1
|
Hong Q, Kim H, Cai GY, Chen XM, He JC, Lee K. Modulation of TGF-β signaling new approaches toward kidney disease and fibrosis therapy. Int J Biol Sci 2025; 21:1649-1665. [PMID: 39990662 PMCID: PMC11844295 DOI: 10.7150/ijbs.101548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 11/16/2024] [Indexed: 02/25/2025] Open
Abstract
The prevalence of chronic kidney disease (CKD) is increasing worldwide, posing a significant healthcare challenge. Despite the immense burden of CKD, optimal therapies remain limited in impact. Kidney fibrosis is a common mediator of all CKD progression, characterized by excessive extracellular matrix deposition and scarring of kidney parenchyma. Transforming growth factor-β (TGF-β) is a potent pro-fibrotic cytokine that signals through canonical and non-canonical pathways to promote kidney cell damage and fibrosis progression, thus garnering much interest as an optimal therapeutic target for CKD. However, the clinical translation of TGF-β inhibition in CKD and other disease settings has faced substantial challenges, particularly due to the highly pleiotropic effects of TGF-β in organ homeostasis and disease. Here, we review the kidney cell-specific biological effects of TGF-β signaling, discuss the current challenges in therapeutic targeting TGF-β in CKD, and provide the rationale for alternative targeting strategies of TGF-β signaling as potential approaches in CKD therapy. Selective inhibition of TGF-β signaling modulators to fine-tune TGF-β inhibition without a broad blockade may lead to new and safer treatments for CKD.
Collapse
Affiliation(s)
- Quan Hong
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, NY, USA
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing, China
| | - Hyoungnae Kim
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Guang-Yan Cai
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing, China
| | - Xiang-Mei Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing, China
| | - John Cijiang He
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, NY, USA
- James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, USA
| | - Kyung Lee
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, NY, USA
| |
Collapse
|
2
|
Gupta S, Zhang E, Sinha S, Martin LM, Varghese TS, Forck NG, Sinha PR, Ericsson AC, Hesemann NP, Mohan RR. Analysis of Smad3 in the modulation of stromal extracellular matrix proteins in corneal scarring after alkali injury. Mol Vis 2024; 30:448-464. [PMID: 39959170 PMCID: PMC11829792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/28/2024] [Indexed: 02/18/2025] Open
Abstract
Purpose During ocular trauma, excessive proliferation and transdifferentiation of corneal stromal fibroblasts cause haze/fibrosis in the cornea. Transforming growth factor β (TGFβ) plays a key role in corneal fibrosis through the Smad signaling pathway. The aberrant activity of TGFβ signaling during ocular trauma (viz. mechanical, infectious, chemical, or surgically altered TGFβ/Smad signaling) leads to regulating the predominant expression of myogenic proteins and the extracellular matrix (ECM). We sought to investigate the functional role of Smad3 in corneal wound repair and stromal ECM assembly using Smad3+/+ wild-type and Smad3-/- deficient mice. Methods Corneal injury was introduced with the topical application of an alkali-soaked 2-mm filter disc on the central cornea in the Smad3+/+ (C57BL/6J) and Smad3-/- (129-Smad3tm1Par/J) mouse strains. Slit-lamp and stereo microscopy were used for clinical assessment and corneal haze grading in live animals. Hematoxylin and eosin and Masson's trichrome staining were used to study comparative morphology and collagen level alterations between the groups. Real-time qRT-PCR, western blot, and immunohistochemistry were used to measure changes in profibrotic genes at the mRNA and protein levels. Results Slit-lamp clinical exams and stereo microscopy detected notably less opaque cornea in the eyes of Smad3-/- compared with Smad3+/+ mice at 3 weeks (p<0.01) in live animals. Corneal tissue sections of Smad3-/- mice showed significantly fewer α-smooth muscle actin-positive cells compared with those of the Smad3+/+ animals (p<0.05). The corneas of the Smad3-/- mice showed significantly lower mRNA levels of pro-fibrotic genes, α-smooth muscle actin, fibronectin, and collagen I (p<0.05, p<0.01, and p<0.001). In addition, the matrix metalloproteinase and tissue inhibitors of metalloproteinase levels were significantly increased (p<0.001) in the corneal tissue during alkali injury in both Smad3+/+ wild-type and Smad3-/- deficient mice. Conclusions The significant changes in profibrotic genes and stromal ECM proteins revealed a direct role of Smad3 in stromal ECM proteins and TGFβ/Smad-driven wound healing. Smad3 appears to be an attractive molecular target for limiting abnormal stroma wound healing to treat corneal fibrosis in vivo.
Collapse
Affiliation(s)
- Suneel Gupta
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO
- Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO
| | - Eric Zhang
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO
| | - Sampann Sinha
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO
- Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO
| | - Lynn M. Martin
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO
- Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO
| | - Thomas S. Varghese
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO
| | - Nathan G. Forck
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO
- Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO
| | - Prashant R. Sinha
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO
- Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO
| | - Aaron C. Ericsson
- Departments of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO
| | - Nathan P. Hesemann
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO
| | - Rajiv R. Mohan
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO
- Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO
| |
Collapse
|
3
|
Körfer D, Grond-Ginsbach C, Peters AS, Burkart S, Hempel M, Schaaf CP, Böckler D, Erhart P. Genetic variants in patients with multiple arterial aneurysms. Langenbecks Arch Surg 2024; 409:304. [PMID: 39382597 PMCID: PMC11464538 DOI: 10.1007/s00423-024-03488-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024]
Abstract
PURPOSE The aim of this study was to identify causal genetic variants in patients with multiple arterial aneurysms. METHODS From a total cohort of 3107 patients diagnosed with an arterial aneurysm from 2006 to 2016, patients with known hereditary connective tissue diseases, vasculitis, or other arterial pathologies (n = 918) were excluded. Of the remaining cohort (n = 2189), patients with at least 4 aneurysms at different arterial locations (n = 143) were included. Nine blood samples of respective patients were available and derived from the institutional vascular biomaterial bank, and analyzed by whole exome sequencing (WES). Possible candidate variants were selected based on in silico predictions: (I) Truncating variants or (II) Variants that were classified as likely pathogenic (SIFT score < 0.05 or PolyPhen score > 0.9) and with low (< 0.001) or unknown gnomAD allele frequency. The human genome databases GeneCards and MalaCards were used to correlate the variants with regard to possible associations with vascular diseases. RESULTS A total of 24 variants in 23 different genes associated with vascular diseases were detected in the cohort. One patient with eight aneurysms was heterozygous for a variant in SMAD3, for which pathogenic variants are phenotypically associated with Loeys-Dietz syndrome 3. A heterozygous variant in TNXB was found in a patient with five aneurysms. Homozygous or compound heterozygous pathogenic variants in this gene are associated with Ehlers-Danlos syndrome (classical-like). Another patient with six aneurysms carried two heterozygous TET2 variants together with a heterozygous PPM1D variant. Pathogenic variants in these genes are associated with clonal hematopoiesis of indeterminate potential (CHIP), a known risk factor for cardiovascular disease. CONCLUSION All nine patients in this study carried variants in genes associated with vascular diseases. Current knowledge of the specific variants is insufficient to classify them as pathogenic at the present time, underlining the need for a better understanding of the consequences of genetic variants. WES should be considered for patients with multiple arterial aneurysms to detect germline variants and to improve clinical management for the individual and family members.
Collapse
Affiliation(s)
- Daniel Körfer
- Department of Vascular and Endovascular Surgery, Heidelberg University Hospital, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany.
| | - Caspar Grond-Ginsbach
- Department of Vascular and Endovascular Surgery, Heidelberg University Hospital, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - Andreas S Peters
- Department of Vascular and Endovascular Surgery, Heidelberg University Hospital, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
- Vascular Biomaterialbank Heidelberg (VBBH), Heidelberg University Hospital, Heidelberg, Germany
| | - Sebastian Burkart
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Maja Hempel
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | | | - Dittmar Böckler
- Department of Vascular and Endovascular Surgery, Heidelberg University Hospital, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - Philipp Erhart
- Department of Vascular and Endovascular Surgery, Heidelberg University Hospital, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| |
Collapse
|
4
|
Wang C, Zhang Y, Lu Y, Huang X, Jiang H, Chen G, Shao Y, Savelkoul HFJ, Jansen CA, Liu G. TGF-β1 impairs IgA class switch recombination and production in porcine Peyer's patches B cells. Eur J Immunol 2024; 54:e2350704. [PMID: 38973082 DOI: 10.1002/eji.202350704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/09/2024]
Abstract
Secretory IgA is crucial for preventing the invasion of entero-pathogens via intestinal mucosa. While it is well-established that Transforming growth factor β1 (TGF-β1) regulates IgA production in human and mouse B cells, our previous investigation revealed different functions of TGF-β1 in IgA generation in pigs compared with humans and mice, with the underlying mechanism remaining elusive. In this study, IgM+ B cells from porcine Peyer's patches (PPs) were isolated and stimulated with recombinant porcine TGF-β1 to evaluate the effect of TGF-β1 on pigs. The results showed that antibody production from B cells of PPs was impaired by TGF-β1 ex vivo. Furthermore, TGF-β1 treatment led to a decrease in the expression of germ-line transcript αand postswitch transcript α. Moreover, we observed that TGF-β1 predominantly inhibited the phosphorylation of p38-mitogen-activated protein kinases (MAPK), confirming the involvement of the p38-MAPK pathway in porcine IgA generation and IgA class switch recombination. The application of p38-MAPK inhibitor resulted in decreased B-cell differentiation levels. Collectively, this study demonstrates that exogenous TGF-β1 restrains the production and class switch recombination of IgA antibodies by inhibiting p38-MAPK signaling in porcine PPs B cells, which may constitute a component of TGF-β1-mediated inhibition of B-cell activation.
Collapse
Affiliation(s)
- Caiying Wang
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Yue Zhang
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yabin Lu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Xin Huang
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Huazheng Jiang
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Guohui Chen
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yongheng Shao
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Huub F J Savelkoul
- Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Christine A Jansen
- Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Guangliang Liu
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
- Hainan Key Laboratory of Tropical Animal Breeding and Infectious Disease Research, Institute of Animal Husbandry and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| |
Collapse
|
5
|
Miyazawa K, Itoh Y, Fu H, Miyazono K. Receptor-activated transcription factors and beyond: multiple modes of Smad2/3-dependent transmission of TGF-β signaling. J Biol Chem 2024; 300:107256. [PMID: 38569937 PMCID: PMC11063908 DOI: 10.1016/j.jbc.2024.107256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 04/05/2024] Open
Abstract
Transforming growth factor β (TGF-β) is a pleiotropic cytokine that is widely distributed throughout the body. Its receptor proteins, TGF-β type I and type II receptors, are also ubiquitously expressed. Therefore, the regulation of various signaling outputs in a context-dependent manner is a critical issue in this field. Smad proteins were originally identified as signal-activated transcription factors similar to signal transducer and activator of transcription proteins. Smads are activated by serine phosphorylation mediated by intrinsic receptor dual specificity kinases of the TGF-β family, indicating that Smads are receptor-restricted effector molecules downstream of ligands of the TGF-β family. Smad proteins have other functions in addition to transcriptional regulation, including post-transcriptional regulation of micro-RNA processing, pre-mRNA splicing, and m6A methylation. Recent technical advances have identified a novel landscape of Smad-dependent signal transduction, including regulation of mitochondrial function without involving regulation of gene expression. Therefore, Smad proteins are receptor-activated transcription factors and also act as intracellular signaling modulators with multiple modes of function. In this review, we discuss the role of Smad proteins as receptor-activated transcription factors and beyond. We also describe the functional differences between Smad2 and Smad3, two receptor-activated Smad proteins downstream of TGF-β, activin, myostatin, growth and differentiation factor (GDF) 11, and Nodal.
Collapse
Affiliation(s)
- Keiji Miyazawa
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan.
| | - Yuka Itoh
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Hao Fu
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Kohei Miyazono
- Department of Applied Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Laboratory for Cancer Invasion and Metastasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|
6
|
Danielpour D. Advances and Challenges in Targeting TGF-β Isoforms for Therapeutic Intervention of Cancer: A Mechanism-Based Perspective. Pharmaceuticals (Basel) 2024; 17:533. [PMID: 38675493 PMCID: PMC11054419 DOI: 10.3390/ph17040533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The TGF-β family is a group of 25 kDa secretory cytokines, in mammals consisting of three dimeric isoforms (TGF-βs 1, 2, and 3), each encoded on a separate gene with unique regulatory elements. Each isoform plays unique, diverse, and pivotal roles in cell growth, survival, immune response, and differentiation. However, many researchers in the TGF-β field often mistakenly assume a uniform functionality among all three isoforms. Although TGF-βs are essential for normal development and many cellular and physiological processes, their dysregulated expression contributes significantly to various diseases. Notably, they drive conditions like fibrosis and tumor metastasis/progression. To counter these pathologies, extensive efforts have been directed towards targeting TGF-βs, resulting in the development of a range of TGF-β inhibitors. Despite some clinical success, these agents have yet to reach their full potential in the treatment of cancers. A significant challenge rests in effectively targeting TGF-βs' pathological functions while preserving their physiological roles. Many existing approaches collectively target all three isoforms, failing to target just the specific deregulated ones. Additionally, most strategies tackle the entire TGF-β signaling pathway instead of focusing on disease-specific components or preferentially targeting tumors. This review gives a unique historical overview of the TGF-β field often missed in other reviews and provides a current landscape of TGF-β research, emphasizing isoform-specific functions and disease implications. The review then delves into ongoing therapeutic strategies in cancer, stressing the need for more tools that target specific isoforms and disease-related pathway components, advocating mechanism-based and refined approaches to enhance the effectiveness of TGF-β-targeted cancer therapies.
Collapse
Affiliation(s)
- David Danielpour
- Case Comprehensive Cancer Center Research Laboratories, The Division of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, OH 44106, USA; ; Tel.: +1-216-368-5670; Fax: +1-216-368-8919
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
- Institute of Urology, University Hospitals, Cleveland, OH 44106, USA
| |
Collapse
|
7
|
Yang HX, Guo FY, Lin YC, Wu YL, Nan JX, Jin CH, Lian LH. Synthesis of and anti-fibrotic effect of pyrazole derivative J-1048: Inhibition of ALK5 as a novel approach to liver fibrosis targeting inflammation. Bioorg Chem 2023; 139:106723. [PMID: 37459824 DOI: 10.1016/j.bioorg.2023.106723] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 06/24/2023] [Accepted: 07/06/2023] [Indexed: 08/13/2023]
Abstract
Liver fibrosis is a worldwide challenge of health issue. Developing effective new drugs for treating liver fibrosis is of great importance. In recent years, chemically synthesized drugs have significant advantages in treating liver fibrosis. Small molecule pyrazole derivatives as activin receptor-like kinase 5 (ALK5) inhibitors have also shown anti-fibrotic and tumor growth inhibitory effects. To develop the candidate with anti-fibrotic effect, we synthesized a novel pyrazole derivative, J-1048. The inhibitory effect of J-1048 on ALK5 and p38α mitogen-activated protein (MAP) kinase activity was assessed by enzymatic assays. We established an in vivo liver fibrosis model by injecting thioacetamide (TAA) into mice and in vitro model of TGF-β stimulated hepatic stellated cells to explore the inhibition mechanisms and therapeutic potential of J-1048 as an ALK5 inhibitor in liver fibrosis. Our data showed that J-1048 inhibited TAA-induced liver fibrosis in mice by explicitly blocking the TGF-β/Smad signaling pathway. Additionally, J-1048 inhibited the production of inflammatory cytokine Interleukin-1β (IL-1β) by inhibiting the purinergic ligand-gated ion channel 7 receptor (P2X7r) -Nucleotide-binding domain-(NOD-)like receptor protein 3 (NLRP3) axis, thereby alleviating liver fibrosis. Our findings demonstrated that a novel small molecule ALK5 inhibitor, J-1048, exhibited strong potential as a clinical therapeutic candidate for liver fibrosis.
Collapse
Affiliation(s)
- Hong-Xu Yang
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Fang-Yan Guo
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Yong-Ce Lin
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Yan-Ling Wu
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Interdisciplinary of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji 133002, Jilin Province, China
| | - Ji-Xing Nan
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Interdisciplinary of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji 133002, Jilin Province, China.
| | - Cheng-Hua Jin
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Interdisciplinary of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji 133002, Jilin Province, China.
| | - Li-Hua Lian
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Interdisciplinary of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji 133002, Jilin Province, China.
| |
Collapse
|
8
|
Fang Gong Y, Hou S, Xu JC, Chen Y, Zhu LL, Xu YY, Chen YQ, Li MM, Li LL, Yang JJ, Yang Y. Amelioratory effects of astragaloside IV on hepatocarcinogenesis via Nrf2-mediated pSmad3C/3L transformation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 117:154903. [PMID: 37301185 DOI: 10.1016/j.phymed.2023.154903] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/18/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND Phosphorylated Smad3 isoforms are reversible and antagonistic, and the tumour-suppressive pSmad3C can shift to an oncogenic pSmad3L signal. In addition, Nrf2 has a two-way regulatory effect on tumours, protecting normal cells from carcinogens and promoting tumour cell survival in chemotherapeutics. Accordingly, we hypothesised that the transformation of pSmad3C/3L is the basis for Nrf2 to produce both pro- and/or anti-tumourigenic effects in hepatocarcinogenesis. Astragaloside IV (AS-IV), the major component of Astragalus membranaceus, exerts anti-fibrogenic and carcinogenic actions. Lately, AS-IV administration could delay the occurrence of primary liver cancer by persistently inhibiting the fibrogenesis and regulating pSmad3C/3 L and Nrf2/HO-1 pathways synchronously. However, effect of AS-IV on hepatocarcinogenesis implicated in the bidirectional cross-talking of pSmad3C/3 L and Nrf2/HO-1 signalling, especially which one contributes palpably than the other still remains unclear. PURPOSE This study aims to settle the above questions by using in vivo (pSmad3C+/- and Nrf2-/- mice) and in vitro (plasmid- or lentivirus- transfected HepG2 cells) models of HCC. STUDY DESIGN AND METHODS The correlation of Nrf2 to pSmad3C/pSmad3L in HepG2 cells was analysed by Co-immunoprecipitation and dual-luciferase reporter assay. Pathological changes of Nrf2, pSmad3C, and pSmad3L in human HCC patients, pSmad3C+/- mice, and Nrf2-/- mice were gauged by immunohistochemical, haematoxylin and eosin staining, Masson, and immunofluorescence assays. Finally, western blot and qPCR were used to verify the bidirectional cross-talking of pSmad3C/3L and Nrf2/HO-1 signalling protein and mRNA in vivo and in vitro models of HCC. RESULTS Histopathological manifestations and biochemical indicators revealed that pSmad3C+/- could abate the ameliorative effects of AS-IV on fibrogenic/carcinogenic mice with Nrf2/HO-1 deactivation and pSmad3C/p21 transform to pSmad3L/PAI-1//c-Myc. As expected, cell experiments confirmed that upregulating pSmad3C boosts the inhibitory activity of AS-IV on phenotypes (cell proliferation, migration and invasion), followed by a shift of pSmad3L to pSmad3C and activation of Nrf2/HO-1. Synchronously, experiments in Nrf2-/- mice and lentivirus-carried Nrf2shRNA cell echoed the results of pSmad3C knockdown. Complementarily, Nrf2 overexpression resulted in the opposite result. Furthermore, Nrf2/HO-1 contributes to AS-IV's anti-HCC effect palpably compared with pSmad3C/3L. CONCLUSION These studies highlight that harnessing the bidirectional crosstalk pSmad3C/3 L and Nrf2/HO-1, especially Nrf2/HO-1 signalling, acts more effectively in AS-IV's anti-hepatocarcinogenesis, which may provide an important theoretical foundation for the use of AS-IV against HCC.
Collapse
Affiliation(s)
- Yong Fang Gong
- Department of Pharmacology, School of Basic Medicine, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, 230032, 81 Meishan Road, Hefei, China; School of Nursing, Anhui Medical University, No.15, feicui Road, Economic and Technological Development Zone, Hefei, China
| | - Shu Hou
- Department of Pharmacology, School of Basic Medicine, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, 230032, 81 Meishan Road, Hefei, China
| | - Jia-Cheng Xu
- Department of Pharmacology, School of Basic Medicine, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, 230032, 81 Meishan Road, Hefei, China
| | - Yan Chen
- Department of Pharmacology, School of Basic Medicine, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, 230032, 81 Meishan Road, Hefei, China
| | - Le-Le Zhu
- Department of Pharmacology, School of Basic Medicine, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, 230032, 81 Meishan Road, Hefei, China
| | - Ying-Ying Xu
- Department of Pharmacology, School of Basic Medicine, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, 230032, 81 Meishan Road, Hefei, China
| | - Yu-Qing Chen
- Department of Pharmacology, School of Basic Medicine, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, 230032, 81 Meishan Road, Hefei, China
| | - Miao-Miao Li
- Department of Pharmacology, School of Basic Medicine, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, 230032, 81 Meishan Road, Hefei, China
| | - Li-Li Li
- Department of Pharmacology, School of Basic Medicine, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, 230032, 81 Meishan Road, Hefei, China
| | - Jing-Jing Yang
- Department of Pharmacology, School of Basic Medicine, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, 230032, 81 Meishan Road, Hefei, China; Department of Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Yan Yang
- Department of Pharmacology, School of Basic Medicine, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, 230032, 81 Meishan Road, Hefei, China.
| |
Collapse
|
9
|
Yang J, Ruan Y, Wang D, Fan J, Luo N, Chen H, Li X, Chen W, Wang X. VHL-recruiting PROTAC attenuates renal fibrosis and preserves renal function via simultaneous degradation of Smad3 and stabilization of HIF-2α. Cell Biosci 2022; 12:203. [PMID: 36536448 PMCID: PMC9761961 DOI: 10.1186/s13578-022-00936-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Renal fibrosis is the pathological foundation of various chronic kidney diseases progressing to end stage renal failure. However, there are currently no nephroprotective drugs targeted to the fibrotic process in clinical practice. Proteolytic targeting chimeras (PROTACs), which reversibly degrade target proteins through the ubiquitin-proteasome pathway, is a novel therapeutic modality. Smad3 is a key pathogenic factor in fibrogenesis while HIF-2α exhibits prominent renal protective effects, which is the natural substrate of von Hippel-Lindau (VHL) E3 Ligase. We hypothesied the construction of VHL-recruiting, Smad3-targeting PROTAC might combine the effects of Smad3 degradation and HIF-2α stabilization, which not only improving the clinical efficacy of PROTAC but also avoiding its potential off-target effects, could greatly improve the possibility of its translation into clinical drugs. METHODS By joining the Smad3-binding small molecule compound (SMC) to VHL-binding SMC with a linker, we designed and synthesized a Smad3-targeting, VHL-based PROTAC. The effects of this PROTAC on targeted proteins were verified both in vitro and in vivo. The toxicity and pharmacokinetic (PK) evaluations were conducted with both male and female mice. The renal protection effects and mechanism of PROTAC were evaluated in unilateral ureteral obstruction (UUO) and 5/6 subtotal nephrectomy (5/6Nx) mouse model. RESULTS By optimizing the linker and the Smad3-binding SMC, we got a stable and high efficient PROTAC which simultaneously degraded Smad3 and stabilized HIF-2α both in vivo and in vitro. The acute toxicity evaluation showed a pretty large therapeutic window of the PROTAC. The prominent renal protection effects and its underlying mechanism including anti-fibrosis and anti-inflammatory, improving renal anemia and promoting kidney repair, had all been verified in UUO and 5/6Nx mouse model. CONCLUSION By accurate combination of PROTAC targeted protein and E3 ligase, we got a Smad3-targeting, VHL-recruting PROTAC which caused Smad3 degradation and HIF-2α stabilization effects simultaneously, and led to the strong renal function protection effects.
Collapse
Affiliation(s)
- Jiayi Yang
- grid.12981.330000 0001 2360 039XDepartment of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080 China ,grid.12981.330000 0001 2360 039XNHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080 China
| | - Yuyi Ruan
- grid.12981.330000 0001 2360 039XDepartment of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080 China ,grid.12981.330000 0001 2360 039XNHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080 China
| | - Dan Wang
- grid.12981.330000 0001 2360 039XDepartment of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080 China ,grid.12981.330000 0001 2360 039XNHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080 China
| | - Jinjin Fan
- grid.12981.330000 0001 2360 039XDepartment of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080 China ,grid.12981.330000 0001 2360 039XNHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080 China
| | - Ning Luo
- grid.12981.330000 0001 2360 039XDepartment of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080 China ,grid.12981.330000 0001 2360 039XNHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080 China
| | - Huiting Chen
- grid.12981.330000 0001 2360 039XDepartment of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080 China ,grid.12981.330000 0001 2360 039XNHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080 China
| | - Xiaoyan Li
- grid.12981.330000 0001 2360 039XDepartment of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080 China ,grid.12981.330000 0001 2360 039XNHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080 China
| | - Wei Chen
- grid.12981.330000 0001 2360 039XDepartment of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080 China ,grid.12981.330000 0001 2360 039XNHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080 China
| | - Xin Wang
- grid.12981.330000 0001 2360 039XDepartment of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080 China ,grid.12981.330000 0001 2360 039XNHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080 China
| |
Collapse
|
10
|
Rodari MM, Cerf-Bensussan N, Parlato M. Dysregulation of the immune response in TGF-β signalopathies. Front Immunol 2022; 13:1066375. [PMID: 36569843 PMCID: PMC9780292 DOI: 10.3389/fimmu.2022.1066375] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/11/2022] [Indexed: 12/13/2022] Open
Abstract
The transforming growth factor-β (TGF-β) family of cytokines exerts pleiotropic functions during embryonic development, tissue homeostasis and repair as well as within the immune system. Single gene defects in individual component of this signaling machinery cause defined Mendelian diseases associated with aberrant activation of TGF-β signaling, ultimately leading to impaired development, immune responses or both. Gene defects that affect members of the TGF-β cytokine family result in more restricted phenotypes, while those affecting downstream components of the signaling machinery induce broader defects. These rare disorders, also known as TGF-β signalopathies, provide the unique opportunity to improve our understanding of the role and the relevance of the TGF-β signaling in the human immune system. Here, we summarize this elaborate signaling pathway, review the diverse clinical presentations and immunological phenotypes observed in these patients and discuss the phenotypic overlap between humans and mice genetically deficient for individual components of the TGF-β signaling cascade.
Collapse
|
11
|
Afarin R, Behdarvand T, Shakerian E, Salehipour Bavarsad S, Rashidi M. Exosomes of Whartons' jelly mesenchymal stem cell reduce the NOX genes in TGF-β-induced hepatic fibrosis. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:1498-1503. [PMID: 36544529 PMCID: PMC9742568 DOI: 10.22038/ijbms.2022.66802.14649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 10/23/2022] [Indexed: 12/24/2022]
Abstract
Objectives Activated cells which are called star-shaped cells, are some of the key factors in the development of liver fibrosis. Activation of NADPH oxidase (NOX) is associated with increased HSCs activity and progression of hepatic fibrosis. In this study, the effects of human exosomes derived from WJ-MSCs on NOX1, NOX2, and NOX4 gene expression in TGF-β-induced hepatic fibrosis were investigated. Materials and Methods LX2 cell line was treated with 2 ng/ml TGF-β for 24 hr, in order to induce liver fibrosis after starvation. In the next step, the cells were treated with several concentrations of the exosomes derived from WJ-MSCs (10, 20, 30, 40, and 50 μg/ml). Finally, Smad3C phosphorylated protein expression level and NOX1, NOX2, and NOX4 gene expression levels were measured. Results The results demonstrated that the level of NOX1, NOX2, and NOX4 mRNA expressions decreased significantly during 24 hrs at concentrations of 40 and 50 μg/ml of WJ-MSCs exosomes in TGF-β-induced-HSCs. The p-Smad3C proteins were significantly decreased (fold change: 1.83, P-value<0.05) after exposure to WJ-MSC-derived exosomes. Conclusion Treatment with exosomes prevents further activation of HSCs by inhibiting the level of Smad3C phosphorylation. The experimental data of our study suggested that in liver fibrosis, the protection of HSCs activation against TGF-β by inhibiting the NOX pathway via human exosomes of WJ-MSCs is extremely important. It needs further research as a treatment method.
Collapse
Affiliation(s)
- Reza Afarin
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Tahereh Behdarvand
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Elham Shakerian
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Samaneh Salehipour Bavarsad
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mojtaba Rashidi
- Department of Clinical Biochemistry, Faculty of Medicine, Jundishapour University of Medical Sciences, Ahvaz, Iran,Corresponding author: Mojtaba Rashidi. Department of Clinical Biochemistry, Faculty of Medicine, Jundishapour University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
12
|
Pharmacological inhibition of HDAC6 improves muscle phenotypes in dystrophin-deficient mice by downregulating TGF-β via Smad3 acetylation. Nat Commun 2022; 13:7108. [PMID: 36402791 PMCID: PMC9675748 DOI: 10.1038/s41467-022-34831-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 11/01/2022] [Indexed: 11/21/2022] Open
Abstract
The absence of dystrophin in Duchenne muscular dystrophy disrupts the dystrophin-associated glycoprotein complex resulting in skeletal muscle fiber fragility and atrophy, associated with fibrosis as well as microtubule and neuromuscular junction disorganization. The specific, non-conventional cytoplasmic histone deacetylase 6 (HDAC6) was recently shown to regulate acetylcholine receptor distribution and muscle atrophy. Here, we report that administration of the HDAC6 selective inhibitor tubastatin A to the Duchenne muscular dystrophy, mdx mouse model increases muscle strength, improves microtubule, neuromuscular junction, and dystrophin-associated glycoprotein complex organization, and reduces muscle atrophy and fibrosis. Interestingly, we found that the beneficial effects of HDAC6 inhibition involve the downregulation of transforming growth factor beta signaling. By increasing Smad3 acetylation in the cytoplasm, HDAC6 inhibition reduces Smad2/3 phosphorylation, nuclear translocation, and transcriptional activity. These findings provide in vivo evidence that Smad3 is a new target of HDAC6 and implicate HDAC6 as a potential therapeutic target in Duchenne muscular dystrophy.
Collapse
|
13
|
Rowton M, Perez-Cervantes C, Hur S, Jacobs-Li J, Lu E, Deng N, Guzzetta A, Hoffmann AD, Stocker M, Steimle JD, Lazarevic S, Oubaha S, Yang XH, Kim C, Yu S, Eckart H, Koska M, Hanson E, Chan SSK, Garry DJ, Kyba M, Basu A, Ikegami K, Pott S, Moskowitz IP. Hedgehog signaling activates a mammalian heterochronic gene regulatory network controlling differentiation timing across lineages. Dev Cell 2022; 57:2181-2203.e9. [PMID: 36108627 PMCID: PMC10506397 DOI: 10.1016/j.devcel.2022.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/24/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022]
Abstract
Many developmental signaling pathways have been implicated in lineage-specific differentiation; however, mechanisms that explicitly control differentiation timing remain poorly defined in mammals. We report that murine Hedgehog signaling is a heterochronic pathway that determines the timing of progenitor differentiation. Hedgehog activity was necessary to prevent premature differentiation of second heart field (SHF) cardiac progenitors in mouse embryos, and the Hedgehog transcription factor GLI1 was sufficient to delay differentiation of cardiac progenitors in vitro. GLI1 directly activated a de novo progenitor-specific network in vitro, akin to that of SHF progenitors in vivo, which prevented the onset of the cardiac differentiation program. A Hedgehog signaling-dependent active-to-repressive GLI transition functioned as a differentiation timer, restricting the progenitor network to the SHF. GLI1 expression was associated with progenitor status across germ layers, and it delayed the differentiation of neural progenitors in vitro, suggesting a broad role for Hedgehog signaling as a heterochronic pathway.
Collapse
Affiliation(s)
- Megan Rowton
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Carlos Perez-Cervantes
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Suzy Hur
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Jessica Jacobs-Li
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Emery Lu
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Nikita Deng
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Alexander Guzzetta
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Andrew D Hoffmann
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Matthew Stocker
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Jeffrey D Steimle
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Sonja Lazarevic
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Sophie Oubaha
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Xinan H Yang
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Chul Kim
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Shuhan Yu
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Heather Eckart
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Mervenaz Koska
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Erika Hanson
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Sunny S K Chan
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA; Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel J Garry
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA; Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael Kyba
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA; Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Anindita Basu
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Kohta Ikegami
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Sebastian Pott
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Ivan P Moskowitz
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
14
|
Chen B, Li R, Hernandez SC, Hanna A, Su K, Shinde AV, Frangogiannis NG. Differential effects of Smad2 and Smad3 in regulation of macrophage phenotype and function in the infarcted myocardium. J Mol Cell Cardiol 2022; 171:1-15. [PMID: 35780861 DOI: 10.1016/j.yjmcc.2022.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 06/22/2022] [Accepted: 06/25/2022] [Indexed: 02/08/2023]
Abstract
TGF-βs regulate macrophage responses, by activating Smad2/3. We have previously demonstrated that macrophage-specific Smad3 stimulates phagocytosis and mediates anti-inflammatory macrophage transition in the infarcted heart. However, the role of macrophage Smad2 signaling in myocardial infarction remains unknown. We studied the role of macrophage-specific Smad2 signaling in healing mouse infarcts, and we explored the basis for the distinct effects of Smad2 and Smad3. In infarct macrophages, Smad3 activation preceded Smad2 activation. In contrast to the effects of Smad3 loss, myeloid cell-specific Smad2 disruption had no effects on mortality, ventricular dysfunction and adverse remodeling, after myocardial infarction. Macrophage Smad2 loss modestly, but transiently increased myofibroblast density in the infarct, but did not affect phagocytic removal of dead cells, macrophage infiltration, collagen deposition, and scar remodeling. In isolated macrophages, TGF-β1, -β2 and -β3, activated both Smad2 and Smad3, whereas BMP6 triggered only Smad3 activation. Smad2 and Smad3 had similar patterns of nuclear translocation in response to TGF-β1. RNA-sequencing showed that Smad3, and not Smad2, was the main mediator of transcriptional effects of TGF-β on macrophages. Smad3 loss resulted in differential expression of genes associated with RAR/RXR signaling, cholesterol biosynthesis and lipid metabolism. In both isolated bone marrow-derived macrophages and in infarct macrophages, Smad3 mediated synthesis of Nr1d2 and Rara, two genes encoding nuclear receptors, that may be involved in regulation of their phagocytic and anti-inflammatory properties. In conclusion, the in vivo and in vitro effects of TGF-β on macrophage function involve Smad3, and not Smad2.
Collapse
Affiliation(s)
- Bijun Chen
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Ruoshui Li
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Silvia C Hernandez
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Anis Hanna
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Kai Su
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Arti V Shinde
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, United States of America.
| |
Collapse
|
15
|
Tosti E, Almeida AS, Tran TTT, Barbachan E Silva M, Broin PÓ, Dubin R, Chen K, Beck AP, Mclellan AS, Vilar E, Golden A, O'Toole PW, Edelmann W. Loss of MMR and TGFBR2 Increases the Susceptibility to Microbiota-Dependent Inflammation-Associated Colon Cancer. Cell Mol Gastroenterol Hepatol 2022; 14:693-717. [PMID: 35688320 PMCID: PMC9421583 DOI: 10.1016/j.jcmgh.2022.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 04/29/2022] [Accepted: 05/18/2022] [Indexed: 12/10/2022]
Abstract
BACKGROUND AND AIMS Mutations in DNA mismatch repair (MMR) genes are causative in Lynch syndrome and a significant proportion of sporadic colorectal cancers (CRCs). MMR-deficient (dMMR) CRCs display increased mutation rates, with mutations frequently accumulating at short repetitive DNA sequences throughout the genome (microsatellite instability). The TGFBR2 gene is one of the most frequently mutated genes in dMMR CRCs. Therefore, we generated an animal model to study how the loss of both TGFBR2 signaling impacts dMMR-driven intestinal tumorigenesis in vivo and explore the impact of the gut microbiota. METHODS We generated VCMsh2/Tgfbr2 mice in which Msh2loxP and Tgfbr2loxP alleles are inactivated by Villin-Cre recombinase in the intestinal epithelium. VCMsh2/Tgfbr2 mice were analyzed for their rate of intestinal cancer development and for the mutational spectra and gene expression profiles of tumors. In addition, we assessed the impact of chemically induced chronic inflammation and gut microbiota composition on colorectal tumorigenesis. RESULTS VCMsh2/Tgfbr2 mice developed small intestinal adenocarcinomas and CRCs with histopathological features highly similar to CRCs in Lynch syndrome patients. The CRCs in VCMsh2/Tgfbr2 mice were associated with the presence of colitis and displayed genetic and histological features that resembled inflammation-associated CRCs in human patients. The development of CRCs in VCMsh2/Tgfbr2 mice was strongly modulated by the gut microbiota composition, which in turn was impacted by the TGFBR2 status of the tumors. CONCLUSIONS Our results demonstrate a synergistic interaction between MMR and TGFBR2 inactivation in inflammation-associated colon tumorigenesis and highlight the crucial impact of the gut microbiota on modulating the incidence of inflammation-associated CRCs.
Collapse
Affiliation(s)
- Elena Tosti
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York.
| | - Ana S Almeida
- APC Microbiome Ireland and School of Microbiology, University College Cork, Cork, Ireland
| | - Tam T T Tran
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Mariel Barbachan E Silva
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland Galway, Galway, Ireland
| | - Pilib Ó Broin
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland Galway, Galway, Ireland
| | - Robert Dubin
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Ken Chen
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Amanda P Beck
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
| | - Andrew S Mclellan
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York
| | - Eduardo Vilar
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Aaron Golden
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland Galway, Galway, Ireland
| | - Paul W O'Toole
- APC Microbiome Ireland and School of Microbiology, University College Cork, Cork, Ireland
| | - Winfried Edelmann
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York.
| |
Collapse
|
16
|
Xu J, Ma L, Wang D, Yang J. Uncarboxylated osteocalcin promotes proliferation and metastasis of MDA-MB-231 cells through TGF-β/SMAD3 signaling pathway. BMC Mol Cell Biol 2022; 23:18. [PMID: 35413833 PMCID: PMC9003967 DOI: 10.1186/s12860-022-00416-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 03/23/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is the most severe type of breast cancer owing to its high heterogeneity, aggressiveness and lack of treatment. Studies have reported that uncarboxylated osteocalcin (GluOC) promotes the development of prostate and other cancers. Studies have also found elevated levels of serum osteocalcin in breast cancer patients with bone metastasis, and serum osteocalcin can be a marker of bone metastasis. However, whether GluOC promotes the development of TNBC and the related mechanisms need to be further clarified. RESULTS Our results revealed that GluOC is associated with the proliferation and metastasis of MDA-MB-231 cells. GluOC increased the viability and proliferation of MDA-MB-231 cells. In addition, GluOC enhanced the metastatic ability of MDA-MB-231 cells by promoting the expression of matrix metalloproteinase-2 (MMP2), matrix metalloproteinase-13 (MMP13), and vascular endothelial growth factor (VEGF) and inducing epithelial-mesenchymal transition (EMT). We also found that GluOC upregulated the expression of interleukin-8 (IL-8) and parathyroid hormone-related protein (PTHrP) genes in MDA-MB-231 breast cancer cells. Moreover, the promoting effect of GluOC was reversed in MDA-MB-231 breast cancer cells treated with specific inhibitor of SMAD3 (SIS3), a SMAD3 phosphorylation inhibitor. CONCLUSION Our research proved for the first time that GluOC facilitates the proliferation and metastasis of MDA-MB-231 cells by accelerating the transforming growth factor-β (TGF-β)/SMAD3 signaling pathway. Moreover, GluOC also promotes the gene expression of IL-8 and PTHrP. Both IL-8 and PTHrP can act as osteolytic factors in breast cancer cells. This study indicates that GluOC may be a useful target for preventing TNBC bone metastasis.
Collapse
Affiliation(s)
- Jiaojiao Xu
- Medical School, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, People's Republic of China
| | - Luyao Ma
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Danqing Wang
- Medical School, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, People's Republic of China
| | - Jianhong Yang
- Medical School, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, People's Republic of China.
| |
Collapse
|
17
|
Yin X, Wei W, Zhuang X, Li Z, Liu C, Ou M, Dong W, Wang F, Huang L, Liao M, Liu Y, Wang W. Determining the function of LvSmad3 on Litopenaeus vannamei in response to acute low temperature stress. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 125:104209. [PMID: 34303729 DOI: 10.1016/j.dci.2021.104209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Smad3 is a key mediator of the canonical TGF-β signaling pathway and plays an important role in TGF-β1-mediated transcriptional regulation. However, the function of Smad3 in crustaceans such as shrimp, is still poorly understood and needs to be further explored. We characterized Litopenaeus vannamei Smad3 (LvSmad3) and its biological functions were investigated in response low temperature stress. Full-length LvSmad3 cDNA was 2341bp and contained an open reading frame (ORF) of 1326 bp that encoded a 441 amino acid long protein, with a predicted molecular mass of 48.35 kDa. Phylogenetic analysis revealed that LvSmad3 has a high degree of similarity with other known species. LvSmad3 mRNA was detected in all the tested tissues and highest transcription occurred mostly in gills. Further research showed that suppressing the expression of Smad3 could reduce ROS production, DNA damage and the apoptosis rate in shrimp hemocyte under low temperature compared with the dsGFP group. Thus, we speculated that Smad3 could promote the apoptosis of hemocytes. We confirmed that Smad3 could inhibit apoptosis in the hepatopancreas by suppressing the expression of pro-apoptotic genes. Taken together, the silencing of Smad3 can reduce ROS production induced by low temperature stress, weaken the damage to hemocytes and the hepatopancreas by inhibit the apoptosis.
Collapse
Affiliation(s)
- Xiaoli Yin
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, PR China; Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Wei Wei
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, PR China; Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Xueqi Zhuang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, PR China; Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Zhonghua Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, PR China; Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Can Liu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, PR China; Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Mufei Ou
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, PR China; Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Wenna Dong
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, PR China; Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Feifei Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, PR China; Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Lin Huang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, PR China; Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Meiqiu Liao
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, PR China; Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Yuan Liu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, PR China; Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Weina Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, PR China; Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou, 510631, PR China.
| |
Collapse
|
18
|
Kumari R, Irudayam MJ, Al Abdallah Q, Jones TL, Mims TS, Puchowicz MA, Pierre JF, Brown CW. SMAD2 and SMAD3 differentially regulate adiposity and the growth of subcutaneous white adipose tissue. FASEB J 2021; 35:e22018. [PMID: 34731499 DOI: 10.1096/fj.202101244r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/28/2021] [Accepted: 10/13/2021] [Indexed: 11/11/2022]
Abstract
Adipose tissue is the primary site of energy storage, playing important roles in health. While adipose research largely focuses on obesity, fat also has other critical functions, producing adipocytokines and contributing to normal nutrient metabolism, which in turn play important roles in satiety and total energy homeostasis. SMAD2/3 proteins are downstream mediators of activin signaling, which regulate critical preadipocyte and mature adipocyte functions. Smad2 global knockout mice exhibit embryonic lethality, whereas global loss of Smad3 protects mice against diet-induced obesity. The direct contributions of Smad2 and Smad3 in adipose tissues, however, are unknown. Here, we sought to determine the primary effects of adipocyte-selective reduction of Smad2 or Smad3 on diet-induced adiposity using Smad2 or Smad3 "floxed" mice intercrossed with Adiponectin-Cre mice. Additionally, we examined visceral and subcutaneous preadipocyte differentiation efficiency in vitro. Almost all wild type subcutaneous preadipocytes differentiated into mature adipocytes. In contrast, visceral preadipocytes differentiated poorly. Exogenous activin A suppressed differentiation of preadipocytes from both depots. Smad2 conditional knockout (Smad2cKO) mice did not exhibit significant effects on weight gain, irrespective of diet, whereas Smad3 conditional knockout (Smad3cKO) male mice displayed a trend of reduced body weight on high-fat diet. On both diets, Smad3cKO mice displayed an adipose depot-selective phenotype, with a significant reduction in subcutaneous fat mass but not visceral fat mass. Our data suggest that Smad3 is an important contributor to the maintenance of subcutaneous white adipose tissue in a sex-selective fashion. These findings have implications for understanding SMAD-mediated, depot selective regulation of adipocyte growth and differentiation.
Collapse
Affiliation(s)
- Roshan Kumari
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Maria Johnson Irudayam
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Qusai Al Abdallah
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Tamekia L Jones
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Children's Foundation Research Institute, Memphis, Tennessee, USA
| | - Tahliyah S Mims
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Michelle A Puchowicz
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Joseph F Pierre
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Chester W Brown
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Le Bonheur Children's Hospital, Memphis, Tennessee, USA
| |
Collapse
|
19
|
Sader F, Roy S. Tgf-β superfamily and limb regeneration: Tgf-β to start and Bmp to end. Dev Dyn 2021; 251:973-987. [PMID: 34096672 DOI: 10.1002/dvdy.379] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/19/2022] Open
Abstract
Axolotls represent a popular model to study how nature solved the problem of regenerating lost appendages in tetrapods. Our work over many years focused on trying to understand how these animals can achieve such a feat and not end up with a scarred up stump. The Tgf-β superfamily represents an interesting family to target since they are involved in wound healing in adults and pattern formation during development. This family is large and comprises Tgf-β, Bmps, activins and GDFs. In this review, we present work from us and others on Tgf-β & Bmps and highlight interesting observations between these two sub-families. Tgf-β is important for the preparation phase of regeneration and Bmps for the redevelopment phase and they do not overlap with one another. We present novel data showing that the Tgf-β non-canonical pathway is also not active during redevelopment. Finally, we propose a molecular model to explain how Tgf-β and Bmps maintain distinct windows of expression during regeneration in axolotls.
Collapse
Affiliation(s)
- Fadi Sader
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Stéphane Roy
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada.,Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
20
|
Wu S, Huang X, Tie X, Cheng Y, Xue X, Fan M. Role and mechanism of action of circular RNA and laryngeal cancer. Pathol Res Pract 2021; 223:153460. [PMID: 33971544 DOI: 10.1016/j.prp.2021.153460] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 10/21/2022]
Abstract
Laryngeal squamous cell carcinoma (LSCC), is the second most common malignant cancer of the head and neck after oral cavity cancer. Laryngeal cancer is associated with huge socio-economic burden worldwide. Studies have widely explored the role of non-coding RNAs, especially microRNAs and long non-coding RNAs in pathogenesis of laryngeal cancer. In addition, several studies have explored the mechanism and function of circRNAs. CircRNAs has higher stability and more extensive function models, including combining miRNA as sponge, modifying transcription, and even regulating protein translation have been developed. Therefore, circRNAs is applied as an excellent diagnostic tool and a promising candidate for development of cancer therapies. This study reviews the biogenesis and function of circRNAs, explores potential mechanism of circRNAs in LSCC, and implications and challenges in LSCC research.
Collapse
Affiliation(s)
- Shanying Wu
- Department of Otolaryngology, Linyi Central Hospital, Linyi, 276400 Shandong, China
| | - Xiaodong Huang
- Department of Otolaryngology, Linyi Central Hospital, Linyi, 276400 Shandong, China
| | - Xinting Tie
- Department of Otolaryngology, Linyi Central Hospital, Linyi, 276400 Shandong, China
| | - Yongshan Cheng
- Department of Otolaryngology, Linyi Central Hospital, Linyi, 276400 Shandong, China
| | - Xue Xue
- Department of Otolaryngology, Linyi Central Hospital, Linyi, 276400 Shandong, China
| | - Mingfang Fan
- Clinical Laboratory, Linyi Central Hospital, Linyi, 276400 Shandong, China.
| |
Collapse
|
21
|
Yang HX, Sun JH, Yao TT, Li Y, Xu GR, Zhang C, Liu XC, Zhou WW, Song QH, Zhang Y, Li AY. Bellidifolin Ameliorates Isoprenaline-Induced Myocardial Fibrosis by Regulating TGF-β1/Smads and p38 Signaling and Preventing NR4A1 Cytoplasmic Localization. Front Pharmacol 2021; 12:644886. [PMID: 33995055 PMCID: PMC8120298 DOI: 10.3389/fphar.2021.644886] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/22/2021] [Indexed: 01/14/2023] Open
Abstract
Myocardial fibrosis is closely related to high morbidity and mortality. In Inner Mongolia, Gentianella amarella subsp. acuta (Michx.) J.M.Gillett (G. acuta) is a kind of tea used to prevent cardiovascular diseases. Bellidifolin (BEL) is an active xanthone molecule from G. acuta that protects against myocardial damage. However, the effects and mechanisms of BEL on myocardial fibrosis have not been reported. In vivo, BEL dampened isoprenaline (ISO)-induced cardiac structure disturbance and collagen deposition. In vitro, BEL inhibited transforming growth factor (TGF)-β1-induced cardiac fibroblast (CF) proliferation. In vivo and in vitro, BEL decreased the expression of α-smooth muscle actin (α-SMA), collagen Ⅰ and Ⅲ, and inhibited TGF-β1/Smads signaling. Additionally, BEL impeded p38 activation and NR4A1 (an endogenous inhibitor for pro-fibrogenic activities of TGF-β1) phosphorylation and inactivation in vitro. In CFs, inhibition of p38 by SB203580 inhibited the phosphorylation of NR4A1 and did not limit Smad3 phosphorylation, and blocking TGF-β signaling by LY2157299 and SB203580 could decrease the expression of α-SMA, collagen I and III. Overall, both cell and animal studies provide a potential role for BEL against myocardial fibrosis by inhibiting the proliferation and phenotypic transformation of CFs. These inhibitory effects might be related to regulating TGF-β1/Smads pathway and p38 signaling and preventing NR4A1 cytoplasmic localization.
Collapse
Affiliation(s)
- Hong-Xia Yang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China.,Department of Clinical Foundation of Chinese Medicine, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Jia-Huan Sun
- Department of Medical Laboratory Science, College of Integration of Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Ting-Ting Yao
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yuan Li
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Geng-Rui Xu
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Chuang Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xing-Chao Liu
- Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Shijiazhuang, China
| | - Wei-Wei Zhou
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Qiu-Hang Song
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China.,Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Shijiazhuang, China.,Hebei Key Laboratory of Chinese Medicine Research on Cardio-cerebrovascular Disease, Shijiazhuang, China
| | - Yue Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China.,Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Shijiazhuang, China.,Hebei Key Laboratory of Chinese Medicine Research on Cardio-cerebrovascular Disease, Shijiazhuang, China
| | - Ai-Ying Li
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China.,Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Shijiazhuang, China.,Hebei Key Laboratory of Chinese Medicine Research on Cardio-cerebrovascular Disease, Shijiazhuang, China
| |
Collapse
|
22
|
Bai Y, Hou J, Wang X, Geng L, Jia X, Xiang L, Nan K. Circ_0000218 plays a carcinogenic role in laryngeal cancer through regulating microRNA-139-3p/Smad3 axis. Pathol Res Pract 2020; 216:153103. [PMID: 32825967 DOI: 10.1016/j.prp.2020.153103] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/30/2020] [Accepted: 07/07/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Laryngeal squamous cell carcinoma (LSCC) accounts for about 85%-90% of all cases of laryngeal cancer. So far, the role and molecular mechanism of circular RNA 0,000,218 (circ_0000218)/microRNA (miR)-139-3p in laryngeal cancer are not clear. The present study aimed to investigate the role and regulatory mechanism of circ_0000218/miR-139-3p in laryngeal cancerin vitro and in vivo. METHODS quantitative real time polymerase chain reaction (qRT-PCR) was used to detect the expression of circ_0000218/miR-139-3p in LSCC cells. Dual luciferase reporter assay and RNA immunoprecipitation (RIP) assay were used to confirm binding sites between miR-139-3p and smad family member 3 (Smad3), and circ_0000218 and miR-139-3p. Cell Counting Kit-8 (CCK-8) and cell apoptosis analysis were used to detect cell viability and apoptosis. Xenograft experiment was performed to show in vivo effect of circ_0000218/miR-139-3p on the growth of LSCC. RESULTS Circ_0000218 was highly expressed in LSCC cells. miR-139-3p, lower expressed in LSCC cells, was negatively regulated by circ_0000218 in LSCC cells. Besides, the findings suggested that circ_0000218 silencing inhibited the LSCC cell viability and promoted apoptosis by negatively regulating miR-139-3p expression. Furthermore, the data indicated that miR-139-3p inhibited the viability of LSCC cells and promoted apoptosis, and these effects were reversed by Smad3 over-expression. In addition, the in vivo effects of circ_0000218/miR-139-3p on LSCC were consistent with the in vitro study. CONCLUSIONS circ_0000218 inhibition inhibited the growth of LSCC by targeting miR-139-3p/Smad3 axis. Our present study provided a new target for laryngeal cancer treatment.
Collapse
Affiliation(s)
- Yiyang Bai
- Department of Medical Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jia Hou
- Department of Medical Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xiao Wang
- Department of Medical Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Luying Geng
- Department of Medical Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xiaohui Jia
- Department of Medical Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Luochengling Xiang
- Department of Medical Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Kejun Nan
- Department of Medical Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Oncology Hospital, Xi'an International Medical Center Hospital, Xi'an, Shaanxi 710075, China.
| |
Collapse
|
23
|
Li K, Cui M, Zhang K, Wang G, Zhai S. LncRNA CRNDE affects the proliferation and apoptosis of vascular smooth muscle cells in abdominal aortic aneurysms by regulating the expression of Smad3 by Bcl-3. Cell Cycle 2020; 19:1036-1047. [PMID: 32240036 PMCID: PMC7217363 DOI: 10.1080/15384101.2020.1743915] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/21/2020] [Accepted: 03/05/2020] [Indexed: 10/24/2022] Open
Abstract
Previous studies show that Long non-coding RNAs (LncRNAs) are involved in the regulation of various human diseases. This study aimed to reveal how LncRNA CRNDE regulated vascular smooth muscle cells (VSMCs) proliferation and apoptosis in abdominal aortic aneurysms (AAA). Here, we found CRNDE was down-regulated in AAA tissues and AngII-stimulated VSMCs. The overexpression of CRNDE promoted VSMCs proliferation and inhibited cell apoptosis. The interaction between CRNDE and Bcl-3 or Bcl-3 and Smad3 was verified. The interference with Bcl-3 or CRNDE reduced Smad3 stability or promoted Smad3 ubiquitination. After pcDNA-CRNDE or pcDNA-CRNDE+si-Bcl-3 was transfected into VSMCs and stimulated with AngII, CRNDE affected VSMCs proliferation and apoptosis via regulating Smad3 via Bcl-3. Vivo experiments showed the overexpression of CRNDE repressed AAA growth. Therefore, we concluded that CRNDE was down-regulated in AAA tissues and AngII-stimulated VSMCs. Furthermore, the overexpression of CRNDE promoted VSMCs proliferation and repressed cell apoptosis in AAA by up-regulating Smad3 via Bcl-3.
Collapse
MESH Headings
- Animals
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Apoptosis/genetics
- B-Cell Lymphoma 3 Protein/genetics
- B-Cell Lymphoma 3 Protein/metabolism
- Cell Proliferation/genetics
- Cells, Cultured
- Disease Models, Animal
- Down-Regulation
- Genetic Vectors/administration & dosage
- Humans
- Mice
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Signal Transduction/genetics
- Smad3 Protein/metabolism
- Transfection
- Up-Regulation/genetics
Collapse
Affiliation(s)
- Kun Li
- Department of Vascular and Endovascular Surgery, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Mingzhe Cui
- Department of Vascular and Endovascular Surgery, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Kewei Zhang
- Department of Vascular and Endovascular Surgery, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Guoquan Wang
- Department of Vascular and Endovascular Surgery, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Shuiting Zhai
- Department of Vascular and Endovascular Surgery, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| |
Collapse
|
24
|
Lee DY, Yun SM, Song MY, Ji SD, Son JG, Kim EH. Administration of Steamed and Freeze-Dried Mature Silkworm Larval Powder Prevents Hepatic Fibrosis and Hepatocellular Carcinogenesis by Blocking TGF-β/STAT3 Signaling Cascades in Rats. Cells 2020; 9:E568. [PMID: 32121064 PMCID: PMC7140417 DOI: 10.3390/cells9030568] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/22/2020] [Accepted: 02/26/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the leading cause of cancer-related deaths worldwide and the majority of HCC patients occur with a background of hepatic fibrosis and cirrhosis. We have previously reported the hepatoprotective effects of steamed and freeze-dried mature silkworm larval powder (SMSP) in a chronic ethanol-treated rat model. Here, we assessed the anti-fibrotic and anti-carcinogenic effects of SMSP on diethylnitrosamine (DEN)-treated rats. Wistar rats were intraperitoneally injected with DEN once a week for 12 or 16 weeks with or without SMSP administration (0.1 and 1 g/kg). SMSP administration significantly attenuated tumor foci formation and proliferation in the livers of the rats treated with DEN for 16 weeks. SMSP administration also inhibited hepatic fibrosis by decreasing the levels of collagen fiber and the expression of pro-collagen I and alpha-smooth muscle actin (α-SMA). Moreover, SMSP supplementation improved the major parameters of fibrosis such as transforming growth factor-β (TGF-β), connective tissue growth factor (CTGF), tumor necrosis factor-alpha (TNF-α), plasminogen activator inhibitor-1 (PAI-1), and collagen type I (Col1A1) in the livers from the rats treated with DEN for 16 weeks. As s possible mechanisms, we investigated the effects of SMSP on the TGF-β and signal transducer and activator of transcription 3 (STAT3)-mediated signaling cascades, which are known to promote hepatic fibrosis. We found that SMSP treatment inhibited the activation of TGF-β and the phosphorylation of STAT3 pathway in DEN-treated rats. Moreover, SMSP administration suppressed the expressions of the target genes of TGF-β and STAT3 induced by DEN treatment. Our findings provide experimental evidences that SMSP administration has inhibitory effects of hepatic fibrosis and HCC induced by DEN in vivo and could be a promising strategy for the prevention or treatment of hepatic fibrosis and hepatocellular carcinogenesis.
Collapse
Affiliation(s)
- Da-Young Lee
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam 13488, Korea; (D.-Y.L.); (S.-M.Y.); (M.-Y.S.)
| | - Sun-Mi Yun
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam 13488, Korea; (D.-Y.L.); (S.-M.Y.); (M.-Y.S.)
| | - Moon-Young Song
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam 13488, Korea; (D.-Y.L.); (S.-M.Y.); (M.-Y.S.)
| | - Sang-Deok Ji
- Department of Agricultural Biology, National Institute of Agricultural Science, Rural Development Administration, Wanju 55365, Korea; (S.-D.J.); (J.-G.S.)
| | - Jong-Gon Son
- Department of Agricultural Biology, National Institute of Agricultural Science, Rural Development Administration, Wanju 55365, Korea; (S.-D.J.); (J.-G.S.)
| | - Eun-Hee Kim
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam 13488, Korea; (D.-Y.L.); (S.-M.Y.); (M.-Y.S.)
| |
Collapse
|
25
|
Fan Q, He W, Gayen M, Benoit MR, Luo X, Hu X, Yan R. Activated CX3CL1/Smad2 Signals Prevent Neuronal Loss and Alzheimer's Tau Pathology-Mediated Cognitive Dysfunction. J Neurosci 2020; 40:1133-1144. [PMID: 31822518 PMCID: PMC6989010 DOI: 10.1523/jneurosci.1333-19.2019] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 11/24/2022] Open
Abstract
Neurofibrillary tangles likely cause neurodegeneration in Alzheimer's disease (AD). We demonstrate that the CX3CL1 C-terminal domain can upregulate neurogenesis, which may ameliorate neurodegeneration. Here we generated transgenic (Tg-CX3CL1) mice by overexpressing CX3CL1 in neurons. Tg-CX3CL1 mice exhibit enhanced neurogenesis in both subgranular and subventricular zones. This enhanced neurogenesis correlates well with elevated expression of TGF-β2 and TGF-β3, and activation of their downstream signaling molecule Smad2. Intriguingly, the enhanced adult neurogenesis was mitigated when Smad2 expression was deleted in neurons, supporting a role for the CX3CL1-TGF-β2/3-Smad2 pathway in the control of adult neurogenesis. When Tg-CX3CL1 mice were crossed with Alzheimer's PS19 mice, which overexpress a tau P301S mutation and exhibit age-dependent neurofibrillary tangles and neurodegeneration, overexpressed CX3CL1 in both male and female mice was sufficient to rescue the neurodegeneration, increase survival time, and improve cognitive function. Hence, we provide in vivo evidence that CX3CL1 is a strong activator of adult neurogenesis, and that it reduces neuronal loss and improves cognitive function in AD.SIGNIFICANCE STATEMENT This study will be the first to demonstrate that enhanced neurogenesis by overexpressed CX3CL1 is mitigated by disruption of Smad2 signaling and is independent of its interaction with CX3CR1. Overexpression of CX3CL1 lengthens the life span of PS19 tau mice by enhancing adult neurogenesis while having minimal effect on tau pathology. Enhancing neuronal CX3CL1, mainly the C-terminal fragment, is a therapeutic strategy for blocking or reversing neuronal loss in Alzheimer's disease or related neurodegenerative disease patients.
Collapse
Affiliation(s)
- Qingyuan Fan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, and
| | - Wanxia He
- Department of Neuroscience, University of Connecticut Health, Farmington, Connecticut 06032
| | - Manoshi Gayen
- Department of Neuroscience, University of Connecticut Health, Farmington, Connecticut 06032
| | - Marc Robert Benoit
- Department of Neuroscience, University of Connecticut Health, Farmington, Connecticut 06032
| | - Xiaoyang Luo
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, and
| | - Xiangyou Hu
- Department of Neuroscience, University of Connecticut Health, Farmington, Connecticut 06032
| | - Riqiang Yan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, and
- Department of Neuroscience, University of Connecticut Health, Farmington, Connecticut 06032
| |
Collapse
|
26
|
Senft AD, Costello I, King HW, Mould AW, Bikoff EK, Robertson EJ. Combinatorial Smad2/3 Activities Downstream of Nodal Signaling Maintain Embryonic/Extra-Embryonic Cell Identities during Lineage Priming. Cell Rep 2020; 24:1977-1985.e7. [PMID: 30134160 PMCID: PMC6113931 DOI: 10.1016/j.celrep.2018.07.077] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/31/2018] [Accepted: 07/22/2018] [Indexed: 11/29/2022] Open
Abstract
Epiblast cells in the early post-implantation stage mammalian embryo undergo a transition described as lineage priming before cell fate allocation, but signaling pathways acting upstream remain ill defined. Genetic studies demonstrate that Smad2/3 double-mutant mouse embryos die shortly after implantation. To learn more about the molecular disturbances underlying this abrupt failure, here we characterized Smad2/3-deficient embryonic stem cells (ESCs). We found that Smad2/3 double-knockout ESCs induced to form epiblast-like cells (EpiLCs) display changes in naive and primed pluripotency marker gene expression, associated with the disruption of Oct4-bound distal regulatory elements. In the absence of Smad2/3, we observed enhanced Bmp target gene expression and de-repression of extra-embryonic gene expression. Cell fate allocation into all three embryonic germ layers is disrupted. Collectively, these experiments demonstrate that combinatorial Smad2/3 functional activities are required to maintain distinct embryonic and/or extra-embryonic cell identity during lineage priming in the epiblast before gastrulation. Smad2/3 alters the transcriptome and activity of distal regulatory elements in EpiLCs Smad2 prevents expression of extra-embryonic genes during priming and differentiation Smad2/3 is essential for mesoderm and definitive endoderm cell fate allocation Smad2/3 signaling balances Bmp signaling during neural precursor differentiation
Collapse
Affiliation(s)
- Anna D Senft
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Ita Costello
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Hamish W King
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Arne W Mould
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Elizabeth K Bikoff
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | | |
Collapse
|
27
|
Morgani SM, Hadjantonakis AK. Signaling regulation during gastrulation: Insights from mouse embryos and in vitro systems. Curr Top Dev Biol 2019; 137:391-431. [PMID: 32143751 DOI: 10.1016/bs.ctdb.2019.11.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gastrulation is the process whereby cells exit pluripotency and concomitantly acquire and pattern distinct cell fates. This is driven by the convergence of WNT, BMP, Nodal and FGF signals, which are tightly spatially and temporally controlled, resulting in regional and stage-specific signaling environments. The combination, level and duration of signals that a cell is exposed to, according its position within the embryo and the developmental time window, dictates the fate it will adopt. The key pathways driving gastrulation exhibit complex interactions, which are difficult to disentangle in vivo due to the complexity of manipulating multiple signals in parallel with high spatiotemporal resolution. Thus, our current understanding of the signaling dynamics regulating gastrulation is limited. In vitro stem cell models have been established, which undergo organized cellular differentiation and patterning. These provide amenable, simplified, deconstructed and scalable models of gastrulation. While the foundation of our understanding of gastrulation stems from experiments in embryos, in vitro systems are now beginning to reveal the intricate details of signaling regulation. Here we discuss the current state of knowledge of the role, regulation and dynamic interaction of signaling pathways that drive mouse gastrulation.
Collapse
Affiliation(s)
- Sophie M Morgani
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States; Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre Cambridge Biomedical Campus, Cambridge, United Kingdom.
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States.
| |
Collapse
|
28
|
Aragón E, Wang Q, Zou Y, Morgani SM, Ruiz L, Kaczmarska Z, Su J, Torner C, Tian L, Hu J, Shu W, Agrawal S, Gomes T, Márquez JA, Hadjantonakis AK, Macias MJ, Massagué J. Structural basis for distinct roles of SMAD2 and SMAD3 in FOXH1 pioneer-directed TGF-β signaling. Genes Dev 2019; 33:1506-1524. [PMID: 31582430 PMCID: PMC6824466 DOI: 10.1101/gad.330837.119] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/03/2019] [Indexed: 01/08/2023]
Abstract
TGF-β receptors phosphorylate SMAD2 and SMAD3 transcription factors, which then form heterotrimeric complexes with SMAD4 and cooperate with context-specific transcription factors to activate target genes. Here we provide biochemical and structural evidence showing that binding of SMAD2 to DNA depends on the conformation of the E3 insert, a structural element unique to SMAD2 and previously thought to render SMAD2 unable to bind DNA. Based on this finding, we further delineate TGF-β signal transduction by defining distinct roles for SMAD2 and SMAD3 with the forkhead pioneer factor FOXH1 as a partner in the regulation of differentiation genes in mouse mesendoderm precursors. FOXH1 is prebound to target sites in these loci and recruits SMAD3 independently of TGF-β signals, whereas SMAD2 remains predominantly cytoplasmic in the basal state and set to bind SMAD4 and join SMAD3:FOXH1 at target promoters in response to Nodal TGF-β signals. The results support a model in which signal-independent binding of SMAD3 and FOXH1 prime mesendoderm differentiation gene promoters for activation, and signal-driven SMAD2:SMAD4 binds to promoters that are preloaded with SMAD3:FOXH1 to activate transcription.
Collapse
Affiliation(s)
- Eric Aragón
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Qiong Wang
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Yilong Zou
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Sophie M Morgani
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Lidia Ruiz
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | | | - Jie Su
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Carles Torner
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Lin Tian
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Jing Hu
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Weiping Shu
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Saloni Agrawal
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Tiago Gomes
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | | | | | - Maria J Macias
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain.,ICREA, 08010 Barcelona, Spain
| | - Joan Massagué
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
29
|
Pelullo M, Zema S, Nardozza F, Checquolo S, Screpanti I, Bellavia D. Wnt, Notch, and TGF-β Pathways Impinge on Hedgehog Signaling Complexity: An Open Window on Cancer. Front Genet 2019; 10:711. [PMID: 31552081 PMCID: PMC6736567 DOI: 10.3389/fgene.2019.00711] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/05/2019] [Indexed: 12/22/2022] Open
Abstract
Constitutive activation of the Hedgehog (Hh) signaling pathway is associated with increased risk of developing several malignancies. The biological and pathogenic importance of Hh signaling emphasizes the need to control its action tightly, both physiologically and therapeutically. Evidence of crosstalk between Hh and other signaling pathways is reported in many tumor types. Here, we provide an overview of the current knowledge about the communication between Hh and major signaling pathways, such as Notch, Wnt, and transforming growth factor β (TGF-β), which play critical roles in both embryonic and adult life. When these pathways are unbalanced, impaired crosstalk contributes to disease development. It is reported that more than one of these pathways are active in different type of tumors, at the same time. Therefore, starting from a plethora of stimuli that activate multiple signaling pathways, we describe the signals that preferentially converge on the Hh signaling cascade that influence its activity. Moreover, we highlight several connection points between Hh and Notch, Wnt, or TGF-β pathways, showing a reciprocal synergism that contributes to tumorigenesis, supporting a more malignant behavior by tumor cells, such as in leukemia and brain tumors. Understanding the importance of these molecular interlinking networks will provide a rational basis for combined anticancer drug development.
Collapse
Affiliation(s)
- Maria Pelullo
- Center of Life Nano Science Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Sabrina Zema
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | | | - Saula Checquolo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy
| | | | - Diana Bellavia
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
30
|
Zhang Y, Zeng Y, Liu T, Du W, Zhu J, Liu Z, Huang JA. The canonical TGF-β/Smad signalling pathway is involved in PD-L1-induced primary resistance to EGFR-TKIs in EGFR-mutant non-small-cell lung cancer. Respir Res 2019; 20:164. [PMID: 31331328 PMCID: PMC6647099 DOI: 10.1186/s12931-019-1137-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 07/17/2019] [Indexed: 12/23/2022] Open
Abstract
Background Approximately 30% of patients with epidermal growth factor receptor (EGFR)-activating mutations have no response to EGFR-tyrosine kinase inhibitors (TKIs) (primary resistance). However, little is known about the molecular mechanism involved in primary resistance to EGFR-TKIs in EGFR-mutant non-small cell lung cancer (NSCLC). Programmed death ligand-1 (PD-L1) plays important regulatory roles in intracellular functions and leads to acquired resistance to EGFR-TKIs in NSCLC. Here, we investigated the mechanistic role of PD-L1 in primary resistance to EGFR-TKIs in EGFR-mutant NSCLC cells. Methods The expression levels of PD-L1 and the sensitivity to gefitinib in H1975, HCC827 and PC-9 cells were determined by quantitative real-time PCR analysis (qRT-PCR) and Cell Counting Kit-8 (CCK-8) assays, respectively. Molecular manipulations (silencing or overexpression) were performed to assess the effect of PD-L1 on sensitivity to gefitinib, and a mouse xenograft model was used for in vivo confirmation. Western blotting and qRT-PCR were used to analyse the expression of epithelial-mesenchymal transition (EMT) markers. The effect of PD-L1 on migratory and invasive abilities was evaluated using the Transwell assay and mice tail intravenous injection. Results Higher expression of PD-L1 was related to less sensitivity to gefitinib in EGFR-mutant NSCLC cell lines. The overexpression or knockdown of PD-L1 presented diametrical sensitivity to gefitinib in vitro and in vivo. Furthermore, the overexpression of PD-L1 led to primary resistance to gefitinib through the induction of EMT, which was dependent on the upregulation of Smad3 phosphorylation. Moreover, in the mouse model, the knockdown of PD-L1 inhibited transforming growth factor (TGF)-β1-induced cell metastasis in vivo. Conclusion PD-L1 contributes to primary resistance to EGFR-TKI in EGFR-mutant NSCLC cells, which may be mediated through the induction of EMT via the activation of the TGF-β/Smad canonical signalling pathway.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China.,Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Yuanyuan Zeng
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China.,Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Ting Liu
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China.,Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Wenwen Du
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China.,Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Jianjie Zhu
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China.,Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Zeyi Liu
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China. .,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China. .,Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China.
| | - Jian-An Huang
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China. .,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China. .,Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China.
| |
Collapse
|
31
|
Shu X, Shu S, Cheng H. Genome-Wide mRNA-Seq Profiling Reveals that LEF1 and SMAD3 Regulate Epithelial-Mesenchymal Transition Through the Hippo Signaling Pathway During Palatal Fusion. Genet Test Mol Biomarkers 2019; 23:197-203. [PMID: 30767676 DOI: 10.1089/gtmb.2018.0221] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) of the medial edge epithelium (MEE) occurs through fusion of the palatal shelves and is a crucial step in palatogenesis. The key genes, however, and the related signaling pathway of EMT are not yet fully understood. Therefore, the aim of this study was to reveal the key genes and the related signaling pathway of EMT during palatal fusion. MATERIALS AND METHODS C57BL/6J mice at embryonic gestation day 14.5 (E14.5; n = 6) were used to establish the cleft palate model for mRNA-Seq (HiSeq X Ten). The Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed for functional annotations of the differentially expressed genes. Quantitative polymerase chain reaction (qPCR) assays were used to validate the RNAseq data. RESULTS A total of 936 differentially expressed genes, including 558 upregulated and 378 downregulated genes were identified in cases versus controls, respectively. Among these genes, the GO analysis showed that Lymphoid Enhancer-Binding Factor 1 (LEF1) and SMAD Family Member 3 (SMAD3) significantly enriched biological processes, which were EMT related. The KEGG analysis showed that these genes regulated EMT through the Hippo signaling pathway. LEF1 and SMAD3 were downregulated, and the qPCR results corroborated the RNA-seq data. CONCLUSIONS These results demonstrate that LEF1 and SMAD3 inhibits EMT at the MEE through the Hippo signaling pathway; and that this could contribute to cleft palate formation in embryonic palatal fusion at E 14.5.
Collapse
Affiliation(s)
- Xuan Shu
- 1 The Cleft Lip and Palate Treatment Center, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Shenyou Shu
- 1 The Cleft Lip and Palate Treatment Center, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Hongqiu Cheng
- 2 Department of Infectious Diseases, Second Affiliated Hospital of Shantou University Medical College, Shantou, Shantou, Guangdong, China
| |
Collapse
|
32
|
Transforming growth factor β (TGFβ) and related molecules in chronic kidney disease (CKD). Clin Sci (Lond) 2019; 133:287-313. [DOI: 10.1042/cs20180438] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/04/2018] [Accepted: 01/07/2019] [Indexed: 02/07/2023]
|
33
|
Singha PK, Pandeswara S, Geng H, Lan R, Venkatachalam MA, Dobi A, Srivastava S, Saikumar P. Increased Smad3 and reduced Smad2 levels mediate the functional switch of TGF-β from growth suppressor to growth and metastasis promoter through TMEPAI/PMEPA1 in triple negative breast cancer. Genes Cancer 2019; 10:134-149. [PMID: 31798766 PMCID: PMC6872668 DOI: 10.18632/genesandcancer.194] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 06/27/2019] [Indexed: 12/18/2022] Open
Abstract
Screening of several TNBC cell lines showed altered Smad2 and Smad3 protein levels compared to normal mammary epithelial cells, suggesting the possibility that it could play an important role in the escape of cancer cells from TGF-β mediated growth inhibition. To assess the functional relevance of these endogenous molecules, Smad2 or Smad3 expression was knocked down individually and assessed their effects on pro-oncogenic properties of TGF-β. Smad3 deficiency reduced growth and invasion capacity of breast cancer cells in comparison to Smad2 which had no effect. Smad3 deficiency was also found to be associated with a reduction in the expressions of TMEPAI/PMEPA1 and EMT inducing transcription factors, E-Cadherin and increased expression of cell cycle inhibitors and Vimentin. On the other hand, Smad2 deficiency had opposite effect on these regulators. Interestingly, the decreased growth, invasion and associated gene expressions were largely reversed by overexpressing TMEPAI in Smad3 knockdown cells, suggesting that Smad3-TMEPAI axis may be involved in subverting growth suppressive effects of TGF-β into growth promotion. Similarly, altered levels of Smad proteins and TMEPAI were also noted in primary TNBC tumor tissues. Analysis of the existing databases provided additional support in terms of TMEPAI and Smad2 expression impacting the survival of TNBC patients. Taken together, our data demonstrate a novel role for Smad3 in cancer transformation and cancer progression through TMEPAI and further suggest that selective targeting of TGF-β-Smad3-TMEPAI axis may be beneficial in triple negative breast cancer therapy and prevention.
Collapse
Affiliation(s)
- Prajjal K. Singha
- Department of Med/Hematology & Med Oncology, UT Health Science Center at San Antonio, TX, USA
| | - Srilakshmi Pandeswara
- Department of Med/Hematology & Med Oncology, UT Health Science Center at San Antonio, TX, USA
| | - Hui Geng
- Department of Med/Hematology & Med Oncology, UT Health Science Center at San Antonio, TX, USA
| | - Rongpei Lan
- Department of Med/Hematology & Med Oncology, UT Health Science Center at San Antonio, TX, USA
| | | | - Albert Dobi
- Department of Pathology, Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Shiv Srivastava
- Department of Pathology, Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Pothana Saikumar
- Department of Med/Hematology & Med Oncology, UT Health Science Center at San Antonio, TX, USA
| |
Collapse
|
34
|
Yazdani R, Shapoori S, Rezaeepoor M, Sanaei R, Ganjalikhani-Hakemi M, Azizi G, Rae W, Aghamohammadi A, Rezaei N. Features and roles of T helper 9 cells and interleukin 9 in immunological diseases. Allergol Immunopathol (Madr) 2019; 47:90-104. [PMID: 29703631 DOI: 10.1016/j.aller.2018.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/28/2018] [Accepted: 02/09/2018] [Indexed: 02/08/2023]
Abstract
T helper 9 (TH9) cells are considered as newly classified helper T cells that have an important role in the regulation of immune responses. Since these cells preferentially produce IL-9, these cells are termed TH9 cells. Recently, the role of TH9 and its signature cytokine (IL-9) has been investigated in a wide range of diseases, including autoimmunity, allergy, infections, cancer and immunodeficiency. Herein, we review the most recent data concerning TH9 cells and IL-9 as well as their roles in disease. These insights suggest that TH9 cells are a future target for therapeutic intervention.
Collapse
Affiliation(s)
- R Yazdani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - S Shapoori
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - M Rezaeepoor
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - R Sanaei
- Department of Immunology, School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - M Ganjalikhani-Hakemi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - G Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran; Department of Laboratory Medicine, Imam Hassan Mojtaba Hospital, Alborz University of Medical Sciences, Karaj, Iran
| | - W Rae
- Department of Immunology, MP8, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, Hampshire SO16 6YD, UK
| | - A Aghamohammadi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - N Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Science, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
35
|
Ding W, Pu W, Jiang S, Ma Y, Liu Q, Wu W, Chu H, Zou H, Jin L, Wang J, Zhou X. Evaluation of the antifibrotic potency by knocking down SPARC, CCR2 and SMAD3. EBioMedicine 2018; 38:238-247. [PMID: 30470612 PMCID: PMC6306344 DOI: 10.1016/j.ebiom.2018.11.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/23/2018] [Accepted: 11/09/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The genes of SPARC, CCR2, and SMAD3 are implicated in orchestrating inflammatory response that leads to fibrosis in scleroderma and other fibrotic disorders. The aim of the studies is to evaluate synergistic anti-fibrotic potency of the siRNAs of these genes. METHODS The efficacy of the siRNA-combination was evaluated in bleomycin-induced mouse fibrosis. The pathological changes of skin and lungs of the mice were assessed by hematoxylin and eosin and Masson's trichrome stains. The expression of inflammation and fibrosis associated genes and proteins in the tissues were assessed by real-time RT-PCR, RNA sequencing, Western blots and ELISA. Non-crosslinked fibrillar collagen was measured by the Sircol colorimetric assay. FINDINGS The applications of the combined siRNAs in bleomycin-induced mice achieved favorable anti-inflammatory and anti-fibrotic effects. Activation of fibroblasts was suppressed in parallel with inhibition of inflammation evidenced by reduced inflammatory cells and proinflammatory cytokines in the BALF and/or the tissues by the treatment. Aberrant expression of the genes normally expressed in fibroblasts, monocytes/ macrophage, endothelial and epithelial cells were significantly restrained after the treatment. In addition, transcriptome profiles indicated that some bleomycin-induced alterations of multiple biological pathways were recovered to varying degrees by the treatment. INTERPRETATION The application of the combined siRNAs of SPARC, CCR2, and SMAD3 genes ameliorated inflammation and fibrosis in bleomycin-induced mice. It systemically reinstated multiple biopathways, probably through controlling on different cell types including fibroblasts, monocytes/macrophages, endothelial cells and others. The multi-target-combined therapeutic approach examined herein may represent a novel and effective therapy for fibrosis.
Collapse
Affiliation(s)
- Weifeng Ding
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China; Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China; University of Texas-McGovern Medical School, Houston, TX, USA
| | - Weilin Pu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Shuai Jiang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Yanyun Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Qingmei Liu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenyu Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Haiyan Chu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Hejian Zou
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China; Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China; Human Phenome Institute, Fudan University, Shanghai, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China; Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China; Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China; Human Phenome Institute, Fudan University, Shanghai, China.
| | - Xiaodong Zhou
- University of Texas-McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
36
|
de Kroon LMG, van den Akker GGH, Brachvogel B, Narcisi R, Belluoccio D, Jenner F, Bateman JF, Little CB, Brama PAJ, Blaney Davidson EN, van der Kraan PM, van Osch GJVM. Identification of TGFβ-related genes regulated in murine osteoarthritis and chondrocyte hypertrophy by comparison of multiple microarray datasets. Bone 2018; 116:67-77. [PMID: 30010080 DOI: 10.1016/j.bone.2018.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Osteoarthritis (OA) is a joint disease characterized by progressive degeneration of articular cartilage. Some features of OA, including chondrocyte hypertrophy and focal calcification of articular cartilage, resemble the endochondral ossification processes. Alterations in transforming growth factor β (TGFβ) signaling have been associated with OA as well as with chondrocyte hypertrophy. Our aim was to identify novel candidate genes implicated in chondrocyte hypertrophy during OA pathogenesis by determining which TGFβ-related genes are regulated during murine OA and endochondral ossification. METHODS A list of 580 TGFβ-related genes, including TGFβ signaling pathway components and TGFβ-target genes, was generated. Regulation of these TGFβ-related genes was assessed in a microarray of murine OA cartilage: 1, 2 and 6 weeks after destabilization of the medial meniscus (DMM). Subsequently, genes regulated in the DMM model were studied in two independent murine microarray datasets on endochondral ossification: the growth plate and transient embryonic cartilage (joint development). RESULTS A total of 106 TGFβ-related genes were differentially expressed in articular cartilage of DMM-operated mice compared to sham-control. From these genes, 43 were similarly regulated during chondrocyte hypertrophy in the growth plate or embryonic joint development. Among these 43 genes, 18 genes have already been associated with OA. The remaining 25 genes were considered as novel candidate genes involved in OA pathogenesis and endochondral ossification. In supplementary data of published human OA microarrays we found indications that 15 of the 25 novel genes are indeed regulated in articular cartilage of human OA patients. CONCLUSION By focusing on TGFβ-related genes during OA and chondrocyte hypertrophy in mice, we identified 18 known and 25 new candidate genes potentially implicated in phenotypical changes in chondrocytes leading to OA. We propose that 15 of these candidates warrant further investigation as therapeutic target for OA as they are also regulated in articular cartilage of OA patients.
Collapse
Affiliation(s)
- Laurie M G de Kroon
- Department of Rheumatology, Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Orthopedics, Erasmus MC University Medical Center, Rotterdam, the Netherlands.
| | - Guus G H van den Akker
- Department of Rheumatology, Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Bent Brachvogel
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany; Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Medical Faculty, University of Cologne, Cologne, Germany.
| | - Roberto Narcisi
- Department of Orthopedics, Erasmus MC University Medical Center, Rotterdam, the Netherlands.
| | - Daniele Belluoccio
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia.
| | - Florien Jenner
- Equine University Hospital, University of Veterinary Medicine, Vienna, Austria.
| | - John F Bateman
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia.
| | - Christopher B Little
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, University of Sydney, St Leonards, New South Wales, Australia.
| | - Pieter A J Brama
- Veterinary Clinical Sciences, School of Veterinary Medicine, University College Dublin, Dublin, Ireland.
| | - Esmeralda N Blaney Davidson
- Department of Rheumatology, Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Peter M van der Kraan
- Department of Rheumatology, Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Gerjo J V M van Osch
- Department of Orthopedics, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Department of Otorhinolaryngology, Erasmus MC University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
37
|
Higa R, Hanada T, Teranishi H, Miki D, Seo K, Hada K, Shiraishi H, Mimata H, Hanada R, Kangawa K, Murai T, Nakao K. CD105 maintains the thermogenic program of beige adipocytes by regulating Smad2 signaling. Mol Cell Endocrinol 2018; 474:184-193. [PMID: 29574003 DOI: 10.1016/j.mce.2018.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 03/20/2018] [Accepted: 03/21/2018] [Indexed: 12/15/2022]
Abstract
Beige adipocytes are thermogenic adipocytes with developmental and anatomical properties distinct from those of classical brown adipocytes. Recent studies have revealed several key molecular regulators of beige adipocyte development. CD105, also called endoglin, is a membrane protein composed of TGF-β receptor complex. It regulates TGF-β-family signal transduction and vascular formation in vivo. We report here that CD105 maintains the thermogenic gene program of beige adipocytes by regulating Smad2 signaling. Cd105-/- adipocyte precursors showed augmented Smad2 activation and decreased expression of thermogenic genes such as Ucp1 and Prdm16-which encodes a transcriptional regulatory protein for thermogenesis-after adipogenic differentiation. Smad2 signaling augmentation by the constitutively active form of Smad2 decreased the expression of thermogenic genes in beige adipocytes. Loss of thermogenic activity in Cd105-/- beige adipocytes was rescued by Prdm16 expression. These data reveal a novel function of CD105 in beige adipocytes: maintaining their thermogenic program by regulating Smad2 signaling.
Collapse
Affiliation(s)
- Ryoko Higa
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; Department of Cell Biology, Oita University Faculty of Medicine, Yufu, Oita 879-5593, Japan
| | - Toshikatsu Hanada
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; Department of Cell Biology, Oita University Faculty of Medicine, Yufu, Oita 879-5593, Japan.
| | - Hitoshi Teranishi
- Department of Neurophysiology, Oita University Faculty of Medicine, Yufu, Oita 879-5593, Japan
| | - Daisuke Miki
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; Department of Urology, Oita University Faculty of Medicine, Yufu, Oita 879-5593, Japan
| | - Kazuyuki Seo
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Kazumasa Hada
- Department of Cell Biology, Oita University Faculty of Medicine, Yufu, Oita 879-5593, Japan
| | - Hiroshi Shiraishi
- Department of Cell Biology, Oita University Faculty of Medicine, Yufu, Oita 879-5593, Japan
| | - Hiromitsu Mimata
- Department of Urology, Oita University Faculty of Medicine, Yufu, Oita 879-5593, Japan
| | - Reiko Hanada
- Department of Neurophysiology, Oita University Faculty of Medicine, Yufu, Oita 879-5593, Japan
| | - Kenji Kangawa
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; National Cerebral and Cardiovascular Center, 565-8565 Osaka, Japan
| | - Toshiya Murai
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; Department of Psychiatry, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara, Sakyo, Kyoto 606-8507, Japan
| | - Kazuwa Nakao
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| |
Collapse
|
38
|
Yoney A, Etoc F, Ruzo A, Carroll T, Metzger JJ, Martyn I, Li S, Kirst C, Siggia ED, Brivanlou AH. WNT signaling memory is required for ACTIVIN to function as a morphogen in human gastruloids. eLife 2018; 7:38279. [PMID: 30311909 PMCID: PMC6234031 DOI: 10.7554/elife.38279] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 10/11/2018] [Indexed: 01/10/2023] Open
Abstract
Self-organization of discrete fates in human gastruloids is mediated by a hierarchy of signaling pathways. How these pathways are integrated in time, and whether cells maintain a memory of their signaling history remains obscure. Here, we dissect the temporal integration of two key pathways, WNT and ACTIVIN, which along with BMP control gastrulation. CRISPR/Cas9-engineered live reporters of SMAD1, 2 and 4 demonstrate that in contrast to the stable signaling by SMAD1, signaling and transcriptional response by SMAD2 is transient, and while necessary for pluripotency, it is insufficient for differentiation. Pre-exposure to WNT, however, endows cells with the competence to respond to graded levels of ACTIVIN, which induces differentiation without changing SMAD2 dynamics. This cellular memory of WNT signaling is necessary for ACTIVIN morphogen activity. A re-evaluation of the evidence gathered over decades in model systems, re-enforces our conclusions and points to an evolutionarily conserved mechanism.
Collapse
Affiliation(s)
- Anna Yoney
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, United States.,Center for Studies in Physics and Biology, The Rockefeller University, New York, United States
| | - Fred Etoc
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, United States.,Center for Studies in Physics and Biology, The Rockefeller University, New York, United States
| | - Albert Ruzo
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, United States
| | - Thomas Carroll
- Bioinformatics Resource Center, The Rockefeller University, New York, United States
| | - Jakob J Metzger
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, United States.,Center for Studies in Physics and Biology, The Rockefeller University, New York, United States
| | - Iain Martyn
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, United States.,Center for Studies in Physics and Biology, The Rockefeller University, New York, United States
| | - Shu Li
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, United States
| | - Christoph Kirst
- Center for Studies in Physics and Biology, The Rockefeller University, New York, United States
| | - Eric D Siggia
- Center for Studies in Physics and Biology, The Rockefeller University, New York, United States
| | - Ali H Brivanlou
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, United States
| |
Collapse
|
39
|
Musah-Eroje M, Flynn RJ. Fasciola hepatica, TGF-β and host mimicry: the enemy within. Curr Opin Microbiol 2018; 46:80-85. [PMID: 30317150 DOI: 10.1016/j.mib.2018.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/29/2018] [Accepted: 09/24/2018] [Indexed: 11/16/2022]
Abstract
Helminths parasites undergo developmental changes and migration within their definitive host, in addition to establishing chronic infection. Essential to this is the evasion of host immune responses; the canonical Th2 response is effective at removing parasites resident in the intestine. Conversely, helminths also promote the development of antigen-specific anergy and regulation. This often limits pathology but allows parasite survival, parasite effectors mediating this are the subject of intense study. They may be useful as future vaccine targets or xenogenic therapeutics. Fasciola hepatica possesses a family of TGF-like molecules of which one member, FhTLM, is capable of promoting intrinsic and extrinsic effects. Here we review the extrinsic effects of FhTLM on the host macrophage and its consequences for protective immunity. This review also discusses the specificities of FhTLM in light a very recent description of a nematode TGF-β mimic and the effects of endogenous TGF-β.
Collapse
Affiliation(s)
- Mayowa Musah-Eroje
- School of Veterinary Medicine and Science, University of Nottingham, LE12 5RD, United Kingdom
| | - Robin J Flynn
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, L3 5RF, United Kingdom.
| |
Collapse
|
40
|
Shu X, Shu S, Zhai Y, Zhu L, Ouyang Z. Genome-Wide DNA Methylation Profile of Gene cis-Acting Element Methylations in All-trans Retinoic Acid-Induced Mouse Cleft Palate. DNA Cell Biol 2018; 37:993-1002. [PMID: 30277813 DOI: 10.1089/dna.2018.4369] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
DNA methylation epigenetically regulates gene expression. This study is aimed to investigate genome-wide DNA methylations involved in the regulation of palatal fusion in the all-trans retinoic acid-induced mouse cleft palate model. There were 4,718,556 differentially CCGG methylated sites and 367,504 CCWGG methylated sites for 1497 genes between case and control embryonic mouse palatal tissues. The enhancers (HDAC4 and SMAD3) and promoter (MID1) of these three genes had cis-acting element methylation. HDAC4 is localized within the CCWGG, while MID1 and SMAD3 are localized within the CCGG of the gene intron. The methylation-specific polymerase chain reaction data confirmed the MethylRAD-seq results, while the quantitative reverse transcriptase-polymerase chain reaction result showed that changes in gene expression inversely were associated with the cis-acting element methylation of the gene during retinoic acid-induced palatal fusion. The GO and KEGG data showed that these three genes could regulate cell proliferation, skeletal muscle fiber development, and development-related gene signaling or activity. The cis-acting element methylation of HDAC4, SMAD3, and MID1 may play a regulatory role during palatal fusion. Further research is needed to verify these novel epigenetic biomarkers for cleft palate.
Collapse
Affiliation(s)
- Xuan Shu
- The Cleft Lip and Palate Treatment Center, The Second Affiliated Hospital of Shantou University Medical College , Shantou, China
| | - Shenyou Shu
- The Cleft Lip and Palate Treatment Center, The Second Affiliated Hospital of Shantou University Medical College , Shantou, China
| | - Yuxia Zhai
- The Cleft Lip and Palate Treatment Center, The Second Affiliated Hospital of Shantou University Medical College , Shantou, China
| | - Lin Zhu
- The Cleft Lip and Palate Treatment Center, The Second Affiliated Hospital of Shantou University Medical College , Shantou, China
| | - Zhan Ouyang
- The Cleft Lip and Palate Treatment Center, The Second Affiliated Hospital of Shantou University Medical College , Shantou, China
| |
Collapse
|
41
|
Iyer D, Zhao Q, Wirka R, Naravane A, Nguyen T, Liu B, Nagao M, Cheng P, Miller CL, Kim JB, Pjanic M, Quertermous T. Coronary artery disease genes SMAD3 and TCF21 promote opposing interactive genetic programs that regulate smooth muscle cell differentiation and disease risk. PLoS Genet 2018; 14:e1007681. [PMID: 30307970 PMCID: PMC6198989 DOI: 10.1371/journal.pgen.1007681] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/23/2018] [Accepted: 09/07/2018] [Indexed: 12/13/2022] Open
Abstract
Although numerous genetic loci have been associated with coronary artery disease (CAD) with genome wide association studies, efforts are needed to identify the causal genes in these loci and link them into fundamental signaling pathways. Recent studies have investigated the disease mechanism of CAD associated gene SMAD3, a central transcription factor (TF) in the TGFβ pathway, investigating its role in smooth muscle biology. In vitro studies in human coronary artery smooth muscle cells (HCASMC) revealed that SMAD3 modulates cellular phenotype, promoting expression of differentiation marker genes while inhibiting proliferation. RNA sequencing and chromatin immunoprecipitation sequencing studies in HCASMC identified downstream genes that reside in pathways which mediate vascular development and atherosclerosis processes in this cell type. HCASMC phenotype, and gene expression patterns promoted by SMAD3 were noted to have opposing direction of effect compared to another CAD associated TF, TCF21. At sites of SMAD3 and TCF21 colocalization on DNA, SMAD3 binding was inversely correlated with TCF21 binding, due in part to TCF21 locally blocking chromatin accessibility at the SMAD3 binding site. Further, TCF21 was able to directly inhibit SMAD3 activation of gene expression in transfection reporter gene studies. In contrast to TCF21 which is protective toward CAD, SMAD3 expression in HCASMC was shown to be directly correlated with disease risk. We propose that the pro-differentiation action of SMAD3 inhibits dedifferentiation that is required for HCASMC to expand and stabilize disease plaque as they respond to vascular stresses, counteracting the protective dedifferentiating activity of TCF21 and promoting disease risk.
Collapse
Affiliation(s)
- Dharini Iyer
- Department of Medicine and Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Quanyi Zhao
- Department of Medicine and Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Robert Wirka
- Department of Medicine and Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Ameay Naravane
- Department of Medicine and Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Trieu Nguyen
- Department of Medicine and Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Boxiang Liu
- Department of Medicine and Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Manabu Nagao
- Department of Medicine and Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Paul Cheng
- Department of Medicine and Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Clint L. Miller
- Departments of Public Health Sciences, Biochemistry and Genetics, and Biomedical Engineering, University of Virginia, Charlottesville, VA, United States of America
| | - Juyong Brian Kim
- Department of Medicine and Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Milos Pjanic
- Department of Medicine and Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Thomas Quertermous
- Department of Medicine and Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States of America
| |
Collapse
|
42
|
Abstract
Transforming Growth Factor beta (TGF-β) is a pleiotropic cytokine produced in large amounts within cancer microenvironments that will ultimately promote neoplastic progression, notably by suppressing the host’s T-cell immunosurveillance. This effect is mostly due to the well-known inhibitory effect of TGF-β on T cell proliferation, activation, and effector functions. Moreover, TGF-β subverts T cell immunity by favoring regulatory T-cell differentiation, further reinforcing immunosuppression within tumor microenvironments. These findings stimulated the development of many strategies to block TGF-β or its signaling pathways, either as monotherapy or in combination with other therapies, to restore anti-cancer immunity. Paradoxically, recent studies provided evidence that TGF-β can also promote differentiation of certain inflammatory populations of T cells, such as Th17, Th9, and resident-memory T cells (Trm), which have been associated with improved tumor control in several models. Here, we review current advances in our understanding of the many roles of TGF-β in T cell biology in the context of tumor immunity and discuss the possibility to manipulate TGF-β signaling to improve cancer immunotherapy.
Collapse
Affiliation(s)
- Amina Dahmani
- Centre de Recherche de L'hôpital Maisonneuve-Rosemont, 5415 Boul. de L'Assomption, Montréal, QC H1T 2M4, Canada.
| | - Jean-Sébastien Delisle
- Centre de Recherche de L'hôpital Maisonneuve-Rosemont, 5415 Boul. de L'Assomption, Montréal, QC H1T 2M4, Canada.
- Hematology-Oncology service, Hôpital Maisonneuve-Rosemont, Department of Medicine, Université de Montréal, Montréal, QC H1T 2M4, Canada.
| |
Collapse
|
43
|
TGF-β in T Cell Biology: Implications for Cancer Immunotherapy. Cancers (Basel) 2018; 10:cancers10060194. [PMID: 29891791 PMCID: PMC6025055 DOI: 10.3390/cancers10060194] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/07/2018] [Accepted: 06/07/2018] [Indexed: 12/25/2022] Open
Abstract
Transforming Growth Factor beta (TGF-β) is a pleiotropic cytokine produced in large amounts within cancer microenvironments that will ultimately promote neoplastic progression, notably by suppressing the host’s T-cell immunosurveillance. This effect is mostly due to the well-known inhibitory effect of TGF-β on T cell proliferation, activation, and effector functions. Moreover, TGF-β subverts T cell immunity by favoring regulatory T-cell differentiation, further reinforcing immunosuppression within tumor microenvironments. These findings stimulated the development of many strategies to block TGF-β or its signaling pathways, either as monotherapy or in combination with other therapies, to restore anti-cancer immunity. Paradoxically, recent studies provided evidence that TGF-β can also promote differentiation of certain inflammatory populations of T cells, such as Th17, Th9, and resident-memory T cells (Trm), which have been associated with improved tumor control in several models. Here, we review current advances in our understanding of the many roles of TGF-β in T cell biology in the context of tumor immunity and discuss the possibility to manipulate TGF-β signaling to improve cancer immunotherapy.
Collapse
|
44
|
Liu Z, Kundu-Roy T, Matsuura I, Wang G, Lin Y, Lou YR, Barnard NJ, Wang XF, Huang MT, Suh N, Liu F. Carcinogen 7,12-dimethylbenz[a]anthracene-induced mammary tumorigenesis is accelerated in Smad3 heterozygous mice compared to Smad3 wild type mice. Oncotarget 2018; 7:64878-64885. [PMID: 27588495 PMCID: PMC5323122 DOI: 10.18632/oncotarget.11713] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 08/01/2016] [Indexed: 01/09/2023] Open
Abstract
Previous studies based on cell culture and xenograft animal models suggest that Smad3 has tumor suppressor function for breast cancer during early stages of tumorigenesis. In this report, we show that DMBA (7,12-dimethylbenz[a]anthracene), a chemical carcinogen, induces mammary tumor formation at a significantly higher frequency in the Smad3 heterozygous mice than in the Smad3 wild type mice. This is the first genetic evidence showing that Smad3 inhibits mammary tumor formation in a mouse model. Our findings support the notion that Smad3 has important tumor suppressor function for breast cancer.
Collapse
Affiliation(s)
- Zhengxue Liu
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.,College of Life Science & Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Tanima Kundu-Roy
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Isao Matsuura
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.,Division of Molecular Genomics and Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Guannan Wang
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Yong Lin
- Department of Biostatistics, School of Public Health, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - You-Rong Lou
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Nicola J Barnard
- Department of Pathology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Xiao-Fan Wang
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Mou-Tuan Huang
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Nanjoo Suh
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Fang Liu
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
45
|
Long-term ethanol exposure: Temporal pattern of microRNA expression and associated mRNA gene networks in mouse brain. PLoS One 2018; 13:e0190841. [PMID: 29315347 PMCID: PMC5760035 DOI: 10.1371/journal.pone.0190841] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/20/2017] [Indexed: 01/05/2023] Open
Abstract
Long-term alcohol use can result in lasting changes in brain function, ultimately leading to alcohol dependence. These functional alterations arise from dysregulation of complex gene networks, and growing evidence implicates microRNAs as key regulators of these networks. We examined time- and brain region-dependent changes in microRNA expression after chronic intermittent ethanol (CIE) exposure in C57BL/6J mice. Animals were sacrificed at 0, 8, and 120h following the last exposure to four weekly cycles of CIE vapor and we measured microRNA expression in prefrontal cortex (PFC), nucleus accumbens (NAC), and amygdala (AMY). The number of detected (395–419) and differentially expressed (DE, 42–47) microRNAs was similar within each brain region. However, the DE microRNAs were distinct among brain regions and across time within each brain region. DE microRNAs were linked with their DE mRNA targets across each brain region. In all brain regions, the greatest number of DE mRNA targets occurred at the 0 or 8h time points and these changes were associated with microRNAs DE at 0 or 8h. Two separate approaches (discrete temporal association and hierarchical clustering) were combined with pathway analysis to further characterize the temporal relationships between DE microRNAs and their 120h DE targets. We focused on targets dysregulated at 120h as this time point represents a state of protracted withdrawal known to promote an increase in subsequent ethanol consumption. Discrete temporal association analysis identified networks with highly connected genes including ERK1/2 (mouse equivalent Mapk3, Mapk1), Bcl2 (in AMY networks) and Srf (in PFC networks). Similarly, the cluster-based analysis identified hub genes that include Bcl2 (in AMY networks) and Srf in PFC networks, demonstrating robust microRNA-mRNA network alterations in response to CIE exposure. In contrast, datasets utilizing targets from 0 and 8h microRNAs identified NF-kB-centered networks (in NAC and PFC), and Smad3-centered networks (in AMY). These results demonstrate that CIE exposure results in dynamic and complex temporal changes in microRNA-mRNA gene network structure.
Collapse
|
46
|
Lawrance IC, Rogler G, Bamias G, Breynaert C, Florholmen J, Pellino G, Reif S, Speca S, Latella G. Cellular and Molecular Mediators of Intestinal Fibrosis. J Crohns Colitis 2017. [PMID: 25306501 DOI: 10.1016/j.crohns.2014.09.00] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Intestinal fibrosis is a major complication of the inflammatory bowel diseases (IBD) and although inflammation is necessary for its development, it would appear that it plays a minor role in its progression as anti-inflammatory treatments in IBD do not prevent fibrosis once it has started. The processes that regulate fibrosis would thus appear to be distinct from those regulating inflammation and, therefore, a detailed understanding of these pathways is vital to the development of anti-fibrogenic strategies. There have been several recent reviews exploring what is known, and what remains unknown, about the development of intestinal fibrosis. This review is designed to add to this literature but with a focus on the cellular components that are involved in the development of fibrogenesis and the major molecular mediators that impact on these cells. The aim is to heighten the understanding of the factors involved in intestinal fibrogenesis so that detailed research can be encouraged in order to advance the processes that could lead to effective treatments.
Collapse
Affiliation(s)
- Ian C Lawrance
- Centre for Inflammatory Bowel Diseases, Fremantle Hospital, Fremantle, WA, Australia.,University Department of Medicine and Pharmacology, University of Western Australia, Fremantle Hospital, Freemantle, WA, Australia
| | - Gerhard Rogler
- Division of Gastroenterology and Hepatology, University Hospital of Zurich, Zurich, Switzerland
| | - Giorgos Bamias
- Academic Department of Gastroenterology, Ethnikon and Kapodistriakon University of Athens, Laikon Hospital, Athens, Greece
| | - Christine Breynaert
- Department of Immunology and Microbiology, Laboratory of Clinical Immunology, KU Leuven, Leuven, Belgium.,Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Jon Florholmen
- Research Group of Gastroenterology and Nutrition, Institute of Clinical Medicine, Artic University of Norway and University Hospital of Northern Norway, Tromsø, Norway
| | - Gianluca Pellino
- General Surgery Unit, Second University of Naples, Naples, Italy
| | - Shimon Reif
- Department of Pediatrics, Tel-Aviv Souraski Medical Center, Tel-Aviv, Israel
| | - Silvia Speca
- National Institute of Health and Medical Research-INSERM, Unit U995, Lille, France
| | - Giovanni Latella
- Department of Life, Health and Environmental Sciences, Gastroenterology Unit, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
47
|
Lawrance IC, Rogler G, Bamias G, Breynaert C, Florholmen J, Pellino G, Reif S, Speca S, Latella G. Cellular and Molecular Mediators of Intestinal Fibrosis. J Crohns Colitis 2017; 11:1491-1503. [PMID: 25306501 PMCID: PMC5885809 DOI: 10.1016/j.crohns.2014.09.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intestinal fibrosis is a major complication of the inflammatory bowel diseases (IBD) and although inflammation is necessary for its development, it would appear that it plays a minor role in its progression as anti-inflammatory treatments in IBD do not prevent fibrosis once it has started. The processes that regulate fibrosis would thus appear to be distinct from those regulating inflammation and, therefore, a detailed understanding of these pathways is vital to the development of anti-fibrogenic strategies. There have been several recent reviews exploring what is known, and what remains unknown, about the development of intestinal fibrosis. This review is designed to add to this literature but with a focus on the cellular components that are involved in the development of fibrogenesis and the major molecular mediators that impact on these cells. The aim is to heighten the understanding of the factors involved in intestinal fibrogenesis so that detailed research can be encouraged in order to advance the processes that could lead to effective treatments.
Collapse
Affiliation(s)
- Ian C Lawrance
- Centre for Inflammatory Bowel Diseases, Fremantle Hospital, Fremantle, WA, Australia
- University Department of Medicine and Pharmacology, University of Western Australia, Fremantle Hospital, Freemantle, WA, Australia
| | - Gerhard Rogler
- Division of Gastroenterology and Hepatology, University Hospital of Zurich, Zurich, Switzerland
| | - Giorgos Bamias
- Academic Department of Gastroenterology, Ethnikon and Kapodistriakon University of Athens, Laikon Hospital, Athens, Greece
| | - Christine Breynaert
- Department of Immunology and Microbiology, Laboratory of Clinical Immunology, KU Leuven, Leuven, Belgium
- Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Jon Florholmen
- Research Group of Gastroenterology and Nutrition, Institute of Clinical Medicine, Artic University of Norway and University Hospital of Northern Norway, Tromsø, Norway
| | - Gianluca Pellino
- General Surgery Unit, Second University of Naples, Naples, Italy
| | - Shimon Reif
- Department of Pediatrics, Tel-Aviv Souraski Medical Center, Tel-Aviv, Israel
| | - Silvia Speca
- National Institute of Health and Medical Research-INSERM, Unit U995, Lille, France
| | - Giovanni Latella
- Department of Life, Health and Environmental Sciences, Gastroenterology Unit, University of L’Aquila, L’Aquila, Italy
| |
Collapse
|
48
|
Yu H, Jiang N, Yu X, Zhao Z, Zhang X, Xu H. The role of TGFβ receptor 1-smad3 signaling in regulating the osteoclastic mode affected by fluoride. Toxicology 2017; 393:73-82. [PMID: 29127033 DOI: 10.1016/j.tox.2017.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/03/2017] [Accepted: 11/06/2017] [Indexed: 12/26/2022]
Abstract
Studies that have focused on the role TGFβ signaling plays in osteoclast activity are gradually increasing; however, literature is rare in terms of fluorosis. The aim of this study is to observe the role the TβR1/Smad3 pathway plays in fluoride regulating cellsosteoclast-like cells that are under the treatment of TGFβ receptor 1 kinase. The RANKL-mediated osteoclast-like cells from RAW264.7 cells were used as osteoclast precursor model. The profile of miRNA expression in fluoride-treated osteoclast-like cells exhibited 303 upregulated miRNAs, 61 downregulated miRNAs, and further drew 37 signaling pathway maps by KEGG and Biocarta pathway enrichment analysis. TGFβ and its downstream effectors were included among them. Osteoclast viability, formation and function were detected via MTT method, bone resorption pit and tartrate-resistant acid phosphatase (TRACP) staining, respectively. Results demonstrated that different doses of fluoride exhibited a biphasic effect on osteoclast cell viability, differentiation, formation and function. It indicated that a low dose of fluoride treatment stimulated them, but high dose inhibited them. SB431542 acted as TβR1 kinase inhibitor and blocked viability, formation and function of osteoclast-like cells regulated by fluoride. The expression of the osteoclast marker, RANK, and TβR1/Smad3 at gene and protein level was analyzed under fluoride with and without SB431542 treatment. Fluoride treatment indicated little effect on the RANK protein expression; however it significantly influenced TRACP expression in osteoclast-like cells. The stimulation of fluoride on the expression of Smad3 gene and phosphorylated Smad3 protein exhibited dose-dependent manner. SB431542 significantly impeded phosphorylation of Smad3 protein and TRACP expression in osteoclast-like cells that were exposed to fluoride. Our work demonstrated that TGFβ signaling played a key role in fluoride regulating osteoclast differentiation, formation and function. It elucidated that TβR1/Smad3 pathway participated in the mechanism of biphasic modulation of osteoclast mode regulated by fluoride.
Collapse
Affiliation(s)
- Haolan Yu
- Department of Regenerative Medical Science, School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, People's Republic of China
| | - Ningning Jiang
- Department of Regenerative Medical Science, School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, People's Republic of China
| | - XiuHua Yu
- First Clinical Hospital, Jilin University, Changchun, 130021, People's Republic of China
| | - Zhitao Zhao
- Department of Regenerative Medical Science, School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, People's Republic of China
| | - Xiuyun Zhang
- Department of Regenerative Medical Science, School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, People's Republic of China
| | - Hui Xu
- Department of Regenerative Medical Science, School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, People's Republic of China.
| |
Collapse
|
49
|
Monsivais D, Matzuk MM, Pangas SA. The TGF-β Family in the Reproductive Tract. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a022251. [PMID: 28193725 DOI: 10.1101/cshperspect.a022251] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The transforming growth factor β (TGF-β) family has a profound impact on the reproductive function of various organisms. In this review, we discuss how highly conserved members of the TGF-β family influence the reproductive function across several species. We briefly discuss how TGF-β-related proteins balance germ-cell proliferation and differentiation as well as dauer entry and exit in Caenorhabditis elegans. In Drosophila melanogaster, TGF-β-related proteins maintain germ stem-cell identity and eggshell patterning. We then provide an in-depth analysis of landmark studies performed using transgenic mouse models and discuss how these data have uncovered basic developmental aspects of male and female reproductive development. In particular, we discuss the roles of the various TGF-β family ligands and receptors in primordial germ-cell development, sexual differentiation, and gonadal cell development. We also discuss how mutant mouse studies showed the contribution of TGF-β family signaling to embryonic and postnatal testis and ovarian development. We conclude the review by describing data obtained from human studies, which highlight the importance of the TGF-β family in normal female reproductive function during pregnancy and in various gynecologic pathologies.
Collapse
Affiliation(s)
- Diana Monsivais
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030.,Center for Drug Discovery, Baylor College of Medicine, Houston, Texas 77030
| | - Martin M Matzuk
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030.,Center for Drug Discovery, Baylor College of Medicine, Houston, Texas 77030.,Department of Molecular and Cellular Biology, Baylor College of Medicine Houston, Texas 77030.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030.,Department of Pharmacology, Baylor College of Medicine, Houston, Texas 77030
| | - Stephanie A Pangas
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030.,Center for Drug Discovery, Baylor College of Medicine, Houston, Texas 77030.,Department of Molecular and Cellular Biology, Baylor College of Medicine Houston, Texas 77030
| |
Collapse
|
50
|
Naka K, Hirao A. Regulation of Hematopoiesis and Hematological Disease by TGF-β Family Signaling Molecules. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a027987. [PMID: 28193723 DOI: 10.1101/cshperspect.a027987] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Throughout the lifetime of an individual, hematopoietic stem cells (HSCs) maintain the homeostasis of normal hematopoiesis through the precise generation of mature blood cells. Numerous genetic studies in mice have shown that stem-cell quiescence is critical for sustaining primitive long-term HSCs in vivo. In this review, we first examine the crucial roles of transforming growth factor β (TGF-β) and related signaling molecules in not only regulating the well-known cytostatic effects of these molecules but also governing the self-renewal capacity of HSCs in their in vivo microenvironmental niche. Second, we discuss the current evidence indicating that TGF-β signaling has a dual function in disorders of the hematopoietic system. In particular, we examine the paradox that, although intrinsic TGF-β signaling is essential for regulating the survival and resistance to therapy of chronic myelogenous leukemia (CML) stem cells, genetic changes that abrogate TGF-β signaling can lead to the development of several hematological malignancies.
Collapse
Affiliation(s)
- Kazuhito Naka
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Minami-ku, Hiroshima 734-8553, Japan
| | - Atsushi Hirao
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|