1
|
Furugori K, Suzuki H, Abe R, Horiuchi K, Akiyama T, Hirose T, Toyoda A, Takahashi H. Chimera RNA transcribed from integrated HPV18 genome with adjacent host genomic region promotes oncogenic gene expression through condensate formation. Genes Cells 2024; 29:532-548. [PMID: 38715205 DOI: 10.1111/gtc.13121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 07/06/2024]
Abstract
Most cervical cancers are caused by human papillomavirus (HPV) infection. In HeLa cells, the HPV18 viral genome is integrated at chromosome 8q24.21 and activates transcription of the proto-oncogene c-Myc. However, the mechanism of how the integrated HPV genome and its transcribed RNAs exhibit transcription activation function has not been fully elucidated. In this study, we found that HPV18 transcripts contain an enhancer RNA-like function to activate proximal genes including CCAT1-5L and c-Myc. We showed that the human genome-integrated HPV18 genes are activated by transcription coregulators including BRD4 and Mediator. The transcribed HPV18 RNAs form a liquid-like condensate at chromosome 8q24.21 locus, which in turn accumulates RNA polymerase II. Moreover, we focused on a relatively uncharacterized transcript from the upstream region of CCAT1, named URC. The URC RNA is transcribed as a chimera RNA with HPV18 and is composed of the 3'-untranslated region of the HPV18 transcript. We experimentally showed that the URC contributes to stabilization of HPV18 RNAs by supplying a polyadenylation site for the HPV18 transcript. Our findings suggest that integrated HPV18 at 8q24.21 locus produces HPV18-URC chimera RNA and promotes tumorigenesis through RNA-based condensate formation.
Collapse
Affiliation(s)
- Kazuki Furugori
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, Yokohama, Kanagawa, Japan
| | - Hidefumi Suzuki
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, Yokohama, Kanagawa, Japan
| | - Ryota Abe
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, Yokohama, Kanagawa, Japan
| | - Keiko Horiuchi
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, Yokohama, Kanagawa, Japan
| | - Tomohiko Akiyama
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, Yokohama, Kanagawa, Japan
| | - Tomonori Hirose
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, Yokohama, Kanagawa, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Hidehisa Takahashi
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, Yokohama, Kanagawa, Japan
| |
Collapse
|
2
|
Mofayezi A, Jadaliha M, Zangeneh FZ, Khoddami V. Poly(A) tale: From A to A; RNA polyadenylation in prokaryotes and eukaryotes. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1837. [PMID: 38485452 DOI: 10.1002/wrna.1837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/19/2024]
Abstract
Most eukaryotic mRNAs and different non-coding RNAs undergo a form of 3' end processing known as polyadenylation. Polyadenylation machinery is present in almost all organisms except few species. In bacteria, the machinery has evolved from PNPase, which adds heteropolymeric tails, to a poly(A)-specific polymerase. Differently, a complex machinery for accurate polyadenylation and several non-canonical poly(A) polymerases are developed in eukaryotes. The role of poly(A) tail has also evolved from serving as a degradative signal to a stabilizing modification that also regulates translation. In this review, we discuss poly(A) tail emergence in prokaryotes and its development into a stable, yet dynamic feature at the 3' end of mRNAs in eukaryotes. We also describe how appearance of novel poly(A) polymerases gives cells flexibility to shape poly(A) tail. We explain how poly(A) tail dynamics help regulate cognate RNA metabolism in a context-dependent manner, such as during oocyte maturation. Finally, we describe specific mRNAs in metazoans that bear stem-loops instead of poly(A) tails. We conclude with how recent discoveries about poly(A) tail can be applied to mRNA technology. This article is categorized under: RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution RNA Processing > 3' End Processing RNA Turnover and Surveillance > Regulation of RNA Stability.
Collapse
Affiliation(s)
- Ahmadreza Mofayezi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
- ReNAP Therapeutics, Tehran, Iran
| | - Mahdieh Jadaliha
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | | | - Vahid Khoddami
- ReNAP Therapeutics, Tehran, Iran
- Pediatric Cell and Gene Therapy Research Center, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Brooks EG, Elorriaga E, Liu Y, Duduit JR, Yuan G, Tsai CJ, Tuskan GA, Ranney TG, Yang X, Liu W. Plant Promoters and Terminators for High-Precision Bioengineering. BIODESIGN RESEARCH 2023; 5:0013. [PMID: 37849460 PMCID: PMC10328392 DOI: 10.34133/bdr.0013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/12/2023] [Indexed: 10/19/2023] Open
Abstract
High-precision bioengineering and synthetic biology require fine-tuning gene expression at both transcriptional and posttranscriptional levels. Gene transcription is tightly regulated by promoters and terminators. Promoters determine the timing, tissues and cells, and levels of the expression of genes. Terminators mediate transcription termination of genes and affect mRNA levels posttranscriptionally, e.g., the 3'-end processing, stability, translation efficiency, and nuclear to cytoplasmic export of mRNAs. The promoter and terminator combination affects gene expression. In the present article, we review the function and features of plant core promoters, proximal and distal promoters, and terminators, and their effects on and benchmarking strategies for regulating gene expression.
Collapse
Affiliation(s)
- Emily G. Brooks
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
| | - Estefania Elorriaga
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
| | - Yang Liu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - James R. Duduit
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
| | - Guoliang Yuan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Chung-Jui Tsai
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Warnell School of Forestry and Natural Resource, University of Georgia, Athens, GA 30602, USA
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Thomas G. Ranney
- Mountain Crop Improvement Lab, Department of Horticultural Science, Mountain Horticultural Crops Research and Extension Center, North Carolina State University, Mills River, NC 28759, USA
| | - Xiaohan Yang
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Warnell School of Forestry and Natural Resource, University of Georgia, Athens, GA 30602, USA
| | - Wusheng Liu
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
| |
Collapse
|
4
|
Ramming A, Kappel C, Kanaoka MM, Higashiyama T, Lenhard M. Poly(A) polymerase 1 contributes to competence acquisition of pollen tubes growing through the style in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:651-667. [PMID: 36811355 DOI: 10.1111/tpj.16162] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/16/2023] [Indexed: 05/10/2023]
Abstract
Polyadenylation of mRNAs is critical for their export from the nucleus, stability, and efficient translation. The Arabidopsis thaliana genome encodes three isoforms of canonical nuclear poly(A) polymerase (PAPS) that redundantly polyadenylate the bulk of pre-mRNAs. However, previous studies have indicated that subsets of pre-mRNAs are preferentially polyadenylated by either PAPS1 or the other two isoforms. Such functional specialization raises the possibility of an additional level of gene-expression control in plants. Here we test this notion by studying the function of PAPS1 in pollen-tube growth and guidance. Pollen tubes growing through female tissue acquire the competence to find ovules efficiently and upregulate PAPS1 expression at the transcriptional, but not detectably at the protein level compared with in vitro grown pollen tubes. Using the temperature-sensitive paps1-1 allele we show that PAPS1 activity during pollen-tube growth is required for full acquisition of competence, resulting in inefficient fertilization by paps1-1 mutant pollen tubes. While these mutant pollen tubes grow almost at the wild-type rate, they are compromised in locating the micropyles of ovules. Previously identified competence-associated genes are less expressed in paps1-1 mutant than in wild-type pollen tubes. Estimating the poly(A) tail lengths of transcripts suggests that polyadenylation by PAPS1 is associated with reduced transcript abundance. Our results therefore suggest that PAPS1 plays a key role in the acquisition of competence and underline the importance of functional specialization between PAPS isoforms throughout different developmental stages.
Collapse
Affiliation(s)
- Anna Ramming
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, D-14476, Potsdam-Golm, Germany
| | - Christian Kappel
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, D-14476, Potsdam-Golm, Germany
| | - Masahiro M Kanaoka
- Prefectural University of Hiroshima, Faculty of Life and Environmental Sciences, Faculty of Bioresource Sciences, Shobara, Hiroshima, Japan
| | - Tetsuya Higashiyama
- The University of Tokyo Graduate School of Science, Faculty of Science, Bunkyo-ku, Tokyo, Japan
| | - Michael Lenhard
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, D-14476, Potsdam-Golm, Germany
| |
Collapse
|
5
|
de Felippes FF, Waterhouse PM. Plant terminators: the unsung heroes of gene expression. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2239-2250. [PMID: 36477559 PMCID: PMC10082929 DOI: 10.1093/jxb/erac467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/25/2022] [Indexed: 06/06/2023]
Abstract
To be properly expressed, genes need to be accompanied by a terminator, a region downstream of the coding sequence that contains the information necessary for the maturation of the mRNA 3' end. The main event in this process is the addition of a poly(A) tail at the 3' end of the new transcript, a critical step in mRNA biology that has important consequences for the expression of genes. Here, we review the mechanism leading to cleavage and polyadenylation of newly transcribed mRNAs and how this process can affect the final levels of gene expression. We give special attention to an aspect often overlooked, the effect that different terminators can have on the expression of genes. We also discuss some exciting findings connecting the choice of terminator to the biogenesis of small RNAs, which are a central part of one of the most important mechanisms of regulation of gene expression in plants.
Collapse
Affiliation(s)
| | - Peter M Waterhouse
- Centre for Agriculture and the Bioeconomy, Institute for Future Environments, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- ARC Centre of Excellence for Plant Success in Nature & Agriculture, QUT, Brisbane, QLD, Australia
| |
Collapse
|
6
|
Liu J, Lu X, Zhang S, Yuan L, Sun Y. Molecular Insights into mRNA Polyadenylation and Deadenylation. Int J Mol Sci 2022; 23:ijms231910985. [PMID: 36232288 PMCID: PMC9570436 DOI: 10.3390/ijms231910985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/28/2022] Open
Abstract
Poly(A) tails are present on almost all eukaryotic mRNAs, and play critical roles in mRNA stability, nuclear export, and translation efficiency. The biosynthesis and shortening of a poly(A) tail are regulated by large multiprotein complexes. However, the molecular mechanisms of these protein machineries still remain unclear. Recent studies regarding the structural and biochemical characteristics of those protein complexes have shed light on the potential mechanisms of polyadenylation and deadenylation. This review summarizes the recent structural studies on pre-mRNA 3′-end processing complexes that initiate the polyadenylation and discusses the similarities and differences between yeast and human machineries. Specifically, we highlight recent biochemical efforts in the reconstitution of the active human canonical pre-mRNA 3′-end processing systems, as well as the roles of RBBP6/Mpe1 in activating the entire machinery. We also describe how poly(A) tails are removed by the PAN2-PAN3 and CCR4-NOT deadenylation complexes and discuss the emerging role of the cytoplasmic poly(A)-binding protein (PABPC) in promoting deadenylation. Together, these recent discoveries show that the dynamic features of these machineries play important roles in regulating polyadenylation and deadenylation.
Collapse
|
7
|
Abstract
In the past 20 years, the mRNA vaccine technology has evolved from the first proof of concept to the first licensed vaccine against emerging pandemics such as SARS-CoV-2. Two mRNA vaccines targeting SARS-CoV-2 have received emergency use authorization by US FDA, conditional marketing authorization by EMA, as well as multiple additional national regulatory authorities. The simple composition of an mRNA encoding the antigen formulated in a lipid nanoparticle enables a fast adaptation to new emerging pathogens. This can speed up vaccine development in pandemics from antigen and sequence selection to clinical trial to only a few months. mRNA vaccines are well tolerated and efficacious in animal models for multiple pathogens and will further contribute to the development of vaccines for other unaddressed diseases. Here, we give an overview of the mRNA vaccine design and factors for further optimization of this new promising technology and discuss current knowledge on the mode of action of mRNA vaccines interacting with the innate and adaptive immune system.
Collapse
|
8
|
Semkum P, Kaewborisuth C, Thangthamniyom N, Theerawatanasirikul S, Lekcharoensuk C, Hansoongnern P, Ramasoota P, Lekcharoensuk P. A Novel Plasmid DNA-Based Foot and Mouth Disease Virus Minigenome for Intracytoplasmic mRNA Production. Viruses 2021; 13:1047. [PMID: 34205958 PMCID: PMC8229761 DOI: 10.3390/v13061047] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022] Open
Abstract
Picornaviruses are non-enveloped, single-stranded RNA viruses that cause highly contagious diseases, such as polio and hand, foot-and-mouth disease (HFMD) in human, and foot-and-mouth disease (FMD) in animals. Reverse genetics and minigenome of picornaviruses mainly depend on in vitro transcription and RNA transfection; however, this approach is inefficient due to the rapid degradation of RNA template. Although DNA-based reverse genetics systems driven by mammalian RNA polymerase I and/or II promoters display the advantage of rescuing the engineered FMDV, the enzymatic functions are restricted in the nuclear compartment. To overcome these limitations, we successfully established a novel DNA-based vector, namely pKLS3, an FMDV minigenome containing the minimum cis-acting elements of FMDV essential for intracytoplasmic transcription and translation of a foreign gene. A combination of pKLS3 minigenome and the helper plasmids yielded the efficient production of uncapped-green florescent protein (GFP) mRNA visualized in the transfected cells. We have demonstrated the application of the pKLS3 for cell-based antiviral drug screening. Not only is the DNA-based FMDV minigenome system useful for the FMDV research and development but it could be implemented for generating other picornavirus minigenomes. Additionally, the prospective applications of this viral minigenome system as a vector for DNA and mRNA vaccines are also discussed.
Collapse
Affiliation(s)
- Ploypailin Semkum
- Interdisciplinary Graduate Program in Genetic Engineering, The Graduate School, Kasetsart University, Bangkok 10900, Thailand;
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (N.T.); (P.H.)
- Center for Advanced Studies in Agriculture and Food, KU Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand
| | - Challika Kaewborisuth
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand;
| | - Nattarat Thangthamniyom
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (N.T.); (P.H.)
| | - Sirin Theerawatanasirikul
- Department of Anatomy, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;
| | - Chalermpol Lekcharoensuk
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;
| | - Payuda Hansoongnern
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (N.T.); (P.H.)
| | - Pongrama Ramasoota
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
| | - Porntippa Lekcharoensuk
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (N.T.); (P.H.)
- Center for Advanced Studies in Agriculture and Food, KU Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
9
|
de Rozières CM, Joseph S. Influenza A Virus NS1 Protein Binds as a Dimer to RNA-Free PABP1 but Not to the PABP1·Poly(A) RNA Complex. Biochemistry 2020; 59:4439-4448. [PMID: 33172261 DOI: 10.1021/acs.biochem.0c00666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Influenza A virus (IAV) is a highly contagious human pathogen that is responsible for tens of thousands of deaths each year. Non-structural protein 1 (NS1) is a crucial protein expressed by IAV to evade the host immune system. Additionally, NS1 has been proposed to stimulate translation because of its ability to bind poly(A) binding protein 1 (PABP1) and eukaryotic initiation factor 4G. We analyzed the interaction of NS1 with PABP1 using quantitative techniques. Our studies show that NS1 binds as a homodimer to PABP1, and this interaction is conserved across different IAV strains. Unexpectedly, NS1 does not bind to PABP1 that is bound to poly(A) RNA. Instead, NS1 binds only to PABP1 free of RNA, suggesting that stimulation of translation does not occur by NS1 interacting with the PABP1 molecule attached to the mRNA 3'-poly(A) tail. These results suggest that the function of the NS1·PABP1 complex appears to be distinct from the classical role of PABP1 in translation initiation, when it is bound to the 3'-poly(A) tail of mRNA.
Collapse
Affiliation(s)
- Cyrus M de Rozières
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0314, United States
| | - Simpson Joseph
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0314, United States
| |
Collapse
|
10
|
Krause M, Niazi AM, Labun K, Torres Cleuren YN, Müller FS, Valen E. tailfindr: alignment-free poly(A) length measurement for Oxford Nanopore RNA and DNA sequencing. RNA (NEW YORK, N.Y.) 2019; 25:1229-1241. [PMID: 31266821 PMCID: PMC6800471 DOI: 10.1261/rna.071332.119] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/25/2019] [Indexed: 05/02/2023]
Abstract
Polyadenylation at the 3'-end is a major regulator of messenger RNA and its length is known to affect nuclear export, stability, and translation, among others. Only recently have strategies emerged that allow for genome-wide poly(A) length assessment. These methods identify genes connected to poly(A) tail measurements indirectly by short-read alignment to genetic 3'-ends. Concurrently, Oxford Nanopore Technologies (ONT) established full-length isoform-specific RNA sequencing containing the entire poly(A) tail. However, assessing poly(A) length through base-calling has so far not been possible due to the inability to resolve long homopolymeric stretches in ONT sequencing. Here we present tailfindr, an R package to estimate poly(A) tail length on ONT long-read sequencing data. tailfindr operates on unaligned, base-called data. It measures poly(A) tail length from both native RNA and DNA sequencing, which makes poly(A) tail studies by full-length cDNA approaches possible for the first time. We assess tailfindr's performance across different poly(A) lengths, demonstrating that tailfindr is a versatile tool providing poly(A) tail estimates across a wide range of sequencing conditions.
Collapse
Affiliation(s)
- Maximilian Krause
- Computational Biology Unit, Department of Informatics, University of Bergen, 5008 Bergen, Norway
- Sars International Centre for Marine Molecular Biology, University of Bergen, 5008 Bergen, Norway
| | - Adnan M Niazi
- Computational Biology Unit, Department of Informatics, University of Bergen, 5008 Bergen, Norway
| | - Kornel Labun
- Computational Biology Unit, Department of Informatics, University of Bergen, 5008 Bergen, Norway
| | - Yamila N Torres Cleuren
- Computational Biology Unit, Department of Informatics, University of Bergen, 5008 Bergen, Norway
| | - Florian S Müller
- Computational Biology Unit, Department of Informatics, University of Bergen, 5008 Bergen, Norway
| | - Eivind Valen
- Computational Biology Unit, Department of Informatics, University of Bergen, 5008 Bergen, Norway
- Sars International Centre for Marine Molecular Biology, University of Bergen, 5008 Bergen, Norway
| |
Collapse
|
11
|
Panicum Mosaic Virus and Its Satellites Acquire RNA Modifications Associated with Host-Mediated Antiviral Degradation. mBio 2019; 10:mBio.01900-19. [PMID: 31455653 PMCID: PMC6712398 DOI: 10.1128/mbio.01900-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Positive-sense RNA viruses in the Tombusviridae family have genomes lacking a 5' cap structure and prototypical 3' polyadenylation sequence. Instead, these viruses utilize an extensive network of intramolecular RNA-RNA interactions to direct viral replication and gene expression. Here we demonstrate that the genomic RNAs of Panicum mosaic virus (PMV) and its satellites undergo sequence modifications at their 3' ends upon infection of host cells. Changes to the viral and subviral genomes arise de novo within Brachypodium distachyon (herein called Brachypodium) and proso millet, two alternative hosts of PMV, and exist in the infections of a native host, St. Augustinegrass. These modifications are defined by polyadenylation [poly(A)] events and significant truncations of the helper virus 3' untranslated region-a region containing satellite RNA recombination motifs and conserved viral translational enhancer elements. The genomes of PMV and its satellite virus (SPMV) were reconstructed from multiple poly(A)-selected Brachypodium transcriptome data sets. Moreover, the polyadenylated forms of PMV and SPMV RNAs copurify with their respective mature icosahedral virions. The changes to viral and subviral genomes upon infection are discussed in the context of a previously understudied poly(A)-mediated antiviral RNA degradation pathway and the potential impact on virus evolution.IMPORTANCE The genomes of positive-sense RNA viruses have an intrinsic capacity to serve directly as mRNAs upon viral entry into a host cell. These RNAs often lack a 5' cap structure and 3' polyadenylation sequence, requiring unconventional strategies for cap-independent translation and subversion of the cellular RNA degradation machinery. For tombusviruses, critical translational regulatory elements are encoded within the 3' untranslated region of the viral genomes. Here we describe RNA modifications occurring within the genomes of Panicum mosaic virus (PMV), a prototypical tombusvirus, and its satellite agents (i.e., satellite virus and noncoding satellite RNAs), all of which depend on the PMV-encoded RNA polymerase for replication. The atypical RNAs are defined by terminal polyadenylation and truncation events within the 3' untranslated region of the PMV genome. These modifications are reminiscent of host-mediated RNA degradation strategies and likely represent a previously underappreciated defense mechanism against invasive nucleic acids.
Collapse
|
12
|
Schäfer IB, Yamashita M, Schuller JM, Schüssler S, Reichelt P, Strauss M, Conti E. Molecular Basis for poly(A) RNP Architecture and Recognition by the Pan2-Pan3 Deadenylase. Cell 2019; 177:1619-1631.e21. [PMID: 31104843 PMCID: PMC6547884 DOI: 10.1016/j.cell.2019.04.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 03/08/2019] [Accepted: 04/05/2019] [Indexed: 01/17/2023]
Abstract
The stability of eukaryotic mRNAs is dependent on a ribonucleoprotein (RNP) complex of poly(A)-binding proteins (PABPC1/Pab1) organized on the poly(A) tail. This poly(A) RNP not only protects mRNAs from premature degradation but also stimulates the Pan2-Pan3 deadenylase complex to catalyze the first step of poly(A) tail shortening. We reconstituted this process in vitro using recombinant proteins and show that Pan2-Pan3 associates with and degrades poly(A) RNPs containing two or more Pab1 molecules. The cryo-EM structure of Pan2-Pan3 in complex with a poly(A) RNP composed of 90 adenosines and three Pab1 protomers shows how the oligomerization interfaces of Pab1 are recognized by conserved features of the deadenylase and thread the poly(A) RNA substrate into the nuclease active site. The structure reveals the basis for the periodic repeating architecture at the 3′ end of cytoplasmic mRNAs. This illustrates mechanistically how RNA-bound Pab1 oligomers act as rulers for poly(A) tail length over the mRNAs’ lifetime. Oligomerization of PABP on the poly(A) tail creates a series of consecutive arches Pan2-Pan3 deadenylase recognizes the oligomerized state of poly(A)-bound PABP The dimerization interface of juxtaposed PABPs creates the Pan2-Pan3 docking site The poly(A) RNP arches are flexible and moldable by the interacting proteins
Collapse
Affiliation(s)
- Ingmar B Schäfer
- Department of Structural Cell Biology, MPI of Biochemistry, Munich, Germany.
| | - Masami Yamashita
- Department of Structural Cell Biology, MPI of Biochemistry, Munich, Germany
| | | | - Steffen Schüssler
- Department of Structural Cell Biology, MPI of Biochemistry, Munich, Germany
| | - Peter Reichelt
- Department of Structural Cell Biology, MPI of Biochemistry, Munich, Germany
| | - Mike Strauss
- cryoEM Facility, MPI of Biochemistry, Munich, Germany
| | - Elena Conti
- Department of Structural Cell Biology, MPI of Biochemistry, Munich, Germany.
| |
Collapse
|
13
|
Burns JA, Kroll DS, Feldman DE, Kure Liu C, Manza P, Wiers CE, Volkow ND, Wang GJ. Molecular Imaging of Opioid and Dopamine Systems: Insights Into the Pharmacogenetics of Opioid Use Disorders. Front Psychiatry 2019; 10:626. [PMID: 31620026 PMCID: PMC6759955 DOI: 10.3389/fpsyt.2019.00626] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 08/05/2019] [Indexed: 12/21/2022] Open
Abstract
Opioid use in the United States has steadily risen since the 1990s, along with staggering increases in addiction and overdose fatalities. With this surge in prescription and illicit opioid abuse, it is paramount to understand the genetic risk factors and neuropsychological effects of opioid use disorder (OUD). Polymorphisms disrupting the opioid and dopamine systems have been associated with increased risk for developing substance use disorders. Molecular imaging studies have revealed how these polymorphisms impact the brain and contribute to cognitive and behavioral differences across individuals. Here, we review the current molecular imaging literature to assess how genetic variations in the opioid and dopamine systems affect function in the brain's reward, cognition, and stress pathways, potentially resulting in vulnerabilities to OUD. Continued research of the functional consequences of genetic variants and corresponding alterations in neural mechanisms will inform prevention and treatment of OUD.
Collapse
Affiliation(s)
- Jamie A Burns
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Danielle S Kroll
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Dana E Feldman
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | | | - Peter Manza
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Corinde E Wiers
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States.,National Institute on Drug Abuse, Bethesda, MD, United States
| | - Gene-Jack Wang
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| |
Collapse
|
14
|
Chen JH, Zhang RH, Lin SL, Li PF, Lan JJ, Song SS, Gao JM, Wang Y, Xie ZJ, Li FC, Jiang SJ. The Functional Role of the 3' Untranslated Region and Poly(A) Tail of Duck Hepatitis A Virus Type 1 in Viral Replication and Regulation of IRES-Mediated Translation. Front Microbiol 2018; 9:2250. [PMID: 30319572 PMCID: PMC6167517 DOI: 10.3389/fmicb.2018.02250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 09/04/2018] [Indexed: 01/04/2023] Open
Abstract
The duck hepatitis A virus type 1 (DHAV-1) is a member of Picornaviridae family, the genome of the virus contains a 5′ untranslated region (5′ UTR), a large open reading frame that encodes a polyprotein precursor and a 3′ UTR followed by a poly(A) tail. The translation initiation of virus proteins depends on the internal ribosome-entry site (IRES) element within the 5′ UTR. So far, little information is known about the role of the 3′ UTR and poly(A) tail during the virus proliferation. In this study, the function of the 3′ UTR and poly(A) tail of DHAV-1 in viral replication and IRES-mediated translation was investigated. The results showed that both 3′ UTR and poly(A) tail are important for maintaining viral genome RNA stability and viral genome replication. During DHAV-1 proliferation, at least 20 adenines were required for the optimal genome replication and the virus replication could be severely impaired when the poly (A) tail was curtailed to 10 adenines. In addition to facilitating viral genome replication, the presence of 3′ UTR and poly(A) tail significantly enhance IRES-mediated translation efficiency. Furthermore, 3′ UTR or poly(A) tail could function as an individual element to enhance the DHAV-1 IRES-mediated translation, during which process, the 3′ UTR exerts a greater initiation efficiency than the poly(A)25 tail.
Collapse
Affiliation(s)
- Jun-Hao Chen
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China
| | - Rui-Hua Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China
| | - Shao-Li Lin
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China
| | - Peng-Fei Li
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China
| | - Jing-Jing Lan
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China
| | - Sha-Sha Song
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China
| | - Ji-Ming Gao
- Department of Basic Medical Sciences, Taishan Medical College, Tai'an, China
| | - Yu Wang
- Department of Basic Medical Sciences, Taishan Medical College, Tai'an, China
| | - Zhi-Jing Xie
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China
| | - Fu-Chang Li
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Shi-Jin Jiang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China
| |
Collapse
|
15
|
Ozturk S, Uysal F. Poly(A)-binding proteins are required for translational regulation in vertebrate oocytes and early embryos. Reprod Fertil Dev 2018; 29:1890-1901. [PMID: 28103468 DOI: 10.1071/rd16283] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 12/01/2016] [Indexed: 12/22/2022] Open
Abstract
Poly(A)-binding proteins (PABPs) function in the timely regulation of gene expression during oocyte maturation, fertilisation and early embryo development in vertebrates. To this end, PABPs bind to poly(A) tails or specific sequences of maternally stored mRNAs to protect them from degradation and to promote their translational activities. To date, two structurally different PABP groups have been identified: (1) cytoplasmic PABPs, including poly(A)-binding protein, cytoplasmic 1 (PABPC1), embryonic poly(A)-binding protein (EPAB), induced PABP and poly(A)-binding protein, cytoplasmic 3; and (2) nuclear PABPs, namely embryonic poly(A)-binding protein 2 and nuclear poly(A)-binding protein 1. Many studies have been undertaken to characterise the spatial and temporal expression patterns and subcellular localisations of PABPC1 and EPAB in vertebrate oocytes and early embryos. In the present review, we comprehensively evaluate and discuss the expression patterns and particular functions of the EPAB and PABPC1 genes, especially in mouse and human oocytes and early embryos.
Collapse
Affiliation(s)
- Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University, School of Medicine, Campus, 07070, Antalya, Turkey
| | - Fatma Uysal
- Department of Histology and Embryology, Akdeniz University, School of Medicine, Campus, 07070, Antalya, Turkey
| |
Collapse
|
16
|
Gallie DR. Plant growth and fertility requires functional interactions between specific PABP and eIF4G gene family members. PLoS One 2018; 13:e0191474. [PMID: 29381712 PMCID: PMC5790229 DOI: 10.1371/journal.pone.0191474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/07/2018] [Indexed: 11/19/2022] Open
Abstract
The initiation of protein synthesis requires the involvement of the eukaryotic translation initiation factor (eIF) 4G to promote assembly of the factors needed to recruit a 40S ribosomal subunit to an mRNA. Although many eukaryotes express two eIF4G isoforms that are highly similar, those in plants, referred to as eIF4G and eIFiso4G, are highly divergent in size, sequence, and domain organization. Species of the Brassicaceae and the Cleomaceae also express a divergent eIFiso4G isoform, referred to as eIFiso4G2, not found elsewhere in the plant kingdom. Despite their divergence, eIF4G and eIFiso4G interact with eIF4A, eIF4B, and eIF4E isoforms needed for binding an mRNA. eIF4G and eIFiso4G also interact with the poly(A)-binding protein (PABP) which promotes ribosome recruitment to an mRNA. Increasing the complexity of such an interaction, however, Arabidopsis also expresses three PABP isoforms (PAB2, PAB4, and PAB8) in vegetative and reproductive tissues. In this study, the functional interactions among the eIF4G and the widely-expressed PABP isoforms were examined. Loss of PAB2 or PAB8 in combination with loss of eIF4G or eIFiso4G had little to no effect on growth or fertility whereas pab2 pab8 eif4g or pab2 pab8 eifiso4g1/2 mutants exhibited smaller stature and reduced fertility. Although the pab4 eifiso4g1 mutant grows normally and is fertile, pab4 eif4g or pab4 eifiso4g2 mutants could not be isolated. Even pab4/PAB4 eif4g/eIF4G heterozygous plants exhibited growth defects and low fertility. Mutant co-inheritance analysis in reciprocal crosses with wild-type plants revealed that most ovaries and pollen from pab4/PAB4 eif4g/eIF4G plants were PAB4 eif4g. Similarly, co-inheritance studies with pab4/PAB4 eifiso4g2/eIFiso4G2 plants suggested most ovaries were PAB4 eifiso4g2. These results suggest that a functional interaction between PAB4 and eIF4G and between PAB4 and eIFiso4G2 is required for growth and normal fertility.
Collapse
Affiliation(s)
- Daniel R. Gallie
- Department of Biochemistry, University of California, Riverside, CA, United States of America
- * E-mail:
| |
Collapse
|
17
|
Gallie DR. Class II members of the poly(A) binding protein family exhibit distinct functions during Arabidopsis growth and development. ACTA ACUST UNITED AC 2017; 5:e1295129. [PMID: 28702277 DOI: 10.1080/21690731.2017.1295129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/20/2017] [Accepted: 02/09/2017] [Indexed: 10/20/2022]
Abstract
The poly(A)-binding protein (PABP) binds to the poly(A) tail of eukaryotic cellular mRNAs and contributes to their stability and translational efficiency. In plants, PABP is expressed from an unusually large gene family grouped into 3 classes that expanded during the evolution of land plants. Subsequent to expansion of the family, members diverged in their primary sequence and in expression. Further expansion of the family and divergence of its members in the Brassicaceae demonstrate the continued dynamic evolution of PABP in plants. In this study, the function of the widely-expressed class II PABP family members was examined to determine how individual class II members contribute to plant growth and development. Of the 3 class II PABP members, PAB2 and PAB4 contribute most to vegetative growth and vegetative-to-floral transition whereas PAB2, and the recently-evolved third class II member, PAB8, contribute to inflorescence and silique growth. Interestingly, although class I and class III PABP members are expressed specifically in reproductive organs, class II PABP members are also necessary for fertility in that the combinatorial loss of PAB2 and either PAB4 or PAB8 expression resulted in reduced fertility. Although all 3 class II members are required for protein expression, PAB4 contributes most to the steady-state level of a reporter mRNA and to protein expression. These findings suggest that class II PABP members are partially overlapping in function but also involved in distinct aspects of plant growth and development.
Collapse
Affiliation(s)
- Daniel R Gallie
- Department of Biochemistry, University of California, Riverside, CA, USA
| |
Collapse
|
18
|
de Souza Mecawi A, Ruginsk SG, Elias LLK, Varanda WA, Antunes‐Rodrigues J. Neuroendocrine Regulation of Hydromineral Homeostasis. Compr Physiol 2015; 5:1465-516. [DOI: 10.1002/cphy.c140031] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
19
|
Transcriptional profile of processing machinery of 3′ end of mRNA in Trichomonas vaginalis. Genes Genomics 2015. [DOI: 10.1007/s13258-015-0268-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Gallie DR, Liu R. Phylogenetic analysis reveals dynamic evolution of the poly(A)-binding protein gene family in plants. BMC Evol Biol 2014; 14:238. [PMID: 25421536 PMCID: PMC4252990 DOI: 10.1186/s12862-014-0238-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 11/07/2014] [Indexed: 01/05/2023] Open
Abstract
Background The poly(A)-binding protein (PABP) binds the poly(A) tail of eukaryotic mRNAs and functions to maintain the integrity of the mRNA while promoting protein synthesis through its interaction with eukaryotic translation initiation factor (eIF) 4G and eIF4B. PABP is encoded by a single gene in yeast and marine algae but during plant evolution the PABP gene family expanded substantially, underwent sequence divergence into three subclasses, and acquired tissue-specificity in gene family member expression. Although such changes suggest functional specialization, the size of the family and its sequence divergence have complicated an understanding of which gene family members may be foundational and which may represent more recent expansions of the family to meet the specific needs of speciation. Here, we examine the evolution of the plant PABP gene family to provide insight into these aspects of the family that may yield clues into the function of individual family members. Results The PABP gene family had expanded to two members by the appearance of fresh water algae and four members in non-vascular plants. In lycophytes, the first sequence divergence yielding a specific class member occurs. The earliest members of the gene family share greatest similarity to those modern members whose expression is confined to reproductive tissues, suggesting that supporting reproductive-associated gene expression is the most conserved function of this family. A family member sharing similarity to modern vegetative-associated members first appears in gymnosperms. Further elaboration of the reproductive-associated and vegetative-associated members occurred during the evolution of flowering plants. Conclusions Expansion of the plant PABP gene family began prior to the colonization of land. By the evolution of lycophytes, the first class member whose expression is confined to reproductive tissues in higher plants had appeared. A second class member whose expression is vegetative-associated appeared in gymnosperms and all three modern classes had fully evolved by the appearance of the first known basal angiosperm. The size of each PABP class underwent further expansion during subsequent evolution, especially in the Brassicaceae, suggesting that the family is undergoing dynamic evolution. Electronic supplementary material The online version of this article (doi:10.1186/s12862-014-0238-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel R Gallie
- Department of Biochemistry, University of California, Riverside, CA, 92521-0129, USA.
| | - Renyi Liu
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521-0129, USA.
| |
Collapse
|
21
|
Utashima Y, Matsumoto H, Masaki K, Iefuji H. Heterologous production of horseradish peroxidase C1a by the basidiomycete yeast Cryptococcus sp. S-2 using codon and signal optimizations. Appl Microbiol Biotechnol 2014; 98:7893-900. [DOI: 10.1007/s00253-014-5856-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/12/2014] [Accepted: 05/19/2014] [Indexed: 10/25/2022]
|
22
|
Peart N, Sataluri A, Baillat D, Wagner EJ. Non-mRNA 3' end formation: how the other half lives. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 4:491-506. [PMID: 23754627 DOI: 10.1002/wrna.1174] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 04/25/2013] [Accepted: 04/26/2013] [Indexed: 12/27/2022]
Abstract
The release of nascent RNA from transcribing RNA polymerase complexes is required for all further functions carried out by RNA molecules. The elements and processing machinery involved in 3' end formation therefore represent key determinants in the biogenesis and accumulation of cellular RNA. While these factors have been well-characterized for messenger RNA, recent work has elucidated analogous pathways for the 3' end formation of other important cellular RNA. Here, we discuss four specific cases of non-mRNA 3' end formation-metazoan small nuclear RNA, Saccharomyces cerevisiae small nuclear RNA, Schizosaccharomyces pombe telomerase RNA, and the mammalian MALAT1 large noncoding RNA-as models of alternative mechanisms to generate RNA 3' ends. Comparison of these disparate processing pathways reveals an emerging theme of evolutionary ingenuity. In some instances, evidence for the creation of a dedicated processing complex exists; while in others, components are utilized from the existing RNA processing machinery and modified to custom fit the unique needs of the RNA substrate. Regardless of the details of how non-mRNA 3' ends are formed, the lengths to which biological systems will go to release nascent transcripts from their DNA templates are fundamental for cell survival.
Collapse
Affiliation(s)
- Natoya Peart
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, TX, USA
| | | | | | | |
Collapse
|
23
|
Borah S, Darricarrère N, Darnell A, Myoung J, Steitz JA. A viral nuclear noncoding RNA binds re-localized poly(A) binding protein and is required for late KSHV gene expression. PLoS Pathog 2011; 7:e1002300. [PMID: 22022268 PMCID: PMC3192849 DOI: 10.1371/journal.ppat.1002300] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Accepted: 08/19/2011] [Indexed: 01/01/2023] Open
Abstract
During the lytic phase of infection, the gamma herpesvirus Kaposi's Sarcoma-Associated Herpesvirus (KSHV) expresses a highly abundant, 1.1 kb nuclear noncoding RNA of unknown function. We observe that this polyadenylated nuclear (PAN) RNA avidly binds host poly(A)-binding protein C1 (PABPC1), which normally functions in the cytoplasm to bind the poly(A) tails of mRNAs, regulating mRNA stability and translation efficiency. During the lytic phase of KSHV infection, PABPC1 is re-localized to the nucleus as a consequence of expression of the viral shutoff exonuclease (SOX) protein; SOX also mediates the host shutoff effect in which host mRNAs are downregulated while viral mRNAs are selectively expressed. We show that whereas PAN RNA is not required for the host shutoff effect or for PABPC1 re-localization, SOX strongly upregulates the levels of PAN RNA in transient transfection experiments. This upregulation is destroyed by the same SOX mutation that ablates the host shutoff effect and PABPC1 nuclear re-localization or by removal of the poly(A) tail of PAN. In cells induced into the KSHV lytic phase, depletion of PAN RNA using RNase H-targeting antisense oligonucleotides reveals that it is necessary for the production of late viral proteins from mRNAs that are themselves polyadenylated. Our results add to the repertoire of functions ascribed to long noncoding RNAs and suggest a mechanism of action for nuclear noncoding RNAs in gamma herpesvirus infection. Almost all eukaryotic messenger RNAs (mRNAs) have a string of 150–200 adenylates at the 3′ end. This poly(A) tail has been implicated as important for regulating mRNA translation, stability and export. During the lytic phase of infection of Kaposi's Sarcoma-Associated Herpesvirus (KSHV), a noncoding viral RNA is synthesized that resembles an mRNA in that it is transcribed by RNA polymerase II, is methyl-G capped at the 5′ end, and is polyadenylated at the 3′ end; yet this RNA is never exported to the cytoplasm for translation. Rather, it builds up in the nucleus to exceedingly high levels. We present evidence that the function of this abundant, polyadenylated nuclear (PAN) RNA is to bind poly(A) binding protein, which normally binds poly(A) tails of mRNAs in the cytoplasm but is re-localized into the nucleus during lytic KSHV infection. The interaction between PAN RNA and re-localized poly(A) binding protein is important for formation of new virus, in particular for the synthesis of proteins made late in infection. Our study provides new insight into the function of this noncoding RNA during KSHV infection and expands recent discoveries regarding re-localization of poly(A) binding protein during many viral infections.
Collapse
Affiliation(s)
- Sumit Borah
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University, New Haven, Connecticut, United States of America
| | - Nicole Darricarrère
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Alicia Darnell
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University, New Haven, Connecticut, United States of America
| | - Jinjong Myoung
- Department of Microbiology and Immunology, Howard Hughes Medical Institute, University of California, San Francisco, California, United States of America
| | - Joan A. Steitz
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
24
|
Weng KF, Li ML, Hung CT, Shih SR. Enterovirus 71 3C protease cleaves a novel target CstF-64 and inhibits cellular polyadenylation. PLoS Pathog 2009; 5:e1000593. [PMID: 19779565 PMCID: PMC2742901 DOI: 10.1371/journal.ppat.1000593] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Accepted: 08/27/2009] [Indexed: 12/23/2022] Open
Abstract
Identification of novel cellular proteins as substrates to viral proteases would provide a new insight into the mechanism of cell-virus interplay. Eight nuclear proteins as potential targets for enterovirus 71 (EV71) 3C protease (3C(pro)) cleavages were identified by 2D electrophoresis and MALDI-TOF analysis. Of these proteins, CstF-64, which is a critical factor for 3' pre-mRNA processing in a cell nucleus, was selected for further study. A time-course study to monitor the expression levels of CstF-64 in EV71-infected cells also revealed that the reduction of CstF-64 during virus infection was correlated with the production of viral 3C(pro). CstF-64 was cleaved in vitro by 3C(pro) but neither by mutant 3C(pro) (in which the catalytic site was inactivated) nor by another EV71 protease 2A(pro). Serial mutagenesis was performed in CstF-64, revealing that the 3C(pro) cleavage sites are located at position 251 in the N-terminal P/G-rich domain and at multiple positions close to the C-terminus of CstF-64 (around position 500). An accumulation of unprocessed pre-mRNA and the depression of mature mRNA were observed in EV71-infected cells. An in vitro assay revealed the inhibition of the 3'-end pre-mRNA processing and polyadenylation in 3C(pro)-treated nuclear extract, and this impairment was rescued by adding purified recombinant CstF-64 protein. In summing up the above results, we suggest that 3C(pro) cleavage inactivates CstF-64 and impairs the host cell polyadenylation in vitro, as well as in virus-infected cells. This finding is, to our knowledge, the first to demonstrate that a picornavirus protein affects the polyadenylation of host mRNA.
Collapse
Affiliation(s)
- Kuo-Feng Weng
- Research Center for Emerging Viral Infections, Chang Gung University, Kwei-Shan Tao-Yuan, Taiwan, R.O.C.
- Graduate Institute of Biomedical Sciences, Chang Gung University, Kwei-Shan Tao-Yuan,Taiwan, R.O.C.
| | - Mei-Ling Li
- Research Center for Emerging Viral Infections, Chang Gung University, Kwei-Shan Tao-Yuan, Taiwan, R.O.C.
- Department of Molecular Genetics, Microbiology and Immunology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Chuan-Tien Hung
- Research Center for Emerging Viral Infections, Chang Gung University, Kwei-Shan Tao-Yuan, Taiwan, R.O.C.
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Kwei-Shan Tao-Yuan, Taiwan, R.O.C.
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, Chang Gung University, Kwei-Shan Tao-Yuan, Taiwan, R.O.C.
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Kwei-Shan Tao-Yuan, Taiwan, R.O.C.
| |
Collapse
|
25
|
Ghosh T, Soni K, Scaria V, Halimani M, Bhattacharjee C, Pillai B. MicroRNA-mediated up-regulation of an alternatively polyadenylated variant of the mouse cytoplasmic {beta}-actin gene. Nucleic Acids Res 2008; 36:6318-32. [PMID: 18835850 PMCID: PMC2577349 DOI: 10.1093/nar/gkn624] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Actin is a major cytoskeletal protein in eukaryotes. Recent studies suggest more diverse functional roles for this protein. Actin mRNA is known to be localized to neuronal synapses and undergoes rapid deadenylation during early developmental stages. However, its 3′-untranslated region (UTR) is not characterized and there are no experimentally determined polyadenylation (polyA) sites in actin mRNA. We have found that the cytoplasmic β-actin (Actb) gene generates two alternative transcripts terminated at tandem polyA sites. We used 3′-RACE, EST end analysis and in situ hybridization to unambiguously establish the existence of two 3′-UTRs of varying length in Actb transcript in mouse neuronal cells. Further analyses showed that these two tandem polyA sites are used in a tissue-specific manner. Although the longer 3′-UTR was expressed at a relatively lower level, it conferred higher translational efficiency to the transcript. The longer transcript harbours a conserved mmu-miR-34a/34b-5p target site. Sequence-specific anti-miRNA molecule, mutations of the miRNA target region in the 3′-UTR resulted in reduced expression. The expression was restored by a mutant miRNA complementary to the mutated target region implying that miR-34 binding to Actb 3′-UTR up-regulates target gene expression. Heterogeneity of the Actb 3′-UTR could shed light on the mechanism of miRNA-mediated regulation of messages in neuronal cells.
Collapse
Affiliation(s)
- Tanay Ghosh
- Institute of Genomics and Integrative Biology (IGIB), Mall Road, New Delhi 110007, India
| | | | | | | | | | | |
Collapse
|
26
|
Emani S, Zhang J, Guo L, Guo H, Kuo PC. RNA stability regulates differential expression of the metastasis protein, osteopontin, in hepatocellular cancer. Surgery 2008; 143:803-12. [PMID: 18549897 DOI: 10.1016/j.surg.2008.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 02/17/2008] [Indexed: 12/16/2022]
Abstract
BACKGROUND Osteopontin (OPN) is a potential therapeutic target in hepatocellular carcinoma (HCC), because it is a critical mediator of metastatic function. The molecular mechanisms that determine expression of OPN in HCC, however, are unknown. In this study, we examine differential OPN expression in the 2 HCC cell lines: HepG2 and Hep3B. METHODS OPN expression, metastatic function, OPN promoter activity, and active transcription of OPN mRNA and its decay were assessed in the 2 HCC cell lines using standard techniques. RNA gel-shift assays were performed to determine binding of cytoplasmic proteins to OPN mRNA. RESULTS Expression of OPN cellular/secreted protein and mRNA was greater in HepG2 than Hep3B cells (P < .01). Transient transfection of the OPN promoter construct demonstrated equivalent luciferase activities in the 2 cell lines; the rate of transcription was also equivalent as determined by chromatin immuno-precipitation assay. OPN mRNA half-life was 21 +/- 1 h and 3 +/- 1 h in HepG2 and Hep3B, respectively (P < .02). In HepG2 and Hep3B, the nucleotide sequence of OPN and its 5'-UTR, 3'-UTR, and poly (A) tail lengths were identical. A luciferase construct coupled in line with OPN-5'-UTR and OPN 3'-UTR presented greater expression in HepG2 (P < .01 vs Hep3B). Deletion of nt 10-57 of the OPN 5'-UTR restored luciferase and HA-tagged OPN protein expression in Hep3B but not in Hep G2. RNA gel-shift assays demonstrate different patterns of protein binding to OPN 5'-UTR between the 2 HCC cell lines. CONCLUSIONS We conclude that RNA stability is a new, previously unrecognized mechanism that regulates OPN expression in HCC to convey metastatic function.
Collapse
Affiliation(s)
- Sirisha Emani
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
27
|
Abstract
Most eukaryotic mRNA precursors (premRNAs) must undergo extensive processing, including cleavage and polyadenylation at the 3'-end. Processing at the 3'-end is controlled by sequence elements in the pre-mRNA (cis elements) as well as protein factors. Despite the seeming biochemical simplicity of the processing reactions, more than 14 proteins have been identified for the mammalian complex, and more than 20 proteins have been identified for the yeast complex. The 3'-end processing machinery also has important roles in transcription and splicing. The mammalian machinery contains several sub-complexes, including cleavage and polyadenylation specificity factor, cleavage stimulation factor, cleavage factor I, and cleavage factor II. Additional protein factors include poly(A) polymerase, poly(A)-binding protein, symplekin, and the C-terminal domain of RNA polymerase II largest subunit. The yeast machinery includes cleavage factor IA, cleavage factor IB, and cleavage and polyadenylation factor.
Collapse
Affiliation(s)
- C. R. Mandel
- Department of Biological Sciences, Columbia University, New York, NY 10027 USA
| | - Y. Bai
- Department of Biological Sciences, Columbia University, New York, NY 10027 USA
| | - L. Tong
- Department of Biological Sciences, Columbia University, New York, NY 10027 USA
| |
Collapse
|
28
|
Song MG, Kiledjian M. 3' Terminal oligo U-tract-mediated stimulation of decapping. RNA (NEW YORK, N.Y.) 2007; 13:2356-65. [PMID: 17942740 PMCID: PMC2080602 DOI: 10.1261/rna.765807] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Decapping is a critical step in the control of gene expression and is regulated by both positive and negative trans factors. Less is known about cis elements that promote decapping. In plants, following microRNA (miRNA)-directed cleavage of an mRNA, a uridine tract can be added onto the exposed 3' end of the resulting 5' fragment, which can promote 5' end decay. We now demonstrate that in mammalian cell extract, addition of five uridine residues to the 3' end of an RNA (U5) promotes decapping relative to an RNA lacking the uridines (U0). Although the decapping stimulation observed in extract required hDcp2, recombinant hDcp2 was unable to support differential decapping of the U0 and U5 RNAs, indicating that the stimulation was likely due to an indirect recruitment of hDcp2 to the RNA. Consistent with the promotion of 5' end decapping by the uridine tract, affinity purification with the U5 RNA revealed the presence of a decapping subcomplex at least consisting of hDcp2, Dcp1a, Edc4, LSm1, and LSm4 that were specifically bound to the U5 RNA but not the U0 RNA. In addition to promoting decapping, the U-tract stabilized the 3' end of the RNA by preventing 3' to 5' exonucleolytic decay to ensure 5' end directional degradation. These data suggest that following post-transcriptional oligo uridylation of an mRNA or mRNA fragment, the U-tract has the capacity to specifically stimulate 5' end decapping to expedite mRNA decay.
Collapse
Affiliation(s)
- Man-Gen Song
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854-8082, USA
| | | |
Collapse
|
29
|
Bradrick SS, Dobrikova EY, Kaiser C, Shveygert M, Gromeier M. Poly(A)-binding protein is differentially required for translation mediated by viral internal ribosome entry sites. RNA (NEW YORK, N.Y.) 2007; 13:1582-93. [PMID: 17652408 PMCID: PMC1950770 DOI: 10.1261/rna.556107] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The 3' poly(A) tail present on the majority of mature eukaryotic mRNAs is an important regulator of protein synthesis and mRNA stability. The poly(A) tail improves the efficiency of translation initiation through recruitment of PABP, enabling its interaction with eIF4F located at the mRNA 5'-end. Recent evidence has also implicated a possible role for PABP and the poly(A) tract in translation control at steps beyond the initiation phase. Similar to conventional mRNAs, plus-strand RNA virus genomes that utilize internal ribosome entry sites (IRESes) to promote cap-independent translation are influenced by PABP and poly(A) status. However, the relative contribution of these factors to translation initiation mediated by distinct IRESes is unclear. We have investigated cis- and trans-acting effects of poly(A) and PABP, respectively, on RNAs harboring IRESes from three diverse viruses: encephalomyocarditis virus (EMCV), hepatitis C virus (HCV), and coxsackievirus B3 (CBV3). A 3' poly(A) tract enhanced translation of both capped and IRES-containing reporter RNAs. However, only CBV3 and capped transcripts were stabilized as a result of polyadenylation. Correspondingly, translation of polyadenylated CBV3 and capped RNAs displayed heightened sensitivity to the PABP inhibitor Paip2 compared with EMCV and HCV. Sucrose density gradient analyses suggested a stimulatory role for PABP and 3' poly(A) in the CBV3 initiation phase, while assembly of HCV and EMCV RNAs into ribosomal complexes was little affected by either factor. Collectively, the observed differential effects of PABP and poly(A) on translation imply mechanistic differences between viral IRES elements and suggest modulating roles for PABP and the poly(A) tail at multiple phases of translation.
Collapse
Affiliation(s)
- Shelton S Bradrick
- Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | |
Collapse
|
30
|
Atz M, Walsh D, Cartagena P, Li J, Evans S, Choudary P, Overman K, Stein R, Tomita H, Potkin S, Myers R, Watson SJ, Jones E, Akil H, Bunney WE, Vawter MP. Methodological considerations for gene expression profiling of human brain. J Neurosci Methods 2007; 163:295-309. [PMID: 17512057 PMCID: PMC3835340 DOI: 10.1016/j.jneumeth.2007.03.022] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 03/12/2007] [Accepted: 03/22/2007] [Indexed: 11/29/2022]
Abstract
Gene expression profiles of postmortem brain tissue represent important resources for understanding neuropsychiatric illnesses. The impact(s) of quality covariables on the analysis and results of gene expression studies are important questions. This paper addressed critical variables which might affect gene expression in two brain regions. Four broad groups of quality indicators in gene expression profiling studies (clinical, tissue, RNA, and microarray quality) were identified. These quality control indicators were significantly correlated, however one quality variable did not account for the total variance in microarray gene expression. The data showed that agonal factors and low pH correlated with decreased integrity of extracted RNA in two brain regions. These three parameters also modulated the significance of alterations in mitochondrial-related genes. The average F-ratio summaries across all transcripts showed that RNA degradation from the AffyRNAdeg program accounted for higher variation than all other quality factors. Taken together, these findings confirmed prior studies, which indicated that quality parameters including RNA integrity, agonal factors, and pH are related to differences in gene expression profiles in postmortem brain. Individual candidate genes can be evaluated with these quality parameters in post hoc analysis to help strengthen the relevance to psychiatric disorders. We find that clinical, tissue, RNA, and microarray quality are all useful variables for collection and consideration in study design, analysis, and interpretation of gene expression results in human postmortem studies.
Collapse
Affiliation(s)
- Mary Atz
- Department of Psychiatry and Human Behavior, College of Medicine, University of California, Irvine, California, USA
| | - David Walsh
- Department of Psychiatry and Human Behavior, College of Medicine, University of California, Irvine, California, USA
| | - Preston Cartagena
- Department of Psychiatry and Human Behavior, College of Medicine, University of California, Irvine, California, USA
| | - Jun Li
- Stanford Human Genome Center, Stanford University, Palo Alto CA
| | | | | | - Kevin Overman
- Department of Psychiatry and Human Behavior, College of Medicine, University of California, Irvine, California, USA
| | - Richard Stein
- Department of Psychiatry and Human Behavior, College of Medicine, University of California, Irvine, California, USA
| | - Hiro Tomita
- Department of Psychiatry and Human Behavior, College of Medicine, University of California, Irvine, California, USA
| | - Steven Potkin
- Department of Psychiatry and Human Behavior, College of Medicine, University of California, Irvine, California, USA
| | - Rick Myers
- Stanford Human Genome Center, Stanford University, Palo Alto CA
| | | | - E.G. Jones
- Center for Neuroscience, University of California, Davis CA
| | - Huda Akil
- MHRI, University of Michigan, Ann Arbor, MI
| | - William E. Bunney
- Department of Psychiatry and Human Behavior, College of Medicine, University of California, Irvine, California, USA
| | - Marquis P. Vawter
- Department of Psychiatry and Human Behavior, College of Medicine, University of California, Irvine, California, USA
| |
Collapse
|
31
|
Khaladkar M, Bellofatto V, Wang JTL, Tian B, Shapiro BA. RADAR: a web server for RNA data analysis and research. Nucleic Acids Res 2007; 35:W300-4. [PMID: 17517784 PMCID: PMC1933136 DOI: 10.1093/nar/gkm253] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
RADAR is a web server that provides a multitude of functionality for RNA data analysis and research. It can align structure-annotated RNA sequences so that both sequence and structure information are taken into consideration during the alignment process. This server is capable of performing pairwise structure alignment, multiple structure alignment, database search and clustering. In addition, RADAR provides two salient features: (i) constrained alignment of RNA secondary structures, and (ii) prediction of the consensus structure for a set of RNA sequences. RADAR will be able to assist scientists in performing many important RNA mining operations, including the understanding of the functionality of RNA sequences, the detection of RNA structural motifs and the clustering of RNA molecules, among others. The web server together with a software package for download is freely accessible at http://datalab.njit.edu/biodata/rna/RSmatch/server.htm and http://www.ccrnp.ncifcrf.gov/~bshapiro/
Collapse
Affiliation(s)
- Mugdha Khaladkar
- Bioinformatics Program and Department of Computer Science, New Jersey Institute of Technology, NJ 07102, Department of Microbiology and Molecular Genetics, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, International Center for Public Health, 225 Warren Street, Newark, NJ 07103, Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, NJ 07101 and Center for Cancer Research Nanobiology Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Vivian Bellofatto
- Bioinformatics Program and Department of Computer Science, New Jersey Institute of Technology, NJ 07102, Department of Microbiology and Molecular Genetics, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, International Center for Public Health, 225 Warren Street, Newark, NJ 07103, Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, NJ 07101 and Center for Cancer Research Nanobiology Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Jason T. L. Wang
- Bioinformatics Program and Department of Computer Science, New Jersey Institute of Technology, NJ 07102, Department of Microbiology and Molecular Genetics, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, International Center for Public Health, 225 Warren Street, Newark, NJ 07103, Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, NJ 07101 and Center for Cancer Research Nanobiology Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Bin Tian
- Bioinformatics Program and Department of Computer Science, New Jersey Institute of Technology, NJ 07102, Department of Microbiology and Molecular Genetics, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, International Center for Public Health, 225 Warren Street, Newark, NJ 07103, Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, NJ 07101 and Center for Cancer Research Nanobiology Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Bruce A. Shapiro
- Bioinformatics Program and Department of Computer Science, New Jersey Institute of Technology, NJ 07102, Department of Microbiology and Molecular Genetics, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, International Center for Public Health, 225 Warren Street, Newark, NJ 07103, Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, NJ 07101 and Center for Cancer Research Nanobiology Program, National Cancer Institute, Frederick, MD 21702, USA
- *To whom correspondence should be addressed. +1 301 846 5536+1 301 846 5598
| |
Collapse
|
32
|
Kao CY, Read LK. Targeted depletion of a mitochondrial nucleotidyltransferase suggests the presence of multiple enzymes that polymerize mRNA 3' tails in Trypanosoma brucei mitochondria. Mol Biochem Parasitol 2007; 154:158-69. [PMID: 17543398 PMCID: PMC2709527 DOI: 10.1016/j.molbiopara.2007.04.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 04/10/2007] [Accepted: 04/22/2007] [Indexed: 10/23/2022]
Abstract
Polyadenylation plays an important role in regulating RNA stability in Trypanosoma brucei mitochondria. To date, little is known about the enzymes responsible for the addition of mRNA 3' tails in this system. In this study, we characterize a trypanosome homolog of the human mitochondrial poly(A) polymerase, which we term kPAP2. kPAP2 is mitochondrially localized and expressed in both bloodstream and procyclic form trypanosomes. Targeted gene depletion using RNAi showed that kPAP2 is not required for T. brucei growth in either bloodstream or procyclic life stages, nor is it essential for differentiation from bloodstream to procyclic form. We also demonstrate that steady state abundance of several mitochondrial RNAs was largely unaffected upon kPAP2 down-regulation. Interestingly, mRNA 3' tail analysis of several mRNAs from both life cycle stages in uninduced kPAP2 RNAi cells demonstrated that tail length and uridine content are both regulated in a transcript-specific manner. mRNA-specific tail lengths were maintained upon kPAP2 depletion. However, the percentage of uridine residues in 3' tails was increased, and conversely the percentage of adenosine residues was decreased, in a distinct subset of mRNAs when kPAP2 levels were down-regulated. Thus, kPAP2 apparently contributes to the incorporation of adenosine residues in 3' tails of some, but not all, mitochondrial mRNAs. Together, these data suggest that multiple nucleotidyltransferases act on mitochondrial mRNA 3' ends, and that these enzymes are somewhat redundant and subject to complex regulation.
Collapse
Affiliation(s)
| | - Laurie K. Read
- Corresponding author: Dr. Laurie K. Read, Dept. of Microbiology and Immunology, 138 Farber Hall, Buffalo, NY 14214, Tel. 716-829-3307, FAX 716-829-2158,
| |
Collapse
|
33
|
Fink M, Flekna G, Ludwig A, Heimbucher T, Czerny T. Improved translation efficiency of injected mRNA during early embryonic development. Dev Dyn 2007; 235:3370-8. [PMID: 17068769 DOI: 10.1002/dvdy.20995] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Injection techniques are a powerful approach to study gene function in fish and frog model systems. In particular, in vitro transcribed mRNA is broadly used for such misexpression experiments. Sequence elements flanking the coding region, such as untranslated repeats and polyadenylation sequences, are known to affect the stability and the translation efficiency of mRNA. Here we show that in early embryos, poly(A) signals strongly contribute to the activity of the injected mRNA. Of interest, they only marginally affect mRNA stability, whereas the translation efficiency is dramatically enhanced. Combination of a poly(A) tail and an SV40 late poly(A) signal leads to highly synergistic effects of the two elements for injected mRNA. Compared with established vector systems, we detected a 20-fold improvement for mRNA derived from the novel transcription vector pMC.
Collapse
Affiliation(s)
- Maria Fink
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, Austria
| | | | | | | | | |
Collapse
|
34
|
Murray EL, Schoenberg DR. A+U-rich instability elements differentially activate 5'-3' and 3'-5' mRNA decay. Mol Cell Biol 2007; 27:2791-9. [PMID: 17296726 PMCID: PMC1899944 DOI: 10.1128/mcb.01445-06] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The A+U-rich elements (or AREs) are cis-acting sequences that activate rapid mRNA decay, yet the overall polarity of this process is unknown. The current study describes an unbiased approach to this using the Invader RNA assay (Third Wave Technologies, Inc.) to quantify the decay of each of the three exons of human beta-globin mRNA without added instability elements or with the AREs from c-fos or granulocyte-macrophage colony-stimulating factor (GM-CSF) mRNA in the 3' untranslated region. Each of these genes under tetracycline operator control was stably transfected into cells, and beta-globin mRNA was quantified with exon-specific probes following transcription termination. There was little overall evidence for polarity in stable mRNA decay. Adding the c-fos ARE activated rapid and simultaneous decay from both ends of the mRNA. In contrast, the GM-CSF ARE activated decay primarily from the mRNA 5' end. These data were supported by reciprocal RNA interference knockdowns, and we present evidence that the 5'-3' and 3'-5' decay pathways are functionally linked.
Collapse
Affiliation(s)
- Elizabeth L Murray
- Department of Molecular and Cellular Biochemistry, The Ohio State University, 1645 Neil Ave., Columbus, OH 43210-1218, USA
| | | |
Collapse
|
35
|
Sajic R, Lee K, Asai K, Sakac D, Branch DR, Upton C, Cochrane A. Use of modified U1 snRNAs to inhibit HIV-1 replication. Nucleic Acids Res 2006; 35:247-55. [PMID: 17158512 PMCID: PMC1802557 DOI: 10.1093/nar/gkl1022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Control of RNA processing plays a central role in regulating the replication of HIV-1, in particular the 3' polyadenylation of viral RNA. Based on the demonstration that polyadenylation of mRNAs can be disrupted by the targeted binding of modified U1 snRNA, we examined whether binding of U1 snRNAs to conserved 10 nt regions within the terminal exon of HIV-1 was able to inhibit viral structural protein expression. In this report, we demonstrate that U1 snRNAs complementary to 5 of the 15 regions targeted result in significant suppression of HIV-1 protein expression and viral replication coincident with loss of viral RNA. Suppression of viral gene expression is dependent upon appropriate assembly of a U1 snRNP particle as mutations of U1 snRNA that affect binding of U1 70K or Sm proteins significantly reduced efficacy. However, constructs lacking U1A binding sites retained significant anti-viral activity. This finding suggests a role for these mutants in situations where the wild-type constructs cause toxic effects. The conserved nature of the sequences targeted and the high efficacy of the constructs suggests that this strategy has significant potential as an HIV therapeutic.
Collapse
Affiliation(s)
| | | | | | - D. Sakac
- Department of Medicine, University of TorontoToronto, Ontario, Canada
| | - D. R. Branch
- Department of Medicine, University of TorontoToronto, Ontario, Canada
| | - C. Upton
- Department of Biochemistry and Microbiology, University of VictoriaVictoria, BC, Canada
| | - A. Cochrane
- To whom correspondence should be addressed at Department of Medical Genetics and Microbiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S-1A8. Tel: +416 978 2500; Fax: +416 978-6885;
| |
Collapse
|
36
|
Abstract
The ability to regulate cellular gene expression is a key aspect of the lifecycles of a diverse array of viruses. In fact, viral infection often results in a global shutoff of host cellular gene expression; such inhibition serves not only to ensure maximal viral gene expression without competition from the host for essential machinery and substrates but also aids in evasion of immune responses detrimental to successful viral replication and dissemination. Within the herpesvirus family, host shutoff is a prominent feature of both the alpha- and gamma-herpesviruses. Intriguingly, while both classes of herpesviruses block cellular gene expression by inducing decay of messenger RNAs, the viral factors responsible for this phenotype as well as the mechanisms by which it is achieved are quite distinct. However, data suggest that the host shutoff functions of alpha- and gamma-herpesviruses are likely achieved both through the activity of virally encoded nucleases as well as via modulation of cellular RNA degradation pathways. This review highlights the processes governing normal cellular messenger RNA decay and then details the mechanisms by which herpesviruses promote accelerated RNA turnover. Parallels between the viral and cellular degradation systems as well as the known interactions between viral host shutoff factors and the cellular RNA turnover machinery are highlighted.
Collapse
Affiliation(s)
- Britt A Glaunsinger
- Howard Hughes Medical Institute, Department of Microbiology, University of California, San Francisco, 94143, USA
| | | |
Collapse
|
37
|
Abstract
Human biodiversity or individual traits are not well explained by exonic mutations of all 20,000 known human genes. Accumulating evidence has demonstrated that not all noncoding regions are junk DNA sequences, and that some functionally important noncoding variants contribute significantly to altered gene expression, qualitatively or quantitatively. Thus, functional profiling or clinical relevance of noncoding variations should not be underestimated or ignored. To validate these concepts, some important examples are discussed further in this short review.
Collapse
Affiliation(s)
- Guang-Ji Wang
- China Pharmaceutical University, Key Laboratory of Drug Metabolism and Pharmacokinetics, 1 Shennong Road, Nanjing, Jiangsu 210038, People's Republic of China
| | | | | |
Collapse
|
38
|
Liang S, Lutz CS. p54nrb is a component of the snRNP-free U1A (SF-A) complex that promotes pre-mRNA cleavage during polyadenylation. RNA (NEW YORK, N.Y.) 2006; 12:111-21. [PMID: 16373496 PMCID: PMC1370891 DOI: 10.1261/rna.2213506] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Accepted: 10/12/2005] [Indexed: 05/05/2023]
Abstract
The U1 snRNP-A (U1A) protein has been known for many years as a component of the U1 snRNP. We have previously described a form of U1A present in human cells in significant amounts that is not associated with the U1 snRNP or U1 RNA but instead is part of a novel complex of non-snRNP proteins that we have termed snRNP-free U1A, or SF-A. Antibodies that specifically recognize this complex inhibit in vitro splicing and polyadenylation of pre-mRNA, suggesting that this complex may play an important functional role in these mRNA-processing activities. This finding was underscored by the determination that one of the components of this complex is the polypyrimidine-tract-binding protein-associated splicing factor, PSF. In order to further our studies on this complex and to determine the rest of the components of the SF-A complex, we prepared several stable HeLa cell lines that overexpress a tandem-affinity-purification-tagged version of U1A (TAP-tagged U1A). Nuclear extract was prepared from one of these cell lines, line 107, and affinity purification was performed along with RNase treatment. We have used mass spectrometry analysis to identify the candidate factors that associate with U1A. We have now identified and characterized PSF, p54(nrb), and p68 as novel components of the SF-A complex. We have explored the function of this complex in RNA processing, specifically cleavage and polyadenylation, by performing immunodepletions followed by reconstitution experiments, and have found that p54(nrb) is critical.
Collapse
Affiliation(s)
- Songchun Liang
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School MSB E671, 185 S. Orange Avenue, Newark, NJ 07103, USA
| | | |
Collapse
|
39
|
Grudzien E, Kalek M, Jemielity J, Darzynkiewicz E, Rhoads RE. Differential Inhibition of mRNA Degradation Pathways by Novel Cap Analogs. J Biol Chem 2006; 281:1857-67. [PMID: 16257956 DOI: 10.1074/jbc.m509121200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
mRNA degradation predominantly proceeds through two alternative routes: the 5'-->3' pathway, which requires deadenylation followed by decapping and 5'-->3' hydrolysis; and the 3'-->5' pathway, which involves deadenylation followed by 3'-->5' hydrolysis and finally decapping. The mechanisms and relative contributions of each pathway are not fully understood. We investigated the effects of different cap structure (Gp(3)G, m(7)Gp(3)G, or m(2)(7,3'-O) Gp(3)G) and 3' termini (A(31),A(60), or G(16)) on both translation and mRNA degradation in mammalian cells. The results indicated that cap structures that bind eIF4E with higher affinity stabilize mRNA to degradation in vivo. mRNA stability depends on the ability of the 5' terminus to bind eIF4E, not merely the presence of a blocking group at the 5'-end. Introducing a stem-loop in the 5'-UTR that dramatically reduces translation, but keeping the cap structure the same, does not alter the rate of mRNA degradation. To test the relative contributions of the 5'-->3' versus 3'-->5' pathways, we designed and synthesized two new cap analogs, in which a methylene group was substituted between the alpha- and beta-phosphate moieties, m(2)(7,3'-O)Gpp(CH2)pG and m(2)(7,3'-O)Gp(CH2)ppG, that are predicted to be resistant to cleavage by Dcp1/Dcp2 and DcpS, respectively. These cap analogs were recognized by eIF4E and conferred cap-dependent translation to mRNA both in vitro and in vivo. Oligonucleotides capped with m(2)(7,3'-O)Gpp(CH2)pG were resistant to hydrolysis by recombinant human Dcp2 in vitro. mRNAs capped with m(2)(7,3'-O)Gpp(CH2)pG, but not m(2)(7,3'-O)Gp(CH2)ppG, were more stable in vivo, indicating that the 5'-->3' pathway makes a major contribution to overall degradation. Luciferase mRNA containing a 5'-terminal m(2)(7,3'-O)Gpp(CH2)pG and 3'-terminal poly(G) had the greatest stability of all mRNAs tested.
Collapse
Affiliation(s)
- Ewa Grudzien
- Department of Biophysics, Warsaw University, Warsaw 02-089, Poland
| | | | | | | | | |
Collapse
|
40
|
Silvestri LS, Parilla JM, Morasco BJ, Ogram SA, Flanegan JB. Relationship between poliovirus negative-strand RNA synthesis and the length of the 3' poly(A) tail. Virology 2005; 345:509-19. [PMID: 16297425 DOI: 10.1016/j.virol.2005.10.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Revised: 10/07/2005] [Accepted: 10/18/2005] [Indexed: 10/25/2022]
Abstract
The precise relationship between the length of the 3' poly(A) tail and the replication and infectivity of poliovirus RNA was examined in this study. With both poly(A)(11) and poly(A)(12) RNAs, negative-strand synthesis was 1-3% of the level observed with poly(A)(80) RNA. In contrast, increasing the length of the poly(A) tail from (A)(12) to (A)(13) resulted in about a ten-fold increase in negative-strand synthesis. This increase continued with each successive increase in poly(A) tail length. With poly(A)(20) RNA, RNA synthesis approached the level observed with poly(A)(80) RNA. A similar relationship was observed between poly(A) tail length and the infectivity of the viral RNA. A replication model is described which suggests that viral RNA replication is dependent on a poly(A) tail that is long enough to bind poly(A) binding protein and to act as a template for VPg uridylylation and negative-strand initiation.
Collapse
Affiliation(s)
- Lynn S Silvestri
- Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, 32610-0245, USA
| | | | | | | | | |
Collapse
|
41
|
Mikami S, Masutani M, Sonenberg N, Yokoyama S, Imataka H. An efficient mammalian cell-free translation system supplemented with translation factors. Protein Expr Purif 2005; 46:348-57. [PMID: 16289705 DOI: 10.1016/j.pep.2005.09.021] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Revised: 09/12/2005] [Accepted: 09/26/2005] [Indexed: 10/25/2022]
Abstract
Development of an efficient cell-free translation system from mammalian cells is an important goal. We examined whether supplementation of HeLa cell extracts with any translation initiation factor or translational regulator could enhance protein synthesis. eIF2 (eukaryotic translation initiation factor 2) and eIF2B augmented translation of capped, uncapped and encephalomyocarditis virus-internal ribosome entry site-promoted mRNAs. eIF4E specifically stimulated capped mRNA translation, while p97, a homologue to the C-terminal two-thirds of eIF4G, increased uncapped mRNA translation. When the HeLa cell extract was supplemented with a combination of eIF2, eIF2B, and p97, the capacity to synthesize a protein from an uncapped mRNA became comparable to that from the capped counterpart stimulated with a combination of eIF2, eIF2B, and eIF4E. A dialysis method rendered the HeLa cell extract capable of synthesizing proteins for 36h, and the yield was augmented when supplemented with initiation factors. In contrast, the productivity of a rabbit reticulocyte lysate was not enhanced by this method. Collectively, the translation factor-supplemented HeLa cell extract should become an important tool for the production of recombinant proteins.
Collapse
|
42
|
Kao CY, Read LK. Opposing effects of polyadenylation on the stability of edited and unedited mitochondrial RNAs in Trypanosoma brucei. Mol Cell Biol 2005; 25:1634-44. [PMID: 15713623 PMCID: PMC549368 DOI: 10.1128/mcb.25.5.1634-1644.2005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Revised: 10/11/2004] [Accepted: 12/07/2004] [Indexed: 11/20/2022] Open
Abstract
Mitochondrial RNAs in Trypanosoma brucei undergo posttranscriptional RNA editing and polyadenylation. We previously showed that polyadenylation stimulates turnover of unedited RNAs. Here, we investigated the role of polyadenylation in decay of edited RPS12 RNA. In in vitro turnover assays, nonadenylated fully edited RNA degrades significantly faster than its unedited counterpart. Rapid turnover of nonadenylated RNA is facilitated by editing at just six editing sites. Surprisingly, in direct contrast to unedited RNA, turnover of fully edited RNA is dramatically slowed by addition of a poly(A)20 tail. The same minimal edited sequence that stimulates decay of nonadenylated RNA is sufficient to switch the poly(A) tail from a destabilizing to a stabilizing element. Both nucleotide composition and length of the 3' extension are important for stabilization of edited RNA. Titration of poly(A) into RNA degradation reactions has no effect on turnover of polyadenylated edited RNA. These results suggest the presence of a protective protein(s) that simultaneously recognizes the poly(A) tail and small edited element and which blocks the action of a 3'-5' exonuclease. This study provides the first evidence for opposing effects of polyadenylation on RNA stability within a single organelle and suggests a novel and unique regulation of RNA turnover in this system.
Collapse
Affiliation(s)
- Chia-Ying Kao
- Department of Microbiology and Immunology, 138 Farber Hall, SUNY Buffalo School of Medicine and Biomedical Sciences, Buffalo, NY 14214, USA
| | | |
Collapse
|
43
|
Pan WH, Xin P, Morrey JD, Clawson GA. A self-processing ribozyme cassette: utility against human papillomavirus 11 E6/E7 mRNA and hepatitis B virus. Mol Ther 2004; 9:596-606. [PMID: 15093190 DOI: 10.1016/j.ymthe.2003.12.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2003] [Accepted: 12/26/2003] [Indexed: 12/29/2022] Open
Abstract
We have been developing a self-processing triple-ribozyme cassette, which consists of two cis-acting hammerhead ribozymes flanking an internal, trans-acting hammerhead ribozyme (ITRz). Here, the single ITRz was replaced by two contiguous ITRz (dITRz), and a short poly(A) tail was designed onto the 3' end of the liberated dITRz, to produce the "SNIP(AA)" cassette. Self-processing of the cassette appeared to proceed efficiently in cells: The only region of the cassette identified in cells was the liberated dITRz, with approximately 10-20% of the dITRz found within the nucleus. We tested this reagent against two therapeutically important targets, human papillomavirus 11 E6/E7 mRNA and hepatitis B virus (HBV). Library selection protocols were utilized to define accessible target sites, and ribozymes targeted to these sites were very active in vitro. Pairs of the selected ribozymes were then inserted into the SNIP(AA) cassette. SNIP(AA) constructs targeted to the E6/E7 mRNA were tested in cell culture using a cotransfection approach. Significant reductions were produced in E6/E7 target, with 80-90% reductions observed at 5 days following cotransfection. SNIP(AA) constructs targeted to HBV RNA were tested in vivo in a transgenic mouse model. SNIP(AA) constructs were packaged in liposomes, which were targeted to hepatocytes using asialofetuin, and administered ip. After 2 weeks, a >80% reduction in viral liver DNA was observed. Immunohistochemical staining for core antigen showed a similar decrease in the number of hepatocytes staining positively, compounded by a concomitant loss of residual staining intensity. These results demonstrate the in vivo utility of the self-processing SNIP(AA) cassette against HBV.
Collapse
Affiliation(s)
- Wei-Hua Pan
- Department of Pathology, The Gittlen Cancer Research Institute, Hershey Medical Center, Pennsylvania State University, Hershey, PA 17033, USA
| | | | | | | |
Collapse
|
44
|
Bunda S, Kaviani N, Hinek A. Fluctuations of intracellular iron modulate elastin production. J Biol Chem 2004; 280:2341-51. [PMID: 15537639 DOI: 10.1074/jbc.m409897200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Production of insoluble elastin, the major component of elastic fibers, can be modulated by numerous intrinsic and exogenous factors. Because patients with hemolytic disorders characterized with fluctuations in iron concentration demonstrate defective elastic fibers, we speculated that iron might also modulate elastogenesis. In the present report we demonstrate that treatment of cultured human skin fibroblasts with low concentration of iron 2-20 microm (ferric ammonium citrate) induced a significant increase in the synthesis of tropoelastin and deposition of insoluble elastin. Northern blot and real-time reverse transcription-PCR analysis revealed that treatment with 20 microm iron led to an increase of approximately 3-fold in elastin mRNA levels. Because treatment with an intracellular iron chelator, desferrioxamine, caused a significant decrease in elastin mRNA level and consequent inhibition of elastin deposition, we conclude that iron facilitates elastin gene expression. Our experimental evidence also demonstrates the existence of an opposite effect, in which higher, but not cytotoxic concentrations of iron (100-400 microm) induced the production of intracellular reactive oxygen species that coincided with a significant decrease in elastin message stability and the disappearance of iron-dependent stimulatory effect on elastogenesis. This stimulatory elastogenic effect was reversed, however, in cultures simultaneously treated with high iron concentration (200 microm) and the intracellular hydroxyl radical scavenger, dimethylthiourea. Thus, presented data, for the first time, demonstrate the existence of two opposite iron-dependent mechanisms that may affect the steady state of elastin message. We speculate that extreme fluctuations in intracellular iron levels result in impaired elastic fiber production as observed in hemolytic diseases.
Collapse
Affiliation(s)
- Severa Bunda
- Cardiovascular Research Program, The Hospital for Sick Children and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5G 1X8, Canada
| | | | | |
Collapse
|
45
|
Maratou K, Forster T, Costa Y, Taggart M, Speed RM, Ireland J, Teague P, Roy D, Cooke HJ. Expression profiling of the developing testis in wild-type and Dazl knockout mice. Mol Reprod Dev 2004; 67:26-54. [PMID: 14648873 DOI: 10.1002/mrd.20010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Genetic understanding of male-factor infertility requires knowledge of gene expression patterns associated with normal germ cell differentiation. The mouse is one of the best models of mammalian fertility due to its well-characterized genetics and the existence of many infertile mutants both naturally occurring and experimentally induced. We used cDNA microarrays firstly to investigate normal gene expression in the wild-type (wt) testis and secondly to gain a better insight into the effect of the disruption of the Dazl gene on spermatogenesis. We constructed a cDNA microarray from a subtracted and normalized adult testis library and focused on six developmental time-points during the initial synchronous wave of spermatogenesis. The results suggest that in the wild-type testis, 89.5% of genes on our chip change expression dramatically during the time-course. To identify patterns in the gene-expression data, a k-means clustering algorithm and principal component analysis were used. In the Dazl knockout testes, the majority of genes remain at baseline levels of expression, because absence of Dazl has a severe effect on cell-types present in the testis. Although in the prepubescent Dazl-null mice the final point reached in germ cell development is the leptotene-zygotene stage, the microarray results suggest that lack of Dazl expression has a detectable effect on the mRNA complement of germ cells as early as day 5 when only type A spermatogonia are present. Mol. Reprod. Dev. 67: 26-54, 2004.
Collapse
Affiliation(s)
- Klio Maratou
- MRC Human Genetics Unit, Edinburgh, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Calzado MA, Sancho R, Muñoz E. Human immunodeficiency virus type 1 Tat increases the expression of cleavage and polyadenylation specificity factor 73-kilodalton subunit modulating cellular and viral expression. J Virol 2004; 78:6846-54. [PMID: 15194760 PMCID: PMC421638 DOI: 10.1128/jvi.78.13.6846-6854.2004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) Tat protein, which is essential for HIV gene expression and viral replication, is known to mediate pleiotropic effects on various cell functions. For instance, Tat protein is able to regulate the rate of transcription of host cellular genes and to interact with the signaling machinery, leading to cellular dysfunction. To study the effect that HIV-1 Tat exerts on the host cell, we identified several genes that were up- or down-regulated in tat-expressing cell lines by using the differential display method. HIV-1 Tat specifically increases the expression of the cleavage and polyadenylation specificity factor (CPSF) 73-kDa subunit (CPSF3) without affecting the expression of the 160- and 100-kDa subunits of the CPSF complex. This complex comprises four subunits and has a key function in the 3'-end processing of pre-mRNAs by a coordinated interaction with other factors. CPSF3 overexpression experiments and knockdown of the endogenous CPSF3 by mRNA interference have shown that this subunit of the complex is an important regulatory protein for both viral and cellular gene expression. In addition to the known CPSF3 function in RNA polyadenylation, we also present evidence that this protein exerts transcriptional activities by repressing the mdm2 gene promoter. Thus, HIV-1-Tat up-regulation of CPSF3 could represent a novel mechanism by which this virus increases mRNA processing, causing an increase in both cell and viral gene expression.
Collapse
Affiliation(s)
- Marco A Calzado
- Departamento de Biología Celular, Fisiología e Inmunología, Facultad de Medicina, Universidad de Córdoba, Cordoba, Spain
| | | | | |
Collapse
|
47
|
Sladic RT, Lagnado CA, Bagley CJ, Goodall GJ. Human PABP binds AU-rich RNA via RNA-binding domains 3 and 4. ACTA ACUST UNITED AC 2004; 271:450-7. [PMID: 14717712 DOI: 10.1046/j.1432-1033.2003.03945.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Poly(A) binding protein (PABP) binds mRNA poly(A) tails and affects mRNA stability and translation. We show here that there is little free PABP in NIH3T3 cells, with the vast majority complexed with RNA. We found that PABP in NIH3T3 cytoplasmic lysates and recombinant human PABP can bind to AU-rich RNA with high affinity. Human PABP bound an AU-rich RNA with Kd in the nm range, which was only sixfold weaker than the affinity for oligo(A) RNA. Truncated PABP containing RNA recognition motif domains 3 and 4 retained binding to both AU-rich and oligo(A) RNA, whereas a truncated PABP containing RNA recognition motif domains 1 and 2 was highly selective for oligo(A) RNA. The inducible PABP, iPABP, was found to be even less discriminating than PABP in RNA binding, with affinities for AU-rich and oligo(A) RNAs differing by only twofold. These data suggest that iPABP and PABP may in some situations interact with other RNA regions in addition to the poly(A) tail.
Collapse
Affiliation(s)
- Rosemary T Sladic
- Division of Human Immunology and Hanson Institute, Institute of Medical and Veterinary Science, Adelaide, Australia
| | | | | | | |
Collapse
|
48
|
Milone J, Wilusz J, Bellofatto V. Characterization of deadenylation in trypanosome extracts and its inhibition by poly(A)-binding protein Pab1p. RNA (NEW YORK, N.Y.) 2004; 10:448-57. [PMID: 14970390 PMCID: PMC1370940 DOI: 10.1261/rna.5180304] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The stability of mRNAs is an important point in the regulation of gene expression in eukaryotes. The mRNA turnover pathways have been identified in yeast and mammals. However, mRNA turnover pathways in trypanosomes have not been widely studied. Deadenylation is the first step in the major mRNA turnover pathways of yeast and mammals. To better understand mRNA degradation processes in these organisms, we have developed an in vitro mRNA turnover system that is functional for deadenylation. In this system, addition of poly(A) homopolymer activates the deadenylation of poly(A) tails. The trypanosomal deadenylase activity is a 3'-->5' exonuclease specific for adenylate residues, generates 5'-AMP as a product, is magnesium dependent, and is inhibited by neomycin B sulfate. These characteristics suggest similarity with other eukaryotic deadenylases. Furthermore, this activity is cap independent, indicating a potential difference between the trypanosomal activity and PARN, but suggesting similarity to Ccr4p/Pop2p activities. Extracts immunodepleted of Pab1p required the addition of poly(A) competition to activate deadenylation. Trypanosomal Pab1p functions as an inhibitor of the activity under in vitro conditions. Pab1p appears to be one of several mRNA stability proteins in trypanosomal extracts.
Collapse
Affiliation(s)
- Joseph Milone
- Department of Microbiology and Molecular Genetics, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, International Center for Public Health, Newark, New Jersey 07103, USA
| | | | | |
Collapse
|
49
|
Chekanova JA, Belostotsky DA. Evidence that poly(A) binding protein has an evolutionarily conserved function in facilitating mRNA biogenesis and export. RNA (NEW YORK, N.Y.) 2003; 9:1476-90. [PMID: 14624004 PMCID: PMC1370502 DOI: 10.1261/rna.5128903] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2003] [Accepted: 08/20/2003] [Indexed: 05/18/2023]
Abstract
Eukaryotic poly(A) binding protein (PABP) is a ubiquitous, essential cellular factor with well-characterized roles in translational initiation and mRNA turnover. In addition, there exists genetic and biochemical evidence that PABP has an important nuclear function. Expression of PABP from Arabidopsis thaliana, PAB3, rescues an otherwise lethal phenotype of the yeast pab1Delta mutant, but it neither restores the poly(A) dependent stimulation of translation, nor protects the mRNA 5' cap from premature removal. In contrast, the plant PABP partially corrects the temporal lag that occurs prior to the entry of mRNA into the decay pathway in the yeast strains lacking Pab1p. Here, we examine the nature of this lag-correction function. We show that PABP (both PAB3 and the endogenous yeast Pab1p) act on the target mRNA via physically binding to it, to effect the lag correction. Furthermore, substituting PAB3 for the yeast Pab1p caused synthetic lethality with rna15-2 and gle2-1, alleles of the genes that encode a component of the nuclear pre-mRNA cleavage factor I, and a factor associated with the nuclear pore complex, respectively. PAB3 was present physically in the nucleus in the complemented yeast strain and was able to partially restore the poly(A) tail length control during polyadenylation in vitro, in a poly(A) nuclease (PAN)-dependent manner. Importantly, PAB3 in yeast also promoted the rate of entry of mRNA into the translated pool, rescued the conditional lethality, and alleviated the mRNA export defect of the nab2-1 mutant when overexpressed. We propose that eukaryotic PABPs have an evolutionarily conserved function in facilitating mRNA biogenesis and export.
Collapse
Affiliation(s)
- Julia A Chekanova
- Department of Biological Sciences, State University of New York at Albany, Albany, New York 12222, USA.
| | | |
Collapse
|
50
|
Dominski Z, Yang XC, Kaygun H, Dadlez M, Marzluff WF. A 3' exonuclease that specifically interacts with the 3' end of histone mRNA. Mol Cell 2003; 12:295-305. [PMID: 14536070 DOI: 10.1016/s1097-2765(03)00278-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Metazoan histone mRNAs end in a highly conserved stem-loop structure followed by ACCCA. Previous studies have suggested that the stem-loop binding protein (SLBP) is the only protein binding this region. Using RNA affinity purification, we identified a second protein, designated 3'hExo, that contains a SAP and a 3' exonuclease domain and binds the same sequence. Strikingly, 3'hExo can bind the stem-loop region both separately and simultaneously with SLBP. Binding of 3'hExo requires the terminal ACCCA, whereas binding of SLBP requires the 5' side of the stem-loop region. Recombinant 3'hExo degrades RNA substrates in a 3'-5' direction and has the highest activity toward the wild-type histone mRNA. Binding of SLBP to the stem-loop at the 3' end of RNA prevents its degradation by 3'hExo. These features make 3'hExo a primary candidate for the exonuclease that initiates rapid decay of histone mRNA upon completion and/or inhibition of DNA replication.
Collapse
Affiliation(s)
- Zbigniew Dominski
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | | | | | |
Collapse
|