased activation of the ISR upon MMS-induced alkylation stress. Similarly, mutating Hel2's lysine targets in uS10, which is responsible for RQC activation, resulted in increased Gcn4 target induction. Remarkably, the entire process of RQC appears to be limited by the action of Hel2, as the overexpression of this one factor dramatically suppressed the activation of the ISR. Collectively, our data suggest that cells evolved Hel2 to bind collided ribosomes with a relatively high affinity but kept its concentration relatively low, ensuring that it gets exhausted under stress conditions that cannot be resolved by quality control processes.
Collapse
Affiliation(s)
| | - Victor Lasehinde
- Department of Biology, Washington University in St Louis, St Louis, Missouri, USA
| | - Lucas Kim
- Department of Biology, Washington University in St Louis, St Louis, Missouri, USA
| | - Elesa McDonald
- Department of Biology, Washington University in St Louis, St Louis, Missouri, USA
| | - Liewei L Yan
- Department of Biology, Washington University in St Louis, St Louis, Missouri, USA
| | - Hani S Zaher
- Department of Biology, Washington University in St Louis, St Louis, Missouri, USA.
| |
Collapse
|
35
|
Ryoo HD. The integrated stress response in metabolic adaptation. J Biol Chem 2024; 300:107151. [PMID: 38462161 PMCID: PMC10998230 DOI: 10.1016/j.jbc.2024.107151] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/28/2024] [Accepted: 03/03/2024] [Indexed: 03/12/2024] Open
Abstract
The integrated stress response (ISR) refers to signaling pathways initiated by stress-activated eIF2α kinases. Distinct eIF2α kinases respond to different stress signals, including amino acid deprivation and mitochondrial stress. Such stress-induced eIF2α phosphorylation attenuates general mRNA translation and, at the same time, stimulates the preferential translation of specific downstream factors to orchestrate an adaptive gene expression program. In recent years, there have been significant new advances in our understanding of ISR during metabolic stress adaptation. Here, I discuss those advances, reviewing among others the ISR activation mechanisms in response to amino acid deprivation and mitochondrial stress. In addition, I review how ISR regulates the amino acid metabolic pathways and how changes in the ISR impact the physiology and pathology of various disease models.
Collapse
Affiliation(s)
- Hyung Don Ryoo
- Department of Cell Biology, New York University Grossman School of Medicine, New York, New York, USA.
| |
Collapse
|
36
|
Mariner BL, Rodriguez AS, Heath OC, McCormick MA. Induction of proteasomal activity in mammalian cells by lifespan-extending tRNA synthetase inhibitors. GeroScience 2024; 46:1755-1773. [PMID: 37749371 PMCID: PMC10828360 DOI: 10.1007/s11357-023-00938-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/04/2023] [Indexed: 09/27/2023] Open
Abstract
We have recently shown that multiple tRNA synthetase inhibitors can greatly increase lifespan in multiple models by acting through the conserved transcription factor ATF4. Here, we show that these compounds, and several others of the same class, can greatly upregulate mammalian ATF4 in cells in vitro, in a dose dependent manner. Further, RNASeq analysis of these cells pointed toward changes in protein turnover. In subsequent experiments here we show that multiple tRNA synthetase inhibitors can greatly upregulate activity of the ubiquitin proteasome system (UPS) in cells in an ATF4-dependent manner. The UPS plays an important role in the turnover of many damaged or dysfunctional proteins in an organism. Increasing UPS activity has been shown to enhance the survival of Huntington's disease cell models, but there are few known pharmacological enhancers of the UPS. Additionally, we see separate ATF4 dependent upregulation of macroautophagy upon treatment with tRNA synthetase inhibitors. Protein degradation is an essential cellular process linked to many important human diseases of aging such as Alzheimer's disease and Huntington's disease. These drugs' ability to enhance proteostasis more broadly could have wide-ranging implications in the treatment of important age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Blaise L Mariner
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM, 87131, USA
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, Albuquerque, NM, 87131, USA
| | - Antonio S Rodriguez
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Olivia C Heath
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Mark A McCormick
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA.
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, Albuquerque, NM, 87131, USA.
| |
Collapse
|
37
|
Tang H, Kang R, Liu J, Tang D. ATF4 in cellular stress, ferroptosis, and cancer. Arch Toxicol 2024; 98:1025-1041. [PMID: 38383612 DOI: 10.1007/s00204-024-03681-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/15/2024] [Indexed: 02/23/2024]
Abstract
Activating transcription factor 4 (ATF4), a member of the ATF/cAMP response element-binding (CREB) family, plays a critical role as a stress-induced transcription factor. It orchestrates cellular responses, particularly in the management of endoplasmic reticulum stress, amino acid deprivation, and oxidative challenges. ATF4's primary function lies in regulating gene expression to ensure cell survival during stressful conditions. However, when considering its involvement in ferroptosis, characterized by severe lipid peroxidation and pronounced endoplasmic reticulum stress, the ATF4 pathway can either inhibit or promote ferroptosis. This intricate relationship underscores the complexity of cellular responses to varying stress levels. Understanding the connections between ATF4, ferroptosis, and endoplasmic reticulum stress holds promise for innovative cancer therapies, especially in addressing apoptosis-resistant cells. In this review, we provide an overview of ATF4, including its structure, modifications, and functions, and delve into its dual role in both ferroptosis and cancer.
Collapse
Affiliation(s)
- Hu Tang
- DAMP Laboratory, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jiao Liu
- DAMP Laboratory, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China.
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
38
|
Tatara Y, Kasai S, Kokubu D, Tsujita T, Mimura J, Itoh K. Emerging Role of GCN1 in Disease and Homeostasis. Int J Mol Sci 2024; 25:2998. [PMID: 38474243 PMCID: PMC10931611 DOI: 10.3390/ijms25052998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
GCN1 is recognized as a factor that is essential for the activation of GCN2, which is a sensor of amino acid starvation. This function is evolutionarily conserved from yeast to higher eukaryotes. However, recent studies have revealed non-canonical functions of GCN1 that are independent of GCN2, such as its participation in cell proliferation, apoptosis, and the immune response, beyond the borders of species. Although it is known that GCN1 and GCN2 interact with ribosomes to accomplish amino acid starvation sensing, recent studies have reported that GCN1 binds to disomes (i.e., ribosomes that collide each other), thereby regulating both the co-translational quality control and stress response. We propose that GCN1 regulates ribosome-mediated signaling by dynamically changing its partners among RWD domain-possessing proteins via unknown mechanisms. We recently demonstrated that GCN1 is essential for cell proliferation and whole-body energy regulation in mice. However, the manner in which ribosome-initiated signaling via GCN1 is related to various physiological functions warrants clarification. GCN1-mediated mechanisms and its interaction with other quality control and stress response signals should be important for proteostasis during aging and neurodegenerative diseases, and may be targeted for drug development.
Collapse
Affiliation(s)
- Yota Tatara
- Department of Stress Response Science, Biomedical Research Center, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Shuya Kasai
- Department of Stress Response Science, Biomedical Research Center, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Daichi Kokubu
- Diet and Well-Being Research Institute, KAGOME, Co., Ltd., 17 Nishitomiyama, Nasushiobara 329-2762, Tochigi, Japan
- Department of Vegetable Life Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Tadayuki Tsujita
- Laboratory of Biochemistry, Department of Applied Biochemistry and Food Science, Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga City 840-8502, Saga, Japan;
| | - Junsei Mimura
- Department of Stress Response Science, Biomedical Research Center, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Ken Itoh
- Department of Stress Response Science, Biomedical Research Center, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
- Department of Vegetable Life Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| |
Collapse
|
39
|
Misra J, Carlson KR, Spandau DF, Wek RC. Multiple mechanisms activate GCN2 eIF2 kinase in response to diverse stress conditions. Nucleic Acids Res 2024; 52:1830-1846. [PMID: 38281137 PMCID: PMC10899773 DOI: 10.1093/nar/gkae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/30/2024] Open
Abstract
Diverse environmental insults induce the integrated stress response (ISR), which features eIF2 phosphorylation and translational control that serves to restore protein homeostasis. The eIF2 kinase GCN2 is a first responder in the ISR that is activated by amino acid depletion and other stresses not directly related to nutrients. Two mechanisms are suggested to trigger an ordered process of GCN2 activation during stress: GCN2 monitoring stress via accumulating uncharged tRNAs or by stalled and colliding ribosomes. Our results suggest that while ribosomal collisions are indeed essential for GCN2 activation in response to translational elongation inhibitors, conditions that trigger deacylation of tRNAs activate GCN2 via its direct association with affected tRNAs. Both mechanisms require the GCN2 regulatory domain related to histidyl tRNA synthetases. GCN2 activation by UV irradiation features lowered amino acids and increased uncharged tRNAs and UV-induced ribosome collisions are suggested to be dispensable. We conclude that there are multiple mechanisms that activate GCN2 during diverse stresses.
Collapse
Affiliation(s)
- Jagannath Misra
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS4067 Indianapolis, Indiana 46202, USA
| | - Kenneth R Carlson
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS4067 Indianapolis, Indiana 46202, USA
| | - Dan F Spandau
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS4067 Indianapolis, Indiana 46202, USA
- Department of Dermatology, Indiana University School of Medicine, 635 Barnhill Drive, MS4067 Indianapolis, Indiana 46202, USA
- Richard L. Roudebush Veterans Administration Medical Center, Indiana University School of Medicine, 635 Barnhill Drive, MS4067 Indianapolis, Indiana 46202, USA
| | - Ronald C Wek
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS4067 Indianapolis, Indiana 46202, USA
| |
Collapse
|
40
|
Zhang H, Ling J. Serine mistranslation induces the integrated stress response without accumulation of uncharged tRNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.04.578812. [PMID: 38370842 PMCID: PMC10871240 DOI: 10.1101/2024.02.04.578812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are essential enzymes that support robust and accurate protein synthesis. A rapidly expanding number of studies show that mutations in aaRSs lead to multiple human diseases, including neurological disorders and cancer. Much remains unknown about how aaRS mutations impact human health. In particular, how aminoacylation errors affect stress responses and fitness in eukaryotic cells remains poorly understood. The integrated stress response (ISR) is an adaptive mechanism in response to multiple stresses. However, chronic activation of the ISR contributes to the development of multiple diseases (e.g., neuropathies). Here we show that Ser misincorporation into Ala and Thr codons, resulting from aaRS editing defects or mutations in tRNAs, constitutively active the ISR. Such activation does not appear to depend on the accumulation of uncharged tRNAs, implicating that Ser mistranslation may lead to ribosome stalling and collision.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD 20742, USA
| | - Jiqiang Ling
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
41
|
Paul PK, Umarvaish S, Bajaj S, S. RF, Mohan H, Annaert W, Chaudhary V. Maintenance of proteostasis by Drosophila Rer1 is essential for competitive cell survival and Myc-driven overgrowth. PLoS Genet 2024; 20:e1011171. [PMID: 38408084 PMCID: PMC10919865 DOI: 10.1371/journal.pgen.1011171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 03/07/2024] [Accepted: 02/05/2024] [Indexed: 02/28/2024] Open
Abstract
Defects in protein homeostasis can induce proteotoxic stress, affecting cellular fitness and, consequently, overall tissue health. In various growing tissues, cell competition based mechanisms facilitate detection and elimination of these compromised, often referred to as 'loser', cells by the healthier neighbors. The precise connection between proteotoxic stress and competitive cell survival remains largely elusive. Here, we reveal the function of an endoplasmic reticulum (ER) and Golgi localized protein Rer1 in the regulation of protein homeostasis in the developing Drosophila wing epithelium. Our results show that loss of Rer1 leads to proteotoxic stress and PERK-mediated phosphorylation of eukaryotic initiation factor 2α. Clonal analysis showed that rer1 mutant cells are identified as losers and eliminated through cell competition. Interestingly, we find that Rer1 levels are upregulated upon Myc-overexpression that causes overgrowth, albeit under high proteotoxic stress. Our results suggest that increased levels of Rer1 provide cytoprotection to Myc-overexpressing cells by alleviating the proteotoxic stress and thereby supporting Myc-driven overgrowth. In summary, these observations demonstrate that Rer1 acts as a novel regulator of proteostasis in Drosophila and reveal its role in competitive cell survival.
Collapse
Affiliation(s)
- Pranab Kumar Paul
- Cell and developmental signaling laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
| | - Shruti Umarvaish
- Cell and developmental signaling laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
| | - Shivani Bajaj
- Cell and developmental signaling laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
| | - Rishana Farin S.
- Cell and developmental signaling laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
| | - Hrudya Mohan
- Cell and developmental signaling laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
| | - Wim Annaert
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, KU Leuven, Leuven, Belgium, and Department of Neurosciences, KU Leuven, Gasthuisberg, Leuven, Belgium
| | - Varun Chaudhary
- Cell and developmental signaling laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
| |
Collapse
|
42
|
Dolliver SM, Galbraith C, Khaperskyy DA. Human Betacoronavirus OC43 Interferes with the Integrated Stress Response Pathway in Infected Cells. Viruses 2024; 16:212. [PMID: 38399988 PMCID: PMC10893100 DOI: 10.3390/v16020212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/20/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Viruses evolve many strategies to ensure the efficient synthesis of their proteins. One such strategy is the inhibition of the integrated stress response-the mechanism through which infected cells arrest translation through the phosphorylation of the alpha subunit of the eukaryotic translation initiation factor 2 (eIF2α). We have recently shown that the human common cold betacoronavirus OC43 actively inhibits eIF2α phosphorylation in response to sodium arsenite, a potent inducer of oxidative stress. In this work, we examined the modulation of integrated stress responses by OC43 and demonstrated that the negative feedback regulator of eIF2α phosphorylation GADD34 is strongly induced in infected cells. However, the upregulation of GADD34 expression induced by OC43 was independent from the activation of the integrated stress response and was not required for the inhibition of eIF2α phosphorylation in virus-infected cells. Our work reveals a complex interplay between the common cold coronavirus and the integrated stress response, in which efficient viral protein synthesis is ensured by the inhibition of eIF2α phosphorylation but the GADD34 negative feedback loop is disrupted.
Collapse
Affiliation(s)
| | | | - Denys A. Khaperskyy
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
43
|
Ge MK, Zhang C, Zhang N, He P, Cai HY, Li S, Wu S, Chu XL, Zhang YX, Ma HM, Xia L, Yang S, Yu JX, Yao SY, Zhou XL, Su B, Chen GQ, Shen SM. The tRNA-GCN2-FBXO22-axis-mediated mTOR ubiquitination senses amino acid insufficiency. Cell Metab 2023; 35:2216-2230.e8. [PMID: 37979583 DOI: 10.1016/j.cmet.2023.10.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 07/26/2023] [Accepted: 10/26/2023] [Indexed: 11/20/2023]
Abstract
Mammalian target of rapamycin complex 1 (mTORC1) monitors cellular amino acid changes for function, but the molecular mediators of this process remain to be fully defined. Here, we report that depletion of cellular amino acids, either alone or in combination, leads to the ubiquitination of mTOR, which inhibits mTORC1 kinase activity by preventing substrate recruitment. Mechanistically, amino acid depletion causes accumulation of uncharged tRNAs, thereby stimulating GCN2 to phosphorylate FBXO22, which in turn accrues in the cytoplasm and ubiquitinates mTOR at Lys2066 in a K27-linked manner. Accordingly, mutation of mTOR Lys2066 abolished mTOR ubiquitination in response to amino acid depletion, rendering mTOR insensitive to amino acid starvation both in vitro and in vivo. Collectively, these data reveal a novel mechanism of amino acid sensing by mTORC1 via a previously unknown GCN2-FBXO22-mTOR pathway that is uniquely controlled by uncharged tRNAs.
Collapse
Affiliation(s)
- Meng-Kai Ge
- Institute of Aging & Tissue Regeneration, State Key Laboratory of Systems Medicine for Cancer and Stress and Cancer Research Unit of Chinese Academy of Medical Sciences (No. 2019RU043), Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200127, China; Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China
| | - Cheng Zhang
- Institute of Aging & Tissue Regeneration, State Key Laboratory of Systems Medicine for Cancer and Stress and Cancer Research Unit of Chinese Academy of Medical Sciences (No. 2019RU043), Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200127, China
| | - Na Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China
| | - Ping He
- Institute of Aging & Tissue Regeneration, State Key Laboratory of Systems Medicine for Cancer and Stress and Cancer Research Unit of Chinese Academy of Medical Sciences (No. 2019RU043), Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200127, China
| | - Hai-Yan Cai
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Song Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, SJTU-SM, Shanghai 200025, China
| | - Shuai Wu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China
| | - Xi-Li Chu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China
| | - Yu-Xue Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China
| | - Hong-Ming Ma
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China
| | - Li Xia
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China
| | - Shuo Yang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China
| | - Jian-Xiu Yu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China
| | - Shi-Ying Yao
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiao-Long Zhou
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bing Su
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, SJTU-SM, Shanghai 200025, China.
| | - Guo-Qiang Chen
- Institute of Aging & Tissue Regeneration, State Key Laboratory of Systems Medicine for Cancer and Stress and Cancer Research Unit of Chinese Academy of Medical Sciences (No. 2019RU043), Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200127, China; Hainan Academy of Medical Sciences, Hainan Medical University, Hainan 571199, China.
| | - Shao-Ming Shen
- Institute of Aging & Tissue Regeneration, State Key Laboratory of Systems Medicine for Cancer and Stress and Cancer Research Unit of Chinese Academy of Medical Sciences (No. 2019RU043), Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200127, China; Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China.
| |
Collapse
|
44
|
Li T, Zeng Z, Fan C, Xiong W. Role of stress granules in tumorigenesis and cancer therapy. Biochim Biophys Acta Rev Cancer 2023; 1878:189006. [PMID: 37913942 DOI: 10.1016/j.bbcan.2023.189006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/24/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023]
Abstract
Stress granules (SGs) are membrane-less organelles that cell forms via liquid-liquid phase separation (LLPS) under stress conditions such as oxidative stress, ER stress, heat shock and hypoxia. SG assembly is a stress-responsive mechanism by regulating gene expression and cellular signaling pathways. Cancer cells face various stress conditions in tumor microenvironment during tumorigenesis, while SGs contribute to hallmarks of cancer including proliferation, invasion, migration, avoiding apoptosis, metabolism reprogramming and immune evasion. Here, we review the connection between SGs and cancer development, the limitation of SGs on current cancer therapy and promising cancer therapeutic strategies targeting SGs in the future.
Collapse
Affiliation(s)
- Tiansheng Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Chunmei Fan
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
| |
Collapse
|
45
|
Kahlhofer J, Teis D. The human LAT1-4F2hc (SLC7A5-SLC3A2) transporter complex: Physiological and pathophysiological implications. Basic Clin Pharmacol Toxicol 2023; 133:459-472. [PMID: 36460306 PMCID: PMC11497297 DOI: 10.1111/bcpt.13821] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022]
Abstract
LAT1 and 4F2hc form a heterodimeric membrane protein complex, which functions as one of the best characterized amino acid transporters. Since LAT1-4F2hc is required for the efficient uptake of essential amino acids and hormones, it promotes cellular growth, in part, by stimulating mTORC1 (mechanistic target of rapamycin complex 1) signalling and by repressing the integrated stress response (ISR). Gain or loss of LAT1-4F2hc function is associated with cancer, diabetes, and immunological and neurological diseases. Hence, LAT1-4F2hc represents an attractive drug target for disease treatment. Specific targeting of LAT1-4F2hc will be facilitated by the increasingly detailed understanding of its molecular architecture, which provides important concepts for its function and regulation. Here, we summarize (i) structural insights that help to explain how LAT1 and 4F2hc assemble to transport amino acids across membranes, (ii) the role of LAT1-4F2hc in key metabolic signalling pathways, and (iii) how derailing these processes could contribute to diseases.
Collapse
Affiliation(s)
- Jennifer Kahlhofer
- Institute for Cell Biology, BiocenterMedical University InnsbruckInnsbruckAustria
| | - David Teis
- Institute for Cell Biology, BiocenterMedical University InnsbruckInnsbruckAustria
| |
Collapse
|
46
|
Zhang H, Murphy P, Yu J, Lee S, Tsai FTF, van Hoof A, Ling J. Coordination between aminoacylation and editing to protect against proteotoxicity. Nucleic Acids Res 2023; 51:10606-10618. [PMID: 37742077 PMCID: PMC10602869 DOI: 10.1093/nar/gkad778] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/13/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are essential enzymes that ligate amino acids to tRNAs, and often require editing to ensure accurate protein synthesis. Recessive mutations in aaRSs cause various neurological disorders in humans, yet the underlying mechanism remains poorly understood. Pathogenic aaRS mutations frequently cause protein destabilization and aminoacylation deficiency. In this study, we report that combined aminoacylation and editing defects cause severe proteotoxicity. We show that the ths1-C268A mutation in yeast threonyl-tRNA synthetase (ThrRS) abolishes editing and causes heat sensitivity. Surprisingly, experimental evolution of the mutant results in intragenic mutations that restore heat resistance but not editing. ths1-C268A destabilizes ThrRS and decreases overall Thr-tRNAThr synthesis, while the suppressor mutations in the evolved strains improve aminoacylation. We further show that deficiency in either ThrRS aminoacylation or editing is insufficient to cause heat sensitivity, and that ths1-C268A impairs ribosome-associated quality control. Our results suggest that aminoacylation deficiency predisposes cells to proteotoxic stress.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD 20742, USA
| | - Parker Murphy
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD 20742, USA
| | - Jason Yu
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD 20742, USA
| | - Sukyeong Lee
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Advanced Technology Core for Macromolecular X-ray Crystallography, Baylor College of Medicine, Houston, TX 77030, USA
| | - Francis T F Tsai
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Advanced Technology Core for Macromolecular X-ray Crystallography, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ambro van Hoof
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jiqiang Ling
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
47
|
Webber CJ, Murphy CN, Rondón-Ortiz AN, van der Spek SJF, Kelly EX, Lampl NM, Chiesa G, Khalil AS, Emili A, Wolozin B. Human herpesvirus 8 ORF57 protein is able to reduce TDP-43 pathology: network analysis identifies interacting pathways. Hum Mol Genet 2023; 32:2966-2980. [PMID: 37522762 PMCID: PMC10549787 DOI: 10.1093/hmg/ddad122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/01/2023] Open
Abstract
Aggregation of TAR DNA-binding protein 43 kDa (TDP-43) is thought to drive the pathophysiology of amyotrophic lateral sclerosis and some frontotemporal dementias. TDP-43 is normally a nuclear protein that in neurons translocates to the cytoplasm and can form insoluble aggregates upon activation of the integrated stress response (ISR). Viruses evolved to control the ISR. In the case of Herpesvirus 8, the protein ORF57 acts to bind protein kinase R, inhibit phosphorylation of eIF2α and reduce activation of the ISR. We hypothesized that ORF57 might also possess the ability to inhibit aggregation of TDP-43. ORF57 was expressed in the neuronal SH-SY5Y line and its effects on TDP-43 aggregation characterized. We report that ORF57 inhibits TDP-43 aggregation by 55% and elicits a 2.45-fold increase in the rate of dispersion of existing TDP-43 granules. These changes were associated with a 50% decrease in cell death. Proteomic studies were carried out to identify the protein interaction network of ORF57. We observed that ORF57 directly binds to TDP-43 as well as interacts with many components of the ISR, including elements of the proteostasis machinery known to reduce TDP-43 aggregation. We propose that viral proteins designed to inhibit a chronic ISR can be engineered to remove aggregated proteins and dampen a chronic ISR.
Collapse
Affiliation(s)
- Chelsea J Webber
- Departments of Pharmacology, Physiology and Biophysics, Boston University, Boston, MA 02215, USA
| | - Caroline N Murphy
- Departments of Pharmacology, Physiology and Biophysics, Boston University, Boston, MA 02215, USA
| | - Alejandro N Rondón-Ortiz
- Departments of Pharmacology, Physiology and Biophysics, Boston University, Boston, MA 02215, USA
- Center for Network Systems Biology, Boston University, Boston, MA 02215, USA
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Sophie J F van der Spek
- Departments of Pharmacology, Physiology and Biophysics, Boston University, Boston, MA 02215, USA
| | - Elena X Kelly
- Departments of Pharmacology, Physiology and Biophysics, Boston University, Boston, MA 02215, USA
| | - Noah M Lampl
- Center for Network Systems Biology, Boston University, Boston, MA 02215, USA
| | - Giulio Chiesa
- Biological Design Center, Boston University, Boston, MA 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Ahmad S Khalil
- Biological Design Center, Boston University, Boston, MA 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Andrew Emili
- Center for Network Systems Biology, Boston University, Boston, MA 02215, USA
- Department of Biochemistry, Boston University, Boston, MA 02115, USA
- Department of Biochemistry, Oregon Health Sciences University, Portland, OR 97239, USA
| | - Benjamin Wolozin
- Departments of Pharmacology, Physiology and Biophysics, Boston University, Boston, MA 02215, USA
- Center for Systems Neuroscience, Boston University, Boston, MA 02115, USA
- Center for Neurophotonics, Boston University, Boston, MA 02115, USA
- Department of Neurology, Boston University, Boston, MA 02115, USA
| |
Collapse
|
48
|
Majerciak V, Zhou T, Kruhlak M, Zheng ZM. RNA helicase DDX6 and scaffold protein GW182 in P-bodies promote biogenesis of stress granules. Nucleic Acids Res 2023; 51:9337-9355. [PMID: 37427791 PMCID: PMC10516652 DOI: 10.1093/nar/gkad585] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 06/05/2023] [Accepted: 07/07/2023] [Indexed: 07/11/2023] Open
Abstract
Two prominent cytoplasmic RNA granules, ubiquitous RNA-processing bodies (PB) and inducible stress granules (SG), regulate mRNA translation and are intimately related. In this study, we found that arsenite (ARS)-induced SG formed in a stepwise process is topologically and mechanically linked to PB. Two essential PB components, GW182 and DDX6, are repurposed under stress to play direct but distinguishable roles in SG biogenesis. By providing scaffolding activities, GW182 promotes the aggregation of SG components to form SG bodies. DEAD-box helicase DDX6 is also essential for the proper assembly and separation of PB from SG. DDX6 deficiency results in the formation of irregularly shaped 'hybrid' PB/SG granules with accumulated components of both PB and SG. Wild-type DDX6, but not its helicase mutant E247A, can rescue the separation of PB from SG in DDX6KO cells, indicating a requirement of DDX6 helicase activity for this process. DDX6 activity in biogenesis of both PB and SG in the cells under stress is further modulated by its interaction with two protein partners, CNOT1 and 4E-T, of which knockdown affects the formation of both PB and also SG. Together, these data highlight a new functional paradigm between PB and SG biogenesis during the stress.
Collapse
Affiliation(s)
- Vladimir Majerciak
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Tongqing Zhou
- Structural Biology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael J Kruhlak
- CCR Confocal Microscopy Core Facility, Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| |
Collapse
|
49
|
Livneh I, Cohen-Kaplan V, Fabre B, Abramovitch I, Lulu C, Nataraj NB, Lazar I, Ziv T, Yarden Y, Zohar Y, Gottlieb E, Ciechanover A. Regulation of nucleo-cytosolic 26S proteasome translocation by aromatic amino acids via mTOR is essential for cell survival under stress. Mol Cell 2023; 83:3333-3346.e5. [PMID: 37738964 DOI: 10.1016/j.molcel.2023.08.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 07/12/2023] [Accepted: 08/14/2023] [Indexed: 09/24/2023]
Abstract
The proteasome is responsible for removal of ubiquitinated proteins. Although several aspects of its regulation (e.g., assembly, composition, and post-translational modifications) have been unraveled, studying its adaptive compartmentalization in response to stress is just starting to emerge. We found that following amino acid starvation, the proteasome is translocated from its large nuclear pool to the cytoplasm-a response regulated by newly identified mTOR-agonistic amino acids-Tyr, Trp, and Phe (YWF). YWF relay their signal upstream of mTOR through Sestrin3 by disrupting its interaction with the GATOR2 complex. The triad activates mTOR toward its downstream substrates p62 and transcription factor EB (TFEB), affecting both proteasomal and autophagic activities. Proteasome translocation stimulates cytosolic proteolysis which replenishes amino acids, thus enabling cell survival. In contrast, nuclear sequestration of the proteasome following mTOR activation by YWF inhibits this proteolytic adaptive mechanism, leading to cell death, which establishes this newly identified pathway as a key stress-coping mechanism.
Collapse
Affiliation(s)
- Ido Livneh
- The Rappaport Faculty of Medicine and Integrated Cancer Center, Technion-Israel Institute of Technology, Haifa 3109601, Israel; Institute of Pathology, Rambam Health Care Campus, Haifa 3109601, Israel.
| | - Victoria Cohen-Kaplan
- The Rappaport Faculty of Medicine and Integrated Cancer Center, Technion-Israel Institute of Technology, Haifa 3109601, Israel
| | - Bertrand Fabre
- The Rappaport Faculty of Medicine and Integrated Cancer Center, Technion-Israel Institute of Technology, Haifa 3109601, Israel
| | - Ifat Abramovitch
- The Rappaport Faculty of Medicine and Integrated Cancer Center, Technion-Israel Institute of Technology, Haifa 3109601, Israel
| | - Chen Lulu
- The Rappaport Faculty of Medicine and Integrated Cancer Center, Technion-Israel Institute of Technology, Haifa 3109601, Israel
| | | | - Ikrame Lazar
- The Rappaport Faculty of Medicine and Integrated Cancer Center, Technion-Israel Institute of Technology, Haifa 3109601, Israel
| | - Tamar Ziv
- Smoler Proteomic Center, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yaniv Zohar
- The Rappaport Faculty of Medicine and Integrated Cancer Center, Technion-Israel Institute of Technology, Haifa 3109601, Israel; Institute of Pathology, Rambam Health Care Campus, Haifa 3109601, Israel
| | - Eyal Gottlieb
- The Rappaport Faculty of Medicine and Integrated Cancer Center, Technion-Israel Institute of Technology, Haifa 3109601, Israel
| | - Aaron Ciechanover
- The Rappaport Faculty of Medicine and Integrated Cancer Center, Technion-Israel Institute of Technology, Haifa 3109601, Israel.
| |
Collapse
|
50
|
Loxha L, Ibrahim NK, Stasche AS, Cinar B, Dolgner T, Niessen J, Schreek S, Fehlhaber B, Forster M, Stanulla M, Hinze L. GSK3α Regulates Temporally Dynamic Changes in Ribosomal Proteins upon Amino Acid Starvation in Cancer Cells. Int J Mol Sci 2023; 24:13260. [PMID: 37686063 PMCID: PMC10488213 DOI: 10.3390/ijms241713260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Amino acid availability is crucial for cancer cells' survivability. Leukemia and colorectal cancer cells have been shown to resist asparagine depletion by utilizing GSK3-dependent proteasomal degradation, termed the Wnt-dependent stabilization of proteins (Wnt/STOP), to replenish their amino acid pool. The inhibition of GSK3α halts the sourcing of amino acids, which subsequently leads to cancer cell vulnerability toward asparaginase therapy. However, resistance toward GSK3α-mediated protein breakdown can occur, whose underlying mechanism is poorly understood. Here, we set out to define the mechanisms driving dependence toward this degradation machinery upon asparagine starvation in cancer cells. We show the independence of known stress response pathways including the integrated stress response mediated with GCN2. Additionally, we demonstrate the independence of changes in cell cycle progression and expression levels of the asparagine-synthesizing enzyme ASNS. Instead, RNA sequencing revealed that GSK3α inhibition and asparagine starvation leads to the temporally dynamic downregulation of distinct ribosomal proteins, which have been shown to display anti-proliferative functions. Using a CRISPR/Cas9 viability screen, we demonstrate that the downregulation of these specific ribosomal proteins can rescue cell death upon GSK3α inhibition and asparagine starvation. Thus, our findings suggest the vital role of the previously unrecognized regulation of ribosomal proteins in bridging GSK3α activity and tolerance of asparagine starvation.
Collapse
Affiliation(s)
- Lorent Loxha
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany; (L.L.); (N.K.I.); (A.S.S.); (B.C.); (T.D.); (J.N.); (S.S.); (B.F.); (M.S.)
| | - Nurul Khalida Ibrahim
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany; (L.L.); (N.K.I.); (A.S.S.); (B.C.); (T.D.); (J.N.); (S.S.); (B.F.); (M.S.)
| | - Anna Sophie Stasche
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany; (L.L.); (N.K.I.); (A.S.S.); (B.C.); (T.D.); (J.N.); (S.S.); (B.F.); (M.S.)
| | - Büsra Cinar
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany; (L.L.); (N.K.I.); (A.S.S.); (B.C.); (T.D.); (J.N.); (S.S.); (B.F.); (M.S.)
| | - Tim Dolgner
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany; (L.L.); (N.K.I.); (A.S.S.); (B.C.); (T.D.); (J.N.); (S.S.); (B.F.); (M.S.)
| | - Julia Niessen
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany; (L.L.); (N.K.I.); (A.S.S.); (B.C.); (T.D.); (J.N.); (S.S.); (B.F.); (M.S.)
| | - Sabine Schreek
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany; (L.L.); (N.K.I.); (A.S.S.); (B.C.); (T.D.); (J.N.); (S.S.); (B.F.); (M.S.)
| | - Beate Fehlhaber
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany; (L.L.); (N.K.I.); (A.S.S.); (B.C.); (T.D.); (J.N.); (S.S.); (B.F.); (M.S.)
| | - Michael Forster
- Institute of Clinical Molecular Biology, Kiel University, 24105 Kiel, Germany;
| | - Martin Stanulla
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany; (L.L.); (N.K.I.); (A.S.S.); (B.C.); (T.D.); (J.N.); (S.S.); (B.F.); (M.S.)
| | - Laura Hinze
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany; (L.L.); (N.K.I.); (A.S.S.); (B.C.); (T.D.); (J.N.); (S.S.); (B.F.); (M.S.)
| |
Collapse
|