1
|
Paul T, Zhang P, Zhang Z, Fargason T, De Silva NIU, Powell E, Ekpenyong E, Jamal S, Yu Y, Prevelige P, Lu R, Zhang J. The U1-70K and SRSF1 interaction is modulated by phosphorylation during the early stages of spliceosome assembly. Protein Sci 2024; 33:e5117. [PMID: 39023093 PMCID: PMC11255866 DOI: 10.1002/pro.5117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/22/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024]
Abstract
In eukaryotes, pre-mRNA splicing is vital for RNA processing and orchestrated by the spliceosome, whose assembly starts with the interaction between U1-70K and SR proteins. Despite the significance of the U1-70K/SR interaction, the dynamic nature of the complex and the challenges in obtaining soluble U1-70K have impeded a comprehensive understanding of the interaction at the structural level for decades. We overcome the U1-70K solubility issues, enabling us to characterize the interaction between U1-70K and SRSF1, a representative SR protein. We unveil specific interactions: phosphorylated SRSF1 RS with U1-70K BAD1, and SRSF1 RRM1 with U1-70K RRM. The RS/BAD1 interaction plays a dominant role, whereas the interaction between the RRM domains further enhances the stability of the U1-70K/SRSF1 complex. The RRM interaction involves the C-terminal extension of U1-70K RRM and the conserved acid patches on SRSF1 RRM1 that is involved in SRSF1 phase separation. Our circular dichroism spectra reveal that BAD1 adapts an α-helical conformation and RS is intrinsically disordered. Intriguingly, BAD1 undergoes a conformation switch from α-helix to β-strand and random coil upon RS binding. In addition to the regulatory mechanism via SRSF1 phosphorylation, the U1-70K/SRSF1 interaction is also regulated by U1-70K BAD1 phosphorylation. We find that U1-70K phosphorylation inhibits the U1-70K and SRSF1 interaction. Our structural findings are validated through in vitro splicing assays and in-cell saturated domain scanning using the CRISPR method, providing new insights into the intricate regulatory mechanisms of pre-mRNA splicing.
Collapse
Affiliation(s)
- Trent Paul
- Department of ChemistryUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Pengcheng Zhang
- Department of Medicine, Division of Hematology/OncologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Zihan Zhang
- Department of ChemistryUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Talia Fargason
- Department of ChemistryUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | | | - Erin Powell
- Department of ChemistryUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Ethan Ekpenyong
- Department of ChemistryUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Shariq Jamal
- Department of ChemistryUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Yanbao Yu
- Department of Chemistry and BiochemistryUniversity of DelawareNewarkDelawareUSA
| | - Peter Prevelige
- Department of MicrobiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Rui Lu
- Department of Medicine, Division of Hematology/OncologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Jun Zhang
- Department of ChemistryUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
2
|
Bei M, Xu J. SR proteins in cancer: function, regulation, and small inhibitor. Cell Mol Biol Lett 2024; 29:78. [PMID: 38778254 PMCID: PMC11110342 DOI: 10.1186/s11658-024-00594-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Alternative splicing of pre-mRNAs is a fundamental step in RNA processing required for gene expression in most metazoans. Serine and arginine-rich proteins (SR proteins) comprise a family of multifunctional proteins that contain an RNA recognition motif (RRM) and the ultra-conserved arginine/serine-rich (RS) domain, and play an important role in precise alternative splicing. Increasing research supports SR proteins as also functioning in other RNA-processing-related mechanisms, such as polyadenylation, degradation, and translation. In addition, SR proteins interact with N6-methyladenosine (m6A) regulators to modulate the methylation of ncRNA and mRNA. Dysregulation of SR proteins causes the disruption of cell differentiation and contributes to cancer progression. Here, we review the distinct biological characteristics of SR proteins and their known functional mechanisms during carcinogenesis. We also summarize the current inhibitors that directly target SR proteins and could ultimately turn SR proteins into actionable therapeutic targets in cancer therapy.
Collapse
Affiliation(s)
- Mingrong Bei
- Systems Biology Laboratory, Shantou University Medical College (SUMC), 22 Xinling Road, Shantou, 515041, China
- Department of Cardiology, First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Jianzhen Xu
- Systems Biology Laboratory, Shantou University Medical College (SUMC), 22 Xinling Road, Shantou, 515041, China.
| |
Collapse
|
3
|
Li R, Gao S, Chen H, Zhang X, Yang X, Zhao J, Wang Z. Virus usurps alternative splicing to clear the decks for infection. Virol J 2023; 20:131. [PMID: 37340420 DOI: 10.1186/s12985-023-02098-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/12/2023] [Indexed: 06/22/2023] Open
Abstract
Since invasion, there will be a tug-of-war between host and virus to scramble cellular resources, for either restraining or facilitating infection. Alternative splicing (AS) is a conserved and critical mechanism of processing pre-mRNA into mRNAs to increase protein diversity in eukaryotes. Notably, this kind of post-transcriptional regulatory mechanism has gained appreciation since it is widely involved in virus infection. Here, we highlight the important roles of AS in regulating viral protein expression and how virus in turn hijacks AS to antagonize host immune response. This review will widen the understandings of host-virus interactions, be meaningful to innovatively elucidate viral pathogenesis, and provide novel targets for developing antiviral drugs in the future.
Collapse
Affiliation(s)
- Ruixue Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Shenyan Gao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Huayuan Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Xiaozhan Zhang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, People's Republic of China
| | - Xia Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Jun Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Zeng Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China.
| |
Collapse
|
4
|
Wang L, Gong S, Zhang X, Azhar Z, Chen J. Investigation of the regulatory effects of synthesized antisense oligonucleotides on androgen receptor (AR) exon 3 splicing in prostate cancer cells. Gene 2023; 866:147330. [PMID: 36871670 DOI: 10.1016/j.gene.2023.147330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/10/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023]
Abstract
The Androgen Receptor (AR) gene plays a key role in castration-resistant prostate cancer (CRPC). Controlling the progression of CRPC by inhibiting AR gene expression is one of the core directions for prostate cancer (Pca) drug development. A 23-amino acids retention, named exon 3a, into the DNA binding domain of the splice variant AR23 has been shown to prevent AR from entering the nucleus and restore the sensitivity of cancer cells to related therapies. In this study, we conducted a preliminary investigation of the splicing modulation of the AR gene in order to develop a splice-switching therapy for Pca by promoting exon 3a inclusion. Using mutagenesis-coupled RT-PCR with AR minigene and over-expression of certain splicing factors, we found that serine/arginine-rich (SR) proteins are key factors facilitating the recognition of the 3' splice site of exon 3a (L-3' SS), while the deletion or blocking of the polypyrimidine tract (PPT) region of the original 3' splice site of exon 3 (S-3' SS) could strongly enhance exon 3a splicing without affecting the function of any SR protein. Furthermore, we designed a series of antisense oligonucleotides (ASOs) to screen drug candidates, and ASOs targeting S-3' SS and its PPT region or the exonic region of exon 3 turned out to be most effective in rescuing exon 3a splicing. A dose-response test indicated ASO12 as the lead candidate drug significantly promoting the inclusion of exon 3a to more than 85%. MTT assay confirmed that the cell proliferation was significantly inhibited after ASO treatment. Our results provide the first glance to AR splicing regulation. With several promising therapeutic ASO candidates obtained here, further development of ASO drugs to treat CRPC is strongly encouraged.
Collapse
Affiliation(s)
- Li Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China.
| | - Shuaishuai Gong
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Xi Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Zeb Azhar
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Jialin Chen
- Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
5
|
Zhang S, Cooper JAL, Chong YS, Naveed A, Mayoh C, Jayatilleke N, Liu T, Amos S, Kobelke S, Marshall AC, Meers O, Choi YS, Bond CS, Fox AH. NONO enhances mRNA processing of super-enhancer-associated GATA2 and HAND2 genes in neuroblastoma. EMBO Rep 2023; 24:e54977. [PMID: 36416237 PMCID: PMC9900351 DOI: 10.15252/embr.202254977] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022] Open
Abstract
High-risk neuroblastoma patients have poor survival rates and require better therapeutic options. High expression of a multifunctional DNA and RNA-binding protein, NONO, in neuroblastoma is associated with poor patient outcome; however, there is little understanding of the mechanism of NONO-dependent oncogenic gene regulatory activity in neuroblastoma. Here, we used cell imaging, biochemical and genome-wide molecular analysis to reveal complex NONO-dependent regulation of gene expression. NONO forms RNA- and DNA-tethered condensates throughout the nucleus and undergoes phase separation in vitro, modulated by nucleic acid binding. CLIP analyses show that NONO mainly binds to the 5' end of pre-mRNAs and modulates pre-mRNA processing, dependent on its RNA-binding activity. NONO regulates super-enhancer-associated genes, including HAND2 and GATA2. Abrogating NONO RNA binding, or phase separation activity, results in decreased expression of HAND2 and GATA2. Thus, future development of agents that target RNA-binding activity of NONO may have therapeutic potential in this cancer context.
Collapse
Affiliation(s)
- Song Zhang
- School of Human SciencesThe University of Western AustraliaCrawleyWAAustralia
| | - Jack AL Cooper
- School of Human SciencesThe University of Western AustraliaCrawleyWAAustralia
| | - Yee Seng Chong
- School of Molecular SciencesThe University of Western AustraliaCrawleyWAAustralia
| | - Alina Naveed
- School of Human SciencesThe University of Western AustraliaCrawleyWAAustralia
| | - Chelsea Mayoh
- Children's Cancer Institute AustraliaRandwickNSWAustralia
- Centre for Childhood Cancer ResearchUNSW SydneyKensingtonNSWAustralia
- School of Women's and Children's HealthUNSW SydneyKensingtonNSWAustralia
| | - Nisitha Jayatilleke
- Children's Cancer Institute AustraliaRandwickNSWAustralia
- Centre for Childhood Cancer ResearchUNSW SydneyKensingtonNSWAustralia
| | - Tao Liu
- Children's Cancer Institute AustraliaRandwickNSWAustralia
- Centre for Childhood Cancer ResearchUNSW SydneyKensingtonNSWAustralia
| | - Sebastian Amos
- School of Human SciencesThe University of Western AustraliaCrawleyWAAustralia
| | - Simon Kobelke
- School of Human SciencesThe University of Western AustraliaCrawleyWAAustralia
| | - Andrew C Marshall
- School of Molecular SciencesThe University of Western AustraliaCrawleyWAAustralia
| | - Oliver Meers
- School of Human SciencesThe University of Western AustraliaCrawleyWAAustralia
| | - Yu Suk Choi
- School of Human SciencesThe University of Western AustraliaCrawleyWAAustralia
| | - Charles S Bond
- School of Molecular SciencesThe University of Western AustraliaCrawleyWAAustralia
| | - Archa H Fox
- School of Human SciencesThe University of Western AustraliaCrawleyWAAustralia
- School of Molecular SciencesThe University of Western AustraliaCrawleyWAAustralia
| |
Collapse
|
6
|
RNA splicing: a dual-edged sword for hepatocellular carcinoma. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:173. [PMID: 35972700 DOI: 10.1007/s12032-022-01726-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/30/2022] [Indexed: 10/15/2022]
Abstract
RNA splicing is the fundamental process that brings diversity at the transcriptome and proteome levels. The spliceosome complex regulates minor and major processes of RNA splicing. Aberrant regulation is often associated with different diseases, including diabetes, stroke, hypertension, and cancer. In the majority of cancers, dysregulated alternative RNA splicing (ARS) events directly affect tumor progression, invasiveness, and often lead to poor survival of the patients. Alike the rest of the gastrointestinal malignancies, in hepatocellular carcinoma (HCC), which alone contributes to ~ 75% of the liver cancers, a large number of ARS events have been observed, including intron retention, exon skipping, presence of alternative 3'-splice site (3'SS), and alternative 5'-splice site (5'SS). These events are reported in spliceosome and non-spliceosome complexes genes. Molecules such as MCL1, Bcl-X, and BCL2 in different isoforms can behave as anti-apoptotic or pro-apoptotic, making the spliceosome complex a dual-edged sword. The anti-apoptotic isoforms of such molecules bring in resistance to chemotherapy or cornerstone drugs. However, in contrast, multiple malignant tumors, including HCC that target the pro-apoptotic favoring isoforms/variants favor apoptotic induction and make chemotherapy effective. Herein, we discuss different splicing events, aberrations, and antisense oligonucleotides (ASOs) in modulating RNA splicing in HCC tumorigenesis with a possible therapeutic outcome.
Collapse
|
7
|
Han J, An O, Ren X, Song Y, Tang SJ, Shen H, Ke X, Ng VHE, Tay DJT, Tan HQ, Kappei D, Yang H, Chen L. Multilayered control of splicing regulatory networks by DAP3 leads to widespread alternative splicing changes in cancer. Nat Commun 2022; 13:1793. [PMID: 35379802 PMCID: PMC8980049 DOI: 10.1038/s41467-022-29400-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 03/02/2022] [Indexed: 11/10/2022] Open
Abstract
The dynamic regulation of alternative splicing requires coordinated participation of multiple RNA binding proteins (RBPs). Aberrant splicing caused by dysregulation of splicing regulatory RBPs is implicated in numerous cancers. Here, we reveal a frequently overexpressed cancer-associated protein, DAP3, as a splicing regulatory RBP in cancer. Mechanistically, DAP3 coordinates splicing regulatory networks, not only via mediating the formation of ribonucleoprotein complexes to induce substrate-specific splicing changes, but also via modulating splicing of numerous splicing factors to cause indirect effect on splicing. A pan-cancer analysis of alternative splicing across 33 TCGA cancer types identified DAP3-modulated mis-splicing events in multiple cancers, and some of which predict poor prognosis. Functional investigation of non-productive splicing of WSB1 provides evidence for establishing a causal relationship between DAP3-modulated mis-splicing and tumorigenesis. Together, our work provides critical mechanistic insights into the splicing regulatory roles of DAP3 in cancer development. RNA binding proteins (RBPs) can participate in regulatory networks to control alternative splicing. Here the authors show that DAP3 functions as an RBP splicing modulator via two mechanisms, and that its overexpression leads to mis-splicing events in cancers.
Collapse
|
8
|
White LA, Bisom TC, Grimes HL, Hayashi M, Lanchy JM, Lodmell JS. Tra2beta-Dependent Regulation of RIO Kinase 3 Splicing During Rift Valley Fever Virus Infection Underscores the Links Between Alternative Splicing and Innate Antiviral Immunity. Front Cell Infect Microbiol 2022; 11:799024. [PMID: 35127560 PMCID: PMC8807687 DOI: 10.3389/fcimb.2021.799024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/28/2021] [Indexed: 12/14/2022] Open
Abstract
Rift Valley fever virus (RVFV) is an emerging pathogen that has potential to cause severe disease in humans and domestic livestock. Propagation of RVFV strain MP-12 is negatively impacted by the actions of RIOK3, a protein involved in the cellular immune response to viral infection. During RVFV infection, RIOK3 mRNA is alternatively spliced to produce an isoform that correlates with the inhibition of interferon β signaling. Here, we identify splicing factor TRA2-β (also known as TRA2beta and hTRA2-β) as a key regulator governing the relative abundance of RIOK3 splicing isoforms. Using RT-PCR and minigenes, we determined that TRA2-β interaction with RIOK3 pre-mRNA was necessary for constitutive splicing of RIOK3 mRNA, and conversely, lack of TRA2-β engagement led to increased alternative splicing. Expression of TRA2-β was found to be necessary for RIOK3's antiviral effect against RVFV. Intriguingly, TRA2-β mRNA is also alternatively spliced during RVFV infection, leading to a decrease in cellular TRA2-β protein levels. These results suggest that splicing modulation serves as an immune evasion strategy by RVFV and/or is a cellular mechanism to prevent excessive immune response. Furthermore, the results suggest that TRA2-β can act as a key regulator of additional steps of the innate immune response to viral infection.
Collapse
Affiliation(s)
- Luke Adam White
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Thomas C. Bisom
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT, United States
| | - Hunter L. Grimes
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Miyuki Hayashi
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT, United States
| | - Jean-Marc Lanchy
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - J. Stephen Lodmell
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT, United States
| |
Collapse
|
9
|
Feng P, Li L, Deng T, Liu Y, Ling N, Qiu S, Zhang L, Peng B, Xiong W, Cao L, Zhang L, Ye M. NONO and tumorigenesis: More than splicing. J Cell Mol Med 2020; 24:4368-4376. [PMID: 32168434 PMCID: PMC7176863 DOI: 10.1111/jcmm.15141] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/05/2020] [Accepted: 02/19/2020] [Indexed: 12/24/2022] Open
Abstract
The non-POU domain-containing octamer-binding protein NONO/p54nrb , which belongs to the Drosophila behaviour/human splicing (DBHS) family, is a multifunctional nuclear protein rarely functioning alone. Emerging solid evidences showed that NONO engages in almost every step of gene regulation, including but not limited to mRNA splicing, DNA unwinding, transcriptional regulation, nuclear retention of defective RNA and DNA repair. NONO is involved in many biological processes including cell proliferation, apoptosis, migration and DNA damage repair. Dysregulation of NONO has been found in many types of cancer. In this review, we summarize the current and fast-growing knowledge about the regulation of NONO, its biological function and implications in tumorigenesis and cancer progression. Overall, significant findings about the roles of NONO have been made, which might make NONO to be a new biomarker or/and a possible therapeutic target for cancers.
Collapse
Affiliation(s)
- Peifu Feng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, China
| | - Ling Li
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, China
| | - Tanggang Deng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, China
| | - Yan Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, China
| | - Neng Ling
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, China
| | - Siyuan Qiu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, China
| | - Lin Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, China
| | - Bo Peng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, China
| | - Wei Xiong
- Ophthalmology and Eye Research Center, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Lanqin Cao
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, China
| | - Lei Zhang
- Department of Nephrology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Mao Ye
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, China
| |
Collapse
|
10
|
Wang L, Chen M, Zhu F, Fan T, Zhang J, Lo C. Alternative splicing is a Sorghum bicolor defense response to fungal infection. PLANTA 2019; 251:14. [PMID: 31776670 DOI: 10.1007/s00425-019-03309-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/29/2019] [Indexed: 05/24/2023]
Abstract
This study provides new insights that alternative splicing participates with transcriptional control in defense responses to Colletotrichum sublineola in sorghum In eukaryotic organisms, alternative splicing (AS) is an important post-transcriptional mechanism to generate multiple transcript isoforms from a single gene. Protein variants translated from splicing isoforms may have altered molecular characteristics in signal transduction and metabolic activities. However, which transcript isoforms will be translated into proteins and the biological functions of the resulting proteoforms are yet to be identified. Sorghum is one of the five major cereal crops, but its production is severely affected by fungal diseases. For example, sorghum anthracnose caused by Colletotrichum sublineola greatly reduces grain yield and biomass production. In this study, next-generation sequencing technology was used to analyze C. sublineola-inoculated sorghum seedlings compared with mock-inoculated control. It was identified that AS regulation may be as important as traditional transcriptional control during defense responses to fungal infection. Moreover, several genes involved in flavonoid and phenylpropanoid biosynthetic pathways were found to undergo multiple AS modifications. Further analysis demonstrated that non-conventional targets of both 5'- and 3'-splice sites were alternatively used in response to C. sublineola infection. Splicing factors were also affected at both transcriptional and post-transcriptional levels. As the first transcriptome report on C. sublineola infected sorghum, our work also suggested that AS plays crucial functions in defense responses to fungal invasion.
Collapse
Affiliation(s)
- Lanxiang Wang
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Moxian Chen
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
- Department of Biology, Hong Kong Baptist University, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Fuyuan Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Tao Fan
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong.
| | - Clive Lo
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
11
|
Královicová J, Ševcíková I, Stejskalová E, Obuca M, Hiller M, Stanek D, Vorechovský I. PUF60-activated exons uncover altered 3' splice-site selection by germline missense mutations in a single RRM. Nucleic Acids Res 2019; 46:6166-6187. [PMID: 29788428 PMCID: PMC6093180 DOI: 10.1093/nar/gky389] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/01/2018] [Indexed: 12/27/2022] Open
Abstract
PUF60 is a splicing factor that binds uridine (U)-rich tracts and facilitates association of the U2 small nuclear ribonucleoprotein with primary transcripts. PUF60 deficiency (PD) causes a developmental delay coupled with intellectual disability and spinal, cardiac, ocular and renal defects, but PD pathogenesis is not understood. Using RNA-Seq, we identify human PUF60-regulated exons and show that PUF60 preferentially acts as their activator. PUF60-activated internal exons are enriched for Us upstream of their 3′ splice sites (3′ss), are preceded by longer AG dinucleotide exclusion zones and more distant branch sites, with a higher probability of unpaired interactions across a typical branch site location as compared to control exons. In contrast, PUF60-repressed exons show U-depletion with lower estimates of RNA single-strandedness. We also describe PUF60-regulated, alternatively spliced isoforms encoding other U-bound splicing factors, including PUF60 partners, suggesting that they are co-regulated in the cell, and identify PUF60-regulated exons derived from transposed elements. PD-associated amino-acid substitutions, even within a single RNA recognition motif (RRM), altered selection of competing 3′ss and branch points of a PUF60-dependent exon and the 3′ss choice was also influenced by alternative splicing of PUF60. Finally, we propose that differential distribution of RNA processing steps detected in cells lacking PUF60 and the PUF60-paralog RBM39 is due to the RBM39 RS domain interactions. Together, these results provide new insights into regulation of exon usage by the 3′ss organization and reveal that germline mutation heterogeneity in RRMs can enhance phenotypic variability at the level of splice-site and branch-site selection.
Collapse
Affiliation(s)
- Jana Královicová
- University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK.,Slovak Academy of Sciences, Centre for Biosciences, 840 05 Bratislava, Slovak Republic
| | - Ivana Ševcíková
- Slovak Academy of Sciences, Centre for Biosciences, 840 05 Bratislava, Slovak Republic
| | - Eva Stejskalová
- Czech Academy of Sciences, Institute of Molecular Genetics, 142 20 Prague, Czech Republic
| | - Mina Obuca
- Czech Academy of Sciences, Institute of Molecular Genetics, 142 20 Prague, Czech Republic
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics and Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - David Stanek
- Czech Academy of Sciences, Institute of Molecular Genetics, 142 20 Prague, Czech Republic
| | - Igor Vorechovský
- University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| |
Collapse
|
12
|
View from an mRNP: The Roles of SR Proteins in Assembly, Maturation and Turnover. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1203:83-112. [PMID: 31811631 DOI: 10.1007/978-3-030-31434-7_3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Serine- and arginine-rich proteins (SR proteins) are a family of multitasking RNA-binding proteins (RBPs) that are key determinants of messenger ribonucleoprotein (mRNP) formation, identity and fate. Apart from their essential functions in pre-mRNA splicing, SR proteins display additional pre- and post-splicing activities and connect nuclear and cytoplasmic gene expression machineries. Through changes in their post-translational modifications (PTMs) and their subcellular localization, they provide functional specificity and adjustability to mRNPs. Transcriptome-wide UV crosslinking and immunoprecipitation (CLIP-Seq) studies revealed that individual SR proteins are present in distinct mRNPs and act in specific pairs to regulate different gene expression programmes. Adopting an mRNP-centric viewpoint, we discuss the roles of SR proteins in the assembly, maturation, quality control and turnover of mRNPs and describe the mechanisms by which they integrate external signals, coordinate their multiple tasks and couple subsequent mRNA processing steps.
Collapse
|
13
|
Genome-wide CRISPR-Cas9 Interrogation of Splicing Networks Reveals a Mechanism for Recognition of Autism-Misregulated Neuronal Microexons. Mol Cell 2018; 72:510-524.e12. [DOI: 10.1016/j.molcel.2018.10.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 08/27/2018] [Accepted: 10/04/2018] [Indexed: 12/22/2022]
|
14
|
Moradi S, Sharifi-Zarchi A, Ahmadi A, Mollamohammadi S, Stubenvoll A, Günther S, Salekdeh GH, Asgari S, Braun T, Baharvand H. Small RNA Sequencing Reveals Dlk1-Dio3 Locus-Embedded MicroRNAs as Major Drivers of Ground-State Pluripotency. Stem Cell Reports 2017; 9:2081-2096. [PMID: 29129685 PMCID: PMC5785679 DOI: 10.1016/j.stemcr.2017.10.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 10/11/2017] [Accepted: 10/11/2017] [Indexed: 11/26/2022] Open
Abstract
Ground-state pluripotency is a cell state in which pluripotency is established and maintained through efficient repression of endogenous differentiation pathways. Self-renewal and pluripotency of embryonic stem cells (ESCs) are influenced by ESC-associated microRNAs (miRNAs). Here, we provide a comprehensive assessment of the “miRNome” of ESCs cultured under conditions favoring ground-state pluripotency. We found that ground-state ESCs express a distinct set of miRNAs compared with ESCs grown in serum. Interestingly, most “ground-state miRNAs” are encoded by an imprinted region on chromosome 12 within the Dlk1-Dio3 locus. Functional analysis revealed that ground-state miRNAs embedded in the Dlk1-Dio3 locus (miR-541-5p, miR-410-3p, and miR-381-3p) promoted pluripotency via inhibition of multi-lineage differentiation and stimulation of self-renewal. Overall, our results demonstrate that ground-state pluripotency is associated with a unique miRNA signature, which supports ground-state self-renewal by suppressing differentiation. Ground-state pluripotency is associated with a unique miRNA signature Dlk1-Dio3 locus on 12qF1 encodes the majority of ground-state miRNAs Dlk1-Dio3 locus is hypomethylated in ground-state ESCs Ground-state miRNAs promote ESC self-renewal and inhibit differentiation
Collapse
Affiliation(s)
- Sharif Moradi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Banihashem Square, Banihashem Street, Ressalat Highway, Tehran 1665659911, Iran; Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Ali Sharifi-Zarchi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Banihashem Square, Banihashem Street, Ressalat Highway, Tehran 1665659911, Iran; Computer Engineering Department, Sharif University of Technology, Tehran, Iran
| | - Amirhossein Ahmadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Banihashem Square, Banihashem Street, Ressalat Highway, Tehran 1665659911, Iran
| | - Sepideh Mollamohammadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Banihashem Square, Banihashem Street, Ressalat Highway, Tehran 1665659911, Iran
| | - Alexander Stubenvoll
- Max-Planck Institute for Heart and Lung Research, Department of Cardiac Development and Remodelling, Ludwigstrasse 43, 61231 Bad Nauheim, Germany
| | - Stefan Günther
- Max-Planck Institute for Heart and Lung Research, Department of Cardiac Development and Remodelling, Ludwigstrasse 43, 61231 Bad Nauheim, Germany
| | - Ghasem Hosseini Salekdeh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Banihashem Square, Banihashem Street, Ressalat Highway, Tehran 1665659911, Iran
| | - Sassan Asgari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Thomas Braun
- Max-Planck Institute for Heart and Lung Research, Department of Cardiac Development and Remodelling, Ludwigstrasse 43, 61231 Bad Nauheim, Germany.
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Banihashem Square, Banihashem Street, Ressalat Highway, Tehran 1665659911, Iran; Department of Developmental Biology, University of Science and Culture, Tehran, Iran.
| |
Collapse
|
15
|
Saha A, Kim Y, Gewirtz ADH, Jo B, Gao C, McDowell IC, Engelhardt BE, Battle A. Co-expression networks reveal the tissue-specific regulation of transcription and splicing. Genome Res 2017; 27:1843-1858. [PMID: 29021288 PMCID: PMC5668942 DOI: 10.1101/gr.216721.116] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 08/22/2017] [Indexed: 11/24/2022]
Abstract
Gene co-expression networks capture biologically important patterns in gene expression data, enabling functional analyses of genes, discovery of biomarkers, and interpretation of genetic variants. Most network analyses to date have been limited to assessing correlation between total gene expression levels in a single tissue or small sets of tissues. Here, we built networks that additionally capture the regulation of relative isoform abundance and splicing, along with tissue-specific connections unique to each of a diverse set of tissues. We used the Genotype-Tissue Expression (GTEx) project v6 RNA sequencing data across 50 tissues and 449 individuals. First, we developed a framework called Transcriptome-Wide Networks (TWNs) for combining total expression and relative isoform levels into a single sparse network, capturing the interplay between the regulation of splicing and transcription. We built TWNs for 16 tissues and found that hubs in these networks were strongly enriched for splicing and RNA binding genes, demonstrating their utility in unraveling regulation of splicing in the human transcriptome. Next, we used a Bayesian biclustering model that identifies network edges unique to a single tissue to reconstruct Tissue-Specific Networks (TSNs) for 26 distinct tissues and 10 groups of related tissues. Finally, we found genetic variants associated with pairs of adjacent nodes in our networks, supporting the estimated network structures and identifying 20 genetic variants with distant regulatory impact on transcription and splicing. Our networks provide an improved understanding of the complex relationships of the human transcriptome across tissues.
Collapse
|
16
|
Deka B, Singh KK. Multifaceted Regulation of Gene Expression by the Apoptosis- and Splicing-Associated Protein Complex and Its Components. Int J Biol Sci 2017; 13:545-560. [PMID: 28539829 PMCID: PMC5441173 DOI: 10.7150/ijbs.18649] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/24/2017] [Indexed: 11/24/2022] Open
Abstract
The differential deposition of RNA-binding proteins (RBPs) on pre-mRNA mediates the processes of gene expression. One of the complexes containing RBPs that play a crucial part in RNA metabolism is the apoptosis-and splicing-associated protein (ASAP) complex. In this review, we present a summary of the structure of ASAP complex and its localization. Also, we discuss the findings by different groups on various functions of the subunits of the ASAP complex in RNA metabolism. The subunits of the ASAP complex are RNPS1, Acinus and SAP18. Originally, the ASAP complex was thought to link RNA processing with apoptosis. Further studies have shown the role of these components in RNA metabolism of cells, including transcription, splicing, translation and nonsense-mediated mRNA decay (NMD). In transcription, RNPS1 is involved in preventing the formation of R-loop, while Acinus and SAP18 suppress transcription with the help of histone deacetylase. On the one hand, individual components of the ASAP complex, namely RNPS1 and Acinus act as splicing activators, whereas on the other hand, in-vitro assay shows that the ASAP complex behaves as splicing repressor. In addition, the individual members of the ASAP complex associates with the exon junction complex (EJC) to play roles in splicing and translation. RNPS1 increases the translation efficiency by participating in the 3'end processing and polysome association of mRNAs. Similarly, during NMD RNPS1 aids in the recruitment of decay factors by interacting with EJC.
Collapse
Affiliation(s)
| | - Kusum Kumari Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| |
Collapse
|
17
|
Fragkouli A, Koukouraki P, Vlachos IS, Paraskevopoulou MD, Hatzigeorgiou AG, Doxakis E. Neuronal ELAVL proteins utilize AUF-1 as a co-partner to induce neuron-specific alternative splicing of APP. Sci Rep 2017; 7:44507. [PMID: 28291226 PMCID: PMC5349543 DOI: 10.1038/srep44507] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/08/2017] [Indexed: 12/18/2022] Open
Abstract
Aβ peptide that accumulates in Alzheimer’s disease brain, derives from proteolytic processing of the amyloid precursor protein (APP) that exists in three main isoforms derived by alternative splicing. The isoform APP695, lacking exons 7 and 8, is predominately expressed in neurons and abnormal neuronal splicing of APP has been observed in the brain of patients with Alzheimer’s disease. Herein, we demonstrate that expression of the neuronal members of the ELAVL protein family (nELAVLs) correlate with APP695 levels in vitro and in vivo. Moreover, we provide evidence that nELAVLs regulate the production of APP695; by using a series of reporters we show that concurrent binding of nELAVLs to sequences located both upstream and downstream of exon 7 is required for its skipping, whereas nELAVL-binding to a highly conserved U-rich sequence upstream of exon 8, is sufficient for its exclusion. Finally, we report that nELAVLs block APP exon 7 or 8 definition by reducing the binding of the essential splicing factor U2AF65, an effect facilitated by the concurrent binding of AUF-1. Our study provides new insights into the regulation of APP pre-mRNA processing, supports the role for nELAVLs as neuron-specific splicing regulators and reveals a novel function of AUF1 in alternative splicing.
Collapse
Affiliation(s)
- Apostolia Fragkouli
- Center for Basic Research, Biomedical Research Foundation Academy of Athens, 4 Soranou Efesiou str, 11527, Athens Greece
| | - Pelagia Koukouraki
- Center for Basic Research, Biomedical Research Foundation Academy of Athens, 4 Soranou Efesiou str, 11527, Athens Greece
| | - Ioannis S Vlachos
- Hellenic Pasteur Institute, 127 Vasilissis Sofias Avenue, 11521 Athens, Greece.,DIANA-Lab, Department of Electrical &Computer Engineering, University of Thessaly, 38221 Volos, Greece
| | - Maria D Paraskevopoulou
- Hellenic Pasteur Institute, 127 Vasilissis Sofias Avenue, 11521 Athens, Greece.,DIANA-Lab, Department of Electrical &Computer Engineering, University of Thessaly, 38221 Volos, Greece
| | - Artemis G Hatzigeorgiou
- Hellenic Pasteur Institute, 127 Vasilissis Sofias Avenue, 11521 Athens, Greece.,DIANA-Lab, Department of Electrical &Computer Engineering, University of Thessaly, 38221 Volos, Greece
| | - Epaminondas Doxakis
- Center for Basic Research, Biomedical Research Foundation Academy of Athens, 4 Soranou Efesiou str, 11527, Athens Greece
| |
Collapse
|
18
|
Snijders AP, Hautbergue GM, Bloom A, Williamson JC, Minshull TC, Phillips HL, Mihaylov SR, Gjerde DT, Hornby DP, Wilson SA, Hurd PJ, Dickman MJ. Arginine methylation and citrullination of splicing factor proline- and glutamine-rich (SFPQ/PSF) regulates its association with mRNA. RNA (NEW YORK, N.Y.) 2015; 21:347-59. [PMID: 25605962 PMCID: PMC4338332 DOI: 10.1261/rna.045138.114] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 11/15/2014] [Indexed: 05/19/2023]
Abstract
Splicing factor proline- and glutamine-rich (SFPQ) also commonly known as polypyrimidine tract-binding protein-associated-splicing factor (PSF) and its binding partner non-POU domain-containing octamer-binding protein (NONO/p54nrb), are highly abundant, multifunctional nuclear proteins. However, the exact role of this complex is yet to be determined. Following purification of the endogeneous SFPQ/NONO complex, mass spectrometry analysis identified a wide range of interacting proteins, including those involved in RNA processing, RNA splicing, and transcriptional regulation, consistent with a multifunctional role for SFPQ/NONO. In addition, we have identified several sites of arginine methylation in SFPQ/PSF using mass spectrometry and found that several arginines in the N-terminal domain of SFPQ/PSF are asymmetrically dimethylated. Furthermore, we find that the protein arginine N-methyltransferase, PRMT1, catalyzes this methylation in vitro and that this is antagonized by citrullination of SFPQ. Arginine methylation and citrullination of SFPQ/PSF does not affect complex formation with NONO. However, arginine methylation was shown to increase the association with mRNA in mRNP complexes in mammalian cells. Finally we show that the biochemical properties of the endogenous complex from cell lysates are significantly influenced by the ionic strength during purification. At low ionic strength, the SFPQ/NONO complex forms large heterogeneous protein assemblies or aggregates, preventing the purification of the SFPQ/NONO complex. The ability of the SFPQ/NONO complex to form varying protein assemblies, in conjunction with the effect of post-translational modifications of SFPQ modulating mRNA binding, suggests key roles affecting mRNP dynamics within the cell.
Collapse
Affiliation(s)
- Ambrosius P Snijders
- ChELSI Institute, Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom
| | - Guillaume M Hautbergue
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield S10 2HQ, United Kingdom
| | - Alex Bloom
- Department of Molecular Biology and Biotechnology, Krebs Institute, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - James C Williamson
- ChELSI Institute, Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom
| | - Thomas C Minshull
- ChELSI Institute, Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom
| | - Helen L Phillips
- ChELSI Institute, Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom
| | - Simeon R Mihaylov
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield S10 2HQ, United Kingdom
| | | | - David P Hornby
- Department of Molecular Biology and Biotechnology, Krebs Institute, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Stuart A Wilson
- Department of Molecular Biology and Biotechnology, Krebs Institute, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Paul J Hurd
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Mark J Dickman
- ChELSI Institute, Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom
| |
Collapse
|
19
|
Alam S, Suzuki H, Tsukahara T. Alternative splicing regulation of APP exon 7 by RBFox proteins. Neurochem Int 2014; 78:7-17. [PMID: 25125370 DOI: 10.1016/j.neuint.2014.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 07/18/2014] [Accepted: 08/01/2014] [Indexed: 02/03/2023]
Abstract
RBFox proteins are well-known alternative splicing regulators. We have shown previously that during neuronal differentiation of P19 cells induced by all-trans retinoic acid and cell aggregation, RBFox1 shows markedly increased temporal expression. To find its key splicing regulation, we examined the effect of RBFox1 on 33 previously reported and validated neuronal splicing events of P19 cells. We observed that alternative splicing of three genes, specifically, amyloid precursor protein (APP), disks large homolog 3 (DLG3), and G protein, alpha activating activity polypeptide O (GNAO1), was altered by transient RBFox1 expression in HEK293 and HeLa cells. Moreover, an RBFox1 mutant (RBFox1FA) that was unable to bind the target RNA sequence ((U)GCAUG) did not induce these splicing events. APP generates amyloid beta peptides that are involved in the pathology of Alzheimer's disease, and therefore we examined APP alternative splicing regulation by RBFox1 and other splicing regulators. Our results indicated that RBFox proteins promote the skipping of APP exon 7, but not the inclusion of exon 8. We made APP6789 minigenes and observed that two (U)GCAUG sequences, located upstream of exon 7 and in exon 7, functioned to induce skipping of exon 7 by RBFox proteins. Overall, RBFox proteins may shift APP from exon 7 containing isoforms, APP770 and APP751, toward the exon 7 lacking isoform, APP695, which is predominant in neural tissues.
Collapse
Affiliation(s)
- Shafiul Alam
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.
| | - Hitoshi Suzuki
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan; Centre for Nano Materials and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.
| | - Toshifumi Tsukahara
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.
| |
Collapse
|
20
|
Regulation of gene expression programmes by serine–arginine rich splicing factors. Semin Cell Dev Biol 2014; 32:11-21. [DOI: 10.1016/j.semcdb.2014.03.011] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 03/11/2014] [Indexed: 12/21/2022]
|
21
|
Grodecká L, Lockerová P, Ravčuková B, Buratti E, Baralle FE, Dušek L, Freiberger T. Exon first nucleotide mutations in splicing: evaluation of in silico prediction tools. PLoS One 2014; 9:e89570. [PMID: 24586880 PMCID: PMC3931810 DOI: 10.1371/journal.pone.0089570] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 01/21/2014] [Indexed: 12/20/2022] Open
Abstract
Mutations in the first nucleotide of exons (E+1) mostly affect pre-mRNA splicing when found in AG-dependent 3′ splice sites, whereas AG-independent splice sites are more resistant. The AG-dependency, however, may be difficult to assess just from primary sequence data as it depends on the quality of the polypyrimidine tract. For this reason, in silico prediction tools are commonly used to score 3′ splice sites. In this study, we have assessed the ability of sequence features and in silico prediction tools to discriminate between the splicing-affecting and non-affecting E+1 variants. For this purpose, we newly tested 16 substitutions in vitro and derived other variants from literature. Surprisingly, we found that in the presence of the substituting nucleotide, the quality of the polypyrimidine tract alone was not conclusive about its splicing fate. Rather, it was the identity of the substituting nucleotide that markedly influenced it. Among the computational tools tested, the best performance was achieved using the Maximum Entropy Model and Position-Specific Scoring Matrix. As a result of this study, we have now established preliminary discriminative cut-off values showing sensitivity up to 95% and specificity up to 90%. This is expected to improve our ability to detect splicing-affecting variants in a clinical genetic setting.
Collapse
Affiliation(s)
- Lucie Grodecká
- Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Pavla Lockerová
- Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation, Brno, Czech Republic
| | - Barbora Ravčuková
- Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation, Brno, Czech Republic
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | | | - Ladislav Dušek
- Institute of Biostatistics and Analyses, Masaryk University, Brno, Czech Republic
| | - Tomáš Freiberger
- Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Institute of Clinical Immunology and Allergology, St. Anne’s University Hospital and Masaryk University, Brno, Czech Republic
- * E-mail:
| |
Collapse
|
22
|
Chen X, Liu Y, Sheng X, Tam POS, Zhao K, Chen X, Rong W, Liu Y, Liu X, Pan X, Chen LJ, Zhao Q, Vollrath D, Pang CP, Zhao C. PRPF4 mutations cause autosomal dominant retinitis pigmentosa. Hum Mol Genet 2014; 23:2926-39. [PMID: 24419317 DOI: 10.1093/hmg/ddu005] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Retinitis pigmentosa (RP), a disease characterized by progressive loss of photoreceptors, exhibits significant genetic heterogeneity. Several genes associated with U4/U6-U5 triple small nuclear ribonucleoprotein (tri-snRNP) complex of the spliceosome have been implicated in autosomal dominant RP (adRP). HPrp4, encoded by PRPF4, regulates the stability of U4/U6 di-snRNP, which is essential for continuous splicing. Here, we identified two heterozygous variants in PRPF4, including c.-114_-97del in a simplex RP patient and c.C944T (p.Pro315Leu), which co-segregates with disease phenotype in a family with adRP. Both variants were absent in 400 unrelated controls. The c.-114_-97del, predicted to affect two transcription factor binding sites, was shown to down-regulate the promoter activity of PRPF4 by a luciferase assay, and was associated with a significant reduction of PRPF4 expression in the blood cells of the patient. In fibroblasts from an affected individual with the p.Pro315Leu variant, the expression levels of several tri-snRNP components, including PRPF4 itself, were up-regulated, with altered expression pattern of SC35, a spliceosome marker. The same alterations were also observed in cells over expressing hPrp4(Pro315Leu), suggesting that they arose as a compensatory response to a compromised splicing mechanism caused by hPrp4 dysfunction. Further, over expression of hPrp4(Pro315Leu), but not hPrp4(WT), triggered systemic deformities in wild-type zebrafish embryos with the retina primarily affected, and dramatically augmented death rates in morphant embryos, in which orthologous zebrafish prpf4 gene was silenced. We conclude that mutations of PRPF4 cause RP via haploinsufficiency and dominant-negative effects, and establish PRPF4 as a new U4/U6-U5 snRNP component associated with adRP.
Collapse
Affiliation(s)
- Xue Chen
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kawahara C, Yokota S, Fujita H. DDX6 localizes to nuage structures and the annulus of mammalian spermatogenic cells. Histochem Cell Biol 2013; 141:111-21. [PMID: 24141902 DOI: 10.1007/s00418-013-1153-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2013] [Indexed: 12/28/2022]
Abstract
The localization of DEAD (Asp-Glu-Ala-Asp) box helicase 6 (DDX6) in spermatogenic cells from the mouse, rat, and guinea pig was studied by immunofluorescence (IF) and immunoelectron microscopy (IEM). Spermatogenic cells from these species yielded similar DDX6 localization pattern. IF microscopy results showed that DDX6 localizes to both the nucleus and cytoplasm. In the cytoplasm of spermatogenic cells, diffuse cytosolic and discrete granular staining was observed, with the staining pattern changing during cell differentiation. IEM revealed that DDX6 localized to the five different types of nuage structures and non-nuage structures, including small granule aggregate and late spermatid annuli. Nuclear labeling was strongest in leptotene and zygotene spermatocytes and moderately strong in the nuclear pocket of late spermatids. DDX6 also localized to the surface of outer dense fibers, which comprise of flagella. The results show that DDX6 is present in nuage and non-nuage structures as well as nuclei, suggesting that DDX6 has diverse functions in spermatogenic cells.
Collapse
Affiliation(s)
- Chika Kawahara
- Section of Functional Morphology, Faculty of Pharmaceutical Sciences, Nagasaki International University, Huis Ten Bosch 2825-7, Sasebo, Nagasaki, 859-329, Japan
| | | | | |
Collapse
|
24
|
Califice S, Baurain D, Hanikenne M, Motte P. A single ancient origin for prototypical serine/arginine-rich splicing factors. PLANT PHYSIOLOGY 2012; 158:546-60. [PMID: 22158759 PMCID: PMC3271749 DOI: 10.1104/pp.111.189019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 12/09/2011] [Indexed: 05/20/2023]
Abstract
Eukaryotic precursor mRNA splicing is a process involving a very complex RNA-protein edifice. Serine/arginine-rich (SR) proteins play essential roles in precursor mRNA constitutive and alternative splicing and have been suggested to be crucial in plant-specific forms of developmental regulation and environmental adaptation. Despite their functional importance, little is known about their origin and evolutionary history. SR splicing factors have a modular organization featuring at least one RNA recognition motif (RRM) domain and a carboxyl-terminal region enriched in serine/arginine dipeptides. To investigate the evolution of SR proteins, we infer phylogenies for more than 12,000 RRM domains representing more than 200 broadly sampled organisms. Our analyses reveal that the RRM domain is not restricted to eukaryotes and that all prototypical SR proteins share a single ancient origin, including the plant-specific SR45 protein. Based on these findings, we propose a scenario for their diversification into four natural families, each corresponding to a main SR architecture, and a dozen subfamilies, of which we profile both sequence conservation and composition. Finally, using operational criteria for computational discovery and classification, we catalog SR proteins in 20 model organisms, with a focus on green algae and land plants. Altogether, our study confirms the homogeneity and antiquity of SR splicing factors while establishing robust phylogenetic relationships between animal and plant proteins, which should enable functional analyses of lesser characterized SR family members, especially in green plants.
Collapse
Affiliation(s)
| | | | | | - Patrick Motte
- Laboratory of Functional Genomics and Plant Molecular Imaging and Centre for Assistance in Technology of Microscopy, Department of Life Sciences, Institute of Botany, University of Liège, B–4000 Liege, Belgium (S.C., M.H., P.M.); Unit of Animal Genomics, Department of Animal Production, GIGA-Research, and Faculty of Veterinary Medicine, University of Liège, B-4000 Liege, Belgium (D.B.)
| |
Collapse
|
25
|
Genomic mRNA profiling reveals compensatory mechanisms for the requirement of the essential splicing factor U2AF. Mol Cell Biol 2010; 31:652-61. [PMID: 21149581 DOI: 10.1128/mcb.01000-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The large subunit of the U2 auxiliary factor (U2AF) recognizes the polypyrimidine tract (Py-tract) located adjacent to the 3' splice site to facilitate U2 snRNP recruitment. While U2AF is considered essential for pre-mRNA splicing, its requirement for splicing on a genome-wide level has not been analyzed. Using Solexa sequencing, we performed mRNA profiling for splicing in the Schizosaccharomyces pombe U2AF(59) (prp2.1) temperature-sensitive mutant. Surprisingly, our analysis revealed that introns show a range of splicing defects in the mutant strain. While U2AF(59) inactivation (nonpermissive) conditions inhibit splicing of some introns, others are spliced apparently normally. Bioinformatics analysis indicated that U2AF(59)-insensitive introns have stronger 5' splice sites and higher A/U content. Most importantly, features that contribute to U2AF(59) insensitivity of an intron unexpectedly reside in its 5'-most 30 nucleotides. These include the 5' splice site, a guanosine at position 7, and the 5' splice site-to-branch point sequence context. A differential requirement (similar to U2AF(59)) for introns may also apply to other general splicing factors (e.g., prp10). Our combined results indicate that U2AF insensitivity is a common phenomenon and that varied intron features support the existence of unrecognized aspects of spliceosome assembly.
Collapse
|
26
|
Zheng ZM. Viral oncogenes, noncoding RNAs, and RNA splicing in human tumor viruses. Int J Biol Sci 2010; 6:730-55. [PMID: 21152115 PMCID: PMC2999850 DOI: 10.7150/ijbs.6.730] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Accepted: 11/27/2010] [Indexed: 12/13/2022] Open
Abstract
Viral oncogenes are responsible for oncogenesis resulting from persistent virus infection. Although different human tumor viruses express different viral oncogenes and induce different tumors, their oncoproteins often target similar sets of cellular tumor suppressors or signal pathways to immortalize and/or transform infected cells. Expression of the viral E6 and E7 oncogenes in papillomavirus, E1A and E1B oncogenes in adenovirus, large T and small t antigen in polyomavirus, and Tax oncogene in HTLV-1 are regulated by alternative RNA splicing. However, this regulation is only partially understood. DNA tumor viruses also encode noncoding RNAs, including viral microRNAs, that disturb normal cell functions. Among the determined viral microRNA precursors, EBV encodes 25 from two major clusters (BART and BHRF1), KSHV encodes 12 from a latent region, human polyomavirus MCV produce only one microRNA from the late region antisense to early transcripts, but HPVs appears to produce no viral microRNAs.
Collapse
Affiliation(s)
- Zhi-Ming Zheng
- Tumor Virus RNA Biology Laboratory, HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
27
|
Llères D, Denegri M, Biggiogera M, Ajuh P, Lamond AI. Direct interaction between hnRNP-M and CDC5L/PLRG1 proteins affects alternative splice site choice. EMBO Rep 2010; 11:445-51. [PMID: 20467437 DOI: 10.1038/embor.2010.64] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Revised: 04/02/2010] [Accepted: 04/06/2010] [Indexed: 11/09/2022] Open
Abstract
Heterogeneous nuclear ribonucleoprotein-M (hnRNP-M) is an abundant nuclear protein that binds to pre-mRNA and is a component of the spliceosome complex. A direct interaction was detected in vivo between hnRNP-M and the human spliceosome proteins cell division cycle 5-like (CDC5L) and pleiotropic regulator 1 (PLRG1) that was inhibited during the heat-shock stress response. A central region in hnRNP-M is required for interaction with CDC5L/PLRG1. hnRNP-M affects both 5' and 3' alternative splice site choices, and an hnRNP-M mutant lacking the CDC5L/PLRG1 interaction domain is unable to modulate alternative splicing of an adeno-E1A mini-gene substrate.
Collapse
Affiliation(s)
- David Llères
- Wellcome Trust Centre for Gene Regulation & Expression, College of Life Sciences, University of Dundee, MSI/WTB/JBC Complex, Dow Street, Dundee DD1 5EH, UK
| | | | | | | | | |
Collapse
|
28
|
Abstract
The SR protein family comprises a number of phylogenetically conserved and structurally related proteins with a characteristic domain rich in arginine and serine residues, known as the RS domain. They play significant roles in constitutive pre-mRNA splicing and are also important regulators of alternative splicing. In addition they participate in post-splicing activities, such as mRNA nuclear export, nonsense-mediated mRNA decay and mRNA translation. These wide-ranging roles of SR proteins highlight their importance as pivotal regulators of mRNA metabolism, and if these functions are disrupted, developmental defects or disease may result. Furthermore, animal models have shown a highly specific, non-redundant role for individual SR proteins in the regulation of developmental processes. Here, we will review the current literature to demonstrate how SR proteins are emerging as one of the master regulators of gene expression.
Collapse
|
29
|
Ellis JD, Llères D, Denegri M, Lamond AI, Cáceres JF. Spatial mapping of splicing factor complexes involved in exon and intron definition. ACTA ACUST UNITED AC 2008; 181:921-34. [PMID: 18559666 PMCID: PMC2426932 DOI: 10.1083/jcb.200710051] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have analyzed the interaction between serine/arginine-rich (SR) proteins and splicing components that recognize either the 5′ or 3′ splice site. Previously, these interactions have been extensively characterized biochemically and are critical for both intron and exon definition. We use fluorescence resonance energy transfer (FRET) microscopy to identify interactions of individual SR proteins with the U1 small nuclear ribonucleoprotein (snRNP)–associated 70-kD protein (U1 70K) and with the small subunit of the U2 snRNP auxiliary factor (U2AF35) in live-cell nuclei. We find that these interactions occur in the presence of RNA polymerase II inhibitors, demonstrating that they are not exclusively cotranscriptional. Using FRET imaging by means of fluorescence lifetime imaging microscopy (FLIM), we map these interactions to specific sites in the nucleus. The FLIM data also reveal a previously unknown interaction between HCC1, a factor related to U2AF65, with both subunits of U2AF. Spatial mapping using FLIM-FRET reveals differences in splicing factors interactions within complexes located in separate subnuclear domains.
Collapse
Affiliation(s)
- Jonathan D Ellis
- Medical Research Council Human Genetics Unit, Western General Hospital, Edinburgh EH4 2XU, Scotland, UK
| | | | | | | | | |
Collapse
|
30
|
Wang C, Norton JT, Ghosh S, Kim J, Fushimi K, Wu JY, Stack MS, Huang S. Polypyrimidine tract-binding protein (PTB) differentially affects malignancy in a cell line-dependent manner. J Biol Chem 2008; 283:20277-87. [PMID: 18499661 DOI: 10.1074/jbc.m803682200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RNA processing is altered during malignant transformation, and expression of the polypyrimidine tract-binding protein (PTB) is often increased in cancer cells. Although some data support that PTB promotes cancer, the functional contribution of PTB to the malignant phenotype remains to be clarified. Here we report that although PTB levels are generally increased in cancer cell lines from multiple origins and in endometrial adenocarcinoma tumors, there appears to be no correlation between PTB levels and disease severity or metastatic capacity. The three isoforms of PTB increase heterogeneously among different tumor cells. PTB knockdown in transformed cells by small interfering RNA decreases cellular growth in monolayer culture and to a greater extent in semi-solid media without inducing apoptosis. Down-regulation of PTB expression in a normal cell line reduces proliferation even more significantly. Reduction of PTB inhibits the invasive behavior of two cancer cell lines in Matrigel invasion assays but enhances the invasive behavior of another. At the molecular level, PTB in various cell lines differentially affects the alternative splicing pattern of the same substrates, such as caspase 2. Furthermore, overexpression of PTB does not enhance proliferation, anchorage-independent growth, or invasion in immortalized or normal cells. These data demonstrate that PTB is not oncogenic and can either promote or antagonize a malignant trait dependent upon the specific intra-cellular environment.
Collapse
Affiliation(s)
- Chen Wang
- Department of Cell and Molecular Biology, Feinberg School of Medicine of Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Orvain C, Matre V, Gabrielsen OS. The transcription factor c-Myb affects pre-mRNA splicing. Biochem Biophys Res Commun 2008; 372:309-13. [PMID: 18498763 DOI: 10.1016/j.bbrc.2008.05.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Accepted: 05/12/2008] [Indexed: 11/28/2022]
Abstract
c-Myb is a transcription factor which plays a key role in haematopoietic proliferation and lineage commitment. We raised the question of whether c-Myb may have abilities beyond the extensively studied transcriptional activation function. In this report we show that c-Myb influences alternative pre-mRNA splicing. This was seen by its marked effect on the 5'-splice site selection during E1A alternative splicing, while no effect of c-Myb was observed when reporters for the 3'-splice site selection or for the constitutive splicing process were tested. Moreover, co-immunoprecipitation experiments provided evidence for interactions between c-Myb and distinct components of the splicing apparatus, such as the general splicing factor U2AF(65) and hnRNPA1 involved in the 5'-splice site selection. The effect on 5'-splice site selection was abolished in the oncogenic variant v-Myb. Altogether, these data provide evidence that c-Myb may serve a previously unappreciated role in the coupling between transcription and splicing.
Collapse
Affiliation(s)
- Christophe Orvain
- University of Oslo, Department of Molecular Biosciences, P.O. Box 1041 Blindern, N-0316 Oslo, Norway
| | | | | |
Collapse
|
32
|
Sridharan V, Singh R. A conditional role of U2AF in splicing of introns with unconventional polypyrimidine tracts. Mol Cell Biol 2007; 27:7334-44. [PMID: 17709389 PMCID: PMC2168890 DOI: 10.1128/mcb.00627-07] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recognition of polypyrimidine (Py) tracts typically present between the branch point and the 3' splice site by the large subunit of the essential splicing factor U2AF is a key early step in pre-mRNA splicing. Diverse intronic sequence arrangements exist, however, including 3' splice sites lacking recognizable Py tracts, which raises the question of how general the requirement for U2AF is for various intron architectures. Our analysis of fission yeast introns in vivo has unexpectedly revealed that whereas introns lacking Py tracts altogether remain dependent on both subunits of U2AF, introns with long Py tracts, unconventionally positioned upstream of branch points, are unaffected by U2AF inactivation. Nevertheless, mutation of these Py tracts causes strong dependence on the large subunit U2AF59. We also find that Py tract diversity influences the requirement for the conserved C-terminal domain of U2AF59 (RNA recognition motif 3), which has been implicated in protein-protein interactions with other splicing factors. Together, these results suggest that in addition to Py tract binding by U2AF, supplementary mechanisms of U2AF recruitment and 3' splice site identification exist to accommodate diverse intron architectures, which have gone unappreciated in biochemical studies of model pre-mRNAs.
Collapse
Affiliation(s)
- Vinod Sridharan
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309, USA
| | | |
Collapse
|
33
|
Lin S, Fu XD. SR proteins and related factors in alternative splicing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 623:107-22. [PMID: 18380343 DOI: 10.1007/978-0-387-77374-2_7] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
SR proteins are a family of RNA binding proteins that contain a signature RS domain enriched with serine/arginine repeats. The RS domain is also found in many other proteins, which are collectively referred to as SR-related proteins. Several prototypical SR proteins are essential splicing factors, but the majority of RS domain-containing factors are characterized by their ability to alter splice site selection in vitro or in transfected cells. SR proteins and SR-related proteins are generally believed to modulate splice site selection via RNA recognition motif-mediated binding to exonic splicing enhancers and RS domain-mediated protein-protein and protein-RNA interactions during spliceosome assembly. However, the biological function of individual RS domain-containing splicing regulators is complex because of redundant as well as competitive functions, context-dependent effects and regulation by cotranscriptional and post-translational events. This chapter will focus on our current mechanistic understanding of alternative splicing regulation by SR proteins and SR-related proteins and will discuss some of the questions that remain to be addressed in future research.
Collapse
Affiliation(s)
- Shengrong Lin
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA
| | | |
Collapse
|
34
|
Wu JY, Kar A, Kuo D, Yu B, Havlioglu N. SRp54 (SFRS11), a regulator for tau exon 10 alternative splicing identified by an expression cloning strategy. Mol Cell Biol 2006; 26:6739-47. [PMID: 16943417 PMCID: PMC1592875 DOI: 10.1128/mcb.00739-06] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The tau gene encodes a microtubule-associated protein that is critical for neuronal survival and function. Splicing defects in the human tau gene lead to frontotemporal dementia with Parkinsonism linked to chromosome 17 (FTDP-17), an autosomal dominant neurodegenerative disorder. Genetic mutations associated with FTDP-17 often affect tau exon 10 alternative splicing. To investigate mechanisms regulating tau exon 10 alternative splicing, we have developed a green fluorescent protein reporter for tau exon 10 skipping and an expression cloning strategy to identify splicing regulators. A role for SRp54 (also named SFRS11) as a tau exon 10 splicing repressor has been uncovered using this strategy. The overexpression of SRp54 suppresses tau exon 10 inclusion. RNA interference-mediated knock-down of SRp54 increases exon 10 inclusion. SRp54 interacts with a purine-rich element in exon 10 and antagonizes Tra2beta, an SR-domain-containing protein that enhances exon 10 inclusion. Deletion of this exonic element eliminates the activity of SRp54 in suppressing exon 10 inclusion. Our data support a role of SRp54 in regulating tau exon 10 splicing. These experiments also establish a generally useful approach for identifying trans-acting regulators of alternative splicing by expression cloning.
Collapse
Affiliation(s)
- Jane Y Wu
- Northwestern University Feinberg School of Medicine, Center for Genetic Medicine, 303 E. Superior St., Lurie 6-117, Chicago, IL 60611, USA.
| | | | | | | | | |
Collapse
|
35
|
Guillouf C, Gallais I, Moreau-Gachelin F. Spi-1/PU.1 Oncoprotein Affects Splicing Decisions in a Promoter Binding-dependent Manner. J Biol Chem 2006; 281:19145-55. [PMID: 16698794 DOI: 10.1074/jbc.m512049200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The expression of the Spi-1/PU.1 transcription factor is tightly regulated as a function of the hematopoietic lineage. It is required for myeloid and B lymphoid differentiation. When overexpressed in mice, Spi-1 is associated with the emergence of transformed proerythroblasts unable to differentiate. In the course of a project undertaken to characterize the oncogenic function of Spi-1, we found that Spi-1 interacts with proteins of the spliceosome in Spi-1-transformed proerythroblasts and participates in alternative splice site selection. Because Spi-1 is a transcription factor, it could be hypothesized that these two functions are coordinated. Here, we have developed a system allowing the characterization of transcription and splicing from a single target. It is shown that Spi-1 is able to regulate alternative splicing of a pre-mRNA for a gene whose transcription it regulates. Using a combination of Spi-1 mutants and Spi-1-dependent promoters, we demonstrate that Spi-1 must bind and transactivate a given promoter to favor the use of the proximal 5' alternative site. This establishes that Spi-1 affects splicing decisions in a promoter binding-dependent manner. These results provide new insight into how Spi-1 may act in the blockage of differentiation by demonstrating that it can deregulate gene expression and also modify the nature of the products generated from target genes.
Collapse
|
36
|
Chen HH, Wang YC, Fann MJ. Identification and characterization of the CDK12/cyclin L1 complex involved in alternative splicing regulation. Mol Cell Biol 2006; 26:2736-45. [PMID: 16537916 PMCID: PMC1430317 DOI: 10.1128/mcb.26.7.2736-2745.2006] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
CrkRS is a Cdc2-related protein kinase that contains an arginine- and serine-rich (SR) domain, a characteristic of the SR protein family of splicing factors, and is proposed to be involved in RNA processing. However, whether it acts together with a cyclin and at which steps it may function to regulate RNA processing are not clear. Here, we report that CrkRS interacts with cyclin L1 and cyclin L2, and thus rename it as the long form of cyclin-dependent kinase 12 (CDK12(L)). A shorter isoform of CDK12, CDK12(S), that differs from CDK12(L) only at the carboxyl end, was also identified. Both isoforms associate with cyclin L1 through interactions mediated by the kinase domain and the cyclin domain, suggesting a bona fide CDK/cyclin partnership. Furthermore, CDK12 isoforms alter the splicing pattern of an E1a minigene, and the effect is potentiated by the cyclin domain of cyclin L1. When expression of CDK12 isoforms is perturbed by small interfering RNAs, a reversal of the splicing choices is observed. The activity of CDK12 on splicing is counteracted by SF2/ASF and SC35, but not by SRp40, SRp55, and SRp75. Together, our findings indicate that CDK12 and cyclin L1/L2 are cyclin-dependent kinase and cyclin partners and regulate alternative splicing.
Collapse
Affiliation(s)
- Hung-Hsi Chen
- Institute of Neuroscience, National Yang-Ming University, Taipei 11221, Taiwan, Republic of China
| | | | | |
Collapse
|
37
|
Chen HH, Wang YC, Fann MJ. Identification and characterization of the CDK12/cyclin L1 complex involved in alternative splicing regulation. Mol Cell Biol 2006. [PMID: 16537916 DOI: 10.1128/mcb.26.7.2736-27452006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
CrkRS is a Cdc2-related protein kinase that contains an arginine- and serine-rich (SR) domain, a characteristic of the SR protein family of splicing factors, and is proposed to be involved in RNA processing. However, whether it acts together with a cyclin and at which steps it may function to regulate RNA processing are not clear. Here, we report that CrkRS interacts with cyclin L1 and cyclin L2, and thus rename it as the long form of cyclin-dependent kinase 12 (CDK12(L)). A shorter isoform of CDK12, CDK12(S), that differs from CDK12(L) only at the carboxyl end, was also identified. Both isoforms associate with cyclin L1 through interactions mediated by the kinase domain and the cyclin domain, suggesting a bona fide CDK/cyclin partnership. Furthermore, CDK12 isoforms alter the splicing pattern of an E1a minigene, and the effect is potentiated by the cyclin domain of cyclin L1. When expression of CDK12 isoforms is perturbed by small interfering RNAs, a reversal of the splicing choices is observed. The activity of CDK12 on splicing is counteracted by SF2/ASF and SC35, but not by SRp40, SRp55, and SRp75. Together, our findings indicate that CDK12 and cyclin L1/L2 are cyclin-dependent kinase and cyclin partners and regulate alternative splicing.
Collapse
Affiliation(s)
- Hung-Hsi Chen
- Institute of Neuroscience, National Yang-Ming University, Taipei 11221, Taiwan, Republic of China
| | | | | |
Collapse
|
38
|
Cazalla D, Newton K, Cáceres JF. A novel SR-related protein is required for the second step of Pre-mRNA splicing. Mol Cell Biol 2005; 25:2969-80. [PMID: 15798186 PMCID: PMC1069619 DOI: 10.1128/mcb.25.8.2969-2980.2005] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The SR family proteins and SR-related polypeptides are important regulators of pre-mRNA splicing. A novel SR-related protein of an apparent molecular mass of 53 kDa was isolated in a gene trap screen that identifies proteins which localize to the nuclear speckles. This novel protein possesses an arginine- and serine-rich domain and was termed SRrp53 (for SR-related protein of 53 kDa). In support for a role of this novel RS-containing protein in pre-mRNA splicing, we identified the mouse ortholog of the Saccharomyces cerevisiae U1 snRNP-specific protein Luc7p and the U2AF65-related factor HCC1 as interacting proteins. In addition, SRrp53 is able to interact with some members of the SR family of proteins and with U2AF35 in a yeast two-hybrid system and in cell extracts. We show that in HeLa nuclear extracts immunodepleted of SRrp53, the second step of pre-mRNA splicing is blocked, and recombinant SRrp53 is able to restore splicing activity. SRrp53 also regulates alternative splicing in a concentration-dependent manner. Taken together, these results suggest that SRrp53 is a novel SR-related protein that has a role both in constitutive and in alternative splicing.
Collapse
Affiliation(s)
- Demian Cazalla
- MRC Human Genetics Unit, Western General Hospital, Crewe Rd., Edinburgh EH4 2XU, Scotland, United Kingdom
| | | | | |
Collapse
|
39
|
Abstract
SR proteins are essential metazoan splicing factors that contain an RNA-binding domain and an arginine/serine-rich domain that functions to promote assembly of the spliceosome. The prevailing model over the past several years suggests that the RS domains function as protein-interaction domains. However, two new papers from Green et al. demonstrate that these RS domains directly contact the pre-mRNA within the functional spliceosome. The sequential character of these contacts suggests that RS domain interactions with RNA promote spliceosome assembly.
Collapse
Affiliation(s)
- Klemens J Hertel
- Department of Microbiology and Molecular Genetics, College of Medicine, University of California, Irvine, CA 92697-4025, USA.
| | | |
Collapse
|
40
|
Trembley JH, Tatsumi S, Sakashita E, Loyer P, Slaughter CA, Suzuki H, Endo H, Kidd VJ, Mayeda A. Activation of pre-mRNA splicing by human RNPS1 is regulated by CK2 phosphorylation. Mol Cell Biol 2005; 25:1446-57. [PMID: 15684395 PMCID: PMC547998 DOI: 10.1128/mcb.25.4.1446-1457.2005] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human RNPS1 was originally characterized as a pre-mRNA splicing activator in vitro and was shown to regulate alternative splicing in vivo. RNPS1 was also identified as a protein component of the splicing-dependent mRNP complex, or exon-exon junction complex (EJC), and a role for RNPS1 in postsplicing processes has been proposed. Here we demonstrate that RNPS1 incorporates into active spliceosomes, enhances the formation of the ATP-dependent A complex, and promotes the generation of both intermediate and final spliced products. RNPS1 is phosphorylated in vivo and interacts with the CK2 (casein kinase II) protein kinase. Serine 53 (Ser-53) of RNPS1 was identified as the major phosphorylation site for CK2 in vitro, and the same site is also phosphorylated in vivo. The phosphorylation status of Ser-53 significantly affects splicing activation in vitro, but it does not perturb the nuclear localization of RNPS1. In vivo experiments indicated that the phosphorylation of RNPS1 at Ser-53 influences the efficiencies of both splicing and translation. We propose that RNPS1 is a splicing regulator whose activator function is controlled in part by CK2 phosphorylation.
Collapse
Affiliation(s)
- Janeen H Trembley
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, P.O. Box 016129, Miami, FL 33101-6129, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Dauksaite V, AKUSJäRVI G. The second RNA-binding domain of the human splicing factor ASF/SF2 is the critical domain controlling adenovirus E1A alternative 5'-splice site selection. Biochem J 2004; 381:343-50. [PMID: 15068396 PMCID: PMC1133838 DOI: 10.1042/bj20040408] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2004] [Revised: 04/06/2004] [Accepted: 04/07/2004] [Indexed: 01/12/2023]
Abstract
The human splicing factor ASF/SF2 (alternative splicing factor/splicing factor 2) is modular in structure with two RNA-binding domains (RBD1 and RBD2) and a C-terminal domain rich in arginine-serine dipeptide repeats. ASF/SF2 is an essential splicing factor that also functions as an important regulator of alternative splicing. In adenovirus E1A (early region 1A) alternative pre-mRNA splicing, ASF/SF2 functions as a strong inducer of proximal 5'-splice-site selection, both in vitro and in vivo. In the present study, we tested the functional role of individual domains of ASF/SF2 in alternative splicing in vitro. We show that ASF/SF2-RBD2 is the critical domain controlling E1A alternative splicing. In fact, RBD2 alone is sufficient to mimic the activity of the full-length ASF/SF2 protein as an inducer of proximal 5'-splice-site selection in vitro. The RBD2 domain induces a switch to E1A-proximal 5'-splice-site usage by repressing distal 12 S splicing and simultaneously stimulates proximal 13 S splicing. In contrast, the ASF/SF2-RBD1 domain has a more general splicing enhancer phenotype and appears to stimulate preferentially cap-proximal 5'-splice-site selection. Furthermore, the SWQDLKD motif, which is conserved in all SR proteins (serine/arginine-rich proteins) containing two RBDs, and the ribonucleoprotein-1-type RNA recognition motif were both found to be necessary for the alternative splice-site-switching activity of ASF/SF2. The RNP-1 motif was necessary for efficient RNA binding, whereas the SWQDLKD motif most probably contributes by functioning as a surface-mediating critical protein-protein contact during spliceosome assembly.
Collapse
Affiliation(s)
- Vita Dauksaite
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, 751 23 Uppsala, Sweden
| | - Göran AKUSJäRVI
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, 751 23 Uppsala, Sweden
- To whom correspondence should be addressed (e-mail )
| |
Collapse
|
42
|
Zheng ZM. Regulation of alternative RNA splicing by exon definition and exon sequences in viral and mammalian gene expression. J Biomed Sci 2004; 11:278-94. [PMID: 15067211 PMCID: PMC2442652 DOI: 10.1007/bf02254432] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2003] [Accepted: 11/12/2003] [Indexed: 12/16/2022] Open
Abstract
Intron removal from a pre-mRNA by RNA splicing was once thought to be controlled mainly by intron splicing signals. However, viral and other eukaryotic RNA exon sequences have recently been found to regulate RNA splicing, polyadenylation, export, and nonsense-mediated RNA decay in addition to their coding function. Regulation of alternative RNA splicing by exon sequences is largely attributable to the presence of two major cis-acting elements in the regulated exons, the exonic splicing enhancer (ESE) and the suppressor or silencer (ESS). Two types of ESEs have been verified from more than 50 genes or exons: purine-rich ESEs, which are the more common, and non-purine-rich ESEs. In contrast, the sequences of ESSs identified in approximately 20 genes or exons are highly diverse and show little similarity to each other. Through interactions with cellular splicing factors, an ESE or ESS determines whether or not a regulated splice site, usually an upstream 3' splice site, will be used for RNA splicing. However, how these elements function precisely in selecting a regulated splice site is only partially understood. The balance between positive and negative regulation of splice site selection likely depends on the cis-element's identity and changes in cellular splicing factors under physiological or pathological conditions.
Collapse
Affiliation(s)
- Zhi-Ming Zheng
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
43
|
Webb CJ, Lakhe-Reddy S, Romfo CM, Wise JA. Analysis of mutant phenotypes and splicing defects demonstrates functional collaboration between the large and small subunits of the essential splicing factor U2AF in vivo. Mol Biol Cell 2004; 16:584-96. [PMID: 15548596 PMCID: PMC545896 DOI: 10.1091/mbc.e04-09-0768] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The heterodimeric splicing factor U2AF plays an important role in 3' splice site selection, but the division of labor between the two subunits in vivo remains unclear. In vitro assays led to the proposal that the human large subunit recognizes 3' splice sites with extensive polypyrimidine tracts independently of the small subunit. We report in vivo analysis demonstrating that all five domains of spU2AFLG are essential for viability; a partial deletion of the linker region, which forms the small subunit interface, produces a severe growth defect and an aberrant morphology. A small subunit zinc-binding domain mutant confers a similar phenotype, suggesting that the heterodimer functions as a unit during splicing in Schizosaccharomyces pombe. As this is not predicted by the model for metazoan 3' splice site recognition, we sought introns for which the spU2AFLG and spU2AFSM make distinct contributions by analyzing diverse splicing events in strains harboring mutations in each partner. Requirements for the two subunits are generally parallel and, moreover, do not correlate with the length or strength of the 3' pyrimidine tract. These and other studies performed in fission yeast support a model for 3' splice site recognition in which the two subunits of U2AF functionally collaborate in vivo.
Collapse
Affiliation(s)
- Christopher J Webb
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4960, USA
| | | | | | | |
Collapse
|
44
|
Zheng ZM. Regulation of alternative RNA splicing by exon definition and exon sequences in viral and mammalian gene expression. J Biomed Sci 2004. [PMID: 15067211 DOI: 10.1159/000077096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Intron removal from a pre-mRNA by RNA splicing was once thought to be controlled mainly by intron splicing signals. However, viral and other eukaryotic RNA exon sequences have recently been found to regulate RNA splicing, polyadenylation, export, and nonsense-mediated RNA decay in addition to their coding function. Regulation of alternative RNA splicing by exon sequences is largely attributable to the presence of two major cis-acting elements in the regulated exons, the exonic splicing enhancer (ESE) and the suppressor or silencer (ESS). Two types of ESEs have been verified from more than 50 genes or exons: purine-rich ESEs, which are the more common, and non-purine-rich ESEs. In contrast, the sequences of ESSs identified in approximately 20 genes or exons are highly diverse and show little similarity to each other. Through interactions with cellular splicing factors, an ESE or ESS determines whether or not a regulated splice site, usually an upstream 3' splice site, will be used for RNA splicing. However, how these elements function precisely in selecting a regulated splice site is only partially understood. The balance between positive and negative regulation of splice site selection likely depends on the cis-element's identity and changes in cellular splicing factors under physiological or pathological conditions.
Collapse
Affiliation(s)
- Zhi-Ming Zheng
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
45
|
Sakashita E, Tatsumi S, Werner D, Endo H, Mayeda A. Human RNPS1 and its associated factors: a versatile alternative pre-mRNA splicing regulator in vivo. Mol Cell Biol 2004; 24:1174-87. [PMID: 14729963 PMCID: PMC321435 DOI: 10.1128/mcb.24.3.1174-1187.2004] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Human RNPS1 was originally purified and characterized as a pre-mRNA splicing activator, and its role in the postsplicing process has also been proposed recently. To search for factors that functionally interact with RNPS1, we performed a yeast two-hybrid screen with a human cDNA library. Four factors were identified: p54 (also called SRp54; a member of the SR protein family), human transformer 2 beta (hTra2 beta; an exonic splicing enhancer-binding protein), hLucA (a potential component of U1 snRNP), and pinin (also called DRS and MemA; a protein localized in nuclear speckles). The N-terminal region containing the serine-rich (S) domain, the central RNA recognition motif (RRM), and the C-terminal arginine/serine/proline-rich (RS/P) domain of RNPS1 interact with p54, pinin, and hTra2 beta, respectively. Protein-protein binding between RNPS1 and these factors was verified in vitro and in vivo. Overexpression of RNPS1 in HeLa cells induced exon skipping in a model beta-globin pre-mRNA and a human tra-2 beta pre-mRNA. Coexpression of RNPS1 with p54 cooperatively stimulated exon inclusion in an ATP synthase gamma-subunit pre-mRNA. The RS/P domain and RRM are necessary for the exon-skipping activity, whereas the S domain is important for the cooperative effect with p54. RNPS1 appears to be a versatile factor that regulates alternative splicing of a variety of pre-mRNAs.
Collapse
Affiliation(s)
- Eiji Sakashita
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Miami, Florida 33136-1019, USA
| | | | | | | | | |
Collapse
|
46
|
Human RNPS1 and its associated factors: a versatile alternative pre-mRNA splicing regulator in vivo. Mol Cell Biol 2004. [PMID: 14729963 DOI: 10.1128/mcb.24.3.1174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Human RNPS1 was originally purified and characterized as a pre-mRNA splicing activator, and its role in the postsplicing process has also been proposed recently. To search for factors that functionally interact with RNPS1, we performed a yeast two-hybrid screen with a human cDNA library. Four factors were identified: p54 (also called SRp54; a member of the SR protein family), human transformer 2 beta (hTra2 beta; an exonic splicing enhancer-binding protein), hLucA (a potential component of U1 snRNP), and pinin (also called DRS and MemA; a protein localized in nuclear speckles). The N-terminal region containing the serine-rich (S) domain, the central RNA recognition motif (RRM), and the C-terminal arginine/serine/proline-rich (RS/P) domain of RNPS1 interact with p54, pinin, and hTra2 beta, respectively. Protein-protein binding between RNPS1 and these factors was verified in vitro and in vivo. Overexpression of RNPS1 in HeLa cells induced exon skipping in a model beta-globin pre-mRNA and a human tra-2 beta pre-mRNA. Coexpression of RNPS1 with p54 cooperatively stimulated exon inclusion in an ATP synthase gamma-subunit pre-mRNA. The RS/P domain and RRM are necessary for the exon-skipping activity, whereas the S domain is important for the cooperative effect with p54. RNPS1 appears to be a versatile factor that regulates alternative splicing of a variety of pre-mRNAs.
Collapse
|
47
|
Shen H, Kan JLC, Green MR. Arginine-Serine-Rich Domains Bound at Splicing Enhancers Contact the Branchpoint to Promote Prespliceosome Assembly. Mol Cell 2004; 13:367-76. [PMID: 14967144 DOI: 10.1016/s1097-2765(04)00025-5] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2003] [Revised: 12/04/2003] [Accepted: 12/04/2003] [Indexed: 12/25/2022]
Abstract
Exonic splicing enhancers (ESEs) are required for splicing of certain pre-mRNAs and function by providing binding sites for serine-arginine (SR) proteins, which contain an arginine-serine-rich (RS) domain. How an RS domain bound at the ESE promotes splicing is poorly understood. We have developed an RNA-protein crosslinking procedure to identify the target of the ESE-bound RS domain. Using this approach, we show that the ESE-bound RS domain specifically contacts the pre-mRNA branchpoint. The interaction between the ESE-bound RS domain and the branchpoint occurs in the prespliceosome and is dependent upon the same splicing signals, biochemical factors, and reaction conditions required to support prespliceosome assembly. Analysis of RS domain mutants demonstrates that the ability to interact with the branchpoint, to promote prespliceosome assembly, and to support splicing are related activities. We conclude that the ESE-bound RS domain functions by contacting the branchpoint to promote prespliceosome assembly.
Collapse
Affiliation(s)
- Haihong Shen
- Howard Hughes Medical Institute, Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | | | | |
Collapse
|
48
|
Banerjee H, Rahn A, Gawande B, Guth S, Valcarcel J, Singh R. The conserved RNA recognition motif 3 of U2 snRNA auxiliary factor (U2AF 65) is essential in vivo but dispensable for activity in vitro. RNA (NEW YORK, N.Y.) 2004; 10:240-53. [PMID: 14730023 PMCID: PMC1370536 DOI: 10.1261/rna.5153204] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2003] [Accepted: 10/13/2003] [Indexed: 05/09/2023]
Abstract
The general splicing factor U2AF(65) recognizes the polypyrimidine tract (Py tract) that precedes 3' splice sites and has three RNA recognition motifs (RRMs). The C-terminal RRM (RRM3), which is highly conserved, has been proposed to contribute to Py-tract binding and establish protein-protein contacts with splicing factors mBBP/SF1 and SAP155. Unexpectedly, we find that the human RRM3 domain is dispensable for U2AF(65) activity in vitro. However, it has an essential function in Schizosaccharomyces pombe distinct from binding to the Py tract or to mBBP/SF1 and SAP155. First, deletion of RRM3 from the human protein has no effect on Py-tract binding. Second, RRM123 and RRM12 select similar sequences from a random pool of RNA. Third, deletion of RRM3 has no effect on the splicing activity of U2AF(65) in vitro. However, deletion of the RRM3 domain of S. pombe U2AF(59) abolishes U2AF function in vivo. In addition, certain amino acid substitutions on the four-stranded beta-sheet surface of RRM3 compromise U2AF function in vivo without affecting binding to mBBP/SF1 or SAP155 in vitro. We propose that RRM3 has an unrecognized function that is possibly relevant for the splicing of only a subset of cellular introns. We discuss the implications of these observations on previous models of U2AF function.
Collapse
Affiliation(s)
- Hiren Banerjee
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado 80309, USA
| | | | | | | | | | | |
Collapse
|
49
|
Bourgeois CF, Lejeune F, Stévenin J. Broad specificity of SR (serine/arginine) proteins in the regulation of alternative splicing of pre-messenger RNA. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2004; 78:37-88. [PMID: 15210328 DOI: 10.1016/s0079-6603(04)78002-2] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alternative splicing of pre-messenger RNA (pre-mRNA) is a highly regulated process that allows expansion of the potential of expression of the genome in higher eukaryotes and involves many factors. Among them, the family of the serine- and arginine-rich proteins (SR proteins) plays a pivotal role: it has essential functions during spliceosome assembly and also interacts with RNA regulatory sequences on the pre-mRNA as well as with multiple cofactors. Collectively, SR proteins, because of their capacity to recognize multiple RNA sequences with a broad specificity, are at the heart of the regulation pathways that lead to the choice of alternative splice sites. Moreover, a growing body of evidence shows that the mechanisms of splicing regulation are not limited to the basic involvement of cis- and trans-acting factors at the pre-mRNA level, but result from intricate pathways, initiated sometimes by stimuli that are external to the cell and integrate SR proteins (and other factors) within an extremely sophisticated network of molecular machines associated with one another. This review focuses on the molecular aspects of the functions of SR proteins. In particular, we discuss the different ways in which SR proteins manage to achieve a high level of specificity in splicing regulation, even though they are also involved in the constitutive reaction.
Collapse
Affiliation(s)
- Cyril F Bourgeois
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, 67404 Illkirch, C.U. Strasbourg, France
| | | | | |
Collapse
|
50
|
MacMorris M, Brocker C, Blumenthal T. UAP56 levels affect viability and mRNA export in Caenorhabditis elegans. RNA (NEW YORK, N.Y.) 2003; 9:847-57. [PMID: 12810918 PMCID: PMC1370451 DOI: 10.1261/rna.5480803] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2003] [Accepted: 04/14/2003] [Indexed: 05/20/2023]
Abstract
Expression of a gfp transgene in the intestines of living Caenorhabditis elegans has been measured following depletion by RNAi of a variety of known splicing factors and mRNA export proteins. Reduction of most splicing factors showed only a small effect on expression of the transgene in the animal injected with dsRNA, although most of these RNAi's resulted in embryonic lethality in their offspring. In contrast, RNAi of nxf-1, the worm homolog of mammalian NXF1/TAP, a key component of the mRNA export machinery, resulted in dramatic suppression of GFP expression in the injected animals. When we tested other proteins previously reported to be involved in marking mRNAs for export, we obtained widely divergent results. Whereas RNAi of the worm REF/Aly homologs had no obvious effect, either in the injected animals or their offspring, RNAi of UAP56, reported to be the partner of REF/Aly, resulted in strong suppression of GFP expression due to nuclear retention of its mRNA. Overexpression of UAP56 also resulted in rapid loss of GFP expression and lethality at all stages of development. We conclude that UAP56 plays a key role in mRNA export in C. elegans, but that REF/Aly may not. It also appears that some RNA processing factors are required for viability (e.g., U2AF, PUF60, SRp54, SAP49, PRP8, U1-70K), whereas others are not (e.g., U2A', CstF50).
Collapse
Affiliation(s)
- Margaret MacMorris
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Denver, Colorado 80262, USA
| | | | | |
Collapse
|