1
|
Montiel I, Bello-Medina PC, Prado-Alcalá RA, Quirarte GL, Verdín-Ruvalcaba LA, Marín-Juárez TA, Medina AC. Involvement of kinases in memory consolidation of inhibitory avoidance training. Rev Neurosci 2025; 36:189-208. [PMID: 39323086 DOI: 10.1515/revneuro-2024-0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/08/2024] [Indexed: 09/27/2024]
Abstract
The inhibitory avoidance (IA) task is a paradigm widely used to investigate the molecular and cellular mechanisms involved in the formation of long-term memory of aversive experiences. In this review, we discuss studies on different brain structures in rats associated with memory consolidation, such as the hippocampus, striatum, and amygdala, as well as some cortical areas, including the insular, cingulate, entorhinal, parietal and prefrontal cortex. These studies have shown that IA training triggers the release of neurotransmitters, hormones, growth factors, etc., that activate intracellular signaling pathways related to protein kinases, which induce intracellular non-genomic changes or transcriptional mechanisms in the nucleus, leading to the synthesis of proteins. We have summarized the temporal dynamics and crosstalk among protein kinase A, protein kinase C, mitogen activated protein kinase, extracellular-signal-regulated kinase, and Ca2+/calmodulin-dependent protein kinase II described in the hippocampus. Protein kinase activity has been associated with structural changes and synaptic strengthening, resulting in memory storage. However, little is known about the molecular mechanisms involved in intense IA training, which protects memory from typical amnestic treatments, such as protein synthesis inhibitors, and induces increased spinogenesis, suggesting an unexplored mechanism independent of the genomic pathway. This highly emotional experience causes an extinction-resistant memory, as has been observed in some pathological states such as post-traumatic stress disorder. We propose that the changes in spinogenesis observed after intense IA training could be generated by protein kinases via non-genomic pathways.
Collapse
Affiliation(s)
- Ivan Montiel
- Institut Pasteur, Université Paris Cité, Neural Circuits for Spatial Navigation and Memory, Department of Neuroscience, F-75015, Paris, France
- Sorbonne Université, Collège Doctoral, F-75005, Paris, France
| | - Paola C Bello-Medina
- Facultad de Ciencias, Universidad del Tolima, Altos de Santa Helena, Ibagué, Tolima, Colombia
| | - Roberto A Prado-Alcalá
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico
| | - Gina L Quirarte
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico
| | - Luis A Verdín-Ruvalcaba
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico
| | - Tzitzi A Marín-Juárez
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico
| | - Andrea C Medina
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico
| |
Collapse
|
2
|
Alicia SV, Rivera-Moctezuma FG, Marrero Valentín JL, Pérez D, Tosado-Rodríguez EL, Roche Lima A, Ferchmin PA, Sabeva N. Neuroprotection by 4R-cembranoid against Gulf War Illness-related Chemicals is mediated by ERK, PI3K, and CaMKII pathways. Neuropharmacology 2025; 264:110199. [PMID: 39447735 DOI: 10.1016/j.neuropharm.2024.110199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/17/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
Gulf War Illness (GWI) has been consistently linked to exposure to pyridostigmine (PB), N,N-Diethyl-meta-toluamide (DEET), permethrin (PER), and traces of sarin. In this study, diisopropylfluorophosphate (DFP, sarin surrogate) and the GWI-related chemicals were found to reduce the number of functionally active neurons in rat hippocampal slices. These findings confirm a link between GWI neurotoxicants and N-Methyl-D-Aspartate (NMDA)-mediated excitotoxicity, which was successfully reversed by Edelfosine (a phospholipase Cβ (PLCβ3) inhibitor) and Flupirtine (a Kv7 channel agonist). To test whether 4R-cembranoid (4R), a nicotinic α7 acetylcholinesterase receptor (α7AChR) modulator known for its neuroprotective properties, can restore hippocampal neurons from glutamate-induced neurotoxicity, we exposed rat hippocampal slices with DFP for 10 min followed by 60 min treatment with 4R. We investigated the 4R mechanisms of neuroprotection after preincubation with LY294002, PD98059, and KN-62. The inhibition of the phosphatidylinositol 3-kinase (PI3K), mitogen-activated protein kinase (MEK1/2), and calcium/calmodulin-dependent protein kinase (CaMKII) abrogated the protective effect of 4R against DFP-induced neurotoxicity. In separate experiments, after incubation with DFP, followed by 4R for 1 h, cellular extracts were prepared for Western blotting of phospho-Akt, phospho-GSK3β, phosphorylated extracellular signal-regulated kinase (ERK)1/2, CaMKII and cAMP response element-binding protein (CREB). Our results show that DFP induces neuronal dysfunction by dephosphorylation, while 4R restores the phosphorylation of Akt, GSK3, ERK1/2, CREB, and CaMKII. Moreover, our proteomics analysis supported the notion that 4R activates additional signaling pathways related to enhancing neuronal signaling, synaptic plasticity, and apoptotic inhibition to promote cell survival against DFP, offering biomarkers for developing treatment against GWI.
Collapse
Affiliation(s)
- Sorangely Vázquez Alicia
- Department of Neuroscience, Universidad Central del Caribe, Bayamón, PR, 00956, USA; University of Puerto Rico, School of Medicine, Medical Sciences Campus, San Juan, PR, 00935, USA
| | - Félix G Rivera-Moctezuma
- Department of Neuroscience, Universidad Central del Caribe, Bayamón, PR, 00956, USA; Polytechnic University of Puerto Rico, San Juan, Hato Rey, PR, 00918, USA
| | | | - Dinely Pérez
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR, 00956, USA
| | - Eduardo L Tosado-Rodríguez
- Integrated Informatics, Research Capacity Core, Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, 00935, USA
| | - Abiel Roche Lima
- Integrated Informatics, Research Capacity Core, Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, 00935, USA
| | - Pedro A Ferchmin
- Department of Neuroscience, Universidad Central del Caribe, Bayamón, PR, 00956, USA
| | - Nadezhda Sabeva
- Department of Neuroscience, Universidad Central del Caribe, Bayamón, PR, 00956, USA.
| |
Collapse
|
3
|
Rafa-Zabłocka K, Nalepa I, Kreiner G. The effects of chronic desipramine treatment on neurotrophin-3 in the brain of mice with selective depletion of CREB and CREM in noradrenergic neurons. Neuroscience 2024; 562:190-197. [PMID: 39447672 DOI: 10.1016/j.neuroscience.2024.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 10/02/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024]
Abstract
The disturbances in neurotrophic support are thought to be one of the main causes of depression, which depend not only on the neurotrophins themselves but also on the molecules regulating their synthesis and effector functions. One such molecule is cAMP responsive element binding protein (CREB), which role in depression and antidepressant drugs mechanism of action has been extensively studied. However, CREB's effects vary depending on brain structure, necessitating specific transgenic models for studying its function. Moreover, deletion of CREB enhances cAMP response element modulator (CREM) expression, suspected to compensate for CREB in its absence. Previously, mice lacking CREB in noradrenergic neurons and CREM (Creb1DbhCreCrem-/-) showed to be insensitive to acute desipramine, whereas mice lacking only CREB (Creb1DbhCre) showed similar effects as wild type animals (w/t). As neurotrophic changes require chronic antidepressant treatment, in current study mice (w/t, Creb1DbhCre and Creb1DbhCreCrem-/-; both males and females) were given desipramine for 21 days, to assess the effects of the drug on CREB, neurotrophins and their receptors in the hippocampus and prefrontal cortex. Interestingly, desipramine had no effect on CREB in neither of studied groups. However, both male and female mice lacking CREB and CREM displayed alterations in neurotrophin-3 (NTF3) expression or protein levels, modulated by desipramine. These findings suggest NTF3 is connected with inhibited response to acute and probably chronic desipramine administration in Creb1DbhCreCrem-/- mice, although in w/t chronic desipramine had no effect on NTF3. Nevertheless, our findings give insight into the role of non-BDNF neurotrophins in the mechanism of antidepressant drugs.
Collapse
Affiliation(s)
- Katarzyna Rafa-Zabłocka
- Dept. Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343, Krakow, Smetna 12, Poland
| | - Irena Nalepa
- Dept. Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343, Krakow, Smetna 12, Poland
| | - Grzegorz Kreiner
- Dept. Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343, Krakow, Smetna 12, Poland.
| |
Collapse
|
4
|
Nguyen HDT, Le TM, Jung DR, Jo Y, Choi Y, Lee D, Lee OE, Cho J, Park NJY, Seo I, Chong GO, Shin JH, Han HS. Transcriptomic analysis reveals Streptococcus agalactiae activation of oncogenic pathways in cervical adenocarcinoma. Oncol Lett 2024; 28:588. [PMID: 39411203 PMCID: PMC11474141 DOI: 10.3892/ol.2024.14720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/06/2024] [Indexed: 10/19/2024] Open
Abstract
Cervical adenocarcinoma (AC), a subtype of uterine cervical cancer (CC), poses a challenge due to its resistance to therapy and poor prognosis compared with squamous cervical carcinoma. Streptococcus agalactiae [group B Streptococcus (GBS)], a Gram-positive coccus, has been associated with cervical intraepithelial neoplasia in CC. However, the underlying mechanism interaction between GBS and CC, particularly AC, remains elusive. Leveraging The Cancer Genome Atlas public data and time-series transcriptomic data, the present study investigated the interaction between GBS and AC, revealing activation of two pivotal pathways: 'MAPK signaling pathway' and 'mTORC1 signaling'. Western blotting, reverse transcription-quantitative PCR and cell viability assays were performed to validate the activation of these pathways and their role in promoting cancer cell proliferation. Subsequently, the present study evaluated the efficacy of two anticancer drugs targeting these pathways (binimetinib and ridaforolimus) in AC cell treatment. Binimetinib demonstrated a cytostatic effect, while ridaforolimus had a modest impact on HeLa cells after 48 h of treatment, as observed in both cell viability and cytotoxicity assays. The combination of binimetinib and ridaforolimus resulted in a significantly greater cytotoxic effect compared to binimetinib or ridaforolimus monotherapy, although the synergy score indicated an additive effect. In general, the MAPK and mTORC1 signaling pathways were identified as the main pathways associated with GBS and AC cells. The combination of binimetinib and ridaforolimus could be a potential AC treatment.
Collapse
Affiliation(s)
- Hong Duc Thi Nguyen
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Tan Minh Le
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Da-Ryung Jung
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Youngjae Jo
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yeseul Choi
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Donghyeon Lee
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Olive Em Lee
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Junghwan Cho
- Clinical Omics Institute, Kyungpook National University, Daegu 41405, Republic of Korea
| | - Nora Jee-Young Park
- Clinical Omics Institute, Kyungpook National University, Daegu 41405, Republic of Korea
- Department of Pathology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Department of Pathology, Kyungpook National University Chilgok Hospital, Daegu 41404, Republic of Korea
| | - Incheol Seo
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Gun Oh Chong
- Clinical Omics Institute, Kyungpook National University, Daegu 41405, Republic of Korea
- Department of Obstetrics and Gynecology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Department of Obstetrics and Gynecology, Kyungpook National University Chilgok Hospital, Daegu 41404, Republic of Korea
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
- Department of Integrative Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
- Next Generation Sequencing Core Facility, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyung Soo Han
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu 41944, Republic of Korea
- Clinical Omics Institute, Kyungpook National University, Daegu 41405, Republic of Korea
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
5
|
Chowdhury MAR, Haq MM, Lee JH, Jeong S. Multi-faceted regulation of CREB family transcription factors. Front Mol Neurosci 2024; 17:1408949. [PMID: 39165717 PMCID: PMC11333461 DOI: 10.3389/fnmol.2024.1408949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/12/2024] [Indexed: 08/22/2024] Open
Abstract
cAMP response element-binding protein (CREB) is a ubiquitously expressed nuclear transcription factor, which can be constitutively activated regardless of external stimuli or be inducibly activated by external factors such as stressors, hormones, neurotransmitters, and growth factors. However, CREB controls diverse biological processes including cell growth, differentiation, proliferation, survival, apoptosis in a cell-type-specific manner. The diverse functions of CREB appear to be due to CREB-mediated differential gene expression that depends on cAMP response elements and multi-faceted regulation of CREB activity. Indeed, the transcriptional activity of CREB is controlled at several levels including alternative splicing, post-translational modification, dimerization, specific transcriptional co-activators, non-coding small RNAs, and epigenetic regulation. In this review, we present versatile regulatory modes of CREB family transcription factors and discuss their functional consequences.
Collapse
Affiliation(s)
- Md Arifur Rahman Chowdhury
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Molecular Biology, and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Republic of Korea
| | - Md Mazedul Haq
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Molecular Biology, and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Republic of Korea
| | - Jeong Hwan Lee
- Division of Life Sciences, Jeonbuk National University, Jeonju, Republic of Korea
| | - Sangyun Jeong
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Molecular Biology, and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
6
|
Pan AL, Audrain M, Sakakibara E, Joshi R, Zhu X, Wang Q, Wang M, Beckmann ND, Schadt EE, Gandy S, Zhang B, Ehrlich ME, Salton SR. Dual-specificity protein phosphatase 6 (DUSP6) overexpression reduces amyloid load and improves memory deficits in male 5xFAD mice. Front Aging Neurosci 2024; 16:1400447. [PMID: 39006222 PMCID: PMC11239576 DOI: 10.3389/fnagi.2024.1400447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/14/2024] [Indexed: 07/16/2024] Open
Abstract
Introduction Dual specificity protein phosphatase 6 (DUSP6) was recently identified as a key hub gene in a causal VGF gene network that regulates late-onset Alzheimer's disease (AD). Importantly, decreased DUSP6 levels are correlated with an increased clinical dementia rating (CDR) in human subjects, and DUSP6 levels are additionally decreased in the 5xFAD amyloidopathy mouse model. Methods To investigate the role of DUSP6 in AD, we stereotactically injected AAV5-DUSP6 or AAV5-GFP (control) into the dorsal hippocampus (dHc) of both female and male 5xFAD or wild type mice, to induce overexpression of DUSP6 or GFP. Results Barnes maze testing indicated that DUSP6 overexpression in the dHc of 5xFAD mice improved memory deficits and was associated with reduced amyloid plaque load, Aß1-40 and Aß1-42 levels, and amyloid precursor protein processing enzyme BACE1, in male but not in female mice. Microglial activation, which was increased in 5xFAD mice, was significantly reduced by dHc DUSP6 overexpression in both males and females, as was the number of "microglial clusters," which correlated with reduced amyloid plaque size. Transcriptomic profiling of female 5xFAD hippocampus revealed upregulation of inflammatory and extracellular signal-regulated kinase pathways, while dHc DUSP6 overexpression in female 5xFAD mice downregulated a subset of genes in these pathways. Gene ontology analysis of DEGs (p < 0.05) identified a greater number of synaptic pathways that were regulated by DUSP6 overexpression in male compared to female 5xFAD. Discussion In summary, DUSP6 overexpression in dHc reduced amyloid deposition and memory deficits in male but not female 5xFAD mice, whereas reduced neuroinflammation and microglial activation were observed in both males and females, suggesting that DUSP6-induced reduction of microglial activation did not contribute to sex-dependent improvement in memory deficits. The sex-dependent regulation of synaptic pathways by DUSP6 overexpression, however, correlated with the improvement of spatial memory deficits in male but not female 5xFAD.
Collapse
Affiliation(s)
- Allen L. Pan
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Mickael Audrain
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Emmy Sakakibara
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Rajeev Joshi
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Xiaodong Zhu
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Qian Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Noam D. Beckmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Eric E. Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Sam Gandy
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Psychiatry and Alzheimer’s Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Michelle E. Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Stephen R. Salton
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Brookdale Department of Geriatrics and Palliative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
7
|
Bommaraju S, Dhokne MD, Arun EV, Srinivasan K, Sharma SS, Datusalia AK. An insight into crosstalk among multiple signalling pathways contributing to the pathophysiology of PTSD and depressive disorders. Prog Neuropsychopharmacol Biol Psychiatry 2024; 131:110943. [PMID: 38228244 DOI: 10.1016/j.pnpbp.2024.110943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/18/2024]
Abstract
Post-traumatic stress disorder (PTSD) and depressive disorders represent two significant mental health challenges with substantial global prevalence. These are debilitating conditions characterized by persistent, often comorbid, symptoms that severely impact an individual's quality of life. Both PTSD and depressive disorders are often precipitated by exposure to traumatic events or chronic stress. The profound impact of PTSD and depressive disorders on individuals and society necessitates a comprehensive exploration of their shared and distinct pathophysiological features. Although the activation of the stress system is essential for maintaining homeostasis, the ability to recover from it after diminishing the threat stimulus is also equally important. However, little is known about the main reasons for individuals' differential susceptibility to external stressful stimuli. The solution to this question can be found by delving into the interplay of stress with the cognitive and emotional processing of traumatic incidents at the molecular level. Evidence suggests that dysregulation in these signalling cascades may contribute to the persistence and severity of PTSD and depressive symptoms. The treatment strategies available for this disorder are antidepressants, which have shown good efficiency in normalizing symptom severity; however, their efficacy is limited in most individuals. This calls for the exploration and development of innovative medications to address the treatment of PTSD. This review delves into the intricate crosstalk among multiple signalling pathways implicated in the development and manifestation of these mental health conditions. By unravelling the complexities of crosstalk among multiple signalling pathways, this review aims to contribute to the broader knowledge base, providing insights that could inform the development of targeted interventions for individuals grappling with the challenges of PTSD and depressive disorders.
Collapse
Affiliation(s)
- Sumadhura Bommaraju
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Uttar Pradesh (UP) 226002, India
| | - Mrunali D Dhokne
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Uttar Pradesh (UP) 226002, India
| | - E V Arun
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Uttar Pradesh (UP) 226002, India
| | - Krishnamoorthy Srinivasan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab 160062, India
| | - Shyam Sunder Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab 160062, India
| | - Ashok Kumar Datusalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Uttar Pradesh (UP) 226002, India; Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, Uttar Pradesh (UP) 226002, India.
| |
Collapse
|
8
|
Cheng H, Villahoz BF, Ponzio RD, Aschner M, Chen P. Signaling Pathways Involved in Manganese-Induced Neurotoxicity. Cells 2023; 12:2842. [PMID: 38132161 PMCID: PMC10742340 DOI: 10.3390/cells12242842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Manganese (Mn) is an essential trace element, but insufficient or excessive bodily amounts can induce neurotoxicity. Mn can directly increase neuronal insulin and activate insulin-like growth factor (IGF) receptors. As an important cofactor, Mn regulates signaling pathways involved in various enzymes. The IGF signaling pathway plays a protective role in the neurotoxicity of Mn, reducing apoptosis in neurons and motor deficits by regulating its downstream protein kinase B (Akt), mitogen-activated protein kinase (MAPK), and mammalian target of rapamycin (mTOR). In recent years, some new mechanisms related to neuroinflammation have been shown to also play an important role in Mn-induced neurotoxicity. For example, DNA-sensing receptor cyclic GMP-AMP synthase (cCAS) and its downstream signal efficient interferon gene stimulator (STING), NOD-like receptor family pyrin domain containing 3(NLRP3)-pro-caspase1, cleaves to the active form capase1 (CASP1), nuclear factor κB (NF-κB), sirtuin (SIRT), and Janus kinase (JAK) and signal transducers and activators of the transcription (STAT) signaling pathway. Moreover, autophagy, as an important downstream protein degradation pathway, determines the fate of neurons and is regulated by these upstream signals. Interestingly, the role of autophagy in Mn-induced neurotoxicity is bidirectional. This review summarizes the molecular signaling pathways of Mn-induced neurotoxicity, providing insight for further understanding of the mechanisms of Mn.
Collapse
Affiliation(s)
| | | | | | | | - Pan Chen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (H.C.); (B.F.V.); (R.D.P.); (M.A.)
| |
Collapse
|
9
|
Numakawa T, Kajihara R. Involvement of brain-derived neurotrophic factor signaling in the pathogenesis of stress-related brain diseases. Front Mol Neurosci 2023; 16:1247422. [PMID: 37781095 PMCID: PMC10537938 DOI: 10.3389/fnmol.2023.1247422] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023] Open
Abstract
Neurotrophins including brain-derived neurotrophic factor, BDNF, have critical roles in neuronal differentiation, cell survival, and synaptic function in the peripheral and central nervous system. It is well known that a variety of intracellular signaling stimulated by TrkB, a high-affinity receptor for BDNF, is involved in the physiological and pathological neuronal aspects via affecting cell viability, synaptic function, neurogenesis, and cognitive function. As expected, an alteration of the BDNF/TrkB system is suspected to be one of the molecular mechanisms underlying cognitive decline in cognitive diseases and mental disorders. Recent evidence has also highlighted a possible link between the alteration of TrkB signaling and chronic stress. Furthermore, it has been demonstrated that downregulation of the BDNF/TrkB system and chronic stress have a role in the pathogenesis of Alzheimer's disease (AD) and mental disorders. In this review, we introduce current evidence showing a close relationship between the BDNF/TrkB system and the development of cognition impairment in stress-related disorders, and the possible contribution of the upregulation of the BDNF/TrkB system in a therapeutic approach against these brain diseases.
Collapse
Affiliation(s)
- Tadahiro Numakawa
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Ryutaro Kajihara
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
- Department of Biomedical Laboratory Sciences, Faculty of Life Science, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
10
|
Tong T, Chen Y, Hao C, Shen J, Chen W, Cheng W, Yan S, Li J, Li Y, Gulizhaerkezi T, Zeng J, Meng X. The effects of acupuncture on depression by regulating BDNF-related balance via lateral habenular nucleus BDNF/TrkB/CREB signaling pathway in rats. Behav Brain Res 2023; 451:114509. [PMID: 37244435 DOI: 10.1016/j.bbr.2023.114509] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/08/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023]
Abstract
Depression is a major mental disease worldwide, causing dysfunction of Lateral Habenular (LHb). As a non-invasive alternative, acupuncture (AP) has been widely used to treat depression in clinic, yet few basic studies have been focused on the effects and mechanism of acupuncture on synaptic plasticity in LHb. Therefore, this study aimed to explore the potential mechanism of the antidepressant effect of acupuncture. Male Sprague-Dawley (SD) rats were randomly divided into control, chronic unpredictable mild stress (CUMS), AP, fluoxetine (FLX), acupoint catgut embedding (ACE), sham-ACE groups (n = 9/group). Rats were given a 28-day treatment at the Shangxing (GV23) and Fengfu (GV16) acupoints with acupuncture, ACE, sham-ACE or fluoxetine (2.1 mg/kg). The results showed that AP, FLX and ACE suppressed the behavioral deficits, increased the level of the 5-hydroxytryptamine and FNDC5/IRISIN in serum, also reduced the expression of pro-BDNF impacted by CUMS. Both AP and FLX ameliorated the %area of IBA-1, GFAP, BrdU and DCX in the LHb and increased the expression of BDNF/TrkB/CREB, with non-significant difference between the two groups These findings suggest that AP therapy relieves depression-related manifestations in depressed rats, suggesting a potential mechanism via the BDNF/TrkB/CREB pathway in LHb.
Collapse
Affiliation(s)
- Tao Tong
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, P. R. China; Second Clinical College, Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi, P. R. China
| | - Yiping Chen
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, P. R. China; Second Clinical College, Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi, P. R. China
| | - Chonyao Hao
- Second Clinical College, Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi, P. R. China
| | - Junliang Shen
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, P. R. China
| | - Wenjie Chen
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, P. R. China
| | - Wenjing Cheng
- Department of Rehabilitation Medicine, Ezhou Central Hospital, Ezhou, Hubei, P. R. China
| | - Simin Yan
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, P. R. China
| | - Jianguo Li
- Second Clinical College, Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi, P. R. China
| | - Yuhan Li
- The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P. R. China
| | - Tuergong Gulizhaerkezi
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, P. R. China
| | - Jingyu Zeng
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, P. R. China
| | - Xianjun Meng
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, P. R. China.
| |
Collapse
|
11
|
Guo CP, Li WS, Liu Y, Mahaman YAR, Zhang B, Wang JZ, Liu R, Li HL, Wang XC, Gao X. Inactivation of ERK1/2-CREB Pathway Is Implicated in MK801-induced Cognitive Impairment. Curr Med Sci 2023; 43:13-21. [PMID: 36867359 DOI: 10.1007/s11596-022-2690-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/19/2022] [Indexed: 03/04/2023]
Abstract
OBJECTIVE Schizophrenia (SZ) is associated with cognitive impairment, and it is known that the activity of cAMP response element binding protein (CREB) decreases in the brain of SZ patients. The previous study conducted by the investigators revealed that the upregulation of CREB improves the MK801-related SZ cognitive deficit. The present study further investigates the mechanism on how CREB deficiency is associated with SZ-related cognitive impairment. METHODS MK-801 was used to induce SZ in rats. Western blotting and immunofluorescence were performed to investigate CREB and the CREB-related pathway implicated in MK801 rats. The long-term potentiation and behavioral tests were performed to assess the synaptic plasticity and cognitive impairment, respectively. RESULTS The phosphorylation of CREB at Ser133 decreased in the hippocampus of SZ rats. Interestingly, among the upstream kinases of CREB, merely ERK1/2 was downregulated, while CaMKII and PKA remained unchanged in the brain of MK801-related SZ rats. The inhibition of ERK1/2 by PD98059 reduced the phosphorylation of CREB-Ser133, and induced synaptic dysfunction in primary hippocampal neurons. Conversely, the activation of CREB attenuated the ERK1/2 inhibitor-induced synaptic and cognitive impairment. CONCLUSION These present findings partially suggest that the deficiency of the ERK1/2-CREB pathway is involved in MK801-related SZ cognitive impairment. The activation of the ERK1/2-CREB pathway may be therapeutically useful for treating SZ cognitive deficits.
Collapse
Affiliation(s)
- Cui-Ping Guo
- Central Laboratory, Scientific Research Department, Renmin Hospital of Wuhan University, Wuhan, 430060, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.,Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wen-Sheng Li
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yi Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yacoubou Abdoul Razak Mahaman
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bin Zhang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jian-Zhi Wang
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.,Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Rong Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hong-Lian Li
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao-Chuan Wang
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China. .,Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China.
| | - Xiang Gao
- Central Laboratory, Scientific Research Department, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
12
|
Moya-Alvarado G, Tiburcio-Felix R, Ibáñez MR, Aguirre-Soto AA, Guerra MV, Wu C, Mobley WC, Perlson E, Bronfman FC. BDNF/TrkB signaling endosomes in axons coordinate CREB/mTOR activation and protein synthesis in the cell body to induce dendritic growth in cortical neurons. eLife 2023; 12:77455. [PMID: 36826992 PMCID: PMC9977295 DOI: 10.7554/elife.77455] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/12/2023] [Indexed: 02/25/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) and its receptors tropomyosin kinase receptor B (TrkB) and the p75 neurotrophin receptor (p75) are the primary regulators of dendritic growth in the CNS. After being bound by BDNF, TrkB and p75 are endocytosed into endosomes and continue signaling within the cell soma, dendrites, and axons. We studied the functional role of BDNF axonal signaling in cortical neurons derived from different transgenic mice using compartmentalized cultures in microfluidic devices. We found that axonal BDNF increased dendritic growth from the neuronal cell body in a cAMP response element-binding protein (CREB)-dependent manner. These effects were dependent on axonal TrkB but not p75 activity. Dynein-dependent BDNF-TrkB-containing endosome transport was required for long-distance induction of dendritic growth. Axonal signaling endosomes increased CREB and mTOR kinase activity in the cell body, and this increase in the activity of both proteins was required for general protein translation and the expression of Arc, a plasticity-associated gene, indicating a role for BDNF-TrkB axonal signaling endosomes in coordinating the transcription and translation of genes whose products contribute to learning and memory regulation.
Collapse
Affiliation(s)
- Guillermo Moya-Alvarado
- Department of Physiology, Faculty of Biological Sciences and Center for Aging and Regeneration), Pontificia Universidad Católica de Chile. Av. Libertador Bernardo O´HigginsSantiagoChile
| | - Reynaldo Tiburcio-Felix
- NeuroSignaling Lab (NESLab), Center for Aging and Regeneration (CARE-UC), Institute of Biomedical Sciences (ICB), Faculty of Medicine, and Faculty of Life Sciences, Universidad Andrés BelloSantiagoChile
| | - María Raquel Ibáñez
- NeuroSignaling Lab (NESLab), Center for Aging and Regeneration (CARE-UC), Institute of Biomedical Sciences (ICB), Faculty of Medicine, and Faculty of Life Sciences, Universidad Andrés BelloSantiagoChile
| | - Alejandro A Aguirre-Soto
- NeuroSignaling Lab (NESLab), Center for Aging and Regeneration (CARE-UC), Institute of Biomedical Sciences (ICB), Faculty of Medicine, and Faculty of Life Sciences, Universidad Andrés BelloSantiagoChile
| | - Miguel V Guerra
- Department of Physiology, Faculty of Biological Sciences and Center for Aging and Regeneration), Pontificia Universidad Católica de Chile. Av. Libertador Bernardo O´HigginsSantiagoChile,NeuroSignaling Lab (NESLab), Center for Aging and Regeneration (CARE-UC), Institute of Biomedical Sciences (ICB), Faculty of Medicine, and Faculty of Life Sciences, Universidad Andrés BelloSantiagoChile
| | - Chengbiao Wu
- Department of Neurosciences, University of California, San DiegoSan DiegoUnited States
| | - William C Mobley
- Department of Neurosciences, University of California, San DiegoSan DiegoUnited States
| | - Eran Perlson
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine; Sagol School of Neuroscience, Tel Aviv UniversityTel AvivIsrael
| | - Francisca C Bronfman
- NeuroSignaling Lab (NESLab), Center for Aging and Regeneration (CARE-UC), Institute of Biomedical Sciences (ICB), Faculty of Medicine, and Faculty of Life Sciences, Universidad Andrés BelloSantiagoChile
| |
Collapse
|
13
|
Benito-León M, Gil-Redondo JC, Perez-Sen R, Delicado EG, Ortega F, Gomez-Villafuertes R. BCI, an inhibitor of the DUSP1 and DUSP6 dual specificity phosphatases, enhances P2X7 receptor expression in neuroblastoma cells. Front Cell Dev Biol 2022; 10:1049566. [PMID: 36589747 PMCID: PMC9797830 DOI: 10.3389/fcell.2022.1049566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
P2X7 receptor (P2RX7) is expressed strongly by most human cancers, including neuroblastoma, where high levels of P2RX7 are correlated with a poor prognosis for patients. Tonic activation of P2X7 receptor favors cell metabolism and angiogenesis, thereby promoting cancer cell proliferation, immunosuppression, and metastasis. Although understanding the mechanisms that control P2X7 receptor levels in neuroblastoma cells could be biologically and clinically relevant, the intracellular signaling pathways involved in this regulation remain poorly understood. Here we show that (E)-2-benzylidene-3-(cyclohexylamino)-2,3-dihydro-1H-inden-1-one (BCI), an allosteric inhibitor of dual specificity phosphatases (DUSP) 1 and 6, enhances the expression of P2X7 receptor in N2a neuroblastoma cells. We found that exposure to BCI induces the phosphorylation of mitogen-activated protein kinases p38 and JNK, while it prevents the phosphorylation of ERK1/2. BCI enhanced dual specificity phosphatase 1 expression, whereas it induced a decrease in the dual specificity phosphatase 6 transcripts, suggesting that BCI-dependent inhibition of dual specificity phosphatase 1 may be responsible for the increase in p38 and JNK phosphorylation. The weaker ERK phosphorylation induced by BCI was reversed by p38 inhibition, indicating that this MAPK is involved in the regulatory loop that dampens ERK activity. The PP2A phosphatase appears to be implicated in the p38-dependent dephosphorylation of ERK1/2. In addition, the PTEN phosphatase inhibition also prevented ERK1/2 dephosphorylation, probably through p38 downregulation. By contrast, inhibition of the p53 nuclear factor decreased ERK phosphorylation, probably enhancing the activity of p38. Finally, the inhibition of either p38 or Sp1-dependent transcription halved the increase in P2X7 receptor expression induced by BCI. Moreover, the combined inhibition of both p38 and Sp1 completely prevented the effect exerted by BCI. Together, our results indicate that dual specificity phosphatase 1 acts as a novel negative regulator of P2X7 receptor expression in neuroblastoma cells due to the downregulation of the p38 pathway.
Collapse
Affiliation(s)
- María Benito-León
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, University Complutense of Madrid, Madrid, Spain,Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain,Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Juan Carlos Gil-Redondo
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, University Complutense of Madrid, Madrid, Spain,Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain,Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain,Department of Nanobiotechnology, Institute for Biophysics, BOKU University for Natural Resources and Life Sciences, Vienna, Austria
| | - Raquel Perez-Sen
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, University Complutense of Madrid, Madrid, Spain,Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain,Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Esmerilda G. Delicado
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, University Complutense of Madrid, Madrid, Spain,Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain,Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Felipe Ortega
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, University Complutense of Madrid, Madrid, Spain,Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain,Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain,*Correspondence: Felipe Ortega, ; Rosa Gomez-Villafuertes,
| | - Rosa Gomez-Villafuertes
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, University Complutense of Madrid, Madrid, Spain,Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain,Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain,*Correspondence: Felipe Ortega, ; Rosa Gomez-Villafuertes,
| |
Collapse
|
14
|
Abraham CR, Li A. Aging-suppressor Klotho: Prospects in diagnostics and therapeutics. Ageing Res Rev 2022; 82:101766. [PMID: 36283617 DOI: 10.1016/j.arr.2022.101766] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 01/31/2023]
Abstract
INTRODUCTION The protein Klotho (KL) was first discovered in KL-deficient mice, which developed a syndrome similar to premature aging in humans. Since then, KL has been implicated in multiple molecular signaling pathways and diseases. KL has been shown to have anti-aging, healthspan and lifespan extending, cognitive enhancing, anti-oxidative, anti-inflammatory, and anti-tumor properties. KL levels decrease with age and in many diseases. Therefore, it has been of great interest to develop a KL-boosting or restoring drug, or to supplement endogenous Klotho with exogenous Klotho genetic material or recombinant Klotho protein, and to use KL levels in the body as a marker for the efficacy of such drugs and as a biomarker for the diagnosis and management of diseases. OBJECTIVE The goal of this study was to provide a comprehensive review of KL levels across age groups in individuals who are healthy or have certain health conditions, using four sources: blood, cerebrospinal fluid, urine, and whole biopsy/necropsy tissue. By doing so, baseline KL levels can be identified across the lifespan, in the absence or presence of disease. In turn, these findings can be used to guide the development of future KL-based therapeutics and biomarkers, which will heavily rely on an individual's baseline KL range to be efficacious. METHODS A total of 65 studies were collected primarily using the PubMed database. Research articles that were published up to April 2022 were included. Statistical analysis was conducted using RStudio. RESULTS Mean and median blood KL levels in healthy individuals, mean blood KL levels in individuals with renal conditions, and mean blood KL levels in individuals with metabolic or endocrine conditions were shown to decrease with age. Similarly, CSF KL levels in patients with AD also declined compared with age-matched controls. CONCLUSIONS The present study confirms the trend that KL levels in blood decrease with age in humans, among those who are healthy, and even further among those with renal and endocrine/metabolic illnesses. Further, by drawing this trend from multiple published works, we were able to provide a general idea of baseline KL ranges, specifically in blood in these populations. These data add to the current knowledge on normal KL levels in the body and how they change with time and in disease, and can potentially support efforts to create KL-based treatments and screening tools to better manage aging, renal, and metabolic/endocrine diseases.
Collapse
Affiliation(s)
- Carmela R Abraham
- Department of Biochemistry, Boston University School of Medicine, USA; Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, USA.
| | - Anne Li
- Division of Graduate Medical Sciences, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
15
|
Liu RY, Zhang Y, Smolen P, Cleary LJ, Byrne JH. Defective synaptic plasticity in a model of Coffin-Lowry syndrome is rescued by simultaneously targeting PKA and MAPK pathways. Learn Mem 2022; 29:435-446. [PMID: 36446603 PMCID: PMC9749851 DOI: 10.1101/lm.053625.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/24/2022] [Indexed: 12/02/2022]
Abstract
Empirical and computational methods were combined to examine whether individual or dual-drug treatments can restore the deficit in long-term synaptic facilitation (LTF) of the Aplysia sensorimotor synapse observed in a cellular model of Coffin-Lowry syndrome (CLS). The model was produced by pharmacological inhibition of p90 ribosomal S6 kinase (RSK) activity. In this model, coapplication of an activator of the mitogen-activated protein kinase (MAPK) isoform ERK and an activator of protein kinase A (PKA) resulted in enhanced phosphorylation of RSK and enhanced LTF to a greater extent than either drug alone and also greater than their additive effects, which is termed synergism. The extent of synergism appeared to depend on another MAPK isoform, p38 MAPK. Inhibition of p38 MAPK facilitated serotonin (5-HT)-induced RSK phosphorylation, indicating that p38 MAPK inhibits activation of RSK. Inhibition of p38 MAPK combined with activation of PKA synergistically activated both ERK and RSK. Our results suggest that cellular models of disorders that affect synaptic plasticity and learning, such as CLS, may constitute a useful strategy to identify candidate drug combinations, and that combining computational models with empirical tests of model predictions can help explain synergism of drug combinations.
Collapse
Affiliation(s)
- Rong-Yu Liu
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Yili Zhang
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Paul Smolen
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Leonard J Cleary
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - John H Byrne
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| |
Collapse
|
16
|
Regulation of nuclear actin levels and MRTF/SRF target gene expression during PC6.3 cell differentiation. Exp Cell Res 2022; 420:113356. [PMID: 36122768 DOI: 10.1016/j.yexcr.2022.113356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/25/2022] [Accepted: 09/11/2022] [Indexed: 11/20/2022]
Abstract
Actin has important functions in both cytoplasm and nucleus of the cell, with active nuclear transport mechanisms maintaining the cellular actin balance. Nuclear actin levels are subject to regulation during many cellular processes from cell differentiation to cancer. Here we show that nuclear actin levels increase upon differentiation of PC6.3 cells towards neuron-like cells. Photobleaching experiments demonstrate that this increase is due to decreased nuclear export of actin during cell differentiation. Increased nuclear actin levels lead to decreased nuclear localization of MRTF-A, a well-established transcription cofactor of SRF. In line with MRTF-A localization, transcriptomics analysis reveals that MRTF/SRF target gene expression is first transiently activated, but then substantially downregulated during PC6.3 cell differentiation. This study therefore describes a novel cellular context, where regulation of nuclear actin is utilized to tune MRTF/SRF target gene expression during cell differentiation.
Collapse
|
17
|
Carper MB, Goel S, Zhang AM, Damrauer JS, Cohen S, Zimmerman MP, Gentile GM, Parag-Sharma K, Murphy RM, Sato K, Nickel KP, Kimple RJ, Yarbrough WG, Amelio AL. Activation of the CREB Coactivator CRTC2 by Aberrant Mitogen Signaling promotes oncogenic functions in HPV16 positive head and neck cancer. Neoplasia 2022; 29:100799. [PMID: 35504112 PMCID: PMC9065880 DOI: 10.1016/j.neo.2022.100799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/14/2022] [Accepted: 04/14/2022] [Indexed: 02/07/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the 6th most common cancer worldwide and incidence rates are continuing to rise globally. Patients often present with locally advanced disease and a staggering 50% chance of relapse following treatment. Aberrant activation of adaptive response signaling pathways, such as the cAMP/PKA pathway, induce an array of genes associated with known cancer pathways that promote tumorigenesis and drug resistance. We identified the cAMP Regulated Transcription Coactivator 2 (CRTC2) to be overexpressed and constitutively activated in HNSCCs and this confers poor prognosis. CRTCs are regulated through their subcellular localization and we show that CRTC2 is exclusively nuclear in HPV(+) HNSCC, thus constitutively active, due to non-canonical Mitogen-Activated Kinase Kinase 1 (MEKK1)-mediated activation via a MEKK1-p38 signaling axis. Loss-of-function and pharmacologic inhibition experiments decreased CRTC2/CREB transcriptional activity by reducing nuclear CRTC2 via nuclear import inhibition and/or by eviction of CRTC2 from the nucleus. This shift in localization was associated with decreased proliferation, migration, and invasion. Our results suggest that small molecules that inhibit nuclear CRTC2 and p38 activity may provide therapeutic benefit to patients with HPV(+) HNSCC.
Collapse
Affiliation(s)
- Miranda B Carper
- Lineberger Comprehensive Cancer Center, UNC School of Medicine, The University of North Carolina at Chapel Hill, NC, USA
| | - Saumya Goel
- Oral and Craniofacial Health Sciences, Adams School of Dentistry, The University of North Carolina at Chapel Hill, NC, USA; Carolina Research Scholar, Undergraduate Curriculum in Biochemistry, The University of North Carolina at Chapel Hill, NC, USA
| | - Anna M Zhang
- Oral and Craniofacial Health Sciences, Adams School of Dentistry, The University of North Carolina at Chapel Hill, NC, USA
| | - Jeffrey S Damrauer
- Lineberger Comprehensive Cancer Center, UNC School of Medicine, The University of North Carolina at Chapel Hill, NC, USA
| | - Stephanie Cohen
- Pathology Services Core, Lineberger Comprehensive Cancer Center, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, Chapel Hill, NC, USA
| | - Matthew P Zimmerman
- Graduate Curriculum in Genetics & Molecular Biology, Biological & Biomedical Sciences Program, UNC School of Medicine, The University of North Carolina at Chapel Hill, NC, USA
| | - Gabrielle M Gentile
- Graduate Curriculum in Genetics & Molecular Biology, Biological & Biomedical Sciences Program, UNC School of Medicine, The University of North Carolina at Chapel Hill, NC, USA
| | - Kshitij Parag-Sharma
- Graduate Curriculum in Cell Biology & Physiology, Biological & Biomedical Sciences Program, UNC School of Medicine, The University of North Carolina at Chapel Hill, NC, USA
| | - Ryan M Murphy
- Graduate Curriculum in Pharmacology, Biological & Biomedical Sciences Program, UNC School of Medicine, The University of North Carolina at Chapel Hill, NC, USA
| | - Kotaro Sato
- Lineberger Comprehensive Cancer Center, UNC School of Medicine, The University of North Carolina at Chapel Hill, NC, USA; Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Kwangok P Nickel
- Department of Human Oncology and UW Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Randall J Kimple
- Department of Human Oncology and UW Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Wendell G Yarbrough
- Lineberger Comprehensive Cancer Center, UNC School of Medicine, The University of North Carolina at Chapel Hill, NC, USA; Department of Otolaryngology/Head and Neck Surgery, University of North Carolina School of Medicine, Chapel Hill, North Carolina, Chapel Hill, NC, USA; Department of Pathology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, Chapel Hill, NC, USA
| | - Antonio L Amelio
- Department of Cell Biology and Physiology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Biomedical Research Imaging Center, UNC School of Medicine, The University of North Carolina at Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, Cancer Cell Biology Program, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
18
|
Custodio L, Malone S, Bardo MT, Turner JR. Nicotine and opioid co-dependence: Findings from bench research to clinical trials. Neurosci Biobehav Rev 2022; 134:104507. [PMID: 34968525 PMCID: PMC10986295 DOI: 10.1016/j.neubiorev.2021.12.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 10/19/2022]
Abstract
Concomitant use of tobacco and opioids represents a growing public health concern. In fact, the mortality rate due to smoking-related illness approaches 50% among SUD patients. Cumulative evidence demonstrates that the vulnerability to drugs of abuse is influenced by behavioral, environmental, and genetic factors. This review explores the contribution of genetics and neural mechanisms influencing nicotine and opioid reward, respiration, and antinociception, emphasizing the interaction of cholinergic and opioid receptor systems. Despite the substantial evidence demonstrating nicotine-opioid interactions within the brain and on behavior, the currently available pharmacotherapies targeting these systems have shown limited efficacy for smoking cessation on opioid-maintained smokers. Thus, further studies designed to identify novel targets modulating both nicotinic and opioid receptor systems may lead to more efficacious approaches for co-morbid nicotine dependence and opioid use disorder.
Collapse
Affiliation(s)
- Lilian Custodio
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA
| | - Samantha Malone
- Department of Psychology, University of Kentucky, Lexington, KY, USA
| | - Michael T Bardo
- Department of Psychology, University of Kentucky, Lexington, KY, USA
| | - Jill R Turner
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
19
|
Duan S, Li C, Gao Y, Meng P, Ji S, Xu Y, Mao Y, Wang H, Tian J. The tyrosine kinase inhibitor LPM4870108 impairs learning and memory and induces transcriptomic and gene‑specific DNA methylation changes in rats. Arch Toxicol 2022; 96:845-857. [PMID: 35098321 DOI: 10.1007/s00204-022-03226-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/12/2022] [Indexed: 11/02/2022]
Abstract
Tyrosine kinase inhibitors (TKIs), which have been developed and approved for cancer treatment in the last few years, are involved in synaptic plasticity of learning and memory. Epigenetic modifications also play crucial roles in the process of learning and memory, but its relationship with TKI-induced learning and memory impairment has not been investigated. We hypothesized that LPM4870108, an effective anti-cancer Trk inhibitor, might affect the learning and memory via epigenetic modifications. In this study, rats were orally administered with LPM4870108 (0, 1.25, 2.5, or 5.0 mg/kg) twice daily for 28 days, after which animals were subjected to a Morris water maze test. LPM4870108 exposure caused learning and memory impairments in this test in a dose-dependent manner and reduced the spine densities. Whole-genome transcriptomic analysis revealed significant differences in the patterns of hippocampal gene expression in LPM4870108-treated rats. These transcriptomic data were combined with next-generation bisulfite sequencing analysis, after which RT-PCR and pyrosequencing were conducted, revealing epigenetic alterations associated with genes (Snx8, Fgfr1, Dusp4, Vav2, and Satb2) known to regulate learning and memory. Increased mRNA and protein expression levels of hippocampal Dnmt1 and Dnmt3a were also observed in these rats. Overall, these data suggest that gene-specific alterations in patterns of DNA methylation can potentially contribute to the incidence of learning and memory deficits associated with exposure to LPM4870108.
Collapse
Affiliation(s)
- Sijin Duan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Chunmei Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Yonglin Gao
- State Key Laboratory of Long-Acting Targeting Drug Delivery Technologies (Luye Pharma Group Ltd.), Yantai, 264003, People's Republic of China
- School of Life Science, Yantai University, Yantai, 264005, People's Republic of China
| | - Ping Meng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Shengmin Ji
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Yangyang Xu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Yutong Mao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Jingwei Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China.
- State Key Laboratory of Long-Acting Targeting Drug Delivery Technologies (Luye Pharma Group Ltd.), Yantai, 264003, People's Republic of China.
| |
Collapse
|
20
|
Therapeutic benefits of flavonoids against neuroinflammation: a systematic review. Inflammopharmacology 2022; 30:111-136. [PMID: 35031904 DOI: 10.1007/s10787-021-00895-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/10/2021] [Indexed: 12/11/2022]
Abstract
Flavonoids are an important class of natural polyphenolic compounds reported to exert beneficial effects in cardiovascular and metabolic diseases, cancer, autoimmune and neurological disorders. Flavonoids possess potential antioxidant, anti-inflammatory, antiapoptotic and immuno-modulation properties. Intriguingly, the importance of flavonoids in different neurological disorders is gaining more attention due to the safety, better pharmacokinetic profile and blood-brain barrier penetration, cost-effectiveness and readiness for clinical uses/trials. Many in vitro and in vivo research studies have established the neuroprotective mechanism of flavonoids in the central nervous system (CNS) diseases. The present review summarizes the benefits of various classes of flavonoids (flavones, flavonols, flavanones, anthocyanidins, isoflavones, flavanols), chemical nature, classification, their occurrence and distribution, pharmacokinetics and bioavailability. The manuscript also presents available evidences relating to the role of flavonoids in regulating key signaling pathways such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway, mitogen-activated protein kinase (MAPK) pathway, Janus kinase and signal transducer and activator of transcription proteins (JAK/STAT) pathway, Toll-like receptors (TLR) pathway, nuclear factor erythroid 2-related factor 2 (Nrf2) pathway and cAMP response element-binding protein (CREB) pathway involved in neuroinflammation associated with major neurological disorders. Literature search was conducted using electronic databases like Google Scholar, Scopus, PubMed central, Springer search and Web of science. Chemical structures used in the present analysis were drawn using Chemdraw Professional 15.0 software. This collective information provides comprehensive knowledge on disease pathways and therapeutic benefits of flavonoids in neurological disorders, druggability and future scope for research.
Collapse
|
21
|
Sarkar M, Martufi M, Roman-Trufero M, Wang YF, Whilding C, Dormann D, Sabbattini P, Dillon N. CNOT3 interacts with the Aurora B and MAPK/ERK kinases to promote survival of differentiating mesendodermal progenitor cells. Mol Biol Cell 2021; 32:ar40. [PMID: 34613789 PMCID: PMC8694085 DOI: 10.1091/mbc.e21-02-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 09/23/2021] [Accepted: 10/01/2021] [Indexed: 11/18/2022] Open
Abstract
Mesendoderm cells are key intermediate progenitors that form at the early primitive streak (PrS) and give rise to mesoderm and endoderm in the gastrulating embryo. We have identified an interaction between CNOT3 and the cell cycle kinase Aurora B that requires sequences in the NOT box domain of CNOT3 and regulates MAPK/ERK signaling during mesendoderm differentiation. Aurora B phosphorylates CNOT3 at two sites located close to a nuclear localization signal and promotes localization of CNOT3 to the nuclei of mouse embryonic stem cells (ESCs) and metastatic lung cancer cells. ESCs that have both sites mutated give rise to embryoid bodies that are largely devoid of mesoderm and endoderm and are composed mainly of cells with ectodermal characteristics. The mutant ESCs are also compromised in their ability to differentiate into mesendoderm in response to FGF2, BMP4, and Wnt3 due to reduced survival and proliferation of differentiating mesendoderm cells. We also show that the double mutation alters the balance of interaction of CNOT3 with Aurora B and with ERK and reduces phosphorylation of ERK in response to FGF2. Our results identify a potential adaptor function for CNOT3 that regulates the Ras/MEK/ERK pathway during embryogenesis.
Collapse
Affiliation(s)
- Moumita Sarkar
- Gene Regulation and Chromatin Group, Imperial College London, London W12 0NN, UK
| | - Matteo Martufi
- Gene Regulation and Chromatin Group, Imperial College London, London W12 0NN, UK
| | - Monica Roman-Trufero
- Gene Regulation and Chromatin Group, Imperial College London, London W12 0NN, UK
| | - Yi-Fang Wang
- Bioinformatics and Computing, Imperial College London, London W12 0NN, UK
| | - Chad Whilding
- Microscopy Facility, MRC London Institute of Medical Sciences, Imperial College London, London W12 0NN, UK
| | - Dirk Dormann
- Microscopy Facility, MRC London Institute of Medical Sciences, Imperial College London, London W12 0NN, UK
| | | | - Niall Dillon
- Gene Regulation and Chromatin Group, Imperial College London, London W12 0NN, UK
- Institute of Clinical Sciences, Imperial College London, London W12 0NN, UK
| |
Collapse
|
22
|
Li M, Liu Y, Liu Y, Yang L, Xu Y, Wang W, Jiang Z, Liu Y, Wang S, Wang C. Downregulation of GNA15 Inhibits Cell Proliferation via P38 MAPK Pathway and Correlates with Prognosis of Adult Acute Myeloid Leukemia With Normal Karyotype. Front Oncol 2021; 11:724435. [PMID: 34552875 PMCID: PMC8451478 DOI: 10.3389/fonc.2021.724435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 08/17/2021] [Indexed: 11/13/2022] Open
Abstract
Background The prognosis of acute myeloid leukemia (AML) with a normal karyotype is highly heterogonous, and the current risk stratification is still insufficient to differentiate patients from high-risk to standard-risk. Changes in some genetic profiles may contribute to the poor prognosis of AML. Although the prognostic value of G protein subunit alpha 15 (GNA15) in AML has been reported based on the GEO (Gene Expression Omnibus) database, the prognostic significance of GNA15 has not been verified in clinical samples. The biological functions of GNA15 in AML development remain open to investigation. This study explored the clinical significance, biological effects and molecular mechanism of GNA15 in AML. Methods Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to detect the mRNA expression level of GNA15 in blasts of bone marrow specimens from 154 newly diagnosed adult AML patients and 26 healthy volunteers. AML cell lines, Kasumi-1 and SKNO-1, were used for lentiviral transfection. Cell Counting Kit-8 (CCK8) and colony formation assays were used to determine cell proliferation. Cell cycle and apoptosis were analyzed by flow cytometry. The relevant signaling pathways were evaluated by Western blot. The Log-Rank test and Kaplan-Meier were used to evaluate survival rate, and the Cox regression model was used to analyze multivariate analysis. Xenograft tumor mouse model was used for in vivo experiments. Results The expression of GNA15 in adult AML was significantly higher than that in healthy individuals. Subjects with high GNA15 expression showed lower overall survival and relapse-free survival in adult AML with normal karyotype. High GNA15 expression was independently correlated with a worse prognosis in multivariate analysis. Knockdown of GNA15 inhibited cell proliferation and cell cycle progression, and induced cell apoptosis in AML cells. GNA15-knockdown induced down-regulation of p-P38 MAPK and its downstream p-MAPKAPK2 and p-CREB. Rescue assays confirmed that P38 MAPK signaling pathway was involved in the inhibition of proliferation mediated by GNA15 knockdown. Conclusions In summary, GNA15 was highly expressed in adult AML, and high GNA15 expression was independently correlated with a worse prognosis in adult AML with normal karyotype. Knockdown of GNA15 inhibited the proliferation of AML regulated by the P38 MAPK signaling pathway. Therefore, GNA15 may serve as a potential prognostic marker and a therapeutic target for AML in the future.
Collapse
Affiliation(s)
- Mengya Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Liu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yajun Liu
- Department of Orthopaedics, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Lu Yang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Xu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weiqiong Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhongxing Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanfang Liu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shujuan Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chong Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
23
|
Penatzer JA, Prince N, Miller JV, Newman M, Lynch C, Hobbs GR, Boyd JW. Corticosterone and chlorpyrifos oxon exposure elicits spatiotemporal MAPK phosphoprotein signaling in a mouse brain. Food Chem Toxicol 2021; 155:112421. [PMID: 34280473 DOI: 10.1016/j.fct.2021.112421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 12/26/2022]
Abstract
Chlorpyrifos (CPF) is one of the most widely-used pesticides globally for agricultural purposes. Certain occupations (e.g., farmers, military) are at an increased risk for high-dose exposure to CPF, which can lead to seizures and irreversible brain injury. Workers with the highest risk of exposure typically experience increased circulating cortisol levels, which is related to physiological stress. To better represent this exposure scenario, a mouse model utilized exogenous administration of corticosterone (CORT; high physiologic stress mimic) in combination with chlorpyrifos oxon (CPO; oxon metabolite of CPF); this combination increases neuroinflammation post-exposure. In the present study adult male C57BL/6J mice were given CORT (200 μg/mL) in drinking water for seven days followed by a single intraperitoneal injection of CPO (8.0 mg/kg) on day eight, and euthanized 0.5, 2, and 24 h post-injection. Ten post-translationally modified proteins were measured in the frontal cortex and striatum to evaluate brain region-specific effects. The spatiotemporal response to CORT + CPO sequentially activated phosphoproteins (p-ERK1/2, p-MEK1/2, p-JNK) involved in mitogen-activated protein kinase (MAPK) signaling. Observed p-ZAP70 responses further integrated MAPK signaling and provided a spatiotemporal connection between protein phosphorylation and neuroinflammation. This study provides insight into the spatiotemporal cellular signaling cascade following CORT + CPO exposure that represent these vulnerable populations.
Collapse
Affiliation(s)
- Julia A Penatzer
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Nicole Prince
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | | | - Mackenzie Newman
- Department of Orthopaedics, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Cayla Lynch
- Department of Orthopaedics, West Virginia University School of Medicine, Morgantown, WV, USA; Cellular and Integrative Physiology Department, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Gerald R Hobbs
- Department of Statistics, West Virginia University, Morgantown, WV, USA
| | - Jonathan W Boyd
- Department of Orthopaedics, West Virginia University School of Medicine, Morgantown, WV, USA.
| |
Collapse
|
24
|
Kropf E, Fahnestock M. Effects of Reactive Oxygen and Nitrogen Species on TrkA Expression and Signalling: Implications for proNGF in Aging and Alzheimer's Disease. Cells 2021; 10:cells10081983. [PMID: 34440751 PMCID: PMC8392605 DOI: 10.3390/cells10081983] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 11/18/2022] Open
Abstract
Nerve growth factor (NGF) and its precursor form, proNGF, are critical for neuronal survival and cognitive function. In the brain, proNGF is the only detectable form of NGF. Dysregulation of proNGF in the brain is implicated in age-related memory loss and Alzheimer’s disease (AD). AD is characterized by early and progressive degeneration of the basal forebrain, an area critical for learning, memory, and attention. Learning and memory deficits in AD are associated with loss of proNGF survival signalling and impaired retrograde transport of proNGF to the basal forebrain. ProNGF transport and signalling may be impaired by the increased reactive oxygen and nitrogen species (ROS/RNS) observed in the aged and AD brain. The current literature suggests that ROS/RNS nitrate proNGF and reduce the expression of the proNGF receptor tropomyosin-related kinase A (TrkA), disrupting its downstream survival signalling. ROS/RNS-induced reductions in TrkA expression reduce cell viability, as proNGF loses its neurotrophic function in the absence of TrkA and instead generates apoptotic signalling via the pan-neurotrophin receptor p75NTR. ROS/RNS also interfere with kinesin and dynein motor functions, causing transport deficits. ROS/RNS-induced deficits in microtubule motor function and TrkA expression and signalling may contribute to the vulnerability of the basal forebrain in AD. Antioxidant treatments may be beneficial in restoring proNGF signalling and axonal transport and reducing basal forebrain neurodegeneration and related deficits in cognitive function.
Collapse
Affiliation(s)
- Erika Kropf
- Graduate Program in Neuroscience, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada;
| | - Margaret Fahnestock
- Department of Psychiatry and Behavioural Neurosciences, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
- Correspondence:
| |
Collapse
|
25
|
Penatzer JA, Miller JV, Prince N, Shaw M, Lynch C, Newman M, Hobbs GR, Boyd JW. Differential phosphoprotein signaling in the cortex in mouse models of Gulf War Illness using corticosterone and acetylcholinesterase inhibitors. Heliyon 2021; 7:e07552. [PMID: 34307952 PMCID: PMC8287240 DOI: 10.1016/j.heliyon.2021.e07552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/16/2021] [Accepted: 07/08/2021] [Indexed: 11/29/2022] Open
Abstract
Aims Veterans from the 1990–91 Gulf War were exposed to acetylcholinesterase inhibitors (AChEIs), and, following service, an estimated one-third began suffering from a medically unexplained, multi-symptom illness termed Gulf War Illness (GWI). Previous research has developed validated rodent models that include exposure to exogenous corticosterone (CORT) and AChEIs to simulate high stress and chemical exposures encountered in theater. This combination of exposures in mice resulted in a marked increase in neuroinflammation, which is a common symptom of veterans suffering from GWI. To further elucidate the mechanisms associated with these mouse models of GWI, an investigation into intracellular responses in the cortex were performed to characterize the early cellular signaling changes associated with this exposure-initiated neuroinflammation. Main methods Adult male C57BL/6J mice were exposed to CORT in the drinking water (200 μg/mL) for 7 days followed by a single intraperitoneal injection of diisopropyl fluorophosphate (DFP; 4.0 mg/kg) or chlorpyrifos oxon (CPO; 8.0 mg/kg), on day 8 and euthanized 0.5, 2, and 24 h post-injection. Eleven post-translationally modified protein targets were measured using a multiplexed ELISA. Key findings Phosphoprotein responses were found to be exposure specific following AChEI insult, with and without CORT. Specifically, CORT + CPO exposure was found to sequentially activate several phosphoproteins involved in mitogen activated protein kinase signaling (p-MEK1/2, p-ERK1/2, and p-JNK). DFP alone similarly increased proteins in this pathway (p-RPS6, and p-JNK), but the addition of CORT ameliorated these affects. Significance The results of this study provide insight into differentially activated pathways depending on AChEI in these GWI models.
Collapse
Affiliation(s)
- Julia A Penatzer
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morvantown, WV, USA
| | | | - Nicole Prince
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morvantown, WV, USA
| | - Misa Shaw
- Department of Orthopaedics, West Virginia University School of Medicine, Morgantown, WV, USA.,Clinical and Translational Science Institute, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Cayla Lynch
- Department of Orthopaedics, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Mackenzie Newman
- Department of Orthopaedics, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Gerald R Hobbs
- Department of Statistics, West Virginia University, Morgantown, WV, USA
| | - Jonathan W Boyd
- Department of Orthopaedics, West Virginia University School of Medicine, Morgantown, WV, USA
| |
Collapse
|
26
|
Sałaciak K, Pytka K. Biased agonism in drug discovery: Is there a future for biased 5-HT 1A receptor agonists in the treatment of neuropsychiatric diseases? Pharmacol Ther 2021; 227:107872. [PMID: 33905796 DOI: 10.1016/j.pharmthera.2021.107872] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022]
Abstract
Serotonin (5-HT) is one of the fundamental neurotransmitters that contribute to the information essential for an organism's normal, physiological function. Serotonin acts centrally and systemically. The 5-HT1A receptor is the most widespread serotonin receptor, and participates in many brain-related disorders, including anxiety, depression, and cognitive impairments. The 5-HT1A receptor can activate several different biochemical pathways and signals through both G protein-dependent and G protein-independent pathways. Preclinical experiments indicate that distinct signaling pathways in specific brain regions may be crucial for antidepressant-like, anxiolytic-like, and procognitive responses. Therefore, the development of new ligands that selectively target a particular signaling pathway(s) could open new possibilities for more effective and safer pharmacotherapy. This review discusses the current state of preclinical studies focusing on the concept of functional selectivity (biased agonism) regarding the 5-HT1A receptor and its role in antidepressant-like, anxiolytic-like, and procognitive regulation. Such work highlights not only the differential effects of targeted autoreceptors, vs. heteroreceptors, but also the importance of targeting specific downstream intracellular signaling processes, thereby enhancing favorable over unfavorable signaling activation.
Collapse
Affiliation(s)
- Kinga Sałaciak
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Karolina Pytka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland.
| |
Collapse
|
27
|
c-Jun/p38MAPK/ASIC3 pathways specifically activated by nerve growth factor through TrkA are crucial for mechanical allodynia development. Pain 2021; 161:1109-1123. [PMID: 31977937 DOI: 10.1097/j.pain.0000000000001808] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mechanical allodynia is a cardinal sign of several inflammatory pain disorders where nerve growth factor, a prototypic neurotrophin, plays a crucial role by binding to TrkA receptors. Here, we took the advantage of our generated knock-in mouse model expressing a chimeric TrkA/TrkC receptor that seems to not specifically develop mechanical allodynia after inflammation, to identify the TrkA downstream pathways involved in this phenomenon. We confirmed and extended that disrupting TrkA-specific pathways leads to a specific deficit in mechanical hypersensitivity development after somatic (systemic nerve growth factor administration and paw incision) and, to a lesser extent, visceral injuries. Despite a deficit in thin, mainly peptidergic, fibre innervation in TrkAC mice, thermal hyperalgesia development was not different from WT mice. Inflammatory reaction (oedema, IL-6 content), pain behaviours after intraplantar capsaicin, as well as TRPV1 calcium imaging response of dorsal root ganglion neurons were similar between TrkAC and WT mice. This deficiency in mechanical allodynia development in TrkAC mice is likely due to the alteration of the expression of different TrkA transduction pathways (ie, Akt, p38 MAPK, and c-Jun) especially p38 MAPK, in the dorsal root ganglion cell bodies, ultimately leading to an alteration of at least, ASIC3 channel overexpression, known to participate in nociceptor mechanosensory function.
Collapse
|
28
|
Qin D, Zhou Y, Zhang P, Liu B, Zheng Q, Zhang Z. Azadirachtin downregulates the expression of the CREB gene and protein in the brain and directly or indirectly affects the cognitive behavior of the Spodoptera litura fourth-instar larvae. PEST MANAGEMENT SCIENCE 2021; 77:1873-1885. [PMID: 33284470 DOI: 10.1002/ps.6212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/21/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Azadirachtin has the potential to be used for pest control. Nevertheless, few studies have investigated the effects of azadirachtin on the cognitive behavior of pests. In this study, expression of the cAMP response element-binding protein (CREB) and its gene were studied via a series of experiments in Spodoptera litura larvae treated with azadirachtin. RESULTS RNA-Seq analysis of S. litura larvae treated with azadirachtin was undertaken. According to Kyoto Encyclopedia of Genes and Genomes analysis, the top 20 enriched pathways included neuroactive ligand-receptor interaction pathways, with seven significantly differentially expressed genes including CREB. Quantitative real time polymerase chain reaction (qRT-PCR) results indicated that the CREB gene was expressed during all developmental stages of S. litura, but relative expression of the CREB gene was significantly downregulated after treatment with azadirachtin. Grayscale statistical analysis also showed that expression levels of protein kinase A (PKA), extracellular signal-regulated kinase (ERK) and CREB proteins were significantly downregulated after treatment with azadirachtin. Moreover, RNA interference results showed that the effect of azadirachtin on the cognitive behavior of S. litura was consistent with that seen after interfering with CREB. In addition, larval selectivity to addictive odor sources was reduced, and the initial reaction time was increased. CONCLUSIONS This study clarified that azadirachtin can affect the cognitive behavior of S. litura and treatment with azadirachtin resulted in a downregulation of gene and protein expression of CREB and its pathway proteins. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Deqiang Qin
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - You Zhou
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Peiwen Zhang
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Benju Liu
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Qun Zheng
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Zhixiang Zhang
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| |
Collapse
|
29
|
Krall RF, Tzounopoulos T, Aizenman E. The Function and Regulation of Zinc in the Brain. Neuroscience 2021; 457:235-258. [PMID: 33460731 DOI: 10.1016/j.neuroscience.2021.01.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 12/31/2022]
Abstract
Nearly sixty years ago Fredrich Timm developed a histochemical technique that revealed a rich reserve of free zinc in distinct regions of the brain. Subsequent electron microscopy studies in Timm- stained brain tissue found that this "labile" pool of cellular zinc was highly concentrated at synaptic boutons, hinting a possible role for the metal in synaptic transmission. Although evidence for activity-dependent synaptic release of zinc would not be reported for another twenty years, these initial findings spurred decades of research into zinc's role in neuronal function and revealed a diverse array of signaling cascades triggered or regulated by the metal. Here, we delve into our current understanding of the many roles zinc plays in the brain, from influencing neurotransmission and sensory processing, to activating both pro-survival and pro-death neuronal signaling pathways. Moreover, we detail the many mechanisms that tightly regulate cellular zinc levels, including metal binding proteins and a large array of zinc transporters.
Collapse
Affiliation(s)
- Rebecca F Krall
- Department of Neurobiology, University of Pittsburgh School of Medicine, USA; Department of Otolaryngology, University of Pittsburgh School of Medicine, USA; Pittsburgh Hearing Research Center, University of Pittsburgh School of Medicine, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, USA
| | - Thanos Tzounopoulos
- Department of Otolaryngology, University of Pittsburgh School of Medicine, USA; Pittsburgh Hearing Research Center, University of Pittsburgh School of Medicine, USA.
| | - Elias Aizenman
- Department of Neurobiology, University of Pittsburgh School of Medicine, USA; Pittsburgh Hearing Research Center, University of Pittsburgh School of Medicine, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, USA.
| |
Collapse
|
30
|
Konno N, Takano M, Miura K, Miyazato M, Nakamachi T, Matsuda K, Kaiya H. Identification and signaling characterization of four urotensin II receptor subtypes in the western clawed frog, Xenopus tropicalis. Gen Comp Endocrinol 2020; 299:113586. [PMID: 32828811 DOI: 10.1016/j.ygcen.2020.113586] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/04/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022]
Abstract
Urotensin II (UII) is involved, via the UII receptor (UTR), in many physiological and pathological processes, including vasoconstriction, locomotion, osmoregulation, immune response, and metabolic syndrome. In silico studies have revealed the presence of four or five distinct UTR (UTR1-UTR5) gene sequences in nonmammalian vertebrates. However, the functionality of these receptor subtypes and their associations to signaling pathways are unclear. In this study, full-length cDNAs encoding four distinct UTR subtypes (UTR1, UTR3, UTR4, and UTR5) were isolated from the western clawed frog (Xenopus tropicalis). In functional analyses, homologous Xenopus UII stimulation of cells expressing UTR1 or UTR5 induced intracellular calcoum mobilization and phosphorylation of extracellular signal-regulated kinase 1/2. Cells expressing UTR3 or UTR4 did not show this response. Furthermore, UII induced the phosphorylation of cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) through the UII-UTR1/5 system. However, intracellular cAMP accumulation was not observed, suggesting that UII-induced CREB phosphorylation is caused by a signaling pathway different from that involving Gs protein. In contrast, the administration of UII to cells increased the phosphorylation of guanine nucleotide exchange factor-H1 (GEF-H1) and myosin light chain 2 (MLC2) in all UTR subtypes. These results define four distinct UTR functional subtypes and are consistent with the molecular evolution of UTR subtypes in vertebrates. Further understanding of signaling properties associated with UTR subtypes may help in clarifying the functional roles associated with UII-UTR interactions in nonmammalian vertebrates.
Collapse
Affiliation(s)
- Norifumi Konno
- Department of Biological Science, Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan.
| | - Moe Takano
- Department of Biological Science, Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
| | - Koichi Miura
- Department of Biochemistry, National Cardiovascular Center Research Institute, 6-1 Kishibe-shinmachi, Suita, Osaka 564-8565, Japan; Department of Clinical Pharmacology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Mikiya Miyazato
- Department of Biochemistry, National Cardiovascular Center Research Institute, 6-1 Kishibe-shinmachi, Suita, Osaka 564-8565, Japan
| | - Tomoya Nakamachi
- Department of Biological Science, Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
| | - Kouhei Matsuda
- Department of Biological Science, Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
| | - Hiroyuki Kaiya
- Department of Biochemistry, National Cardiovascular Center Research Institute, 6-1 Kishibe-shinmachi, Suita, Osaka 564-8565, Japan
| |
Collapse
|
31
|
Changes in cAMP effector predominance are associated with increased oxytocin receptor expression in twin but not infection-associated or idiopathic preterm labour. PLoS One 2020; 15:e0240325. [PMID: 33253216 PMCID: PMC7703985 DOI: 10.1371/journal.pone.0240325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 09/24/2020] [Indexed: 11/19/2022] Open
Abstract
We previously reported that at term pregnancy, a decline in myometrial protein kinase A (PKA) activity leads to an exchange protein activated by cyclic AMP (Epac1)-dependent increase in oxytocin receptor (OTR) expression, promoting the onset of labour. Here, we studied the changes in the cyclic adenosine monophosphate (cAMP) effector system present in different phenotypes of preterm labour (PTL). Myometrial biopsies obtained from women with phenotypically distinct forms of PTL and the levels of PKA and OTR were examined. Although we found similar changes in the cAMP effector pathway in all forms of PTL, only in the case of twin PTL (T-PTL) was myometrial OTR levels increased in association with these results. Although there were several changes in the mRNA levels of components of the cAMP synthetic pathway, the total myometrial cAMP levels did not change with the onset of any subtype of PTL. With regards to the expression of cAMP-responsive genes, we found that the mRNA levels of 4 of the 5 cAMP-down-regulated genes were increased in T-PTL, similar to our findings in term labour. These data signify that although changes in the cAMP effector system were common to all forms of PTL, only in T-PTL were OTR levels increased. Similarly, the mRNA levels of cAMP-repressed genes were only increased in T-PTL supporting the concept that the decline in PKA levels influences myometrial function driving the onset of T-PTL.
Collapse
|
32
|
Smolen P, Wood MA, Baxter DA, Byrne JH. Modeling suggests combined-drug treatments for disorders impairing synaptic plasticity via shared signaling pathways. J Comput Neurosci 2020; 49:37-56. [PMID: 33175283 DOI: 10.1007/s10827-020-00771-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 08/27/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022]
Abstract
Genetic disorders such as Rubinstein-Taybi syndrome (RTS) and Coffin-Lowry syndrome (CLS) cause lifelong cognitive disability, including deficits in learning and memory. Can pharmacological therapies be suggested that improve learning and memory in these disorders? To address this question, we simulated drug effects within a computational model describing induction of late long-term potentiation (L-LTP). Biochemical pathways impaired in these and other disorders converge on a common target, histone acetylation by acetyltransferases such as CREB binding protein (CBP), which facilitates gene induction necessary for L-LTP. We focused on four drug classes: tropomyosin receptor kinase B (TrkB) agonists, cAMP phosphodiesterase inhibitors, histone deacetylase inhibitors, and ampakines. Simulations suggested each drug type alone may rescue deficits in L-LTP. A potential disadvantage, however, was the necessity of simulating strong drug effects (high doses), which could produce adverse side effects. Thus, we investigated the effects of six drug pairs among the four classes described above. These combination treatments normalized impaired L-LTP with substantially smaller individual drug 'doses'. In addition three of these combinations, a TrkB agonist paired with an ampakine and a cAMP phosphodiesterase inhibitor paired with a TrkB agonist or an ampakine, exhibited strong synergism in L-LTP rescue. Therefore, we suggest these drug combinations are promising candidates for further empirical studies in animal models of genetic disorders that impair histone acetylation, L-LTP, and learning.
Collapse
Affiliation(s)
- Paul Smolen
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School of the University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| | - Marcelo A Wood
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
| | - Douglas A Baxter
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School of the University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - John H Byrne
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School of the University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| |
Collapse
|
33
|
Colucci-D’Amato L, Speranza L, Volpicelli F. Neurotrophic Factor BDNF, Physiological Functions and Therapeutic Potential in Depression, Neurodegeneration and Brain Cancer. Int J Mol Sci 2020; 21:E7777. [PMID: 33096634 PMCID: PMC7589016 DOI: 10.3390/ijms21207777] [Citation(s) in RCA: 468] [Impact Index Per Article: 93.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 01/10/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is one of the most distributed and extensively studied neurotrophins in the mammalian brain. BDNF signals through the tropomycin receptor kinase B (TrkB) and the low affinity p75 neurotrophin receptor (p75NTR). BDNF plays an important role in proper growth, development, and plasticity of glutamatergic and GABAergic synapses and through modulation of neuronal differentiation, it influences serotonergic and dopaminergic neurotransmission. BDNF acts as paracrine and autocrine factor, on both pre-synaptic and post-synaptic target sites. It is crucial in the transformation of synaptic activity into long-term synaptic memories. BDNF is considered an instructive mediator of functional and structural plasticity in the central nervous system (CNS), influencing dendritic spines and, at least in the hippocampus, the adult neurogenesis. Changes in the rate of adult neurogenesis and in spine density can influence several forms of learning and memory and can contribute to depression-like behaviors. The possible roles of BDNF in neuronal plasticity highlighted in this review focus on the effect of antidepressant therapies on BDNF-mediated plasticity. Moreover, we will review data that illustrate the role of BDNF as a potent protective factor that is able to confer protection against neurodegeneration, in particular in Alzheimer's disease. Finally, we will give evidence of how the involvement of BDNF in the pathogenesis of brain glioblastoma has emerged, thus opening new avenues for the treatment of this deadly cancer.
Collapse
Affiliation(s)
- Luca Colucci-D’Amato
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
- InterUniversity Center for Research in Neurosciences (CIRN), University of Campania "Luigi Vanvitelli", 80131 Naples, Italy
| | - Luisa Speranza
- Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA;
| | - Floriana Volpicelli
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy;
| |
Collapse
|
34
|
Islam T, Majumder M, Kalita B, Bhattacharjee A, Mukhopadhyay R, Mukherjee AK. Transcriptomic, proteomic, and biochemical analyses reveal a novel neuritogenesis mechanism of
Naja naja
venom α‐elapitoxin post binding to TrkA receptor of rat pheochromocytoma cells. J Neurochem 2020; 155:612-637. [DOI: 10.1111/jnc.15153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Taufikul Islam
- Microbial Biotechnology and Protein Research Laboratory Department of Molecular Biology and Biotechnology School of Sciences Tezpur University Tezpur Assam India
| | - Munmi Majumder
- Cellular, Molecular, and Environmental Biotechnology Laboratory Department of Molecular Biology and Biotechnology School of Sciences Tezpur University Tezpur Assam India
| | - Bhargab Kalita
- Microbial Biotechnology and Protein Research Laboratory Department of Molecular Biology and Biotechnology School of Sciences Tezpur University Tezpur Assam India
| | - Atanu Bhattacharjee
- Department of Biotechnology and Bioinformatics North Eastern Hill University Shillong Meghalaya India
| | - Rupak Mukhopadhyay
- Cellular, Molecular, and Environmental Biotechnology Laboratory Department of Molecular Biology and Biotechnology School of Sciences Tezpur University Tezpur Assam India
| | - Ashis K. Mukherjee
- Microbial Biotechnology and Protein Research Laboratory Department of Molecular Biology and Biotechnology School of Sciences Tezpur University Tezpur Assam India
| |
Collapse
|
35
|
Kim J, Kim SR, Choi YH, Shin JY, Kim CD, Kang NG, Park BC, Lee S. Quercitrin Stimulates Hair Growth with Enhanced Expression of Growth Factors via Activation of MAPK/CREB Signaling Pathway. Molecules 2020; 25:molecules25174004. [PMID: 32887384 PMCID: PMC7504764 DOI: 10.3390/molecules25174004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 01/28/2023] Open
Abstract
The present study aimed to investigate the molecular mechanism of quercitrin, a major constituent of Hottuynia cordata extract, for its hair growth stimulating activities in cultured human dermal papilla cells (hDPCs). Quercitrin enhanced the cell viability and cellular energy metabolism in cultured hDPCs by stimulating the production of NAD(P)H and mitochondrial membrane potential (ΔΨ). The expression of Bcl2, an essential marker for anagen hair follicle and cell survival, was increased by quercitrin treatment. Quercitrin also increased the cell proliferation marker Ki67. The expression of growth factors—such as bFGF, KGF, PDGF-AA, and VEGF—were increased by quercitrin both in mRNA and protein levels. In addition, quercitrin was found to increase the phosphorylation of Akt, Erk, and CREB in cultured hDPCs, while inhibitors of MAPKs reversed the effects of quercitrin. Finally, quercitrin stimulated hair shaft growth in cultured human hair follicles. Our data obtained from present study are in line with those previously reported and demonstrate that quercitrin is (one of) the active compound(s) of Hottuynia cordata extract which showed hair growth promoting effects. It is strongly suggested that the hair growth stimulating activity of quercitrin was exerted by enhancing the cellular energy metabolism, increasing the production of growth factors via activation of MAPK/CREB signaling pathway.
Collapse
Affiliation(s)
- Jaeyoon Kim
- LG Household & Health Care (LG H&H) R&D Center, 70, Magokjoongang 10-ro, Gangseo-gu, Seoul 07795, Korea; (J.K.); (Y.-H.C.); (J.y.S.); (N.-G.K.)
- Department of Dermatology, School of Medicine, Chungnam National University, 266, Munwha-ro, Jung-gu, Deajeon 35015, Korea;
| | - Soon Re Kim
- Basic and clinical Hair institute, Dankook University, 201, Manghyang-ro, Dongnam-gu, Cheonan-si, Chungcheongnam-do 31116, Korea; (S.R.K.); (B.C.P.)
| | - Yun-Ho Choi
- LG Household & Health Care (LG H&H) R&D Center, 70, Magokjoongang 10-ro, Gangseo-gu, Seoul 07795, Korea; (J.K.); (Y.-H.C.); (J.y.S.); (N.-G.K.)
| | - Jae young Shin
- LG Household & Health Care (LG H&H) R&D Center, 70, Magokjoongang 10-ro, Gangseo-gu, Seoul 07795, Korea; (J.K.); (Y.-H.C.); (J.y.S.); (N.-G.K.)
| | - Chang Deok Kim
- Department of Dermatology, School of Medicine, Chungnam National University, 266, Munwha-ro, Jung-gu, Deajeon 35015, Korea;
| | - Nae-Gyu Kang
- LG Household & Health Care (LG H&H) R&D Center, 70, Magokjoongang 10-ro, Gangseo-gu, Seoul 07795, Korea; (J.K.); (Y.-H.C.); (J.y.S.); (N.-G.K.)
| | - Byung Cheol Park
- Basic and clinical Hair institute, Dankook University, 201, Manghyang-ro, Dongnam-gu, Cheonan-si, Chungcheongnam-do 31116, Korea; (S.R.K.); (B.C.P.)
- Department of Dermatology, Dankook University Hospital, 201, Manghyang-ro, Dongnam-gu, Cheonan-si, Chungcheongnam-do 31116, Korea
| | - Sanghwa Lee
- LG Household & Health Care (LG H&H) R&D Center, 70, Magokjoongang 10-ro, Gangseo-gu, Seoul 07795, Korea; (J.K.); (Y.-H.C.); (J.y.S.); (N.-G.K.)
- Correspondence: ; Tel.: +82-2-6980-1210
| |
Collapse
|
36
|
Gudasheva TA, Povarnina PY, Tarasiuk AV, Seredenin SB. Low-molecular mimetics of nerve growth factor and brain-derived neurotrophic factor: Design and pharmacological properties. Med Res Rev 2020; 41:2746-2774. [PMID: 32808322 DOI: 10.1002/med.21721] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/02/2020] [Accepted: 08/05/2020] [Indexed: 12/20/2022]
Abstract
To overcome the limitations of the clinical use of neurotrophins nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), scientists have been trying to create their low-molecular-weight mimetics having improved pharmacokinetic properties and lacking side effects of full-sized proteins since the 90s of the last century. The efforts of various research groups have led to the production of peptide and nonpeptide mimetics, being agonists or modulators of the corresponding Trk or p75 receptors that reproduced the therapeutic effects of full-sized proteins. This review discusses different strategies and approaches to the design of such compounds. The relationship between the structure of the mimetics obtained and their action mechanisms and pharmacological properties are analyzed. Special attention is paid to the dipeptide mimetics of individual NGF and BDNF loops having different patterns of activation of Trk receptors signal transduction pathways, phosphoinositide 3-kinase/protein kinase B and mitogen-activated protein kinase/extracellular signal-regulated kinase, which allowed to evaluate the contribution of each pathway to different pharmacological effects. In conclusion, data on therapeutically promising compounds being at different stages of preclinical and clinical studies are summarized.
Collapse
Affiliation(s)
- Tatiana A Gudasheva
- Medicinal Chemistry Department, V. V. Zakusov Research Institute of Pharmacology, Moscow, Russian Federation
| | - Polina Y Povarnina
- Medicinal Chemistry Department, V. V. Zakusov Research Institute of Pharmacology, Moscow, Russian Federation
| | - Aleksey V Tarasiuk
- Medicinal Chemistry Department, V. V. Zakusov Research Institute of Pharmacology, Moscow, Russian Federation
| | - Sergey B Seredenin
- Department of Pharmacogenetics, V. V. Zakusov Research Institute of Pharmacology, Moscow, Russian Federation
| |
Collapse
|
37
|
Abstract
Neurotrophin-3 (NT-3) belongs to a family of growth factors called neurotrophins whose actions are centered in the nervous system. NT-3 is structurally related to other neurotrophins like brain-derived neurotrophic factor. The expression of NT-3 starts with the onset of neurogenesis and continues throughout life. A wealth of information links NT-3 to the growth, differentiation, and survival of hippocampal cells as well as sympathetic and sensory neurons. These studies have described the distribution of NT-3 and its receptors throughout development and in the mature nervous system. Prior works has begun to cell-type specific impact of NT-3 as well as identify the signaling pathways involved. However, much less is known about how NT-3 regulates synaptic transmission. This chapter focuses role of NT-3 in the modulation of synaptic transmission.
Collapse
|
38
|
Chen X, Huang Z, Wu W, Xia R. Inhibition of Skp2 Sensitizes Chronic Myeloid Leukemia Cells to Imatinib. Cancer Manag Res 2020; 12:4777-4787. [PMID: 32606967 PMCID: PMC7319929 DOI: 10.2147/cmar.s253367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/13/2020] [Indexed: 01/10/2023] Open
Abstract
Introduction Skp2 is an E3 ubiquitin ligase that plays an important role in modulating tumor progression. The mechanisms underlying Skp2 in the promotion of proliferation and its function in the primary resistance to tyrosine kinase inhibitors (TKIs) in human CML remain to be determined. This study aimed to investigate the function of Skp2 in CML progression as well as its effects on TKI sensitivity. Methods Expression of Skp2 in leukocytes from patients with CML and normal blood samples was analyzed by qRT-PCR. Cell proliferation was analyzed by EdU incorporation and cell counting assays. Luciferase reporter and chromatin immunoprecipitation assays were used for examination of the effects of CREB on Skp2 expression. The apoptosis in vitro of K562 cells was analyzed by MTT and caspase 3/7 activity assays. Results The present study demonstrates that Skp2 was expressed at a higher level in patients with CML compared with healthy donors, and the elevated expression of Skp2 is critical for CML cell proliferation. Mechanistically, Skp2 was transcriptionally upregulated by CREB responsive to the PI3K/Akt signaling pathway. Furthermore, inhibition of Skp2 expression by shRNAs or blocking the PI3K/Akt/CREB pathway greatly enhances the sensitivity of CML cells to Imatinib treatment. Conclusion We conclude that the PI3K/Akt/CREB axis regulates the sensitivity of K562 cells to Imatinib via mediating Skp2 expression. The present study revealed an unknown role of Skp2 in CML progression and provided new aspects on the Skp2-modulated TKI sensitivity in CML, contributing to the development of potential therapeutic anticancer drugs.
Collapse
Affiliation(s)
- Xiaowen Chen
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, People's Republic of China
| | - Zhenqi Huang
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, People's Republic of China
| | - Wei Wu
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, People's Republic of China
| | - Ruixiang Xia
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, People's Republic of China
| |
Collapse
|
39
|
Chang HM, Wu HC, Sun ZG, Lian F, Leung PCK. Neurotrophins and glial cell line-derived neurotrophic factor in the ovary: physiological and pathophysiological implications. Hum Reprod Update 2020; 25:224-242. [PMID: 30608586 PMCID: PMC6390169 DOI: 10.1093/humupd/dmy047] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/22/2018] [Accepted: 12/27/2018] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Neurotrophins [nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4)] and glial cell line-derived neurotrophic factor (GDNF) are soluble polypeptide growth factors that are widely recognized for their roles in promoting cell growth, survival and differentiation in several classes of neurons. Outside the nervous system, neurotrophin (NT) and GDNF signaling events have substantial roles in various non-neural tissues, including the ovary. OBJECTIVE AND RATIONALE The molecular mechanisms that promote and regulate follicular development and oocyte maturation have been extensively investigated. However, most information has been obtained from animal models. Even though the fundamental process is highly similar across species, the paracrine regulation of ovarian function in humans remains poorly characterized. Therefore, this review aims to summarize the expression and functional roles of NTs and GDNF in human ovarian biology and disorders, and to describe and propose the development of novel strategies for diagnosing, treating and preventing related abnormalities. SEARCH METHODS Relevant literature in the English language from 1990 to 2018 describing the role of NTs and GDNF in mammalian ovarian biology and phenotypes was comprehensively selected using PubMed, MEDLINE and Google Scholar. OUTCOMES Studies have shown that the neurotrophins NGF, BDNF, NT-3 and NT-4 as well as GDNF and their functional receptors are expressed in the human ovary. Recently, gathered experimental data suggest putative roles for NT and GDNF signaling in the direct control of ovarian function, including follicle assembly, activation of the primordial follicles, follicular growth and development, oocyte maturation, steroidogenesis, ovulation and corpus luteum formation. Additionally, crosstalk occurs between these ovarian regulators and the endocrine signaling system. Dysregulation of the NT system may negatively affect ovarian function, leading to reproductive pathology (decreased ovarian reserve, polycystic ovary syndrome and endometriosis), female infertility and even epithelial ovarian cancers. WIDER IMPLICATIONS A comprehensive understanding of the expression, actions and underlying molecular mechanisms of the NT/GDNF system in the human ovary is essential for novel approaches to therapeutic and diagnostic interventions in ovarian diseases and to develop more safe, effective methods of inducing ovulation in ART in the treatment of female infertility.
Collapse
Affiliation(s)
- Hsun-Ming Chang
- Integrative Medicine Research Centre of Reproduction and Heredity, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hai-Cui Wu
- Integrative Medicine Research Centre of Reproduction and Heredity, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zhen-Gao Sun
- Integrative Medicine Research Centre of Reproduction and Heredity, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Fang Lian
- Integrative Medicine Research Centre of Reproduction and Heredity, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peter C K Leung
- Integrative Medicine Research Centre of Reproduction and Heredity, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
40
|
Neurotrophic effects of G M1 ganglioside, NGF, and FGF2 on canine dorsal root ganglia neurons in vitro. Sci Rep 2020; 10:5380. [PMID: 32214122 PMCID: PMC7096396 DOI: 10.1038/s41598-020-61852-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 03/04/2020] [Indexed: 01/26/2023] Open
Abstract
Dogs share many chronic morbidities with humans and thus represent a powerful model for translational research. In comparison to rodents, the canine ganglioside metabolism more closely resembles the human one. Gangliosides are components of the cell plasma membrane playing a role in neuronal development, intercellular communication and cellular differentiation. The present in vitro study aimed to characterize structural and functional changes induced by GM1 ganglioside (GM1) in canine dorsal root ganglia (DRG) neurons and interactions of GM1 with nerve growth factor (NGF) and fibroblast growth factor (FGF2) using immunofluorescence for several cellular proteins including neurofilaments, synaptophysin, and cleaved caspase 3, transmission electron microscopy, and electrophysiology. GM1 supplementation resulted in increased neurite outgrowth and neuronal survival. This was also observed in DRG neurons challenged with hypoxia mimicking neurodegenerative conditions due to disruptions of energy homeostasis. Immunofluorescence indicated an impact of GM1 on neurofilament phosphorylation, axonal transport, and synaptogenesis. An increased number of multivesicular bodies in GM1 treated neurons suggested metabolic changes. Electrophysiological changes induced by GM1 indicated an increased neuronal excitability. Summarized, GM1 has neurotrophic and neuroprotective effects on canine DRG neurons and induces functional changes. However, further studies are needed to clarify the therapeutic value of gangliosides in neurodegenerative diseases.
Collapse
|
41
|
Liu RY, Zhang Y, Smolen P, Cleary LJ, Byrne JH. Role of p90 ribosomal S6 kinase in long-term synaptic facilitation and enhanced neuronal excitability. Sci Rep 2020; 10:608. [PMID: 31953461 PMCID: PMC6969148 DOI: 10.1038/s41598-020-57484-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/08/2019] [Indexed: 12/22/2022] Open
Abstract
Multiple kinases converge on the transcription factor cAMP response element-binding protein (CREB) to enhance the expression of proteins essential for long-term synaptic plasticity and memory. The p90 ribosomal S6 kinase (RSK) is one of these kinases, although its role is poorly understood. The present study exploited the technical advantages of the Aplysia sensorimotor culture system to examine the role of RSK in long-term synaptic facilitation (LTF) and long-term enhancement of neuronal excitability (LTEE), two correlates of long-term memory (LTM). Inhibition of RSK expression or RSK activity both significantly reduced CREB1 phosphorylation, LTF, and LTEE, suggesting RSK is required for learning-related synaptic plasticity and enhancement in neuronal excitability. In addition, knock down of RSK by RNAi in Aplysia sensory neurons impairs LTF, suggesting that this may be a useful single-cell system to study aspects of defective synaptic plasticity in Coffin-Lowry Syndrome (CLS), a cognitive disorder that is caused by mutations in rsk2 and associated with deficits in learning and memory. We found that the impairments in LTF and LTEE can be rescued by a computationally designed spaced training protocol, which was previously demonstrated to augment normal LTF and LTM.
Collapse
Affiliation(s)
- Rong-Yu Liu
- Department of Neurobiology and Anatomy. W. M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, 6431 Fannin Street, Suite MSB 7.046, Houston, TX, 77030, USA
| | - Yili Zhang
- Department of Neurobiology and Anatomy. W. M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, 6431 Fannin Street, Suite MSB 7.046, Houston, TX, 77030, USA
| | - Paul Smolen
- Department of Neurobiology and Anatomy. W. M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, 6431 Fannin Street, Suite MSB 7.046, Houston, TX, 77030, USA
| | - Leonard J Cleary
- Department of Neurobiology and Anatomy. W. M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, 6431 Fannin Street, Suite MSB 7.046, Houston, TX, 77030, USA
| | - John H Byrne
- Department of Neurobiology and Anatomy. W. M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, 6431 Fannin Street, Suite MSB 7.046, Houston, TX, 77030, USA.
| |
Collapse
|
42
|
Kir6.1 Heterozygous Mice Exhibit Aberrant Amygdala-Dependent Cued Fear Memory. Mol Neurobiol 2019; 57:1622-1635. [PMID: 31808063 DOI: 10.1007/s12035-019-01840-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 11/18/2019] [Indexed: 10/25/2022]
Abstract
ATP-sensitive K+ (KATP) channels are predominantly expressed in the brain and consist of four identical inward-rectifier potassium ion channel subunits (Kir6.1 or Kir6.2) and four identical high-affinity sulfonylurea receptor subunits (SUR1, SUR2A, or SUR2B). We previously observed that chronic corticosterone-treated (CORT) mice exhibited enhanced anxiety-like behaviors and cued fear memory. In the present study, the protein and mRNA expression levels of Kir6.1, but not Kir6.2, were decreased in the lateral amygdala (LA) of CORT mice. Heterozygous Kir6.1-null (Kir6.1+/-) mice also showed enhanced tone (cued) fear memory and long-term potentiation (LTP) in the cortico-LA pathway compared to those in wild-type mice. However, LTP was not enhanced in the hippocampal CA1 regions of Kir6.1+/- mice. Consistent with increased cued fear memory, both Ca2+/calmodulin-dependent protein kinase II (CaMKII) and extracellular signal-regulated kinase (ERK) activities were significantly elevated in the LAs of Kir6.1+/- mice after tone stimulation. Our results indicate that increased CaMKII and ERK activities may induce LTP in the LA in Kir6.1+/- mice, leading to aberrant cued fear memory. The changes in neural plasticity in the LA of Kir6.1+/- mice were associated with anxiety-like behaviors and may be related to the pathogenic mechanisms of anxiety disorders in human patients.
Collapse
|
43
|
Phosphorylation of Npas4 by MAPK Regulates Reward-Related Gene Expression and Behaviors. Cell Rep 2019; 29:3235-3252.e9. [DOI: 10.1016/j.celrep.2019.10.116] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/02/2019] [Accepted: 10/28/2019] [Indexed: 02/06/2023] Open
|
44
|
Chow CFW, Che S, Qin HY, Kwan HY, Bian ZX, Wong HLX. From psychology to physicality: how nerve growth factor transduces early life stress into gastrointestinal motility disorders later in life. Cell Cycle 2019; 18:1824-1829. [PMID: 31272268 DOI: 10.1080/15384101.2019.1637203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Environmental stressors in early childhood can have a detrimental impact later in life, manifesting in functional gastrointestinal disorders including irritable bowel syndrome (IBS). The phenomenon is also observed in rodents, where neonatal-maternal separation, a model of early life stress, induces phenotypes similar to IBS; however, the underlying mechanisms remain unelucidated. Our recent study provided a mechanism for the pathogenesis in the gut, demonstrating that increased visceral hyperalgesia resulted from the expansion of the intestinal stem cell compartment leading to increased differentiation and proliferation of serotonin (5-hydroxytryptamine/5-HT)-producing enterochromaffin cells. Moreover, it identified nerve growth factor (NGF) as a key mediator of the pathogenesis; surprisingly, it exerts its effect via cross talk with Wnt/β-catenin signaling. This article addresses the roles of NGF in driving IBS and its potential clinical implications, outstanding questions in how psychological stimuli are transduced into physical phenotypes, as well as future directions of our findings. Abbreviations: 5-HT: 5-hydroxytryptamine/serotonin; BDNF: brain-derived neurotrophic factor; CRF: corticotrophin-releasing factor; EC: enterochromaffin; ENS: enteric nervous system; GI: gastrointestinal; GPCR: G-protein-coupled receptor; IBS (-D): irritable bowel syndrome (diarrhea predominant); LRP5/6: low-density lipoprotein receptor-related protein 5/6; MAPK: mitogen-activated protein kinase; NGF: nerve growth factor; NMS: neonatal-maternal separation; PI3K: phosphoinositode3-kinase; PLCγ: phospholipase c, gamma subtype; TrkA: tropomyosin receptor kinase A.
Collapse
Affiliation(s)
- Chi Fung Willis Chow
- a Institute of Brain and Gut Axis (IBAG), Centre of Clinical Research for Chinese Medicine, School of Chinese Medicine, Hong Kong Baptist University , Kowloon Tong , Hong Kong SAR , China
| | - Sijia Che
- a Institute of Brain and Gut Axis (IBAG), Centre of Clinical Research for Chinese Medicine, School of Chinese Medicine, Hong Kong Baptist University , Kowloon Tong , Hong Kong SAR , China
| | - Hong-Yan Qin
- b Department of Pharmacy, First Hospital of Lanzhou University , Lanzhou , China
| | - Hiu Yee Kwan
- a Institute of Brain and Gut Axis (IBAG), Centre of Clinical Research for Chinese Medicine, School of Chinese Medicine, Hong Kong Baptist University , Kowloon Tong , Hong Kong SAR , China
| | - Zhao-Xiang Bian
- a Institute of Brain and Gut Axis (IBAG), Centre of Clinical Research for Chinese Medicine, School of Chinese Medicine, Hong Kong Baptist University , Kowloon Tong , Hong Kong SAR , China
| | - Hoi Leong Xavier Wong
- a Institute of Brain and Gut Axis (IBAG), Centre of Clinical Research for Chinese Medicine, School of Chinese Medicine, Hong Kong Baptist University , Kowloon Tong , Hong Kong SAR , China
| |
Collapse
|
45
|
Zhu G, Liu Y, Zhi Y, Jin Y, Li J, Shi W, Liu Y, Han Y, Yu S, Jiang J, Zhao X. PKA- and Ca 2+-dependent p38 MAPK/CREB activation protects against manganese-mediated neuronal apoptosis. Toxicol Lett 2019; 309:10-19. [PMID: 30951808 DOI: 10.1016/j.toxlet.2019.04.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/24/2019] [Accepted: 04/01/2019] [Indexed: 11/27/2022]
Abstract
Although manganese (Mn) is an essential trace element, its excessive consumption may lead to neuronal death and neurodegenerative disorders. Human cells launch adaptive responses to attenuate Mn-induced neurotoxicity. However, the regulation of the responsive proteins and their function during Mn-stimulated neurotoxicity remain largely unknown. We report the role of cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB) in Mn-induced neuronal apoptosis. Mn increased CREB phosphorylation and cellular apoptosis in both PC12 cells and mouse brain tissue. Furthermore, downregulation of CREB with shRNA plasmid transfection significantly worsened the PC12 cell apoptosis by decreasing mRNA and protein expression of brain-derived neurotrophic factor (BDNF). Moreover, Mn enhanced protein kinase A (PKA) activation and activation of the p38 MAPK and JNK pathways. Inhibition of p38 MAPK rather than JNK effectively reduced the CREB phosphorylation. Subsequent analysis showed that a PKA inhibitor blocked p38 MAPK and CREB phosphorylation. Moreover, the intracellular Ca2+ chelator BAPTA-AM decreased the phosphorylation of p38 MAPK and CREB but failed to reduce PKA activation. In summary, p38 MAPK/CREB activation via PKA activation and increased cellular Ca2+ helped to alleviate Mn-induced neuronal apoptosis via BDNF regulation. These findings improve our understanding of Mn-induced neurotoxicity and the molecular targets to antagonise it.
Collapse
Affiliation(s)
- Ganlin Zhu
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Yiming Liu
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Ye Zhi
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Yang Jin
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Jinlong Li
- School of Pharmacy, Nangtong University, Nantong 226001, China.
| | - Weiwei Shi
- Nantong Hospital of Traditional Chinese Medicine, Nantong 226001, China
| | - Yuting Liu
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Yu Han
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Shali Yu
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Junkang Jiang
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China.
| | - Xinyuan Zhao
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China.
| |
Collapse
|
46
|
Koga Y, Tsurumaki H, Aoki-Saito H, Sato M, Yatomi M, Takehara K, Hisada T. Roles of Cyclic AMP Response Element Binding Activation in the ERK1/2 and p38 MAPK Signalling Pathway in Central Nervous System, Cardiovascular System, Osteoclast Differentiation and Mucin and Cytokine Production. Int J Mol Sci 2019; 20:ijms20061346. [PMID: 30884895 PMCID: PMC6470985 DOI: 10.3390/ijms20061346] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/08/2019] [Accepted: 03/13/2019] [Indexed: 11/26/2022] Open
Abstract
There are many downstream targets of mitogen-activated protein kinase (MAPK) signalling that are involved in neuronal development, cellular differentiation, cell migration, cancer, cardiovascular dysfunction and inflammation via their functions in promoting apoptosis and cell motility and regulating various cytokines. It has been reported that cyclic AMP response element-binding protein (CREB) is phosphorylated and activated by cyclic AMP signalling and calcium/calmodulin kinase. Recent evidence also points to CREB phosphorylation by the MAPK signalling pathway. However, the specific roles of CREB phosphorylation in MAPK signalling have not yet been reviewed in detail. Here, we describe the recent advances in the study of this MAPK-CREB signalling axis in human diseases. Overall, the crosstalk between extracellular signal-related kinase (ERK) 1/2 and p38 MAPK signalling has been shown to regulate various physiological functions, including central nervous system, cardiac fibrosis, alcoholic cardiac fibrosis, osteoclast differentiation, mucin production in the airway, vascular smooth muscle cell migration, steroidogenesis and asthmatic inflammation. In this review, we focus on ERK1/2 and/or p38 MAPK-dependent CREB activation associated with various diseases to provide insights for basic and clinical researchers.
Collapse
Affiliation(s)
- Yasuhiko Koga
- Department of Allergy and Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 sho-wa machi Maebashi, Gunma 371-8511, Japan.
| | - Hiroaki Tsurumaki
- Department of Allergy and Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 sho-wa machi Maebashi, Gunma 371-8511, Japan.
| | - Haruka Aoki-Saito
- Department of Allergy and Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 sho-wa machi Maebashi, Gunma 371-8511, Japan.
| | - Makiko Sato
- Department of Allergy and Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 sho-wa machi Maebashi, Gunma 371-8511, Japan.
| | - Masakiyo Yatomi
- Department of Allergy and Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 sho-wa machi Maebashi, Gunma 371-8511, Japan.
| | - Kazutaka Takehara
- Department of Allergy and Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 sho-wa machi Maebashi, Gunma 371-8511, Japan.
| | - Takeshi Hisada
- Gunma University Graduate School of Health Sciences, 3-39-22 sho-wa machi Maebashi, Gunma 371-8514, Japan.
| |
Collapse
|
47
|
Kim JY, Kim JY, Kim JH, Jung H, Lee WT, Lee JE. Restorative Mechanism of Neural Progenitor Cells Overexpressing Arginine Decarboxylase Genes Following Ischemic Injury. Exp Neurobiol 2019; 28:85-103. [PMID: 30853827 PMCID: PMC6401554 DOI: 10.5607/en.2019.28.1.85] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 12/13/2022] Open
Abstract
Cell replacement therapy using neural progenitor cells (NPCs) following ischemic stroke is a promising potential therapeutic strategy, but lacks efficacy for human central nervous system (CNS) therapeutics. In a previous in vitro study, we reported that the overexpression of human arginine decarboxylase (ADC) genes by a retroviral plasmid vector promoted the neuronal differentiation of mouse NPCs. In the present study, we focused on the cellular mechanism underlying cell proliferation and differentiation following ischemic injury, and the therapeutic feasibility of NPCs overexpressing ADC genes (ADC-NPCs) following ischemic stroke. To mimic cerebral ischemia in vitro , we subjected the NPCs to oxygen-glucose deprivation (OGD). The overexpressing ADC-NPCs were differentiated by neural lineage, which was related to excessive intracellular calcium-mediated cell cycle arrest and phosphorylation in the ERK1/2, CREB, and STAT1 signaling cascade following ischemic injury. Moreover, the ADC-NPCs were able to resist mitochondrial membrane potential collapse in the increasingly excessive intracellular calcium environment. Subsequently, transplanted ADC-NPCs suppressed infarct volume, and promoted neural differentiation, synapse formation, and motor behavior performance in an in vivo tMCAO rat model. The results suggest that ADC-NPCs are potentially useful for cell replacement therapy following ischemic stroke.
Collapse
Affiliation(s)
- Jae Young Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jong Youl Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jae Hwan Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science, Sungkyunkwan University, Suwon 16419, Korea
| | - Hosung Jung
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
- BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Won Taek Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
- BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
- Brain Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
48
|
Haque MN, Mohibbullah M, Hong YK, Moon IS. Calotropis gigantea Promotes Neuritogenesis and Synaptogenesis through Activation of NGF-TrkA-Erk1/2 Signaling in Rat Hippocampal Neurons. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 46:1861-1877. [DOI: 10.1142/s0192415x18500933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Calotropis gigantea (L.) R. Br (Apocynaceae) (commonly known as milkweed or crown flower) is a large shrub native to temperate regions of Asia, including China, Bangladesh and India and has a long history of use in traditional medicines. In this study, we investigated the neuromodulatory effects of the ethanol extracts of C. gigantea leaves (CGE) during synaptogenesis in the late stage of neuronal development and during early stage neuritogenesis in cultured rat hippocampal neurons. Maximum neuritogenic activity was achieved at a CGE concentration of 7.5[Formula: see text][Formula: see text]g/ml. At this concentration, CGE facilitated the early development of cytoarchitecture, as evidenced by increases in morphometric parameters, such as, the numbers, lengths, and number of branches of initial neurites, axon and dendrites. During the synaptogenic stage (DIV 14), immunocytochemistry (ICC) showed that CGE upregulated synaptic vesicle 2 (SV2, a marker of axon terminals) and postsynaptic density-95 (PSD-95, a postsynaptic marker) and their colocalization. CGE upregulated nerve growth factor (NGF) and activated extracellular signal-regulated kinase 1/2 (Erk1/2), which is blocked by a TrkA-specific inhibitor suggesting the neuritogenic and synaptogenic potential of CGE was due to the activation of NGF-TrkA-Erk1/2 signaling. Moreover, UPLC of CGE did not detect stigmasterol, an active component of C. gigantea. However, the chloroform-methanol and ethyl acetate subfractions of CGE exhibited initial neuritogenic activity, suggesting that multiple active components were responsible for the neurotrophic-mimetic properties of CGE. Our data prove the neuromodulatory ability of CGE and provide a means of identifying new active phytochemicals with potential nootropic, preventative or therapeutic effects on the human brain.
Collapse
Affiliation(s)
- Md Nazmul Haque
- Department of Anatomy, Dongguk University Graduate School of Medicine, Gyeongju 38066, Republic of Korea
| | - Md Mohibbullah
- Department of Biotechnology, Pukyong National University, Namku, Busan 48513, Republic of Korea
- Department of Fisheries and Marine Bioscience, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj-8100, Bangladesh
| | - Yong-Ki Hong
- Department of Biotechnology, Pukyong National University, Namku, Busan 48513, Republic of Korea
| | - Il Soo Moon
- Department of Anatomy, Dongguk University Graduate School of Medicine, Gyeongju 38066, Republic of Korea
| |
Collapse
|
49
|
Regional Ischemic Preconditioning Has Clinical Value in Cirrhotic HCC Through MAPK Pathways. J Gastrointest Surg 2019; 23:1767-1777. [PMID: 30542823 PMCID: PMC6702190 DOI: 10.1007/s11605-018-3960-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/29/2018] [Indexed: 01/31/2023]
Abstract
BACKGROUND This study assessed the clinical value of regional ischemic preconditioning (RIP) and the role of the mitogen-activated protein kinase (MAPK) pathways in the protective mechanism of RIP in cirrhotic hepatocellular carcinoma (HCC) patients undergoing hepatectomy. METHODS Liver resection was performed with hemi-hepatic vascular inflow occlusion (HHV) under RIP (RIP group) or with HHV alone (HHV group). Clinical data, surgical outcomes, and the levels of phosphorylated MAPKs before occlusion and 30 min after reperfusion were estimated. RESULTS HHV under RIP was associated with less intraoperative blood loss (300 vs. 400 ml; P = 0.042), postoperative plasma transfused (400 vs. 800 ml; P = 0.019), and a higher level of prothrombin activity at postoperative days 3, 5, and 7 compared to HHV alone. The level of phosphorylated ERK protein was significantly increased and the levels of phosphorylated p38 and JNK proteins were significantly decreased 30 min after reperfusion compared to HHV group in the RIP group. CONCLUSIONS HHV under RIP may have clinical value in cirrhotic HCC patients requiring resection and the protective mechanism of RIP may be associated with changes in the protein phosphorylation level of MAPK pathways.
Collapse
|
50
|
Feczkó T, Piiper A, Ansar S, Blixt FW, Ashtikar M, Schiffmann S, Ulshöfer T, Parnham MJ, Harel Y, Israel LL, Lellouche JP, Wacker MG. Stimulating brain recovery after stroke using theranostic albumin nanocarriers loaded with nerve growth factor in combination therapy. J Control Release 2018; 293:63-72. [PMID: 30458203 DOI: 10.1016/j.jconrel.2018.11.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 11/10/2018] [Accepted: 11/15/2018] [Indexed: 01/10/2023]
Abstract
For many years, delivering drug molecules across the blood brain barrier has been a major challenge. The neuropeptide nerve growth factor is involved in the regulation of growth and differentiation of cholinergic neurons and holds great potential in the treatment of stroke. However, as with many other compounds, the biomolecule is not able to enter the central nervous system. In the present study, nerve growth factor and ultra-small particles of iron oxide were co-encapsulated into a chemically crosslinked albumin nanocarrier matrix which was modified on the surface with apolipoprotein E. These biodegradable nanoparticles with a size of 212 ± 1 nm exhibited monodisperse size distribution and low toxicity. They delivered NGF through an artificial blood brain barrier and were able to induce neurite outgrowth in PC12 cells in vitro. In an animal model of stroke, the infarct size was significantly reduced compared to the vehicle control. The combination therapy of NGF and the small-molecular MEK inhibitor U0126 showed a slight but not significant difference compared to U0126 alone. However, further in vivo evidence suggests that successful delivery of the neuropeptide is possible as well as the synergism between those two treatments.
Collapse
Affiliation(s)
- Tivadar Feczkó
- Department of Medicine 1, University Hospital Frankfurt, Frankfurt, Germany; Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary; Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprém, Hungary
| | - Albrecht Piiper
- Department of Medicine 1, University Hospital Frankfurt, Frankfurt, Germany
| | - Saema Ansar
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Frank W Blixt
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Mukul Ashtikar
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Branch for Translational Medicine and Pharmacology, Frankfurt/Main, Germany
| | - Susanne Schiffmann
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Branch for Translational Medicine and Pharmacology, Frankfurt/Main, Germany
| | - Thomas Ulshöfer
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Branch for Translational Medicine and Pharmacology, Frankfurt/Main, Germany
| | - Michael J Parnham
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Branch for Translational Medicine and Pharmacology, Frankfurt/Main, Germany
| | - Yifat Harel
- Department of Chemistry, Bar Ilan University, Israel
| | | | | | - Matthias G Wacker
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Branch for Translational Medicine and Pharmacology, Frankfurt/Main, Germany; Institute of Pharmaceutical Technology, Goethe University, Frankfurt/Main, Germany.
| |
Collapse
|