1
|
Cha LN, Yang J, Gao JA, Lu X, Chang XL, Thuku RC, Liu Q, Lu QM, Li DS, Lai R, Fang MQ. Bat-derived oligopeptide LE6 inhibits the contact-kinin pathway and harbors anti-thromboinflammation and stroke potential. Zool Res 2024; 45:1001-1012. [PMID: 39147715 PMCID: PMC11491786 DOI: 10.24272/j.issn.2095-8137.2023.372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/30/2024] [Indexed: 08/17/2024] Open
Abstract
Thrombosis and inflammation are primary contributors to the onset and progression of ischemic stroke. The contact-kinin pathway, initiated by plasma kallikrein (PK) and activated factor XII (FXIIa), functions bidirectionally with the coagulation and inflammation cascades, providing a novel target for therapeutic drug development in ischemic stroke. In this study, we identified a bat-derived oligopeptide from Myotis myotis (Borkhausen, 1797), designated LE6 (Leu-Ser-Glu-Glu-Pro-Glu, 702 Da), with considerable potential in stroke therapy due to its effects on the contact kinin pathway. Notably, LE6 demonstrated significant inhibitory effects on PK and FXIIa, with inhibition constants of 43.97 μmol/L and 6.37 μmol/L, respectively. In vitro analyses revealed that LE6 prolonged plasma recalcification time and activated partial thromboplastin time. In murine models, LE6 effectively inhibited carrageenan-induced mouse tail thrombosis, FeCl 3-induced carotid artery thrombosis, and photochemically induced intracerebral thrombosis. Furthermore, LE6 significantly decreased inflammation and stroke injury in transient middle cerebral artery occlusion models. Notably, the low toxicity, hemolytic activity, and bleeding risk of LE6, along with its synthetic simplicity, underscore its clinical applicability. In conclusion, as an inhibitor of FXIIa and PK, LE6 offers potential therapeutic benefits in stroke treatment by mitigating inflammation and preventing thrombus formation.
Collapse
Affiliation(s)
- Li-Na Cha
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Juan Yang
- First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Jin-Ai Gao
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Xin Lu
- First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Xiao-Long Chang
- First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Rebecca Caroline Thuku
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Qi Liu
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Qiu-Min Lu
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Dong-Sheng Li
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Ren Lai
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China. E-mail:
| | - Ming-Qian Fang
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China. E-mail:
| |
Collapse
|
2
|
Basak B, Akashi-Takamura S. IRF3 function and immunological gaps in sepsis. Front Immunol 2024; 15:1336813. [PMID: 38375470 PMCID: PMC10874998 DOI: 10.3389/fimmu.2024.1336813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024] Open
Abstract
Lipopolysaccharide (LPS) induces potent cell activation via Toll-like receptor 4/myeloid differentiation protein 2 (TLR4/MD-2), often leading to septic death and cytokine storm. TLR4 signaling is diverted to the classical acute innate immune, inflammation-driving pathway in conjunction with the classical NF-κB pivot of MyD88, leading to epigenetic linkage shifts in nuclear pro-inflammatory transcription and chromatin structure-function; in addition, TLR4 signaling to the TIR domain-containing adapter-induced IFN-β (TRIF) apparatus and to nuclear pivots that signal the association of interferons alpha and beta (IFN-α and IFN-β) with acute inflammation, often coupled with oxidants favor inhibition or resistance to tissue injury. Although the immune response to LPS, which causes sepsis, has been clarified in this manner, there are still many current gaps in sepsis immunology to reduce mortality. Recently, selective agonists and inhibitors of LPS signals have been reported, and there are scattered reports on LPS tolerance and control of sepsis development. In particular, IRF3 signaling has been reported to be involved not only in sepsis but also in increased pathogen clearance associated with changes in the gut microbiota. Here, we summarize the LPS recognition system, main findings related to the IRF3, and finally immunological gaps in sepsis.
Collapse
Affiliation(s)
- Bristy Basak
- Department of Microbiology and Immunology, School of Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Sachiko Akashi-Takamura
- Department of Microbiology and Immunology, School of Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| |
Collapse
|
3
|
Esparteiro D, Fouquet G, Courtois A, Jedraszak G, Marticho L, Gourdel M, Billon-Crossouard S, Croyal M, Naassila M, Nguyen-Khac E, Marcq I. Serum bile acids profiles are altered without change of the gut microbiota composition following a seven-day prednisolone therapy in severe alcoholic hepatitis. Gut Microbes 2024; 16:2382767. [PMID: 39078043 PMCID: PMC11290774 DOI: 10.1080/19490976.2024.2382767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/05/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024] Open
Abstract
Severe Alcoholic Hepatitis (sAH) is an acute form of liver injury caused by chronic and heavy alcohol drinking. A one-month corticosteroids course is the only sAH reference treatment, and its interactions with the Gut Microbiota (GM), which is a key contributor to liver injury, remain unknown. To evaluate the evolution of the GM in sAH patients, we retrospectively investigated the composition of the GM of 27 sAH patients at the Amiens University Hospital before (D0) and after (D7) a 7-day corticotherapy course using fecal metagenomics sequencing. We also quantified fecal Short-Chain Fatty Acids (SCFA) and fecal and serum Bile Acids (BA), as well as serum Lipopolysaccharide-Binding Protein (LBP). Overall, the community and taxonomical analyses did not reveal any GM evolution between D0 and D7, nor did the SCFA profiles analysis. However, in serum but not fecal samples, the ratio of glyco-conjugated to tauro-conjugated BA was significantly reduced at D7, independently of the response to treatment, while two BA were enriched in non-responder patients. LBP concentration significantly diminished between D0 and D7, which may indicate an improvement of the gut barrier. The stability of the GM of sAH is interesting in the perspective of new treatments based on GM modulation.
Collapse
Affiliation(s)
- Damien Esparteiro
- GRAP INSERM U1247, Universite de Picardie Jules Verne, Amiens, France
| | - Grégory Fouquet
- GRAP INSERM U1247, Universite de Picardie Jules Verne, Amiens, France
| | - Anoïsia Courtois
- GRAP INSERM U1247, Universite de Picardie Jules Verne, Amiens, France
| | | | - Léa Marticho
- CHU d’Amiens, Service d’Hépato-Gastro-Entérologie, Amiens, France
| | - Mathilde Gourdel
- CHU Nantes, CNRS, INSERM, BioCore, US16, SFR Bonamy, Nantes Université, Nantes, France
| | | | - Mikaël Croyal
- CHU Nantes, CNRS, INSERM, BioCore, US16, SFR Bonamy, Nantes Université, Nantes, France
- CRNH-Ouest Mass Spectrometry Core Facility, Nantes, France
- CNRS, INSERM, l’Institut du Thorax, Nantes Université, Nantes, France
| | - Mickaël Naassila
- GRAP INSERM U1247, Universite de Picardie Jules Verne, Amiens, France
| | - Eric Nguyen-Khac
- GRAP INSERM U1247, Universite de Picardie Jules Verne, Amiens, France
- CHU d’Amiens, Service d’Hépato-Gastro-Entérologie, Amiens, France
| | - Ingrid Marcq
- GRAP INSERM U1247, Universite de Picardie Jules Verne, Amiens, France
| |
Collapse
|
4
|
Na K, Oh BC, Jung Y. Multifaceted role of CD14 in innate immunity and tissue homeostasis. Cytokine Growth Factor Rev 2023; 74:100-107. [PMID: 37661484 DOI: 10.1016/j.cytogfr.2023.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023]
Abstract
CD14 is a co-receptor of Toll-like receptor (TLR)- 4, with a critical role in innate immune responses. CD14 recognizes bacterial lipopolysaccharides, pathogen-, and damage-associated molecular patterns, thereby facilitating inflammatory immune responses. In addition to its well-established association with TLR4, CD14 is also implicated in TLR4-independent signaling, which leads to the apoptotic death of differentiated dendritic cells and activation of the noncanonical inflammasome pathway. CD14 also has a role beyond that of the immune responses. It contributes to tissue homeostasis by promoting the clearance of various apoptotic cells via recognizing externalized phosphatidylinositol phosphates. CD14 also has context-dependent roles, particularly in barrier tissues that include the skin and gastrointestinal tract. For example, CD14+ dendritic cells in the skin can induce immunostimulatory or immunosuppressive responses. In the gastrointestinal system, CD14 is involved in producing inflammatory cytokines in inflammatory bowel disease and maintaining of intestinal integrity. This review focuses on the multifaceted roles of CD14 in innate immunity and its potential regulatory functions in barrier tissues characterized by rapid cell renewal. By providing insights into the diverse functions of CD14, this review offers potential therapeutic implications for this versatile molecule in immune modulation and tissue homeostasis.
Collapse
Affiliation(s)
- Kunhee Na
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon 21999, the Republic of Korea
| | - Byung-Chul Oh
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon 21999, the Republic of Korea; Department of Physiology, College of Medicine, Gachon University, Incheon 21999, the Republic of Korea; Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, the Republic of Korea.
| | - YunJae Jung
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon 21999, the Republic of Korea; Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, the Republic of Korea; Department of Microbiology, College of Medicine, Gachon University, Incheon 21999, the Republic of Korea.
| |
Collapse
|
5
|
Docs J, Kovacs G, Peterfi L. End-stage kidney disease: a never healing wound leading to another never healing wound, renal cancer. J Nephrol 2023:10.1007/s40620-023-01694-w. [PMID: 37439962 PMCID: PMC10393832 DOI: 10.1007/s40620-023-01694-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 05/30/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND End-stage kidney disease and acquired cystic kidney disease are the final stages of chronic kidney disease, leading to loss of kidney function and frequent development of tumours. It has been suggested that an inflammatory microenvironment may be responsible for the progressive kidney remodelling and cancer development. METHODS Our aim was to analyse gene expression suggested to be involved in the remodelling of kidneys in end-stage kidney disease, and in the development of preneoplastic lesions and tumours. Immunohistochemistry was employed to assess the cellular localisation of different genes involved in these pathways on representative tissue sections. RESULTS Cellular (αSMA positive naïve activated fibroblasts, endothelial cells, macrophages) and non-cellular components (cytokines IL6, TGFβ, IL1β, CSF2, fibronectin, laminin, and matrix modifier proteases MMP9 and MMP12) of the inflammatory microenvironment were expressed in the kidneys of patients with end-stage kidney disease. IL6 and FN1 expressing naïve activated fibroblasts and recruited inflammatory cells were the most abundant cellular components of the inflammatory microenvironment. CONCLUSION The progressive inflammatory and fibrotic processes in end-stage kidney disease have features recalling those of a never healing wound and may explain the frequent development of kidney cancer.
Collapse
Affiliation(s)
- Janos Docs
- Department of Urology, Medical School, University of Pecs, 7621, Pecs, Hungary
| | - Gyula Kovacs
- Medical Faculty, Ruprecht-Karls-University, 69120, Heidelberg, Germany.
| | - Lehel Peterfi
- Department of Urology, Medical School, University of Pecs, 7621, Pecs, Hungary
| |
Collapse
|
6
|
Fang M, Li Y, Liao Z, Wang G, Cao Q, Li Y, Duan Y, Han Y, Deng X, Wu F, Kamau PM, Lu Q, Lai R. Lipopolysaccharide-binding protein expression is increased by stress and inhibits monoamine synthesis to promote depressive symptoms. Immunity 2023; 56:620-634.e11. [PMID: 36854305 DOI: 10.1016/j.immuni.2023.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/11/2022] [Accepted: 02/01/2023] [Indexed: 03/02/2023]
Abstract
Monoamine insufficiency is suggested to be associated with depressive features such as sadness, anhedonia, insomnia, and cognitive dysfunction, but the mechanisms that cause it are unclear. We found that the acute-phase protein lipopolysaccharide-binding protein (LBP) inhibits monoamine biosynthesis by acting as an endogenous inhibitor of dopamine-β-hydroxylase (DBH) and aromatic-L-amino-acid-decarboxylase (DDC). LBP expression was increased in individuals with depression and by diverse stress challenges in mice. LBP antibodies and LBP knockdown inhibited monoamine insufficiency and depression-like features in mice, which worsened with LBP overexpression or administration. Monoamine insufficiency and depression-like symptoms were not induced by stressful stimuli in LBP-deficient mice, further highlighting a role for LBP in stress-induced depression, and a peptide we designed that blocks LBP-DBH and LBP-DDC interactions showed anti-depression effects in mice. This study reveals an important role for LBP in regulating monoamine biosynthesis and suggests that targeting LBP may have potential as a treatment for some individuals with depression.
Collapse
Affiliation(s)
- Mingqian Fang
- Key Laboratory of Animal Models and Human Disease Mechanisms and Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yu Li
- Key Laboratory of Animal Models and Human Disease Mechanisms and Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; College of Life Science, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Zhiyi Liao
- Key Laboratory of Animal Models and Human Disease Mechanisms and Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gan Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms and Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Qiqi Cao
- Key Laboratory of Animal Models and Human Disease Mechanisms and Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Ya Li
- First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Yong Duan
- First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Yanbing Han
- First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Xinyi Deng
- Key Laboratory of Animal Models and Human Disease Mechanisms and Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Feilong Wu
- Key Laboratory of Animal Models and Human Disease Mechanisms and Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peter Muiruri Kamau
- Key Laboratory of Animal Models and Human Disease Mechanisms and Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiumin Lu
- Key Laboratory of Animal Models and Human Disease Mechanisms and Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms and Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.
| |
Collapse
|
7
|
Hall DA, Voigt RM, Cantu-Jungles TM, Hamaker B, Engen PA, Shaikh M, Raeisi S, Green SJ, Naqib A, Forsyth CB, Chen T, Manfready R, Ouyang B, Rasmussen HE, Sedghi S, Goetz CG, Keshavarzian A. An open label, non-randomized study assessing a prebiotic fiber intervention in a small cohort of Parkinson's disease participants. Nat Commun 2023; 14:926. [PMID: 36801916 PMCID: PMC9938693 DOI: 10.1038/s41467-023-36497-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 02/02/2023] [Indexed: 02/20/2023] Open
Abstract
A pro-inflammatory intestinal microbiome is characteristic of Parkinson's disease (PD). Prebiotic fibers change the microbiome and this study sought to understand the utility of prebiotic fibers for use in PD patients. The first experiments demonstrate that fermentation of PD patient stool with prebiotic fibers increased the production of beneficial metabolites (short chain fatty acids, SCFA) and changed the microbiota demonstrating the capacity of PD microbiota to respond favorably to prebiotics. Subsequently, an open-label, non-randomized study was conducted in newly diagnosed, non-medicated (n = 10) and treated PD participants (n = 10) wherein the impact of 10 days of prebiotic intervention was evaluated. Outcomes demonstrate that the prebiotic intervention was well tolerated (primary outcome) and safe (secondary outcome) in PD participants and was associated with beneficial biological changes in the microbiota, SCFA, inflammation, and neurofilament light chain. Exploratory analyses indicate effects on clinically relevant outcomes. This proof-of-concept study offers the scientific rationale for placebo-controlled trials using prebiotic fibers in PD patients. ClinicalTrials.gov Identifier: NCT04512599.
Collapse
Affiliation(s)
- Deborah A Hall
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Robin M Voigt
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA.,Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, USA.,Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL, USA
| | - Thaisa M Cantu-Jungles
- Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, USA.,Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Bruce Hamaker
- Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, USA.,Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Phillip A Engen
- Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, USA
| | - Maliha Shaikh
- Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, USA
| | - Shohreh Raeisi
- Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, USA
| | - Stefan J Green
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA.,Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, USA.,Genomics and Microbiome Core Facility, Rush University Medical Center, Chicago, IL, USA
| | - Ankur Naqib
- Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, USA.,Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL, USA
| | - Christopher B Forsyth
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA.,Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, USA.,Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL, USA
| | - Tingting Chen
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN, USA.,State Key Laboratory of Food Science & Technology, Nanchang University, Nanchang, China
| | - Richard Manfready
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Bichun Ouyang
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Heather E Rasmussen
- Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, USA.,Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE, USA
| | | | - Christopher G Goetz
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Ali Keshavarzian
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA. .,Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, USA. .,Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL, USA. .,Department of Physiology, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
8
|
Ojo BA, Alake SE, Kaur A, Wong SY, Keirns B, Ritchey JW, Chowanadisai W, Lin D, Clarke S, Smith BJ, Lucas EA. Supplemental wheat germ modulates phosphorylation of STAT3 in the gut and NF-κBp65 in the adipose tissue of mice fed a Western diet. Curr Dev Nutr 2023; 7:100023. [PMID: 37181127 PMCID: PMC10100941 DOI: 10.1016/j.cdnut.2022.100023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/16/2022] [Accepted: 11/27/2022] [Indexed: 12/24/2022] Open
Abstract
Background Commensal gut bacteria, including Lactobacillus, can produce metabolites that stimulate the release of gut antimicrobial peptides (AMPs) via the signal transducer and activator of transcription (STAT)3 pathway and prevent obesity-associated leaky gut and chronic inflammation. We have previously reported that wheat germ (WG) selectively increased cecal Lactobacillus in obese mice. Objectives This study investigated the effects of WG on gut STAT3 activation and AMPs (Reg3γ and Reg3β) as well as the potential of WG to inhibit nuclear Nf-κB-activation and immune cell infiltration in the visceral adipose tissue (VAT) of mice fed a Western diet (i.e., high-fat and sucrose diet [HFS]). Methods Six-wk-old male C57BL/6 mice were randomly assigned to 4 groups (n = 12/group): control (C, 10% fat and sucrose kcal) or HFS (45% fat and 26% sucrose kcal) diet with or without 10% WG (wt/wt) for 12 wk. Assessments include serum metabolic parameters jejunal AMPs genes, inflammatory markers, and phosphorylation of STAT3 as well as VAT NF-κBp65. Independent and interaction effects of HFS and WG were analyzed with a 2-factor ANOVA. Results WG significantly improved markers of insulin resistance and upregulated jejunal Il10 and Il22 genes. The HFS + WG group had a 15-fold increase in jejunal pSTAT3 compared with the HFS group. Consequently, WG significantly upregulated jejunal mRNA expression of Reg3γ and Reg3β. The HFS group had a significantly higher VAT NF-κBp65 phosphorylation than the C group, while the HFS + WG group suppressed this to the level of C. Moreover, VAT Il6 and Lbp genes were downregulated in the HFS + WG group compared with HFS. Genes related to macrophage infiltration in the VAT were repressed in the WG-fed mice. Conclusion These findings show the potential of WG to influence vital regulatory pathways in the gut and adipose tissue which may reduce the chronic inflammatory burden on these tissues that are important targets in obesity and insulin resistance.
Collapse
Affiliation(s)
- Babajide A. Ojo
- Division of Pediatric Gastroenterology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Sanmi E. Alake
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK, USA
| | - Amritpal Kaur
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK, USA
| | - Siau Yen Wong
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK, USA
| | - Bryant Keirns
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK, USA
| | - Jerry W. Ritchey
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Winyoo Chowanadisai
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK, USA
| | - Dingbo Lin
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK, USA
| | - Stephen Clarke
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK, USA
| | - Brenda J. Smith
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Edralin A. Lucas
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
9
|
Gilbert BTP, Lamacchia C, Amend L, Strowig T, Rodriguez E, Palmer G, Finckh A. Brief report: Assessment of mucosal barrier integrity using serological biomarkers in preclinical stages of rheumatoid arthritis. Front Immunol 2023; 14:1117742. [PMID: 36875067 PMCID: PMC9977794 DOI: 10.3389/fimmu.2023.1117742] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Background The pathogenesis of rheumatoid arthritis (RA) is believed to initiate at mucosal sites. The so-called 'mucosal origin hypothesis of RA' postulates an increased intestinal permeability before disease onset. Several biomarkers, including lipopolysaccharide binding protein (LBP) and intestinal fatty acid binding protein (I-FABP), have been proposed to reflect gut mucosa permeability and integrity, while serum calprotectin is a new inflammation marker proposed in RA. Methods We analyzed serum samples of individuals genetically at increased risk of RA in a nested-case-control study. Participants from a longitudinal cohort of first-degree relatives of RA patients (SCREEN-RA cohort) were divided into three pre-clinical stages of RA, based on the presence of risk factors for subsequent RA onset: 1) low-risk healthy asymptomatic controls; 2) intermediate-risk individuals without symptoms, but with RA-associated auto-immunity; 3) high-risk individuals with clinically suspect arthralgias. Five patients with newly diagnosed RA were also sampled. Serum LBP, I-FABP and calprotectin were measured using commercially available ELISA kits. Results We included 180 individuals genetically at increased risk for RA: 84 asymptomatic controls, 53 individuals with RA-associated autoimmunity and 38 high risk individuals. Serum LBP, I-FAPB or calprotectin concentrations did not differ between individuals in different pre-clinical stages of RA. Conclusion Based on the serum biomarkers LBP, I-FABP and calprotectin, we could not detect any evidence for intestinal injury in pre-clinical stages of RA.
Collapse
Affiliation(s)
- Benoît Thomas P Gilbert
- Division of Rheumatology, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland.,Geneva Centre for Inflammation Research (GCIR), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Céline Lamacchia
- Division of Rheumatology, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland.,Geneva Centre for Inflammation Research (GCIR), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Lena Amend
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Till Strowig
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Cluster of Excellence Resolving Infection Susceptibility (RESIST) (EXC 2155), Hannover Medical School, Hannover, Germany.,Center for Individualized Infection Medicine (CiiM), Hannover, Germany
| | - Emiliana Rodriguez
- Division of Rheumatology, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland.,Geneva Centre for Inflammation Research (GCIR), Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Gaby Palmer
- Division of Rheumatology, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland.,Geneva Centre for Inflammation Research (GCIR), Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Axel Finckh
- Division of Rheumatology, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland.,Geneva Centre for Inflammation Research (GCIR), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
10
|
Jiang C, Wang S. Identification and functional characterization of bactericidal permeability/increasing protein (BPI) from frog Nanorana yunnanensis (Paa yunnanensis). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 137:104517. [PMID: 36028172 DOI: 10.1016/j.dci.2022.104517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 08/13/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Bactericidal permeability/increasing protein (BPI) and lipopolysaccharide-binding protein (LBP) have been most extensively studied in mammals, but little information is available regarding BPI and LBP in Amphibia. In this study we showed that the cDNA of BPI in the frog N. yunnanensis (P. yunnanensis) encoded a 490-amino-acid-long protein, the predicted tertiary structure appears closely similar to mammalian BPIs in terms of sequence and structure. Like mammalian BPI gene, the frog gene nybpi was widely expressed in various tissues and was inducible by challenge with LPS or Gram-negative bacterium. We also showed that recombinant NyBPI, resembling mammalian BPIs, specifically binds with LPS. In addition, the recombinant NyBPI displayed antibacterial activity against Gram-negative bacteria Vibrio anguillarum in a dose-dependent manner. These results indicate that NyBPI may play an important role in an immune response against bacteria in amphibians.
Collapse
Affiliation(s)
- Chengyan Jiang
- College of Biological and Agricultural Sciences, Honghe University, Mengzi, Yunnan, 661199, China.
| | - Shaolong Wang
- College of Biological and Agricultural Sciences, Honghe University, Mengzi, Yunnan, 661199, China
| |
Collapse
|
11
|
Xiang W, Ji B, Jiang Y, Xiang H. Association of low-grade inflammation caused by gut microbiota disturbances with osteoarthritis: A systematic review. Front Vet Sci 2022; 9:938629. [PMID: 36172610 PMCID: PMC9510893 DOI: 10.3389/fvets.2022.938629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/24/2022] [Indexed: 12/09/2022] Open
Abstract
Background Currently, many studies have been published on the relationship between the gut microbiome and knee osteoarthritis. However, the evidence for the association of gut microbiota with knee osteoarthritis has not been comprehensively evaluated. Objective This review aimed to assess existing results and provide scientific evidence for the association of low-grade inflammation caused by gut microbiota disturbances with knee osteoarthritis. Methods This study conducted an extensive review of the current literature using four databases, PubMed, EMBASE, Cochrane Library and Web of Science before 31 December 2021. Risk of bias was determined using ROBINS and SYRCLE, and quality of evidence was assessed using GRADE and CAMADARES criteria. Twelve articles were included. Results Studies have shown that a high-fat diet leads to a disturbance of the gut microbiota, mainly manifested by an increase in the abundance of Firmicutes and Proteobacteria, a decrease in Bacteroidetes, and an increase in the Firmicutes/ Bacteroidetes ratio. Exercise can reverse the pattern of gain or loss caused by high fat. These changes are associated with elevated levels of serum lipopolysaccharide (LPS) and its binding proteins, as well as various inflammatory factors, leading to osteoarthritis (OA). Conclusion This systematic review shows that a correlation between low-grade inflammation caused by gut microbiota disturbances and severity of knee osteoarthritis radiology and dysfunction. However, there was a very small number of studies that could be included in the review. Thus, further studies with large sample sizes are warranted to elucidate the association of low-grade inflammation caused by gut microbiota disturbances with osteoarthritis, and to explore the possible mechanisms for ameliorating osteoarthritis by modulating gut microbiota.
Collapse
Affiliation(s)
- Wu Xiang
- Department of Rehabilitation, Beibei Traditional Chinese Medical Hospital, Chongqing, China
| | - Bingjin Ji
- Department of Rehabilitation, Beibei Traditional Chinese Medical Hospital, Chongqing, China
| | - Yiqin Jiang
- Department of Rehabilitation, Beibei Traditional Chinese Medical Hospital, Chongqing, China
| | - Han Xiang
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China
- *Correspondence: Han Xiang
| |
Collapse
|
12
|
Hasa E, Hartmann P, Schnabl B. Liver cirrhosis and immune dysfunction. Int Immunol 2022; 34:455-466. [PMID: 35792761 PMCID: PMC9447994 DOI: 10.1093/intimm/dxac030] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/27/2022] [Indexed: 01/05/2023] Open
Abstract
Cirrhosis is end-stage liver disease resulting from various etiologies and is a common cause of death worldwide. The progression from compensated to decompensated cirrhosis to acute-on-chronic liver failure (ACLF) is due to multiple factors, including continuation of alcohol use or continued exposure to other toxins, an imbalance of the gut microbiota (dysbiosis), increased gut permeability and a disrupted immune response. This disrupted immune response is also named cirrhosis-associated immune dysfunction, which is characterized by worsening systemic inflammation with concomitant immune paralysis, as liver disease deteriorates. This review highlights central immunologic events during the exacerbation of cirrhosis and characterizes the different immune cell populations involved therein.
Collapse
|
13
|
Mohr AE, Crawford M, Jasbi P, Fessler S, Sweazea KL. Lipopolysaccharide and the gut microbiota: Considering structural variation. FEBS Lett 2022; 596:849-875. [PMID: 35262962 DOI: 10.1002/1873-3468.14328] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 11/10/2022]
Abstract
Systemic inflammation is associated with chronic disease and is purported to be a main pathogenic mechanism underlying metabolic conditions. Microbes harbored in the host gastrointestinal tract release signaling byproducts from their cell wall, such as lipopolysaccharides (LPS), which can act locally and, after crossing the gut barrier and entering circulation, also systemically. Defined as metabolic endotoxemia, elevated concentrations of LPS in circulation are associated with metabolic conditions and chronic disease. As such, measurement of LPS is highly prevalent in animal and human research investigating these states. Indeed, LPS can be a potent stimulant of host immunity but this response depends on the microbial species' origin, a parameter often overlooked in both preclinical and clinical investigations. Indeed, the lipid A portion of LPS is mutable and comprises the main virulence and endotoxic component, thus contributing to the structural and functional diversity among LPSs from microbial species. In this review, we discuss how such structural differences in LPS can induce differential immunological responses in the host.
Collapse
Affiliation(s)
- Alex E Mohr
- College of Health Solutions, Arizona State University, Phoenix, Arizona, United States of America
| | - Meli'sa Crawford
- Biomedical Sciences, University of Riverside, California, Riverside, California, United States of America
| | - Paniz Jasbi
- College of Health Solutions, Arizona State University, Phoenix, Arizona, United States of America
| | - Samantha Fessler
- College of Health Solutions, Arizona State University, Phoenix, Arizona, United States of America
| | - Karen L Sweazea
- College of Health Solutions, Arizona State University, Phoenix, Arizona, United States of America.,School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
14
|
Lipopolysaccharide-Induced Transcriptional Changes in LBP-Deficient Rat and Its Possible Implications for Liver Dysregulation during Sepsis. J Immunol Res 2022; 2021:8356645. [PMID: 35005033 PMCID: PMC8739918 DOI: 10.1155/2021/8356645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022] Open
Abstract
Sepsis is an organ dysfunction caused by the dysregulated inflammatory response to infection. Lipopolysaccharide-binding protein (LBP) binds to lipopolysaccharide (LPS) and modulates the inflammatory response. A rare systematic study has been reported to detect the effect of LBP gene during LPS-induced sepsis. Herein, we explored the RNA sequencing technology to profile the transcriptomic changes in liver tissue between LBP-deficient rats and WT rats at multiple time points after LPS administration. We proceeded RNA sequencing of liver tissue to search differentially expressed genes (DEGs) and enriched biological processes and pathways between WT and LBP-deficient groups at 0 h, 6 h, and 24 h. In total, 168, 284, and 307 DEGs were identified at 0 h, 6 h, and 24 h, respectively, including Lrp5, Cyp7a1, Nfkbiz, Sigmar1, Fabp7, and Hao1, which are related to the inflammatory or lipid-related process. Functional enrichment analysis revealed that inflammatory response to LPS mediated by Ifng, Cxcl10, Serpine1, and Lbp was enhanced at 6 h, while lipid-related metabolism associated with C5, Cyp4a1, and Eci1 was enriched at 24 h after LPS administration in the WT samples. The inflammatory process was not found when the LBP gene was knocked out; lipid-related metabolic process and peroxisome proliferator-activated receptor (PPAR) signaling pathway mediated by Dhrs7b and Tysnd1 were significantly activated in LBP-deficient samples. Our study suggested that the invading LPS may interplay with LBP to activate the nuclear factor kappa B (NF-κB) signaling pathway and trigger uncontrolled inflammatory response. However, when inhibiting the activity of NF-κB, lipid-related metabolism would make bacteria removal via the effect on the PPAR signaling pathway in the absence of LBP gene. We also compared the serum lactate dehydrogenase (LDH) and alkaline phosphatase (ALP) levels using the biochemistry analyzer and analyzed the expression of high mobility group box 1 (HMGB1) and cleaved-caspase 3 with immunohistochemistry, which further validated our conclusion.
Collapse
|
15
|
Portincasa P, Bonfrate L, Khalil M, Angelis MD, Calabrese FM, D’Amato M, Wang DQH, Di Ciaula A. Intestinal Barrier and Permeability in Health, Obesity and NAFLD. Biomedicines 2021; 10:83. [PMID: 35052763 PMCID: PMC8773010 DOI: 10.3390/biomedicines10010083] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/20/2021] [Accepted: 12/28/2021] [Indexed: 02/07/2023] Open
Abstract
The largest surface of the human body exposed to the external environment is the gut. At this level, the intestinal barrier includes luminal microbes, the mucin layer, gastrointestinal motility and secretion, enterocytes, immune cells, gut vascular barrier, and liver barrier. A healthy intestinal barrier is characterized by the selective permeability of nutrients, metabolites, water, and bacterial products, and processes are governed by cellular, neural, immune, and hormonal factors. Disrupted gut permeability (leaky gut syndrome) can represent a predisposing or aggravating condition in obesity and the metabolically associated liver steatosis (nonalcoholic fatty liver disease, NAFLD). In what follows, we describe the morphological-functional features of the intestinal barrier, the role of major modifiers of the intestinal barrier, and discuss the recent evidence pointing to the key role of intestinal permeability in obesity/NAFLD.
Collapse
Affiliation(s)
- Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (L.B.); (M.K.); (A.D.C.)
| | - Leonilde Bonfrate
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (L.B.); (M.K.); (A.D.C.)
| | - Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (L.B.); (M.K.); (A.D.C.)
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (M.D.A.); (F.M.C.)
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (M.D.A.); (F.M.C.)
| | - Francesco Maria Calabrese
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (M.D.A.); (F.M.C.)
| | - Mauro D’Amato
- Gastrointestinal Genetics Lab, CIC bioGUNE-BRTA, 48160 Derio, Spain;
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - David Q.-H. Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, New York, NY 10461, USA;
| | - Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (L.B.); (M.K.); (A.D.C.)
| |
Collapse
|
16
|
Meng L, Song Z, Liu A, Dahmen U, Yang X, Fang H. Effects of Lipopolysaccharide-Binding Protein (LBP) Single Nucleotide Polymorphism (SNP) in Infections, Inflammatory Diseases, Metabolic Disorders and Cancers. Front Immunol 2021; 12:681810. [PMID: 34295331 PMCID: PMC8290185 DOI: 10.3389/fimmu.2021.681810] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/08/2021] [Indexed: 01/11/2023] Open
Abstract
Inflammation, which is induced by the immune response, is recognized as the driving factor in many diseases, including infections and inflammatory diseases, metabolic disorders and cancers. Genetic variations in pivotal genes associated with the immune response, particularly single nucleotide polymorphisms (SNPs), may account for predisposition and clinical outcome of diseases. Lipopolysaccharide (LPS)-binding protein (LBP) functions as an enhancer of the host response to LPS, the main component of the outer membrane of gram-native bacteria. Given the crucial role of LBP in inflammation, we will review the impact of SNPs in the LBP gene on infections and inflammatory diseases, metabolic disorders and cancers.
Collapse
Affiliation(s)
- Leilei Meng
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Zichen Song
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Anding Liu
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Uta Dahmen
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, Friedrich-Schiller-University Jena, Jena, Germany
| | - Xiao Yang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haoshu Fang
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
17
|
Wang G, Zhou B, Wang Z, Meng Y, Liu Y, Yao X, Feng C. Pharmacological Mechanisms Underlying the Anti-asthmatic Effects of Modified Guomin Decoction Determined by Network Pharmacology and Molecular Docking. Front Mol Biosci 2021; 8:644561. [PMID: 33968984 PMCID: PMC8100455 DOI: 10.3389/fmolb.2021.644561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/29/2021] [Indexed: 01/30/2023] Open
Abstract
Background Asthma is a chronic inflammatory disease characterized by Th2-predominant inflammation and airway remodeling. Modified Guo Min decoction (MGMD) has been an extensive practical strategy for allergic disorders in China. Although its potential anti-asthmatic activity has been reported, the exact mechanism of action of MGMD in asthma remains unexplored. Methods Network pharmacology approach was employed to predict the active components, potential targets, and molecular mechanism of MGMD for asthma treatment, including drug-likeness evaluation, oral bioavailability prediction, protein-protein interaction (PPI) network construction and analysis, Gene Ontology (GO) terms, and Reactome pathway annotation. Molecular docking was carried out to investigate interactions between active compounds and potential targets. Results A total of 92 active compounds and 72 anti-asthma targets of MGMD were selected for analysis. The GO enrichment analysis results indicated that the anti-asthmatic targets of MGMD mainly participate in inflammatory and in airway remolding processes. The Reactome pathway analysis showed that MGMD prevents asthma mainly through regulation of the IL-4 and IL-13 signaling and the specialized pro-resolving mediators (SPMs) biosynthesis. Molecular docking results suggest that each bioactive compounds (quercetin, wogonin, luteolin, naringenin, and kaempferol) is capable to bind with STAT3, PTGS2, JUN, VEGFA, EGFR, and ALOX5. Conclusion This study revealed the active ingredients and potential molecular mechanism by which MGMD treatment is effective against airway inflammation and remodeling in asthma through regulating IL-4 and IL-13 signaling and SPMs biosynthesis.
Collapse
Affiliation(s)
- Guishu Wang
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China.,Department of TCM, Peking University People's Hospital, Beijing, China
| | - Bo Zhou
- Xiyuan Hospital Affiliated to China Academy of Chinese Medical Sciences, Beijing, China
| | - Zheyi Wang
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Yufeng Meng
- Department of TCM, Peking University People's Hospital, Beijing, China
| | - Yaqian Liu
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoqin Yao
- Department of TCM, Peking University International Hospital, Beijing, China.,Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Cuiling Feng
- Department of TCM, Peking University People's Hospital, Beijing, China.,Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
18
|
Schromm AB, Brandenburg K. TLR4 Ligands: Single Molecules and Aggregates. PROGRESS IN INFLAMMATION RESEARCH 2021:39-56. [DOI: 10.1007/978-3-030-56319-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
19
|
Di Ciaula A, Baj J, Garruti G, Celano G, De Angelis M, Wang HH, Di Palo DM, Bonfrate L, Wang DQH, Portincasa P. Liver Steatosis, Gut-Liver Axis, Microbiome and Environmental Factors. A Never-Ending Bidirectional Cross-Talk. J Clin Med 2020; 9:E2648. [PMID: 32823983 PMCID: PMC7465294 DOI: 10.3390/jcm9082648] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) is increasing worldwide and parallels comorbidities such as obesity, metabolic syndrome, dyslipidemia, and diabetes. Recent studies describe the presence of NAFLD in non-obese individuals, with mechanisms partially independent from excessive caloric intake. Increasing evidences, in particular, point towards a close interaction between dietary and environmental factors (including food contaminants), gut, blood flow, and liver metabolism, with pathways involving intestinal permeability, the composition of gut microbiota, bacterial products, immunity, local, and systemic inflammation. These factors play a critical role in the maintenance of intestinal, liver, and metabolic homeostasis. An anomalous or imbalanced gut microbial composition may favor an increased intestinal permeability, predisposing to portal translocation of microorganisms, microbial products, and cell wall components. These components form microbial-associated molecular patterns (MAMPs) or pathogen-associated molecular patterns (PAMPs), with potentials to interact in the intestine lamina propria enriched in immune cells, and in the liver at the level of the immune cells, i.e., Kupffer cells and stellate cells. The resulting inflammatory environment ultimately leads to liver fibrosis with potentials to progression towards necrotic and fibrotic changes, cirrhosis. and hepatocellular carcinoma. By contrast, measures able to modulate the composition of gut microbiota and to preserve gut vascular barrier might prevent or reverse NAFLD.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (D.M.D.P.); (L.B.)
| | - Jacek Baj
- Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Gabriella Garruti
- Section of Endocrinology, Department of Emergency and Organ Transplantations, University of Bari “Aldo Moro” Medical School, Piazza G. Cesare 11, 70124 Bari, Italy;
| | - Giuseppe Celano
- Dipartimento di Scienze del Suolo, della Pianta e Degli Alimenti, Università degli Studi di Bari Aldo Moro, 70124 Bari, Italy; (G.C.); (M.D.A.)
| | - Maria De Angelis
- Dipartimento di Scienze del Suolo, della Pianta e Degli Alimenti, Università degli Studi di Bari Aldo Moro, 70124 Bari, Italy; (G.C.); (M.D.A.)
| | - Helen H. Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (H.H.W.); (D.Q.-H.W.)
| | - Domenica Maria Di Palo
- Clinica Medica “A. Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (D.M.D.P.); (L.B.)
- Dipartimento di Scienze del Suolo, della Pianta e Degli Alimenti, Università degli Studi di Bari Aldo Moro, 70124 Bari, Italy; (G.C.); (M.D.A.)
| | - Leonilde Bonfrate
- Clinica Medica “A. Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (D.M.D.P.); (L.B.)
| | - David Q-H Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (H.H.W.); (D.Q.-H.W.)
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (D.M.D.P.); (L.B.)
| |
Collapse
|
20
|
Chang J, Gao J, Lou L, Chu H, Li P, Chen T, Gao F. Xanthatin alleviates airway inflammation in asthmatic mice by regulating the STAT3/NF-κB signaling pathway. Respir Physiol Neurobiol 2020; 281:103491. [PMID: 32653534 DOI: 10.1016/j.resp.2020.103491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/22/2020] [Accepted: 07/07/2020] [Indexed: 12/31/2022]
Abstract
Here, we aimed to investigate the role of Xanthatin in asthma and its underlying mechanism. BALB/c mice were treated with ovalbumin (OVA) to establis a mouse model of asthma. Our results showed that OVA injection significantly increased inflammatory cell infiltration and goblet cell hyperplasia in lung issues, while Xanthatin treatment and STAT3 inhibitor C188-9 administration relieved these symptoms. Moreover, OVA-induced OVA-specific immunoglobulin E level in serum and the number of total cell, macrophages, lymphocytes, neutrophils, and eosinophils in bronchoalveolar lavage fluid (BALF) were markedly reduced by Xanthatin treatment and signal transducer and activator of transcription 3 (STAT3) inhibition. Additionally, Xanthatin treatment and STAT3 inhibition was also significantly decreased the levels of inflammatory cytokines in BALF in asthmatic mice. We further demonstrated that the STAT3/nuclear factor-kappaB (NF-κB) pathway was blocked by Xanthatin in asthmatic mice. Overall, we conclude that Xanthatin attenuates airway inflammation in asthmatic mice through blocking the STAT3/NFκB signaling pathway, indicating the potential of Xanthatin as a useful therapeutic agent for asthma.
Collapse
Affiliation(s)
- Jingxia Chang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China.
| | - Jianan Gao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Lili Lou
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Heying Chu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Ping Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Tengfei Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Feng Gao
- Department of Physiology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| |
Collapse
|
21
|
|
22
|
Ciregia F, Baiwir D, Cobraiville G, Dewael T, Mazzucchelli G, Badot V, Di Romana S, Sidiras P, Sokolova T, Durez P, Malaise MG, de Seny D. Glycosylation deficiency of lipopolysaccharide-binding protein and corticosteroid-binding globulin associated with activity and response to treatment for rheumatoid arthritis. J Transl Med 2020; 18:8. [PMID: 31907043 PMCID: PMC6945416 DOI: 10.1186/s12967-019-02188-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 12/23/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Serum protein glycosylation is an area of investigation in inflammatory arthritic disorders such as rheumatoid arthritis (RA). Indeed, some studies highlighted abnormalities of protein glycosylation in RA. Considering the numerous types of enzymes, monosaccharides and glycosidic linkages, glycosylation is one of the most complex post translational modifications. By this work, we started with a preliminary screening of glycoproteins in serum from RA patients and controls. METHODS In order to isolate glycoproteins from serum, lectin wheat germ agglutinin was used and quantitative differences between patients and controls were investigated by LC-MS/MS. Consequently, we focused our attention on two glycoproteins found in this explorative phase: corticosteroid-binding globulin (CBG) and lipopolysaccharide-binding protein (LBP). The subsequent validation with immunoassays was widened to a larger number of early RA (ERA) patients (n = 90) and well-matched healthy controls (n = 90). RESULTS We observed a significant reduction of CBG and LBP glycosylation in ERA patients compared with healthy controls. Further, after 12 months of treatment, glycosylated CBG and LBP levels increased both to values comparable to those of controls. In addition, these changes were correlated with clinical parameters. CONCLUSIONS This study enables to observe that glycosylation changes of CBG and LBP are related to RA disease activity and its response to treatment.
Collapse
Affiliation(s)
- Federica Ciregia
- Laboratory of Rheumatology, GIGA-I3, University of Liège, CHU de Liège, 4000, Liège, Belgium.
| | - Dominique Baiwir
- GIGA Proteomic Facility, University of Liège, 4000, Liège, Belgium
| | - Gaël Cobraiville
- Laboratory of Rheumatology, GIGA-I3, University of Liège, CHU de Liège, 4000, Liège, Belgium
| | - Thibaut Dewael
- Laboratory of Rheumatology, GIGA-I3, University of Liège, CHU de Liège, 4000, Liège, Belgium
| | - Gabriel Mazzucchelli
- Mass Spectrometry Laboratory, System Biology and Chemical Biology, GIGA-Research, University of Liège, 4000, Liège, Belgium
| | - Valérie Badot
- Department of Rheumatology, CHU Brugmann, 1200, Brussels, Belgium
| | - Silvana Di Romana
- Department of Rheumatology, CHU Saint-Pierre, 1200, Brussels, Belgium
| | - Paschalis Sidiras
- Department of Rheumatology, Hôpital Erasme, Université Libre de Bruxelles, 1200, Brussels, Belgium
| | - Tatiana Sokolova
- Department of Rheumatology, Cliniques Universitaires Saint-Luc, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200, Brussels, Belgium
| | - Patrick Durez
- Department of Rheumatology, Cliniques Universitaires Saint-Luc, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200, Brussels, Belgium
| | - Michel G Malaise
- Laboratory of Rheumatology, GIGA-I3, University of Liège, CHU de Liège, 4000, Liège, Belgium
| | - Dominique de Seny
- Laboratory of Rheumatology, GIGA-I3, University of Liège, CHU de Liège, 4000, Liège, Belgium
| |
Collapse
|
23
|
Cai QY, Jiang JH, Jin RM, Jin GZ, Jia NY. The clinical significance of lipopolysaccharide binding protein in hepatocellular carcinoma. Oncol Lett 2019; 19:159-166. [PMID: 31897126 PMCID: PMC6924111 DOI: 10.3892/ol.2019.11119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 09/17/2019] [Indexed: 12/15/2022] Open
Abstract
Lipopolysaccharide binding protein (LBP) has been reported to be associated with prognosis in colorectal carcinoma and renal cell carcinoma; however, the clinical significance of LBP in human primary hepatocellular carcinoma (HCC) is inconclusive. We aimed to investigate the clinical significance and prognostic value of LBP in human primary HCC. In the present study, 346 patients with HCC who underwent curative resection were retrospectively analyzed. LBP protein expression was evaluated using western blot analysis and immunohistochemistry. LBP scores collected from immunohistochemical analysis were obtained by multiplying staining intensity and the percentage of positive cells. An outcome-based best cutoff-point was calculated by X-tile software. Moreover, Kaplan-Meier curves and Cox regressions were used for prognosis evaluation. LBP was frequently overexpressed in HCC compared with that in peritumor tissues (five pairs by western blot analysis, P=0.0533; 77 pairs by immunohistochemistry, P=0.0171), and LBP expression was positively associated with tumor-node-metastasis stage and tumor differentiation. Patients who had high LBP expression had decreased overall survival and time to recurrence compared with patients with low LBP expression. Furthermore, patients who were both serum α-fetoprotein positive and had high LBP expression had poor prognoses. Univariate and multivariate Cox analyses indicated that this combination was an independent prognostic factor [overall survival: Hazard ratio (HR), 1.458; 95% confidence interval (CI), 1.158–1.837; P=0.001; time to recurrence: HR,1.382; 95% Cl, 1.124–1.700; P=0.002]. In conclusion, LBP is highly expressed in HCC, and high LBP expression combined with serum α-fetoprotein may predict poor outcomes in patients with HCC following curative resection.
Collapse
Affiliation(s)
- Quan-Yu Cai
- Department of Radiology, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, P.R. China
| | - Jing-Hua Jiang
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, P.R. China
| | - Ri-Ming Jin
- Department of Hepatic Surgery I, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, P.R. China
| | - Guang-Zhi Jin
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, P.R. China
| | - Ning-Yang Jia
- Department of Radiology, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, P.R. China
| |
Collapse
|
24
|
Tamaki S, Kanazawa A, Sato J, Tamura Y, Asahara T, Takahashi T, Matsumoto S, Yamashiro Y, Watada H. Clinical factors associated with bacterial translocation in Japanese patients with type 2 diabetes: A retrospective study. PLoS One 2019; 14:e0222598. [PMID: 31536546 PMCID: PMC6752875 DOI: 10.1371/journal.pone.0222598] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 09/02/2019] [Indexed: 12/27/2022] Open
Abstract
Objective To explore clinical factors associated with bacterial translocation in Japanese patients with type 2 diabetes mellitus (T2DM). Methods The data of 118 patients with T2DM were obtained from two previous clinical studies, and were retrospectively analyzed regarding the clinical parameters associated with bacterial translocation defined as detection of bacteremia and levels of plasma lipopolysaccharide binding protein (LBP), the latter of which is thought to reflect inflammation caused by endotoxemia. Results LBP level was not significantly different between patients with and without bacteremia. No clinical factors were significantly correlated with the detection of bacteremia. On the other hand, plasma LBP level was significantly correlated with HbA1c (r = 0.312), fasting blood glucose (r = 0.279), fasting C-peptide (r = 0.265), body mass index (r = 0.371), high-density lipoprotein cholesterol (r = -0.241), and inflammatory markers (high-sensitivity C-reactive protein, r = 0.543; and interleukin-6, r = 0.456). Multiple regression analysis identified body mass index, HbA1c, high-sensitivity C-reactive protein, and interleukin-6 as independent determinants of plasma LBP level. Conclusion The plasma LBP level was similar in patients with and without bacteremia. While both bacteremia and LBP are theoretically associated with bacterial translocation, the detection of bacteremia was not associated with LBP level in T2DM.
Collapse
Affiliation(s)
- Shoko Tamaki
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akio Kanazawa
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- * E-mail:
| | - Junko Sato
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshifumi Tamura
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takashi Asahara
- Probiotics Research Laboratory, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Yakult Central Institute, Tokyo, Japan
| | - Takuya Takahashi
- Probiotics Research Laboratory, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Yakult Central Institute, Tokyo, Japan
| | - Satoshi Matsumoto
- Probiotics Research Laboratory, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Yakult Central Institute, Tokyo, Japan
| | - Yuichiro Yamashiro
- Probiotics Research Laboratory, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hirotaka Watada
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Center for Therapeutic Innovations in Diabetes, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Center for Identification of Diabetic Therapeutic Targets, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
25
|
Effects of dietary intervention and n-3 PUFA supplementation on markers of gut-related inflammation and their association with cardiovascular events in a high-risk population. Atherosclerosis 2019; 286:53-59. [PMID: 31100620 DOI: 10.1016/j.atherosclerosis.2019.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/16/2019] [Accepted: 05/03/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Dysbiosis of the gut microbiota is associated with increased levels of circulating lipopolysaccharide (LPS) and subsequent activation of systemic inflammation. Diet is an important modulator of the gut microbiome. We aimed to investigate whether circulating markers of gut-related inflammation, LPS binding protein (LBP) and soluble CD14 (sCD14) can be modulated by n-3 PUFA supplementation and/or diet counselling, and whether these markers are related to cardiovascular (CV) outcome. METHODS 484 men aged 65-75 years, at high CV-risk, were included and randomized in a 2 × 2 factorial design to 36-month intervention with dietary counselling, n-3 PUFA supplementation, or both. N-3 PUFA supplementation was placebo-controlled. ELISAs were used for determination of the biomarkers measured at baseline and study-end. A composite endpoint was defined as new CV-events and CV-mortality after 36 months. RESULTS There were no significant differences in changes of either LBP or sCD14 in the intervention groups compared to their respective controls (n-3 PUFA vs. placebo: p = 0.58, p = 0.15, diet vs. no-diet: p = 0.53, p = 0.59, respectively). The group with LBP levels above median had about 2-fold unadjusted risk of suffering an endpoint compared to the group below (HR 2.22, 95% CI 1.25-3.96; p = 0.01). A similar tendency was seen for sCD14 (HR 1.72, 95% CI 0.97-3.03; p = 0.06). After adjusting for covariates, LBP remained significantly associated with a two-fold CV-risk, whereas sCD14 gained statistical significance, however, lost when hsCRP was added to the model. CONCLUSIONS In our population, markers of gut-related inflammation associated with 36-month CV outcome. However, neither n-3 PUFA nor diet intervention had an effect on these markers.
Collapse
|
26
|
Modulation of the IL-6-Signaling Pathway in Liver Cells by miRNAs Targeting gp130, JAK1, and/or STAT3. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 16:419-433. [PMID: 31026677 PMCID: PMC6479786 DOI: 10.1016/j.omtn.2019.03.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/22/2019] [Accepted: 03/24/2019] [Indexed: 12/19/2022]
Abstract
Interleukin-6 (IL-6)-type cytokines share the common receptor glycoprotein 130 (gp130), which activates a signaling cascade involving Janus kinases (JAKs) and signal transducer and activator of transcription (STAT) transcription factors. IL-6 and/or its signaling pathway is often deregulated in diseases, such as chronic liver diseases and cancer. Thus, the identification of compounds inhibiting this pathway is of interest for future targeted therapies. We established novel cellular screening systems based on a STAT-responsive reporter gene (Cypridina luciferase). Of a library containing 538 microRNA (miRNA) mimics, several miRNAs affected hyper-IL-6-induced luciferase activities. When focusing on candidate miRNAs specifically targeting 3′ UTRs of signaling molecules of this pathway, we identified, e.g., miR-3677-5p as a novel miRNA affecting protein expression of both STAT3 and JAK1, whereas miR-16-1-3p, miR-4473, and miR-520f-3p reduced gp130 surface expression. Interestingly, combination treatment with 2 or 3 miRNAs targeting gp130 or different signaling molecules of the pathway did not increase the inhibitory effects on phospho-STAT3 levels and STAT3 target gene expression compared to treatment with single mimics. Taken together, we identified a set of miRNAs of potential therapeutic value for cancer and inflammatory diseases, which directly target the expression of molecules within the IL-6-signaling pathway and can dampen inflammatory signal transduction.
Collapse
|
27
|
Zhou S, Jiang G, Zhu Y, Liu L, Liu D, Diao J, Liu H, Xiu Y. Molecular identification and function analysis of bactericidal permeability-increasing protein/LPS-binding protein 1 (BPI/LBP1) from turbot (Scophthalmus maximus). FISH & SHELLFISH IMMUNOLOGY 2019; 87:499-506. [PMID: 30731212 DOI: 10.1016/j.fsi.2019.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/14/2019] [Accepted: 02/02/2019] [Indexed: 06/09/2023]
Abstract
Bactericidal permeability-increasing protein (BPI) and lipopolysaccharide-binding protein (LBP) play important roles in host antimicrobial defense. In the present study, we identified one isoform of BPI/LBP gene from turbot (Scophthalmus maximus), designated as SmBPI/LBP1. The full-length cDNA sequence of SmBPI/LBP1 was 1826 bp, which encoding one secreted protein with 480 amino acid residues. Structurally, the SmBPI/LBP1 showed high similarity to its homologs from other vertebrates or invertebrates, which all contained a signal peptide, a BPI/LBP/CETP N-terminal with a LPS-binding domain, and a BPI/LBP/CETP C-terminal domain. The deduced amino acid sequences of SmBPI/LBP1 shared significant similarity to BPI/LBP of Seriola lalandi dorsalis (71%) and Paralichthys olivaceus (69%). Phylogentic analysis further supported that SmBPI/LBP1 act as a new member of vertebrate BPI/LBP family. SmBPI/LBP1 was ubiquitously expressed in all tested tissues, with the highest expression level in spleen tissue. The mRNA expression of SmBPI/LBP1 in spleen and kidney were significantly up-regulated after Vibrio vulnificus challenge. Finally, the recombinant SmBPI/LBP1 showed high affinity to lipopolysaccharide, followed by peptidoglycan and lipoteichoic acid, which is the ubiquitous component of Gram-negative or Gram-positive bacteria. These results indicated that SmBPI/LBP1 probably played important roles in immune response against bacteria infection.
Collapse
Affiliation(s)
- Shun Zhou
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Guangpeng Jiang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ying Zhu
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China
| | - Lanhao Liu
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Danyang Liu
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jing Diao
- Shandong Key Laboratory of Disease Control in Mariculture, Marine Biology Institute of Shandong Province, 266104, Qingdao, PR China
| | - Hongjun Liu
- Shandong Key Laboratory of Disease Control in Mariculture, Marine Biology Institute of Shandong Province, 266104, Qingdao, PR China
| | - Yunji Xiu
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China; Shandong Key Laboratory of Disease Control in Mariculture, Marine Biology Institute of Shandong Province, 266104, Qingdao, PR China.
| |
Collapse
|
28
|
Nier A, Brandt A, Rajcic D, Bruns T, Bergheim I. Short-Term Isocaloric Intake of a Fructose- but not Glucose-Rich Diet Affects Bacterial Endotoxin Concentrations and Markers of Metabolic Health in Normal Weight Healthy Subjects. Mol Nutr Food Res 2019; 63:e1800868. [PMID: 30570214 PMCID: PMC6590154 DOI: 10.1002/mnfr.201800868] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/06/2018] [Indexed: 12/18/2022]
Abstract
SCOPE Dietary pattern and impairments of intestinal barrier function are discussed to be critical in the development of metabolic impairments. Here, it is determined if an isocaloric exchange of complex carbohydrates with monosaccharides affects markers of intestinal permeability and metabolic health in healthy subjects. METHODS AND RESULTS After a dietary standardization for 4 days, all 12 subjects aged 21-33 years receive an isocaloric fructose- and glucose-enriched diet for 3 days separated by a wash-out phase. Anthropometry, blood pressure, markers of intestinal permeability and metabolic as well as inflammatory parameters are determined in blood samples or isolated peripheral blood mononuclear cells collected at baseline, after standardizations and the monosaccharide interventions, respectively. While anthropometric and inflammatory parameters are not changed, the intake of an isocaloric fructose- but not glucose-enriched diet is associated with a significant increase of bacterial endotoxin plasma levels and alanine aminotransferase activity in serum, while total plasma nitrate/nitrite concentrations are significantly decreased. In peripheral blood mononuclear cells, Toll like receptors 4, 2, and MYD88 mRNA expressions are significantly induced after the fructose-rich but not the glucose-rich diet. CONCLUSION In metabolically healthy subjects, even a short-term intake of a fructose-rich diet can elevate bacterial endotoxin levels and change markers of liver health and vascular endothelial function.
Collapse
Affiliation(s)
- Anika Nier
- Department of Nutritional SciencesMolecular Nutritional ScienceUniversity of Vienna1090ViennaAustria
- SD Model Systems of Molecular NutritionInstitute of NutritionFriedrich–Schiller University Jena07743JenaGermany
| | - Annette Brandt
- Department of Nutritional SciencesMolecular Nutritional ScienceUniversity of Vienna1090ViennaAustria
- SD Model Systems of Molecular NutritionInstitute of NutritionFriedrich–Schiller University Jena07743JenaGermany
| | - Dragana Rajcic
- Department of Nutritional SciencesMolecular Nutritional ScienceUniversity of Vienna1090ViennaAustria
| | - Tony Bruns
- Department of Internal Medicine IVUniversity Hospital Jena07743JenaGermany
| | - Ina Bergheim
- Department of Nutritional SciencesMolecular Nutritional ScienceUniversity of Vienna1090ViennaAustria
- SD Model Systems of Molecular NutritionInstitute of NutritionFriedrich–Schiller University Jena07743JenaGermany
| |
Collapse
|
29
|
Jappe U, Schwager C, Schromm AB, González Roldán N, Stein K, Heine H, Duda KA. Lipophilic Allergens, Different Modes of Allergen-Lipid Interaction and Their Impact on Asthma and Allergy. Front Immunol 2019; 10:122. [PMID: 30837983 PMCID: PMC6382701 DOI: 10.3389/fimmu.2019.00122] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 01/15/2019] [Indexed: 12/12/2022] Open
Abstract
Molecular allergology research has provided valuable information on the structure and function of single allergenic molecules. There are several allergens in food and inhalant allergen sources that are able to interact with lipid ligands via different structural features: hydrophobic pockets, hydrophobic cavities, or specialized domains. For only a few of these allergens information on their associated ligands is already available. Several of the allergens are clinically relevant, so that it is highly probable that the individual structural features with which they interact with lipids have a direct effect on their allergenic potential, and thus on allergy development. There is some evidence for a protective effect of lipids delaying the enzymatic digestion of the peanut (Arachis hypogaea) allergen Ara h 8 (hydrophobic pocket), probably allowing this molecule to get to the intestinal immune system intact (sensitization). Oleosins from different food allergen sources are part of lipid storage organelles and potential marker allergens for the severity of the allergic reaction. House dust mite (HDM), is more often associated with allergic asthma than other sources of inhalant allergens. In particular, lipid-associated allergens from Dermatophagoides pteronyssinus which are Der p 2, Der p 5, Der p 7, Der p 13, Der p 14, and Der p 21 have been reported to be associated with severe allergic reactions and respiratory symptoms such as asthma. The exact mechanism of interaction of these allergens with lipids still has to be elucidated. Apart from single allergens glycolipids have been shown to directly induce allergic inflammation. Several-in parts conflicting-data exist on the lipid (and allergen) and toll-like receptor interactions. For only few single allergens mechanistic studies were performed on their interaction with the air-liquid interface of the lungs, in particular with the surfactant components SP-A and SP-D. The increasing knowledge on protein-lipid-interaction for lipophilic and hydrophobic food and inhalant allergens on the basis of their particular structure, of their capacity to be integral part of membranes (like the oleosins), and their ability to interact with membranes, surfactant components, and transport lipids (like the lipid transfer proteins) are essential to eventually clarify allergy and asthma development.
Collapse
Affiliation(s)
- Uta Jappe
- Division of Clinical and Molecular Allergology, Research Center Borstel, Leibniz Lung Center, Airway Research Center North, German Center for Lung Research, Borstel, Germany
- Interdisciplinary Allergy Outpatient Clinic, Department of Pneumology, University of Luebeck, Borstel, Germany
| | - Christian Schwager
- Division of Clinical and Molecular Allergology, Research Center Borstel, Leibniz Lung Center, Airway Research Center North, German Center for Lung Research, Borstel, Germany
| | - Andra B. Schromm
- Division of Immunobiophysics, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Nestor González Roldán
- Junior Research Group of Allergobiochemistry, Research Center Borstel, Leibniz Lung Center, Airway Research Center North, German Center for Lung Research, Borstel, Germany
| | - Karina Stein
- Division of Innate Immunity, Research Center Borstel, Leibniz Lung Center, Airway Research Center North, German Center for Lung Research, Borstel, Germany
| | - Holger Heine
- Division of Innate Immunity, Research Center Borstel, Leibniz Lung Center, Airway Research Center North, German Center for Lung Research, Borstel, Germany
| | - Katarzyna A. Duda
- Junior Research Group of Allergobiochemistry, Research Center Borstel, Leibniz Lung Center, Airway Research Center North, German Center for Lung Research, Borstel, Germany
| |
Collapse
|
30
|
Picco ME, Castro MV, Quezada MJ, Barbero G, Villanueva MB, Fernández NB, Kim H, Lopez-Bergami P. STAT3 enhances the constitutive activity of AGC kinases in melanoma by transactivating PDK1. Cell Biosci 2019; 9:3. [PMID: 30622697 PMCID: PMC6317239 DOI: 10.1186/s13578-018-0265-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/21/2018] [Indexed: 01/26/2023] Open
Abstract
Background The PI3K/Akt and the STAT3 pathways are functionally associated in many tumor types. Both in vitro and in vivo studies have revealed that either biochemical or genetic manipulation of the STAT3 pathway activity induce changes in the same direction in Akt activity. However, the implicated mechanism has been poorly characterized. Our goal was to characterize the precise mechanism linking STAT3 with the activity of Akt and other AGC kinases in cancer using melanoma cells as a model. Results We show that active STAT3 is constitutively bound to the PDK1 promoter and positively regulate PDK1 transcription through two STAT3 responsive elements. Transduction of WM9 and UACC903 melanoma cells with STAT3-small hairpin RNA decreased both PDK1 mRNA and protein levels. STAT3 knockdown also induced a decrease of the phosphorylation of AGC kinases Akt, PKC, and SGK. The inhibitory effect of STAT3 silencing on Akt phosphorylation was restored by HA-PDK1. Along this line, HA-PDK1 expression significantly blocked the cell death induced by dacarbazine plus STAT3 knockdown. This effect might be mediated by Bcl2 proteins since HA-PDK1 rescued Bcl2, Bcl-XL, and Mcl1 levels that were down-regulated upon STAT3 silencing. Conclusions We show that PDK1 is a transcriptional target of STAT3, linking STAT3 pathway with AGC kinases activity in melanoma. These data provide further rationale for the ongoing effort to therapeutically target STAT3 and PDK1 in melanoma and, possibly, other malignancies. Electronic supplementary material The online version of this article (10.1186/s13578-018-0265-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- María Elisa Picco
- 1Instituto de Medicina y Biología Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Victoria Castro
- 2Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, CONICET, Hidalgo 775, 6th Floor, Lab 602, Buenos Aires, Argentina
| | - María Josefina Quezada
- 2Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, CONICET, Hidalgo 775, 6th Floor, Lab 602, Buenos Aires, Argentina
| | - Gastón Barbero
- 2Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, CONICET, Hidalgo 775, 6th Floor, Lab 602, Buenos Aires, Argentina
| | - María Belén Villanueva
- 2Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, CONICET, Hidalgo 775, 6th Floor, Lab 602, Buenos Aires, Argentina
| | - Natalia Brenda Fernández
- 1Instituto de Medicina y Biología Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Hyungsoo Kim
- 3Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA USA
| | - Pablo Lopez-Bergami
- 2Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, CONICET, Hidalgo 775, 6th Floor, Lab 602, Buenos Aires, Argentina
| |
Collapse
|
31
|
Aldag J, Persson T, Hartmann RK. 2'-Fluoro-Pyrimidine-Modified RNA Aptamers Specific for Lipopolysaccharide Binding Protein (LBP). Int J Mol Sci 2018; 19:ijms19123883. [PMID: 30563044 PMCID: PMC6321028 DOI: 10.3390/ijms19123883] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 12/12/2022] Open
Abstract
Lipopolysaccaride binding protein (LBP), a glycosylated acute phase protein, plays an important role in the pathophysiology of sepsis. LBP binds with high affinity to the lipid part of bacterial lipopolysaccaride (LPS). Inhibition of the LPS-LBP interaction or blockage of LBP-mediated transfer of LPS monomers to CD14 may be therapeutical strategies to prevent septic shock. LBP is also of interest as a biomarker to identify septic patients at high risk for death, as LBP levels are elevated during early stages of severe sepsis. As a first step toward such potential applications, we isolated aptamers specific for murine LBP (mLBP) by in vitro selection from a library containing a 60-nucleotide randomized region. Modified RNA pools were transcribed in the presence of 2′-fluoro-modified pyrimidine nucleotides to stabilize transcripts against nuclease degradation. As verified for one aptamer experimentally, the selected aptamers adopt a “three-helix junction” architecture, presenting single-stranded 7-nt (5′-YGCTTCY) or 6-nt (5′-RTTTCY) consensus sequences in their core. The best binder (aptamer A011; Kd of 270 nM for binding to mLBP), characterized in more detail by structure probing and boundary analysis, was demonstrated to bind with high specificity to murine LBP.
Collapse
Affiliation(s)
- Jasmin Aldag
- Jasmin Aldag, EUROIMMUN AG, Seekamp 31, D-23560 Lübeck, Germany.
| | - Tina Persson
- Tina Persson, Passage2Pro AB, Östra Kristinelundsvägen 4B, SE-21748 Malmö, Sweden.
| | - Roland K Hartmann
- Roland K. Hartmann, Philipps-Universität Marburg, Institut für Pharmazeutische Chemie, Marbacher Weg 6, D-35037 Marburg, Germany.
| |
Collapse
|
32
|
Huang Z, Perry E, Huebner JL, Katz B, Li YJ, Kraus VB. Biomarkers of inflammation - LBP and TLR- predict progression of knee osteoarthritis in the DOXY clinical trial. Osteoarthritis Cartilage 2018; 26:1658-1665. [PMID: 30144513 PMCID: PMC6263786 DOI: 10.1016/j.joca.2018.08.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 07/25/2018] [Accepted: 08/10/2018] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To evaluate systemic inflammatory biomarkers in symptomatic knee osteoarthritis (OA) and their association with radiographic and biochemical OA progression. METHODS Lipopolysaccharide (LPS) binding protein (LBP), soluble Toll-like receptor 4 (sTLR4) and interleukin 6 (IL-6) were measured in plasma of 431 knee OA patients from the doxycycline (DOXY) trial at baseline and 18 months. Plasma lipopolysaccharide and lipopolysaccharide binding protein (LBP) were also measured at 12 months. As a biochemical indicator of disease activity and OA progression, urinary (u) C-telopeptide of Type II collagen (uCTX-II) was measured in samples collected at baseline and 18 months. Change over 16 months in radiographic tibiofemoral joint space width (JSW in mm) and joint space narrowing (JSN≥0.5 mm) were used to indicate radiographic OA progression. Change over 18 months for uCTX-II was used as a secondary outcome. Both univariate and multivariable regression analyses were performed to test the association between Z-score transformed biomarkers and outcomes. RESULTS Baseline LBP and time-integrated concentration (TIC) of LBP over 12 and 18 months were associated with worsening joint space width (JSW) (parameter estimates: -0.1 to -0.07) and JSN (OR: 1.32 to 1.42) adjusting for treatment group, age, body mass index (BMI) and corresponding baseline radiographic measures. Baseline sTLR4 and TIC over 18 months were associated with change in uCTX-II over 18 months (adjusted parameter estimates: 0.0017 to 0.0020). Results were not modified by treatment with doxycycline. CONCLUSION Plasma LBP and sTLR4 were associated with knee OA progression over 16-18 months. These results lend further support for a role of systemic low-grade inflammation in the pathogenesis of knee OA progression.
Collapse
Affiliation(s)
- ZeYu Huang
- Department of Orthopedic Surgery, West China Hospital, West China Medical School, SiChuan University, ChengDu, SiChuan Province, People’s Republic of China;,Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Emily Perry
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Janet L. Huebner
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Barry Katz
- Department of Biostatistics, Indiana University, Indianapolis, IN, USA
| | - Yi-Ju Li
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA,Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Virginia Byers Kraus
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA,Division of Rheumatology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA,Correspondence Virginia Byers Kraus Professor of Medicine, Division of Rheumatology and Duke Molecular Physiology Institute, Duke University School of Medicine, 300 N Duke Street, Durham, NC 27701-2047 USA, Tel: +1-919-681-6652/Fax: 919-684-8907/
| |
Collapse
|
33
|
Lu HX, Sun JH, Wen DL, Du J, Zeng L, Zhang AQ, Jiang JX. LBP rs2232618 polymorphism contributes to risk of sepsis after trauma. World J Emerg Surg 2018; 13:52. [PMID: 30479651 PMCID: PMC6240187 DOI: 10.1186/s13017-018-0214-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 11/01/2018] [Indexed: 12/17/2022] Open
Abstract
Background Previous study revealed that rs2232618 polymorphism (Phe436Leu) within LBP gene is a functional variant and associated with susceptibility of sepsis in traumatic patients. Our aim was to confirm the reported association by enlarging the population sample size and perform a meta-analysis to find additional evidence. Methods Traumatic patients from Southwest (n = 1296) and Southeast (n = 445) of China were enrolled in our study. After genotyping, the relationship between rs2232618 and the risk of sepsis was analyzed. Furthermore, we proceeded with a comprehensive literature search and meta-analysis to determine whether the rs2232618 polymorphism conferred susceptibility to sepsis. Results Significance correlation was observed between rs2232618 and risk of sepsis in Southwest patients (P = 0.002 for the dominant model, P = 0.006 for the recessive model). The association was confirmed in Southeast cohort (P = 0.005 for the dominant model) and overall combined cohorts (P = 4.5 × 10-4, P = 0.041 for the dominant and recessive model). Multiple logistical regression analyses suggested that rs2232618 polymorphism was related to higher risk of sepsis (OR = 1.77, 95% CI = 1.26-2.48, P = 0.001 in Southwest patients; OR = 2.11, 95% CI = 1.24-3.58, P = 0.006 in Southeast cohort; OR = 1.54, 95% CI = 1.34-2.08, P = 0.006 in overall cohort). Furthermore, meta-analysis of four studies (including the present study) confirmed that rs2232618 within LBP increased the risk of sepsis (OR = 1.75, P < 0.001 for the dominant model; OR = 6.08, P = 0.003 for the recessive model; OR = 2.72, P < 0.001 for the allelic model). Conclusions The results from our replication study and meta-analysis provided firm evidence that rs2232618T allele significantly increased the risk of sepsis.
Collapse
Affiliation(s)
- Hong-Xiang Lu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042 China
| | - Jian-Hui Sun
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042 China
| | - Da-Lin Wen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042 China
| | - Juan Du
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042 China
| | - Ling Zeng
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042 China
| | - An-Qiang Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042 China
| | - Jian-Xin Jiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042 China
| |
Collapse
|
34
|
Lattanzi B, Baroncelli S, De Santis A, Galluzzo CM, Mennini G, Michelini Z, Lupo M, Ginanni Corradini S, Rossi M, Palmisano L, Merli M. Microbial translocation and T cell activation are modified by direct-acting antiviral therapy in HCV-infected patients. Aliment Pharmacol Ther 2018; 48:1146-1155. [PMID: 30294870 DOI: 10.1111/apt.14994] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/03/2018] [Accepted: 08/30/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Microbial translocation from the gut lumen has been involved in the pathogenesis of liver damage in hepatitis C virus (HCV) infection. AIM To investigate the impact of direct-acting antiviral treatment on microbial translocation and T-cell activation, in patients with hepatitis C-related liver disease. METHODS We enrolled two groups of HCV-infected patients undergoing direct-acting antiviral treatment: patients with fibrosis ≥F3 according to Metavir (Group ≥F3); patients with hepatitis C recurrence after liver transplantation and Metavir ≥F2 (Group Liver Transplantation + ≥F2). All patients were treated with direct-acting antivirals based on ongoing guidelines. Surrogate biomarkers of microbial translocation (plasma concentrations of soluble-CD14, lipopolysaccharide-binding protein and intestinal fatty acid-binding protein) were evaluated at baseline, at first month, at the end of treatment and 3 months later. T-cell activation was measured by expression of CD38+ HLA-DR at the same time points, only in Group ≥F3. RESULTS There were 32 patients in Group ≥F3 and 13 in Group LT + ≥F2. At baseline, levels of soluble-CD14 and lipopolysaccharide-binding protein were significantly higher in both groups vs healthy controls. Baseline soluble-CD14 correlated with glutamic-oxalacetic transaminase (r = 0.384, P = 0.009) and glutamic-pyruvic transaminase (r = 0.293, P = 0.05). A significant decrease in plasma levels of surrogate microbial translocation biomarkers was observed during and after treatment in the two groups although values were not normalised. In Group ≥F3, CD38+ HLADR+ T-cell expression was significantly decreased by direct-acting antiviral treatment. Relapsers (9%) showed higher soluble-CD14 levels at baseline. CONCLUSION Surrogate microbial translocation markers and T cell activation are increased in HCV-infected patients with liver fibrosis and decrease during direct-acting antiviral treatment.
Collapse
Affiliation(s)
- Barbara Lattanzi
- Division of Gastroenterology, Department of Clinical Medicine, Sapienza University of Rome, Rome, Italy
| | - Silvia Baroncelli
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Adriano De Santis
- Division of Gastroenterology, Department of Clinical Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Gianluca Mennini
- Hepato-biliopancreatic and Liver Transplant Unit, Department of Surgery, Sapienza University of Rome, Rome, Italy
| | - Zuleika Michelini
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Marinella Lupo
- Division of Gastroenterology, Department of Clinical Medicine, Sapienza University of Rome, Rome, Italy
| | - Stefano Ginanni Corradini
- Division of Gastroenterology, Department of Clinical Medicine, Sapienza University of Rome, Rome, Italy
| | - Massimo Rossi
- Hepato-biliopancreatic and Liver Transplant Unit, Department of Surgery, Sapienza University of Rome, Rome, Italy
| | - Lucia Palmisano
- National Center for Preclinical and Clinical Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Manuela Merli
- Division of Gastroenterology, Department of Clinical Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
35
|
Ponziani FR, Zocco MA, Cerrito L, Gasbarrini A, Pompili M. Bacterial translocation in patients with liver cirrhosis: physiology, clinical consequences, and practical implications. Expert Rev Gastroenterol Hepatol 2018; 12:641-656. [PMID: 29806487 DOI: 10.1080/17474124.2018.1481747] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The gut liver axis is an operative unit that works to protect the human body against potentially harmful substances and microorganisms, maintaining the homeostasis of the immune system. Liver cirrhosis profoundly alters this complex system. The intestine becomes more permeable allowing the translocation of bacteria, bacterial products and fragments into the portal circulation, triggering an abnormal local and systemic inflammatory response and a condition of perpetual immunologic alarm. This immune-inflammatory disorder related to dysbiosis is involved in the development of liver damage and liver cirrhosis complications and increases intestinal permeability in a vicious circle. Areas covered: The most relevant studies on bacterial translocation, the mechanism of intestinal barrier dysfunction and its consequences in patients with liver cirrhosis have been revised through a PubMed search. Data have been discussed with particular regard to their significance in clinical practice. Expert commentary: The assessment of bacterial translocation and intestinal permeability is not currently used in clinical practice but may be useful to stratify patients' prognosis.
Collapse
Affiliation(s)
- Francesca Romana Ponziani
- a Internal Medicine, Gastroenterology and Hepatology , Fondazione Agostino Gemelli Hospital , Rome , Italy
| | - Maria Assunta Zocco
- a Internal Medicine, Gastroenterology and Hepatology , Fondazione Agostino Gemelli Hospital , Rome , Italy
| | - Lucia Cerrito
- a Internal Medicine, Gastroenterology and Hepatology , Fondazione Agostino Gemelli Hospital , Rome , Italy
| | - Antonio Gasbarrini
- a Internal Medicine, Gastroenterology and Hepatology , Fondazione Agostino Gemelli Hospital , Rome , Italy
| | - Maurizio Pompili
- a Internal Medicine, Gastroenterology and Hepatology , Fondazione Agostino Gemelli Hospital , Rome , Italy
| |
Collapse
|
36
|
Citronberg JS, Curtis KR, White E, Newcomb PA, Newton K, Atkinson C, Song X, Lampe JW, Hullar MA. Association of gut microbial communities with plasma lipopolysaccharide-binding protein (LBP) in premenopausal women. THE ISME JOURNAL 2018; 12:1631-1641. [PMID: 29434315 PMCID: PMC6018759 DOI: 10.1038/s41396-018-0064-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 11/08/2017] [Accepted: 01/12/2018] [Indexed: 12/12/2022]
Abstract
The mechanisms by which obesity increases cancer risk are unclear, but some lines of evidence suggest that gut microbial communities (GMC) may contribute to chronic inflammation in obese individuals through raised systemic levels of lipopolysaccharides (LPS). We evaluated associations of the GMC in stool with plasma LPS-binding protein (LBP, a measure of LPS) and C-reactive protein (CRP) concentrations in 110 premenopausal women in the United States. Diet was assessed using 3-day food records and GMCs were evaluated using pyrosequencing of the 16S rRNA gene. OTUs were identified at 97% sequence similarity. Taxonomic classification and functional genes were imputed from 16S rRNA genes, and alpha and beta diversity were assessed using the Shannon index and MRPP, respectively. Multivariable linear regression analysis was used to assess the relation between LBP, specific bacterial genera identified with indicator species analysis, and CRP. Dietary fat intake, particularly saturated fat, and CRP were positively associated with increased LBP. GMC beta diversity, but not alpha diversity, was statistically significantly different between groups using unweighted Unifrac. Several taxa, particularly those in the Clostridia class, were more prevalent in women with low LBP, while Bacteroides were more prevalent in those with high LBP. Genes associated with gram-negative cell wall material synthesis were also associated with LBP and CRP. In contrast, Phascolarctobacterium was associated with lower concentrations of LBP and CRP. We found distinct differences between tertiles of LBP regarding the diversity and composition of the microbiome, as well as differences in functional genes that potentially activate LBP.
Collapse
Affiliation(s)
- Jessica S Citronberg
- Department of Epidemiology, University of Washington, Seattle, WA, USA.
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | - Keith R Curtis
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Emily White
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Polly A Newcomb
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Charlotte Atkinson
- NIHR Bristol Biomedical Research Centre (Nutrition Theme) at the University Hospitals Bristol NHS Foundation Trust and the University of Bristol, Bristol, UK
| | - Xiaoling Song
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Johanna W Lampe
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Meredith Aj Hullar
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
37
|
Bidne KL, Dickson MJ, Ross JW, Baumgard LH, Keating AF. Disruption of female reproductive function by endotoxins. Reproduction 2018; 155:R169-R181. [DOI: 10.1530/rep-17-0406] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 01/22/2018] [Indexed: 12/20/2022]
Abstract
Endotoxemia can be caused by obesity, environmental chemical exposure, abiotic stressors and bacterial infection. Circumstances that deleteriously impact intestinal barrier integrity can induce endotoxemia, and controlled experiments have identified negative impacts of lipopolysaccharide (LPS; an endotoxin mimetic) on folliculogenesis, puberty onset, estrus behavior, ovulation, meiotic competence, luteal function and ovarian steroidogenesis. In addition, neonatal LPS exposures have transgenerational female reproductive impacts, raising concern about early life contacts to this endogenous reproductive toxicant. Aims of this review are to identify physiological stressors causing endotoxemia, to highlight potential mechanism(s) by which LPS compromises female reproduction and identify knowledge gaps regarding how acute and/or metabolic endotoxemia influence(s) female reproduction.
Collapse
|
38
|
Stefanska B, Człapa W, Pruszynska-Oszmałek E, Szczepankiewicz D, Fievez V, Komisarek J, Stajek K, Nowak W. Subacute ruminal acidosis affects fermentation and endotoxin concentration in the rumen and relative expression of the CD14/TLR4/MD2 genes involved in lipopolysaccharide systemic immune response in dairy cows. J Dairy Sci 2017; 101:1297-1310. [PMID: 29153518 DOI: 10.3168/jds.2017-12896] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 09/21/2017] [Indexed: 12/17/2022]
Abstract
The first objective of this study was to investigate the effects of subacute ruminal acidosis (SARA) on fermentation, ruminal free lipopolysaccharides (LPS), and expression of the cluster of differentiation 14 (CD14), toll-like receptor 4 (TLR4), and myeloid differentiation protein 2 (MD2) complex in white blood cells involved in the systemic immune response in dairy cows. The second objective was a study of whether increased expression of the LPS receptor complex led to increases in the concentrations of plasma high-density lipoprotein (HDL) and serum Ca. Three hundred five dairy cows located in 13 Polish high-yielding dairy commercial farms were selected according to their days in milk (40-150 d; average = 75), 305-d milk yield (10,070-12,041 kg; average = 10,940), and number of lactations (primiparous, n = 139 and multiparous, n = 166). Next, the herds were segregated into 3 groups based on the percentages of cows with an assigned value of ruminal fluid pH: SARA-positive, SARA-risk, and SARA-negative herds. Moreover, 305 selected dairy cows were divided according to the classification based on ruminal fluid pH into 3 groups as healthy (pH >5.81), risk (pH 5.8-5.6) and acidotic cows (pH <5.6). Rumen fluid samples were collected via rumenocentesis. In the AC group, we recorded higher concentrations of ruminal free LPS [4.57 Log10 endotoxin units (EU)/mL; 42,206 EU/mL] compared with the healthy group (4.48 Log10 EU/mL; 34,179 EU/mL). Similarly, the concentration of ruminal free LPS was higher in SARA-positive herds (4.60 Log10 EU/mL; 43,000 EU/mL) compared with SARA-negative herds (4.47 Log10 EU/mL; 32,225 EU/mL). The relative mRNA abundance of genes associated with the function of LPS receptors, such as CD14, TLR4, and MD2, in white blood cells differed between all experimental groups on both cow and herd levels. In the acidotic group, we recorded higher concentrations of HDL (78.16 vs. 68.32 mg/dL) and serum amyloid A (10.80 vs. 9.16 µg/mL) and lower concentrations of Ca (8.26 vs. 10.16 mg/dL) and haptoglobin (470.19 vs. 516.85 ng/mL) compared with the healthy group. Similar results were obtained in the SARA herd status analysis, but the concentration of lipopolysaccharide-binding protein differed statistically. Moreover, the pH of ruminal fluid was negatively correlated with relative mRNA abundance of genes such as CD14, TLR4, MD2, and concentrations of serum HDL and serum amyloid A, although positively correlated with serum Ca. The results indicated that decreases in ruminal fluid pH increased the release of free LPS into the rumen and stimulated the expression of the LPS receptor complex and immune response. Moreover, an increase in the expression of the LPS receptor led to higher concentrations of plasma HDL and lower serum Ca, which may be a protective mechanism against endotoxemia. However, the biological significance of these results needs to be investigated further in larger field trials.
Collapse
Affiliation(s)
- B Stefanska
- Department of Animal Nutrition and Feed Management, Poznań University of Life Science, 35 Wołyńska Street, 60-637 Poznań, Poland.
| | - W Człapa
- Department of Animal Nutrition and Feed Management, Poznań University of Life Science, 35 Wołyńska Street, 60-637 Poznań, Poland
| | - E Pruszynska-Oszmałek
- Department of Animal Physiology and Biochemistry, Faculty of Animal Science, Poznań University of Life Science, 35 Wołyńska Street, 60-637 Poznań, Poland
| | - D Szczepankiewicz
- Department of Animal Physiology and Biochemistry, Faculty of Animal Science, Poznań University of Life Science, 35 Wołyńska Street, 60-637 Poznań, Poland
| | - V Fievez
- Laboratory for Animal Nutrition and Animal Product Quality, Campus Coupure BW13, Block F, Coupure Links 653, B-9000 Gent, Belgium
| | - J Komisarek
- Department of Animal Breeding and Product Quality Assessment, Poznań University of Life Sciences, Złotniki, 1 Słoneczna Street, 62-002 Suchy Las, Poland
| | - K Stajek
- Department of Animal Nutrition and Feed Management, Poznań University of Life Science, 35 Wołyńska Street, 60-637 Poznań, Poland
| | - W Nowak
- Department of Animal Nutrition and Feed Management, Poznań University of Life Science, 35 Wołyńska Street, 60-637 Poznań, Poland
| |
Collapse
|
39
|
Expression of inflammatory lipopolysaccharide binding protein (LBP) predicts the progression of conventional renal cell carcinoma - a short report. Cell Oncol (Dordr) 2017; 40:651-656. [PMID: 28936621 DOI: 10.1007/s13402-017-0346-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The mortality of conventional renal cell carcinoma (RCC) correlates directly with the presence or postoperative development of metastases. The aim of this study was to identify new markers associated with the postoperative progression of conventional RCC. METHODS Tissue microarrays (TMA) of conventional RCC from a cohort of 414 patients were analysed by immunohistochemistry for expression of the lipopolysaccharide binding protein (LBP), which was identified as a candidate biomarker through Affymetrix U133 Plus 2.0 array analysis. Univariate and multivariate Cox regression models were addressed to cancer-specific survival in association with age, sex, clinicopathological parameters and LBP expression. The survival time of the patients was estimated by Kaplan-Meier analyses, and comparisons of survival curves were made using the Log rank test. RESULTS Univariate analysis revealed an association of patient survival with all clinicopathological parameters tested and LBP expression. In multivariate analysis only T classification, grade and LBP staining showed a significant association with postoperative cancer-specific survival (p < 0.001). LBP expression was found to be associated with a poor patient survival in Kaplan-Meier analyses. The estimated median survival time for patients with tumours showing LBP expression was 74 months, whereas the overall survival time was 142 months. CONCLUSION LBP expression in conventional RCC defines a group of patients at a high risk of postoperative progression and may help to direct optimized active surveillance and timely adjuvant therapy.
Collapse
|
40
|
Agiasotelli D, Alexopoulou A, Vasilieva L, Hadziyannis E, Goukos D, Daikos GL, Dourakis SP. High serum lipopolysaccharide binding protein is associated with increased mortality in patients with decompensated cirrhosis. Liver Int 2017; 37:576-582. [PMID: 27712029 DOI: 10.1111/liv.13264] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 09/29/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Lipopolysaccharide-binding-protein (LBP) is an acute-phase-protein produced by hepatocytes. Changes in LBP are associated with the dynamics of bacterial translocation and intestinal permeability in decompensated cirrhosis (DC). We assessed serum and ascitic-fluid (AF) LBP and examined their association with mortality in patients with DC. METHODS Eighty-eight consecutive patients (73.9% males) underwent thorough diagnostic investigations for infection. LBP (ng/mL) was assessed in serum (N=88) and AF (n=49) by enzyme-linked-immunosorbent-assay and expressed in natural logarithm (ln). RESULTS Serum lnLBP was higher in 18 patients with overt infection compared to those without (P<.001). Serum and AF lnLBP 13.49 and 12.11 displayed a very good-negative-predictive value of 90% and 95.1% to rule out infection and spontaneous-bacterial-peritonitis (SBP), respectively. LBP was higher in serum than in AF (P<.001). Serum and AF LBP levels showed a positive correlation with surrogate markers of inflammation. Patients without overt infection were prospectively followed up. The 90-day-mortality rate was 48% and 24.4% in patients with high (≥13.49) and low (<13.49) lnLBP, respectively, (log rank P=0.045). In univariate Cox regression analysis, neutrophils, LBP, MELD score and CRP were predictive of mortality. However, only high LBP (HR 8.1 95%CI 2.0-31.5, P=0.003) and MELD (HR 1.1 95%CI 1.0-1.2, P=0.002) were predictive of mortality in multivariate analysis. CONCLUSIONS Serum and AF LBP concentrations showed a high negative-predictive-value to exclude infection and SBP, respectively. High serum LBP was detected in patients without infection at presentation who died during the 90-day-follow-up period. Elevated serum LBP is a marker of short-term mortality in patients without overt bacterial infection.
Collapse
Affiliation(s)
- Danai Agiasotelli
- 2nd Department of Internal Medicine, Hippokration Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexandra Alexopoulou
- 2nd Department of Internal Medicine, Hippokration Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Larisa Vasilieva
- 2nd Department of Internal Medicine, Hippokration Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Emilia Hadziyannis
- 2nd Department of Internal Medicine, Hippokration Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitris Goukos
- 1st Department of Propedeutic Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - George L Daikos
- 1st Department of Propedeutic Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Spyros P Dourakis
- 2nd Department of Internal Medicine, Hippokration Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
41
|
Goswami R, Kaplan M. STAT Transcription Factors in T Cell Control of Health and Disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 331:123-180. [DOI: 10.1016/bs.ircmb.2016.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
42
|
Hu B, Wen C, Zhang M, Jian S, Yang G. Identification and characterization of two LBP/BPI genes involved in innate immunity from Hyriopsis cumingii. FISH & SHELLFISH IMMUNOLOGY 2017; 60:436-446. [PMID: 27979780 DOI: 10.1016/j.fsi.2016.12.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/08/2016] [Accepted: 12/11/2016] [Indexed: 06/06/2023]
Abstract
Lipopolysaccharide-binding protein and bactericidal permeability-increasing protein (LBP/BPI) play crucial role in modulating cellular signals in response to Gram-negative bacteria infection. In the present study, two isoforms of LBP/BPI genes, designated as HcLBP/BPI1 and HcLBP/BPI2, respectively, were cloned from the mussel Hyriopsis cumingii by RACE approach. The full-length cDNA sequences of HcLBP/BPI1 and HcLBP/BPI2 were 1887 and 2227 bp and encoded two secreted proteins of 501 and 518 amino acid residues, respectively. The deduced amino acid of HcLBP/BPI1 and HcLBP/BPI2 contained several conserved domains, such as signal peptide, two BPI/LBP and one central domain. Phylogentic analysis further supported that HcLBP/BPI1 and HcLBP/BPI2 belonged to new members of invertebrate LBP/BPI family. The mRNA transcripts of HcLBP/BPI1 and HcLBP/BPI2 were ubiquitously expressed in all examined tissues, and the expression level of HcLBP/BPI1 was higher than that of HcLBP/BPI2. The mRNA expression of HcLBP/BPI1 in hepatopancreas and hemocytes was significantly up-regulate after Aeromonas hydrophila and LPS challenge, and HcLBP/BPI2 in hepatopancreas was only up-regulated at 6 and 12 h after LPS challenge and at 12 h after A. hydrophila challenge. In addition, the recombinant HcLBP/BPIs displayed antibacterial activity against Gram-negative bacteria, and the antibacterial index of HcLBP/BPI1 was higher than that of HcLBP/BPI2. These results indicated that HcLBP/BPI1 and HcLBP/BPI2 probably played distinct roles in bacterial mediating immune response in Mollusca.
Collapse
Affiliation(s)
- Baoqing Hu
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Chungen Wen
- School of Life Sciences, Nanchang University, Nanchang 330031, China.
| | - Ming Zhang
- College of Jiangxi Biotech Vocational, Nanchang 330200, China.
| | - Shaoqing Jian
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Gang Yang
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| |
Collapse
|
43
|
Ponsuksili S, Trakooljul N, Hadlich F, Haack F, Murani E, Wimmers K. Genetically regulated hepatic transcripts and pathways orchestrate haematological, biochemical and body composition traits. Sci Rep 2016; 6:39614. [PMID: 28000754 PMCID: PMC5175187 DOI: 10.1038/srep39614] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 11/22/2016] [Indexed: 01/19/2023] Open
Abstract
The liver is the central metabolic organ and exhibits fundamental functions in haematological traits. Hepatic expression, haematological, plasma biochemical, and body composition traits were assessed in a porcine model (n = 297) to establish tissue-specific genetic variations that influence the function of immune-metabolism-correlated expression networks. At FDR (false discovery rate) <1%, more than 3,600 transcripts were jointly correlated (r = |0.22-0.48|) with the traits. Functional enrichment analysis demonstrated common links of metabolic and immune traits. To understand how immune and metabolic traits are affected via genetic regulation of gene expression, eQTLs were assessed. 20517 significant (FDR < 5%) eQTLs for 1401 transcripts were identified, among which 443 transcripts were associated with at least one of the examined traits and had cis-eQTL (such as ACO1 (6.52 × 10-7) and SOD1 (6.41 × 10-30). The present study establishes a comprehensive view of hepatic gene activity which links together metabolic and immune traits in a porcine model for medical research.
Collapse
Affiliation(s)
- Siriluck Ponsuksili
- Research Unit 'Functional Genome Analysis', Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Nares Trakooljul
- Research Unit 'Genomics', Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Frieder Hadlich
- Research Unit 'Functional Genome Analysis', Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Fiete Haack
- Research Unit 'Functional Genome Analysis', Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Eduard Murani
- Research Unit 'Genomics', Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Klaus Wimmers
- Research Unit 'Genomics', Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| |
Collapse
|
44
|
Tomaszewska-Zaremba D, Herman A, Haziak K. How does bacterial endotoxin influence gonadoliberin/gonadotropins secretion and action? JOURNAL OF ANIMAL AND FEED SCIENCES 2016. [DOI: 10.22358/jafs/67366/2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
45
|
Cronin JG, Kanamarlapudi V, Thornton CA, Sheldon IM. Signal transducer and activator of transcription-3 licenses Toll-like receptor 4-dependent interleukin (IL)-6 and IL-8 production via IL-6 receptor-positive feedback in endometrial cells. Mucosal Immunol 2016; 9:1125-36. [PMID: 26813342 PMCID: PMC4990777 DOI: 10.1038/mi.2015.131] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 11/20/2015] [Indexed: 02/07/2023]
Abstract
Interleukin 6 (IL-6), acting via the IL-6 receptor (IL6R) and signal transducer and activator of transcription-3 (STAT3), limits neutrophil recruitment once bacterial infections are resolved. Bovine endometritis is an exemplar mucosal disease, characterized by sustained neutrophil infiltration and elevated IL-6 and IL-8, a neutrophil chemoattractant, following postpartum Gram-negative bacterial infection. The present study examined the impact of the IL6R/STAT3 signaling pathway on IL-8 production by primary endometrial cells in response to short- or long-term exposure to lipopolysaccharide (LPS) from Gram-negative bacteria. Tyrosine phosphorylation of STAT3 is required for DNA binding and expression of specific targets genes. Immunoblotting indicated constitutive tyrosine phosphorylation of STAT3 in endometrial cells was impeded by acute exposure to LPS. After 24 h exposure to LPS, STAT3 returned to a tyrosine phosphorylated state, indicating cross-talk between the Toll-like receptor 4 (TLR4) and the IL6R/STAT3 signaling pathways. This was confirmed by short interfering RNA targeting the IL6R, which abrogated the accumulation of IL-6 and IL-8, induced by LPS. Furthermore, there was a differential endometrial cell response, as the accumulation of IL-6 and IL-8 was dependent on STAT3, suppressor of cytokine signaling 3, and Src kinase signaling in stromal cells, but not epithelial cells. In conclusion, positive feedback through the IL6R amplifies LPS-induced IL-6 and IL-8 production in the endometrium. These findings provide a mechanistic insight into how elevated IL-6 concentrations in the postpartum endometrium during bacterial infection leads to marked and sustained neutrophil infiltration.
Collapse
Affiliation(s)
- J G Cronin
- Institute of Life Science, College of Medicine, Swansea University, Swansea, UK,( or )
| | - V Kanamarlapudi
- Institute of Life Science, College of Medicine, Swansea University, Swansea, UK
| | - C A Thornton
- Institute of Life Science, College of Medicine, Swansea University, Swansea, UK
| | - I M Sheldon
- Institute of Life Science, College of Medicine, Swansea University, Swansea, UK,( or )
| |
Collapse
|
46
|
Harwardt T, Lukas S, Zenger M, Reitberger T, Danzer D, Übner T, Munday DC, Nevels M, Paulus C. Human Cytomegalovirus Immediate-Early 1 Protein Rewires Upstream STAT3 to Downstream STAT1 Signaling Switching an IL6-Type to an IFNγ-Like Response. PLoS Pathog 2016; 12:e1005748. [PMID: 27387064 PMCID: PMC4936752 DOI: 10.1371/journal.ppat.1005748] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/16/2016] [Indexed: 12/24/2022] Open
Abstract
The human cytomegalovirus (hCMV) major immediate-early 1 protein (IE1) is best known for activating transcription to facilitate viral replication. Here we present transcriptome data indicating that IE1 is as significant a repressor as it is an activator of host gene expression. Human cells induced to express IE1 exhibit global repression of IL6- and oncostatin M-responsive STAT3 target genes. This repression is followed by STAT1 phosphorylation and activation of STAT1 target genes normally induced by IFNγ. The observed repression and subsequent activation are both mediated through the same region (amino acids 410 to 445) in the C-terminal domain of IE1, and this region serves as a binding site for STAT3. Depletion of STAT3 phenocopies the STAT1-dependent IFNγ-like response to IE1. In contrast, depletion of the IL6 receptor (IL6ST) or the STAT kinase JAK1 prevents this response. Accordingly, treatment with IL6 leads to prolonged STAT1 instead of STAT3 activation in wild-type IE1 expressing cells, but not in cells expressing a mutant protein (IE1dl410-420) deficient for STAT3 binding. A very similar STAT1-directed response to IL6 is also present in cells infected with a wild-type or revertant hCMV, but not an IE1dl410-420 mutant virus, and this response results in restricted viral replication. We conclude that IE1 is sufficient and necessary to rewire upstream IL6-type to downstream IFNγ-like signaling, two pathways linked to opposing actions, resulting in repressed STAT3- and activated STAT1-responsive genes. These findings relate transcriptional repressor and activator functions of IE1 and suggest unexpected outcomes relevant to viral pathogenesis in response to cytokines or growth factors that signal through the IL6ST-JAK1-STAT3 axis in hCMV-infected cells. Our results also reveal that IE1, a protein considered to be a key activator of the hCMV productive cycle, has an unanticipated role in tempering viral replication. Our previous work has shown that the human cytomegalovirus (hCMV) major immediate-early 1 protein (IE1) modulates host cell signaling pathways involving proteins of the signal transducer and activator of transcription (STAT) family. IE1 has also long been known to facilitate viral replication by activating transcription. In this report we demonstrate that IE1 is as significant a repressor as it is an activator of host gene expression. Many genes repressed by IE1 are normally induced via STAT3 signaling triggered by interleukin 6 (IL6) or related cytokines, whereas many genes activated by IE1 are normally induced via STAT1 signaling triggered by interferon gamma (IFNγ). Our results suggest that the repression of STAT3- and the activation of STAT1-responsive genes by IE1 are coupled. By targeting STAT3, IE1 rewires upstream STAT3 to downstream STAT1 signaling. Consequently, genes normally induced by IL6 are repressed while genes normally induced by IFNγ become responsive to IL6 in the presence of IE1. We also demonstrate that, by switching an IL6 to an IFNγ-like response, IE1 tempers viral replication. These results suggest an unanticipated dual role for IE1 in either promoting or limiting hCMV propagation and demonstrate how a key viral regulatory protein merges two central cellular signaling pathways to divert cytokine responses relevant to hCMV pathogenesis.
Collapse
Affiliation(s)
- Thomas Harwardt
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Simone Lukas
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Marion Zenger
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Tobias Reitberger
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Daniela Danzer
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Theresa Übner
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Diane C. Munday
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, United Kingdom
| | - Michael Nevels
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, United Kingdom
- * E-mail: (MN); (CP)
| | - Christina Paulus
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, United Kingdom
- * E-mail: (MN); (CP)
| |
Collapse
|
47
|
Kopp F, Kupsch S, Schromm AB. Lipopolysaccharide-binding protein is bound and internalized by host cells and colocalizes with LPS in the cytoplasm: Implications for a role of LBP in intracellular LPS-signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:660-72. [PMID: 26804480 DOI: 10.1016/j.bbamcr.2016.01.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 12/21/2015] [Accepted: 01/20/2016] [Indexed: 12/21/2022]
Abstract
The lipopolysaccharide-binding protein (LBP) is critically involved in innate immune responses to Gram-negative infections. We show here that human peripheral blood-derived monocytes, but not lymphocytes, stain positive for endogenous LBP on the cell surface. Studies on human macrophages demonstrate LBP binding at normal serum concentrations of 1-10 μg/ml. Binding was increased in a concentration-dependent manner by lipopolysaccharide (LPS). Fluorescence quenching experiments and confocal microscopy revealed constitutive and LPS-induced internalization of LBP by macrophages. Experiments with macrophages and HEK293 cell lines showed that binding and uptake of LBP do not depend on the LPS receptors CD14 and TLR4/MD-2. Fractionation of Triton X-100 solubilized cytoplasmic membranes revealed that LBP was primarily localized in non-raft domains under resting conditions. Cellular LPS stimulation elevated LBP levels and induced enrichment in fractions marking the transition between non-raft and raft domains. LBP was found to colocalize with LPS at the cytoplasmic membrane and in intracellular compartments of macrophages. In macrophages stimulated with LPS and ATP for inflammasome activation, LBP was observed in close vicinity to activated caspases. Furthermore, LBP conferred IL-1β production by LPS in the absence of ATP. These data establish that LBP serves not only as an extracellular LPS shuttle but in addition facilitates intracellular transport of LPS. This observation adds a new function to this central immune regulator of LPS biology and raises the possibility for a role of LBP in the delivery of LPS to TLR4-independent intracellular receptors.
Collapse
Affiliation(s)
- Franziska Kopp
- Division of Immunobiophysics, Priority Area Infections, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, 23845 Borstel, Germany
| | - Sarah Kupsch
- Division of Immunobiophysics, Priority Area Infections, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, 23845 Borstel, Germany
| | - Andra B Schromm
- Division of Immunobiophysics, Priority Area Infections, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, 23845 Borstel, Germany.
| |
Collapse
|
48
|
Gnauck A, Lentle RG, Kruger MC. Chasing a ghost?--Issues with the determination of circulating levels of endotoxin in human blood. Crit Rev Clin Lab Sci 2016; 53:197-215. [PMID: 26732012 DOI: 10.3109/10408363.2015.1123215] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Reliable quantification of bacterial products such as endotoxin is important for the diagnosis of Gram-negative infection and for the monitoring of its treatment. Further, it is important to identify patients with persistent subclinical level of bacterial products in their systemic circulation as data from animal studies also suggest this may be correlated with the onset of metabolic syndrome. In this review, we first aim to describe the principles of the Limulus amoebocyte lysate (LAL) test, an assay that is used to quantify endotoxin, and the various shortcomings that must be addressed before it can become a reliable means of quantifying endotoxin in samples derived from blood. We then review published data regarding endotoxin levels in healthy subjects and those with sepsis, inflammatory bowel disease, liver disorders and metabolic disorders such as obesity and diabetes. We also review the evidence regarding influence of macronutrients in augmenting the levels of systemic endotoxin. The results of this review show that reported mean levels of endotoxin in the systemic circulation of healthy humans and of those with various clinical disorders vary over a wide range. Further, this review shows that a significant proportion of this variation can be related to the method that was used to prepare plasma and serum samples prior to assay and its ability to reduce the effect of various blood borne factors that interfere with the LAL assay.
Collapse
Affiliation(s)
- Anne Gnauck
- a Physiology Group, School of Food and Nutrition, College of Health, Massey University , Palmerston North , New Zealand
| | - Roger Graham Lentle
- a Physiology Group, School of Food and Nutrition, College of Health, Massey University , Palmerston North , New Zealand
| | - Marlena Cathorina Kruger
- a Physiology Group, School of Food and Nutrition, College of Health, Massey University , Palmerston North , New Zealand
| |
Collapse
|
49
|
Zhou Z, Xu MJ, Gao B. Hepatocytes: a key cell type for innate immunity. Cell Mol Immunol 2015; 13:301-15. [PMID: 26685902 PMCID: PMC4856808 DOI: 10.1038/cmi.2015.97] [Citation(s) in RCA: 298] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 10/23/2015] [Accepted: 10/23/2015] [Indexed: 02/07/2023] Open
Abstract
Hepatocytes, the major parenchymal cells in the liver, play pivotal roles in metabolism, detoxification, and protein synthesis. Hepatocytes also activate innate immunity against invading microorganisms by secreting innate immunity proteins. These proteins include bactericidal proteins that directly kill bacteria, opsonins that assist in the phagocytosis of foreign bacteria, iron-sequestering proteins that block iron uptake by bacteria, several soluble factors that regulate lipopolysaccharide signaling, and the coagulation factor fibrinogen that activates innate immunity. In this review, we summarize the wide variety of innate immunity proteins produced by hepatocytes and discuss liver-enriched transcription factors (e.g. hepatocyte nuclear factors and CCAAT/enhancer-binding proteins), pro-inflammatory mediators (e.g. interleukin (IL)-6, IL-22, IL-1β and tumor necrosis factor-α), and downstream signaling pathways (e.g. signal transducer and activator of transcription factor 3 and nuclear factor-κB) that regulate the expression of these innate immunity proteins. We also briefly discuss the dysregulation of these innate immunity proteins in chronic liver disease, which may contribute to an increased susceptibility to bacterial infection in patients with cirrhosis.
Collapse
Affiliation(s)
- Zhou Zhou
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism National Institutes of Health, Bethesda, MD, USA
| | - Ming-Jiang Xu
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism National Institutes of Health, Bethesda, MD, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
50
|
Gnauck A, Lentle RG, Kruger MC. The Characteristics and Function of Bacterial Lipopolysaccharides and Their Endotoxic Potential in Humans. Int Rev Immunol 2015; 35:189-218. [PMID: 26606737 DOI: 10.3109/08830185.2015.1087518] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cross-talk between enteral microbiota and human host is essential for the development and maintenance of the human gastrointestinal and systemic immune systems. The presence of lipopolysaccharides (LPS) lysed from the cell membrane of Gram-negative bacteria in the gut lumen is thought to promote the development of a balanced gut immune response whilst the entry of the same LPS into systemic circulation may lead to a deleterious pro-inflammatory systemic immune response. Recent data suggest that chronically low levels of circulating LPS may be associated with the development of metabolic diseases such as insulin resistance, type 2 diabetes, atherosclerosis and cardiovascular disease. This review focuses on the cross-talk between enteral commensal bacteria and the human immune system via LPS. We explain the structural characterisation of the LPS molecule and its function in the bacteria. We then examine how LPS is recognised by various elements of the human immune system and the signalling pathways that are activated by the structure of the LPS molecule and the effect of various concentrations. Further, we discuss the sequelae of this signalling in the gut-associated and systemic immune systems i.e. the neutralisation of LPS and the development of tolerance to LPS.
Collapse
Affiliation(s)
- Anne Gnauck
- a School of Food and Nutrition, College of Health , Massey University , Palmerston North , New Zealand
| | - Roger G Lentle
- a School of Food and Nutrition, College of Health , Massey University , Palmerston North , New Zealand
| | - Marlena C Kruger
- a School of Food and Nutrition, College of Health , Massey University , Palmerston North , New Zealand
| |
Collapse
|