1
|
Trotman JB, Braceros KCA, Cherney RE, Murvin MM, Calabrese JM. The control of polycomb repressive complexes by long noncoding RNAs. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 12:e1657. [PMID: 33861025 PMCID: PMC8500928 DOI: 10.1002/wrna.1657] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/12/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023]
Abstract
The polycomb repressive complexes 1 and 2 (PRCs; PRC1 and PRC2) are conserved histone-modifying enzymes that often function cooperatively to repress gene expression. The PRCs are regulated by long noncoding RNAs (lncRNAs) in complex ways. On the one hand, specific lncRNAs cause the PRCs to engage with chromatin and repress gene expression over genomic regions that can span megabases. On the other hand, the PRCs bind RNA with seemingly little sequence specificity, and at least in the case of PRC2, direct RNA-binding has the effect of inhibiting the enzyme. Thus, some RNAs appear to promote PRC activity, while others may inhibit it. The reasons behind this apparent dichotomy are unclear. The most potent PRC-activating lncRNAs associate with chromatin and are predominantly unspliced or harbor unusually long exons. Emerging data imply that these lncRNAs promote PRC activity through internal RNA sequence elements that arise and disappear rapidly in evolutionary time. These sequence elements may function by interacting with common subsets of RNA-binding proteins that recruit or stabilize PRCs on chromatin. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Jackson B. Trotman
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Keean C. A. Braceros
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Curriculum in Mechanistic, Interdisciplinary Studies of Biological Systems, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rachel E. Cherney
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - McKenzie M. Murvin
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - J. Mauro Calabrese
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
2
|
Pandya P, Isakov N. PICOT promotes T lymphocyte proliferation by down-regulating cyclin D2 expression. World J Immunol 2020; 10:1-12. [DOI: 10.5411/wji.v10.i1.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 05/09/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
The mammalian protein kinase C-interacting cousin of thioredoxin (PICOT; also termed glutaredoxin 3) is a multi-domain monothiol glutaredoxin that is involved in a wide variety of signaling pathways and biological processes. PICOT is required for normal and transformed cell growth and is critical for embryonic development. Recent studies in T lymphocytes demonstrated that PICOT can translocate to the nucleus and interact with embryonic ectoderm development, a polycomb group protein and a core component of the polycomb repressive complex 2, which contributes to the maintenance of transcriptional repression and chromatin remodeling. Furthermore, PICOT was found to interact with chromatin-bound embryonic ectoderm development and alter the extent of histone 3 lysine 27 trimethylation at the promoter region of selected polycomb repressive complex 2 target genes. PICOT knockdown in Jurkat T cells led to increased histone 3 lysine 27 trimethylation at the promoter region of CCND2, a cell cycle-regulating gene which encodes the cyclin D2 protein. As a result, the expression levels of CCND2 mRNA and protein levels were reduced, concomitantly with inhibition of the cell growth rate. Analysis of multiple data sets from the Cancer Genome Atlas revealed that a high expression of PICOT correlated with a low expression of CCND2 in a large number of human cancers. In addition, this parameter correlated with poor patient survival, suggesting that the ratio between PICOT/CCND2 mRNA levels might serve as a predictor of patient survival in selected types of human cancer.
Collapse
Affiliation(s)
- Pinakin Pandya
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and the Cancer Research Center, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
- Department of Computational and System biology, UPMC Hillman Cancer Center, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15232, United States
| | - Noah Isakov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and the Cancer Research Center, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| |
Collapse
|
3
|
Li B, Hu P, Zhu LB, You LL, Cao HH, Wang J, Zhang SZ, Liu MH, Toufeeq S, Huang SJ, Xu JP. DNA Methylation Is Correlated with Gene Expression during Diapause Termination of Early Embryonic Development in the Silkworm ( Bombyx mori). Int J Mol Sci 2020; 21:E671. [PMID: 31968548 PMCID: PMC7013401 DOI: 10.3390/ijms21020671] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/16/2020] [Accepted: 01/16/2020] [Indexed: 12/13/2022] Open
Abstract
DNA modification is a naturally occurring DNA modification in prokaryotic and eukaryotic organisms and is involved in several biological processes. Although genome-wide methylation has been studied in many insects, the understanding of global and genomic DNA methylation during insect early embryonic development, is lacking especially for insect diapause. In this study, we analyzed the relationship between DNA methylomes and transcriptomes in diapause-destined eggs compared to diapause-terminated eggs in the silkworm, Bombyx mori (B. mori). The results revealed that methylation was sparse in this species, as previously reported. Moreover, methylation levels in diapause-terminated eggs (HCl-treated) were 0.05% higher than in non-treated eggs, mainly due to the contribution of CG methylation sites. Methylation tends to occur in the coding sequences and promoter regions, especially at transcription initiation sites and short interspersed elements. Additionally, 364 methylome- and transcriptome-associated genes were identified, which showed significant differences in methylation and expression levels in diapause-destined eggs when compared with diapause-terminated eggs, and 74% of methylome and transcriptome associated genes showed both hypermethylation and elevated expression. Most importantly, Kyoto Encyclopaedia of Genes and Genomes (KEGG) analyses showed that methylation may be positively associated with Bombyx mori embryonic development, by regulating cell differentiation, metabolism, apoptosis pathways and phosphorylation. Through analyzing the G2/M phase-specific E3 ubiquitin-protein ligase (G2E3), we speculate that methylation may affect embryo diapause by regulating the cell cycle in Bombyx mori. These findings will help unravel potential linkages between DNA methylation and gene expression during early insect embryonic development and insect diapause.
Collapse
Affiliation(s)
- Bing Li
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China; (B.L.); (P.H.); (L.-B.Z.); (L.-L.Y.); (H.-H.C.); (J.W.); (S.-Z.Z.); (S.T.)
- Institute of Sericulture, Anhui Academy of Agricultural Sciences, Hefei 230061, Anhui, China;
| | - Pei Hu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China; (B.L.); (P.H.); (L.-B.Z.); (L.-L.Y.); (H.-H.C.); (J.W.); (S.-Z.Z.); (S.T.)
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, Anhui, China
| | - Lin-Bao Zhu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China; (B.L.); (P.H.); (L.-B.Z.); (L.-L.Y.); (H.-H.C.); (J.W.); (S.-Z.Z.); (S.T.)
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, Anhui, China
| | - Ling-Ling You
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China; (B.L.); (P.H.); (L.-B.Z.); (L.-L.Y.); (H.-H.C.); (J.W.); (S.-Z.Z.); (S.T.)
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, Anhui, China
| | - Hui-Hua Cao
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China; (B.L.); (P.H.); (L.-B.Z.); (L.-L.Y.); (H.-H.C.); (J.W.); (S.-Z.Z.); (S.T.)
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, Anhui, China
| | - Jie Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China; (B.L.); (P.H.); (L.-B.Z.); (L.-L.Y.); (H.-H.C.); (J.W.); (S.-Z.Z.); (S.T.)
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, Anhui, China
| | - Shang-Zhi Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China; (B.L.); (P.H.); (L.-B.Z.); (L.-L.Y.); (H.-H.C.); (J.W.); (S.-Z.Z.); (S.T.)
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, Anhui, China
| | - Ming-Hui Liu
- Institute of Sericulture, Anhui Academy of Agricultural Sciences, Hefei 230061, Anhui, China;
| | - Shahzad Toufeeq
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China; (B.L.); (P.H.); (L.-B.Z.); (L.-L.Y.); (H.-H.C.); (J.W.); (S.-Z.Z.); (S.T.)
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, Anhui, China
| | - Shou-Jun Huang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China; (B.L.); (P.H.); (L.-B.Z.); (L.-L.Y.); (H.-H.C.); (J.W.); (S.-Z.Z.); (S.T.)
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, Anhui, China
| | - Jia-Ping Xu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China; (B.L.); (P.H.); (L.-B.Z.); (L.-L.Y.); (H.-H.C.); (J.W.); (S.-Z.Z.); (S.T.)
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, Anhui, China
| |
Collapse
|
4
|
Pandya P, Jethva M, Rubin E, Birnbaum RY, Braiman A, Isakov N. PICOT binding to chromatin-associated EED negatively regulates cyclin D2 expression by increasing H3K27me3 at the CCND2 gene promoter. Cell Death Dis 2019; 10:685. [PMID: 31527584 PMCID: PMC6746821 DOI: 10.1038/s41419-019-1935-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 08/08/2019] [Accepted: 08/27/2019] [Indexed: 12/14/2022]
Abstract
Protein kinase C (PKC)-interacting cousin of thioredoxin (PICOT; also termed glutaredoxin 3 (Grx3; Glrx3)) is a ubiquitous protein that can interact with the embryonic ectoderm development (EED) protein via each of its two C-terminal PICOT/Grx homology domains. Since EED is a Polycomb-Group protein and a core component of the polycomb repressive complex 2 (PRC2), we tested the involvement of PICOT in the regulation of PRC2-mediated H3 lysine 27 trimethylation (H3K27me3), transcription and translation of selected PRC2 target genes. A fraction of the cellular PICOT protein was found in the nuclei of leukemia cell lines, where it was associated with the chromatin. In addition, PICOT coimmunoprecipitated with chromatin-residing EED derived from Jurkat and COS-7 cell nuclei. PICOT knockdown led to a reduced H3K27me3 mark and a decrease in EED and EZH2 at the CCND2 gene promoter. In agreement, PICOT-deficient T cells exhibited a significant increase in CCND2 mRNA and protein expression. Since elevated expression levels of PICOT were reported in several different tumors and correlated in the current studies with decreased transcription and translation of the CCND2 gene, we tested whether this opposite correlation exists in human cancers. Data from the Cancer Genome Atlas (TCGA) database indicated statistically significant negative correlation between PICOT and CCND2 in eight different human tumors where the highest correlation was in lung (p = 8.67E−10) and pancreatic (p = 1.06E−5) adenocarcinoma. Furthermore, high expression of PICOT and low expression of CCND2 correlated with poor patient survival in five different types of human tumors. The results suggest that PICOT binding to chromatin-associated EED modulates the H3K27me3 level at the CCND2 gene promoter which may be one of the potential mechanisms for regulation of cyclin D2 expression in tumors. These findings also indicate that a low PICOT/CCND2 expression ratio might serve as a good predictor of patient survival in selected human cancers.
Collapse
Affiliation(s)
- Pinakin Pandya
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and the Cancer Research Center, Ben Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Minesh Jethva
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and the Cancer Research Center, Ben Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Eitan Rubin
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and the Cancer Research Center, Ben Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Ramon Y Birnbaum
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Alex Braiman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and the Cancer Research Center, Ben Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Noah Isakov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and the Cancer Research Center, Ben Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel.
| |
Collapse
|
5
|
Nazarov IB, Bakhmet EI, Tomilin AN. KH-Domain Poly(C)-Binding Proteins as Versatile Regulators of Multiple Biological Processes. BIOCHEMISTRY (MOSCOW) 2019; 84:205-219. [PMID: 31221059 DOI: 10.1134/s0006297919030039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Five known members of the family of KH-domain poly(C)-binding proteins (Pcbp1-4, hnRNP-K) have an unusually broad spectrum of cellular functions that include regulation of gene transcription, regulation of pre-mRNA processing, splicing, mRNA stability, translational silencing and enhancement, the control of iron turnover, and many others. Mechanistically, these proteins act via nucleic acid binding and protein-protein interactions. Through performing these multiple tasks, the KH-domain poly(C)-binding family members are involved in a wide variety of biological processes such as embryonic development, cell differentiation, and cancer. Deregulation of KH-domain protein expression is frequently associated with severe developmental defects and neoplasia. This review summarizes progress in studies of the KH-domain proteins made over past two decades. The review also reports our recent finding implying an involvement of the KH-factor Pcbp1 into control of transition from naïve to primed pluripotency cell state.
Collapse
Affiliation(s)
- I B Nazarov
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia.
| | - E I Bakhmet
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia
| | - A N Tomilin
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia
| |
Collapse
|
6
|
Bakhmet EI, Nazarov IB, Gazizova AR, Vorobyeva NE, Kuzmin AA, Gordeev MN, Sinenko SA, Aksenov ND, Artamonova TO, Khodorkovskii MA, Alenina N, Onichtchouk D, Wu G, Schöler HR, Tomilin AN. hnRNP-K Targets Open Chromatin in Mouse Embryonic Stem Cells in Concert with Multiple Regulators. Stem Cells 2019; 37:1018-1029. [PMID: 31021473 DOI: 10.1002/stem.3025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 04/12/2019] [Accepted: 04/13/2019] [Indexed: 01/02/2023]
Abstract
The transcription factor Oct4 plays a key regulatory role in the induction and maintenance of cellular pluripotency. In this article, we show that ubiquitous and multifunctional poly(C) DNA/RNA-binding protein hnRNP-K occupies Oct4 (Pou5f1) enhancers in embryonic stem cells (ESCs) but is dispensable for the initiation, maintenance, and downregulation of Oct4 gene expression. Nevertheless, hnRNP-K has an essential cell-autonomous function in ESCs to maintain their proliferation and viability. To better understand mechanisms of hnRNP-K action in ESCs, we have performed ChIP-seq analysis of genome-wide binding of hnRNP-K and identified several thousands of hnRNP-K target sites that are frequently co-occupied by pluripotency-related and common factors (Oct4, TATA-box binding protein, Sox2, Nanog, Otx2, etc.), as well as active histone marks. Furthermore, hnRNP-K localizes exclusively within open chromatin, implying its role in the onset and/or maintenance of this chromatin state. Stem Cells 2019;37:1018-1029.
Collapse
Affiliation(s)
- Evgeny I Bakhmet
- Laboratory of the Molecular Biology of Stem Cells, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Igor B Nazarov
- Laboratory of the Molecular Biology of Stem Cells, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Adel R Gazizova
- Laboratory of the Molecular Biology of Stem Cells, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Nadezhda E Vorobyeva
- Group of transcriptional complexes dynamics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Andrey A Kuzmin
- Laboratory of the Molecular Biology of Stem Cells, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Mikhail N Gordeev
- Laboratory of the Molecular Biology of Stem Cells, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Sergey A Sinenko
- Laboratory of the Molecular Biology of Stem Cells, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Nikolai D Aksenov
- Laboratory of the Molecular Biology of Stem Cells, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Tatyana O Artamonova
- Institute of Nanobiotechnologies, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Mikhail A Khodorkovskii
- Institute of Nanobiotechnologies, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Natalia Alenina
- Molecular Biology of Peptide Hormones, Max-Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | - Daria Onichtchouk
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Guangming Wu
- Department of Cell and Developmental Biology, Max-Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Hans R Schöler
- Department of Cell and Developmental Biology, Max-Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Alexey N Tomilin
- Laboratory of the Molecular Biology of Stem Cells, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia.,Laboratory of Cellular and Molecular Biology, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
7
|
Colognori D, Sunwoo H, Kriz AJ, Wang CY, Lee JT. Xist Deletional Analysis Reveals an Interdependency between Xist RNA and Polycomb Complexes for Spreading along the Inactive X. Mol Cell 2019; 74:101-117.e10. [PMID: 30827740 DOI: 10.1016/j.molcel.2019.01.015] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/21/2018] [Accepted: 01/10/2019] [Indexed: 12/16/2022]
Abstract
During X-inactivation, Xist RNA spreads along an entire chromosome to establish silencing. However, the mechanism and functional RNA elements involved in spreading remain undefined. By performing a comprehensive endogenous Xist deletion screen, we identify Repeat B as crucial for spreading Xist and maintaining Polycomb repressive complexes 1 and 2 (PRC1/PRC2) along the inactive X (Xi). Unexpectedly, spreading of these three factors is inextricably linked. Deleting Repeat B or its direct binding partner, HNRNPK, compromises recruitment of PRC1 and PRC2. In turn, ablating PRC1 or PRC2 impairs Xist spreading. Therefore, Xist and Polycomb complexes require each other to propagate along the Xi, suggesting a positive feedback mechanism between RNA initiator and protein effectors. Perturbing Xist/Polycomb spreading causes failure of de novo Xi silencing, with partial compensatory downregulation of the active X, and also disrupts topological Xi reconfiguration. Thus, Repeat B is a multifunctional element that integrates interdependent Xist/Polycomb spreading, silencing, and changes in chromosome architecture.
Collapse
Affiliation(s)
- David Colognori
- Howard Hughes Medical Institute; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Hongjae Sunwoo
- Howard Hughes Medical Institute; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Andrea J Kriz
- Howard Hughes Medical Institute; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Chen-Yu Wang
- Howard Hughes Medical Institute; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Jeannie T Lee
- Howard Hughes Medical Institute; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
8
|
The JAZF1-SUZ12 fusion protein disrupts PRC2 complexes and impairs chromatin repression during human endometrial stromal tumorogenesis. Oncotarget 2018; 8:4062-4078. [PMID: 27845897 PMCID: PMC5354813 DOI: 10.18632/oncotarget.13270] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 10/29/2016] [Indexed: 11/27/2022] Open
Abstract
The Polycomb repressive complex 2 (PRC2), which contains three core proteins EZH2, EED and SUZ12, controls chromatin compaction and transcription repression through trimethylation of lysine 27 on histone 3. The (7;17)(p15;q21) chromosomal translocation present in most cases of endometrial stromal sarcomas (ESSs) results in the in-frame fusion of the JAZF1 and SUZ12 genes. We have investigated whether and how the fusion protein JAZF1-SUZ12 functionally alters PRC2. We found that the fusion protein exists at high levels in ESS containing the t(7;17). Co-transient transfection assay indicated JAZF1-SUZ12 destabilized PRC2 components EZH2 and EED, resulting in decreased histone methyl transferase (HMT) activity, which was confirmed by in vitro studies using reconstituted PRC2 and nucleosome array substrates. We also demonstrated the PRC2 containing the fusion protein decreased the binding affinity to target chromatin loci. In addition, we found that trimethylation of H3K27 was decreased in ESS samples with the t(7;17), but there was no detectable change in H3K9 in these tissues. Moreover, re-expression of SUZ12 in Suz12 (−/−) ES cells rescued the neuronal differentiation while the fusion protein failed to restore this function and enhanced cell proliferation. In summary, our studies reveal that JAZF1-SUZ12 fusion protein disrupts the PRC2 complex, abolishes HMT activity and subsequently activates chromatin/genes normally repressed by PRC2. Such dyesfunction of PRC2 inhibits normal neural differentiation of ES cell and increases cell proliferation. Related changes induced by the JAZF-SUZ12 protein in endometrial stromal cells may explain the oncogenic effect of the t(7;17) in ESS.
Collapse
|
9
|
Gallardo M, Hornbaker MJ, Zhang X, Hu P, Bueso-Ramos C, Post SM. Aberrant hnRNP K expression: All roads lead to cancer. Cell Cycle 2017; 15:1552-7. [PMID: 27049467 DOI: 10.1080/15384101.2016.1164372] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The classification of a gene as an oncogene or a tumor suppressor has been a staple of cancer biology for decades. However, as we delve deeper into the biology of these genes, this simple classification has become increasingly difficult for some. In the case of heterogeneous nuclear ribonuclear protein K (hnRNP K), its role as a tumor suppressor has recently been described in acute myeloid leukemia and demonstrated in a haploinsufficient mouse model. In contrast, data from other clinical correlation studies suggest that hnRNP K may be more fittingly described as an oncogene, due to its increased levels in a variety of malignancies. hnRNP K is a multifunctional protein that can regulate both oncogenic and tumor suppressive pathways through a bevy of chromatin-, DNA-, RNA-, and protein-mediated activates, suggesting its aberrant expression may have broad-reaching cellular impacts. In this review, we highlight our current understanding of hnRNP K, with particular emphasis on its apparently dichotomous roles in tumorigenesis.
Collapse
Affiliation(s)
- Miguel Gallardo
- a Department of Leukemia , The University of Texas, MD Anderson Cancer Center , Houston , TX , USA
| | - Marisa J Hornbaker
- a Department of Leukemia , The University of Texas, MD Anderson Cancer Center , Houston , TX , USA.,b The University of Texas Graduate School of Biomedical Sciences at Houston , Houston , TX , USA
| | - Xiaorui Zhang
- a Department of Leukemia , The University of Texas, MD Anderson Cancer Center , Houston , TX , USA
| | - Peter Hu
- c School of Health Professions, The University of Texas, MD Anderson Cancer Center , Houston , TX , USA
| | - Carlos Bueso-Ramos
- d Department of Hematopathology , The University of Texas, MD Anderson Cancer Center , Houston , TX , USA
| | - Sean M Post
- a Department of Leukemia , The University of Texas, MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
10
|
Zhang P, Wang N, Lin X, Jin L, Xu H, Li R, Huang H. Expression and localization of heterogeneous nuclear ribonucleoprotein K in mouse ovaries and preimplantation embryos. Biochem Biophys Res Commun 2016; 471:260-5. [PMID: 26850853 DOI: 10.1016/j.bbrc.2016.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 02/01/2016] [Indexed: 01/08/2023]
Abstract
Heterogeneous nuclear ribonucleoprotein K (hnRNP K), an evolutionarily conserved protein, is involved in several important cellular processes that are relevant to cell proliferation, differentiation, apoptosis, and cancer development. However, details of hnRNP K expression during mammalian oogenesis and preimplantation embryo development are lacking. The present study investigates the expression and cellular localization of K protein in the mouse ovaries and preimplantation embryos using immunostaining. We demonstrate, for the first time, that hnRNP K is abundantly expressed in the nuclei of mouse oocytes in primordial, primary and secondary follicles. In germ vesicle (GV)-stage oocytes, hnRNP K accumulates in the germinal vesicle in a spot distribution manner. After germinal vesicle breakdown, speckled hnRNP K is diffusely distributed in the cytoplasm. However, after fertilization, the K protein relocates into the female and male pronucleus and persists in the blastomere nuclei. Localization of K protein in the human ovary and ovarian granulosa cell tumor (GCT) was also investigated. Overall, this study provides important morphological evidence to better understand the possible roles of hnRNP K in mammalian oogenesis and early embryo development.
Collapse
Affiliation(s)
- Ping Zhang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ningling Wang
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xianhua Lin
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Jin
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hong Xu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Rong Li
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hefeng Huang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
11
|
RNA binding proteins implicated in Xist-mediated chromosome silencing. Semin Cell Dev Biol 2016; 56:58-70. [PMID: 26816113 DOI: 10.1016/j.semcdb.2016.01.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 11/20/2022]
Abstract
Chromosome silencing by Xist RNA occurs in two steps; localisation in cis within the nuclear matrix to form a domain that corresponds to the territory of the inactive X chromosome elect, and transduction of silencing signals from Xist RNA to the underlying chromatin. Key factors that mediate these processes have been identified in a series of recent studies that harnessed comprehensive proteomic or genetic screening strategies. In this review we discuss these findings in light of prior knowledge both of Xist-mediated silencing and known functions/properties of the novel factors.
Collapse
|
12
|
Sperber H, Mathieu J, Wang Y, Ferreccio A, Hesson J, Xu Z, Fischer KA, Devi A, Detraux D, Gu H, Battle SL, Showalter M, Valensisi C, Bielas JH, Ericson NG, Margaretha L, Robitaille AM, Margineantu D, Fiehn O, Hockenbery D, Blau CA, Raftery D, Margolin A, Hawkins RD, Moon RT, Ware CB, Ruohola-Baker H. The metabolome regulates the epigenetic landscape during naive-to-primed human embryonic stem cell transition. Nat Cell Biol 2015; 17:1523-35. [PMID: 26571212 PMCID: PMC4662931 DOI: 10.1038/ncb3264] [Citation(s) in RCA: 303] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/01/2015] [Indexed: 02/07/2023]
Abstract
For nearly a century developmental biologists have recognized that cells from embryos can differ in their potential to differentiate into distinct cell types. Recently, it has been recognized that embryonic stem cells derived from both mice and humans exhibit two stable yet epigenetically distinct states of pluripotency: naive and primed. We now show that nicotinamide N-methyltransferase (NNMT) and the metabolic state regulate pluripotency in human embryonic stem cells (hESCs). Specifically, in naive hESCs, NNMT and its enzymatic product 1-methylnicotinamide are highly upregulated, and NNMT is required for low S-adenosyl methionine (SAM) levels and the H3K27me3 repressive state. NNMT consumes SAM in naive cells, making it unavailable for histone methylation that represses Wnt and activates the HIF pathway in primed hESCs. These data support the hypothesis that the metabolome regulates the epigenetic landscape of the earliest steps in human development.
Collapse
Affiliation(s)
- Henrik Sperber
- Department of Biochemistry, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, Seattle, WA
- Department of Chemistry, University of Washington, Seattle, WA
| | - Julie Mathieu
- Department of Biochemistry, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, Seattle, WA
| | - Yuliang Wang
- Sage Bionetworks, Seattle, WA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR
| | - Amy Ferreccio
- Department of Biochemistry, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, Seattle, WA
| | - Jennifer Hesson
- Institute for Stem Cell and Regenerative Medicine, Seattle, WA
| | - Zhuojin Xu
- Institute for Stem Cell and Regenerative Medicine, Seattle, WA
| | - Karin A. Fischer
- Department of Biochemistry, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, Seattle, WA
| | - Arikketh Devi
- Department of Biochemistry, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, Seattle, WA
- Department of Genetic Engineering, SRM University, Kattankulathur, India
| | - Damien Detraux
- Department of Biochemistry, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, Seattle, WA
| | - Haiwei Gu
- Institute for Stem Cell and Regenerative Medicine, Seattle, WA
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, CA
| | - Stephanie L. Battle
- Institute for Stem Cell and Regenerative Medicine, Seattle, WA
- Department of Medicine, Division of Medical Genetics and Department of Genome Sciences, University of Washington, CA
| | | | - Cristina Valensisi
- Institute for Stem Cell and Regenerative Medicine, Seattle, WA
- Department of Medicine, Division of Medical Genetics and Department of Genome Sciences, University of Washington, CA
| | - Jason H. Bielas
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | | | | | | | | | - Oliver Fiehn
- University of California Davis Genome Center, CA
| | | | - C. Anthony Blau
- Department of Biochemistry, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, Seattle, WA
| | - Daniel Raftery
- Institute for Stem Cell and Regenerative Medicine, Seattle, WA
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, CA
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Adam Margolin
- Sage Bionetworks, Seattle, WA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR
| | - R. David Hawkins
- Institute for Stem Cell and Regenerative Medicine, Seattle, WA
- Department of Medicine, Division of Medical Genetics and Department of Genome Sciences, University of Washington, CA
| | - Randall T. Moon
- Institute for Stem Cell and Regenerative Medicine, Seattle, WA
| | - Carol B. Ware
- Institute for Stem Cell and Regenerative Medicine, Seattle, WA
| | - Hannele Ruohola-Baker
- Department of Biochemistry, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, Seattle, WA
| |
Collapse
|
13
|
Saccani S, Trabucchi M. Regulation of stimulus-inducible gene expression in myeloid cells. Semin Immunol 2015; 27:33-43. [DOI: 10.1016/j.smim.2015.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 02/14/2015] [Accepted: 02/19/2015] [Indexed: 12/16/2022]
|
14
|
Thompson PJ, Dulberg V, Moon KM, Foster LJ, Chen C, Karimi MM, Lorincz MC. hnRNP K coordinates transcriptional silencing by SETDB1 in embryonic stem cells. PLoS Genet 2015; 11:e1004933. [PMID: 25611934 PMCID: PMC4303303 DOI: 10.1371/journal.pgen.1004933] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 12/02/2014] [Indexed: 01/23/2023] Open
Abstract
Retrotransposition of endogenous retroviruses (ERVs) poses a substantial threat to genome stability. Transcriptional silencing of a subset of these parasitic elements in early mouse embryonic and germ cell development is dependent upon the lysine methyltransferase SETDB1, which deposits H3K9 trimethylation (H3K9me3) and the co-repressor KAP1, which binds SETDB1 when SUMOylated. Here we identified the transcription co-factor hnRNP K as a novel binding partner of the SETDB1/KAP1 complex in mouse embryonic stem cells (mESCs) and show that hnRNP K is required for ERV silencing. RNAi-mediated knockdown of hnRNP K led to depletion of H3K9me3 at ERVs, concomitant with de-repression of proviral reporter constructs and specific ERV subfamilies, as well as a cohort of germline-specific genes directly targeted by SETDB1. While hnRNP K recruitment to ERVs is dependent upon KAP1, SETDB1 binding at these elements requires hnRNP K. Furthermore, an intact SUMO conjugation pathway is necessary for SETDB1 recruitment to proviral chromatin and depletion of hnRNP K resulted in reduced SUMOylation at ERVs. Taken together, these findings reveal a novel regulatory hierarchy governing SETDB1 recruitment and in turn, transcriptional silencing in mESCs. Retroelements, including endogenous retroviruses (ERVs), pose a significant threat to genome stability. In mouse embryonic stem (ES) cells, the enzyme SETDB1 safeguards the genome against transcription of specific ERVs by depositing a repressive mark H3K9 trimethylation (H3K9me3). Although SETDB1 is recruited to ERVs by its binding partner KAP1, the molecular basis of this silencing pathway is not clear. Using biochemical and genetic approaches, we identified hnRNP K as a novel component of this silencing pathway that facilitates the recruitment of SETDB1 to ERVs to promote their repression. HnRNP K binds to ERV sequences via KAP1 and subsequently promotes SETDB1 binding. Together, our results reveal a novel function for hnRNP K in transcriptional silencing of ERVs and demonstrate a new regulatory mechanism governing the deposition of H3K9me3 by SETDB1 in ES cells.
Collapse
Affiliation(s)
- Peter J. Thompson
- Life Sciences Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Vered Dulberg
- Life Sciences Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kyung-Mee Moon
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Leonard J. Foster
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Carol Chen
- Life Sciences Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mohammad M. Karimi
- Life Sciences Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Matthew C. Lorincz
- Life Sciences Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
15
|
Barboro P, Ferrari N, Balbi C. Emerging roles of heterogeneous nuclear ribonucleoprotein K (hnRNP K) in cancer progression. Cancer Lett 2014; 352:152-9. [DOI: 10.1016/j.canlet.2014.06.019] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/26/2014] [Accepted: 06/29/2014] [Indexed: 12/18/2022]
|
16
|
Hajjari M, Khoshnevisan A, Shin YK. Molecular function and regulation of long non-coding RNAs: paradigms with potential roles in cancer. Tumour Biol 2014; 35:10645-63. [PMID: 25266799 DOI: 10.1007/s13277-014-2636-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 09/12/2014] [Indexed: 01/06/2023] Open
Abstract
Different long non-coding RNAs (lncRNAs) are transcribed within the genome. Although initially argued to be spurious transcriptional noise, these RNAs play important roles in biological pathways, as shown by different studies. Also, there are some reports about the role of lncRNAs in different cancers. They can contribute to the development and progression of cancer by the functioning as oncogene or/and tumor suppressor molecules. In this review, we point to some important lncRNAs as examples which seem to be involved in cancer initiation/progression.
Collapse
|
17
|
Nikas JB, Boylan KLM, Skubitz APN, Low WC. Mathematical prognostic biomarker models for treatment response and survival in epithelial ovarian cancer. Cancer Inform 2011; 10:233-47. [PMID: 22084564 PMCID: PMC3201114 DOI: 10.4137/cin.s8104] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Following initial standard chemotherapy (platinum/taxol), more than 75% of those patients with advanced stage epithelial ovarian cancer (EOC) experience a recurrence. There are currently no accurate prognostic tests that, at the time of the diagnosis/surgery, can identify those patients with advanced stage EOC who will respond to chemotherapy. Using a novel mathematical theory, we have developed three prognostic biomarker models (complex mathematical functions) that—based on a global gene expression analysis of tumor tissue collected during surgery and prior to the commencement of chemotherapy—can identify with a high accuracy those patients with advanced stage EOC who will respond to the standard chemotherapy [long-term survivors (>7 yrs)] and those who will not do so [short-term survivors (<3 yrs)]. Our three prognostic biomarker models were developed with 34 subjects and validated with 20 unknown (new and different) subjects. Both the overall biomarker model sensitivity and specificity ranged from 95.83% to 100.00%. The 12 most significant genes identified, which are also the input variables to the three mathematical functions, constitute three distinct gene networks with the following functions: 1) production of cytoskeletal components, 2) cell proliferation, and 3) cell energy production. The first gene network is directly associated with the mechanism of action of anti-tubulin chemotherapeutic agents, such as taxanes and epothilones. This could have a significant impact in the discovery of new, more effective pharmacological treatments that may significantly extend the survival of patients with advanced stage EOC.
Collapse
|
18
|
Butenko Y, Ohad N. Polycomb-group mediated epigenetic mechanisms through plant evolution. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:395-406. [PMID: 21664995 DOI: 10.1016/j.bbagrm.2011.05.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 05/23/2011] [Accepted: 05/26/2011] [Indexed: 12/01/2022]
Abstract
Polycomb Group (PcG) proteins form an epigenetic "memory system", conserved in both plants and animals, controlling global gene expression during development via histone modifications. The role of PcG proteins in plants was primarily explored in Arabidopsis thaliana, where PcG regulation of developmental processes was demonstrated throughout the plant life cycle. Our knowledge about the PcG machinery in terrestrial plants other than Arabidopsis began to accumulate only in recent years. In this review we summarize recent emerging data on the evolution and diversification of PcG mechanisms in various phyla, from early-diverging plants, including members of the Chlorophyte algae, through bryophytes and flowering plants. We describe the compositions of the PcG gene families, their so-far studied expression profiles, and finally summarize commonalities vs. differences among PcG functions across the various species. This article is part of a Special Issue entitled: Epigenetic control of cellular and developmental processes in plants.
Collapse
Affiliation(s)
- Yana Butenko
- Department of Molecular Biology and Ecology of Plants, Tel-Aviv University, Israel
| | | |
Collapse
|
19
|
A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 2010; 142:409-19. [PMID: 20673990 DOI: 10.1016/j.cell.2010.06.040] [Citation(s) in RCA: 1677] [Impact Index Per Article: 111.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 04/06/2010] [Accepted: 06/03/2010] [Indexed: 12/15/2022]
Abstract
Recently, more than 1000 large intergenic noncoding RNAs (lincRNAs) have been reported. These RNAs are evolutionarily conserved in mammalian genomes and thus presumably function in diverse biological processes. Here, we report the identification of lincRNAs that are regulated by p53. One of these lincRNAs (lincRNA-p21) serves as a repressor in p53-dependent transcriptional responses. Inhibition of lincRNA-p21 affects the expression of hundreds of gene targets enriched for genes normally repressed by p53. The observed transcriptional repression by lincRNA-p21 is mediated through the physical association with hnRNP-K. This interaction is required for proper genomic localization of hnRNP-K at repressed genes and regulation of p53 mediates apoptosis. We propose a model whereby transcription factors activate lincRNAs that serve as key repressors by physically associating with repressive complexes and modulate their localization to sets of previously active genes.
Collapse
|
20
|
Abrass CK, Hansen K, Popov V, Denisenko O. Alterations in chromatin are associated with increases in collagen III expression in aging nephropathy. Am J Physiol Renal Physiol 2010; 300:F531-9. [PMID: 20610530 DOI: 10.1152/ajprenal.00237.2010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Aging nephropathy is a slowly progressive fibrotic process that affects all compartments of the kidney and eventually impairs kidney function; however, little is known about the mechanisms that contribute to this process. These studies examined the epigenetic control of expression of collagen III (Col3a1), a matrix protein that contributes to kidney fibrosis. Using real-time PCR, Western blotting, and chromatin immunoprecipitation assay of kidneys harvested from 4- and 24-mo-old ad libitum-fed F344 rats, we found increased transcription of Col3a1 that was associated with increased RNA polymerase II recruitment despite elevated posttranslational histone modification (H3K27me3) normally associated with gene silencing. A reduction in the density of another repressive modification (H3K9me3) at the Col3a1 locus in aged rats suggests that cooperation between Polycomb- and heterochromatin-mediated systems are required to maintain repression of the Col3a1 gene. These findings demonstrate alterations in epigenetic control of gene expression in association with the fibrosis of aging nephropathy.
Collapse
Affiliation(s)
- Christine K Abrass
- Primary and Specialty Care Medicine, Department of Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA.
| | | | | | | |
Collapse
|
21
|
Nair U, Cao Y, Xie Z, Klionsky DJ. Roles of the lipid-binding motifs of Atg18 and Atg21 in the cytoplasm to vacuole targeting pathway and autophagy. J Biol Chem 2010; 285:11476-88. [PMID: 20154084 DOI: 10.1074/jbc.m109.080374] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Atg18 and Atg21 are homologous WD-40 repeat proteins that bind phosphoinositides via a novel conserved Phe-Arg-Arg-Gly motif and function in autophagy-related pathways. Atg18 is required for the cytoplasm to vacuole targeting (Cvt) pathway and autophagy, whereas Atg21 is only required for the Cvt pathway. Currently, the functions of both proteins are poorly understood. Here, we examined the relationship between the phosphatidylinositol 3-phosphate (PtdIns(3)P)-binding abilities of Atg18 and Atg21 and autophagy by expressing variants of these proteins that have mutations in their phosphoinositide-binding motifs. Cells expressing PtdIns(3)P-binding mutants of both these proteins showed highly reduced autophagy. Furthermore, the localization of components of two related ubiquitin-like protein conjugation systems, Atg8 and Atg16, to the phagophore assembly site is affected. Consistent with the aberrant localization of the above Atg proteins, precursor Ape1, a cargo of the Cvt pathway and autophagy, is partially protease-sensitive in starvation conditions. This finding suggests a requirement for the PtdIns(3)P binding capability of Atg18 and Atg21 in efficient completion of the sequestering autophagic vesicles. Finally, using a multiple knock-out strain, we found that Atg18 and Atg21 facilitate the recruitment of Atg8-PE to the site of autophagosome formation and protect it from premature cleavage by Atg4, which represents a key aspect of post-translational autophagy regulation. Taken together, our results suggest that PtdIns(3)P binding by at least Atg18 or Atg21 is required for robust autophagic activity and that the PtdIns(3)P-binding motifs of Atg18 and Atg21 can compensate for one another in the recruitment of Atg components that are dependent on PtdIns(3)P for their phagophore assembly site association.
Collapse
Affiliation(s)
- Usha Nair
- Department of Molecular, Cellular, and Developmental Biology and the Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|
22
|
Mosquna A, Katz A, Decker EL, Rensing SA, Reski R, Ohad N. Regulation of stem cell maintenance by the Polycomb protein FIE has been conserved during land plant evolution. Development 2009; 136:2433-44. [PMID: 19542356 DOI: 10.1242/dev.035048] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Polycomb group (PcG) complex is involved in the epigenetic control of gene expression profiles. In flowering plants, PcG proteins regulate vegetative and reproductive programs. Epigenetically inherited states established in the gametophyte generation are maintained after fertilization in the sporophyte generation, having a profound influence on seed development. The gametophyte size and phase dominance were dramatically reduced during angiosperm evolution, and have specialized in flowering plants to support the reproductive process. The moss Physcomitrella patens is an ideal organism in which to study epigenetic processes during the gametophyte stage, as it possesses a dominant photosynthetic gametophytic haploid phase and efficient homologous recombination, allowing targeted gene replacement. We show that P. patens PcG protein FIE (PpFIE) accumulates in haploid meristematic cells and in cells that undergo fate transition during dedifferentiation programs in the gametophyte. In the absence of PpFIE, meristems overproliferate and are unable to develop leafy gametophytes or reach the reproductive phase. This aberrant phenotype might result from failure of the PcG complex to repress proliferation and differentiation of three-faced apical stem cells, which are designated to become lateral shoots. The PpFIE phenotype can be partially rescued by FIE of Arabidopsis thaliana, a flowering plant that diverged >450 million years ago from bryophytes. PpFIE can partially complement the A. thaliana fie mutant, illustrating functional conservation of the protein during evolution in regulating the differentiation of meristematic cells in gametophyte development, both in bryophytes and angiosperms. This mechanism was harnessed at the onset of the evolution of alternating generations, facilitating the establishment of sporophytic developmental programs.
Collapse
Affiliation(s)
- Assaf Mosquna
- Department of Plant Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | |
Collapse
|
23
|
Margueron R, Li G, Sarma K, Blais A, Zavadil J, Woodcock CL, Dynlacht BD, Reinberg D. Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms. Mol Cell 2009; 32:503-18. [PMID: 19026781 PMCID: PMC3641558 DOI: 10.1016/j.molcel.2008.11.004] [Citation(s) in RCA: 654] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 09/01/2008] [Accepted: 11/05/2008] [Indexed: 12/14/2022]
Abstract
Polycomb group proteins are critical to maintaining gene repression established during Drosophila development. Part of this group forms the PRC2 complex containing Ez that catalyzes di- and trimethylation of histone H3 lysine 27 (H3K37me2/3), marks repressive to transcription. We report that the mammalian homologs Ezh1 and Ezh2 form similar PRC2 complexes but exhibit contrasting repressive roles. While PRC2-Ezh2 catalyzes H3K27me2/3 and its knockdown affects global H3K27me2/3 levels, PRC2-Ezh1 performs this function weakly. In accordance, Ezh1 knockdown was ineffectual on global H3K27me2/3 levels. Instead, PRC2-Ezh1 directly and robustly represses transcription from chromatinized templates and compacts chromatin in the absence of the methyltransferase cofactor SAM, as evidenced by electron microscopy. Ezh1 targets a subset of Ezh2 genes, yet Ezh1 is more abundant in nonproliferative adult organs while Ezh2 expression is tightly associated with proliferation, as evidenced when analyzing aging mouse kidney. These results might reflect subfunctionalization of a PcG protein during evolution.
Collapse
Affiliation(s)
- Raphael Margueron
- Department of Biochemistry NYU-Medical School 522 First Av., New York, NY 10016, USA
| | - Guohong Li
- Howard Hughes Medical Institute NYU-Medical School 522 First Av., New York, NY 10016, USA
- Department of Biochemistry NYU-Medical School 522 First Av., New York, NY 10016, USA
| | - Kavitha Sarma
- Department of Biochemistry NYU-Medical School 522 First Av., New York, NY 10016, USA
| | - Alexandre Blais
- Department of Pathology and NYU Cancer Institute NYU-Medical School 522 First Av., New York, NY 10016, USA
| | - Jiri Zavadil
- Department of Pathology and NYU Cancer Institute NYU-Medical School 522 First Av., New York, NY 10016, USA
| | - Christopher L. Woodcock
- Department of Biology, Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Brian D. Dynlacht
- Department of Pathology and NYU Cancer Institute NYU-Medical School 522 First Av., New York, NY 10016, USA
| | - Danny Reinberg
- Howard Hughes Medical Institute NYU-Medical School 522 First Av., New York, NY 10016, USA
- Department of Biochemistry NYU-Medical School 522 First Av., New York, NY 10016, USA
- Corresponding author: Howard Hughes Medical Institute NYU School of Medicine-Smilow Research Center Biochemistry Department 522 First Avenue, 2nd Floor, Room 211 New York, New York 10016 () Tel: 212-263-9036 Fax: 212-263-9040
| |
Collapse
|
24
|
Wolf D, Witte V, Clark P, Blume K, Lichtenheld MG, Baur AS. HIV Nef Enhances Tat-Mediated Viral Transcription through a hnRNP-K-Nucleated Signaling Complex. Cell Host Microbe 2008; 4:398-408. [DOI: 10.1016/j.chom.2008.08.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 06/10/2008] [Accepted: 08/07/2008] [Indexed: 01/08/2023]
|
25
|
Rakotobe D, Violot S, Hong SS, Gouet P, Boulanger P. Mapping of immunogenic and protein-interacting regions at the surface of the seven-bladed beta-propeller domain of the HIV-1 cellular interactor EED. Virol J 2008; 5:32. [PMID: 18302803 PMCID: PMC2292171 DOI: 10.1186/1743-422x-5-32] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Accepted: 02/27/2008] [Indexed: 11/29/2022] Open
Abstract
Background The human EED protein, a member of the superfamily of Polycomb group proteins, is involved in multiple cellular protein complexes. Its C-terminal domain, which is common to the four EED isoforms, contains seven repeats of a canonical WD-40 motif. EED is an interactor of three HIV-1 proteins, matrix (MA), integrase (IN) and Nef. An antiviral activity has been found to be associated with isoforms EED3 and EED4 at the late stage of HIV-1 replication, due to a negative effect on virus assembly and genomic RNA packaging. The aim of the present study was to determine the regions of the EED C-terminal core domain which were accessible and available to protein interactions, using three-dimensional (3D) protein homology modelling with a WD-40 protein of known structure, and epitope mapping of anti-EED antibodies. Results Our data suggested that the C-terminal domain of EED was folded as a seven-bladed β-propeller protein. During the completion of our work, crystallographic data of EED became available from co-crystals of the EED C-terminal core with the N-terminal domain of its cellular partner EZH2. Our 3D-model was in good congruence with the refined structural model determined from crystallographic data, except for a unique α-helix in the fourth β-blade. More importantly, the position of flexible loops and accessible β-strands on the β-propeller was consistent with our mapping of immunogenic epitopes and sites of interaction with HIV-1 MA and IN. Certain immunoreactive regions were found to overlap with the EZH2, MA and IN binding sites, confirming their accessibility and reactivity at the surface of EED. Crystal structure of EED showed that the two discrete regions of interaction with MA and IN did not overlap with each other, nor with the EZH2 binding pocket, but were contiguous, and formed a continuous binding groove running along the lateral face of the β-propeller. Conclusion Identification of antibody-, MA-, IN- and EZH2-binding sites at the surface of the EED isoform 3 provided a global picture of the immunogenic and protein-protein interacting regions in the EED C-terminal domain, organized as a seven-bladed β-propeller protein. Mapping of the HIV-1 MA and IN binding sites on the 3D-model of EED core predicted that EED-bound MA and IN ligands would be in close vicinity at the surface of the β-propeller, and that the occurrence of a ternary complex MA-EED-IN would be possible.
Collapse
Affiliation(s)
- Dina Rakotobe
- Laboratoire de Virologie & Pathologie Humaine, Université Lyon I & CNRS FRE-3011, Faculté de Médecine Laennec, 7 rue Guillaume Paradin, 69372 Lyon Cedex 08, France.
| | | | | | | | | |
Collapse
|
26
|
Ezh2 requires PHF1 to efficiently catalyze H3 lysine 27 trimethylation in vivo. Mol Cell Biol 2008; 28:2718-31. [PMID: 18285464 DOI: 10.1128/mcb.02017-07] [Citation(s) in RCA: 215] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The mammalian Polycomblike protein PHF1 was previously shown to interact with the Polycomb group (PcG) protein Ezh2, a histone methyltransferase whose activity is pivotal in sustaining gene repression during development and in adulthood. As Ezh2 is active only when part of the Polycomb Repressive Complexes (PRC2-PRC4), we examined the functional role of its interaction with PHF1. Chromatin immunoprecipitation experiments revealed that PHF1 resides along with Ezh2 at Ezh2-regulated genes such as the HoxA loci and the non-Hox MYT1 and WNT1 genes. Knockdown of PHF1 or of Ezh2 led to up-regulated HoxA gene expression. Interestingly, depletion of PHF1 did correlate with reduced occupancy of Bmi-1, a PRC1 component. As expected, knockdown of Ezh2 led to reduced levels of its catalytic products H3K27me2/H3K27me3. However, reduced levels of PHF1 also led to decreased global levels of H3K27me3. Notably, the levels of H3K27me3 decreased while those of H3K27me2 increased at the up-regulated HoxA loci tested. Consistent with this, the addition of PHF1 specifically stimulated the ability of Ezh2 to catalyze H3K27me3 but not H3K27me1/H3K27me2 in vitro. We conclude that PHF1 modulates the activity of Ezh2 in favor of the repressive H3K27me3 mark. Thus, we propose that PHF1 is a determinant in PcG-mediated gene repression.
Collapse
|
27
|
Iwasaki T, Koretomo Y, Fukuda T, Paronetto MP, Sette C, Fukami Y, Sato KI. Expression, phosphorylation, and mRNA-binding of heterogeneous nuclear ribonucleoprotein K in Xenopus oocytes, eggs, and early embryos. Dev Growth Differ 2007; 50:23-40. [DOI: 10.1111/j.1440-169x.2007.00974.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Denisenko O, Bomsztyk K. Epistatic interaction between the K-homology domain protein HEK2 and SIR1 at HMR and telomeres in yeast. J Mol Biol 2007; 375:1178-87. [PMID: 18067921 DOI: 10.1016/j.jmb.2007.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 10/30/2007] [Accepted: 11/01/2007] [Indexed: 10/22/2022]
Abstract
In budding yeast, telomeres, the ribosomal DNA array, and HM loci are transcriptionally silenced by chromatin complexes containing Sir proteins. Hek2, a protein containing three evolutionary conserved RNA-binding K-homology domains, was identified as a suppressor of telomeric silencing [telomeric position effect (TPE)]. To explore the mechanisms of Hek2p action in gene silencing, we examined its relationship with Sir proteins. This search revealed an epistatic interaction between HEK2 and SIR1 at telomeres. Both single mutations, sir1Delta and hek2Delta, enhanced TPE, whereas the effect of double mutation, sir1Delta hek2Delta, did not exceed that of the single mutations. The results of chromatin immunoprecipitation analysis demonstrate that the TPE enhancement observed in these mutants is associated with increased binding of Sir2 protein to telomeres. At the HMR locus, hek2Delta rescues the silencing defect caused by sir1Delta mutation and reverses the loss of Sir2p and Sir3p. These data suggest that the epistatic interaction of HEK2 and SIR1 reflects competition between telomeres and HMR for Sir2/3 factors where HEK2 acts to suppress silencing. Because chromatin immunoprecipitation analysis reveals the presence of Hek2p at a subtelomeric region and HMR, its silencing effects at these loci are likely direct. These observations suggest that HEK2 regulates the composition of Sir complexes at HMR and telomeres.
Collapse
Affiliation(s)
- Oleg Denisenko
- Department of Medicine, Room 242, University of Washington, 815 Mercer Street, Seattle, WA 98109, USA.
| | | |
Collapse
|
29
|
Molecular and functional mapping of EED motifs required for PRC2-dependent histone methylation. J Mol Biol 2007; 374:1145-57. [PMID: 17997413 DOI: 10.1016/j.jmb.2007.10.040] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Revised: 10/15/2007] [Accepted: 10/16/2007] [Indexed: 01/07/2023]
Abstract
Polycomb group proteins represent a conserved family of developmental regulators that mediate heritable transcriptional silencing by modifying chromatin states. One Polycomb group complex, the PRC2 complex, is composed of several proteins, including the histone H3 lysine 27 (H3K27) methyltransferase enhancer of zeste homolog 2 and the WD-repeat protein embryonic ectoderm development (EED). Histone H3K27 can be monomethylated (H3K27me1), dimethylated (H3K27me2), or trimethylated (H3K27me3). However, it remains unclear what regulates the number of methyl groups added to H3K27 in a particular nucleosome. In mammalian cells, EED is present as four distinct isoforms, which are believed to be produced by utilizing four distinct, in-frame translation start sites in a common Eed mRNA. A mutation that disables all four EED isoforms produces defects in H3K27 methylation [Montgomery, N.D., Yee, D., Chen, A., Kalantry, S., Chamberlain, S.J., Otte, A.P. & Magnuson, T. (2005). The murine polycomb group protein Eed is required for global histone H3 lysine-27 methylation. Curr. Biol., 15, 942-947]. To assess the roles of individual EED isoforms in H3K27 methylation, we first characterized three of the four EED isoform start sites and then demonstrated that individual isoforms are not necessary for H3K27me1, H3K27me2, or H3K27me3. Instead, we show that the core WD-40 motifs and the histone-binding region of EED alone are sufficient for the generation of all three marks, demonstrating that EED isoforms do not control the number of methyl groups added to H3K27.
Collapse
|
30
|
Rakotobe D, Tardy JC, André P, Hong SS, Darlix JL, Boulanger P. Human Polycomb group EED protein negatively affects HIV-1 assembly and release. Retrovirology 2007; 4:37. [PMID: 17547741 PMCID: PMC1899515 DOI: 10.1186/1742-4690-4-37] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Accepted: 06/04/2007] [Indexed: 11/30/2022] Open
Abstract
Background The human EED protein, a member of the superfamily of Polycomb group (PcG) proteins with WD-40 repeats, has been found to interact with three HIV-1 components, namely the structural Gag matrix protein (MA), the integrase enzyme (IN) and the Nef protein. The aim of the present study was to analyze the possible biological role of EED in HIV-1 replication, using the HIV-1-based vector HIV-Luc and EED protein expressed by DNA transfection of 293T cells. Results During the early phase of HIV-1 infection, a slight negative effect on virus infectivity occurred in EED-expressing cells, which appeared to be dependent on EED-MA interaction. At late times post infection, EED caused an important reduction of virus production, from 20- to 25-fold as determined by CAp24 immunoassay, to 10- to 80-fold based on genomic RNA levels, and this decrease was not due to a reduction of Gag protein synthesis. Coexpression of WTNef, or the non-N-myristoylated mutant NefG2A, restored virus yields to levels obtained in the absence of exogenous EED protein. This effect was not observed with mutant NefΔ57 mimicking the Nef core, or with the lipid raft-retargeted fusion protein LAT-Nef. LATAA-Nef, a mutant defective in the lipid raft addressing function, had the same anti-EED effect as WTNef. Cell fractionation and confocal imaging showed that, in the absence of Nef, EED mainly localized in membrane domains different from the lipid rafts. Upon co-expression with WTNef, NefG2A or LATAA-Nef, but not with NefΔ57 or LAT-Nef, EED was found to relocate into an insoluble fraction along with Nef protein. Electron microscopy of HIV-Luc producer cells overexpressing EED showed significant less virus budding at the cell surface compared to control cells, and ectopic assembly and clustering of nuclear pore complexes within the cytoplasm. Conclusion Our data suggested that EED exerted an antiviral activity at the late stage of HIV-1 replication, which included genomic RNA packaging and virus assembly, resulting possibly from a mistrafficking of viral genomic RNA (gRNA) or gRNA/Gag complex. Nef reversed the EED negative effect on virus production, a function which required the integrity of the Nef N-terminal domain, but not its N-myristoyl group. The antagonistic effect of Nef correlated with a cellular redistribution of both EED and Nef.
Collapse
Affiliation(s)
- Dina Rakotobe
- Laboratoire de Virologie & Pathologie Humaine, Université Lyon I & CNRS FRE-3011, Faculté de Médecine Laennec, 7, rue Guillaume Paradin, 69372 Lyon Cedex 08, France
| | - Jean-Claude Tardy
- Laboratoire de Virologie & Pathologie Humaine, Université Lyon I & CNRS FRE-3011, Faculté de Médecine Laennec, 7, rue Guillaume Paradin, 69372 Lyon Cedex 08, France
- Laboratoire de Virologie Médicale-Nord, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, 103, Grand'Rue de la Croix-Rousse, 69317 Lyon Cedex 04, France
| | - Patrice André
- Laboratoire de Virologie Médicale-Nord, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, 103, Grand'Rue de la Croix-Rousse, 69317 Lyon Cedex 04, France
| | - Saw See Hong
- Laboratoire de Virologie & Pathologie Humaine, Université Lyon I & CNRS FRE-3011, Faculté de Médecine Laennec, 7, rue Guillaume Paradin, 69372 Lyon Cedex 08, France
| | - Jean-Luc Darlix
- LaboRétro, Unité de Virologie Humaine, INSERM U-758 & IFR128 BioSciences Lyon-Gerland, Ecole Normale Supérieure, 46, allée d'Italie, 69364 Lyon Cedex 07, France
| | - Pierre Boulanger
- Laboratoire de Virologie & Pathologie Humaine, Université Lyon I & CNRS FRE-3011, Faculté de Médecine Laennec, 7, rue Guillaume Paradin, 69372 Lyon Cedex 08, France
- Laboratoire de Virologie Médicale, Hospices Civils de Lyon, CBPE, 59, Boulevard Pinel, 69677 Bron Cedex, France
| |
Collapse
|
31
|
Kim SY, Paylor SW, Magnuson T, Schumacher A. Juxtaposed Polycomb complexes co-regulate vertebral identity. Development 2006; 133:4957-68. [PMID: 17107999 DOI: 10.1242/dev.02677] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Best known as epigenetic repressors of developmental Hox gene transcription, Polycomb complexes alter chromatin structure by means of post-translational modification of histone tails. Depending on the cellular context, Polycomb complexes of diverse composition and function exhibit cooperative interaction or hierarchical interdependency at target loci. The present study interrogated the genetic, biochemical and molecular interaction of BMI1 and EED, pivotal constituents of heterologous Polycomb complexes, in the regulation of vertebral identity during mouse development. Despite a significant overlap in dosage-sensitive homeotic phenotypes and co-repression of a similar set of Hox genes, genetic analysis implicated eed and Bmi1 in parallel pathways, which converge at the level of Hox gene regulation. Whereas EED and BMI1 formed separate biochemical entities with EzH2 and Ring1B, respectively, in mid-gestation embryos, YY1 engaged in both Polycomb complexes. Strikingly, methylated lysine 27 of histone H3 (H3-K27), a mediator of Polycomb complex recruitment to target genes, stably associated with the EED complex during the maintenance phase of Hox gene repression. Juxtaposed EED and BMI1 complexes, along with YY1 and methylated H3-K27, were detected in upstream regulatory regions of Hoxc8 and Hoxa5. The combined data suggest a model wherein epigenetic and genetic elements cooperatively recruit and retain juxtaposed Polycomb complexes in mammalian Hox gene clusters toward co-regulation of vertebral identity.
Collapse
Affiliation(s)
- Se Young Kim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
32
|
Montaville P, Dai Y, Cheung CY, Giller K, Becker S, Michalak M, Webb SE, Miller AL, Krebs J. Nuclear translocation of the calcium-binding protein ALG-2 induced by the RNA-binding protein RBM22. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1335-43. [PMID: 17045351 DOI: 10.1016/j.bbamcr.2006.09.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 08/31/2006] [Accepted: 09/01/2006] [Indexed: 11/15/2022]
Abstract
By yeast two-hybrid screening using the calcium-binding protein ALG-2 as bait a new target of ALG-2 was identified, the RNA-binding protein RBM22. In order to confirm these interactions in vivo we prepared fluorescent constructs by using the monomeric red fluorescent protein to label ALG-2 and the enhanced green fluorescent protein to label RBM22. Confocal microscopy of NIH 3T3 cells transfected with either ALG-2 or RBM22 expression constructs encoding fluorescent fusion proteins alone revealed that the majority of ALG-2 was localized in the cytoplasm whereas RBM22 was located in the nucleus. When cells were co-transfected with expression vectors encoding both fusion proteins ALG-2 was found in the nucleus indicating that RBM22 which can shuttle between the cytoplasm and the nucleus may play a role in nuclear translocation of ALG-2. Using zebrafish as a model mRNA homologues of ALG-2 and RBM22 were microinjected into the blastodisc-yolk margin of zebrafish embryos at the 1-cell stage followed by monitoring the fusion proteins during development of the zebrafish. Hereby, we observed that ALG-2 alone evenly distributed within the cell, whereas in the presence of RBM22 the two proteins co-localized within the nucleus. More than 95% of the two proteins co-localized within the same area in the nucleus suggesting a functional interaction between the Ca(2+)-signaling protein ALG-2 and the RNA-binding protein RBM22.
Collapse
Affiliation(s)
- P Montaville
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Blanchette AR, Fuentes Medel YF, Gardner PD. Cell-type-specific and developmental regulation of heterogeneous nuclear ribonucleoprotein K mRNA in the rat nervous system. Gene Expr Patterns 2006; 6:596-606. [PMID: 16488668 DOI: 10.1016/j.modgep.2005.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Revised: 11/08/2005] [Accepted: 11/29/2005] [Indexed: 11/24/2022]
Abstract
Heterogeneous nuclear ribonucleoprotein K (hnRNP K) was originally identified as being part of the hnRNP particle. hnRNP K has subsequently been shown to be involved in a number of fundamental biological processes such as RNA transport and processing as well as transcription and translation. In addition, hnRNP K is an integral player in a variety of intracellular signal transduction pathways. Not surprisingly given this broad array of cellular functions, hnRNP K is a highly interactive protein binding directly to both single- and double-stranded nucleic acids as well as numerous signaling proteins. Interestingly, earlier studies demonstrated that hnRNP K protein is not ubiquitously expressed and does not exist in a fixed stoichiometry with other hnRNP proteins. We have extended this earlier work and report here the spatially- and developmentally-regulated expression of hnRNP K mRNA during development of the rat nervous system. In the central nervous system, hnRNP K mRNA expression gradually decreases during development until it is restricted to a very limited number of structures including most notably the hippocampus and the retina. Immunohistochemical data indicate that hnRNP K protein expression closely parallels hnRNP K mRNA expression. In contrast to the central nervous system, hnRNP K in the peripheral nervous system remains high throughout embryonic development with dramatic expression in several peripheral ganglia.
Collapse
Affiliation(s)
- Adam R Blanchette
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX 78245, USA
| | | | | |
Collapse
|
34
|
Mikula M, Dzwonek A, Karczmarski J, Rubel T, Dadlez M, Wyrwicz LS, Bomsztyk K, Ostrowski J. Landscape of the hnRNP K protein-protein interactome. Proteomics 2006; 6:2395-406. [PMID: 16518874 DOI: 10.1002/pmic.200500632] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The heterogeneous nuclear ribonucleoprotein K is an ancient RNA/DNA-binding protein that is involved in multiple processes that compose gene expression. The pleiotropic action of K protein reflects its ability to interact with different classes of factors, interactions that are regulated by extracellular signals. We used affinity purification and MS to better define the repertoire of K protein partners. We identified a large number of new K protein partners, some typically found in subcellular compartments, such as plasma membrane, where K protein has not previously been seen. Electron microscopy showed K protein in the nucleus, cytoplasm, mitochondria, and in vicinity of plasma membrane. These observations greatly expanded the view of the landscape of K protein-protein interaction and provide new opportunities to explore signal transduction and gene expression in several subcellular compartments.
Collapse
Affiliation(s)
- Michał Mikula
- Department of Gastroenterology, Medical Center for Postgraduate Education and Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Yoo Y, Wu X, Egile C, Li R, Guan JL. Interaction of N-WASP with hnRNPK and its role in filopodia formation and cell spreading. J Biol Chem 2006; 281:15352-60. [PMID: 16574661 DOI: 10.1074/jbc.m511825200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
N-WASP is a member of the WASP family of proteins, which play essential roles in actin dynamics during cell adhesion and migration. hnRNPK is a member of the heterogeneous nuclear ribonucleoprotein complex, which has also been implicated in the regulation of cell spreading. Here, we identify a direct interaction between N-WASP and hnRNPK. We show that this interaction is mediated by the N-terminal WH1 domain of N-WASP and the segment of hnRNPK containing its K interaction (KI) domain. Furthermore, these two proteins are co-localized at the cell periphery in the spreading initiation center during the early stage of cell spreading. We found that co-expression of hnRNPK with N-WASP reverses the stimulation of cell spreading by N-WASP, and this effect is correlated with hnRNPK binding to N-WASP. Expression of hnRNPK does not affect subcellular localization of N-WASP protein. However, co-expression of hnRNPK with N-WASP reduced filopodia formation stimulated by N-WASP in spreading cells. Together, these results identify hnRNPK as a new negative regulator of N-WASP and suggest that hnRNPK may regulate the initial stage of cell spreading by direct association with N-WASP in the spreading initiation center.
Collapse
Affiliation(s)
- Youngdong Yoo
- Department of Molecular Medicine, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | |
Collapse
|
36
|
Montgomery ND, Yee D, Chen A, Kalantry S, Chamberlain SJ, Otte AP, Magnuson T. The murine polycomb group protein Eed is required for global histone H3 lysine-27 methylation. Curr Biol 2005; 15:942-7. [PMID: 15916951 DOI: 10.1016/j.cub.2005.04.051] [Citation(s) in RCA: 276] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2004] [Revised: 04/13/2005] [Accepted: 04/18/2005] [Indexed: 12/14/2022]
Abstract
PcG proteins mediate heritable transcriptional silencing by generating and recognizing covalent histone modifications. One conserved PcG complex, PRC2, is composed of several proteins including the histone methyltransferase (HMTase) Ezh2, the WD-repeat protein Eed, and the Zn-finger protein Suz12. Ezh2 methylates histone H3 on lysine 27 (H3K27), which serves as an epigenetic mark mediating silencing. H3K27 can be mono-, di-, or trimethylated (1mH3K27, 2mH3K27, and 3mH3K27, respectively). Hence, either PRC2 must be regulated so as to add one methyl group to certain nucleosomes but two or three to others, or distinct complexes must be responsible for 1m-, 2m-, and 3mH3K27. Consistent with the latter possibility, 2mH3K27 and 3mH3K27, but not 1mH3K27, are absent in Suz12-/- embryos, which lack both Suz12 and Ezh2 protein. Mammalian proteins required for 1mH3K27 have not been identified. Here, we demonstrate that unlike Suz12 and Ezh2, Eed is required not only for 2m- and 3mH3K27 but also global 1mH3K27. These results provide a functionally important distinction between PRC2 complex components and implicate Eed in PRC2-independent histone methylation.
Collapse
Affiliation(s)
- Nathan D Montgomery
- Department of Genetics, University of North Carolina at Chapel Hill, Call Box #7264, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Carpenter AE, Memedula S, Plutz MJ, Belmont AS. Common effects of acidic activators on large-scale chromatin structure and transcription. Mol Cell Biol 2005; 25:958-68. [PMID: 15657424 PMCID: PMC544008 DOI: 10.1128/mcb.25.3.958-968.2005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Large-scale chromatin decondensation has been observed after the targeting of certain acidic activators to heterochromatic chromatin domains. Acidic activators are often modular, with two or more separable transcriptional activation domains. Whether these smaller regions are sufficient for all functions of the activators has not been demonstrated. We adapted an inducible heterodimerization system to allow systematic dissection of the function of acidic activators, individual subdomains within these activators, and short acidic-hydrophobic peptide motifs within these subdomains. Here, we demonstrate that large-scale chromatin decondensation activity is a general property of acidic activators. Moreover, this activity maps to the same acidic activator subdomains and acidic-hydrophobic peptide motifs that are responsible for transcriptional activation. Two copies of a mutant peptide motif of VP16 (viral protein 16) possess large-scale chromatin decondensation activity but minimal transcriptional activity, and a synthetic acidic-hydrophobic peptide motif had large-scale chromatin decondensation activity comparable to the strongest full-length acidic activator but no transcriptional activity. Therefore, the general property of large-scale chromatin decondensation shared by most acidic activators is not simply a direct result of transcription per se but is most likely the result of the concerted action of coactivator proteins recruited by the activators' short acidic-hydrophobic peptide motifs.
Collapse
Affiliation(s)
- Anne E Carpenter
- Department of Cell and Structural Biology, B107 CLSL, 601 S. Goodwin Avenue, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
38
|
Klimek-Tomczak K, Wyrwicz LS, Jain S, Bomsztyk K, Ostrowski J. Characterization of hnRNP K protein-RNA interactions. J Mol Biol 2004; 342:1131-41. [PMID: 15351640 DOI: 10.1016/j.jmb.2004.07.099] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2004] [Revised: 07/23/2004] [Accepted: 07/29/2004] [Indexed: 11/16/2022]
Abstract
The heterogeneous nuclear ribonucleoprotein K protein is an RNA-binding protein found in several subcellular compartments where it is thought to be involved in signaling multiple processes that compose gene expression. K protein contains three K homology (KH) domains that mediate RNA-binding. We used a serial analysis of gene expression (SAGE)-based strategy, yeast three-hybrid screen, RNA pull-down assays and computational analysis to characterize K protein-associated RNAs. We demonstrate that K protein interacts with many sense and antisense nuclear and mitochondrial transcripts through both direct and indirect binding. The highly specific direct binding of transcripts to K protein is mediated by a consensus sequence comprising three C-rich patches. Structural analysis suggests a three-prong interaction model whereby each of the three KH domains binds one of the C-rich patches. Genome-wide and yeast three-hybrid clone analysis revealed that these sequences are located preferentially in the 3' untranslated regions, which are known to regulate mRNA translation and processing.
Collapse
Affiliation(s)
- Karolina Klimek-Tomczak
- Department of Gastroenterology, Medical Center for Postgraduate Education at Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, 02-781 Warsaw, Poland
| | | | | | | | | |
Collapse
|
39
|
Kuzmichev A, Jenuwein T, Tempst P, Reinberg D. Different EZH2-containing complexes target methylation of histone H1 or nucleosomal histone H3. Mol Cell 2004; 14:183-93. [PMID: 15099518 DOI: 10.1016/s1097-2765(04)00185-6] [Citation(s) in RCA: 357] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2004] [Revised: 02/26/2004] [Accepted: 03/01/2004] [Indexed: 12/14/2022]
Abstract
Human Enhancer of Zeste homolog (Ezh2) is a histone lysine methyltransferase (HKMT) associated with transcriptional repression. Ezh2 is present in several distinct complexes, one of which, PRC2, we characterized previously. Here we report an additional Ezh2 complex, PRC3. We show that the Ezh2 complexes exhibit differential targeting of specific histones for lysine methylation dependent upon the context of the histone substrates. This differential targeting is a function of the associated Eed protein within each complex. We found that Eed protein is present in four isoforms, which represent alternate translation start site usage from the same mRNA. These Eed isoforms selectively associate with distinct Ezh2-containing complexes with resultant differential targeting of their associated HKMT activity toward histone H3-K27 or histone H1-K26. Our data provide evidence for a novel mechanism regulating the substrate specificity of a chromatin-modifying enzyme through disparate translational products of a regulatory subunit.
Collapse
Affiliation(s)
- Andrei Kuzmichev
- Robert Wood Johnson Medical School, Howard Hughes Medical Institute and Department of Biochemistry, University of Medicine and Dentistry of New Jersey, Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|
40
|
Nisole S, Saïb A. Early steps of retrovirus replicative cycle. Retrovirology 2004; 1:9. [PMID: 15169567 PMCID: PMC421752 DOI: 10.1186/1742-4690-1-9] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2004] [Accepted: 05/14/2004] [Indexed: 12/28/2022] Open
Abstract
During the last two decades, the profusion of HIV research due to the urge to identify new therapeutic targets has led to a wealth of information on the retroviral replication cycle. However, while the late stages of the retrovirus life cycle, consisting of virus replication and egress, have been partly unraveled, the early steps remain largely enigmatic. These early steps consist of a long and perilous journey from the cell surface to the nucleus where the proviral DNA integrates into the host genome. Retroviral particles must bind specifically to their target cells, cross the plasma membrane, reverse-transcribe their RNA genome, while uncoating the cores, find their way to the nuclear membrane and penetrate into the nucleus to finally dock and integrate into the cellular genome. Along this journey, retroviruses hijack the cellular machinery, while at the same time counteracting cellular defenses. Elucidating these mechanisms and identifying which cellular factors are exploited by the retroviruses and which hinder their life cycle, will certainly lead to the discovery of new ways to inhibit viral replication and to improve retroviral vectors for gene transfer. Finally, as proven by many examples in the past, progresses in retrovirology will undoubtedly also provide some priceless insights into cell biology.
Collapse
Affiliation(s)
- Sébastien Nisole
- Division of Virology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | - Ali Saïb
- CNRS UPR9051, Hôpital Saint-Louis, 1 Avenue Claude Vellefaux, 75475 Paris cedex 10, France
| |
Collapse
|
41
|
Abstract
Since its original identification as a component of the heterogeneous nuclear ribonucleoprotein (hnRNP) complex, K protein has been found not only in the nucleus but also in the cytoplasm and mitochondria and is implicated in chromatin remodeling, transcription, splicing and translation processes. K protein contains multiple modules that, on one hand, bind kinases while, on the other hand, recruit chromatin, transcription, splicing and translation factors. Moreover, the K- protein-mediated interactions are regulated by signaling cascades. These observations are consistent with K protein acting as a docking platform to integrate signaling cascades by facilitating cross-talk between kinases and factors that mediate nucleic-acid-directed processes. Comparison of K across species reveals that it is an essential factor in metazoans, but not in yeast. Although some of the K protein interactions and functions are conserved in eukaryotes from yeast to man, the mammalian protein seems to play a wider role. The greater diversity of mammalian K protein interactions and function may reflect gain of novel docking sites and expansion evolutionary of gene expression networks.
Collapse
Affiliation(s)
- Karol Bomsztyk
- Department of Medicine, University of Washington, Seattle, WA 98195, USA.
| | | | | |
Collapse
|
42
|
Witte V, Laffert B, Rosorius O, Lischka P, Blume K, Galler G, Stilper A, Willbold D, D'Aloja P, Sixt M, Kolanus J, Ott M, Kolanus W, Schuler G, Baur AS. HIV-1 Nef Mimics an Integrin Receptor Signal that Recruits the Polycomb Group Protein Eed to the Plasma Membrane. Mol Cell 2004; 13:179-90. [PMID: 14759364 DOI: 10.1016/s1097-2765(04)00004-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2003] [Revised: 11/20/2003] [Accepted: 12/01/2003] [Indexed: 11/17/2022]
Abstract
The Nef protein of human and simian immunodeficiency virus (HIV/SIV) is believed to interfere with T cell activation signals by forming a signaling complex at the plasma membrane. Composition and function of the complex are not fully understood. Here we report that Nef recruits the Polycomb Group (PcG) protein Eed, so far known as a nuclear factor and repressor of transcription, to the membrane of cells. The Nef-induced translocation of Eed led to a potent stimulation of Tat-dependent HIV transcription, implying that Eed removal from the nucleus is required for optimal Tat function. Similar to Nef action, activation of integrin receptors recruited Eed to the plasma membrane, also leading to enhanced Tat/Nef-mediated transcription. Our results suggest a link between membrane-associated activation processes and transcriptional derepression and demonstrate how HIV exploits this mechanism.
Collapse
Affiliation(s)
- Vanessa Witte
- Department of Dermatology, University of Erlangen/Nürnberg, 91052 Erlangen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Violot S, Hong SS, Rakotobe D, Petit C, Gay B, Moreau K, Billaud G, Priet S, Sire J, Schwartz O, Mouscadet JF, Boulanger P. The human polycomb group EED protein interacts with the integrase of human immunodeficiency virus type 1. J Virol 2003; 77:12507-22. [PMID: 14610174 PMCID: PMC262565 DOI: 10.1128/jvi.77.23.12507-12522.2003] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2003] [Accepted: 08/23/2003] [Indexed: 11/20/2022] Open
Abstract
Human EED, a member of the superfamily of WD-40 repeat proteins and of the Polycomb group proteins, has been identified as a cellular partner of the human immunodeficiency virus type 1 (HIV-1) matrix (MA) protein (R. Peytavi et al., J. Biol. Chem. 274:1635-1645, 1999). In the present study, EED was found to interact with HIV-1 integrase (IN) both in vitro and in vivo in yeast. In vitro, data from mutagenesis studies, pull-down assays, and phage biopanning suggested that EED-binding site(s) are located in the C-terminal domain of IN, between residues 212 and 264. In EED, two putative discrete IN-binding sites were mapped to its N-terminal moiety, at a distance from the MA-binding site, but EED-IN interaction also required the integrity of the EED last two WD repeats. EED showed an apparent positive effect on IN-mediated DNA integration reaction in vitro, in a dose-dependent manner. In situ analysis by immunoelectron microscopy (IEM) of cellular distribution of IN and EED in HIV-1-infected cells (HeLa CD4(+) cells or MT4 lymphoid cells) showed that IN and EED colocalized in the nucleus and near nuclear pores, with maximum colocalization events occurring at 6 h postinfection (p.i.). Triple colocalizations of IN, EED, and MA were also observed in the nucleoplasm of infected cells at 6 h p.i., suggesting the ocurrence of multiprotein complexes involving these three proteins at early steps of the HIV-1 virus life cycle. Such IEM patterns were not observed with a noninfectious, envelope deletion mutant of HIV-1.
Collapse
Affiliation(s)
- Sébastien Violot
- Laboratoire de Virologie and Pathogénèse Virale, Faculté de Médecine RTH Laennec, CNRS UMR-5537, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kim DW, Lassar AB. Smad-dependent recruitment of a histone deacetylase/Sin3A complex modulates the bone morphogenetic protein-dependent transcriptional repressor activity of Nkx3.2. Mol Cell Biol 2003; 23:8704-17. [PMID: 14612411 PMCID: PMC262671 DOI: 10.1128/mcb.23.23.8704-8717.2003] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2003] [Revised: 07/17/2003] [Accepted: 08/15/2003] [Indexed: 12/25/2022] Open
Abstract
We have previously shown that Nkx3.2, a transcriptional repressor that is expressed in the sclerotome and developing cartilage, can activate the chondrocyte differentiation program in somitic mesoderm in a bone morphogenetic protein (BMP)-dependent manner. In this work, we elucidate how BMP signaling modulates the transcriptional repressor activity of Nkx3.2. We have found that Nkx3.2 forms a complex, in vivo, with histone deacetylase 1 (HDAC1) and Smad1 and -4 in a BMP-dependent manner. The homeodomain and NK domain of Nkx3.2 support the interaction of this transcription factor with HDAC1 and Smad1, respectively, and both of these domains are required for the transcriptional repressor activity of Nkx3.2. Furthermore, the recruitment of an HDAC/Sin3A complex to Nkx3.2 requires that Nkx3.2 interact with Smad1 and -4. Indeed, Nkx3.2 both fails to associate with the HDAC/Sin3A complex and represses target gene transcription in a cell line lacking Smad4, but it performs these functions if exogenous Smad4 is added to these cells. While prior work has indicated that BMP-dependent Smads can support transcriptional activation, our findings indicate that BMP-dependent Smads can also potentiate transcriptional repression, depending upon the identity of the Smad-interacting transcription factor.
Collapse
Affiliation(s)
- Dae-Won Kim
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
45
|
Ostrowski J, Bomsztyk K. Nuclear shift of hnRNP K protein in neoplasms and other states of enhanced cell proliferation. Br J Cancer 2003; 89:1493-501. [PMID: 14562022 PMCID: PMC2394341 DOI: 10.1038/sj.bjc.6601250] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The heterogeneous nuclear ribonucleoprotein K (hnRNP K), is a ubiquitously expressed protein that interacts with signal transducers, proteins that modulate gene expression and selective RNA and DNA motifs. K protein is modified in response to extracellular signals and directly regulates rates of transcription and translation. We used serum-treated hepatocyte culture, liver after partial hepatectomy and hepatic neoplasms as systems to compare expression, subcellular distribution and tyrosine phosphorylation of K protein in quiescent and dividing cells. The results show that expression of K protein mRNA was increased in states of enhanced proliferation. Levels of nuclear K protein were also higher in proliferating compared to resting cells. In contrast, levels of cytoplasmic K protein were the same or lower in dividing compared to quiescent cells. States of enhanced proliferation were also associated with increased levels of K protein tyrosine phosphorylation. Nuclear shift of K protein in dividing cells may reflect involvement of K protein in signalling multiple events that regulate expression of genes in proliferating cells.
Collapse
Affiliation(s)
- J Ostrowski
- Department of Gastroenterology, Medical Center for Postgraduate Education, Maria Sklodowska-Curie Memorial Cancer Center, ul. Roentgena 5, 02-781 Warsaw, Poland.
| | | |
Collapse
|
46
|
Jin Q, van Eynde A, Beullens M, Roy N, Thiel G, Stalmans W, Bollen M. The protein phosphatase-1 (PP1) regulator, nuclear inhibitor of PP1 (NIPP1), interacts with the polycomb group protein, embryonic ectoderm development (EED), and functions as a transcriptional repressor. J Biol Chem 2003; 278:30677-85. [PMID: 12788942 DOI: 10.1074/jbc.m302273200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nuclear protein NIPP1 (nuclear inhibitor of protein Ser/Thr phosphatase-1) interacts with the splicing factors SAP155 and CDC5L and is involved in a late step of spliceosome assembly. In addition, NIPP1 is an interactor of protein phosphatase-1 and a COOH-terminal NIPP1 fragment displays an RNase E like endoribonuclease activity. A yeast two-hybrid screening resulted in the identification of the Polycomb group protein EED (embryonic ectoderm development), an established transcriptional repressor, as a novel NIPP1 interactor. NIPP1 only interacted with full-length EED, whereas two EED interaction domains were mapped to the central and COOH-terminal thirds of NIPP1. The NIPP1-EED interaction was potentiated by the binding of (d)G-rich nucleic acids to the central domain of NIPP1. Nucleic acids also decreased the potency of NIPP1 as an inhibitor of PP1, but they did not prevent the formation of a ternary NIPP1.EED.PP1 complex. EED had no effect on the function of NIPP1 as a splicing factor or as an endoribonuclease. However, similar to EED, NIPP1 acted as a transcriptional repressor of targeted genes and this NIPP1 effect was mediated by the EED interaction domain. Also, the histone deacetylase 2 was present in a complex with NIPP1. Our data are in accordance with a role for NIPP1 as a DNA-targeting protein for EED and associated chromatin-modifying enzymes.
Collapse
Affiliation(s)
- Qiming Jin
- Division of Biochemistry, Faculty of Medicine, University of Leuven, B-3000 Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
47
|
Kim DW, Kempf H, Chen RE, Lassar AB. Characterization of Nkx3.2 DNA binding specificity and its requirement for somitic chondrogenesis. J Biol Chem 2003; 278:27532-9. [PMID: 12746429 DOI: 10.1074/jbc.m301461200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously shown that Nkx3.2, a member of the NK class of homeoproteins, functions as a transcriptional repressor to promote somitic chondrogenesis. However, it has not been addressed whether Nkx3.2 can bind to DNA in a sequence-specific manner and whether DNA binding by Nkx3.2 is required for its biological activity. In this work, we employed a DNA binding site selection assay, which identified TAAGTG as a high affinity Nkx3.2 binding sequence. Sequence-specific binding of Nkx3.2 to the TAAGTG motif in vitro was confirmed by electrophoretic mobility shift assays, and mutagenesis of this sequence revealed that HRAGTG (where H represents A, C, or T, and R represents A or G) comprises the consensus DNA binding site for Nkx3.2. Consistent with these findings, the expression of a reporter gene containing reiterated Nkx3.2 binding sites was repressed in vivo by Nkx3.2 co-expression. In addition, we have generated a DNA nonbinding point mutant of Nkx3.2 (Nkx3.2-N200Q), which contains an asparagine to glutamine missense mutation in the homeodomain. Interestingly, despite being defective in DNA binding, Nkx3.2-N200Q still retains its intrinsic transcriptional repressor function. Finally, we demonstrate that unlike wild-type Nkx3.2, Nkx3.2-N200Q is unable to activate the chondrocyte differentiation program in somitic mesoderm, indicating that DNA binding by Nkx3.2 is critical for this factor to induce somitic chondrogenesis.
Collapse
Affiliation(s)
- Dae-Won Kim
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
48
|
Ostrowski J, Kawata Y, Schullery DS, Denisenko ON, Bomsztyk K. Transient recruitment of the hnRNP K protein to inducibly transcribed gene loci. Nucleic Acids Res 2003; 31:3954-62. [PMID: 12853611 PMCID: PMC165967 DOI: 10.1093/nar/gkg452] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The heterogeneous nuclear ribonucleoprotein K protein is an RNA- and DNA-binding protein implicated in the regulation of multiple processes that comprise gene expression. We used chromatin immunoprecipitation (ChIP) assays to explore K protein interactions with serum-inducible, constitutively expressed and untranscribed gene loci in vivo. In the rat HTC-IR hepatoma cell line, serum treatment induced transient increases in the mRNA levels of two immediate-early genes, egr-1 and c-myc. ChIP analysis showed that the induction of egr-1 and c-myc genes was associated with a transient recruitment of K protein to multiple sites within each of these loci, including the promoter and transcribed regions. In contrast, recruitment of K protein to the constitutively transcribed beta-actin locus and to randomly chosen non-transcribed loci was far weaker. In rat mesangial cells, c-myc was constitutively expressed while egr-1 remained serum responsive. In these cells, ChIP analysis showed serum-induced recruitment to the inducible egr-1 but not to the c-myc locus. Pre-treatment with the transcription inhibitor actinomycin D blocked the inducible but not the constitutive binding of K protein to these loci. Taken together, the results of this study suggest that the transient recruitment of K protein to serum-responsive loci depends on the inducible transcription of these immediate-early genes.
Collapse
Affiliation(s)
- Jerzy Ostrowski
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
49
|
Danilevskaya ON, Hermon P, Hantke S, Muszynski MG, Kollipara K, Ananiev EV. Duplicated fie genes in maize: expression pattern and imprinting suggest distinct functions. THE PLANT CELL 2003; 15:425-38. [PMID: 12566582 PMCID: PMC141211 DOI: 10.1105/tpc.006759] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2002] [Accepted: 11/06/2002] [Indexed: 05/17/2023]
Abstract
Two maize genes with predicted translational similarity to the Arabidopsis FIE (Fertilization-Independent Endosperm) protein, a repressor of endosperm development in the absence of fertilization, were cloned and analyzed. Genomic sequences of fie1 and fie2 show significant homology within coding regions but none within introns or 5' upstream. The fie1 gene is expressed exclusively in the endosperm of developing kernels starting at approximately 6 days after pollination. fie1 is an imprinted gene showing no detectable expression of the paternally derived fie1 allele during kernel development. Conversely, fie2 is expressed in the embryo sac before pollination. After pollination, its expression persists, predominantly in the embryo and at lower levels in the endosperm. The paternal fie2 allele is not expressed early in kernel development, but its transcription is activated at 5 days after pollination. fie2 is likely to be a functional ortholog of the Arabidopsis FIE gene, whereas fie1 has evolved a distinct function. The maize FIE2 and sorghum FIE proteins form a monophyletic group, sharing a closer relationship to each other than to the FIE1 protein, suggesting that maize fie genes originated from two different ancestral genomes.
Collapse
Affiliation(s)
- Olga N Danilevskaya
- Pioneer Hi-Bred International, Inc., 7250 NW 62nd Avenue, Johnston, Iowa 50131, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Da Silva N, Bharti A, Shelley CS. hnRNP-K and Pur(alpha) act together to repress the transcriptional activity of the CD43 gene promoter. Blood 2002; 100:3536-44. [PMID: 12411317 DOI: 10.1182/blood.v100.10.3536] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
CD43 is an abundant, heavily glycosylated molecule expressed specifically on the surface of leukocytes and platelets. When leukocytes are at rest, CD43 acts to prevent both homotypic and heterotypic interactions. However, during leukocyte activation CD43 expression is repressed, facilitating the intercellular contact required for chemotaxis, phagocytosis, aggregation, adhesion to endothelium, and transendothelial migration. Consequently, CD43 repression plays a vital role both in innate and acquired immunity. Here we report that a dramatic down-regulation of CD43 mRNA levels occurs during activation of the leukocytic cell line K562. This repression coincides with repression of the transcriptional activity of the CD43 gene promoter. We have determined that heterogeneous nuclear ribonucleoprotein K (hnRNP-K) and Pur(alpha) act together to mediate repression of the CD43 promoter during K562 activation. The hnRNP-K molecule and Pur(alpha) bind single-stranded DNA. Therefore, exposure of single-stranded structures within the CD43 promoter probably plays a major role in effecting CD43 repression.
Collapse
Affiliation(s)
- Nicolas Da Silva
- Renal Unit, Massachusetts General Hospital, Harvard Medical School, Charlestown 02129, USA
| | | | | |
Collapse
|