1
|
Kim DK, Lee CY, Han YJ, Park SY, Han H, Na K, Kim MH, Yang SM, Baek S, Kim Y, Hwang JY, Lee S, Kang SS, Hong MH, Lim SM, Lee JB, Kim JH, Cho BC, Pyo KH. Exploring aryl hydrocarbon receptor expression and distribution in the tumor microenvironment, with a focus on immune cells, in various solid cancer types. Front Immunol 2024; 15:1330228. [PMID: 38680496 PMCID: PMC11045933 DOI: 10.3389/fimmu.2024.1330228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/09/2024] [Indexed: 05/01/2024] Open
Abstract
Introduction Aryl hydrocarbon receptor (AhR) is a transcription factor that performs various functions upon ligand activation. Several studies have explored the role of AhR expression in tumor progression and immune surveillance. Nevertheless, investigations on the distribution of AhR expression, specifically in cancer or immune cells in the tumor microenvironment (TME), remain limited. Examining the AhR expression and distribution in the TME is crucial for gaining insights into the mechanism of action of AhR-targeting anticancer agents and their potential as biomarkers. Methods Here, we used multiplexed immunohistochemistry (mIHC) and image cytometry to investigate the AhR expression and distribution in 513 patient samples, of which 292 are patients with one of five solid cancer types. Additionally, we analyzed the nuclear and cytosolic distribution of AhR expression. Results Our findings reveal that AhR expression was primarily localized in cancer cells, followed by stromal T cells and macrophages. Furthermore, we observed a positive correlation between the nuclear and cytosolic expression of AhR, indicating that the expression of AhR as a biomarker is independent of its localization. Interestingly, the expression patterns of AhR were categorized into three clusters based on the cancer type, with high AhR expression levels being found in regulatory T cells (Tregs) in non-small cell lung cancer (NSCLC). Discussion These findings are anticipated to serve as pivotal evidence for the design of clinical trials and the analysis of the anticancer mechanisms of AhR-targeting therapies.
Collapse
Affiliation(s)
- Dong Kwon Kim
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chai Young Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yu Jin Han
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - So Young Park
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Heekyung Han
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kwangmin Na
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Mi Hyun Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung Min Yang
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sujeong Baek
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Youngtaek Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Joon Yeon Hwang
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seul Lee
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seong-san Kang
- Jeuk Institute for Cancer Research, Jeuk Co. Ltd., Gumi, Republic of Korea
| | - Min Hee Hong
- Division of Medical Oncology, Department of Internal Medicine and Yonsei Cancer Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sun Min Lim
- Division of Medical Oncology, Department of Internal Medicine and Yonsei Cancer Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jii Bum Lee
- Division of Medical Oncology, Department of Internal Medicine and Yonsei Cancer Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae Hwan Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Byoung Chul Cho
- Division of Medical Oncology, Department of Internal Medicine and Yonsei Cancer Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- Yonsei New Il Han Institute for Integrative Lung Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyoung-Ho Pyo
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Division of Medical Oncology, Department of Internal Medicine and Yonsei Cancer Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- Yonsei New Il Han Institute for Integrative Lung Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Research Support, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
2
|
Fang HH, Hsu J, Su JGJ. Etoricoxib enhances aryl hydrocarbon receptor activity. Toxicology 2023; 499:153658. [PMID: 37890551 DOI: 10.1016/j.tox.2023.153658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
Etoricoxib is a nonsteroidal anti-inflammatory drug (NSAID) that possesses properties that include reducing inflammation and relieving pain and fever. Etoricoxib is an oral medication that selectively inhibits cyclooxygenase-2 with high efficacy. Controversies about its cardiovascular side effects have long existed. The aryl hydrocarbon receptor (AhR) is a cytoplasmic receptor that plays a key role in the metabolism of xenobiotics and many physiological functions. 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) is a tryptophan metabolite and endogenous AhR agonist. Activation of AhR by its ligand induces upregulation of AhR-targeted cytochrome P450 (CYP) 1A1 expression. We found that etoricoxib (10-60 μM) induced CYP1A1 mRNA and protein expressions and the transcriptional activity of AhR mediated by the aryl hydrocarbon response element (AHRE) in both mouse Hepa-1c1c7 and human HepG2 cells. Its induction did not appear in AhR signaling-deficient cells, and was inhibited by the AhR antagonist, CH-223191. Etoricoxib was able to induced the translocalization of AhR from cytosol into nucleus. Etoricoxib also worked synergistically with ITE to further increase the expression of CYP1A1 mRNA and protein in human cells. The synergistic effect was higher in cells with than cells without overexpression of AhR. In summary, etoricoxib is an agonist of AhR in both mouse and human cells. Etoricoxib has a synergistic effect on ITE-induced CYP1A1 expression in human cells. The effect of etoricoxib on AhR and ITE on endothelial cells and cardiomyocytes should be further elucidated to in hope to clarify the mechanism of increased cardiovascular events in COX-2 inhibitors and etoricoxib.
Collapse
Affiliation(s)
- Hsiao-Ho Fang
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi 60004, Taiwan, ROC
| | - Jiun Hsu
- National Taiwan University Hospital YunLin Branch, Yunlin 640203, Taiwan, ROC
| | - Jyan-Gwo Joseph Su
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi 60004, Taiwan, ROC.
| |
Collapse
|
3
|
From Nucleus to Organs: Insights of Aryl Hydrocarbon Receptor Molecular Mechanisms. Int J Mol Sci 2022; 23:ijms232314919. [PMID: 36499247 PMCID: PMC9738205 DOI: 10.3390/ijms232314919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a markedly established regulator of a plethora of cellular and molecular processes. Its initial role in the detoxification of xenobiotic compounds has been partially overshadowed by its involvement in homeostatic and organ physiology processes. In fact, the discovery of its ability to bind specific target regulatory sequences has allowed for the understanding of how AHR modulates such processes. Thereby, AHR presents functions in transcriptional regulation, chromatin architecture modifications and participation in different key signaling pathways. Interestingly, such fields of influence end up affecting organ and tissue homeostasis, including regenerative response both to endogenous and exogenous stimuli. Therefore, from classical spheres such as canonical transcriptional regulation in embryonic development, cell migration, differentiation or tumor progression to modern approaches in epigenetics, senescence, immune system or microbiome, this review covers all aspects derived from the balance between regulation/deregulation of AHR and its physio-pathological consequences.
Collapse
|
4
|
Lu YC, Kuan YH, Lin CY, Chou YT, Chen SC, Gao GL, Hsu CW, Su JGJ. Alizarin as a New Activator of the Aryl Hydrocarbon Receptor Signaling Pathway. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221136669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Alizarin (1,2-dihydroxyanthraquinone) is a natural red dye extracted from the roots of Rubia cordifolia L. (family Rubiaceae). Alizarin has been used as a biological red stain for calcium. The aryl hydrocarbon receptor (AhR) has critical roles in multiple physiological pathways. This study aimed to determine whether alizarin is an unreported ligand of AhR. In the present study, we investigated the effects on cytochrome P450 (CYP) 1A1 mRNA, protein expression, AhR nuclear translocation, aryl hydrocarbon response element (AHRE) reporter activity, and AhR-specific antagonist following alizarin treatment of cells of the human hepatoma cell line, HepG2, and murine hepatoma cell line, Hepa-1c1c7. Alizarin induced CYP1A1 mRNA and protein expression in HepG2 and Hep-1c1c7 cells. Such induction was not present in C4 (B13NBii1) cells, which are AhR signal deficient, C12 (B15ECiii2) cells, which reduce AhR protein levels. The alizarin-induced responses were blocked by CH-223191, which is an AhR antagonist. Alizarin, the same as with the AhR ligand, induced the nuclear localization of AhR, as well as stimulated the transcriptional activity of AHRE. The results of this study suggest that alizarin is an AhR agonist.
Collapse
Affiliation(s)
- Yin-Che Lu
- Department of Hematology-Oncology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
- Min-Hwei Junior College of Health Care Management, Tainan, Taiwan
| | - Yu-Hsiang Kuan
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chih-Yi Lin
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Yu-Ting Chou
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Shan-Chun Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Guan-Lun Gao
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
- Department of Biological Resources, National Chiayi University, Chiayi, Taiwan
| | - Chiang Wei Hsu
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Jyan-Gwo Joseph Su
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| |
Collapse
|
5
|
Larigot L, Bui LC, de Bouvier M, Pierre O, Pinon G, Fiocca J, Ozeir M, Tourette C, Ottolenghi C, Imbeaud S, Pontoizeau C, Blaise BJ, Chevallier A, Tomkiewicz C, Legrand B, Elena-Herrmann B, Néri C, Brinkmann V, Nioche P, Barouki R, Ventura N, Dairou J, Coumoul X. Identification of Modulators of the C. elegans Aryl Hydrocarbon Receptor and Characterization of Transcriptomic and Metabolic AhR-1 Profiles. Antioxidants (Basel) 2022; 11:antiox11051030. [PMID: 35624894 PMCID: PMC9137885 DOI: 10.3390/antiox11051030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/06/2022] [Accepted: 05/18/2022] [Indexed: 02/02/2023] Open
Abstract
The Aryl hydrocarbon Receptor (AhR) is a xenobiotic sensor in vertebrates, regulating the metabolism of its own ligands. However, no ligand has been identified to date for any AhR in invertebrates. In C. elegans, the AhR ortholog, AHR-1, displays physiological functions. Therefore, we compared the transcriptomic and metabolic profiles of worms expressing AHR-1 or not and investigated the putative panel of chemical AHR-1 modulators. The metabolomic profiling indicated a role for AHR-1 in amino acids, carbohydrates, and fatty acids metabolism. The transcriptional profiling in neurons expressing AHR-1, identified 95 down-regulated genes and 76 up-regulated genes associated with neuronal and metabolic functions in the nervous system. A gene reporter system allowed us to identify several AHR-1 modulators including bacterial, dietary, or environmental compounds. These results shed new light on the biological functions of AHR-1 in C. elegans and perspectives on the evolution of the AhR functions across species.
Collapse
Affiliation(s)
- Lucie Larigot
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Université Paris Cité, 75006 Paris, France; (L.L.); (L.-C.B.); (M.d.B.); (O.P.); (G.P.); (J.F.); (M.O.); (C.O.); (A.C.); (C.T.); (B.L.); (P.N.); (R.B.)
- CNRS UMR 8601, Metabolism, Pharmacochemistry and Neurochemistry, Université Paris Cité, 75006 Paris, France
| | - Linh-Chi Bui
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Université Paris Cité, 75006 Paris, France; (L.L.); (L.-C.B.); (M.d.B.); (O.P.); (G.P.); (J.F.); (M.O.); (C.O.); (A.C.); (C.T.); (B.L.); (P.N.); (R.B.)
- Unité de biologie fonctionnelle et adaptative, UMR 8251, CNRS, Université Paris Cité, 75013 Paris, France
| | - Marine de Bouvier
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Université Paris Cité, 75006 Paris, France; (L.L.); (L.-C.B.); (M.d.B.); (O.P.); (G.P.); (J.F.); (M.O.); (C.O.); (A.C.); (C.T.); (B.L.); (P.N.); (R.B.)
| | - Ophélie Pierre
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Université Paris Cité, 75006 Paris, France; (L.L.); (L.-C.B.); (M.d.B.); (O.P.); (G.P.); (J.F.); (M.O.); (C.O.); (A.C.); (C.T.); (B.L.); (P.N.); (R.B.)
- Laboratoire Interactions Epithéliums-Neurones (LIEN), Université de Brest, EA4685, 29200 Brest, France
| | - Grégory Pinon
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Université Paris Cité, 75006 Paris, France; (L.L.); (L.-C.B.); (M.d.B.); (O.P.); (G.P.); (J.F.); (M.O.); (C.O.); (A.C.); (C.T.); (B.L.); (P.N.); (R.B.)
- Structural and Molecular Analysis Platform, Biomedtech Facilities, Université Paris Cité, 75006 Paris, France
| | - Justine Fiocca
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Université Paris Cité, 75006 Paris, France; (L.L.); (L.-C.B.); (M.d.B.); (O.P.); (G.P.); (J.F.); (M.O.); (C.O.); (A.C.); (C.T.); (B.L.); (P.N.); (R.B.)
- Structural and Molecular Analysis Platform, Biomedtech Facilities, Université Paris Cité, 75006 Paris, France
| | - Mohammad Ozeir
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Université Paris Cité, 75006 Paris, France; (L.L.); (L.-C.B.); (M.d.B.); (O.P.); (G.P.); (J.F.); (M.O.); (C.O.); (A.C.); (C.T.); (B.L.); (P.N.); (R.B.)
- Structural and Molecular Analysis Platform, Biomedtech Facilities, Université Paris Cité, 75006 Paris, France
| | - Cendrine Tourette
- Centre Paul Broca, INSERM U894 Neuronal Cell Biology & Pathology & EA Université Paris Cité, 75014 Paris, France;
| | - Chris Ottolenghi
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Université Paris Cité, 75006 Paris, France; (L.L.); (L.-C.B.); (M.d.B.); (O.P.); (G.P.); (J.F.); (M.O.); (C.O.); (A.C.); (C.T.); (B.L.); (P.N.); (R.B.)
- AP-HP, Hôpital Necker-Enfants Malades, Service de Biochimie Métabolique, 75015 Paris, France;
| | - Sandrine Imbeaud
- Gif/Orsay DNA MicroArray Platform, 91190 Gif sur Yvette, France;
| | - Clément Pontoizeau
- AP-HP, Hôpital Necker-Enfants Malades, Service de Biochimie Métabolique, 75015 Paris, France;
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs, Univ. Lyon, CNRS, UCBL, ENS Lyon, 69100 Villeurbanne, France; (B.J.B.); (B.E.-H.)
| | - Benjamin J. Blaise
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs, Univ. Lyon, CNRS, UCBL, ENS Lyon, 69100 Villeurbanne, France; (B.J.B.); (B.E.-H.)
| | - Aline Chevallier
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Université Paris Cité, 75006 Paris, France; (L.L.); (L.-C.B.); (M.d.B.); (O.P.); (G.P.); (J.F.); (M.O.); (C.O.); (A.C.); (C.T.); (B.L.); (P.N.); (R.B.)
| | - Céline Tomkiewicz
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Université Paris Cité, 75006 Paris, France; (L.L.); (L.-C.B.); (M.d.B.); (O.P.); (G.P.); (J.F.); (M.O.); (C.O.); (A.C.); (C.T.); (B.L.); (P.N.); (R.B.)
| | - Béatrice Legrand
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Université Paris Cité, 75006 Paris, France; (L.L.); (L.-C.B.); (M.d.B.); (O.P.); (G.P.); (J.F.); (M.O.); (C.O.); (A.C.); (C.T.); (B.L.); (P.N.); (R.B.)
| | - Bénédicte Elena-Herrmann
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs, Univ. Lyon, CNRS, UCBL, ENS Lyon, 69100 Villeurbanne, France; (B.J.B.); (B.E.-H.)
- Institute for Advanced Biosciences, Univ. Grenoble Alpes, CNRS, INSERM, 38000 Grenoble, France
| | - Christian Néri
- CNRS UMR 8256, Inserm ERL U1164, Sorbonne Université, 75005 Paris, France;
| | - Vanessa Brinkmann
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University, Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany; (V.B.); (N.V.)
- Leibniz Institute for Environmental Medicine (IUF), Auf’m Hennekamp 50, 40225 Düsseldorf, Germany
| | - Pierre Nioche
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Université Paris Cité, 75006 Paris, France; (L.L.); (L.-C.B.); (M.d.B.); (O.P.); (G.P.); (J.F.); (M.O.); (C.O.); (A.C.); (C.T.); (B.L.); (P.N.); (R.B.)
- Structural and Molecular Analysis Platform, Biomedtech Facilities, Université Paris Cité, 75006 Paris, France
| | - Robert Barouki
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Université Paris Cité, 75006 Paris, France; (L.L.); (L.-C.B.); (M.d.B.); (O.P.); (G.P.); (J.F.); (M.O.); (C.O.); (A.C.); (C.T.); (B.L.); (P.N.); (R.B.)
- Assistance Publique-Hôpitaux de Paris, Hôpital Necker, 75015 Paris, France
| | - Natascia Ventura
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University, Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany; (V.B.); (N.V.)
- Leibniz Institute for Environmental Medicine (IUF), Auf’m Hennekamp 50, 40225 Düsseldorf, Germany
| | - Julien Dairou
- CNRS UMR 8601, Metabolism, Pharmacochemistry and Neurochemistry, Université Paris Cité, 75006 Paris, France
- Correspondence: (J.D.); (X.C.); Tel.: +33-1-42-86-91-21 (J.D.); +33-1-42-86-33-59 (X.C.)
| | - Xavier Coumoul
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Université Paris Cité, 75006 Paris, France; (L.L.); (L.-C.B.); (M.d.B.); (O.P.); (G.P.); (J.F.); (M.O.); (C.O.); (A.C.); (C.T.); (B.L.); (P.N.); (R.B.)
- Correspondence: (J.D.); (X.C.); Tel.: +33-1-42-86-91-21 (J.D.); +33-1-42-86-33-59 (X.C.)
| |
Collapse
|
6
|
Wei KL, Gao GL, Chou YT, Lin CY, Chen SC, Chen YL, Choi HQ, Cheng CC, Su JGJ. Sorafenib is an antagonist of the aryl hydrocarbon receptor. Toxicology 2022; 470:153118. [DOI: 10.1016/j.tox.2022.153118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 01/29/2022] [Accepted: 02/02/2022] [Indexed: 02/07/2023]
|
7
|
Li BB, Scott EY, Olafsen NE, Matthews J, Wheeler AR. Analysis of the effects of aryl hydrocarbon receptor expression on cancer cell invasion via three-dimensional microfluidic invasion assays. LAB ON A CHIP 2022; 22:313-325. [PMID: 34904612 DOI: 10.1039/d1lc00854d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that binds to xenobiotics and activates expression of response elements to metabolize these compounds. The AHR pathway has been associated with a long list of diseases including cancer; however, it is debated whether AHR is tumorigenic or tumour-inhibiting. In particular, there are contradictory reports in the literature regarding the effects of AHR expression level on metastatic breast cancer. Here we used a 3D invasion assay called cell invasion in digital microfluidic microgel systems (CIMMS) to study the effect of AHR expression on invasion. In this study, MDA-MB-231 cells with stable knockout of AHR (AHRko) showed enhanced invasive characteristics and reduced proliferation, and cells with transient overexpression of AHR showed reduced invasiveness. Overexpression of AHR with a mutation in the DNA binding domain showed no difference in invasiveness compared to control, which suggests that the changes in invasiveness are related to the expression of AHR. CIMMS also allowed for extraction of sub-populations of invaded cells for RNA sequencing experiments. A comparison of the transcriptomes of invaded subpopulations of wild-type and AHRko cells identified 1809 genes that were differentially expressed, with enriched pathways including cell cycle, proliferation, survival, immunoproteasome activation, and activation of matrix metalloproteases. In sum, the data reported here for MDA-MB-231 cells suggests some new interpretations of the discrepancy in the literature on the role of AHR in breast cancer. We propose that the unique combination of functional discrimination with transcriptome profiling provided by CIMMS will be valuable for a wide range of mechanistic invasion-biology studies in the future.
Collapse
Affiliation(s)
- Bingyu B Li
- Institute of Biomedical Engineering, University of Toronto, 164 College St, Toronto, ON, M5S 3G9, Canada.
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College St, Toronto, ON, M5S 3E1, Canada
| | - Erica Y Scott
- Institute of Biomedical Engineering, University of Toronto, 164 College St, Toronto, ON, M5S 3G9, Canada.
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College St, Toronto, ON, M5S 3E1, Canada
- Department of Chemistry, University of Toronto, 80 St George St., Toronto, ON, M5S 3H6, Canada
| | - Ninni E Olafsen
- Institute of Basic Medical Sciences, University of Oslo, Oslo, 0317, Norway
| | - Jason Matthews
- Institute of Basic Medical Sciences, University of Oslo, Oslo, 0317, Norway
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Aaron R Wheeler
- Institute of Biomedical Engineering, University of Toronto, 164 College St, Toronto, ON, M5S 3G9, Canada.
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College St, Toronto, ON, M5S 3E1, Canada
- Department of Chemistry, University of Toronto, 80 St George St., Toronto, ON, M5S 3H6, Canada
| |
Collapse
|
8
|
Vazquez-Rivera E, Rojas B, Parrott JC, Shen AL, Xing Y, Carney PR, Bradfield CA. The aryl hydrocarbon receptor as a model PAS sensor. Toxicol Rep 2021; 9:1-11. [PMID: 34950569 PMCID: PMC8671103 DOI: 10.1016/j.toxrep.2021.11.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 01/02/2023] Open
Abstract
Proteins containing PER-ARNT-SIM (PAS) domains are commonly associated with environmental adaptation in a variety of organisms. The PAS domain is found in proteins throughout Archaea, Bacteria, and Eukarya and often binds small-molecules, supports protein-protein interactions, and transduces input signals to mediate an adaptive physiological response. Signaling events mediated by PAS sensors can occur through induced phosphorelays or genomic events that are often dependent upon PAS domain interactions. In this perspective, we briefly discuss the diversity of PAS domain containing proteins, with particular emphasis on the prototype member, the aryl hydrocarbon receptor (AHR). This ligand-activated transcription factor acts as a sensor of the chemical environment in humans and many chordates. We conclude with the idea that since mammalian PAS proteins often act through PAS-PAS dimers, undocumented interactions of this type may link biological processes that we currently think of as independent. To support this idea, we present a framework to guide future experiments aimed at fully elucidating the spectrum of PAS-PAS interactions with an eye towards understanding how they might influence environmental sensing in human and wildlife populations.
Collapse
Affiliation(s)
- Emmanuel Vazquez-Rivera
- Molecular and Environmental Toxicology Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
| | - Brenda Rojas
- Molecular and Environmental Toxicology Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
| | - Jessica C. Parrott
- Molecular and Environmental Toxicology Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
| | - Anna L. Shen
- Molecular and Environmental Toxicology Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
| | - Yongna Xing
- Molecular and Environmental Toxicology Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
| | - Patrick R. Carney
- Molecular and Environmental Toxicology Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
| | - Christopher A. Bradfield
- Molecular and Environmental Toxicology Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
| |
Collapse
|
9
|
Sahebnasagh A, Hashemi J, Khoshi A, Saghafi F, Avan R, Faramarzi F, Azimi S, Habtemariam S, Sureda A, Khayatkashani M, Safdari M, Rezai Ghaleno H, Soltani H, Khayat Kashani HR. Aromatic hydrocarbon receptors in mitochondrial biogenesis and function. Mitochondrion 2021; 61:85-101. [PMID: 34600156 DOI: 10.1016/j.mito.2021.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/17/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022]
Abstract
Mitochondria are ubiquitous membrane-bound organelles that not only play a key role in maintaining cellular energy homeostasis and metabolism but also in signaling and apoptosis. Aryl hydrocarbons receptors (AhRs) are ligand-activated transcription factors that recognize a wide variety of xenobiotics, including polyaromatic hydrocarbons and dioxins, and activate diverse detoxification pathways. These receptors are also activated by natural dietary compounds and endogenous metabolites. In addition, AhRs can modulate the expression of a diverse array of genes related to mitochondrial biogenesis and function. The aim of the present review is to analyze scientific data available on the AhR signaling pathway and its interaction with the intracellular signaling pathways involved in mitochondrial functions, especially those related to cell cycle progression and apoptosis. Various evidence have reported the crosstalk between the AhR signaling pathway and the nuclear factor κB (NF-κB), tyrosine kinase receptor signaling and mitogen-activated protein kinases (MAPKs). The AhR signaling pathway seems to promote cell cycle progression in the absence of exogenous ligands, whereas the presence of exogenous ligands induces cell cycle arrest. However, its effects on apoptosis are controversial since activation or overexpression of AhR has been observed to induce or inhibit apoptosis depending on the cell type. Regarding the mitochondria, although activation by endogenous ligands is related to mitochondrial dysfunction, the effects of endogenous ligands are not well understood but point towards antiapoptotic effects and inducers of mitochondrial biogenesis.
Collapse
Affiliation(s)
- Adeleh Sahebnasagh
- Clinical Research Center, Department of Internal Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Javad Hashemi
- Department of Pathobiology and Laboratory Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amirhosein Khoshi
- Department of Clinical Biochemistry, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Fatemeh Saghafi
- Department of Clinical Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Razieh Avan
- Assistant Professor of Clinical Pharmacy, Department of Clinical Pharmacy, Medical Toxicology and Drug Abuse Research Center (MTDRC), Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Fatemeh Faramarzi
- Clinical Pharmacy Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Azimi
- Student Research Committee, Department of Clinical Pharmacy, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories and Herbal Analysis Services, School of Science, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, United Kingdom
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands and Health Research Institute of Balearic Islands (IdISBa), Palma de Mallorca, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Maryam Khayatkashani
- School of Iranian Traditional Medicine, Tehran University of Medical Sciences, 14155-6559 Tehran, Iran
| | - Mohammadreza Safdari
- Department of Orthopedic Surgery, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hassan Rezai Ghaleno
- Department of Surgery, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hosseinali Soltani
- Department of General Surgery, Imam Ali Hospital, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hamid Reza Khayat Kashani
- Department of Neurosurgery, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Chen CS, Gao GL, Ho DR, Lin CY, Chou YT, Chen SC, Huang MC, Kao WY, Su JGJ. Cyproterone acetate acts as a disruptor of the aryl hydrocarbon receptor. Sci Rep 2021; 11:5457. [PMID: 33750846 PMCID: PMC7943802 DOI: 10.1038/s41598-021-84769-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 02/08/2021] [Indexed: 11/10/2022] Open
Abstract
Prostate cancer is a major cause of death in males. Cyproterone acetate (CPA), the steroidal anti-androgen for part of androgen deprivation therapy, may block the androgen-receptor interaction and then reduce serum testosterone through its weak anti-gonadotropic action. In addition to CPA inducing hepatitis, CPA is known to cause liver tumors in rats also. Aryl hydrocarbon receptor (AhR) is a cytoplasmic receptor and regulates multiple physiological functions. CYP1A1 is an AhR-targeted gene. We found that CPA induced CYP1A1 expression, transcriptional activity of the aryl hydrocarbon response element (AHRE), and the nuclear localization of AhR in mouse Hepa-1c1c7 cells. However, CPA suppressed CYP1A1 mRNA expression and the transcriptional activity of AHRE in human HepG2 and MCF7 cells, and also decreased AhR ligand-induced CYP1A1 protein expression and transcriptional activity of AHRE in HepG2 cells. In summary, CPA is an AhR agonist in mouse cells, but an AhR antagonist in human cells. Accordingly, CPA potentially plays a role as an endocrine disruptor of the AhR. This study helps us to understand why CPA induces acute hepatitis, gene mutation, and many other side effects. In addition, it may trigger further studies investigating the relationships between CPA, glucocorticoid receptor and castration-resistant prostate cancer in the future.
Collapse
Affiliation(s)
- Chih-Shou Chen
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan, ROC
| | - Guan-Lun Gao
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, 60004, Taiwan, ROC.,Department of Biological Resources, National Chiayi University, Chiayi, 60004, Taiwan, ROC
| | - Dong-Ru Ho
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan, ROC
| | - Chih-Yi Lin
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, 60004, Taiwan, ROC
| | - Yu-Ting Chou
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, 60004, Taiwan, ROC
| | - Shan-Chun Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, 60004, Taiwan, ROC
| | - Min-Cong Huang
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan, ROC
| | - Wen-Ya Kao
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, 60004, Taiwan, ROC
| | - Jyan-Gwo Joseph Su
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, 60004, Taiwan, ROC.
| |
Collapse
|
11
|
Suwannasual U, Lucero J, Davis G, McDonald JD, Lund AK. Mixed Vehicle Emissions Induces Angiotensin II and Cerebral Microvascular Angiotensin Receptor Expression in C57Bl/6 Mice and Promotes Alterations in Integrity in a Blood-Brain Barrier Coculture Model. Toxicol Sci 2020; 170:525-535. [PMID: 31132127 DOI: 10.1093/toxsci/kfz121] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Exposure to traffic-generated pollution is associated with alterations in blood-brain barrier (BBB) integrity and exacerbation of cerebrovascular disorders. Angiotensin (Ang) II signaling through the Ang II type 1 (AT1) receptor is known to promote BBB disruption. We have previously reported that exposure to a mixture of gasoline and diesel vehicle engine emissions (MVE) mediates alterations in cerebral microvasculature of C57Bl/6 mice, which is exacerbated through consumption of a high-fat (HF) diet. Thus, we investigated the hypothesis that inhalation exposure to MVE results in altered central nervous system microvascular integrity mediated by Ang II-AT1 signaling. Three-month-old male C57Bl/6 mice were placed on an HF or low-fat diet and exposed via inhalation to either filtered air (FA) or MVE (100 μg/m3 PM) 6 h/d for 30 days. Exposure to HF+MVE resulted in a significant increase in plasma Ang II and expression of AT1 in the cerebral microvasculature. Results from a BBB coculture study showed that transendothelial electrical resistance was decreased, associated with reduced expression of claudin-5 and occludin when treated with plasma from MVE+HF animals. These effects were attenuated through pretreatment with the AT1 antagonist, Losartan. Our BBB coculture showed increased levels of astrocyte AT1 and decreased expression of aryl hydrocarbon receptor and glutathione peroxidase-1, associated with increased interleukin-6 and transforming growth factor-β in the astrocyte media, when treated with plasma from MVE-exposed groups. Our results indicate that inhalation exposure to traffic-generated pollutants results in altered BBB integrity, mediated through Ang II-AT1 signaling and inflammation, which is exacerbated by an HF diet.
Collapse
Affiliation(s)
- Usa Suwannasual
- Department of Biological Sciences, Advanced Environmental Research Institute, University of North Texas, Denton, Texas 76201
| | - JoAnn Lucero
- Department of Biological Sciences, Advanced Environmental Research Institute, University of North Texas, Denton, Texas 76201
| | - Griffith Davis
- Department of Biological Sciences, Advanced Environmental Research Institute, University of North Texas, Denton, Texas 76201
| | - Jacob D McDonald
- Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico 87108
| | - Amie K Lund
- Department of Biological Sciences, Advanced Environmental Research Institute, University of North Texas, Denton, Texas 76201
| |
Collapse
|
12
|
Mescher M, Tigges J, Rolfes KM, Shen AL, Yee JS, Vogeley C, Krutmann J, Bradfield CA, Lang D, Haarmann-Stemmann T. The Toll-like receptor agonist imiquimod is metabolized by aryl hydrocarbon receptor-regulated cytochrome P450 enzymes in human keratinocytes and mouse liver. Arch Toxicol 2019; 93:1917-1926. [PMID: 31111189 PMCID: PMC11088943 DOI: 10.1007/s00204-019-02488-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/16/2019] [Indexed: 12/31/2022]
Abstract
The Toll-like receptor 7 agonist imiquimod (IMQ) is an approved drug for the topical treatment of various skin diseases that, in addition, is currently tested in multiple clinical trials for the immunotherapy of various types of cancers. As all of these trials include application of IMQ to the skin and evidence exists that exposure to environmental pollutants, i.e., tobacco smoke, affects its therapeutic efficacy, the current study aims to elucidate the cutaneous metabolism of the drug. Treatment of human keratinocytes with 2.5 µM benzo[a]pyrene (BaP), a tobacco smoke constituent and aryl hydrocarbon receptor (AHR) agonist, for 24 h induced cytochrome P450 (CYP) 1A enzyme activity. The addition of IMQ 30 min prior measurement resulted in a dose-dependent inhibition of CYP1A activity, indicating that IMQ is either a substrate or inhibitor of CYP1A isoforms. Incubation of 21 recombinant human CYP enzymes with 0.5 µM IMQ and subsequent LC-MS analyses, in fact, identified CYP1A1 and CYP1A2 as being predominantly responsible for IMQ metabolism. Accordingly, treatment of keratinocytes with BaP accelerated IMQ clearance and the associated formation of monohydroxylated IMQ metabolites. A co-incubation with 5 µM 7-hydroxyflavone, a potent inhibitor of human CYP1A isoforms, abolished basal as well as BaP-induced IMQ metabolism. Further studies with hepatic microsomes from CD-1 as well as solvent- and β-naphthoflavone-treated CYP1A1/CYP1A2 double knock-out and respective control mice confirmed the critical contribution of CYP1A isoforms to IMQ metabolism. Hence, an exposure to life style-related, dietary, and environmental AHR ligands may affect the pharmacokinetics and, thus, treatment efficacy of IMQ.
Collapse
Affiliation(s)
- Melina Mescher
- IUF - Leibniz Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany
| | - Julia Tigges
- IUF - Leibniz Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany
| | - Katharina M Rolfes
- IUF - Leibniz Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany
| | - Anna L Shen
- The McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Jeremiah S Yee
- The McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Christian Vogeley
- IUF - Leibniz Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany
| | - Jean Krutmann
- IUF - Leibniz Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany
- Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Christopher A Bradfield
- The McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Dieter Lang
- Bayer AG, Pharmaceuticals, DMPK Drug Metabolism, 42096, Wuppertal, Germany
| | | |
Collapse
|
13
|
Ulin A, Henderson J, Pham MT, Meyo J, Chen Y, Karchner SI, Goldstone JV, Hahn ME, Williams LM. Developmental Regulation of Nuclear Factor Erythroid-2 Related Factors (nrfs) by AHR1b in Zebrafish (Danio rerio). Toxicol Sci 2019; 167:536-545. [PMID: 30321412 PMCID: PMC6358246 DOI: 10.1093/toxsci/kfy257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Interactions between regulatory pathways allow organisms to adapt to their environment and respond to stress. One interaction that has been recently identified occurs between the aryl hydrocarbon receptor (AHR) and the nuclear factor erythroid-2 related factor (NRF) family. Each transcription factor regulates numerous downstream genes involved in the cellular response to toxicants and oxidative stress; they are also implicated in normal developmental pathways. The zebrafish model was used to explore the role of AHR regulation of nrf genes during development and in response to toxicant exposure. To determine if AHR1b is responsible for transcriptional regulation of 6 nrf genes during development, a loss-of-function experiment using morpholino-modified oligonucleotides was conducted followed by a chromatin immunoprecipitation study at the beginning of the pharyngula period (24 h postfertilization). The expression of nrf1a was AHR1b dependent and its expression was directly regulated through specific XREs in its cis-promoter. However, nrf1a expression was not altered by exposure to 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD), a toxicant and prototypic AHR agonist. The expression of nrf1b, nrf2a, and nfe2 was induced by TCDD, and AHR1b directly regulated their expression by binding to cis-XRE promoter elements. Last, nrf2b and nrf3 were neither induced by TCDD nor regulated by AHR1b. These results show that AHR1b transcriptionally regulates nrf genes under toxicant modulation via binding to specific XREs. These data provide a better understanding of how combinatorial molecular signaling potentially protects embryos from embryotoxic events following toxicant exposure.
Collapse
Affiliation(s)
- Alexandra Ulin
- Department of biology, Bates College, Lewiston, Maine 04240
| | - Jake Henderson
- Department of biology, Bates College, Lewiston, Maine 04240
| | - Minh-Tam Pham
- Department of biology, Bates College, Lewiston, Maine 04240
| | - James Meyo
- Department of biology, Bates College, Lewiston, Maine 04240
| | - Yuying Chen
- Department of biology, Bates College, Lewiston, Maine 04240
| | - Sibel I Karchner
- Department of biology, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| | - Jared V Goldstone
- Department of biology, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| | - Mark E Hahn
- Department of biology, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| | - Larissa M Williams
- Department of biology, Bates College, Lewiston, Maine 04240
- Department of biology, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| |
Collapse
|
14
|
Abstract
Astrocytes play complex roles in health and disease. Here, we review recent findings on molecular pathways that control astrocyte function in multiple sclerosis (MS) as well as new tools for their investigation. In particular, we describe positive and negative regulators of astrocyte-mediated pathogenesis in MS, such as sphingolipid metabolism and aryl hydrocarbon receptor signaling, respectively. In addition, we also discuss the issue of astrocyte heterogeneity and its relevance for the contribution of astrocytes to MS pathogenesis. Finally, we discuss how new genomic tools could transform the study of astrocyte biology in MS.
Collapse
|
15
|
Choe U, Yu LL, Wang TTY. The Science behind Microgreens as an Exciting New Food for the 21st Century. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11519-11530. [PMID: 30343573 DOI: 10.1021/acs.jafc.8b03096] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Chronic diseases are a major health problem in the United States. Accumulated data suggest that consumption of vegetables can significantly reduce the risk of many chronic diseases. Dietary guidelines for 2015-2020 from the U.S. Department of Agriculture and the U.S. Department of Health and Human Services recommend 1-4 cups of vegetables per day for males and 1-3 cups of vegetables per day for females, depending on their age. However, the average intake of vegetables is below the recommended levels. Microgreens are young vegetable greens. Although they are small, microgreens have delicate textures, distinctive flavors, and various nutrients. In general, microgreens contain greater amounts of nutrients and health-promoting micronutrients than their mature counterparts. Because microgreens are rich in nutrients, smaller amounts may provide similar nutritional effects compared to larger quantities of mature vegetables. However, literature on microgreens remains limited. In this Review, we discuss chemical compositions, growing conditions, and biological efficacies of microgreens. We seek to stimulate interest in further study of microgreens as a promising dietary component for potential use in diet-based disease prevention.
Collapse
Affiliation(s)
- Uyory Choe
- Department of Nutrition and Food Science , University of Maryland , College Park , Maryland 20742 , United States
- Diet, Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, ARS , U.S. Department of Agriculture , 10300 Baltimore Avenue , Beltsville , Maryland 20705 , United States
| | - Liangli Lucy Yu
- Department of Nutrition and Food Science , University of Maryland , College Park , Maryland 20742 , United States
| | - Thomas T Y Wang
- Diet, Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, ARS , U.S. Department of Agriculture , 10300 Baltimore Avenue , Beltsville , Maryland 20705 , United States
| |
Collapse
|
16
|
Meyer-Alert H, Ladermann K, Larsson M, Schiwy S, Hollert H, Keiter SH. A temporal high-resolution investigation of the Ah-receptor pathway during early development of zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 204:117-129. [PMID: 30245344 DOI: 10.1016/j.aquatox.2018.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 09/09/2018] [Accepted: 09/11/2018] [Indexed: 06/08/2023]
Abstract
In order to contribute to a comprehensive understanding of the regulating mechanisms of the aryl-hydrocarbon-receptor (AHR) in zebrafish embryos, we aimed to elucidate the interaction of proteins taking part in this signaling pathway during early development of the zebrafish (Danio rerio) after chemical exposure. We managed to illustrate initial transcription processes of the implemented proteins after exposure to two environmentally relevant chemicals: polychlorinated biphenyl 126 (PCB126) and β-Naphthoflavone (BNF). Using qPCR, we quantified mRNA every 4 h until 118 h post fertilization and found the expression of biotransformation enzymes (cyp1 family) and the repressor of the AHR (ahr-r) to be dependent on the duration of chemical exposure and the biodegradability of the compounds. PCB126 induced persistently increased amounts of transcripts as it is not metabolized, whereas activation by BNF was limited to the initial period of exposure. We did not find a clear relation between the amount of transcripts and activity of the induced CYP-proteins, so posttranscriptional mechanisms are likely to regulate biotransformation of BNF. With regard to zebrafish embryos and their application in risk assessment of hazardous chemicals, our examination of the AHR pathway especially supports the relevance of the time point or period of exposure that is used for bioanalytical investigations and consideration of chemical properties determining biodegradability.
Collapse
Affiliation(s)
- Henriette Meyer-Alert
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | - Kim Ladermann
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Maria Larsson
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, 701 82 Örebro, Sweden
| | - Sabrina Schiwy
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Steffen H Keiter
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, 701 82 Örebro, Sweden
| |
Collapse
|
17
|
Rannug A, Rannug U. The tryptophan derivative 6-formylindolo[3,2-b]carbazole, FICZ, a dynamic mediator of endogenous aryl hydrocarbon receptor signaling, balances cell growth and differentiation. Crit Rev Toxicol 2018; 48:555-574. [PMID: 30226107 DOI: 10.1080/10408444.2018.1493086] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The aryl hydrocarbon receptor (AHR) is not essential to survival, but does act as a key regulator of many normal physiological events. The role of this receptor in toxicological processes has been studied extensively, primarily employing the high-affinity ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). However, regulation of physiological responses by endogenous AHR ligands remains to be elucidated. Here, we review developments in this field, with a focus on 6-formylindolo[3,2-b]carbazole (FICZ), the endogenous ligand with the highest affinity to the receptor reported to date. The binding of FICZ to different isoforms of the AHR seems to be evolutionarily well conserved and there is a feedback loop that controls AHR activity through metabolic degradation of FICZ via the highly inducible cytochrome P450 1A1. Several investigations provide strong evidence that FICZ plays a critical role in normal physiological processes and can ameliorate immune diseases with remarkable efficiency. Low levels of FICZ are pro-inflammatory, providing resistance to pathogenic bacteria, stimulating the anti-tumor functions, and promoting the differentiation of cancer cells by repressing genes in cancer stem cells. In contrast, at high concentrations FICZ behaves in a manner similar to TCDD, exhibiting toxicity toward fish and bird embryos, immune suppression, and activation of cancer progression. The findings are indicative of a dual role for endogenously activated AHR in barrier tissues, aiding clearance of infections and suppressing immunity to terminate a vicious cycle that might otherwise lead to disease. There is not much support for the AHR ligand-specific immune responses proposed, the differences between FICZ and TCDD in this context appear to be explained by the rapid metabolism of FICZ.
Collapse
Affiliation(s)
- Agneta Rannug
- a Karolinska Institutet, Institute of Environmental Medicine , Stockholm , Sweden
| | - Ulf Rannug
- b Department of Molecular Biosciences , The Wenner-Gren Institute, Stockholm University , Stockholm , Sweden
| |
Collapse
|
18
|
Benzo(a)pyrene in Cigarette Smoke Enhances HIV-1 Replication through NF-κB Activation via CYP-Mediated Oxidative Stress Pathway. Sci Rep 2018; 8:10394. [PMID: 29991690 PMCID: PMC6039513 DOI: 10.1038/s41598-018-28500-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 06/14/2018] [Indexed: 02/06/2023] Open
Abstract
Smoking aggravates HIV-1 pathogenesis and leads to decreased responses to antiretroviral therapy. In this study, we aim to find a molecular mechanism that would explain smoking-induced HIV-1 replication. Benzo(a)pyrene (BaP), a major carcinogen in cigarette, requires metabolic activation through cytochrome P450s (CYPs) to exert its toxic effects. We hypothesized that CYP-mediated BaP metabolism generates reactive oxygen species (ROS), and the resultant oxidative stress aggravates HIV-1 replication. As expected, we observed ~3 to 4-fold increase in HIV-1 replication in U1 cells and human primary macrophages after chronic BaP exposure. We also observed ~30-fold increase in the expression of CYP1A1 at mRNA level, ~2.5-fold increase in its enzymatic activity as well as elevated ROS and cytotoxicity in U1 cells. The knock-down of the CYP1A1 gene using siRNA and treatment with selective CYP inhibitors and antioxidants significantly reduced HIV-1 replication. Further, we observed a nuclear translocation of NF-κB subunits (p50 and p65) after chronic BaP exposure, which was reduced by treatment with siRNA and antioxidants/CYP inhibitors. Suppression of NF-κB pathway using specific NF-κB inhibitors also significantly reduced HIV-1 replication. Altogether, our results suggest that BaP enhances HIV-1 replication in macrophages by a CYP-mediated oxidative stress pathway followed by the NF-κB pathway.
Collapse
|
19
|
Towards Resolving the Pro- and Anti-Tumor Effects of the Aryl Hydrocarbon Receptor. Int J Mol Sci 2018; 19:ijms19051388. [PMID: 29735912 PMCID: PMC5983651 DOI: 10.3390/ijms19051388] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 12/11/2022] Open
Abstract
We have postulated that the aryl hydrocarbon receptor (AHR) drives the later, more lethal stages of some cancers when chronically activated by endogenous ligands. However, other studies have suggested that, under some circumstances, the AHR can oppose tumor aggression. Resolving this apparent contradiction is critical to the design of AHR-targeted cancer therapeutics. Molecular (siRNA, shRNA, AHR repressor, CRISPR-Cas9) and pharmacological (AHR inhibitors) approaches were used to confirm the hypothesis that AHR inhibition reduces human cancer cell invasion (irregular colony growth in 3D Matrigel cultures and Boyden chambers), migration (scratch wound assay) and metastasis (human cancer cell xenografts in zebrafish). Furthermore, these assays were used for a head-to-head comparison between AHR antagonists and agonists. AHR inhibition or knockdown/knockout consistently reduced human ER−/PR−/Her2− and inflammatory breast cancer cell invasion, migration, and metastasis. This was associated with a decrease in invasion-associated genes (e.g., Fibronectin, VCAM1, Thrombospondin, MMP1) and an increase in CDH1/E-cadherin, previously associated with decreased tumor aggression. Paradoxically, AHR agonists (2,3,7,8-tetrachlorodibenzo-p-dioxin and/or 3,3′-diindolylmethane) similarly inhibited irregular colony formation in Matrigel and blocked metastasis in vivo but accelerated migration. These data demonstrate the complexity of modulating AHR activity in cancer while suggesting that AHR inhibitors, and, under some circumstances, AHR agonists, may be useful as cancer therapeutics.
Collapse
|
20
|
Schiering C, Vonk A, Das S, Stockinger B, Wincent E. Cytochrome P4501-inhibiting chemicals amplify aryl hydrocarbon receptor activation and IL-22 production in T helper 17 cells. Biochem Pharmacol 2018; 151:47-58. [PMID: 29501585 DOI: 10.1016/j.bcp.2018.02.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 02/23/2018] [Indexed: 02/07/2023]
Abstract
The aryl hydrocarbon receptor (AHR) controls interleukin 22 production by T helper 17 cells (Th17). IL-22 contributes to intestinal homeostasis but has also been implicated in chronic inflammatory disorders and colorectal cancer, highlighting the need for appropriate regulation of IL-22 production. Upon activation, the AHR induces expression of cytochrome P4501 (CYP1) enzymes which in turn play an important feedback role that curtails the duration of AHR signaling by metabolizing AHR ligands. Recently we described how agents that inhibit CYP1 function potentiate AHR signaling by disrupting metabolic clearance of the endogenous ligand 6-formylindolo[3,2-b]carbazole (FICZ). In the present study, we investigated the immune-modulating effects of environmental pollutants such as polycyclic aromatic hydrocarbons on Th17 differentiation and IL-22 production. Using Th17 cells deficient in CYP1 enzymes (Cyp1a1/1a2/1b1-/-) we show that these chemicals potentiate AHR activation through inhibition of CYP1 enzymes which leads to increases in intracellular AHR agonists. Our findings demonstrate that IL-22 production by Th17 cells is profoundly enhanced by impaired CYP1-function and strongly suggest that chemicals able to modify CYP1 function or expression may disrupt AHR-mediated immune regulation by altering the levels of endogenous AHR agonist(s).
Collapse
Affiliation(s)
- Chris Schiering
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| | - Anne Vonk
- Swetox, Karolinska Institutet, Unit of Toxicology Sciences, Forskargatan 20, 151 36 Södertälje, Sweden.
| | - Srustidhar Das
- Karolinska Institutet, Department of Medicine, Solna (MedS), K2, L2:04 171 76 Stockholm, Sweden.
| | | | - Emma Wincent
- Swetox, Karolinska Institutet, Unit of Toxicology Sciences, Forskargatan 20, 151 36 Södertälje, Sweden; Karolinska Institutet, Institute of Environmental Medicine, Box 210, 171 77 Stockholm, Sweden.
| |
Collapse
|
21
|
Gao WQ, Ma J, Sun LL, Li Q, Zhu RY, Jin J. Paclitaxel-mediated human aryl hydrocarbon receptor mRNA translation by an internal ribosomal entry site-dependent mechanism. Oncol Rep 2017; 38:3211-3219. [PMID: 29048649 DOI: 10.3892/or.2017.5958] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 05/02/2017] [Indexed: 11/06/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that is best known in mediating the toxicities of dioxins and dioxin-like compounds. AHR is activated by a variety of endogenous ligands and participating in tumor development. Thus, it will provide a new approach for cancer prevention and treatment to study the translation mechanism of AHR in tumor cells. In this study, we show that the 5'-untranslated region (UTR) of AHR mRNA contains an internal ribosome entry site (IRES). After mapping the entire AHR 5'-UTR, we determined that the full-length 5'-UTR is indispensable for the highest IRES activity. Interestingly, we found that AHR expression is induced in ovarian (A2780), breast (MDA-MB231), hepatic (Bel7402) and colorectal cancer cells (SW620) by chemotherapeutic drug paclitaxel (PTX) through IRES-dependent translation mechanism. Moreover, IRES activity is increased in the PTX-resistant ovarian cancer cells in which AHR protein expression was also enhanced. These results strongly suggest an important role for AHR IRES-dependent translation mechanism in cancer cell response to paclitaxel treatment.
Collapse
Affiliation(s)
- Wen-Qing Gao
- Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Jing Ma
- Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Liu-Liu Sun
- Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Qi Li
- Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Rui-Yu Zhu
- Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Jian Jin
- Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| |
Collapse
|
22
|
Abstract
Pituitary adenomas (PA) represent the largest group of intracranial neoplasms and yet the molecular mechanisms driving this disease remain largely unknown. The aim of this study was to use a high-throughput screening method to identify molecular pathways that may be playing a significant and consistent role in PA. RNA profiling using microarrays on eight local PAs identified the aryl hydrocarbon receptor (AHR) signalling pathway as a key canonical pathway downregulated in all PA types. This was confirmed by real-time PCR in 31 tumours. The AHR has been shown to regulate cell cycle progression in various cell types; however, its role in pituitary tissue has never been investigated. In order to validate the role of AHR in PA behaviour, further functional studies were undertaken. Over-expression of AHR in GH3 cells revealed a tumour suppressor potential independent of exogenous ligand activation by benzo α-pyrene (BαP). Cell cycle analysis and quantitative PCR of cell cycle regulator genes revealed that both unstimulated and BαP-stimulated AHR reduced E2F-driven transcription and altered expression of cell cycle regulator genes, thus increasing the percentage of cells in G0/G1 phase and slowing the proliferation rate of GH3 cells. Co-immunoprecipitation confirmed the interaction between AHR and retinoblastoma (Rb1) protein supporting this as a functional mechanism for the observed reduction. Endogenous Ahr reduction using silencing RNA confirmed the tumour suppressive function of the Ahr. These data support a mechanistic pathway for the putative tumour suppressive role of AHR specifically in PA, possibly through its role as a cell cycle co-regulator, even in the absence of exogenous ligands.
Collapse
Affiliation(s)
- R Formosa
- Department of MedicineFaculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - J Borg
- Department of Applied Biomedical ScienceFaculty of Health Sciences, University of Malta, Msida, Malta
| | - J Vassallo
- Department of MedicineFaculty of Medicine and Surgery, University of Malta, Msida, Malta
- Department of MedicineNeuroendocrine Clinic, Mater Dei Hospital, Msida, Malta
| |
Collapse
|
23
|
Wheeler MA, Rothhammer V, Quintana FJ. Control of immune-mediated pathology via the aryl hydrocarbon receptor. J Biol Chem 2017; 292:12383-12389. [PMID: 28615443 DOI: 10.1074/jbc.r116.767723] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Genetic and environmental factors contribute to the development of immune-mediated diseases. Although numerous genetic factors contributing to autoimmunity have been identified in recent years, our knowledge on environmental factors contributing to the pathogenesis of autoimmune diseases and the mechanisms involved is still limited. In this context, the diet, microbiome, geographical location, as well as environmental pollutants have been shown to modulate autoimmune disease development. These environmental factors interact with cellular components of the immune system in distinct and defined ways and can influence immune responses at the transcriptional and protein level. Moreover, endogenous metabolites generated from basic cellular processes such as glycolysis and oxidative phosphorylation also contribute to the shaping of the immune response. In this minireview, we highlight recent progress in our understanding of the modulation of the immune response by the aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor whose activity is regulated by small molecules provided by diet, commensal flora, environmental pollutants, and metabolism. We focus on the role of AhR in integrating signals from the diet and the intestinal flora to modulate ongoing inflammation in the central nervous system, and we also discuss the potential therapeutic value of AhR agonists for multiple sclerosis and other autoimmune diseases.
Collapse
Affiliation(s)
- Michael A Wheeler
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Veit Rothhammer
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115; The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142.
| |
Collapse
|
24
|
Romagnolo DF, Donovan MG, Papoutsis AJ, Doetschman TC, Selmin OI. Genistein Prevents BRCA1 CpG Methylation and Proliferation in Human Breast Cancer Cells with Activated Aromatic Hydrocarbon Receptor. Curr Dev Nutr 2017; 1:e000562. [PMID: 29955703 PMCID: PMC5998349 DOI: 10.3945/cdn.117.000562] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/02/2017] [Accepted: 05/19/2017] [Indexed: 01/11/2023] Open
Abstract
Background: Previous studies have suggested a causative role for agonists of the aromatic hydrocarbon receptor (AhR) in the etiology of breast cancer 1, early-onset (BRCA-1)-silenced breast tumors, for which prospects for treatment remain poor. Objectives: We investigated the regulation of BRCA1 by the soy isoflavone genistein (GEN) in human estrogen receptor α (ERα)-positive Michigan Cancer Foundation-7 (MCF-7) and ERα-negative sporadic University of Arizona Cell Culture-3199 (UACC-3199) breast cancer cells, respectively, with inducible and constitutively active AhR. Methods: In MCF-7 cells, we analyzed the dose- and time-dependent effects of GEN and (-)-epigallocatechin-3-gallate (EGCG) control, selected as prototype dietary DNA methyltransferase (DNMT) inhibitors, on BRCA-1 expression after AhR activation with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and in TCDD-washout experiments. We compared the effects of GEN and EGCG on BRCA1 cytosine-phosphate-guanine (CpG) methylation and cell proliferation. Controls for DNA methylation and proliferation were changes in expression of DNMT-1, cyclin D1, and p53, respectively. In UACC-3199 cells, we compared the effects of GEN and α-naphthoflavone (αNF; 7,8-benzoflavone), a synthetic flavone and AhR antagonist, on BRCA1 expression and CpG methylation, cyclin D1, and cell growth. Finally, we examined the effects of GEN and αNF on BRCA1, AhR-inducible cytochrome P450 (CYP)-1A1 (CYP1A1) and CYP1B1, and AhR mRNA expression. Results: In MCF-7 cells, GEN exerted dose- and time-dependent preventative effects against TCDD-dependent downregulation of BRCA-1. After TCDD washout, GEN rescued BRCA-1 protein expression while reducing DNMT-1 and cyclin D1. GEN and EGCG reduced BRCA1 CpG methylation and cell proliferation associated with increased p53. In UACC-3199 cells, GEN reduced BRCA1 and estrogen receptor-1 (ESR1) CpG methylation, cyclin D1, and cell growth while inducing BRCA-1 and CYP1A1. Conclusions: Results suggest preventative effects for GEN and EGCG against BRCA1 CpG methylation and downregulation in ERα-positive breast cancer cells with activated AhR. GEN and flavone antagonists of AhR may be useful for reactivation of BRCA1 and ERα via CpG demethylation in ERα-negative breast cancer cells harboring constitutively active AhR.
Collapse
Affiliation(s)
- Donato F Romagnolo
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ
- Department of The University of Arizona Cancer Center, The University of Arizona, Tucson, AZ
| | - Micah G Donovan
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ
- Department of The University of Arizona Cancer Center, The University of Arizona, Tucson, AZ
| | - Andreas J Papoutsis
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ
- Department of The University of Arizona Cancer Center, The University of Arizona, Tucson, AZ
| | - Tom C Doetschman
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ
- Department of The University of Arizona Cancer Center, The University of Arizona, Tucson, AZ
| | - Ornella I Selmin
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ
- Department of The University of Arizona Cancer Center, The University of Arizona, Tucson, AZ
| |
Collapse
|
25
|
Wajda A, Łapczuk J, Grabowska M, Pius-Sadowska E, Słojewski M, Laszczynska M, Urasinska E, Machalinski B, Drozdzik M. Cell and region specificity of Aryl hydrocarbon Receptor (AhR) system in the testis and the epididymis. Reprod Toxicol 2017; 69:286-296. [PMID: 28341572 DOI: 10.1016/j.reprotox.2017.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 02/14/2017] [Accepted: 03/20/2017] [Indexed: 11/18/2022]
Abstract
Aryl hydrocarbon receptor (AhR) plays multiple important functions in adaptive responses. Exposure to AhR ligands may produce an altered metabolic activity controlled by the AhR pathways, and consequently affect drug/toxin responses, hormonal status and cellular homeostasis. This research revealed species-, cell- and region-specific pattern of the AhR system expression in the rat and human testis and epididymis, complementing the existing knowledge, especially within the epididymal segments. The study showed that AhR level in the rat and human epididymis is higher than in the testis. The downregulation of AhR expression after TCDD treatment was revealed in the spermatogenic cells at different stages and the epididymal epithelial cells, but not in the Sertoli and Leydig cells. Hence, this basic research provides information about the AhR function in the testis and epididymis, which may provide an insight into deleterious effects of drugs, hormones and environmental pollutants on male fertility.
Collapse
Affiliation(s)
- A Wajda
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Szczecin, Poland.
| | - J Łapczuk
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Szczecin, Poland
| | - M Grabowska
- Department of Histology and Developmental Biology, Pomeranian Medical University, Szczecin, Poland
| | - E Pius-Sadowska
- Department of General Pathology, Pomeranian Medical University, Poland
| | - M Słojewski
- Department of Urology and Urological Oncology, Pomeranian Medical University, Szczecin, Poland
| | - M Laszczynska
- Department of Histology and Developmental Biology, Pomeranian Medical University, Szczecin, Poland
| | - E Urasinska
- Department of Pathology, Pomeranian Medical University, Szczecin, Poland
| | - B Machalinski
- Department of General Pathology, Pomeranian Medical University, Poland
| | - M Drozdzik
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
26
|
Effner R, Hiller J, Eyerich S, Traidl-Hoffmann C, Brockow K, Triggiani M, Behrendt H, Schmidt-Weber CB, Buters JTM. Cytochrome P450s in human immune cells regulate IL-22 and c-Kit via an AHR feedback loop. Sci Rep 2017; 7:44005. [PMID: 28276465 PMCID: PMC5343665 DOI: 10.1038/srep44005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 02/02/2017] [Indexed: 02/08/2023] Open
Abstract
The mechanisms how environmental compounds influence the human immune system are unknown. The environmentally sensitive transcription factor aryl hydrocarbon receptor (AHR) has immune-modulating functions and responds to small molecules. Cytochrome P4501 enzymes (CYP1) act downstream of the AHR and metabolize small molecules. However, it is currently unknown whether CYP1 activity is relevant for immune modulation. We studied the interdependence of CYP1 and AHR in human primary immune cells using pharmacological methods. CYP1 inhibition increased the expression levels of the stem cell factor receptor (c-Kit) and interleukin (IL)-22 but decreased IL-17. Single cell analyses showed that CYP1 inhibition especially promoted CD4+ helper T (Th) cells that co-express c-Kit and IL-22 simultaneously. The addition of an AHR antagonist reversed all these effects. In addition to T cells, we screened other human immune cells for CYP and found cell-specific fingerprints, suggesting that similar mechanisms are present in multiple immune cells. We describe a feedback loop yet unknown in human immune cells where CYP1 inhibition resulted in an altered AHR-dependent immune response. This mechanism relates CYP1-dependent metabolism of environmental small molecules to human immunity.
Collapse
Affiliation(s)
- Renate Effner
- Center of Allergy & Environment (ZAUM), Member of the German Center for Lung Research (DZL), Technische Universität München/Helmholtz Center, Munich, Germany
| | - Julia Hiller
- Chair and Institute of Environmental Medicine (UNIKA-T), Technische Universität München and Helmholtz Center Munich, Munich, Germany
| | - Stefanie Eyerich
- Center of Allergy & Environment (ZAUM), Member of the German Center for Lung Research (DZL), Technische Universität München/Helmholtz Center, Munich, Germany
| | - Claudia Traidl-Hoffmann
- Chair and Institute of Environmental Medicine (UNIKA-T), Technische Universität München and Helmholtz Center Munich, Munich, Germany
- CK-CARE, Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| | - Knut Brockow
- Department of Dermatology and Allergy, Technische Universität München, Munich, Germany
| | - Massimo Triggiani
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Salerno, Italy
| | - Heidrun Behrendt
- Center of Allergy & Environment (ZAUM), Member of the German Center for Lung Research (DZL), Technische Universität München/Helmholtz Center, Munich, Germany
| | - Carsten B. Schmidt-Weber
- Center of Allergy & Environment (ZAUM), Member of the German Center for Lung Research (DZL), Technische Universität München/Helmholtz Center, Munich, Germany
| | - Jeroen T. M. Buters
- Center of Allergy & Environment (ZAUM), Member of the German Center for Lung Research (DZL), Technische Universität München/Helmholtz Center, Munich, Germany
- CK-CARE, Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| |
Collapse
|
27
|
Wang Z, Monti S, Sherr DH. The diverse and important contributions of the AHR to cancer and cancer immunity. CURRENT OPINION IN TOXICOLOGY 2017. [DOI: 10.1016/j.cotox.2017.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Wei KL, Chen FY, Lin CY, Gao GL, Kao WY, Yeh CH, Chen CR, Huang HC, Tsai WR, Jong KJ, Li WJ, Su JGJ. Activation of aryl hydrocarbon receptor reduces carbendazim-induced cell death. Toxicol Appl Pharmacol 2016; 306:86-97. [DOI: 10.1016/j.taap.2016.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 05/14/2016] [Accepted: 06/06/2016] [Indexed: 01/03/2023]
|
29
|
Novikov O, Wang Z, Stanford EA, Parks AJ, Ramirez-Cardenas A, Landesman E, Laklouk I, Sarita-Reyes C, Gusenleitner D, Li A, Monti S, Manteiga S, Lee K, Sherr DH. An Aryl Hydrocarbon Receptor-Mediated Amplification Loop That Enforces Cell Migration in ER-/PR-/Her2- Human Breast Cancer Cells. Mol Pharmacol 2016; 90:674-688. [PMID: 27573671 PMCID: PMC5074452 DOI: 10.1124/mol.116.105361] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/24/2016] [Indexed: 12/18/2022] Open
Abstract
The endogenous ligand-activated aryl hydrocarbon receptor (AHR) plays an important role in numerous biologic processes. As the known number of AHR-mediated processes grows, so too does the importance of determining what endogenous AHR ligands are produced, how their production is regulated, and what biologic consequences ensue. Consequently, our studies were designed primarily to determine whether ER−/PR−/Her2− breast cancer cells have the potential to produce endogenous AHR ligands and, if so, how production of these ligands is controlled. We postulated that: 1) malignant cells produce tryptophan-derived AHR ligand(s) through the kynurenine pathway; 2) these metabolites have the potential to drive AHR-dependent breast cancer migration; 3) the AHR controls expression of a rate-limiting kynurenine pathway enzyme(s) in a closed amplification loop; and 4) environmental AHR ligands mimic the effects of endogenous ligands. Data presented in this work indicate that primary human breast cancers, and their metastases, express high levels of AHR and tryptophan-2,3-dioxygenase (TDO); representative ER−/PR−/Her2− cell lines express TDO and produce sufficient intracellular kynurenine and xanthurenic acid concentrations to chronically activate the AHR. TDO overexpression, or excess kynurenine or xanthurenic acid, accelerates migration in an AHR-dependent fashion. Environmental AHR ligands 2,3,7,8-tetrachlorodibenzo[p]dioxin and benzo[a]pyrene mimic this effect. AHR knockdown or inhibition significantly reduces TDO2 expression. These studies identify, for the first time, a positive amplification loop in which AHR-dependent TDO2 expression contributes to endogenous AHR ligand production. The net biologic effect of AHR activation by endogenous ligands, which can be mimicked by environmental ligands, is an increase in tumor cell migration, a measure of tumor aggressiveness.
Collapse
Affiliation(s)
- Olga Novikov
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts (O.N., Z.W., E.A.S., A.J.P., A.R.-C., D.H.S.); Boston University Molecular and Translational Medicine Program, Boston, Massachusetts (O.N., E.A.S.); Department of Medicine, Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts (D.G., A.L., S.Mo.); Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts (E.L., I.L., C.S.-R.); and Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts (S.Ma., K.L.)
| | - Zhongyan Wang
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts (O.N., Z.W., E.A.S., A.J.P., A.R.-C., D.H.S.); Boston University Molecular and Translational Medicine Program, Boston, Massachusetts (O.N., E.A.S.); Department of Medicine, Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts (D.G., A.L., S.Mo.); Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts (E.L., I.L., C.S.-R.); and Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts (S.Ma., K.L.)
| | - Elizabeth A Stanford
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts (O.N., Z.W., E.A.S., A.J.P., A.R.-C., D.H.S.); Boston University Molecular and Translational Medicine Program, Boston, Massachusetts (O.N., E.A.S.); Department of Medicine, Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts (D.G., A.L., S.Mo.); Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts (E.L., I.L., C.S.-R.); and Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts (S.Ma., K.L.)
| | - Ashley J Parks
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts (O.N., Z.W., E.A.S., A.J.P., A.R.-C., D.H.S.); Boston University Molecular and Translational Medicine Program, Boston, Massachusetts (O.N., E.A.S.); Department of Medicine, Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts (D.G., A.L., S.Mo.); Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts (E.L., I.L., C.S.-R.); and Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts (S.Ma., K.L.)
| | - Alejandra Ramirez-Cardenas
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts (O.N., Z.W., E.A.S., A.J.P., A.R.-C., D.H.S.); Boston University Molecular and Translational Medicine Program, Boston, Massachusetts (O.N., E.A.S.); Department of Medicine, Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts (D.G., A.L., S.Mo.); Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts (E.L., I.L., C.S.-R.); and Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts (S.Ma., K.L.)
| | - Esther Landesman
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts (O.N., Z.W., E.A.S., A.J.P., A.R.-C., D.H.S.); Boston University Molecular and Translational Medicine Program, Boston, Massachusetts (O.N., E.A.S.); Department of Medicine, Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts (D.G., A.L., S.Mo.); Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts (E.L., I.L., C.S.-R.); and Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts (S.Ma., K.L.)
| | - Israa Laklouk
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts (O.N., Z.W., E.A.S., A.J.P., A.R.-C., D.H.S.); Boston University Molecular and Translational Medicine Program, Boston, Massachusetts (O.N., E.A.S.); Department of Medicine, Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts (D.G., A.L., S.Mo.); Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts (E.L., I.L., C.S.-R.); and Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts (S.Ma., K.L.)
| | - Carmen Sarita-Reyes
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts (O.N., Z.W., E.A.S., A.J.P., A.R.-C., D.H.S.); Boston University Molecular and Translational Medicine Program, Boston, Massachusetts (O.N., E.A.S.); Department of Medicine, Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts (D.G., A.L., S.Mo.); Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts (E.L., I.L., C.S.-R.); and Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts (S.Ma., K.L.)
| | - Daniel Gusenleitner
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts (O.N., Z.W., E.A.S., A.J.P., A.R.-C., D.H.S.); Boston University Molecular and Translational Medicine Program, Boston, Massachusetts (O.N., E.A.S.); Department of Medicine, Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts (D.G., A.L., S.Mo.); Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts (E.L., I.L., C.S.-R.); and Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts (S.Ma., K.L.)
| | - Amy Li
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts (O.N., Z.W., E.A.S., A.J.P., A.R.-C., D.H.S.); Boston University Molecular and Translational Medicine Program, Boston, Massachusetts (O.N., E.A.S.); Department of Medicine, Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts (D.G., A.L., S.Mo.); Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts (E.L., I.L., C.S.-R.); and Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts (S.Ma., K.L.)
| | - Stefano Monti
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts (O.N., Z.W., E.A.S., A.J.P., A.R.-C., D.H.S.); Boston University Molecular and Translational Medicine Program, Boston, Massachusetts (O.N., E.A.S.); Department of Medicine, Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts (D.G., A.L., S.Mo.); Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts (E.L., I.L., C.S.-R.); and Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts (S.Ma., K.L.)
| | - Sara Manteiga
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts (O.N., Z.W., E.A.S., A.J.P., A.R.-C., D.H.S.); Boston University Molecular and Translational Medicine Program, Boston, Massachusetts (O.N., E.A.S.); Department of Medicine, Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts (D.G., A.L., S.Mo.); Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts (E.L., I.L., C.S.-R.); and Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts (S.Ma., K.L.)
| | - Kyongbum Lee
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts (O.N., Z.W., E.A.S., A.J.P., A.R.-C., D.H.S.); Boston University Molecular and Translational Medicine Program, Boston, Massachusetts (O.N., E.A.S.); Department of Medicine, Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts (D.G., A.L., S.Mo.); Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts (E.L., I.L., C.S.-R.); and Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts (S.Ma., K.L.)
| | - David H Sherr
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts (O.N., Z.W., E.A.S., A.J.P., A.R.-C., D.H.S.); Boston University Molecular and Translational Medicine Program, Boston, Massachusetts (O.N., E.A.S.); Department of Medicine, Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts (D.G., A.L., S.Mo.); Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts (E.L., I.L., C.S.-R.); and Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts (S.Ma., K.L.)
| |
Collapse
|
30
|
Abiko Y, Puga A, Kumagai Y. Covalent binding of quinones activates the Ah receptor in Hepa1c1c7 cells. J Toxicol Sci 2016; 40:873-86. [PMID: 26558468 DOI: 10.2131/jts.40.873] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Highly reactive quinone species produced by photooxidation and/or metabolic activation of mono- or bi-aromatic hydrocarbons modulate cellular homeostasis and electrophilic signal transduction pathways through the covalent modification of proteins. Polycyclic aromatic hydrocarbons, but not mono- or bi-aromatic hydrocarbons, are well recognized as ligands for the aryl hydrocarbon receptor (AhR). However, quinone species produced from mono- and bi-aromatic hydrocarbons could potentially cause AhR activation. To clarify the AhR response to mono- and bi-aromatic hydrocarbon quinones, we studied Cyp1a1 (cytochrome P450 1A1) induction and AhR activation by these quinones. We detected Cyp1a1 induction during treatment with quinones in Hepa1c1c7 cells, but not their parent compounds. Nine of the twelve quinones with covalent binding capability for proteins induced Cyp1a1. Cyp1a1 induction mediated by 1,2-naphthoquinone (1,2-NQ), 1,4-NQ, 1,4-benzoquinone (1,4-BQ) and tert-butyl-1,4-BQ was suppressed by a specific AhR inhibitor and was not observed in c35 cells, which do not have a functional AhR. These quinones stimulated AhR nuclear translocation and interaction with the AhR nuclear translocator. Interestingly, 1,2-NQ covalently modified AhR, which was detected by an immunoprecipitation assay using a specific antibody against 1,2-NQ, resulting in enhancement of xenobiotic responsive element (XRE)-derived luciferase activity and binding of AhR to the Cyp1a1 promoter region. While mono- and bi-aromatic hydrocarbons are generally believed to be poor ligands for AhR and hence unable to induce Cyp1a1, our study suggests that the quinones of these molecules are able to modify AhR and activate the AhR/XRE pathway, thereby inducing Cyp1a1. Since we previously reported that 1,2-NQ and tert-butyl-1,4-BQ also activate NF-E2-related factor 2, it seems likely that some of quinones are bi-functional inducers for phase-I and phase-II reaction of xenobiotics.
Collapse
Affiliation(s)
- Yumi Abiko
- Faculty of Medicine, University of Tsukuba
| | | | | |
Collapse
|
31
|
Sidorova YA, Perepechaeva ML, Pivovarova EN, Markel AL, Lyakhovich VV, Grishanova AY. Menadione Suppresses Benzo(α)pyrene-Induced Activation of Cytochromes P450 1A: Insights into a Possible Molecular Mechanism. PLoS One 2016; 11:e0155135. [PMID: 27167070 PMCID: PMC4864395 DOI: 10.1371/journal.pone.0155135] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 04/25/2016] [Indexed: 12/31/2022] Open
Abstract
Oxidative reactions that are catalyzed by cytochromes P450 1A (CYP1A) lead to formation of carcinogenic derivatives of arylamines and polycyclic aromatic hydrocarbons (PAHs), such as the widespread environmental pollutant benzo(α)pyrene (BP). These compounds upregulate CYP1A at the transcriptional level via an arylhydrocarbon receptor (AhR)-dependent signaling pathway. Because of the involvement of AhR-dependent genes in chemically induced carcinogenesis, suppression of this signaling pathway could prevent tumor formation and/or progression. Here we show that menadione (a water-soluble analog of vitamin K3) inhibits BP-induced expression and enzymatic activity of both CYP1A1 and CYP1A2 in vivo (in the rat liver) and BP-induced activity of CYP1A1 in vitro. Coadministration of BP and menadione reduced DNA-binding activity of AhR and increased DNA-binding activity of transcription factors Oct-1 and CCAAT/enhancer binding protein (C/EBP), which are known to be involved in negative regulation of AhR-dependent genes, in vivo. Expression of another factor involved in downregulation of CYP1A—pAhR repressor (AhRR)—was lower in the liver of the rats treated with BP and menadione, indicating that the inhibitory effect of menadione on CYP1A is not mediated by this protein. Furthermore, menadione was well tolerated by the animals: no signs of acute toxicity were detected by visual examination or by assessment of weight gain dynamics or liver function. Taken together, our results suggest that menadione can be used in further studies on animal models of chemically induced carcinogenesis because menadione may suppress tumor formation and possibly progression.
Collapse
Affiliation(s)
- Yulia A. Sidorova
- Institute of Molecular Biology and Biophysics, Novosibirsk, Russia
- * E-mail:
| | | | - Elena N. Pivovarova
- Federal research center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Arkady L. Markel
- Federal research center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | | | | |
Collapse
|
32
|
Wincent E, Kubota A, Timme-Laragy A, Jönsson ME, Hahn ME, Stegeman JJ. Biological effects of 6-formylindolo[3,2-b]carbazole (FICZ) in vivo are enhanced by loss of CYP1A function in an Ahr2-dependent manner. Biochem Pharmacol 2016; 110-111:117-29. [PMID: 27112072 DOI: 10.1016/j.bcp.2016.04.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/21/2016] [Indexed: 12/12/2022]
Abstract
6-Formylindolo[3,2-b]carbazole (FICZ) is a potent aryl hydrocarbon receptor (AHR) agonist that is efficiently metabolized by AHR-regulated cytochrome P4501 enzymes. FICZ is a proposed physiological AHR ligand that induces its own degradation as part of a regulatory negative feedback loop. In vitro studies in cells show that CYP1 inhibition in the presence of FICZ results in enhanced AHR activation, suggesting that FICZ accumulates in the cell when its metabolism is blocked. We used zebrafish (Danio rerio) embryos to investigate the in vivo effects of FICZ when CYP1A is knocked down or inhibited. Embryos were injected with morpholino antisense oligonucleotides targeting CYP1A (CYP1A-MO), Ahr2, or a combination of both. FICZ exposure of non-injected embryos or embryos injected with control morpholino had little effect. In CYP1A-MO-injected embryos, however, FICZ dramatically increased mortality, incidence and severity of pericardial edema and circulation failure, reduced hatching frequency, blocked swim bladder inflation, and strongly potentiated expression of Ahr2-regulated genes. These effects were substantially reduced in embryos with a combined knockdown of Ahr2 and CYP1A, indicating that the toxicity was mediated at least partly by Ahr2. Co-exposure to the CYP1 inhibitor alpha-naphthoflavone (αNF) and FICZ had similar effects as the combination of CYP1A-MO and FICZ. HPLC analysis of FICZ-exposed embryos showed increased levels of FICZ after concomitant CYP1A-MO injection or αNF co-exposure. Together, these results show that a functioning CYP1/AHR feedback loop is crucial for regulation of AHR signaling by a potential physiological ligand in vivo and further highlights the role of CYP1 enzymes in regulating biological effects of FICZ.
Collapse
Affiliation(s)
- Emma Wincent
- Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden; Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543-1050, USA.
| | - Akira Kubota
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543-1050, USA.
| | - Alicia Timme-Laragy
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543-1050, USA.
| | - Maria E Jönsson
- Department of Environmental Toxicology, Uppsala University, 75236 Uppsala, Sweden.
| | - Mark E Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543-1050, USA.
| | - John J Stegeman
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543-1050, USA.
| |
Collapse
|
33
|
Stanford EA, Wang Z, Novikov O, Mulas F, Landesman-Bollag E, Monti S, Smith BW, Seldin DC, Murphy GJ, Sherr DH. The role of the aryl hydrocarbon receptor in the development of cells with the molecular and functional characteristics of cancer stem-like cells. BMC Biol 2016; 14:20. [PMID: 26984638 PMCID: PMC4794823 DOI: 10.1186/s12915-016-0240-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 02/22/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Self-renewing, chemoresistant breast cancer stem cells are believed to contribute significantly to cancer invasion, migration and patient relapse. Therefore, the identification of signaling pathways that regulate the acquisition of stem-like qualities is an important step towards understanding why patients relapse and towards development of novel therapeutics that specifically target cancer stem cell vulnerabilities. Recent studies identified a role for the aryl hydrocarbon receptor (AHR), an environmental carcinogen receptor implicated in cancer initiation, in normal tissue-specific stem cell self-renewal. These studies inspired the hypothesis that the AHR plays a role in the acquisition of cancer stem cell-like qualities. RESULTS To test this hypothesis, AHR activity in Hs578T triple negative and SUM149 inflammatory breast cancer cells were modulated with AHR ligands, shRNA or AHR-specific inhibitors, and phenotypic, genomic and functional stem cell-associated characteristics were evaluated. The data demonstrate that (1) ALDH(high) cells express elevated levels of Ahr and Cyp1b1 and Cyp1a1, AHR-driven genes, (2) AHR knockdown reduces ALDH activity by 80%, (3) AHR hyper-activation with several ligands, including environmental ligands, significantly increases ALDH1 activity, expression of stem cell- and invasion/migration-associated genes, and accelerates cell migration, (4) a significant correlation between Ahr or Cyp1b1 expression (as a surrogate marker for AHR activity) and expression of stem cell- and invasion/migration-associated gene sets is seen with genomic data obtained from 79 human breast cancer cell lines and over 1,850 primary human breast cancers, (5) the AHR interacts directly with Sox2, a master regulator of self-renewal; AHR ligands increase this interaction and nuclear SOX2 translocation, (6) AHR knockdown inhibits tumorsphere formation in low adherence conditions, (7) AHR inhibition blocks the rapid migration of ALDH(high) cells and reduces ALDH(high) cell chemoresistance, (8) ALDH(high) cells are highly efficient at initiating tumors in orthotopic xenografts, and (9) AHR knockdown inhibits tumor initiation and reduces tumor Aldh1a1, Sox2, and Cyp1b1 expression in vivo. CONCLUSIONS These data suggest that the AHR plays an important role in development of cells with cancer stem cell-like qualities and that environmental AHR ligands may exacerbate breast cancer by enhancing expression of these properties.
Collapse
Affiliation(s)
- Elizabeth A. Stanford
- />Department of Environmental Health, Boston University School of Public Health, 72 East Concord Street (R-408), Boston, Massachusetts 02118 USA
- />Boston University Molecular and Translational Medicine Program, 72 E. Concord Street, Boston, MA 02118 USA
| | - Zhongyan Wang
- />Department of Environmental Health, Boston University School of Public Health, 72 East Concord Street (R-408), Boston, Massachusetts 02118 USA
| | - Olga Novikov
- />Department of Environmental Health, Boston University School of Public Health, 72 East Concord Street (R-408), Boston, Massachusetts 02118 USA
- />Boston University Molecular and Translational Medicine Program, 72 E. Concord Street, Boston, MA 02118 USA
| | - Francesca Mulas
- />Department of Medicine, Boston University School of Medicine, Section of Computational Biomedicine, Boston, MA 02118 USA
| | - Esther Landesman-Bollag
- />Department of Medicine, Boston University School of Medicine, Section of Hematology and Oncology, 650 Albany Street, Boston, MA 02118 USA
| | - Stefano Monti
- />Department of Medicine, Boston University School of Medicine, Section of Computational Biomedicine, Boston, MA 02118 USA
| | - Brenden W. Smith
- />Boston University Molecular and Translational Medicine Program, 72 E. Concord Street, Boston, MA 02118 USA
- />Department of Medicine, Boston University School of Medicine, Section of Hematology and Oncology, 650 Albany Street, Boston, MA 02118 USA
- />Boston University and Boston Medical Center, Center for Regenerative Medicine (CReM), 710 Albany Street, Boston, MA 02118 USA
| | - David C. Seldin
- />Department of Medicine, Boston University School of Medicine, Section of Hematology and Oncology, 650 Albany Street, Boston, MA 02118 USA
| | - George J. Murphy
- />Department of Medicine, Boston University School of Medicine, Section of Hematology and Oncology, 650 Albany Street, Boston, MA 02118 USA
- />Boston University and Boston Medical Center, Center for Regenerative Medicine (CReM), 710 Albany Street, Boston, MA 02118 USA
| | - David H. Sherr
- />Department of Environmental Health, Boston University School of Public Health, 72 East Concord Street (R-408), Boston, Massachusetts 02118 USA
| |
Collapse
|
34
|
Stiborová M, Moserová M, Mrízová I, Dračínská H, Martínek V, Indra R, Frei E, Adam V, Kizek R, Schmeiser HH, Kubáčková K, Arlt VM. Induced expression of microsomal cytochrome b5 determined at mRNA and protein levels in rats exposed to ellipticine, benzo[ a]pyrene, and 1-phenylazo-2-naphthol (Sudan I). MONATSHEFTE FUR CHEMIE 2016; 147:897-904. [PMID: 27110040 PMCID: PMC4828491 DOI: 10.1007/s00706-015-1636-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 12/13/2015] [Indexed: 11/29/2022]
Abstract
ABSTRACT The microsomal protein cytochrome b5 , which is located in the membrane of the endoplasmic reticulum, has been shown to modulate many reactions catalyzed by cytochrome P450 (CYP) enzymes. We investigated the influence of exposure to the anticancer drug ellipticine and to two environmental carcinogens, benzo[a]pyrene (BaP) and 1-phenylazo-2-naphthol (Sudan I), on the expression of cytochrome b5 in livers of rats, both at the mRNA and protein levels. We also studied the effects of these compounds on their own metabolism and the formation of DNA adducts generated by their activation metabolite(s) in vitro. The relative amounts of cytochrome b5 mRNA, measured by real-time polymerase chain reaction analysis, were induced by the test compounds up to 11.7-fold in rat livers. Western blotting using antibodies raised against cytochrome b5 showed that protein expression was induced by up to sevenfold in livers of treated rats. Microsomes isolated from livers of exposed rats catalyzed the oxidation of ellipticine, BaP, and Sudan I and the formation of DNA adducts generated by their reactive metabolite(s) more effectively than hepatic microsomes isolated from control rats. All test compounds are known to induce CYP1A1. This induction is one of the reasons responsible for increased oxidation of these xenobiotics by microsomes. However, induction of cytochrome b5 can also contribute to their enhanced metabolism. GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Marie Stiborová
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic
| | - Michaela Moserová
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic
| | - Iveta Mrízová
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic
| | - Helena Dračínská
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic
| | - Václav Martínek
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic
| | - Radek Indra
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic
| | - Eva Frei
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic
| | - Vojtěch Adam
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, 613 00 Brno, Czech Republic
| | - René Kizek
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, 613 00 Brno, Czech Republic
| | - Heinz H Schmeiser
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Kateřina Kubáčková
- Department of Oncology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 150 06 Prague 5, Czech Republic
| | - Volker M Arlt
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King's College London, London, SE1 9NH UK
| |
Collapse
|
35
|
Romagnolo DF, Papoutsis AJ, Laukaitis C, Selmin OI. Constitutive expression of AhR and BRCA-1 promoter CpG hypermethylation as biomarkers of ERα-negative breast tumorigenesis. BMC Cancer 2015; 15:1026. [PMID: 26715507 PMCID: PMC4696163 DOI: 10.1186/s12885-015-2044-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 12/23/2015] [Indexed: 12/15/2022] Open
Abstract
Background Only 5–10 % of breast cancer cases is linked to germline mutations in the BRCA-1 gene and occurs early in life. Conversely, sporadic breast tumors, which represent 90-95 % of breast malignancies, have lower BRCA-1 expression, but not mutated BRCA-1 gene, and tend to occur later in life in combination with other genetic alterations and/or environmental exposures. The latter may include environmental and dietary factors that activate the aromatic hydrocarbon receptor (AhR). Therefore, understanding if changes in expression and/or activation of the AhR are associated with somatic inactivation of the BRCA-1 gene may provide clues for breast cancer therapy. Methods We evaluated Brca-1 CpG promoter methylation and expression in mammary tumors induced in Sprague–Dawley rats with the AhR agonist and mammary carcinogen 7,12-dimethyl-benzo(a)anthracene (DMBA). Also, we tested in human estrogen receptor (ER)α-negative sporadic UACC-3199 and ERα-positive MCF-7 breast cancer cells carrying respectively, hyper- and hypomethylated BRCA-1 gene, if the treatment with the AhR antagonist α-naphthoflavone (αNF) modulated BRCA-1 and ERα expression. Finally, we examined the association between expression of AhR and BRCA-1 promoter CpG methylation in human triple-negative (TNBC), luminal-A (LUM-A), LUM-B, and epidermal growth factor receptor-2 (HER-2)-positive breast tumor samples. Results Mammary tumors induced with DMBA had reduced BRCA-1 and ERα expression; higher Brca-1 promoter CpG methylation; increased expression of Ahr and its downstream target Cyp1b1; and higher proliferation markers Ccnd1 (cyclin D1) and Cdk4. In human UACC-3199 cells, low BRCA-1 was paralleled by constitutive high AhR expression; the treatment with αNF rescued BRCA-1 and ERα, while enhancing preferential expression of CYP1A1 compared to CYP1B1. Conversely, in MCF-7 cells, αNF antagonized estradiol-dependent activation of BRCA-1 without effects on expression of ERα. TNBC exhibited increased basal AhR and BRCA-1 promoter CpG methylation compared to LUM-A, LUM-B, and HER-2-positive breast tumors. Conclusions Constitutive AhR expression coupled to BRCA-1 promoter CpG hypermethylation may be predictive markers of ERα-negative breast tumor development. Regimens based on selected AhR modulators (SAhRMs) may be useful for therapy against ERα-negative tumors, and possibly, TNBC with increased AhR and hypermethylated BRCA-1 gene.
Collapse
Affiliation(s)
- Donato F Romagnolo
- Department of Nutritional Sciences, The University of Arizona, 303 Shantz Bldg, Tucson, AZ, 85721-0038, USA. .,The University of Arizona Cancer Center, 1515 N. Campbell Avenue, 3999A, Tucson, AZ, 85724-5024, USA.
| | - Andreas J Papoutsis
- Department of Nutritional Sciences, The University of Arizona, 303 Shantz Bldg, Tucson, AZ, 85721-0038, USA.
| | - Christina Laukaitis
- Department of Nutritional Sciences, The University of Arizona, 303 Shantz Bldg, Tucson, AZ, 85721-0038, USA. .,The University of Arizona Cancer Center, 1515 N. Campbell Avenue, 3999A, Tucson, AZ, 85724-5024, USA. .,Department of Medicine, University of Arizona College of Medicine, The University of Arizona, Tucson, AZ, USA.
| | - Ornella I Selmin
- Department of Nutritional Sciences, The University of Arizona, 303 Shantz Bldg, Tucson, AZ, 85721-0038, USA. .,The University of Arizona Cancer Center, 1515 N. Campbell Avenue, 3999A, Tucson, AZ, 85724-5024, USA.
| |
Collapse
|
36
|
Quercetin-6-C-β-d-glucopyranoside, natural analog of quercetin exhibits anti-prostate cancer activity by inhibiting Akt-mTOR pathway via aryl hydrocarbon receptor. Biochimie 2015; 119:68-79. [DOI: 10.1016/j.biochi.2015.10.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 10/12/2015] [Indexed: 12/16/2022]
|
37
|
Ishida M, Mikami S, Shinojima T, Kosaka T, Mizuno R, Kikuchi E, Miyajima A, Okada Y, Oya M. Activation of aryl hydrocarbon receptor promotes invasion of clear cell renal cell carcinoma and is associated with poor prognosis and cigarette smoke. Int J Cancer 2015; 137:299-310. [PMID: 25523818 DOI: 10.1002/ijc.29398] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 12/02/2014] [Indexed: 12/16/2023]
Abstract
Although exposure to environmental pollutants is one of the risk factors for renal cell carcinoma (RCC), its relationship with carcinogenesis and the progression of RCC remains unknown. The present study was designed to elucidate the role of the aryl hydrocarbon receptor (AhR), a major mediator of carcinogenesis caused by environmental pollutants, in the progression of RCC. The expression of AhR was investigated in 120 patients with RCC using immunohistochemistry, and its relationship with clinicopathological parameters and prognoses was statistically analyzed. RCC cell lines were exposed to indirubin or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), AhR ligands, to activate the AhR pathway, or were transfected with small interfering RNA (siRNA) for AhR. The expression of the AhR target genes CYP1A1 and CYP1B1, matrix metalloproteinases (MMPs), and invasion through Matrigel(TM) were then examined. AhR was predominantly expressed in the nuclei of high-grade clear cell RCC (ccRCC) and tumor-infiltrating lymphocytes (TILs), and its expression levels in cancer cells and TILs correlated with the pathological tumor stage and histological grade. A multivariate Cox analysis revealed that the strong expression of AhR in cancer cells was a significant and independent predictor of disease-specific survival. AhR ligands up-regulated the expression of AhR and CYPs and promoted invasion by up-regulating MMPs. Furthermore, siRNA for AhR down-regulated CYPs, and inhibited cancer cell invasion together with the down-regulation of MMPs. These results suggest that AhR regulates the invasion of ccRCC and may be involved in tumor immunity. Therefore, inhibiting the activation of AhR may represent a potentially attractive therapeutic target for ccRCC patients.
Collapse
Affiliation(s)
- Masaru Ishida
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
- Department of Urology, Saiseikai Yokohamashi Tobu Hospital, Yokohama, Japan
| | - Shuji Mikami
- Division of Diagnostic Pathology, Keio University Hospital, Tokyo, Japan
| | | | - Takeo Kosaka
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Ryuichi Mizuno
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Eiji Kikuchi
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Akira Miyajima
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Yasunori Okada
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Mototsugu Oya
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
38
|
Stockinger B, Di Meglio P, Gialitakis M, Duarte JH. The aryl hydrocarbon receptor: multitasking in the immune system. Annu Rev Immunol 2014; 32:403-32. [PMID: 24655296 DOI: 10.1146/annurev-immunol-032713-120245] [Citation(s) in RCA: 648] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The aryl hydrocarbon receptor (AhR), for many years almost exclusively studied by the pharmacology/toxicology field for its role in mediating the toxicity of xenobiotics such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), has more recently attracted the attention of immunologists. The evolutionary conservation of this transcription factor and its widespread expression in the immune system point to important physiological functions that are slowly being unraveled. In particular, the emphasis is now shifting from the role of AhR in the xenobiotic pathway toward its mode of action in response to physiological ligands. In this article, we review the current understanding of the molecular interactions and functions of AhR in the immune system in steady state and in the presence of infection and inflammation, with a focus on barrier organs such as the skin, the gut, and the lung.
Collapse
Affiliation(s)
- Brigitta Stockinger
- Division of Molecular Immunology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom; , , ,
| | | | | | | |
Collapse
|
39
|
Williams EG, Mouchiroud L, Frochaux M, Pandey A, Andreux PA, Deplancke B, Auwerx J. An evolutionarily conserved role for the aryl hydrocarbon receptor in the regulation of movement. PLoS Genet 2014; 10:e1004673. [PMID: 25255223 PMCID: PMC4177751 DOI: 10.1371/journal.pgen.1004673] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 08/14/2014] [Indexed: 02/04/2023] Open
Abstract
The BXD genetic reference population is a recombinant inbred panel descended from crosses between the C57BL/6 (B6) and DBA/2 (D2) strains of mice, which segregate for about 5 million sequence variants. Recently, some of these variants have been established with effects on general metabolic phenotypes such as glucose response and bone strength. Here we phenotype 43 BXD strains and observe they have large variation (-5-fold) in their spontaneous activity during waking hours. QTL analyses indicate that -40% of this variance is attributable to a narrow locus containing the aryl hydrocarbon receptor (Ahr), a basic helix-loop-helix transcription factor with well-established roles in development and xenobiotic metabolism. Strains with the D2 allele of Ahr have reduced gene expression compared to those with the B6 allele, and have significantly higher spontaneous activity. This effect was also observed in B6 mice with a congenic D2 Ahr interval, and in B6 mice with a humanized AHR allele which, like the D2 allele, is expressed much less and has less enzymatic activity than the B6 allele. Ahr is highly conserved in invertebrates, and strikingly inhibition of its orthologs in D. melanogaster and C. elegans (spineless and ahr-1) leads to marked increases in basal activity. In mammals, Ahr has numerous ligands, but most are either non-selective (e.g. resveratrol) or highly toxic (e.g., 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)). Thus, we chose to examine a major environmental influence--long term feeding with high fat diet (HFD)--to see if the effects of Ahr are dependent on major metabolic differences. Interestingly, while HFD robustly halved movement across all strains, the QTL position and effects of Ahr remained unchanged, indicating that the effects are independent. The highly consistent effects of Ahr on movement indicate that changes in its constitutive activity have a role on spontaneous movement and may influence human behavior.
Collapse
Affiliation(s)
- Evan G. Williams
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Laurent Mouchiroud
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Michael Frochaux
- Laboratory of Systems Biology and Genetics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Ashutosh Pandey
- Center for Integrative and Translational Genomics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Pénélope A. Andreux
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Bart Deplancke
- Laboratory of Systems Biology and Genetics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
40
|
Winston-McPherson GN, Shu D, Tang W. Synthesis and biological evaluation of 2,3'-diindolylmethanes as agonists of aryl hydrocarbon receptor. Bioorg Med Chem Lett 2014; 24:4023-5. [PMID: 24997686 DOI: 10.1016/j.bmcl.2014.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 06/05/2014] [Indexed: 01/30/2023]
Abstract
Recent studies suggest that arylhydrocarbon receptor (AhR) may be a target for a number of diseases. Natural product malassezin is a AhR agonist with an interesting 2,3'-diindolylmethane skeleton. We have prepared a series of analogues of natural product malassezin using our recently developed method and tested the activity of these analogues against AhR in a cell-based assay. We found that a methyl substituent at 1'-N can significantly increase the activity and the 2-formyl group is not critical for some diindolylmethanes.
Collapse
Affiliation(s)
| | - Dongxu Shu
- School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, WI 53705, United States; Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, WI 53706, United States
| | - Weiping Tang
- School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, WI 53705, United States; Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, WI 53706, United States.
| |
Collapse
|
41
|
Richmond O, Ghotbaddini M, Allen C, Walker A, Zahir S, Powell JB. The aryl hydrocarbon receptor is constitutively active in advanced prostate cancer cells. PLoS One 2014; 9:e95058. [PMID: 24755659 PMCID: PMC3995675 DOI: 10.1371/journal.pone.0095058] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 03/23/2014] [Indexed: 11/30/2022] Open
Abstract
Background Distant prostate cancers are commonly hormone refractory and exhibit increased growth no longer inhibited by androgen deprivation therapy. Understanding all molecular mechanisms contributing to uncontrolled growth is important to obtain effective treatment strategies for hormone refractory prostate cancers (HRPC). The aryl hydrocarbon receptor (AhR) affects a number of biological processes including cell growth and differentiation. Several studies have revealed that exogenous AhR ligands inhibit cellular proliferation but recent evidence suggests AhR may possess intrinsic functions that promote cellular proliferation in the absence of exogenous ligands. Methods/Results qRT-PCR and western blot analysis was used to determine AhR mRNA and protein expression in hormone sensitive LNCaP cells as well as hormone refractory DU145, PC3 and PC3M prostate cancer cell lines. LNCaP cells express AhR mRNA and protein at a much lower level than the hormone refractory cell models. Cellular fractionation and immunocytochemistry revealed nuclear localization of AhR in the established hormone refractory cell lines while LNCaP cells are devoid of nuclear AhR protein. qRT-PCR analysis used to assess basal CYP1B1 levels and a xenobiotic responsive element binding assay confirmed ligand independent transcriptional activity of AhR in DU145, PC3 and PC3M cells. Basal CYP1B1 levels were decreased by treatment with specific AhR inhibitor, CH223191. An in vitro growth assay revealed that CH223191 inhibited growth of DU145, PC3 and PC3M cells in an androgen depleted environment. Immunohistochemical staining of prostate cancer tissues revealed increased nuclear localization of AhR in grade 2 and grade 3 cancers compared to the well differentiated grade 1 cancers. Conclusions Together, these results show that AhR is constitutively active in advanced prostate cancer cell lines that model hormone refractory prostate cancer. Chemical ablation of AhR signaling can reduce the growth of advanced prostate cancer cells, an effect not achieved with androgen receptor inhibitors or growth in androgen depleted media.
Collapse
Affiliation(s)
- Oliver Richmond
- Clark Atlanta University Center for Cancer Research and Therapeutic Development (CCRTD), Atlanta, Georgia, United States of America
| | - Maryam Ghotbaddini
- Clark Atlanta University Center for Cancer Research and Therapeutic Development (CCRTD), Atlanta, Georgia, United States of America
| | - Cidney Allen
- Clark Atlanta University Department of Biological Sciences, Atlanta, Georgia, United States of America
| | - Alice Walker
- Clark Atlanta University Center for Cancer Research and Therapeutic Development (CCRTD), Atlanta, Georgia, United States of America
| | - Shokouh Zahir
- Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Joann B. Powell
- Clark Atlanta University Center for Cancer Research and Therapeutic Development (CCRTD), Atlanta, Georgia, United States of America
- Clark Atlanta University Department of Biological Sciences, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
42
|
Jackson DP, Li H, Mitchell KA, Joshi AD, Elferink CJ. Ah receptor-mediated suppression of liver regeneration through NC-XRE-driven p21Cip1 expression. Mol Pharmacol 2014; 85:533-41. [PMID: 24431146 DOI: 10.1124/mol.113.089730] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous studies in hepatocyte-derived cell lines and the whole liver established that the aryl hydrocarbon receptor (AhR) can disrupt G1-phase cell cycle progression following exposure to persistent AhR agonists, such as TCDD (dioxin, 2,3,7,8-tetrachlorodibenzo-p-dioxin). Growth arrest was attributed to inhibition of G1-phase cyclin-dependent kinase 2 (CDK2) activity. The present study examined the effect of TCDD exposure on liver regeneration following 70% partial hepatectomy in mice lacking the Cip/Kip inhibitors p21(Cip1) or p27(Kip1) responsible for regulating CDK2 activity. Assessment of the regenerative process in wild-type, p21(Cip1) knockout, and p27(Kip1) knockout mice confirmed that TCDD-induced inhibition of liver regeneration is entirely dependent on p21(Cip1) expression. Compared with wild-type mice, the absence of p21(Cip1) expression completely abrogated the TCDD inhibition, and accelerated hepatocyte progression through G1 phase during the regenerative process. Analysis of the transcriptional response determined that increased p21(Cip1) expression during liver regeneration involved an AhR-dependent mechanism. Chromatin immunoprecipitation studies revealed that p21(Cip1) induction required AhR binding to the newly characterized nonconsensus xenobiotic response element, in conjunction with the tumor suppressor protein Kruppel-like factor 6 functioning as an AhR binding partner. The evidence also suggests that AhR functionality following partial hepatectomy is dependent on a p21(Cip1)-regulated signaling process, intimately linking AhR biology to the G1-phase cell cycle program.
Collapse
Affiliation(s)
- Daniel P Jackson
- Department of Pharmacology and Toxicology (D.P.J., A.D.J., C.J.E.) and Department of Pediatrics (H.L.), University of Texas Medical Branch, Galveston, Texas; and Department of Biological Sciences, Boise State University, Boise, Idaho (K.A.M.)
| | | | | | | | | |
Collapse
|
43
|
Shiizaki K, Ohsako S, Kawanishi M, Yagi T. Identification of amino acid residues in the ligand-binding domain of the aryl hydrocarbon receptor causing the species-specific response to omeprazole: possible determinants for binding putative endogenous ligands. Mol Pharmacol 2013; 85:279-89. [PMID: 24265133 DOI: 10.1124/mol.113.088856] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Omeprazole (OME) induces the expression of genes encoding drug-metabolizing enzymes, such as CYP1A1, via activation of the aryl hydrocarbon receptor (AhR) both in vivo and in vitro. However, the precise mechanism of OME-mediated AhR activation is still under investigation. While elucidating species-specific susceptibility to dioxin, we found that OME-mediated AhR activation was mammalian species specific. Moreover, we previously reported that OME has inhibitory activity toward CYP1A1 enzymes. From these observations, we speculated that OME-mediated AhR target gene transcription is due to AhR activation by increasing amounts of putative AhR ligands in serum by inhibition of CYP1A1 activity. We compared the amino acid sequences of OME-sensitive rabbit AhR and nonsensitive mouse AhR to identify the residues responsible for the species-specific response. Chimeric AhRs were constructed by exchanging domains between mouse and rabbit AhRs to define the region required for the response to OME. OME-mediated transactivation was observed only with the chimeric AhR that included the ligand-binding domain (LBD) of the rabbit AhR. Site-directed mutagenesis revealed three amino acids (M328, T353, and F367) in the rabbit AhR that were responsible for OME-mediated transactivation. Replacing these residues with those of the mouse AhR abolished the response of the rabbit AhR. In contrast, substitutions of these amino acids with those of the rabbit AhR altered nonsensitive mouse AhR to become sensitive to OME. These results suggest that OME-mediated AhR activation requires a specific structure within LBD that is probably essential for binding with enigmatic endogenous ligands.
Collapse
Affiliation(s)
- Kazuhiro Shiizaki
- Division of Cancer Development System, National Cancer Center Research Institute, Tokyo, Japan (K.S.); Division of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (S.O.); Department of Life Science, Dongguk University, Seoul, Korea (T.Y.); and Department of Biology, Graduate School of Science, Osaka Prefecture University, Osaka, Japan (M.K., T.Y.)
| | | | | | | |
Collapse
|
44
|
Quintana FJ, Sherr DH. Aryl hydrocarbon receptor control of adaptive immunity. Pharmacol Rev 2013; 65:1148-61. [PMID: 23908379 DOI: 10.1124/pr.113.007823] [Citation(s) in RCA: 250] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that belongs to the family of basic helix-loop-helix transcription factors. Although the AhR was initially recognized as the receptor mediating the pathologic effects of dioxins and other pollutants, the activation of AhR by endogenous and environmental factors has important physiologic effects, including the regulation of the immune response. Thus, the AhR provides a molecular pathway through which environmental factors modulate the immune response in health and disease. In this review, we discuss the role of AhR in the regulation of the immune response, the source and chemical nature of AhR ligands, factors controlling production and degradation of AhR ligands, and the potential to target the AhR for therapeutic immunomodulation.
Collapse
Affiliation(s)
- Francisco J Quintana
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
45
|
Goode GD, Ballard BR, Manning HC, Freeman ML, Kang Y, Eltom SE. Knockdown of aberrantly upregulated aryl hydrocarbon receptor reduces tumor growth and metastasis of MDA-MB-231 human breast cancer cell line. Int J Cancer 2013; 133:2769-80. [PMID: 23733406 DOI: 10.1002/ijc.28297] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 05/10/2013] [Indexed: 11/10/2022]
Abstract
The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor that belongs to the basic-helix-loop-helix (bHLH)-Per-ARNT-Sim (PAS) superfamily of transcription factors, mediates toxic response induced by environmental chemicals such as polycyclic aromatic hydrocarbons (PAH). AhR is expressed at high levels in several human breast carcinoma cell lines in direct correlation with the degree of their malignancy. Recent studies suggest a possible role for AhR in cancer independent of PAH. Therefore, we established stable AhR knockdown cells of the human breast cancer cell line MDA-MB-231 and analyzed their tumorigenic properties in in vitro and in vivo model systems. In addition we analyzed their response to radiation and chemotherapeutic treatment. AhR knockdown attenuated these cells tumorigenic properties in vitro including proliferation, anchorage independent growth, migration and apoptosis and reduced orthotopic xenograft tumor growth and lung metastasis in vivo. Notably, we observed that AhR knockdown enhanced radiation-induced apoptosis as well as significantly decreased cell clonogenic survival. Furthermore, AhR knockdown in MDA-MB-231 cells sensitized them to paclitaxel treatment, evident by a decrease in the required cytotoxic dose. Subsequent analysis revealed AhR knockdown significantly reduced phosphorylation of AKT, which impacts cell proliferation and survival. Apoptosis-focused gene expression analyses revealed an altered expression of genes regulating apoptosis in MDA-MB-231 cells. Collectively, our data identify AhR as a potential novel therapeutic target in the treatment of metastatic breast cancer.
Collapse
Affiliation(s)
- Gennifer D Goode
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN
| | | | | | | | | | | |
Collapse
|
46
|
Hofsteen P, Plavicki J, Johnson SD, Peterson RE, Heideman W. Sox9b is required for epicardium formation and plays a role in TCDD-induced heart malformation in zebrafish. Mol Pharmacol 2013; 84:353-60. [PMID: 23775563 DOI: 10.1124/mol.113.086413] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Activation of the transcription factor aryl hydrocarbon receptor by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) prevents the formation of the epicardium and leads to severe heart malformations in developing zebrafish (Danio rerio). The downstream genes that cause heart malformation are not known. Because TCDD causes craniofacial malformations in zebrafish by downregulating the sox9b gene, we hypothesized that cardiotoxicity might also result from sox9b downregulation. We found that sox9b is expressed in the developing zebrafish heart ventricle and that TCDD exposure markedly reduces this expression. Furthermore, we found that manipulation of sox9b expression could phenocopy many but not all of the effects of TCDD at the heart. Loss of sox9b prevented the formation of epicardium progenitors comprising the proepicardium on the pericardial wall, and prevented the formation and migration of the epicardial layer around the heart. Zebrafish lacking sox9b showed pericardial edema, an elongated heart, and reduced blood circulation. Fish lacking sox9b failed to form valve cushions and leaflets. Sox9b is one of two mammalian Sox9 homologs, sox9b and sox9a. Knock down of sox9a expression did not cause cardiac malformations, or defects in epicardium development. We conclude that the decrease in sox9b expression in the heart caused by TCDD plays a role in many of the observed signs of cardiotoxicity. We find that while sox9b is expressed in myocardial cells, it is not normally expressed in the affected epicardial cells or progenitors. We therefore speculate that sox9b is involved in signals between the cardiomyocytes and the nascent epicardial cells.
Collapse
Affiliation(s)
- Peter Hofsteen
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA
| | | | | | | | | |
Collapse
|
47
|
The evolving role of the aryl hydrocarbon receptor (AHR) in the normophysiology of hematopoiesis. Stem Cell Rev Rep 2013; 8:1223-35. [PMID: 22628113 DOI: 10.1007/s12015-012-9384-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In addition to its role as a toxicological signal mediator, the Aryl Hydrocarbon Receptor (AHR) is also a transcription factor known to regulate cellular responses to oxidative stress and inflammation through transcriptional regulation of molecules involved in the signaling of nucear factor-erythroid 2-related factor-2 (Nrf2), p53 (TRP53), retinoblastoma (RB1), and NFκB. Recent research suggests that AHR activation of these signaling pathways may provide the molecular basis for understanding AHR's evolving role in endogenous developmental functions during hematopoietic stem-cell maintenance and differentiation. Recent developments into the hematopoietic roles for AHR are reviewed, aiming to reconcile divergent findings as to the endogenous function of AHR in hematopoiesis. Potential mechanistic explanations for AHR's involvement in hematopoietic differentiation are discussed, focusing on its known role as a cell cycle mediator and its interactions with Hypoxia-inducible transcription factor-1 alpha (HIF1-α). Understanding the physiological mechanisms of AHR activation and signaling have far reaching implications ranging from explaining the action of various toxicological agents to providing novel ways to expand stem cell populations ex vivo for use in transplant therapies.
Collapse
|
48
|
Powell JB, Goode GD, Eltom SE. The Aryl Hydrocarbon Receptor: A Target for Breast Cancer Therapy. ACTA ACUST UNITED AC 2013; 4:1177-1186. [PMID: 25068070 PMCID: PMC4111475 DOI: 10.4236/jct.2013.47137] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that regulates a battery of genes in response to exposure to a broad class of environmental poly aromatic hydrocarbons (PAH). AhR is historically characterized for its role in mediating the toxicity and adaptive responses to these chemicals, however mounting evidence has established a role for it in ligand-independent physiological processes and pathological conditions, including cancer. The AhR is overexpressed and constitutively activated in advanced breast cancer cases and was shown to drive the progression of breast cancer. In this article we will review the current state of knowledge on the possible role of AhR in breast cancer and how it will be exploited in targeting AhR for breast cancer therapy.
Collapse
Affiliation(s)
- Joann B Powell
- Department of Biological Sciences & Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, USA
| | - Gennifer D Goode
- Department of Biochemistry & Cancer Biology, Meharry Medical College, Nashville, USA
| | - Sakina E Eltom
- Department of Biochemistry & Cancer Biology, Meharry Medical College, Nashville, USA
| |
Collapse
|
49
|
Fang CC, Chen FY, Chen CR, Liu CC, Wong LC, Liu YW, Su JGJ. Cyprodinil as an activator of aryl hydrocarbon receptor. Toxicology 2012; 304:32-40. [PMID: 23228475 DOI: 10.1016/j.tox.2012.11.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 11/15/2012] [Accepted: 11/28/2012] [Indexed: 01/19/2023]
Abstract
Cyprodinil is a pyrimidinamine fungicide, used worldwide by agriculture. It is used to protect fruit plants and vegetables from a wide range of pathogens. Benzo[a]pyrene (BaP) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) are toxic environmental pollutants and are prototypes of aryl hydrocarbon receptor (AHR) ligands. Although the structure of cyprodinil distinctly differs from those of BaP and TCDD, our results show that cyprodinil induced nuclear translocation of the AHR, and induced the transcriptional activity of aryl hydrocarbon response element (AHRE). Cyprodinil induced the expression of cytochrome P450 (CYP) 1A1, a well-known AHR-targeted gene, in ovarian granulosa cells, HO23, and hepatoma cells, Hepa-1c1c7. Its induction did not appear in AHR signal-deficient cells, and was blocked by the AHR antagonist, CH-223191. Cyprodinil decreased AHR expression in HO23 cells, resulting in CYP1A1 expression decreasing after it peaked at 9h of treatment in HO23 cells. Dexamethasone is a synthetic agonist of glucocorticoids. Cyprodinil enhanced dexamethasone-induced gene expression, and conversely, its induction of CYP1A1 expression was decreased by dexamethasone in HO23 cells, indicating its induction of crosstalk between the AHR and glucocorticoid receptor and its role as a potential endocrine disrupter. In addition to BaP, TCDD, and an AHR agonist, β-NF, cyprodinil also phosphorylated extracellular signal-regulated kinase (ERK) in HO23 and Hepa-1c1c7 cells, indicating its deregulation of ERK activity. In summary, our results demonstrate that cyprodinil, similar to BaP, acts as an AHR activator, a potential endocrine disrupter, and an ERK disrupter.
Collapse
Affiliation(s)
- Chien-Chung Fang
- Hepato-Gastroenterology, Chiayi Christian Hospital, Chiayi 600, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
50
|
Andrysík Z, Procházková J, Kabátková M, Umannová L, Šimečková P, Kohoutek J, Kozubík A, Machala M, Vondráček J. Aryl hydrocarbon receptor-mediated disruption of contact inhibition is associated with connexin43 downregulation and inhibition of gap junctional intercellular communication. Arch Toxicol 2012; 87:491-503. [DOI: 10.1007/s00204-012-0963-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 10/11/2012] [Indexed: 11/29/2022]
|