1
|
Arhab Y, Pestova TV, Hellen CUT. Translation of Overlapping Open Reading Frames Promoted by Type 2 IRESs in Avian Calicivirus Genomes. Viruses 2024; 16:1413. [PMID: 39339889 PMCID: PMC11436067 DOI: 10.3390/v16091413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024] Open
Abstract
Caliciviruses have positive-sense RNA genomes, typically with short 5'-untranslated regions (5'UTRs) that precede the long open reading frame 1 (ORF1). Exceptionally, some avian caliciviruses have long 5'UTRs containing a picornavirus-like internal ribosomal entry site (IRES), which was likely acquired by horizontal gene transfer. Here, we identified numerous additional avian calicivirus genomes with IRESs, predominantly type 2, and determined that many of these genomes contain a ~200-300 codon-long ORF (designated ORF1*) that overlaps the 5'-terminal region of ORF1. The activity of representative type 2 IRESs from grey teal calicivirus (GTCV) and Caliciviridae sp. isolate yc-13 (RaCV1) was confirmed by in vitro translation. Toeprinting showed that in cell-free extracts and in vitro reconstituted reactions, ribosomal initiation complexes assembled on the ORF1* initiation codon and at one or two AUG codons in ORF1 at the 3'-border and/or downstream of the IRES. Initiation at all three sites required eIF4A and eIF4G, which bound to a conserved region of the IRES; initiation on the ORF1* and principal ORF1 initiation codons involved eIF1/eIF1A-dependent scanning from the IRES's 3'-border. Initiation on these IRESs was enhanced by the IRES trans-acting factors (ITAFs) Ebp1/ITAF45, which bound to the apical subdomain Id of the IRES, and PTB (GTCV) or PCBP2 (RaCV1).
Collapse
Affiliation(s)
- Yani Arhab
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Tatyana V Pestova
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Christopher U T Hellen
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| |
Collapse
|
2
|
Villa N, Fraser CS. Human eukaryotic initiation factor 4G directly binds the 40S ribosomal subunit to promote efficient translation. J Biol Chem 2024; 300:107242. [PMID: 38569933 PMCID: PMC11063902 DOI: 10.1016/j.jbc.2024.107242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/05/2024] Open
Abstract
Messenger RNA (mRNA) recruitment to the 40S ribosomal subunit is mediated by eukaryotic initiation factor 4F (eIF4F). This complex includes three subunits: eIF4E (m7G cap-binding protein), eIF4A (DEAD-box helicase), and eIF4G. Mammalian eIF4G is a scaffold that coordinates the activities of eIF4E and eIF4A and provides a bridge to connect the mRNA and 40S ribosomal subunit through its interaction with eIF3. While the roles of many eIF4G binding domains are relatively clear, the precise function of RNA binding by eIF4G remains to be elucidated. In this work, we used an eIF4G-dependent translation assay to reveal that the RNA binding domain (eIF4G-RBD; amino acids 682-720) stimulates translation. This stimulating activity is observed when eIF4G is independently tethered to an internal region of the mRNA, suggesting that the eIF4G-RBD promotes translation by a mechanism that is independent of the m7G cap and mRNA tethering. Using a kinetic helicase assay, we show that the eIF4G-RBD has a minimal effect on eIF4A helicase activity, demonstrating that the eIF4G-RBD is not required to coordinate eIF4F-dependent duplex unwinding. Unexpectedly, native gel electrophoresis and fluorescence polarization assays reveal a previously unidentified direct interaction between eIF4G and the 40S subunit. Using binding assays, our data show that this 40S subunit interaction is separate from the previously characterized interaction between eIF4G and eIF3. Thus, our work reveals how eIF4F can bind to the 40S subunit using eIF3-dependent and eIF3-independent binding domains to promote translation initiation.
Collapse
Affiliation(s)
- Nancy Villa
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, California, USA
| | - Christopher S Fraser
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, California, USA.
| |
Collapse
|
3
|
Ramos-Lorente SE, Berzal-Herranz B, Romero-López C, Berzal-Herranz A. Recruitment of the 40S ribosomal subunit by the West Nile virus 3' UTR promotes the cross-talk between the viral genomic ends for translation regulation. Virus Res 2024; 343:199340. [PMID: 38387694 PMCID: PMC10907855 DOI: 10.1016/j.virusres.2024.199340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/24/2024]
Abstract
Flaviviral RNA genomes are composed of discrete RNA structural units arranged in an ordered fashion and grouped into complex folded domains that regulate essential viral functions, e.g. replication and translation. This is achieved by adjusting the overall structure of the RNA genome via the establishment of inter- and intramolecular interactions. Translation regulation is likely the main process controlling flaviviral gene expression. Although the genomic 3' UTR is a key player in this regulation, little is known about the molecular mechanisms underlying this role. The present work provides evidence for the specific recruitment of the 40S ribosomal subunit by the 3' UTR of the West Nile virus RNA genome, showing that the joint action of both genomic ends contributes the positioning of the 40S subunit at the 5' end. The combination of structural mapping techniques revealed specific conformational requirements at the 3' UTR for 40S binding, involving the highly conserved SL-III, 5'DB, 3'DB and 3'SL elements, all involved in the translation regulation. These results point to the 40S subunit as a bridge to ensure cross-talk between both genomic ends during viral translation and support a link between 40S recruitment by the 3' UTR and translation control.
Collapse
Affiliation(s)
- Sara Esther Ramos-Lorente
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), CSIC, Av. del Conocimiento 17, 18016 Armilla Granada, Spain
| | - Beatriz Berzal-Herranz
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), CSIC, Av. del Conocimiento 17, 18016 Armilla Granada, Spain
| | - Cristina Romero-López
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), CSIC, Av. del Conocimiento 17, 18016 Armilla Granada, Spain.
| | - Alfredo Berzal-Herranz
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), CSIC, Av. del Conocimiento 17, 18016 Armilla Granada, Spain.
| |
Collapse
|
4
|
Abaeva IS, Pestova TV, Hellen CUT. Genetic mechanisms underlying the structural elaboration and dissemination of viral internal ribosomal entry sites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.17.590008. [PMID: 38883778 PMCID: PMC11178006 DOI: 10.1101/2024.04.17.590008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Viral internal ribosomal entry sites (IRESs) form several classes that use distinct mechanisms to mediate end-independent initiation of translation. The origin of viral IRESs is a longstanding question. The simplest IRESs comprise tandem pseudoknots and occur in the intergenic region (IGR) of Dicistroviridae genomes (order Picornavirales ). Larger IGR IRESs contain additional elements that determine specific properties such as binding to the head of the ribosoma l 40S subunit. Metagenomic analyses reported here identified novel groups of structurally distinct IGR-like IRESs. The smallest of these (∼120nt long) comprise three pseudoknots and bind directly to the ribosomal P site. Others are up to 260nt long: insertions occurred at specific loci, possibly reflecting non-templated nucleotide insertion during replication. Various groups can be arranged in order, differing by the cumulative addition of single structural elements, suggesting an accretion mechanism for the structural elaboration of IRESs. Identification of chimeric IRESs implicates recombinational exchange of domains as a second mechanism for the diversification of IRES structure. Recombination likely also accounts for the presence of IGR-like IRESs at the 5'-end of some dicistrovirus-like genomes (e.g. Hangzhou dicistrovirus 3) and in the RNA genomes of Tombusviridae (order Tolivirales ), Marnaviridae (order Picornavirale s), and the 'Ripiresk' picorna-like clade (order Picornavirale s).
Collapse
|
5
|
Villa N, Fraser CS. Human eukaryotic initiation factor 4G directly binds the 40S ribosomal subunit to promote efficient translation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.29.560218. [PMID: 37808713 PMCID: PMC10557762 DOI: 10.1101/2023.09.29.560218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Messenger RNA (mRNA) recruitment to the 40S ribosomal subunit is mediated by eukaryotic initiation factor 4F (eIF4F). This complex includes 3 subunits: eIF4E (m 7 G cap binding protein), eIF4A (DEAD box helicase), and eIF4G. Mammalian eIF4G is a scaffold that coordinates the activities of eIF4E and eIF4A and provides a bridge to connect the mRNA and 40S ribosomal subunit through its interaction with eIF3. While the roles of many eIF4G binding domains are relatively clear, the precise function of RNA binding by eIF4G remains to be elucidated. In this work, we used an eIF4G-dependent translation assay to reveal that the RNA binding domain (eIF4G-RBD; amino acids 682-720) stimulates translation. This stimulating activity is observed when eIF4G is independently tethered to an internal region of the mRNA, suggesting that the eIF4G-RBD promotes translation by a mechanism that is independent of the m 7 G cap and mRNA tethering. Using a kinetic helicase assay, we show that the eIF4G-RBD has a minimal effect on eIF4A helicase activity, demonstrating that the eIF4G-RBD is not required to coordinate eIF4F-dependent duplex unwinding. Unexpectedly, native gel electrophoresis and fluorescence polarization assays reveal a previously unidentified direct interaction between eIF4G and the 40S subunit. Using binding assays, our data show that this 40S subunit interaction is separate from the previously characterized interaction between eIF4G and eIF3. Thus, our work reveals how eIF4F can bind to the 40S subunit using eIF3-dependent and eIF3-independent binding domains to promote translation initiation.
Collapse
|
6
|
Solodushko V, Fouty B. Terminal hairpins improve protein expression in IRES-initiated mRNA in the absence of a cap and polyadenylated tail. Gene Ther 2023; 30:620-627. [PMID: 36828937 PMCID: PMC9951143 DOI: 10.1038/s41434-023-00391-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/26/2023]
Abstract
Synthesizing mRNA in vitro is a standard and simple procedure. Adding the 5' cap and 3' polyadenylated (poly(A)) tail to make this mRNA functional for use as a vaccine or therapy increases the time and cost of production and usually decreases the yield, however. We designed mRNA that lacked a cap and poly(A) tail but included an internal ribosomal entry site (IRES) to initiate protein translation. To protect the 5' and 3' ends of mRNA from exonucleases, we added stable terminal hairpins. When compared against typical mRNA (i.e., mRNA that contained a cap and poly(A) tail but lacked hairpins), expression of the delivered reporter protein in HEK293 cells was similar. Using a triple instead of a single hairpin at each end increased protein expression even more. This method has the potential to simplify the production and reduce the cost of synthesizing exogenous mRNA for use as biologics or vaccines.
Collapse
Affiliation(s)
- Victor Solodushko
- Department of Pharmacology, University of South Alabama School of Medicine, Mobile, AL, 36688, USA.
- The Center for Lung Biology, University of South Alabama School of Medicine, Mobile, AL, 36688, USA.
| | - Brian Fouty
- Department of Pharmacology, University of South Alabama School of Medicine, Mobile, AL, 36688, USA.
- The Center for Lung Biology, University of South Alabama School of Medicine, Mobile, AL, 36688, USA.
- Department of Internal Medicine, University of South Alabama School of Medicine, Mobile, AL, 36688, USA.
- The Division of Pulmonary and Critical Care Medicine, University of South Alabama School of Medicine, Mobile, AL, 36688, USA.
| |
Collapse
|
7
|
Miścicka A, Lu K, Abaeva IS, Pestova TV, Hellen CUT. Initiation of translation on nedicistrovirus and related intergenic region IRESs by their factor-independent binding to the P site of 80S ribosomes. RNA (NEW YORK, N.Y.) 2023; 29:1051-1068. [PMID: 37041031 PMCID: PMC10275262 DOI: 10.1261/rna.079599.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/27/2023] [Indexed: 06/18/2023]
Abstract
Initiation of translation on many viral mRNAs occurs by noncanonical mechanisms that involve 5' end-independent binding of ribosomes to an internal ribosome entry site (IRES). The ∼190-nt-long intergenic region (IGR) IRES of dicistroviruses such as cricket paralysis virus (CrPV) initiates translation without Met-tRNAi Met or initiation factors. Advances in metagenomics have revealed numerous dicistrovirus-like genomes with shorter, structurally distinct IGRs, such as nedicistrovirus (NediV) and Antarctic picorna-like virus 1 (APLV1). Like canonical IGR IRESs, the ∼165-nt-long NediV-like IGRs comprise three domains, but they lack key canonical motifs, including L1.1a/L1.1b loops (which bind to the L1 stalk of the ribosomal 60S subunit) and the apex of stem-loop V (SLV) (which binds to the head of the 40S subunit). Domain 2 consists of a compact, highly conserved pseudoknot (PKIII) that contains a UACUA loop motif and a protruding CrPV-like stem--loop SLIV. In vitro reconstitution experiments showed that NediV-like IRESs initiate translation from a non-AUG codon and form elongation-competent 80S ribosomal complexes in the absence of initiation factors and Met-tRNAi Met Unlike canonical IGR IRESs, NediV-like IRESs bind directly to the peptidyl (P) site of ribosomes leaving the aminoacyl (A) site accessible for decoding. The related structures of NediV-like IRESs and their common mechanism of action indicate that they exemplify a distinct class of IGR IRES.
Collapse
Affiliation(s)
- Anna Miścicka
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York 11203, USA
| | - Kristen Lu
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York 11203, USA
| | - Irina S Abaeva
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York 11203, USA
| | - Tatyana V Pestova
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York 11203, USA
| | - Christopher U T Hellen
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York 11203, USA
| |
Collapse
|
8
|
Zhong H, Lou C, Ren B, Pi J, Dai T, Qin W, Zhou Y. Hepatic transcriptome analysis provides new insights into ghrelin regulation of the liver in Nile tilapia ( Oreochromis niloticus). Front Vet Sci 2023; 10:1192195. [PMID: 37388466 PMCID: PMC10301726 DOI: 10.3389/fvets.2023.1192195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/22/2023] [Indexed: 07/01/2023] Open
Abstract
Ghrelin is a growth-promoting hormone produced by the gastrointestinal tract that plays a crucial role through the ghrelin-growth hormone secretagogue receptor (GHS-R) and growth hormone/insulin-like growth factor-1 (GH/IGF-1) axes. To explore the effect of ghrelin on the transcriptomic profile of tilapia liver, the hepatic transcriptome of tilapia was sequenced for two groups, including saline-injected control (CL) and ghrelin-injected (GL; 2 μg/g body weight) tilapia. The transcriptome of livers from the two groups was sequenced using an Illumina HiSeqTM 2000 platform and yielded approximately 310.53 million raw reads. Subsequently, approximately 308.51 million clean reads were obtained from the total raw reads using in-house Perl scripts. Approximately 92.36% clean reads were mapped to the Nile tilapia genome using RSEM. Using the DESeq package, 250 differentially expressed genes (DEGs) were identified. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed enrichment of two pathways related to RNA transcription (ribosome biogenesis in eukaryotes pathway and RNA transport pathway), with a total of 14 functional DEGs. ATP-binding and muscle contraction terms were identified as enriched using Gene Ontology (GO), yielding a total of 28 DEGs. Finally, real-time quantitative PCR (RT-qPCR) was used to confirm the accuracy of the transcriptomic results. The results of RT-qPCR were highly consistent with the RNA-seq, indicating that results of RNA-seq were valid. The differences in gene expression between the groups indicated that ghrelin-injection altered energy metabolism and RNA transcription in the tilapia liver, which provides new information to help promote the growth of tilapia.
Collapse
|
9
|
Abaeva IS, Arhab Y, Miścicka A, Hellen CUT, Pestova TV. In vitro reconstitution of SARS CoV-2 Nsp1-induced mRNA cleavage reveals the key roles of the N-terminal domain of Nsp1 and the RRM domain of eIF3g. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.25.542379. [PMID: 37292671 PMCID: PMC10245999 DOI: 10.1101/2023.05.25.542379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
SARS CoV-2 nonstructural protein 1 (Nsp1) is the major pathogenesis factor that inhibits host translation using a dual strategy of impairing initiation and inducing endonucleolytic cleavage of cellular mRNAs. To investigate the mechanism of cleavage, we reconstituted it in vitro on β-globin, EMCV IRES and CrPV IRES mRNAs that use unrelated initiation mechanisms. In all instances, cleavage required Nsp1 and only canonical translational components (40S subunits and initiation factors), arguing against involvement of a putative cellular RNA endonuclease. Requirements for initiation factors differed for these mRNAs, reflecting their requirements for ribosomal attachment. Cleavage of CrPV IRES mRNA was supported by a minimal set of components consisting of 40S subunits and eIF3g's RRM domain. The cleavage site was located in the coding region 18 nucleotides downstream from the mRNA entrance indicating that cleavage occurs on the solvent side of the 40S subunit. Mutational analysis identified a positively charged surface on Nsp1's N-terminal domain (NTD) and a surface above the mRNA-binding channel on eIF3g's RRM domain that contain residues essential for cleavage. These residues were required for cleavage on all three mRNAs, highlighting general roles of Nsp1-NTD and eIF3g's RRM domain in cleavage per se, irrespective of the mode of ribosomal attachment.
Collapse
Affiliation(s)
- Irina S. Abaeva
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Yani Arhab
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Anna Miścicka
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | | | - Tatyana V. Pestova
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| |
Collapse
|
10
|
Abstract
Viruses lack the properties to replicate independently due to the limited resources encoded in their genome; therefore, they hijack the host cell machinery to replicate and survive. Picornaviruses get the prerequisite for effective protein synthesis through specific sequences known as internal ribosome entry sites (IRESs). In the past 2 decades, significant progress has been made in identifying different types of IRESs in picornaviruses. This review will discuss the past and current findings related to the five different types of IRESs and various internal ribosome entry site trans-acting factors (ITAFs) that either promote or suppress picornavirus translation and replication. Some IRESs are inefficient and thus require ITAFs. To achieve their full efficiency, they recruit various ITAFs, which enable them to translate more effectively and efficiently, except type IV IRES, which does not require any ITAFs. Although there are two kinds of ITAFs, one promotes viral IRES-dependent translation, and the second type restricts. Picornaviruses IRESs are classified into five types based on their use of sequence, ITAFs, and initiation factors. Some ITAFs regulate IRES activity by localizing to the viral replication factories in the cytoplasm. Also, some drugs, chemicals, and herbal extracts also regulate viral IRES-dependent translation and replication. Altogether, this review will elaborate on our understanding of the past and recent advancements in the IRES-dependent translation and replication of picornaviruses. IMPORTANCE The family Picornaviridae is divided into 68 genera and 158 species. The viruses belonging to this family range from public health importance, such as poliovirus, enterovirus A71, and hepatitis A virus, to animal viruses of great economic importance, such as foot-and-mouth disease virus. The genomes of picornaviruses contain 5' untranslated regions (5' UTRs), which possess crucial and highly structured stem-loops known as IRESs. IRES assemble the ribosomes and facilitate the cap-independent translation. Virus-host interaction is a hot spot for researchers, which warrants deep insight into understanding viral pathogenesis better and discovering new tools and ways for viral restriction to improve human and animal health. The cap-independent translation in the majority of picornaviruses is modulated by ITAFs, which bind to various IRES regions to initiate the translation. The discoveries of ITAFs substantially contributed to understanding viral replication behavior and enhanced our knowledge about virus-host interaction more effectively than ever before. This review discussed the various types of IRESs found in Picornaviridae, past and present discoveries regarding ITAFs, and their mechanism of action. The herbal extracts, drugs, and chemicals, which indicated their importance in controlling viruses, were also summarized. In addition, we discussed the movement of ITAFs from the nucleus to viral replication factories. We believe this review will stimulate researchers to search for more novel ITAFs, drugs, herbal extracts, and chemicals, enhancing the understanding of virus-host interaction.
Collapse
|
11
|
Liu Y, Cui J, Hoffman AR, Hu JF. Eukaryotic translation initiation factor eIF4G2 opens novel paths for protein synthesis in development, apoptosis and cell differentiation. Cell Prolif 2023; 56:e13367. [PMID: 36547008 PMCID: PMC9977666 DOI: 10.1111/cpr.13367] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/21/2022] [Accepted: 11/04/2022] [Indexed: 12/24/2022] Open
Abstract
Protein translation is a critical regulatory event involved in nearly all physiological and pathological processes. Eukaryotic translation initiation factors are dedicated to translation initiation, the most highly regulated stage of protein synthesis. Eukaryotic translation initiation factor 4G2 (eIF4G2, also called p97, NAT1 and DAP5), an eIF4G family member that lacks the binding sites for 5' cap binding protein eIF4E, is widely considered to be a key factor for internal ribosome entry sites (IRESs)-mediated cap-independent translation. However, recent findings demonstrate that eIF4G2 also supports many other translation initiation pathways. In this review, we summarize the role of eIF4G2 in a variety of cap-independent and -dependent translation initiation events. Additionally, we also update recent findings regarding the role of eIF4G2 in apoptosis, cell survival, cell differentiation and embryonic development. These studies reveal an emerging new picture of how eIF4G2 utilizes diverse translational mechanisms to regulate gene expression.
Collapse
Affiliation(s)
- Yudi Liu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital, Jilin University, Changchun, Jilin, P.R. China
| | - Jiuwei Cui
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital, Jilin University, Changchun, Jilin, P.R. China
| | - Andrew R Hoffman
- Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, California, USA
| | - Ji-Fan Hu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital, Jilin University, Changchun, Jilin, P.R. China.,Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, California, USA
| |
Collapse
|
12
|
Liu Y, Wu Z, Wu D, Gao N, Lin J. Reconstitution of Multi-Protein Complexes through Ribozyme-Assisted Polycistronic Co-Expression. ACS Synth Biol 2022; 12:136-143. [PMID: 36512506 PMCID: PMC9872166 DOI: 10.1021/acssynbio.2c00416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In living cells, proteins often exert their functions by interacting with other proteins forming protein complexes. Obtaining homogeneous samples of protein complexes with correct fold and stoichiometry is critical for its biochemical and biophysical characterization as well as functional investigation. Here, we developed a Ribozyme-Assisted Polycistronic co-expression system (pRAP) for heterologous co-production and in vivo assembly of multi-subunit complexes. In the pRAP system, a polycistronic mRNA transcript is co-transcriptionally converted into individual mono-cistrons in vivo. Each cistron can initiate translation with comparable efficiency, resulting in balanced production for all subunits, thus permitting faithful protein complex assembly. With pRAP polycistronic co-expression, we have successfully reconstituted large functional multi-subunit complexes involved in mammalian translation initiation. Our invention provides a valuable tool for studying the molecular mechanisms of biological processes.
Collapse
Affiliation(s)
- Yan Liu
- State
Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan
Hospital, Fudan University, Shanghai 200438, China
| | - Zihan Wu
- State
Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan
Hospital, Fudan University, Shanghai 200438, China
| | - Damu Wu
- State
Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for
Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ning Gao
- State
Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for
Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jinzhong Lin
- State
Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan
Hospital, Fudan University, Shanghai 200438, China,. Tel.: +86-21-31246764
| |
Collapse
|
13
|
Whisenant CC, Shaw RM. Internal translation of Gja1 (Connexin43) to produce GJA1-20k: Implications for arrhythmia and ischemic-preconditioning. Front Physiol 2022; 13:1058954. [PMID: 36569758 PMCID: PMC9768480 DOI: 10.3389/fphys.2022.1058954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Internal translation is a form of post-translation modification as it produces different proteins from one mRNA molecule by beginning translation at a methionine coding triplet downstream of the first methionine. Internal translation can eliminate domains of proteins that otherwise restrict movement or activity, thereby creating profound functional diversity. Connexin43 (Cx43), encoded by the gene Gja1, is the main gap junction protein necessary for propagating action potentials between adjacent cardiomyocytes. Gja1 can be internally translated to produce a peptide 20 kD in length named GJA1-20k. This review focuses on the role of GJA1-20k in maintaining cardiac electrical rhythm as well as in ischemic preconditioning (IPC). Connexin43 is the only ion channel we are aware that has been reported to be subject to internal translation. We expect many other ion channels also undergo internal translation. The exploration of post-translational modification of ion channels, and in particular of internal translation, has the potential to greatly increase our understanding of both canonical and non-canonical ion channel biology.
Collapse
|
14
|
Andreev DE, Niepmann M, Shatsky IN. Elusive Trans-Acting Factors Which Operate with Type I (Poliovirus-like) IRES Elements. Int J Mol Sci 2022; 23:ijms232415497. [PMID: 36555135 PMCID: PMC9778869 DOI: 10.3390/ijms232415497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
The phenomenon of internal initiation of translation was discovered in 1988 on poliovirus mRNA. The prototypic cis-acting element in the 5' untranslated region (5'UTR) of poliovirus mRNA, which is able to direct initiation at an internal start codon without the involvement of a cap structure, has been called an IRES (Internal Ribosome Entry Site or Segment). Despite its early discovery, poliovirus and other related IRES elements of type I are poorly characterized, and it is not yet clear which host proteins (a.k.a. IRES trans-acting factors, ITAFs) are required for their full activity in vivo. Here we discuss recent and old results devoted to type I IRESes and provide evidence that Poly(rC) binding protein 2 (PCBP2), Glycyl-tRNA synthetase (GARS), and Cold Shock Domain Containing E1 (CSDE1, also known as UNR) are major regulators of type I IRES activity.
Collapse
Affiliation(s)
- Dmitry E. Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Michael Niepmann
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, 35392 Giessen, Germany
| | - Ivan N. Shatsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Correspondence:
| |
Collapse
|
15
|
Sadic M, Schneider WM, Katsara O, Medina GN, Fisher A, Mogulothu A, Yu Y, Gu M, de los Santos T, Schneider RJ, Dittmann M. DDX60 selectively reduces translation off viral type II internal ribosome entry sites. EMBO Rep 2022; 23:e55218. [PMID: 36256515 PMCID: PMC9724679 DOI: 10.15252/embr.202255218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/07/2022] [Accepted: 09/15/2022] [Indexed: 11/05/2022] Open
Abstract
Co-opting host cell protein synthesis is a hallmark of many virus infections. In response, certain host defense proteins limit mRNA translation globally, albeit at the cost of the host cell's own protein synthesis. Here, we describe an interferon-stimulated helicase, DDX60, that decreases translation from viral internal ribosome entry sites (IRESs). DDX60 acts selectively on type II IRESs of encephalomyocarditis virus (EMCV) and foot and mouth disease virus (FMDV), but not by other IRES types or by 5' cap. Correspondingly, DDX60 reduces EMCV and FMDV (type II IRES) replication, but not that of poliovirus or bovine enterovirus 1 (BEV-1; type I IRES). Furthermore, replacing the IRES of poliovirus with a type II IRES is sufficient for DDX60 to inhibit viral replication. Finally, DDX60 selectively modulates the amount of translating ribosomes on viral and in vitro transcribed type II IRES mRNAs, but not 5' capped mRNA. Our study identifies a novel facet in the repertoire of interferon-stimulated effector genes, the selective downregulation of translation from viral type II IRES elements.
Collapse
Affiliation(s)
| | | | | | - Gisselle N Medina
- Plum Island Animal Disease Center, ARSUSDAGreenportNYUSA,National Bio and Agro‐Defense Facility (NBAF), ARSUSDAManhattanKSUSA
| | | | - Aishwarya Mogulothu
- Plum Island Animal Disease Center, ARSUSDAGreenportNYUSA,Department of Pathobiology and Veterinary ScienceUniversity of ConnecticutStorrsCTUSA
| | - Yingpu Yu
- The Rockefeller UniversityNew YorkNYUSA
| | | | | | | | | |
Collapse
|
16
|
Shi JJ, Cao Y, Lang QH, Dong Y, Huang LY, Yang LJ, Li JJ, Zhang XX, Wang DY. The effect of the nucleotides immediately upstream of the AUG start codon on the efficiency of translation initiation in sperm cells. PLANT REPRODUCTION 2022; 35:221-231. [PMID: 35674836 DOI: 10.1007/s00497-022-00442-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
It is widely known that an optimal nucleotide sequence context immediately upstream of the AUG start codon greatly improves the efficiency of translation initiation of mRNA in mammalian and plant somatic cells, which in turn increases protein levels. However, it is still unclear whether a similar regulatory mechanism is also present in highly differentiated cells. Here, we surveyed this issue in Arabidopsis thaliana sperm cells and found that the sequence context-mediated regulation of translation initiation in sperm cells is generally similar to that in somatic cells. A simple motif of four adenine nucleotides at positions - 1 to - 4 greatly improved the efficiency of translation initiation, and when the motif was present there, translation was even initiated at some non-AUG codons in sperm cells. However, unlike that in mammalian cells, a mainly effective nucleotide site to regulate the efficiency of translation initiation was not present at positions - 1 to - 4 in sperm cells. Meanwhile, different from somatic cells, sperm cells did not use eukaryotic translation initiation factor 1 to regulate the efficiency in a poor context consisting of the lowest frequency nucleotides. All these results contribute to our understanding of the cytoplasmic event of translation initiation in highly differentiated sperm cells.
Collapse
Affiliation(s)
- Jiao-Jiao Shi
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi'an, 710069, China
| | - Yuan Cao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi'an, 710069, China
| | - Qiu-Hua Lang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi'an, 710069, China
| | - Yao Dong
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi'an, 710069, China
| | - Liu-Yuan Huang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi'an, 710069, China
| | - Liu-Jie Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi'an, 710069, China
| | - Jing-Jing Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi'an, 710069, China
| | - Xue-Xin Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi'an, 710069, China
| | - Dan-Yang Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
17
|
Condé L, Allatif O, Ohlmann T, de Breyne S. Translation of SARS-CoV-2 gRNA Is Extremely Efficient and Competitive despite a High Degree of Secondary Structures and the Presence of an uORF. Viruses 2022; 14:1505. [PMID: 35891485 PMCID: PMC9322171 DOI: 10.3390/v14071505] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 12/15/2022] Open
Abstract
The SARS-CoV-2 infection generates up to nine different sub-genomic mRNAs (sgRNAs), in addition to the genomic RNA (gRNA). The 5'UTR of each viral mRNA shares the first 75 nucleotides (nt.) at their 5'end, called the leader, but differentiates by a variable sequence (0 to 190 nt. long) that follows the leader. As a result, each viral mRNA has its own specific 5'UTR in term of length, RNA structure, uORF and Kozak context; each one of these characteristics could affect mRNA expression. In this study, we have measured and compared translational efficiency of each of the ten viral transcripts. Our data show that most of them are very efficiently translated in all translational systems tested. Surprisingly, the gRNA 5'UTR, which is the longest and the most structured, was also the most efficient to initiate translation. This property is conserved in the 5'UTR of SARS-CoV-1 but not in MERS-CoV strain, mainly due to the regulation imposed by the uORF. Interestingly, the translation initiation mechanism on the SARS-CoV-2 gRNA 5'UTR requires the cap structure and the components of the eIF4F complex but showed no dependence in the presence of the poly(A) tail in vitro. Our data strongly suggest that translation initiation on SARS-CoV-2 mRNAs occurs via an unusual cap-dependent mechanism.
Collapse
Affiliation(s)
| | | | - Théophile Ohlmann
- CIRI, Centre International de Recherche en Infectiologie, (Team Ohlmann), Univ Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, F-69007 Lyon, France; (L.C.); (O.A.)
| | - Sylvain de Breyne
- CIRI, Centre International de Recherche en Infectiologie, (Team Ohlmann), Univ Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, F-69007 Lyon, France; (L.C.); (O.A.)
| |
Collapse
|
18
|
Friedrich D, Marintchev A, Arthanari H. The metaphorical swiss army knife: The multitude and diverse roles of HEAT domains in eukaryotic translation initiation. Nucleic Acids Res 2022; 50:5424-5442. [PMID: 35552740 PMCID: PMC9177959 DOI: 10.1093/nar/gkac342] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 11/24/2022] Open
Abstract
Biomolecular associations forged by specific interaction among structural scaffolds are fundamental to the control and regulation of cell processes. One such structural architecture, characterized by HEAT repeats, is involved in a multitude of cellular processes, including intracellular transport, signaling, and protein synthesis. Here, we review the multitude and versatility of HEAT domains in the regulation of mRNA translation initiation. Structural and cellular biology approaches, as well as several biophysical studies, have revealed that a number of HEAT domain-mediated interactions with a host of protein factors and RNAs coordinate translation initiation. We describe the basic structural architecture of HEAT domains and briefly introduce examples of the cellular processes they dictate, including nuclear transport by importin and RNA degradation. We then focus on proteins in the translation initiation system featuring HEAT domains, specifically the HEAT domains of eIF4G, DAP5, eIF5, and eIF2Bϵ. Comparative analysis of their remarkably versatile interactions, including protein-protein and protein-RNA recognition, reveal the functional importance of flexible regions within these HEAT domains. Here we outline how HEAT domains orchestrate fundamental aspects of translation initiation and highlight open mechanistic questions in the area.
Collapse
Affiliation(s)
- Daniel Friedrich
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Assen Marintchev
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA, USA
| | - Haribabu Arthanari
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
19
|
van der Donk LEH, van der Spek J, van Duivenvoorde T, Ten Brink MS, Geijtenbeek TBH, Kuijl CP, van Heijst JWJ, Ates LS. An optimized retroviral toolbox for overexpression and genetic perturbation of primary lymphocytes. Biol Open 2022; 11:274579. [PMID: 35229875 PMCID: PMC8905627 DOI: 10.1242/bio.059032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/11/2022] [Indexed: 11/20/2022] Open
Abstract
Genetic manipulation of primary lymphocytes is crucial for both clinical purposes and fundamental research. Despite their broad use, we encountered a paucity of data on systematic comparison and optimization of retroviral vectors, the workhorses of genetic modification of primary lymphocytes. Here, we report the construction and validation of a versatile range of retroviral expression vectors. These vectors can be used for the knockdown or overexpression of genes of interest in primary human and murine lymphocytes, in combination with a wide choice of selection and reporter strategies. By streamlining the vector backbone and insert design, these publicly available vectors allow easy interchangeability of the independent building blocks, such as different promoters, fluorescent proteins, surface markers and antibiotic resistance cassettes. We validated these vectors and tested the optimal promoters for in vitro and in vivo overexpression and knockdown of the murine T cell antigen receptor. By publicly sharing these vectors and the data on their optimization, we aim to facilitate genetic modification of primary lymphocytes for researchers entering this field. Summary: Viral transduction is generally the method of choice for genetic manipulation of primary lymphocytes. Here, the authors systematically compared different genetic components and created and shared an optimized set of vectors that can be used in all aspects of research on T cells.
Collapse
Affiliation(s)
- Lieve E H van der Donk
- Department of Experimental Immunology, Amsterdam institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
| | - Jet van der Spek
- Department of Experimental Immunology, Amsterdam institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
| | - Tom van Duivenvoorde
- Department of Experimental Immunology, Amsterdam institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
| | - Marieke S Ten Brink
- Division of Infectious Diseases and Center of Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
| | - Teunis B H Geijtenbeek
- Department of Experimental Immunology, Amsterdam institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
| | - Coenraad P Kuijl
- Medical Microbiology and Infection Control, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, the Netherlands
| | - Jeroen W J van Heijst
- Department of Experimental Immunology, Amsterdam institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
| | - Louis S Ates
- Department of Experimental Immunology, Amsterdam institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands.,Medical Microbiology and Infection Control, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, the Netherlands
| |
Collapse
|
20
|
RNA-Binding Proteins as Regulators of Internal Initiation of Viral mRNA Translation. Viruses 2022; 14:v14020188. [PMID: 35215780 PMCID: PMC8879377 DOI: 10.3390/v14020188] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/03/2022] [Accepted: 01/14/2022] [Indexed: 12/17/2022] Open
Abstract
Viruses are obligate intracellular parasites that depend on the host’s protein synthesis machinery for translating their mRNAs. The viral mRNA (vRNA) competes with the host mRNA to recruit the translational machinery, including ribosomes, tRNAs, and the limited eukaryotic translation initiation factor (eIFs) pool. Many viruses utilize non-canonical strategies such as targeting host eIFs and RNA elements known as internal ribosome entry sites (IRESs) to reprogram cellular gene expression, ensuring preferential translation of vRNAs. In this review, we discuss vRNA IRES-mediated translation initiation, highlighting the role of RNA-binding proteins (RBPs), other than the canonical translation initiation factors, in regulating their activity.
Collapse
|
21
|
Insights from structural studies of the Cardiovirus 2A protein. Biosci Rep 2022; 42:230648. [PMID: 35022657 PMCID: PMC8777194 DOI: 10.1042/bsr20210406] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 11/24/2022] Open
Abstract
Cardioviruses are single-stranded RNA viruses of the family Picornaviridae. In addition to being the first example of internal ribosome entry site (IRES) utilization, cardioviruses also employ a series of alternative translation strategies, such as Stop-Go translation and programmed ribosome frameshifting. Here, we focus on cardiovirus 2A protein, which is not only a primary virulence factor, but also exerts crucial regulatory functions during translation, including activation of viral ribosome frameshifting and inhibition of host cap-dependent translation. Only recently, biochemical and structural studies have allowed us to close the gaps in our knowledge of how cardiovirus 2A is able to act in diverse translation-related processes as a novel RNA-binding protein. This review will summarize these findings, which ultimately may lead to the discovery of other RNA-mediated gene expression strategies across a broad range of RNA viruses.
Collapse
|
22
|
Dierschke SK, Dennis MD. Retinal Protein O-GlcNAcylation and the Ocular Renin-angiotensin System: Signaling Cross-roads in Diabetic Retinopathy. Curr Diabetes Rev 2022; 18:e011121190177. [PMID: 33430751 PMCID: PMC8272735 DOI: 10.2174/1573399817999210111205933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 01/23/2023]
Abstract
It is well established that diabetes and its associated hyperglycemia negatively impact retinal function, yet we know little about the role played by augmented flux through the Hexosamine Biosynthetic Pathway (HBP). This offshoot of the glycolytic pathway produces UDP-Nacetyl- glucosamine, which serves as the substrate for post-translational O-linked modification of proteins in a process referred to as O-GlcNAcylation. HBP flux and subsequent protein O-GlcNAcylation serve as nutrient sensors, enabling cells to integrate metabolic information to appropriately modulate fundamental cellular processes including gene expression. Here we summarize the impact of diabetes on retinal physiology, highlighting recent studies that explore the role of O-GlcNAcylation- induced variation in mRNA translation in retinal dysfunction and the pathogenesis of Diabetic Retinopathy (DR). Augmented O-GlcNAcylation results in wide variation in the selection of mRNAs for translation, in part, due to O-GlcNAcylation of the translational repressor 4E-BP1. Recent studies demonstrate that 4E-BP1 plays a critical role in regulating O-GlcNAcylation-induced changes in the translation of the mRNAs encoding Vascular Endothelial Growth Factor (VEGF), a number of important mitochondrial proteins, and CD40, a key costimulatory molecule involved in diabetes-induced retinal inflammation. Remarkably, 4E-BP1/2 ablation delays the onset of diabetes- induced visual dysfunction in mice. Thus, pharmacological interventions to prevent the impact of O-GlcNAcylation on 4E-BP1 may represent promising therapeutics to address the development and progression of DR. In this regard, we discuss the potential interplay between retinal O-GlcNAcylation and the ocular renin-angiotensin system as a potential therapeutic target of future interventions.
Collapse
Affiliation(s)
- Sadie K. Dierschke
- Department of Cellular and Molecular Physiology, Penn State College of Medicine
| | - Michael D. Dennis
- Department of Cellular and Molecular Physiology, Penn State College of Medicine
- Department of Ophthalmology, Penn State College of Medicine
- Address correspondence to this author at the Department of Cellular and Molecular Physiology, H166, Penn State College of Medicine, 500 University Drive Hershey, PA 17033; Tel: (717)531-0003 Ext-282596; Fax: (717)531-7667;
| |
Collapse
|
23
|
Arhab Y, Miścicka A, Pestova TV, Hellen CUT. Horizontal gene transfer as a mechanism for the promiscuous acquisition of distinct classes of IRES by avian caliciviruses. Nucleic Acids Res 2021; 50:1052-1068. [PMID: 34928389 PMCID: PMC8789048 DOI: 10.1093/nar/gkab1243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 11/17/2021] [Accepted: 12/15/2021] [Indexed: 02/05/2023] Open
Abstract
In contrast to members of Picornaviridae which have long 5'-untranslated regions (5'UTRs) containing internal ribosomal entry sites (IRESs) that form five distinct classes, members of Caliciviridae typically have short 5'UTRs and initiation of translation on them is mediated by interaction of the viral 5'-terminal genome-linked protein (VPg) with subunits of eIF4F rather than by an IRES. The recent description of calicivirus genomes with 500-900nt long 5'UTRs was therefore unexpected and prompted us to examine them in detail. Sequence analysis and structural modelling of the atypically long 5'UTRs of Caliciviridae sp. isolate yc-13 and six other caliciviruses suggested that they contain picornavirus-like type 2 IRESs, whereas ruddy turnstone calicivirus (RTCV) and Caliciviridae sp. isolate hwf182cal1 calicivirus contain type 4 and type 5 IRESs, respectively. The suggestion that initiation on RTCV mRNA occurs by the type 4 IRES mechanism was confirmed experimentally using in vitro reconstitution. The high sequence identity between identified calicivirus IRESs and specific picornavirus IRESs suggests a common evolutionary origin. These calicivirus IRESs occur in a single phylogenetic branch of Caliciviridae and were likely acquired by horizontal gene transfer.
Collapse
Affiliation(s)
- Yani Arhab
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn NY 11203, USA
| | - Anna Miścicka
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn NY 11203, USA
| | - Tatyana V Pestova
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn NY 11203, USA
| | - Christopher U T Hellen
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn NY 11203, USA
| |
Collapse
|
24
|
Sweeney TR, Dhote V, Guca E, Hellen CUT, Hashem Y, Pestova T. Functional role and ribosomal position of the unique N-terminal region of DHX29, a factor required for initiation on structured mammalian mRNAs. Nucleic Acids Res 2021; 49:12955-12969. [PMID: 34883515 PMCID: PMC8682770 DOI: 10.1093/nar/gkab1192] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/12/2021] [Accepted: 11/22/2021] [Indexed: 02/05/2023] Open
Abstract
Translation initiation on structured mammalian mRNAs requires DHX29, a DExH protein that comprises a unique 534-aa-long N-terminal region (NTR) and a common catalytic DExH core. DHX29 binds to 40S subunits and possesses 40S-stimulated NTPase activity essential for its function. In the cryo-EM structure of DHX29-bound 43S preinitiation complexes, the main DHX29 density resides around the tip of helix 16 of 18S rRNA, from which it extends through a linker to the subunit interface forming an intersubunit domain next to the eIF1A binding site. Although a DExH core model can be fitted to the main density, the correlation between the remaining density and the NTR is unknown. Here, we present a model of 40S-bound DHX29, supported by directed hydroxyl radical cleavage data, showing that the intersubunit domain comprises a dsRNA-binding domain (dsRBD, aa 377-448) whereas linker corresponds to the long α-helix (aa 460-512) that follows the dsRBD. We also demonstrate that the N-terminal α-helix and the following UBA-like domain form a four-helix bundle (aa 90-166) that constitutes a previously unassigned section of the main density and resides between DHX29's C-terminal α-helix and the linker. In vitro reconstitution experiments revealed the critical and specific roles of these NTR elements for DHX29's function.
Collapse
Affiliation(s)
- Trevor R Sweeney
- Correspondence may also be addressed to Trevor R. Sweeney. Tel: +44 1483232441; Fax: +44 1483232448;
| | | | - Ewelina Guca
- INSERM U1212 Acides nucléiques : Régulations Naturelle et Artificielle (ARNA), Institut Européen de Chimie et Biologie, Université de Bordeaux, Pessac 33607, France
| | - Christopher U T Hellen
- Department of Cell Biology, SUNY Downstate Health Sciences University, 450 Clarkson Avenue, MSC 44, Brooklyn, NY 11203, USA
| | - Yaser Hashem
- Correspondence may also be addressed to Yaser Hashem. Tel: +33 5 40 00 88 22;
| | | |
Collapse
|
25
|
Shirokikh NE. Translation complex stabilization on messenger RNA and footprint profiling to study the RNA responses and dynamics of protein biosynthesis in the cells. Crit Rev Biochem Mol Biol 2021; 57:261-304. [PMID: 34852690 DOI: 10.1080/10409238.2021.2006599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
During protein biosynthesis, ribosomes bind to messenger (m)RNA, locate its protein-coding information, and translate the nucleotide triplets sequentially as codons into the corresponding sequence of amino acids, forming proteins. Non-coding mRNA features, such as 5' and 3' untranslated regions (UTRs), start sites or stop codons of different efficiency, stretches of slower or faster code and nascent polypeptide interactions can alter the translation rates transcript-wise. Most of the homeostatic and signal response pathways of the cells converge on individual mRNA control, as well as alter the global translation output. Among the multitude of approaches to study translational control, one of the most powerful is to infer the locations of translational complexes on mRNA based on the mRNA fragments protected by these complexes from endonucleolytic hydrolysis, or footprints. Translation complex profiling by high-throughput sequencing of the footprints allows to quantify the transcript-wise, as well as global, alterations of translation, and uncover the underlying control mechanisms by attributing footprint locations and sizes to different configurations of the translational complexes. The accuracy of all footprint profiling approaches critically depends on the fidelity of footprint generation and many methods have emerged to preserve certain or multiple configurations of the translational complexes, often in challenging biological material. In this review, a systematic summary of approaches to stabilize translational complexes on mRNA for footprinting is presented and major findings are discussed. Future directions of translation footprint profiling are outlined, focusing on the fidelity and accuracy of inference of the native in vivo translation complex distribution on mRNA.
Collapse
Affiliation(s)
- Nikolay E Shirokikh
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| |
Collapse
|
26
|
Sorokin II, Vassilenko KS, Terenin IM, Kalinina NO, Agol VI, Dmitriev SE. Non-Canonical Translation Initiation Mechanisms Employed by Eukaryotic Viral mRNAs. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1060-1094. [PMID: 34565312 PMCID: PMC8436584 DOI: 10.1134/s0006297921090042] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 12/12/2022]
Abstract
Viruses exploit the translation machinery of an infected cell to synthesize their proteins. Therefore, viral mRNAs have to compete for ribosomes and translation factors with cellular mRNAs. To succeed, eukaryotic viruses adopt multiple strategies. One is to circumvent the need for m7G-cap through alternative instruments for ribosome recruitment. These include internal ribosome entry sites (IRESs), which make translation independent of the free 5' end, or cap-independent translational enhancers (CITEs), which promote initiation at the uncapped 5' end, even if located in 3' untranslated regions (3' UTRs). Even if a virus uses the canonical cap-dependent ribosome recruitment, it can still perturb conventional ribosomal scanning and start codon selection. The pressure for genome compression often gives rise to internal and overlapping open reading frames. Their translation is initiated through specific mechanisms, such as leaky scanning, 43S sliding, shunting, or coupled termination-reinitiation. Deviations from the canonical initiation reduce the dependence of viral mRNAs on translation initiation factors, thereby providing resistance to antiviral mechanisms and cellular stress responses. Moreover, viruses can gain advantage in a competition for the translational machinery by inactivating individual translational factors and/or replacing them with viral counterparts. Certain viruses even create specialized intracellular "translation factories", which spatially isolate the sites of their protein synthesis from cellular antiviral systems, and increase availability of translational components. However, these virus-specific mechanisms may become the Achilles' heel of a viral life cycle. Thus, better understanding of the unconventional mechanisms of viral mRNA translation initiation provides valuable insight for developing new approaches to antiviral therapy.
Collapse
Affiliation(s)
- Ivan I Sorokin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Konstantin S Vassilenko
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Ilya M Terenin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Natalia O Kalinina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Vadim I Agol
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Institute of Poliomyelitis, Chumakov Center for Research and Development of Immunobiological Products, Russian Academy of Sciences, Moscow, 108819, Russia
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
27
|
Kulsuptrakul J, Wang R, Meyers NL, Ott M, Puschnik AS. A genome-wide CRISPR screen identifies UFMylation and TRAMP-like complexes as host factors required for hepatitis A virus infection. Cell Rep 2021; 34:108859. [PMID: 33730579 PMCID: PMC8893346 DOI: 10.1016/j.celrep.2021.108859] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 12/21/2020] [Accepted: 02/19/2021] [Indexed: 12/17/2022] Open
Abstract
Hepatitis A virus (HAV) is a positive-sense RNA virus causing acute inflammation of the liver. Here, using a genome-scale CRISPR screen, we provide a comprehensive picture of the cellular factors that are exploited by HAV. We identify genes involved in sialic acid/ganglioside biosynthesis and members of the eukaryotic translation initiation factor complex, corroborating their putative roles for HAV. Additionally, we uncover all components of the cellular machinery for UFMylation, a ubiquitin-like protein modification. We show that HAV translation specifically depends on UFM1 conjugation of the ribosomal protein RPL26. Furthermore, we find that components related to the yeast Trf4/5-Air1/2-Mtr4 polyadenylation (TRAMP) complex are required for viral translation independent of controlling viral poly(A) tails or RNA stability. Finally, we demonstrate that pharmacological inhibition of the TRAMP-like complex decreases HAV replication in hepatocyte cells and human liver organoids, thus providing a strategy for host-directed therapy of HAV infection. To identify host factors required for the infection with hepatitis A virus, Kulsuptrakul et al. conducted a genome-wide CRISPR knockout screen in human hepatocytes. They reveal that UFMylation of the ribosomal protein RPL26 as well as the polyadenylation activity of a TRAMP-like complex enhance viral translation.
Collapse
Affiliation(s)
| | - Ruofan Wang
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | | | - Melanie Ott
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | | |
Collapse
|
28
|
Trainor BM, Ghosh A, Pestov DG, Hellen CUT, Shcherbik N. A translation enhancer element from black beetle virus engages yeast eIF4G1 to drive cap-independent translation initiation. Sci Rep 2021; 11:2461. [PMID: 33510277 PMCID: PMC7844027 DOI: 10.1038/s41598-021-82025-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/14/2021] [Indexed: 01/13/2023] Open
Abstract
Cap-independent translation initiation plays crucial roles in fine-tuning gene expression under global translation shutdown conditions. Translation of uncapped or de-capped transcripts can be stimulated by Cap-independent translation enhancer (CITE) elements, but the mechanisms of CITE-mediated translation initiation remain understudied. Here, we characterized a short 5ʹ-UTR RNA sequence from black beetle virus, BBV-seq. Mutational analysis indicates that the entire BBV-seq is required for efficient translation initiation, but this sequence does not operate as an IRES-type module. In yeast cell-free translation extracts, BBV-seq promoted efficient initiation on cap-free mRNA using a scanning mechanism. Moreover, BBV-seq can increase translation efficiency resulting from conventional cap-dependent translation initiation. Using genetic approaches, we found that BBV-seq exploits RNA-binding properties of eIF4G1 to promote initiation. Thus, BBV-seq constitutes a previously uncharacterized short, linear CITE that influences eIF4G1 to initiate 5′ end-dependent, cap-independent translation. These findings bring new insights into CITE-mediated translational control of gene expression.
Collapse
Affiliation(s)
- Brandon M Trainor
- Department of Cell Biology and Neuroscience, School of Osteopathic Medicine, Rowan University, 2 Medical Center Drive, Stratford, NJ, 08084, USA.,Graduate School of Biomedical Sciences, Rowan University, 42 E. Laurel Road, Suite 2200, Stratford, NJ, 08084, USA
| | - Arnab Ghosh
- Department of Cell Biology and Neuroscience, School of Osteopathic Medicine, Rowan University, 2 Medical Center Drive, Stratford, NJ, 08084, USA.,Center for Gene Regulation in Health and Disease, Cleveland State University, 2121 Euclid Ave, Cleveland, OH, 44115, USA
| | - Dimitri G Pestov
- Department of Cell Biology and Neuroscience, School of Osteopathic Medicine, Rowan University, 2 Medical Center Drive, Stratford, NJ, 08084, USA
| | - Christopher U T Hellen
- Department of Cell Biology, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue MSC 44, Brooklyn, NY, 11203, USA
| | - Natalia Shcherbik
- Department of Cell Biology and Neuroscience, School of Osteopathic Medicine, Rowan University, 2 Medical Center Drive, Stratford, NJ, 08084, USA.
| |
Collapse
|
29
|
Tidu A, Janvier A, Schaeffer L, Sosnowski P, Kuhn L, Hammann P, Westhof E, Eriani G, Martin F. The viral protein NSP1 acts as a ribosome gatekeeper for shutting down host translation and fostering SARS-CoV-2 translation. RNA (NEW YORK, N.Y.) 2020; 27:rna.078121.120. [PMID: 33268501 PMCID: PMC7901841 DOI: 10.1261/rna.078121.120] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/29/2020] [Indexed: 05/10/2023]
Abstract
SARS-CoV-2 coronavirus is responsible for Covid-19 pandemic. In the early phase of infection, the single-strand positive RNA genome is translated into non-structural proteins (NSP). One of the first proteins produced during viral infection, NSP1, binds to the host ribosome and blocks the mRNA entry channel. This triggers translation inhibition of cellular translation. In spite of the presence of NSP1 on the ribosome, viral translation proceeds however. The molecular mechanism of the so-called viral evasion to NSP1 inhibition remains elusive. Here, we confirm that viral translation is maintained in the presence of NSP1. The evasion to NSP1-inhibition is mediated by the cis-acting RNA hairpin SL1 in the 5'UTR of SARS-CoV-2. NSP1-evasion can be transferred on a reporter transcript by SL1 transplantation. The apical part of SL1 is only required for viral translation. We show that NSP1 remains bound on the ribosome during viral translation. We suggest that the interaction between NSP1 and SL1 frees the mRNA accommodation channel while maintaining NSP1 bound to the ribosome. Thus, NSP1 acts as a ribosome gatekeeper, shutting down host translation or fostering SARS-CoV-2 translation depending on the presence of the SL1 5'UTR hairpin. SL1 is also present and necessary for translation of sub-genomic RNAs in the late phase of the infectious program. Consequently, therapeutic strategies targeting SL1 should affect viral translation at early and late stages of infection. Therefore, SL1 might be seen as a genuine 'Achille heel' of the virus.
Collapse
Affiliation(s)
- Antonin Tidu
- Institut de Biologie Moleculaire et Cellulaire, Architecture et Reactivite de l ARN CNRS UPR9002, Universite de Strasbourg, 2, allee Konrad Roentgen, F-67084 Strasbourg (France)
| | - Aurelie Janvier
- Institut de Biologie Moleculaire et Cellulaire, Architecture et Reactivite de l ARN CNRS UPR9002, Universite de Strasbourg, 2, allee Konrad Roentgen, F-67084 Strasbourg (France)
| | - Laure Schaeffer
- Institut de Biologie Moleculaire et Cellulaire, Architecture et Reactivite de l ARN CNRS UPR9002, Universite de Strasbourg, 2, allee Konrad Roentgen F-67084 Strasbourg (France)
| | - Piotr Sosnowski
- Institut de Biologie Moleculaire et Cellulaire, Architecture et Reactivite de l ARN CNRS UPR9002, Universite de Strasbourg, 2, allee Konrad Roentgen, F-67084 Strasbourg (France)
| | - Lauriane Kuhn
- Institut de Biologie Moleculaire et Cellulaire, Plateforme Proteomique Strasbourg Esplanade, CNRS FRC1589, Universite de Strasbourg, 2, allee Konrad Roentgen, F-67084 Strasbourg (France)
| | - Philippe Hammann
- Institut de Biologie Moleculaire et Cellulaire, Plateforme Proteomique Strasbourg Esplanade, CNRS FRC1589, Universite de Strasbourg, 2, allee Konrad Roentgen, F-67084 Strasbourg (France)
| | - Eric Westhof
- Institut de Biologie Moleculaire et Cellulaire, Architecture et Reactivite de l ARN CNRS UPR9002, Universite de Strasbourg, 2, allee Konrad Roentgen, F-67084 Strasbourg (France)
| | - Gilbert Eriani
- Institut de Biologie Moleculaire et Cellulaire, Architecture et Reactivite de l ARN CNRS UPR9002, Universite de Strasbourg, 2, allee Konrad Roentgen, F-67084 Strasbourg (France)
| | - Franck Martin
- Institut de Biologie Moleculaire et Cellulaire, Architecture et Reactivite de l ARN CNRS UPR9002, Universite de Strasbourg, 2, allee Konrad Roentgen, F-67084 Strasbourg (France);
| |
Collapse
|
30
|
Abaeva IS, Vicens Q, Bochler A, Soufari H, Simonetti A, Pestova TV, Hashem Y, Hellen CUT. The Halastavi árva Virus Intergenic Region IRES Promotes Translation by the Simplest Possible Initiation Mechanism. Cell Rep 2020; 33:108476. [PMID: 33296660 DOI: 10.1016/j.celrep.2020.108476] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/05/2020] [Accepted: 11/12/2020] [Indexed: 01/01/2023] Open
Abstract
Dicistrovirus intergenic region internal ribosomal entry sites (IGR IRESs) do not require initiator tRNA, an AUG codon, or initiation factors and jumpstart translation from the middle of the elongation cycle via formation of IRES/80S complexes resembling the pre-translocation state. eEF2 then translocates the [codon-anticodon]-mimicking pseudoknot I (PKI) from ribosomal A sites to P sites, bringing the first sense codon into the decoding center. Halastavi árva virus (HalV) contains an IGR that is related to previously described IGR IRESs but lacks domain 2, which enables these IRESs to bind to individual 40S ribosomal subunits. By using in vitro reconstitution and cryoelectron microscopy (cryo-EM), we now report that the HalV IGR IRES functions by the simplest initiation mechanism that involves binding to 80S ribosomes such that PKI is placed in the P site, so that the A site contains the first codon that is directly accessible for decoding without prior eEF2-mediated translocation of PKI.
Collapse
Affiliation(s)
- Irina S Abaeva
- Department of Cell Biology, SUNY Downstate Health Sciences University, 450 Clarkson Avenue, MSC 44, Brooklyn, NY 11203, USA
| | - Quentin Vicens
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, 15 rue René Descartes, 67000 Strasbourg, France
| | - Anthony Bochler
- INSERM U1212 Acides Nucléiques: Régulations Naturelle et Artificielle, Institut Européen de Chimie et Biologie, Université de Bordeaux, Pessac 33607, France; Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, 15 rue René Descartes, 67000 Strasbourg, France
| | - Heddy Soufari
- INSERM U1212 Acides Nucléiques: Régulations Naturelle et Artificielle, Institut Européen de Chimie et Biologie, Université de Bordeaux, Pessac 33607, France
| | - Angelita Simonetti
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, 15 rue René Descartes, 67000 Strasbourg, France
| | - Tatyana V Pestova
- Department of Cell Biology, SUNY Downstate Health Sciences University, 450 Clarkson Avenue, MSC 44, Brooklyn, NY 11203, USA.
| | - Yaser Hashem
- INSERM U1212 Acides Nucléiques: Régulations Naturelle et Artificielle, Institut Européen de Chimie et Biologie, Université de Bordeaux, Pessac 33607, France.
| | - Christopher U T Hellen
- Department of Cell Biology, SUNY Downstate Health Sciences University, 450 Clarkson Avenue, MSC 44, Brooklyn, NY 11203, USA.
| |
Collapse
|
31
|
Haizel SA, Bhardwaj U, Gonzalez RL, Mitra S, Goss DJ. 5'-UTR recruitment of the translation initiation factor eIF4GI or DAP5 drives cap-independent translation of a subset of human mRNAs. J Biol Chem 2020; 295:11693-11706. [PMID: 32571876 DOI: 10.1074/jbc.ra120.013678] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/16/2020] [Indexed: 01/04/2023] Open
Abstract
During unfavorable conditions (e.g. tumor hypoxia or viral infection), canonical, cap-dependent mRNA translation is suppressed in human cells. Nonetheless, a subset of physiologically important mRNAs (e.g. hypoxia-inducible factor 1α [HIF-1α], fibroblast growth factor 9 [FGF-9], and p53) is still translated by an unknown, cap-independent mechanism. Additionally, expression levels of eukaryotic translation initiation factor 4GI (eIF4GI) and of its homolog, death-associated protein 5 (DAP5), are elevated. By examining the 5' UTRs of HIF-1α, FGF-9, and p53 mRNAs and using fluorescence anisotropy binding studies, luciferase reporter-based in vitro translation assays, and mutational analyses, we demonstrate here that eIF4GI and DAP5 specifically bind to the 5' UTRs of these cap-independently translated mRNAs. Surprisingly, we found that the eIF4E-binding domain of eIF4GI increases not only the binding affinity but also the selectivity among these mRNAs. We further demonstrate that the affinities of eIF4GI and DAP5 binding to these 5' UTRs correlate with the efficiency with which these factors drive cap-independent translation of these mRNAs. Integrating the results of our binding and translation assays, we conclude that eIF4GI or DAP5 is critical for recruitment of a specific subset of mRNAs to the ribosome, providing mechanistic insight into their cap-independent translation.
Collapse
Affiliation(s)
- Solomon A Haizel
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York, USA.,Department of Chemistry, Hunter College, New York, New York, USA
| | - Usha Bhardwaj
- Department of Chemistry, Hunter College, New York, New York, USA
| | - Ruben L Gonzalez
- Department of Chemistry, Columbia University, New York, New York, USA
| | - Somdeb Mitra
- Department of Chemistry, New York University, New York, New York, USA
| | - Dixie J Goss
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York, USA .,Department of Chemistry, Hunter College, New York, New York, USA.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York, USA
| |
Collapse
|
32
|
Bera A, Lewis SM. Regulation of Epithelial-to-Mesenchymal Transition by Alternative Translation Initiation Mechanisms and Its Implications for Cancer Metastasis. Int J Mol Sci 2020; 21:ijms21114075. [PMID: 32517298 PMCID: PMC7312463 DOI: 10.3390/ijms21114075] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023] Open
Abstract
Translation initiation plays a critical role in the regulation of gene expression for development and disease conditions. During the processes of development and disease, cells select specific mRNAs to be translated by controlling the use of diverse translation initiation mechanisms. Cells often switch translation initiation from a cap-dependent to a cap-independent mechanism during epithelial-to-mesenchymal transition (EMT), a process that plays an important role in both development and disease. EMT is involved in tumor metastasis because it leads to cancer cell migration and invasion, and is also associated with chemoresistance. In this review we will provide an overview of both the internal ribosome entry site (IRES)-dependent and N6-methyladenosine (m6A)-mediated translation initiation mechanisms and discuss how cap-independent translation enables cells from primary epithelial tumors to achieve a motile mesenchymal-like phenotype, which in turn drives tumor metastasis.
Collapse
Affiliation(s)
- Amit Bera
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada;
| | - Stephen M. Lewis
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada;
- Department of Chemistry & Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
- Correspondence: ; Tel.: +1-506-869-2892
| |
Collapse
|
33
|
Arhab Y, Bulakhov AG, Pestova TV, Hellen CU. Dissemination of Internal Ribosomal Entry Sites (IRES) Between Viruses by Horizontal Gene Transfer. Viruses 2020; 12:E612. [PMID: 32512856 PMCID: PMC7354566 DOI: 10.3390/v12060612] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/19/2022] Open
Abstract
Members of Picornaviridae and of the Hepacivirus, Pegivirus and Pestivirus genera of Flaviviridae all contain an internal ribosomal entry site (IRES) in the 5'-untranslated region (5'UTR) of their genomes. Each class of IRES has a conserved structure and promotes 5'-end-independent initiation of translation by a different mechanism. Picornavirus 5'UTRs, including the IRES, evolve independently of other parts of the genome and can move between genomes, most commonly by intratypic recombination. We review accumulating evidence that IRESs are genetic entities that can also move between members of different genera and even between families. Type IV IRESs, first identified in the Hepacivirus genus, have subsequently been identified in over 25 genera of Picornaviridae, juxtaposed against diverse coding sequences. In several genera, members have either type IV IRES or an IRES of type I, II or III. Similarly, in the genus Pegivirus, members contain either a type IV IRES or an unrelated type; both classes of IRES also occur in members of the genus Hepacivirus. IRESs utilize different mechanisms, have different factor requirements and contain determinants of viral growth, pathogenesis and cell type specificity. Their dissemination between viruses by horizontal gene transfer has unexpectedly emerged as an important facet of viral evolution.
Collapse
Affiliation(s)
| | | | | | - Christopher U.T. Hellen
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA; (Y.A.); (A.G.B.); (T.V.P.)
| |
Collapse
|
34
|
Fajardo T, Sanford TJ, Mears HV, Jasper A, Storrie S, Mansur DS, Sweeney TR. The flavivirus polymerase NS5 regulates translation of viral genomic RNA. Nucleic Acids Res 2020; 48:5081-5093. [PMID: 32313955 PMCID: PMC7229856 DOI: 10.1093/nar/gkaa242] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 11/14/2022] Open
Abstract
Flaviviruses, including dengue virus and Zika virus, contain a single-stranded positive sense RNA genome that encodes viral proteins essential for replication and also serves as the template for new genome synthesis. As these processes move in opposite directions along the genome, translation must be inhibited at a defined point following infection to clear the template of ribosomes to allow efficient replication. Here, we demonstrate in vitro and in cell-based assays that the viral RNA polymerase, NS5, inhibits translation of the viral genome. By reconstituting translation in vitro using highly purified components, we show that this translation block occurs at the initiation stage and that translation inhibition depends on NS5-RNA interaction, primarily through association with the 5' replication promoter region. This work supports a model whereby expression of a viral protein signals successful translation of the infecting genome, prompting a switch to a ribosome depleted replication-competent form.
Collapse
Affiliation(s)
- Teodoro Fajardo
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, UK
| | - Thomas J Sanford
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, UK
| | - Harriet V Mears
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, UK
| | - Annika Jasper
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, UK
| | - Skye Storrie
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, UK
| | - Daniel S Mansur
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Trevor R Sweeney
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, UK
| |
Collapse
|
35
|
Romero-López C, Berzal-Herranz A. The Role of the RNA-RNA Interactome in the Hepatitis C Virus Life Cycle. Int J Mol Sci 2020; 21:ijms21041479. [PMID: 32098260 PMCID: PMC7073135 DOI: 10.3390/ijms21041479] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 02/05/2023] Open
Abstract
RNA virus genomes are multifunctional entities endowed with conserved structural elements that control translation, replication and encapsidation, among other processes. The preservation of these structural RNA elements constraints the genomic sequence variability. The hepatitis C virus (HCV) genome is a positive, single-stranded RNA molecule with numerous conserved structural elements that manage different steps during the infection cycle. Their function is ensured by the association of protein factors, but also by the establishment of complex, active, long-range RNA-RNA interaction networks-the so-called HCV RNA interactome. This review describes the RNA genome functions mediated via RNA-RNA contacts, and revisits some canonical ideas regarding the role of functional high-order structures during the HCV infective cycle. By outlining the roles of long-range RNA-RNA interactions from translation to virion budding, and the functional domains involved, this work provides an overview of the HCV genome as a dynamic device that manages the course of viral infection.
Collapse
|
36
|
Gribling-Burrer AS, Chiabudini M, Zhang Y, Qiu Z, Scazzari M, Wölfle T, Wohlwend D, Rospert S. A dual role of the ribosome-bound chaperones RAC/Ssb in maintaining the fidelity of translation termination. Nucleic Acids Res 2020; 47:7018-7034. [PMID: 31114879 PMCID: PMC6648330 DOI: 10.1093/nar/gkz334] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/05/2019] [Accepted: 04/25/2019] [Indexed: 11/22/2022] Open
Abstract
The yeast ribosome-associated complex RAC and the Hsp70 homolog Ssb are anchored to the ribosome and together act as chaperones for the folding and co-translational assembly of nascent polypeptides. In addition, the RAC/Ssb system plays a crucial role in maintaining the fidelity of translation termination; however, the latter function is poorly understood. Here we show that the RAC/Ssb system promotes the fidelity of translation termination via two distinct mechanisms. First, via direct contacts with the ribosome and the nascent chain, RAC/Ssb facilitates the translation of stalling-prone poly-AAG/A sequences encoding for polylysine segments. Impairment of this function leads to enhanced ribosome stalling and to premature nascent polypeptide release at AAG/A codons. Second, RAC/Ssb is required for the assembly of fully functional ribosomes. When RAC/Ssb is absent, ribosome biogenesis is hampered such that core ribosomal particles are structurally altered at the decoding and peptidyl transferase centers. As a result, ribosomes assembled in the absence of RAC/Ssb bind to the aminoglycoside paromomycin with high affinity (KD = 76.6 nM) and display impaired discrimination between stop codons and sense codons. The combined data shed light on the multiple mechanisms by which the RAC/Ssb system promotes unimpeded biogenesis of newly synthesized polypeptides.
Collapse
Affiliation(s)
- Anne-Sophie Gribling-Burrer
- Institute of Biochemistry and Molecular Biology, ZBMZ, Medical Faculty, University of Freiburg, D-79104 Freiburg, Germany
| | - Marco Chiabudini
- Institute of Biochemistry and Molecular Biology, ZBMZ, Medical Faculty, University of Freiburg, D-79104 Freiburg, Germany
| | - Ying Zhang
- Institute of Biochemistry and Molecular Biology, ZBMZ, Medical Faculty, University of Freiburg, D-79104 Freiburg, Germany
| | - Zonghao Qiu
- Institute of Biochemistry and Molecular Biology, ZBMZ, Medical Faculty, University of Freiburg, D-79104 Freiburg, Germany
| | - Mario Scazzari
- Institute of Biochemistry and Molecular Biology, ZBMZ, Medical Faculty, University of Freiburg, D-79104 Freiburg, Germany
| | - Tina Wölfle
- Institute of Biochemistry and Molecular Biology, ZBMZ, Medical Faculty, University of Freiburg, D-79104 Freiburg, Germany
| | - Daniel Wohlwend
- Institute of Biochemistry, Chemical and Pharmaceutical Faculty, University of Freiburg, D-79104 Freiburg, Germany
| | - Sabine Rospert
- Institute of Biochemistry and Molecular Biology, ZBMZ, Medical Faculty, University of Freiburg, D-79104 Freiburg, Germany.,BIOSS Centre for Biological Signaling Studies, University of Freiburg, D-79104 Freiburg, Germany
| |
Collapse
|
37
|
Zinoviev A, Hellen CUT, Pestova TV. In Vitro Characterization of the Activity of the Mammalian RNA Exosome on mRNAs in Ribosomal Translation Complexes. Methods Mol Biol 2020; 2062:327-354. [PMID: 31768984 DOI: 10.1007/978-1-4939-9822-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
The RNA exosome is a multisubunit protein complex that exhibits a 3' to 5' exoribonuclease activity, endoribonuclease activity, and participates in a variety of RNA processing and degradation pathways in both the nucleus and the cytoplasm. Exosomes interact with various cofactors which target them to specific RNA substrates and processes. Investigation of the mechanisms by which mammalian RNA exosomes are targeted to specific RNA substrates requires the development of in vitro approaches for purification of exosomes and their co-factors, assembly of substrates and monitoring of the exosomal activity. Here, we describe protocols for in vitro reconstitution of ribosomal 80S elongation complexes on cap-labeled mRNAs and for assaying exosomal degradation of mRNAs in such complexes depending on the presence of GTPBP1, which has previously been implicated in directing the exosome to mRNA targets.
Collapse
Affiliation(s)
- Alexandra Zinoviev
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Christopher U T Hellen
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Tatyana V Pestova
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA.
| |
Collapse
|
38
|
Sanford TJ, Mears HV, Fajardo T, Locker N, Sweeney TR. Circularization of flavivirus genomic RNA inhibits de novo translation initiation. Nucleic Acids Res 2019; 47:9789-9802. [PMID: 31392996 PMCID: PMC6765113 DOI: 10.1093/nar/gkz686] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/22/2019] [Accepted: 07/26/2019] [Indexed: 12/20/2022] Open
Abstract
Members of the Flaviviridae family, including dengue virus (DENV) and yellow fever virus, cause serious disease in humans, whilst maternal infection with Zika virus (ZIKV) can induce microcephaly in newborns. Following infection, flaviviral RNA genomes are translated to produce the viral replication machinery but must then serve as a template for the transcription of new genomes. However, the ribosome and viral polymerase proceed in opposite directions along the RNA, risking collisions and abortive replication. Whilst generally linear, flavivirus genomes can adopt a circular conformation facilitated by long-range RNA–RNA interactions, shown to be essential for replication. Using an in vitro reconstitution approach, we demonstrate that circularization inhibits de novo translation initiation on ZIKV and DENV RNA, whilst the linear conformation is translation-competent. Our results provide a mechanism to clear the viral RNA of ribosomes in order to promote efficient replication and, therefore, define opposing roles for linear and circular conformations of the flavivirus genome.
Collapse
Affiliation(s)
- Thomas J Sanford
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Harriet V Mears
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Teodoro Fajardo
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Nicolas Locker
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, GU2 7HX, UK
| | - Trevor R Sweeney
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| |
Collapse
|
39
|
Yang Y, Wang Z. IRES-mediated cap-independent translation, a path leading to hidden proteome. J Mol Cell Biol 2019; 11:911-919. [PMID: 31504667 PMCID: PMC6884710 DOI: 10.1093/jmcb/mjz091] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 07/05/2019] [Accepted: 07/18/2019] [Indexed: 01/06/2023] Open
Abstract
Most eukaryotic mRNAs are translated in a cap-dependent fashion; however, under stress conditions, the cap-independent translation driven by internal ribosomal entry sites (IRESs) can serve as an alternative mechanism for protein production. Many IRESs have been discovered from viral or cellular mRNAs to promote ribosome assembly and initiate translation by recruiting different trans-acting factors. Although the mechanisms of translation initiation driven by viral IRESs are relatively well understood, the existence of cellular IRESs is still under debate due to the limitations of translation reporter systems used to assay IRES activities. A recent screen identified > 1000 putative IRESs from viral and human mRNAs, expanding the scope and mechanism for cap-independent translation. Additionally, a large number of circular RNAs lacking free ends were identified in eukaryotic cells, many of which are found to be translated through IRESs. These findings suggest that IRESs may play a previously unappreciated role in driving translation of the new type of mRNA, implying a hidden proteome produced from cap-independent translation.
Collapse
Affiliation(s)
- Yun Yang
- CAS Key Laboratory of Computational Biology, Biomedical Big Data Center, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zefeng Wang
- CAS Key Laboratory of Computational Biology, Biomedical Big Data Center, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
40
|
Zhao L, Mwaliko C, Atoni E, Wang Y, Zhang Y, Zhan J, Hu X, Xia H, Yuan Z. Characterization of a Novel Tanay Virus Isolated From Anopheles sinensis Mosquitoes in Yunnan, China. Front Microbiol 2019; 10:1963. [PMID: 31507570 PMCID: PMC6714596 DOI: 10.3389/fmicb.2019.01963] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/09/2019] [Indexed: 12/13/2022] Open
Abstract
Globally, mosquitoes are known to be competent vectors to various arboviruses that cause serious and debilitating diseases to humans and animals. Conversely, mosquitoes harbor a wide array of insect specific viruses (ISVs) that are generally neglected. Extensive characterization of these ISVs is important in understanding their persistence infection effect on host behavior and arbovirus transmission. Herein, we report first time isolation of Tanay virus (TANAV) isolate YN15_103_01 in Anopheles sinensis mosquitoes from Yunnan Province, China. Phylogenetically, the isolate’s nucleotide identity had more than 14.47% variance compared to previous TANAV isolates, and it clustered into an independent branch within the genus Sandewavirus in the newly proposed taxon Negevirus. TANAV growth and high titers was attained in Aag2 cells (107 PFU/mL) but with no CPE observed up to 7 days.p.i. compared to C6/36 cells that exhibited extensive CPE at 48 h.p.i. with titers of 107 PFU/mL. Contrarywise, the viral isolate did not replicate in vertebrate cell lines. Electron microscopy analyses showed that its final maturation process takes place in the cell cytoplasm. Notably, the predicted viral proteins were verified to be corresponding to the obtained SDS-PAGE protein bands. Our findings advance forth new and vital knowledge important in understanding insect specific viruses, especially TANAV.
Collapse
Affiliation(s)
- Lu Zhao
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Caroline Mwaliko
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Evans Atoni
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yujuan Wang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yunzhi Zhang
- Yunnan Institute of Endemic Disease Control and Prevention, Dali, China
| | - Jianbo Zhan
- Division for Viral Disease with Detection, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Xiaomin Hu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Han Xia
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zhiming Yuan
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
41
|
Behrens G, Winzen R, Rehage N, Dörrie A, Barsch M, Hoffmann A, Hackermüller J, Tiedje C, Heissmeyer V, Holtmann H. A translational silencing function of MCPIP1/Regnase-1 specified by the target site context. Nucleic Acids Res 2019; 46:4256-4270. [PMID: 29471506 PMCID: PMC5934641 DOI: 10.1093/nar/gky106] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 02/09/2018] [Indexed: 12/13/2022] Open
Abstract
The expression of proteins during inflammatory and immune reactions is coordinated by post-transcriptional mechanisms. A particularly strong suppression of protein expression is exerted by a conserved translational silencing element (TSE) identified in the 3′ UTR of NFKBIZ mRNA, which is among the targets of the RNA-binding proteins Roquin-1/2 and MCPIP1/Regnase-1. We present evidence that in the context of the TSE MCPIP1, so far known for its endonuclease activity toward mRNAs specified by distinct stem–loop (SL) structures, also suppresses translation. Overexpression of MCPIP1 silenced translation in a TSE-dependent manner and reduced ribosome occupancy of the mRNA. Correspondingly, MCPIP1 depletion alleviated silencing and increased polysomal association of the mRNA. Translationally silenced NFKBIZ or reporter mRNAs were mostly capped, polyadenylated and ribosome associated. Furthermore, MCPIP1 silenced also cap-independent, CrPV-IRES-dependent translation. This suggests that MCPIP1 suppresses a post-initiation step. The TSE is predicted to form five SL structures. SL4 and 5 resemble target structures reported for MCPIP1 and together were sufficient for MCPIP1 binding and mRNA destabilization. Translational silencing, however, required SL1–3 in addition. Thus the NFKBIZ TSE functions as an RNA element in which sequences adjacent to the site of interaction with MCPIP1 and dispensable for accelerated mRNA degradation extend the functional repertoire of MCPIP1 to translational silencing.
Collapse
Affiliation(s)
- Gesine Behrens
- Institute of Cell Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Reinhard Winzen
- Institute of Cell Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Nina Rehage
- Institute for Immunology, Biomedical Center of the Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Anneke Dörrie
- Institute of Cell Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Monika Barsch
- Institute of Cell Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Anne Hoffmann
- Young Investigators Group Bioinformatics and Transcriptomics, Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, 04318 Leipzig, Germany
| | - Jörg Hackermüller
- Young Investigators Group Bioinformatics and Transcriptomics, Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, 04318 Leipzig, Germany.,Department of Computer Science, University of Leipzig, 04081 Leipzig, Germany
| | - Christopher Tiedje
- Institute of Cell Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Vigo Heissmeyer
- Institute for Immunology, Biomedical Center of the Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany.,Research Unit Molecular Immune Regulation, Helmholtz Zentrum München, 81377 München, Germany
| | - Helmut Holtmann
- Institute of Cell Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
42
|
Eliseev B, Yeramala L, Leitner A, Karuppasamy M, Raimondeau E, Huard K, Alkalaeva E, Aebersold R, Schaffitzel C. Structure of a human cap-dependent 48S translation pre-initiation complex. Nucleic Acids Res 2019; 46:2678-2689. [PMID: 29401259 PMCID: PMC5861459 DOI: 10.1093/nar/gky054] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 01/21/2018] [Indexed: 01/13/2023] Open
Abstract
Eukaryotic translation initiation is tightly regulated, requiring a set of conserved initiation factors (eIFs). Translation of a capped mRNA depends on the trimeric eIF4F complex and eIF4B to load the mRNA onto the 43S pre-initiation complex comprising 40S and initiation factors 1, 1A, 2, 3 and 5 as well as initiator-tRNA. Binding of the mRNA is followed by mRNA scanning in the 48S pre-initiation complex, until a start codon is recognised. Here, we use a reconstituted system to prepare human 48S complexes assembled on capped mRNA in the presence of eIF4B and eIF4F. The highly purified h-48S complexes are used for cross-linking/mass spectrometry, revealing the protein interaction network in this complex. We report the electron cryo-microscopy structure of the h-48S complex at 6.3 Å resolution. While the majority of eIF4B and eIF4F appear to be flexible with respect to the ribosome, additional density is detected at the entrance of the 40S mRNA channel which we attribute to the RNA-recognition motif of eIF4B. The eight core subunits of eIF3 are bound at the 40S solvent-exposed side, as well as the subunits eIF3d, eIF3b and eIF3i. elF2 and initiator-tRNA bound to the start codon are present at the 40S intersubunit side. This cryo-EM structure represents a molecular snap-shot revealing the h-48S complex following start codon recognition.
Collapse
Affiliation(s)
- Boris Eliseev
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Lahari Yeramala
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Alexander Leitner
- ETH Zürich, Institute of Molecular Systems Biology, Auguste-Piccard-Hof 1, 8093 Zürich, Switzerland
| | - Manikandan Karuppasamy
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Etienne Raimondeau
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Karine Huard
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Elena Alkalaeva
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Ruedi Aebersold
- ETH Zürich, Institute of Molecular Systems Biology, Auguste-Piccard-Hof 1, 8093 Zürich, Switzerland.,Faculty of Science, University of Zürich, 8057 Zürich, Switzerland
| | - Christiane Schaffitzel
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, 38042 Grenoble, France.,School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
43
|
Rodriguez CM, Todd PK. New pathologic mechanisms in nucleotide repeat expansion disorders. Neurobiol Dis 2019; 130:104515. [PMID: 31229686 DOI: 10.1016/j.nbd.2019.104515] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/07/2019] [Accepted: 06/19/2019] [Indexed: 12/14/2022] Open
Abstract
Tandem microsatellite repeats are common throughout the human genome and intrinsically unstable, exhibiting expansions and contractions both somatically and across generations. Instability in a small subset of these repeats are currently linked to human disease, although recent findings suggest more disease-causing repeats await discovery. These nucleotide repeat expansion disorders (NREDs) primarily affect the nervous system and commonly lead to neurodegeneration through toxic protein gain-of-function, protein loss-of-function, and toxic RNA gain-of-function mechanisms. However, the lines between these categories have blurred with recent findings of unconventional Repeat Associated Non-AUG (RAN) translation from putatively non-coding regions of the genome. Here we review two emerging topics in NREDs: 1) The mechanisms by which RAN translation occurs and its role in disease pathogenesis and 2) How nucleotide repeats as RNA and translated proteins influence liquid-liquid phase separation, membraneless organelle dynamics, and nucleocytoplasmic transport. We examine these topics with a particular eye on two repeats: the CGG repeat expansion responsible for Fragile X syndrome and Fragile X-associated Tremor Ataxia Syndrome (FXTAS) and the intronic GGGGCC repeat expansion in C9orf72, the most common inherited cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Our thesis is that these emerging disease mechanisms can inform a broader understanding of the native roles of microsatellites in cellular function and that aberrations in these native processes provide clues to novel therapeutic strategies for these currently untreatable disorders.
Collapse
Affiliation(s)
- C M Rodriguez
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA; Department of Genetics, Stanford University, Stanford, CA, USA
| | - P K Todd
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA; VA Ann Arbor Healthcare System, Ann Arbor, MI, USA.
| |
Collapse
|
44
|
Zinoviev A, Kuroha K, Pestova TV, Hellen CUT. Two classes of EF1-family translational GTPases encoded by giant viruses. Nucleic Acids Res 2019; 47:5761-5776. [PMID: 31216040 PMCID: PMC6582330 DOI: 10.1093/nar/gkz296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 01/31/2023] Open
Abstract
Giant viruses have extraordinarily large dsDNA genomes, and exceptionally, they encode various components of the translation apparatus, including tRNAs, aminoacyl-tRNA synthetases and translation factors. Here, we focused on the elongation factor 1 (EF1) family of viral translational GTPases (trGTPases), using computational and functional approaches to shed light on their functions. Multiple sequence alignment indicated that these trGTPases clustered into two groups epitomized by members of Mimiviridae and Marseilleviridae, respectively. trGTPases in the first group were more closely related to GTP-binding protein 1 (GTPBP1), whereas trGTPases in the second group were closer to eEF1A, eRF3 and Hbs1. Functional characterization of representative GTPBP1-like trGTPases (encoded by Hirudovirus, Catovirus and Moumouvirus) using in vitro reconstitution revealed that they possess eEF1A-like activity and can deliver cognate aa-tRNAs to the ribosomal A site during translation elongation. By contrast, representative eEF1A/eRF3/Hbs1-like viral trGTPases, encoded by Marseillevirus and Lausannevirus, have eRF3-like termination activity and stimulate peptide release by eRF1. Our analysis identified specific aspects of the functioning of these viral trGTPases with eRF1 of human, amoebal and Marseillevirus origin.
Collapse
Affiliation(s)
- Alexandra Zinoviev
- Department of Cell Biology, SUNY Downstate Medical Center, 450 Clarkson Avenue, MSC 44, Brooklyn, NY 11203, USA
| | - Kazushige Kuroha
- Department of Cell Biology, SUNY Downstate Medical Center, 450 Clarkson Avenue, MSC 44, Brooklyn, NY 11203, USA
| | - Tatyana V Pestova
- Department of Cell Biology, SUNY Downstate Medical Center, 450 Clarkson Avenue, MSC 44, Brooklyn, NY 11203, USA
| | - Christopher U T Hellen
- Department of Cell Biology, SUNY Downstate Medical Center, 450 Clarkson Avenue, MSC 44, Brooklyn, NY 11203, USA
| |
Collapse
|
45
|
Kwan T, Thompson SR. Noncanonical Translation Initiation in Eukaryotes. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a032672. [PMID: 29959190 DOI: 10.1101/cshperspect.a032672] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The vast majority of eukaryotic messenger RNAs (mRNAs) initiate translation through a canonical, cap-dependent mechanism requiring a free 5' end and 5' cap and several initiation factors to form a translationally active ribosome. Stresses such as hypoxia, apoptosis, starvation, and viral infection down-regulate cap-dependent translation during which alternative mechanisms of translation initiation prevail to express proteins required to cope with the stress, or to produce viral proteins. The diversity of noncanonical initiation mechanisms encompasses a broad range of strategies and cellular cofactors. Herein, we provide an overview and, whenever possible, a mechanistic understanding of the various noncanonical mechanisms of initiation used by cells and viruses. Despite many unanswered questions, recent advances have propelled our understanding of the scope, diversity, and mechanisms of alternative initiation.
Collapse
Affiliation(s)
- Thaddaeus Kwan
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Sunnie R Thompson
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
46
|
Godet AC, David F, Hantelys F, Tatin F, Lacazette E, Garmy-Susini B, Prats AC. IRES Trans-Acting Factors, Key Actors of the Stress Response. Int J Mol Sci 2019; 20:ijms20040924. [PMID: 30791615 PMCID: PMC6412753 DOI: 10.3390/ijms20040924] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 12/16/2022] Open
Abstract
The cellular stress response corresponds to the molecular changes that a cell undergoes in response to various environmental stimuli. It induces drastic changes in the regulation of gene expression at transcriptional and posttranscriptional levels. Actually, translation is strongly affected with a blockade of the classical cap-dependent mechanism, whereas alternative mechanisms are activated to support the translation of specific mRNAs. A major mechanism involved in stress-activated translation is the internal ribosome entry site (IRES)-driven initiation. IRESs, first discovered in viral mRNAs, are present in cellular mRNAs coding for master regulators of cell responses, whose expression must be tightly controlled. IRESs allow the translation of these mRNAs in response to different stresses, including DNA damage, amino-acid starvation, hypoxia or endoplasmic reticulum stress, as well as to physiological stimuli such as cell differentiation or synapse network formation. Most IRESs are regulated by IRES trans-acting factor (ITAFs), exerting their action by at least nine different mechanisms. This review presents the history of viral and cellular IRES discovery as well as an update of the reported ITAFs regulating cellular mRNA translation and of their different mechanisms of action. The impact of ITAFs on the coordinated expression of mRNA families and consequences in cell physiology and diseases are also highlighted.
Collapse
Affiliation(s)
- Anne-Claire Godet
- UMR 1048-I2MC, Inserm, Université de Toulouse, UT3, 31432 Toulouse cedex 4, France.
| | - Florian David
- UMR 1048-I2MC, Inserm, Université de Toulouse, UT3, 31432 Toulouse cedex 4, France.
| | - Fransky Hantelys
- UMR 1048-I2MC, Inserm, Université de Toulouse, UT3, 31432 Toulouse cedex 4, France.
| | - Florence Tatin
- UMR 1048-I2MC, Inserm, Université de Toulouse, UT3, 31432 Toulouse cedex 4, France.
| | - Eric Lacazette
- UMR 1048-I2MC, Inserm, Université de Toulouse, UT3, 31432 Toulouse cedex 4, France.
| | - Barbara Garmy-Susini
- UMR 1048-I2MC, Inserm, Université de Toulouse, UT3, 31432 Toulouse cedex 4, France.
| | - Anne-Catherine Prats
- UMR 1048-I2MC, Inserm, Université de Toulouse, UT3, 31432 Toulouse cedex 4, France.
| |
Collapse
|
47
|
Romero-López C, Ríos-Marco P, Berzal-Herranz B, Berzal-Herranz A. The HCV genome domains 5BSL3.1 and 5BSL3.3 act as managers of translation. Sci Rep 2018; 8:16101. [PMID: 30382192 PMCID: PMC6208389 DOI: 10.1038/s41598-018-34422-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/12/2018] [Indexed: 02/08/2023] Open
Abstract
The RNA genome of the hepatitis C virus (HCV) encodes a single open reading frame (ORF) containing numerous functional elements. Among these, the cis-acting replication element (CRE) at the 3′ end of the viral ORF, has become of increasing interest given its dual role as a viral translation repressor and replication enhancer. Long-range RNA-RNA contacts mediated by the CRE build the structural scaffold required for its proper functioning. The recruitment of different cellular factors, many related to the functioning of the translation machinery, might aid in the CRE-exerted downregulation of viral translation. The present data show that the CRE promotes a defect in polysome production, and hinders the assembly of the 80S complex, likely through the direct, high affinity recruitment of the 40S ribosomal subunit. This interaction involves the highly conserved 5BSL3.1 and 5BSL3.3 domains of the CRE, and is strictly dependent on RNA-protein contacts, particularly with the ribosomal proteins RPSA and RPS29. These observations support a model in which the CRE-mediated inhibition of viral translation is a multifactorial process defined by the establishment of long-range RNA-RNA interactions between the 5′ and 3′ ends of the viral genome, the sequestration of the 40S subunit by the CRE, and the subsequent stalling of polysome elongation at the 3′ end of the ORF, all governed by the highly stable hairpin domains 5BSL3.1 and 5BSL3.3. The present data thus suggest a new managerial role in HCV translation for these 5BSL3.1 and 5BSL3.3 domains.
Collapse
Affiliation(s)
- Cristina Romero-López
- Instituto de Parasitología y Biomedicina López-Neyra, (IPBLN-CSIC), Av. del Conocimiento 17, 18016, Armilla, Granada, Spain.
| | - Pablo Ríos-Marco
- Instituto de Parasitología y Biomedicina López-Neyra, (IPBLN-CSIC), Av. del Conocimiento 17, 18016, Armilla, Granada, Spain
| | - Beatriz Berzal-Herranz
- Instituto de Parasitología y Biomedicina López-Neyra, (IPBLN-CSIC), Av. del Conocimiento 17, 18016, Armilla, Granada, Spain
| | - Alfredo Berzal-Herranz
- Instituto de Parasitología y Biomedicina López-Neyra, (IPBLN-CSIC), Av. del Conocimiento 17, 18016, Armilla, Granada, Spain.
| |
Collapse
|
48
|
Sriram A, Bohlen J, Teleman AA. Translation acrobatics: how cancer cells exploit alternate modes of translational initiation. EMBO Rep 2018; 19:embr.201845947. [PMID: 30224410 DOI: 10.15252/embr.201845947] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 07/09/2018] [Accepted: 08/16/2018] [Indexed: 12/11/2022] Open
Abstract
Recent work has brought to light many different mechanisms of translation initiation that function in cells in parallel to canonical cap-dependent initiation. This has important implications for cancer. Canonical cap-dependent translation initiation is inhibited by many stresses such as hypoxia, nutrient limitation, proteotoxic stress, or genotoxic stress. Since cancer cells are often exposed to these stresses, they rely on alternate modes of translation initiation for protein synthesis and cell growth. Cancer mutations are now being identified in components of the translation machinery and in cis-regulatory elements of mRNAs, which both control translation of cancer-relevant genes. In this review, we provide an overview on the various modes of non-canonical translation initiation, such as leaky scanning, translation re-initiation, ribosome shunting, IRES-dependent translation, and m6A-dependent translation, and then discuss the influence of stress on these different modes of translation. Finally, we present examples of how these modes of translation are dysregulated in cancer cells, allowing them to grow, to proliferate, and to survive, thereby highlighting the importance of translational control in cancer.
Collapse
Affiliation(s)
- Ashwin Sriram
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg University, Heidelberg, Germany
| | - Jonathan Bohlen
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg University, Heidelberg, Germany
| | - Aurelio A Teleman
- German Cancer Research Center (DKFZ), Heidelberg, Germany .,Heidelberg University, Heidelberg, Germany
| |
Collapse
|
49
|
Su YS, Tsai AH, Ho YF, Huang SY, Liu YC, Hwang LH. Stimulation of the Internal Ribosome Entry Site (IRES)-Dependent Translation of Enterovirus 71 by DDX3X RNA Helicase and Viral 2A and 3C Proteases. Front Microbiol 2018; 9:1324. [PMID: 29971060 PMCID: PMC6018165 DOI: 10.3389/fmicb.2018.01324] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/30/2018] [Indexed: 12/16/2022] Open
Abstract
The translation of enterovirus 71 (EV71) is mediated by an internal ribosome entry site (IRES)-dependent manner. EV71 IRES comprises five highly structured domains (domains II-VI) in the 5′-untranslated region of the viral mRNA. A conserved AUG triplet residing in domain VI is proposed to be the ribosome entry site. It is thus envisaged that the highly structured conformation of domain VI may actually reduce the accessibility of the AUG triplet to the ribosome. This study identified a DEAD-box family RNA helicase, DDX3X, that positively regulated the EV71 IRES-dependent translation. The helicase activity of DDX3X was required for the stimulation of EV71 IRES activity; however, DDX3X was no longer important for the IRES activity when the secondary structure of domain VI was destabilized. DDX3X interacted with the truncated eIF4G which bound specifically to domain V. Thus, we proposed that DDX3X might bind to domain VI or a region nearby via the interaction with the truncated eIF4G, and subsequently unwound the secondary structure of domain VI to facilitate ribosome entry. Additionally, we demonstrated that the viral 2Apro and 3Cpro enhanced the IRES-dependent translation via their protease activities. Together, these results indicate that DDX3X is an important RNA helicase involved in EV71 IRES-dependent translation and that IRES translation is enhanced by viral infection, partly mediated by viral protease activity.
Collapse
Affiliation(s)
- Yu-Siang Su
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Ai-Hsuan Tsai
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Yueh-Feng Ho
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Shin-Yi Huang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Yen-Chun Liu
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Lih-Hwa Hwang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
50
|
Shatsky IN, Terenin IM, Smirnova VV, Andreev DE. Cap-Independent Translation: What's in a Name? Trends Biochem Sci 2018; 43:882-895. [PMID: 29789219 DOI: 10.1016/j.tibs.2018.04.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/15/2018] [Accepted: 04/22/2018] [Indexed: 02/05/2023]
Abstract
Eukaryotic translation initiation relies on the m7G cap present at the 5' end of all mRNAs. Some viral mRNAs employ alternative mechanisms of initiation based on internal ribosome entry. The 'IRES ideology' was adopted by researchers to explain the differential translation of cellular mRNAs when the cap recognition is suppressed. However, some cellular IRESs have already been challenged and others are awaiting their validation. As an alternative cap-independent mechanism, we propose adopting the concept of cap-independent translation enhancers (CITEs) for mammalian mRNAs. Unlike IRESs, CITEs can be located both within 5' and 3' UTRs and bind mRNA-recruiting translational components. The respective 5' UTRs are then inspected by the scanning machinery essentially in the same way as under cap-dependent translation.
Collapse
Affiliation(s)
- Ivan N Shatsky
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Leninskie Gory 1, Bldg. 40, Moscow 119992, Russia.
| | - Ilya M Terenin
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Leninskie Gory 1, Bldg. 40, Moscow 119992, Russia; Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Trubetskaya Str. 8-2, 119991, Moscow, Russia
| | - Victoria V Smirnova
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Leninskie Gory 1, Bldg. 40, Moscow 119992, Russia
| | - Dmitri E Andreev
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Leninskie Gory 1, Bldg. 40, Moscow 119992, Russia
| |
Collapse
|