1
|
Lavarti R, Cai L, Alvarez‐Diaz T, Medina‐Rodriguez T, Bombin S, Raju RP. Senescence landscape in the liver following sepsis and senolytics as potential therapeutics. Aging Cell 2024:e14354. [PMID: 39444093 DOI: 10.1111/acel.14354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/15/2024] [Accepted: 09/09/2024] [Indexed: 10/25/2024] Open
Abstract
Senescence, caused by cell-cycle arrest, is a hallmark of aging. Senescence has also been described in embryogenesis, wound healing, and acute injuries. Sepsis is characterized by a dysregulated host response to infection, leading to organ dysfunction and mortality. Most of the pathophysiology of human sepsis is recapitulated in the mouse model of polymicrobial sepsis, developed by cecal ligation and puncture (CLP). In this report, we demonstrate a rapid onset of cellular senescence in the liver of mice subjected to CLP-induced sepsis, characterized by the upregulation of p21, p53, and other senescence markers, including SA-βgal. Using RNAscope, confocal microscopy, and flow cytometry, we further confirm the emergence of p21-expressing senescence phenotype in the liver 24 h after sepsis induction. Senescence was observed in several cell types in the liver, including hepatocytes, endothelial cells, and macrophages. We determined the landscape of senescence phenotype in murine sepsis by single-cell sequencing, which further ascertained that this cell fate is not confined to any particular cell type but displays a heterogeneous distribution. Furthermore, we observed a significant reduction in mortality following sepsis when mice were treated with senolytics, a combination of dasatinib and quercetin, before the CLP surgery. Our experiments unequivocally demonstrated a rapid development of cellular senescence with sepsis and, for the first time, described the senescence landscape in the sepsis liver and the possible role of senescent cells in the worsening outcome following sepsis.
Collapse
Affiliation(s)
- Rupa Lavarti
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Lun Cai
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Tatiana Alvarez‐Diaz
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Thalia Medina‐Rodriguez
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Sergei Bombin
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Raghavan Pillai Raju
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
2
|
Wang W, Qian J, Shang M, Qiao Y, Huang J, Gao X, Ye Z, Tong X, Xu K, Li X, Liu Z, Zhou L, Zheng S. Integrative analysis of the transcriptome and metabolome reveals the importance of hepatokine FGF21 in liver aging. Genes Dis 2024; 11:101161. [PMID: 39022127 PMCID: PMC11252782 DOI: 10.1016/j.gendis.2023.101161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/03/2023] [Accepted: 10/16/2023] [Indexed: 07/20/2024] Open
Abstract
Aging is a contributor to liver disease. Hence, the concept of liver aging has become prominent and has attracted considerable interest, but its underlying mechanism remains poorly understood. In our study, the internal mechanism of liver aging was explored via multi-omics analysis and molecular experiments to support future targeted therapy. An aged rat liver model was established with d-galactose, and two other senescent hepatocyte models were established by treating HepG2 cells with d-galactose and H2O2. We then performed transcriptomic and metabolomic assays of the aged liver model and transcriptome analyses of the senescent hepatocyte models. In livers, genes related to peroxisomes, fatty acid elongation, and fatty acid degradation exhibited down-regulated expression with aging, and the hepatokine Fgf21 expression was positively correlated with the down-regulation of these genes. In senescent hepatocytes, similar to the results found in aged livers, FGF21 expression was also decreased. Moreover, the expressions of cell cycle-related genes were significantly down-regulated, and the down-regulated gene E2F8 was the key cell cycle-regulating transcription factor. We then validated that FGF21 overexpression can protect against liver aging and that FGF21 can attenuate the declines in the antioxidant and regenerative capacities in the aging liver. We successfully validated the results from cellular and animal experiments using human liver and blood samples. Our study indicated that FGF21 is an important target for inhibiting liver aging and suggested that pharmacological prevention of the reduction in FGF21 expression due to aging may be used to treat liver aging-related diseases.
Collapse
Affiliation(s)
- Wenchao Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang 310003, China
| | - Junjie Qian
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang 310003, China
| | - Mingge Shang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang 310003, China
| | - Yiting Qiao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang 310003, China
| | - Jiacheng Huang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang 310003, China
| | - Xinxin Gao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang 310003, China
| | - Zhou Ye
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang 310003, China
| | - Xinyu Tong
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang 310003, China
| | - Kangdi Xu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang 310003, China
| | - Xiang Li
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang 310003, China
| | - Zhengtao Liu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang 310015, China
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang 310000, China
| | - Lin Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang 310003, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang 310003, China
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang 310000, China
| |
Collapse
|
3
|
Snider PL, Sierra Potchanant EA, Sun Z, Edwards DM, Chan KK, Matias C, Awata J, Sheth A, Pride PM, Payne RM, Rubart M, Brault JJ, Chin MT, Nalepa G, Conway SJ. A Barth Syndrome Patient-Derived D75H Point Mutation in TAFAZZIN Drives Progressive Cardiomyopathy in Mice. Int J Mol Sci 2024; 25:8201. [PMID: 39125771 PMCID: PMC11311365 DOI: 10.3390/ijms25158201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Cardiomyopathy is the predominant defect in Barth syndrome (BTHS) and is caused by a mutation of the X-linked Tafazzin (TAZ) gene, which encodes an enzyme responsible for remodeling mitochondrial cardiolipin. Despite the known importance of mitochondrial dysfunction in BTHS, how specific TAZ mutations cause diverse BTHS heart phenotypes remains poorly understood. We generated a patient-tailored CRISPR/Cas9 knock-in mouse allele (TazPM) that phenocopies BTHS clinical traits. As TazPM males express a stable mutant protein, we assessed cardiac metabolic dysfunction and mitochondrial changes and identified temporally altered cardioprotective signaling effectors. Specifically, juvenile TazPM males exhibit mild left ventricular dilation in systole but have unaltered fatty acid/amino acid metabolism and normal adenosine triphosphate (ATP). This occurs in concert with a hyperactive p53 pathway, elevation of cardioprotective antioxidant pathways, and induced autophagy-mediated early senescence in juvenile TazPM hearts. However, adult TazPM males exhibit chronic heart failure with reduced growth and ejection fraction, cardiac fibrosis, reduced ATP, and suppressed fatty acid/amino acid metabolism. This biphasic changeover from a mild-to-severe heart phenotype coincides with p53 suppression, downregulation of cardioprotective antioxidant pathways, and the onset of terminal senescence in adult TazPM hearts. Herein, we report a BTHS genotype/phenotype correlation and reveal that absent Taz acyltransferase function is sufficient to drive progressive cardiomyopathy.
Collapse
Affiliation(s)
- Paige L. Snider
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46033, USA; (P.L.S.); (E.A.S.P.); (Z.S.); (D.M.E.); (K.-K.C.); (A.S.); (P.M.P.); (R.M.P.); (M.R.); (G.N.)
| | - Elizabeth A. Sierra Potchanant
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46033, USA; (P.L.S.); (E.A.S.P.); (Z.S.); (D.M.E.); (K.-K.C.); (A.S.); (P.M.P.); (R.M.P.); (M.R.); (G.N.)
| | - Zejin Sun
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46033, USA; (P.L.S.); (E.A.S.P.); (Z.S.); (D.M.E.); (K.-K.C.); (A.S.); (P.M.P.); (R.M.P.); (M.R.); (G.N.)
| | - Donna M. Edwards
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46033, USA; (P.L.S.); (E.A.S.P.); (Z.S.); (D.M.E.); (K.-K.C.); (A.S.); (P.M.P.); (R.M.P.); (M.R.); (G.N.)
| | - Ka-Kui Chan
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46033, USA; (P.L.S.); (E.A.S.P.); (Z.S.); (D.M.E.); (K.-K.C.); (A.S.); (P.M.P.); (R.M.P.); (M.R.); (G.N.)
| | - Catalina Matias
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (C.M.); (J.J.B.)
| | - Junya Awata
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111, USA; (J.A.); (M.T.C.)
| | - Aditya Sheth
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46033, USA; (P.L.S.); (E.A.S.P.); (Z.S.); (D.M.E.); (K.-K.C.); (A.S.); (P.M.P.); (R.M.P.); (M.R.); (G.N.)
| | - P. Melanie Pride
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46033, USA; (P.L.S.); (E.A.S.P.); (Z.S.); (D.M.E.); (K.-K.C.); (A.S.); (P.M.P.); (R.M.P.); (M.R.); (G.N.)
| | - R. Mark Payne
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46033, USA; (P.L.S.); (E.A.S.P.); (Z.S.); (D.M.E.); (K.-K.C.); (A.S.); (P.M.P.); (R.M.P.); (M.R.); (G.N.)
| | - Michael Rubart
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46033, USA; (P.L.S.); (E.A.S.P.); (Z.S.); (D.M.E.); (K.-K.C.); (A.S.); (P.M.P.); (R.M.P.); (M.R.); (G.N.)
| | - Jeffrey J. Brault
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (C.M.); (J.J.B.)
| | - Michael T. Chin
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111, USA; (J.A.); (M.T.C.)
| | - Grzegorz Nalepa
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46033, USA; (P.L.S.); (E.A.S.P.); (Z.S.); (D.M.E.); (K.-K.C.); (A.S.); (P.M.P.); (R.M.P.); (M.R.); (G.N.)
| | - Simon J. Conway
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46033, USA; (P.L.S.); (E.A.S.P.); (Z.S.); (D.M.E.); (K.-K.C.); (A.S.); (P.M.P.); (R.M.P.); (M.R.); (G.N.)
| |
Collapse
|
4
|
Iwahashi N, Umakoshi H, Fujita M, Fukumoto T, Ogasawara T, Yokomoto-Umakoshi M, Kaneko H, Nakao H, Kawamura N, Uchida N, Matsuda Y, Sakamoto R, Seki M, Suzuki Y, Nakatani K, Izumi Y, Bamba T, Oda Y, Ogawa Y. Single-cell and spatial transcriptomics analysis of human adrenal aging. Mol Metab 2024; 84:101954. [PMID: 38718896 PMCID: PMC11101872 DOI: 10.1016/j.molmet.2024.101954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/30/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
OBJECTIVE The human adrenal cortex comprises three functionally and structurally distinct layers that produce layer-specific steroid hormones. With aging, the human adrenal cortex undergoes functional and structural alteration or "adrenal aging", leading to the unbalanced production of steroid hormones. Given the marked species differences in adrenal biology, the underlying mechanisms of human adrenal aging have not been sufficiently studied. This study was designed to elucidate the mechanisms linking the functional and structural alterations of the human adrenal cortex. METHODS We conducted single-cell RNA sequencing and spatial transcriptomics analysis of the aged human adrenal cortex. RESULTS The data of this study suggest that the layer-specific alterations of multiple signaling pathways underlie the abnormal layered structure and layer-specific changes in steroidogenic cells. We also highlighted that macrophages mediate age-related adrenocortical cell inflammation and senescence. CONCLUSIONS This study is the first detailed analysis of the aged human adrenal cortex at single-cell resolution and helps to elucidate the mechanism of human adrenal aging, thereby leading to a better understanding of the pathophysiology of age-related disorders associated with adrenal aging.
Collapse
Affiliation(s)
- Norifusa Iwahashi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hironobu Umakoshi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Masamichi Fujita
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tazuru Fukumoto
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tatsuki Ogasawara
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Maki Yokomoto-Umakoshi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroki Kaneko
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroshi Nakao
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Namiko Kawamura
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naohiro Uchida
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yayoi Matsuda
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryuichi Sakamoto
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masahide Seki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Kohta Nakatani
- Division of Metabolomics/Mass Spectrometry Center, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics/Mass Spectrometry Center, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Takeshi Bamba
- Division of Metabolomics/Mass Spectrometry Center, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
5
|
Cai Y, Han Z, Cheng H, Li H, Wang K, Chen J, Liu ZX, Xie Y, Lin Y, Zhou S, Wang S, Zhou X, Jin S. The impact of ageing mechanisms on musculoskeletal system diseases in the elderly. Front Immunol 2024; 15:1405621. [PMID: 38774874 PMCID: PMC11106385 DOI: 10.3389/fimmu.2024.1405621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 04/22/2024] [Indexed: 05/24/2024] Open
Abstract
Ageing is an inevitable process that affects various tissues and organs of the human body, leading to a series of physiological and pathological changes. Mechanisms such as telomere depletion, stem cell depletion, macrophage dysfunction, and cellular senescence gradually manifest in the body, significantly increasing the incidence of diseases in elderly individuals. These mechanisms interact with each other, profoundly impacting the quality of life of older adults. As the ageing population continues to grow, the burden on the public health system is expected to intensify. Globally, the prevalence of musculoskeletal system diseases in elderly individuals is increasing, resulting in reduced limb mobility and prolonged suffering. This review aims to elucidate the mechanisms of ageing and their interplay while exploring their impact on diseases such as osteoarthritis, osteoporosis, and sarcopenia. By delving into the mechanisms of ageing, further research can be conducted to prevent and mitigate its effects, with the ultimate goal of alleviating the suffering of elderly patients in the future.
Collapse
Affiliation(s)
- Yijin Cai
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong Cheng
- School of Automation Engineering, University of Electronic Science and Technology, Chengdu, China
| | - Hongpeng Li
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke Wang
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Chen
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhi-Xiang Liu
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yulong Xie
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yumeng Lin
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuwei Zhou
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Siyu Wang
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Xiao Zhou
- Second Clinical Medical College, Heilongjiang University of Chinese Medicine, Heilongjiang, China
| | - Song Jin
- Department of Rehabilitation, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Wang X, Fukumoto T, Noma KI. Therapeutic strategies targeting cellular senescence for cancer and other diseases. J Biochem 2024; 175:525-537. [PMID: 38366629 PMCID: PMC11058315 DOI: 10.1093/jb/mvae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/12/2024] [Accepted: 01/30/2024] [Indexed: 02/18/2024] Open
Abstract
Cellular senescence occurs in response to endogenous or exogenous stresses and is characterized by stable cell cycle arrest, alterations in nuclear morphology and secretion of proinflammatory factors, referred to as the senescence-associated secretory phenotype (SASP). An increase of senescent cells is associated with the development of several types of cancer and aging-related diseases. Therefore, senolytic agents that selectively remove senescent cells may offer opportunities for developing new therapeutic strategies against such cancers and aging-related diseases. This review outlines senescence inducers and the general characteristics of senescent cells. We also discuss the involvement of senescent cells in certain cancers and diseases. Finally, we describe a series of senolytic agents and their utilization in therapeutic strategies.
Collapse
Affiliation(s)
- Xuebing Wang
- Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo 060-0815, Japan
| | - Takeshi Fukumoto
- Division of Dermatology, Department of Internal Related, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Ken-ichi Noma
- Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo 060-0815, Japan
- Institute of Molecular Biology, University of Oregon, 1370 Franklin Blvd, Eugene, OR 97403, USA
| |
Collapse
|
7
|
Ji L, Zhang X, Chen Z, Wang Y, Zhu H, Nai Y, Huang Y, Lai R, Zhong Y, Yang X, Wang Q, Hu H, Wang L. High glucose-induced p66Shc mitochondrial translocation regulates autophagy initiation and autophagosome formation in syncytiotrophoblast and extravillous trophoblast. Cell Commun Signal 2024; 22:234. [PMID: 38643181 PMCID: PMC11031965 DOI: 10.1186/s12964-024-01621-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/17/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND p66Shc, as a redox enzyme, regulates reactive oxygen species (ROS) production in mitochondria and autophagy. However, the mechanisms by which p66Shc affects autophagosome formation are not fully understood. METHODS p66Shc expression and its location in the trophoblast cells were detected in vivo and in vitro. Small hairpin RNAs or CRISPR/Cas9, RNA sequencing, and confocal laser scanning microscope were used to clarify p66Shc's role in regulating autophagic flux and STING activation. In addition, p66Shc affects mitochondrial-associated endoplasmic reticulum membranes (MAMs) formation were observed by transmission electron microscopy (TEM). Mitochondrial function was evaluated by detected cytoplastic mitochondrial DNA (mtDNA) and mitochondrial membrane potential (MMP). RESULTS High glucose induces the expression and mitochondrial translocation of p66Shc, which promotes MAMs formation and stimulates PINK1-PRKN-mediated mitophagy. Moreover, mitochondrial localized p66Shc reduces MMP and triggers cytosolic mtDNA release, thus activates cGAS/STING signaling and ultimately leads to enhanced autophagy and cellular senescence. Specially, we found p66Shc is required for the interaction between STING and LC3II, as well as between STING and ATG5, thereby regulates cGAS/STING-mediated autophagy. We also identified hundreds of genes associated several biological processes including aging are co-regulated by p66Shc and ATG5, deletion either of which results in diminished cellular senescence. CONCLUSION p66Shc is not only implicated in the initiation of autophagy by promoting MAMs formation, but also helps stabilizing active autophagic flux by activating cGAS/STING pathway in trophoblast.
Collapse
Affiliation(s)
- Lulu Ji
- Department of Histology and Embryology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Hubei Province, Wuhan, 430071, China
| | - Xiaoli Zhang
- Department of Ultrasound in Gynecology and Obstetrics, Zhongnan Hospital of Wuhan University, Hubei Province, Wuhan, 430071, China
| | - Zhiguo Chen
- Department of Human Anatomy, Basic Medical Sciences of Xinxiang Medical University, Henan Province, Xinxiang, 453003, China
| | - Yuexiao Wang
- Department of Histology and Embryology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Hubei Province, Wuhan, 430071, China
| | - Hengxuan Zhu
- Department of Histology and Embryology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Hubei Province, Wuhan, 430071, China
| | - Yaru Nai
- Department of Histology and Embryology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Hubei Province, Wuhan, 430071, China
| | - Yanyi Huang
- Department of Histology and Embryology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Hubei Province, Wuhan, 430071, China
| | - Rujie Lai
- Department of Histology and Embryology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Hubei Province, Wuhan, 430071, China
| | - Yu Zhong
- Department of Histology and Embryology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Hubei Province, Wuhan, 430071, China
| | - Xiting Yang
- Department of Histology and Embryology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Hubei Province, Wuhan, 430071, China
| | - Qiongtao Wang
- Department of Histology and Embryology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Hubei Province, Wuhan, 430071, China
| | - Hanyang Hu
- Department of Histology and Embryology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Hubei Province, Wuhan, 430071, China.
| | - Lin Wang
- Department of Histology and Embryology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Hubei Province, Wuhan, 430071, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Hubei Province, Wuhan, 430071, China.
| |
Collapse
|
8
|
Jing SZ, Yang SH, Qu YK, Hao HH, Wu H. Scutellarein Ameliorated Chondrocyte Inflammation and Osteoarthritis in Rats. Curr Med Sci 2024; 44:355-368. [PMID: 38570439 DOI: 10.1007/s11596-024-2854-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/20/2024] [Indexed: 04/05/2024]
Abstract
OBJECTIVE Osteoarthritis (OA) is a degenerative joint disorder characterized by the gradual degradation of joint cartilage and local inflammation. This study aimed to investigate the anti-OA effect of scutellarein (SCU), a single-unit flavonoid compound obtained from Scutellaria barbata D. Don, in rats. METHODS The extracted rat chondrocytes were treated with SCU and IL-1β. The chondrocytes were divided into control group, IL-1β group, IL-1β+SCU 50 µmol/L group, and IL-1β+SCU 100 µmol/L group. Morphology of rat chondrocytes was observed by toluidine blue and safranin O staining. CCK-8 method was used to detect the cytotoxicity of SCU. ELISA, qRT-PCR, Western blotting, immunofluorescence, SAβ-gal staining, flow cytometry, and bioinformatics analysis were applied to evaluate the effect of SCU on rat chondrocytes under IL-1β intervention. Additionally, anterior cruciate ligament transection (ACL-T) was used to establish a rat OA model. Histological changes were detected by safranin O/fast green, hematoxylin-eosin (HE) staining, and immunohistochemistry. RESULTS SCU protected cartilage and exhibited anti-inflammatory effects via multiple mechanisms. Specifically, it could enhance the synthesis of extracellular matrix in cartilage cells and inhibit its degradation. In addition, SCU partially inhibited the nuclear factor kappa-B/mitogen-activated protein kinase (NF-κB/MAPK) pathway, thereby reducing inflammatory cytokine production in the joint cartilage. Furthermore, SCU significantly reduced IL-1β-induced apoptosis and senescence in rat chondrocytes, further highlighting its potential role in OA treatment. In vivo experiments revealed that SCU (at a dose of 50 mg/kg) administered for 2 months could significantly delay the progression of cartilage damage, which was reflected in a lower Osteoarthritis Research Society International (OARSI) score, and reduced expression of matrix metalloproteinase 13 (MMP13) in cartilage. CONCLUSION SCU is effective in the therapeutic management of OA and could serve as a potential candidate for future clinical drug therapy for OA.
Collapse
Affiliation(s)
- Shao-Ze Jing
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Shu-Han Yang
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Yun-Kun Qu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hai-Hu Hao
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China.
| | - Hua Wu
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China.
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
9
|
Park HR, Hogan KA, Harris SM, Chames MC, Loch-Caruso R. Group B streptococcus induces cellular senescence in human amnion epithelial cells through a partial interleukin-1-mediated mechanism. Biol Reprod 2024; 110:329-338. [PMID: 37903065 PMCID: PMC10873272 DOI: 10.1093/biolre/ioad149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/25/2023] [Accepted: 10/24/2023] [Indexed: 11/01/2023] Open
Abstract
Group B streptococcus (GBS) infection is a significant public health concern associated with adverse pregnancy complications and increased neonatal mortality and morbidity. However, the mechanisms underlying the impact of GBS on the fetal membrane, the first line of defense against pathogens, are not fully understood. Here, we propose that GBS induces senescence and inflammatory factors (IL-6 and IL-8) in the fetal membrane through interleukin-1 (IL-1). Utilizing the existing transcriptomic data on GBS-exposed human fetal membrane, we showed that GBS affects senescence-related pathways and genes. Next, we treated primary amnion epithelial cells with conditioned medium from the choriodecidual layer of human fetal membrane exposed to GBS (GBS collected choriodecidual [CD] conditioned medium) in the absence or presence of an IL-1 receptor antagonist (IL-1Ra). GBS CD conditioned medium significantly increased β-galactosidase activity, IL-6 and IL-8 release from the amnion epithelial cells. Cotreatment with IL1Ra reduced GBS-induced β-galactosidase activity and IL-6 and IL-8 secretion. Direct treatment with IL-1α or IL-1β confirmed the role of IL-1 signaling in the regulation of senescence in the fetal membrane. We further showed that GBS CD conditioned medium and IL-1 decreased cell proliferation in amnion epithelial cells. In summary, for the first time, we demonstrate GBS-induced senescence in the fetal membrane and present evidence of IL-1 pathway signaling between the choriodecidua and amnion layer of fetal membrane in a paracrine manner. Further studies will be warranted to understand the pathogenesis of adverse pregnancy outcomes associated with GBS infection and develop therapeutic interventions to mitigate these complications.
Collapse
Affiliation(s)
- Hae-Ryung Park
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Kelly A Hogan
- Department of Biochemistry & Molecular Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Sean M Harris
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Mark C Chames
- Department of Obstetrics and Gynecology, School of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Rita Loch-Caruso
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
10
|
You J, Woo J, Roh KB, Jeon K, Jang Y, Choi SA, Ryu D, Cho E, Park D, Lee J, Jang M, Jung E. Evaluation of efficacy of Silybum marianum flower extract on the mitigating hair loss in vitro and in vivo. J Cosmet Dermatol 2024; 23:529-542. [PMID: 37675655 DOI: 10.1111/jocd.15978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 07/06/2023] [Accepted: 08/20/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND Natural components that can exert a wide range of anti-hair loss activity with fewer side effects are in high demand. The objective of this study was to investigate the anti-hair loss potential of Silybum marianum flower extract (SMFE) in vitro and in vivo. METHODS The effect of SMFE on dermal papilla cells was evaluated by measuring cell proliferation and VEGF production in hair follicle dermal papilla cells (HFDPCs). In addition, to confirm the effect of SMFE on dermal papilla senescence, SA-β-gal staining and senescence associated secretory phenotype (SASP) production such as IL-6 was observed in both replicative and hydrogen peroxide (H2 O2 )-induced senescence models. In a clinical study, hair growth was determined by reconstitution analysis after shaving the hair of the clinical subject's scalp and hair area. RESULTS SMFE increased the proliferation and VEGF production of HFDPCs. It also suppressed cellular senescence of HFDPCs and IL-6 production in replicative senescence and oxidative stress-induced senescence models. The hair density and total hair count at 16 and 24 weeks after using hair shampoo containing SMFE were significantly increased compared with those of the placebo group. CONCLUSION SMFE has the potential to be used as a natural ingredient for alleviating hair loss.
Collapse
Affiliation(s)
- Jiyoung You
- Biospectrum Life Science Institute, Yongin, South Korea
| | - Jieun Woo
- Biospectrum Life Science Institute, Yongin, South Korea
| | | | - Kyungeun Jeon
- Biospectrum Life Science Institute, Yongin, South Korea
| | - Youngsu Jang
- Biospectrum Life Science Institute, Yongin, South Korea
| | - Song-Ah Choi
- Biospectrum Life Science Institute, Yongin, South Korea
| | - Daehoon Ryu
- Biospectrum Life Science Institute, Yongin, South Korea
| | - Eunae Cho
- Biospectrum Life Science Institute, Yongin, South Korea
| | - Deokhoon Park
- Biospectrum Life Science Institute, Yongin, South Korea
| | | | - Min Jang
- Seoul Cosmetics, Incheon, South Korea
| | - Eunsun Jung
- Biospectrum Life Science Institute, Yongin, South Korea
| |
Collapse
|
11
|
Kołacz K, Robaszkiewicz A. PARP1 at the crossroad of cellular senescence and nucleolar processes. Ageing Res Rev 2024; 94:102206. [PMID: 38278370 DOI: 10.1016/j.arr.2024.102206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/09/2024] [Accepted: 01/22/2024] [Indexed: 01/28/2024]
Abstract
Senescent cells that occur in response to telomere shortening, oncogenes, extracellular and intracellular stress factors are characterized by permanent cell cycle arrest, the morphological and structural changes of the cell that include the senescence-associated secretory phenotype (SASP) and nucleoli rearrangement. The associated DNA lesions induce DNA damage response (DDR), which activates the DNA repair protein - poly-ADP-ribose polymerase 1 (PARP1). This protein consumes NAD+ to synthesize ADP-ribose polymer (PAR) on its own protein chain and on other interacting proteins. The involvement of PARP1 in nucleoli processes, such as rRNA transcription and ribosome biogenesis, the maintenance of heterochromatin and nucleoli structure, as well as controlling the crucial DDR protein release from the nucleoli to nucleus, links PARP1 with cellular senescence and nucleoli functioning. In this review we describe and discuss the impact of PARP1-mediated ADP-ribosylation on early cell commitment to senescence with the possible role of senescence-induced PARP1 transcriptional repression and protein degradation on nucleoli structure and function. The cause-effect interplay between PARP1 activation/decline and nucleoli functioning during senescence needs to be studied in detail.
Collapse
Affiliation(s)
- Kinga Kołacz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, University of Lodz, Banacha 12 /16, 90-237 Lodz, Poland.
| | - Agnieszka Robaszkiewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research (IFBR), 600 5th Street South, St. Petersburgh, FL 33701, USA.
| |
Collapse
|
12
|
Lyons CE, Razzoli M, Bartolomucci A. The impact of life stress on hallmarks of aging and accelerated senescence: Connections in sickness and in health. Neurosci Biobehav Rev 2023; 153:105359. [PMID: 37586578 PMCID: PMC10592082 DOI: 10.1016/j.neubiorev.2023.105359] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/03/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023]
Abstract
Chronic stress is a risk factor for numerous aging-related diseases and has been shown to shorten lifespan in humans and other social mammals. Yet how life stress causes such a vast range of diseases is still largely unclear. In recent years, the impact of stress on health and aging has been increasingly associated with the dysregulation of the so-called hallmarks of aging. These are basic biological mechanisms that influence intrinsic cellular functions and whose alteration can lead to accelerated aging. Here, we review correlational and experimental literature (primarily focusing on evidence from humans and murine models) on the contribution of life stress - particularly stress derived from adverse social environments - to trigger hallmarks of aging, including cellular senescence, sterile inflammation, telomere shortening, production of reactive oxygen species, DNA damage, and epigenetic changes. We also evaluate the validity of stress-induced senescence and accelerated aging as an etiopathological proposition. Finally, we highlight current gaps of knowledge and future directions for the field, and discuss perspectives for translational geroscience.
Collapse
Affiliation(s)
- Carey E Lyons
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA; Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Maria Razzoli
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA; Department of Medicine and Surgery, University of Parma, Parma, Italy.
| |
Collapse
|
13
|
Peng B, Chen Y, Wang Y, Fu Y, Zeng X, Zhou H, Abulaiti Z, Wang S, Zhang H. BTG2 acts as an inducer of muscle stem cell senescence. Biochem Biophys Res Commun 2023; 669:113-119. [PMID: 37269593 DOI: 10.1016/j.bbrc.2023.05.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 05/24/2023] [Indexed: 06/05/2023]
Abstract
BACKGROUND Muscle aging is associated with muscle stem cell (MuSC) senescence, a process of whose DNA damage accumulation is considered as one of the leading causes. BTG2 had been identified as a mediator of genotoxic and cellular stress signaling pathways, however, its role in senescence of stem cells, including MuSC, remains unknown. METHOD We first compared MuSCs isolated from young and old mice to evaluate our in vitro model of natural senescence. CCK8 and EdU assays were utilized to assess the proliferation capacity of the MuSCs. Cellular senescence was further assessed at biochemical levels by SA-β-Gal and γHA2.X staining, and at molecular levels by quantifying the expression of senescence-associated genes. Next, by performing genetic analysis, we identified Btg2 as a potential regulator of MuSC senescence, which was experimentally validated by Btg2 overexpression and knockdown in primary MuSCs. Lastly, we extended our research to humans by analyzing the potential links between BTG2 and muscle function decline in aging. RESULTS BTG2 is highly expressed in MuSCs from elder mice showing senescent phenotypes. Overexpression and knockdown of Btg2 stimulates and prevents MuSCs senescence, respectively. In humans, high level of BTG2 is associated with low muscle mass in aging, and is a risk factor of aging-related diseases, such as diabetic retinopathy and HDL cholesterol. CONCLUSION Our work demonstrates BTG2 as a regulator of MuSC senescence and may serve as an intervention target for muscle aging.
Collapse
Affiliation(s)
- Baozhou Peng
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; The Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yihan Chen
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; The Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yaning Wang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; The Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yixi Fu
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; The Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xinrui Zeng
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; The Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hanmeng Zhou
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; The Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zibaidan Abulaiti
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; The Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shuaiyu Wang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; The Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hongbo Zhang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; The Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
14
|
Luo L, Pervaiz S, Clement MV. A superoxide-driven redox state promotes geroconversion and resistance to senolysis in replication-stress associated senescence. Redox Biol 2023; 64:102757. [PMID: 37285741 DOI: 10.1016/j.redox.2023.102757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/11/2023] [Accepted: 05/19/2023] [Indexed: 06/09/2023] Open
Abstract
Using S-phase synchronized RPE1-hTERT cells exposed to the DNA damaging agent, methyl methanesulfonate, we show the existence of a redox state associated with replication stress-induced senescence termed senescence-associated redox state (SA-redox state). SA-redox state is characterized by its reactivity with superoxide-sensing fluorescent probes such as dihydroethidine, lucigenin and mitosox and peroxynitrite or hydroxyl radical sensing probe hydroxyphenyl fluorescein (HPF) but not the hydrogen peroxide (H2O2) reactive fluorescent probe CM-H2DCFDA. Measurement of GSH and GSSH also reveals that SA-redox state mitigates the level of total GSH rather than oxidizes GSH to GSSG. Moreover, supporting the role of superoxide (O2.-) in the SA-redox state, we show that incubation of senescent RPE1-hTERT cells with the O2.- scavenger, Tiron, decreases the reactivity of SA-redox state with the oxidants' reactive probes lucigenin and HPF while the H2O2 antioxidant N-acetyl cysteine has no effect. SA-redox state does not participate in the loss of proliferative capacity, G2/M cell cycle arrest or the increase in SA-β-Gal activity. However, SA-redox state is associated with the activation of NF-κB, dictates the profile of the Senescence Associated Secretory Phenotype, increases TFEB protein level, promotes geroconversion evidenced by increased phosphorylation of S6K and S6 proteins, and influences senescent cells response to senolysis. Furthermore, we provide evidence for crosstalk between SA redox state, p53 and p21. While p53 mitigates the establishment of SA-redox state, p21 is critical for the sustained reinforcement of the SA-redox state involved in geroconversion and resistance to senolysis.
Collapse
Affiliation(s)
- Le Luo
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117596, Singapore
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Medicine Healthy Longevity Program, National University of Singapore, Singapore; Integrated Science and Engineering Program, NUS Graduate School, National University of Singapore, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; National University Cancer Institute, National University Health System, Singapore
| | - Marie-Veronique Clement
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117596, Singapore; NUS Medicine Healthy Longevity Program, National University of Singapore, Singapore; Integrated Science and Engineering Program, NUS Graduate School, National University of Singapore, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; National University Cancer Institute, National University Health System, Singapore.
| |
Collapse
|
15
|
Lin J, Ye S, Ke H, Lin L, Wu X, Guo M, Jiao B, Chen C, Zhao L. Changes in the mammary gland during aging and its links with breast diseases. Acta Biochim Biophys Sin (Shanghai) 2023. [PMID: 37184281 DOI: 10.3724/abbs.2023073] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
The functional capacity of organisms declines in the process of aging. In the case of breast tissue, abnormal mammary gland development can lead to dysfunction in milk secretion, a primary function, as well as the onset of various diseases, such as breast cancer. In the process of aging, the terminal duct lobular units (TDLUs) within the breast undergo gradual degeneration, while the proportion of adipose tissue in the breast continues to increase and hormonal levels in the breast change accordingly. Here, we review changes in morphology, internal structure, and cellular composition that occur in the mammary gland during aging. We also explore the emerging mechanisms of breast aging and the relationship between changes during aging and breast-related diseases, as well as potential interventions for delaying mammary gland aging and preventing breast disease.
Collapse
Affiliation(s)
- Junqiang Lin
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China
| | - Shihui Ye
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China
| | - Hao Ke
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China
| | - Liang Lin
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China
| | - Xia Wu
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China
| | - Mengfei Guo
- Huankui Academy, Nanchang University, Nanchang 330031, China
| | - Baowei Jiao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Ceshi Chen
- Academy of Biomedical Engineering, Kunming Medical University, Kunming 650500, China
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- the Third Affiliated Hospital, Kunming Medical University, Kunming 650118, China
| | - Limin Zhao
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China
| |
Collapse
|
16
|
Zeng Y, Liu L, Huang D, Song D. Immortalized cell lines derived from dental/odontogenic tissue. Cell Tissue Res 2023:10.1007/s00441-023-03767-5. [PMID: 37039940 DOI: 10.1007/s00441-023-03767-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/16/2023] [Indexed: 04/12/2023]
Abstract
Stem cells derived from dental/odontogenic tissue have the property of multiple differentiation and are prospective in tooth regenerative medicine and cellular and molecular studies. However, in the face of cellular senescence soon in vitro, the proliferation ability of the cells is limited, so studies are hindered to some extent. Fortunately, immortalization strategies are expected to solve the above issues. Cellular immortalization is that cells are immortalized by introducing oncogenes, human telomerase reverse transcriptase genes (hTERT), or miscellaneous immortalization genes to get unlimited proliferation. At present, a variety of immortalized stem cells from dental/odontogenic tissue has been successfully generated, such as dental pulp stem cells (DPSCs), periodontal ligament cells (PDLs), stem cells from human exfoliated deciduous teeth (SHEDs), dental papilla cells (DPCs), and tooth germ mesenchymal cells (TGMCs). This review summarized establishment and applications of immortalized stem cells from dental/odontogenic tissues and then discussed the advantages and challenges of immortalization.
Collapse
Affiliation(s)
- Yanglin Zeng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Liu Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Dingming Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Dongzhe Song
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
17
|
Strzalka-Mrozik B, Madej M, Kurowska N, Kruszniewska-Rajs C, Kimsa-Dudek M, Adamska J, Gola JM. Changes in the Expression Profile of Pyroptosis-Related Genes in Senescent Retinal Pigment Epithelial Cells after Lutein Treatment. Curr Issues Mol Biol 2023; 45:1500-1518. [PMID: 36826042 PMCID: PMC9955508 DOI: 10.3390/cimb45020097] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Retinal pigment epithelium (RPE) is a specialized structure essential for proper vision, which is constantly exposed to oxidative damage. With aging, this damage accumulates within the RPE cells, causing various diseases, including age-related macular degeneration (AMD). Numerous antioxidant substances are used to prevent this process in humans, including lutein. This study aims to determine the differences in the expression patterns of pyroptosis genes in senescent human retinal pigment epithelial cell line ARPE-19 exposed to lutein. Changes in the expression of pyroptosis-related genes were assessed by oligonucleotide microarrays, and the results were validated by real-time RT-qPCR. The microarray analysis showed seven transcripts were differentially expressed both in the H2O2-treated cells versus the controls and in the lutein/H2O2-treated cells compared to the H2O2-treated cells (FC > 2.0). Depending on the used lutein, H2O2, or co-treatment of ARPE-19 cells, statistically significant differences in the expression of TXNIP, CXCL8, BAX, and CASP1 genes were confirmed by the RT-qPCR (p < 0.05). A STRING database analysis showed that the proteins encoded by the analyzed genes form a strong interaction network (p < 0.001). These data indicate that lutein modulates the expression level of pyroptosis-related genes, which may be useful for the development of new methods preventing pyroptosis pathway activation in the future.
Collapse
Affiliation(s)
- Barbara Strzalka-Mrozik
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
- Correspondence: ; Tel.: +48-32-364-12-87
| | - Marcel Madej
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Natalia Kurowska
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Celina Kruszniewska-Rajs
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Magdalena Kimsa-Dudek
- Department of Nutrigenomics and Bromatology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Jolanta Adamska
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Joanna Magdalena Gola
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| |
Collapse
|
18
|
Romaniello D, Gelfo V, Pagano F, Sgarzi M, Morselli A, Girone C, Filippini DM, D’Uva G, Lauriola M. IL-1 and senescence: Friends and foe of EGFR neutralization and immunotherapy. Front Cell Dev Biol 2023; 10:1083743. [PMID: 36712972 PMCID: PMC9877625 DOI: 10.3389/fcell.2022.1083743] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023] Open
Abstract
Historically, senescence has been considered a safe program in response to multiple stresses in which cells undergo irreversible growth arrest. This process is characterized by morphological and metabolic changes, heterochromatin formation, and secretion of inflammatory components, known as senescence-associated secretory phenotype (SASP). However, recent reports demonstrated that anti-cancer therapy itself can stimulate a senescence response in tumor cells, the so-called therapy-induced senescence (TIS), which may represent a temporary bypass pathway that promotes drug resistance. In this context, several studies have shown that EGFR blockage, by TKIs or moAbs, promotes TIS by increasing IL-1 cytokine production, thus pushing cells into a "pseudo-senescent" state. Today, senotherapeutic agents are emerging as a potential strategy in cancer treatment thanks to their dual role in annihilating senescent cells and simultaneously preventing their awakening into a resistant and aggressive form. Here, we summarize classic and recent findings about the cellular processes driving senescence and SASP, and we provide a state-of-the-art of the anti-cancer strategies available so far that exploits the activation and/or blockade of senescence-based mechanisms.
Collapse
Affiliation(s)
- Donatella Romaniello
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy,Centre for Applied Biomedical Research (CRBA), Bologna University Hospital Authority St. Orsola -Malpighi Polyclinic, Bologna, Italy
| | - Valerio Gelfo
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy,Centre for Applied Biomedical Research (CRBA), Bologna University Hospital Authority St. Orsola -Malpighi Polyclinic, Bologna, Italy
| | - Federica Pagano
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Michela Sgarzi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Alessandra Morselli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Cinzia Girone
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Daria Maria Filippini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy,Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Gabriele D’Uva
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy,Centre for Applied Biomedical Research (CRBA), Bologna University Hospital Authority St. Orsola -Malpighi Polyclinic, Bologna, Italy,National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), Bologna, Italy
| | - Mattia Lauriola
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy,Centre for Applied Biomedical Research (CRBA), Bologna University Hospital Authority St. Orsola -Malpighi Polyclinic, Bologna, Italy,*Correspondence: Mattia Lauriola,
| |
Collapse
|
19
|
Sosa-Díaz E, Hernández-Cruz EY, Pedraza-Chaverri J. The role of vitamin D on redox regulation and cellular senescence. Free Radic Biol Med 2022; 193:253-273. [PMID: 36270517 DOI: 10.1016/j.freeradbiomed.2022.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/20/2022] [Accepted: 10/06/2022] [Indexed: 11/18/2022]
Abstract
Vitamin D is considered an essential micronutrient for human health that is metabolized into a multifunctional secosteroid hormone. We can synthesize it in the skin through ultraviolet B (UVB) rays or acquire it from the diet. Its deficiency is a major global health problem that affects all ages and ethnic groups. Furthermore, dysregulation of vitamin D homeostasis has been associated with premature aging, driven by various cellular processes, including oxidative stress and cellular senescence. Various studies have shown that vitamin D can attenuate oxidative stress and delay cellular senescence, mainly by inducing the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and Klotho and improving mitochondrial homeostasis, proposing this vitamin as an excellent candidate for delaying aging. However, the mechanisms around these processes are not yet fully explored. Therefore, in this review, the effects of vitamin D on redox regulation and cellular senescence are discussed to propose new lines of research and clinical applications of vitamin D in the context of age-related diseases.
Collapse
Affiliation(s)
- Emilio Sosa-Díaz
- Faculty of Medicine, National Autonomous University of Mexico, 04360, Mexico City, Mexico; Laboratory F-315, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, 04510, Mexico City, Mexico
| | - Estefani Yaquelin Hernández-Cruz
- Laboratory F-315, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, 04510, Mexico City, Mexico; Postgraduate in Biological Sciences, National Autonomous University of Mexico, Ciudad Universitaria, Mexico City, 04510, Mexico
| | - José Pedraza-Chaverri
- Laboratory F-315, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, 04510, Mexico City, Mexico.
| |
Collapse
|
20
|
Huang W, Hickson LJ, Eirin A, Kirkland JL, Lerman LO. Cellular senescence: the good, the bad and the unknown. Nat Rev Nephrol 2022; 18:611-627. [PMID: 35922662 PMCID: PMC9362342 DOI: 10.1038/s41581-022-00601-z] [Citation(s) in RCA: 335] [Impact Index Per Article: 167.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2022] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a ubiquitous process with roles in tissue remodelling, including wound repair and embryogenesis. However, prolonged senescence can be maladaptive, leading to cancer development and age-related diseases. Cellular senescence involves cell-cycle arrest and the release of inflammatory cytokines with autocrine, paracrine and endocrine activities. Senescent cells also exhibit morphological alterations, including flattened cell bodies, vacuolization and granularity in the cytoplasm and abnormal organelles. Several biomarkers of cellular senescence have been identified, including SA-βgal, p16 and p21; however, few markers have high sensitivity and specificity. In addition to driving ageing, senescence of immune and parenchymal cells contributes to the development of a variety of diseases and metabolic disorders. In the kidney, senescence might have beneficial roles during development and recovery from injury, but can also contribute to the progression of acute kidney injury and chronic kidney disease. Therapies that target senescence, including senolytic and senomorphic drugs, stem cell therapies and other interventions, have been shown to extend lifespan and reduce tissue injury in various animal models. Early clinical trials confirm that senotherapeutic approaches could be beneficial in human disease. However, larger clinical trials are needed to translate these approaches to patient care.
Collapse
Affiliation(s)
- Weijun Huang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - LaTonya J Hickson
- Division of Nephrology and Hypertension, Mayo Clinic, Jacksonville, FL, USA
| | - Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
21
|
Liu H, Chen L, Xiao W, Liu J, Long C, Zhan W, Cui C, Yang L, Chen S. Alteration of E2F2 Expression in Governing Endothelial Cell Senescence. Genes (Basel) 2022; 13:1522. [PMID: 36140689 PMCID: PMC9498592 DOI: 10.3390/genes13091522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/16/2022] [Accepted: 08/23/2022] [Indexed: 01/10/2023] Open
Abstract
Endothelial cell senescence has a vital implication for vascular dysfunction, leading to age-related cardiovascular disease, especially hypertension and atherosclerosis. E2F transcription factor 2 (E2F2) plays a critical role in cell proliferation, differentiation, and DNA damage response. Up to date, no study has ever connected E2F2 to vascular endothelial cell senescence. Here, we demonstrate that E2F2 is involved in endothelial cellular senescence. We found that E2F2 expression is decreased during the replicative senescence of human umbilical vein endothelial cells (HUVECs) and the aortas of aged mice. The knockdown of E2F2 in young HUVECs induces premature senescence characterized by an increase in senescence-associated β-galactosidase (SA-β-gal) activity, a reduction in phosphorylated endothelial nitric oxide synthase (p-eNOS) and sirtuin 1 (SIRT1), and the upregulation of senescence-associated secretory phenotype (SASP) IL-6 and IL-8. The lack of E2F2 promoted cell cycle arrest, DNA damage, and cell proliferation inhibition. Conversely, E2F2 overexpression reversed the senescence phenotype and enhanced the cellular function in the senescent cells. Furthermore, E2F2 deficiency downregulated downstream target genes including CNNA2, CDK1, and FOXM1, and overexpression restored the expression of these genes. Our findings demonstrate that E2F2 plays an indispensable role in endothelial cell senescence.
Collapse
Affiliation(s)
- Hongfei Liu
- Vascular Function Laboratory, Human Aging Research Institute and School of Life Science, Jiangxi Key Laboratory of Human Aging, Nanchang University, Nanchang 330031, China
| | - Liping Chen
- Vascular Function Laboratory, Human Aging Research Institute and School of Life Science, Jiangxi Key Laboratory of Human Aging, Nanchang University, Nanchang 330031, China
| | - Wanli Xiao
- Metabolic Control and Aging, Human Aging Research Institute and School of Life Science, Jiangxi Key Laboratory of Human Aging, Nanchang University, Nanchang 330031, China
| | - Jiankun Liu
- Aging and Vascular Diseases, Human Aging Research Institute and School of Life Science, Jiangxi Key Laboratory of Human Aging, Nanchang University, Nanchang 330031, China
| | - Changkun Long
- Vascular Function Laboratory, Human Aging Research Institute and School of Life Science, Jiangxi Key Laboratory of Human Aging, Nanchang University, Nanchang 330031, China
| | - Wenxing Zhan
- Vascular Function Laboratory, Human Aging Research Institute and School of Life Science, Jiangxi Key Laboratory of Human Aging, Nanchang University, Nanchang 330031, China
| | - Cui Cui
- Department of Ophthalmology, Handan Central Hospital, Handan 056001, China
| | - Lin Yang
- Department of Nephrology, Taikang Southwestern Medical Center, Chengdu 610213, China
| | - Shenghan Chen
- Vascular Function Laboratory, Human Aging Research Institute and School of Life Science, Jiangxi Key Laboratory of Human Aging, Nanchang University, Nanchang 330031, China
| |
Collapse
|
22
|
Skin-Aging Pigmentation: Who Is the Real Enemy? Cells 2022; 11:cells11162541. [PMID: 36010618 PMCID: PMC9406699 DOI: 10.3390/cells11162541] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 12/21/2022] Open
Abstract
Skin aging is induced and sustained by chronological aging and photoaging. Aging skin pigmentation such as mottled pigmentation (senile lentigo) and melasma are typical signs of photoaging. The skin, like other human organs, undergoes cellular senescence, and senescent cells in the skin increase with age. The crosstalk between melanocytes as pigmentary cells and other adjacent types of aged skin cells such as senescent fibroblasts play a role in skin-aging pigmentation. In this review, we provide an overview of cellular senescence during the skin-aging process. The discussion also includes cellular senescence related to skin-aging pigmentation and the therapeutic potential of regulating the senescence process.
Collapse
|
23
|
Mettl14-driven senescence-associated secretory phenotype facilitates somatic cell reprogramming. Stem Cell Reports 2022; 17:1799-1809. [PMID: 35947961 PMCID: PMC9391510 DOI: 10.1016/j.stemcr.2022.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/24/2022] Open
Abstract
The METTL3-METTL14 complex, the “writer” of N6-methyladenosine (m6A), plays an important role in many biological processes. Previous studies have shown that Mettl3 overexpression can increase the level of m6A and promote somatic cell reprogramming. Here, we demonstrate that Mettl14, another component of the methyltransferase complex, can significantly enhance the generation of induced pluripotent stem cells (iPSCs) in an m6A-independent manner. In cooperation with Oct4, Sox2, Klf4, and c-Myc, overexpressed Mettl14 transiently promoted senescence-associated secretory phenotype (SASP) gene expression in non-reprogrammed cells in the late stage of reprogramming. Subsequently, we demonstrated that interleukin-6 (IL-6), a component of the SASP, significantly enhanced somatic cell reprogramming. In contrast, blocking the SASP using a senolytic agent or a nuclear factor κB (NF-κB) inhibitor impaired the effect of Mettl14 on reprogramming. Our results highlight the m6A-independent function of Mettl14 in reprogramming and provide new insight into the interplay between senescence and reprogramming in vitro. Mettl14 can facilitate somatic cell reprogramming in an m6A-independent manner Mettl14 transcriptionally drives the senescence-associated secretory phenotype (SASP) Mettl14-driven SASPs are mainly secreted from non-reprogramming cells Blocking of SASP impairs the effect of Mettl14 on reprogramming
Collapse
|
24
|
Lossaint G, Horvat A, Gire V, Bacevic K, Mrouj K, Charrier-Savournin F, Georget V, Fisher D, Dulic V. Reciprocal regulation of p21 and Chk1 controls the Cyclin D1-RB pathway to mediate senescence onset after G2 arrest. J Cell Sci 2022; 135:274865. [PMID: 35343565 DOI: 10.1242/jcs.259114] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 03/18/2022] [Indexed: 11/20/2022] Open
Abstract
Senescence is an irreversible proliferation withdrawal that can be initiated after DNA damage-induced cell cycle arrest in G2 phase to prevent genomic instability. Senescence onset in G2 requires p53 and RB family tumour suppressors, but how they are regulated to convert a temporary cell cycle arrest into a permanent one remains unknown. Here, we show that a previously unrecognised balance between the CDK inhibitor p21 and Chk1 controls D-type cyclin-CDK activity during G2 arrest. In non-transformed cells, p21 activates RB in G2 by inhibiting Cyclin D1-CDK2/CDK4. The resulting G2 exit, which precedes appearance of senescence markers, is associated with a mitotic bypass, Chk1 downregulation and DNA damage foci reduction. In p53/RB-proficient cancer cells, compromised G2 exit correlates with sustained Chk1 activity, delayed p21 induction, untimely Cyclin E1 re-expression and genome reduplication. Conversely, Chk1 depletion promotes senescence by inducing p21 binding to Cyclin D1 and Cyclin E1-CDK complexes and down-regulating CDK6, whereas Chk2 knockdown enables RB phosphorylation and delays G2 exit. In conclusion, p21 and Chk2 oppose Chk1 to maintain RB activity, thus promoting DNA damage-induced senescence onset in G2.
Collapse
Affiliation(s)
| | | | | | | | - Karim Mrouj
- IGMM, Univ. Montpellier, CNRS, Montpellier, France
| | | | - Virginie Georget
- CRBM, Univ. Montpellier, CNRS, Montpellier, France.,Montpellier Ressources Imagerie, BioCampus, University of Montpellier, CNRS, INSERM, Montpellier, France
| | | | | |
Collapse
|
25
|
Bhatia E, Kumari D, Sharma S, Ahamad N, Banerjee R. Nanoparticle platforms for dermal antiaging technologies: Insights in cellular and molecular mechanisms. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 14:e1746. [PMID: 34423571 DOI: 10.1002/wnan.1746] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/30/2021] [Accepted: 07/08/2021] [Indexed: 01/16/2023]
Abstract
Aging is a continuous process defined by a progressive functional decline in physiological parameters. Skin, being one of the most vulnerable organs, shows early signs of aging which are predominantly affected by intrinsic factors like hormone, gender, mood, enzymes, and genetic predisposition, and extrinsic factors like exposure to radiation, air pollution, and heat. Visible morphological and anatomical changes associated with skin aging occur due to underlying physiological aberrations governed by numerous complex interactions at cellular and subcellular levels. Nanoparticles are perceived as a powerful tool in the cosmeceutical industry both for augmenting the efficacy of existing agents and as a novel standalone therapy. Both organic and inorganic nanoparticles have been extensively investigated in antiaging applications. The use of nanoparticles helps to enhance the activity of antiaging molecules by selectively targeting cellular and molecular pathways. On the other hand, the nanoparticle platforms also gained increasing popularity as the skin protectant against extrinsic factors such as UV radiation and pollutants. This review comprehensively discusses skin aging and its mechanism by highlighting the impact on cellular, subcellular, and epigenetic elements. Importantly, the review elaborates on the examples of organic and inorganic nanoparticle-based formulations developed for antiaging application and provides mechanistic insights on how they modulate the mechanisms of skin aging. The clinical progress of nanoparticle antiaging technologies and factors that impact clinical translation are also explored. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Eshant Bhatia
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Durga Kumari
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Shivam Sharma
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Nadim Ahamad
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Rinti Banerjee
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
26
|
Russo M, Bono E, Ghigo A. The Interplay Between Autophagy and Senescence in Anthracycline Cardiotoxicity. Curr Heart Fail Rep 2021; 18:180-190. [PMID: 34081265 PMCID: PMC8342382 DOI: 10.1007/s11897-021-00519-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Doxorubicin (DOXO) is a highly effective chemotherapeutic drug employed for the treatment of a wide spectrum of cancers, spanning from solid tumours to haematopoietic malignancies. However, its clinical use is hampered by severe and dose-dependent cardiac side effects that ultimately lead to heart failure (HF). RECENT FINDINGS Mitochondrial dysfunction and oxidative stress are well-established mechanisms of DOXO-induced cardiotoxicity, although recent evidence suggests that deregulation of other biological processes, like autophagy, could be involved. It is increasingly recognized that autophagy deregulation is intimately interconnected with the initiation of detrimental cellular responses, including autosis and senescence, raising the possibility of using autophagy modulators as well as senolytics and senomorphics for preventing DOXO cardiotoxicity. This review aims at providing an overview of the signalling pathways that are common to autophagy and senescence, with a special focus on how the relationship between these two processes is deregulated in response to cardiotoxic treatments. Finally, we will discuss the potential therapeutic utility of drugs modulating autophagy and/or senescence for counteracting DOXO cardiotoxicity.
Collapse
Affiliation(s)
- Michele Russo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Enrico Bono
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy.
| |
Collapse
|
27
|
Meijnikman AS, Herrema H, Scheithauer TPM, Kroon J, Nieuwdorp M, Groen AK. Evaluating causality of cellular senescence in non-alcoholic fatty liver disease. JHEP Rep 2021; 3:100301. [PMID: 34113839 PMCID: PMC8170167 DOI: 10.1016/j.jhepr.2021.100301] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/17/2021] [Accepted: 04/21/2021] [Indexed: 02/08/2023] Open
Abstract
Cellular senescence is a state of irreversible cell cycle arrest that has important physiological functions. However, cellular senescence is also a hallmark of ageing and has been associated with several pathological conditions. A wide range of factors including genotoxic stress, mitogens and inflammatory cytokines can induce senescence. Phenotypically, senescent cells are characterised by short telomeres, an enlarged nuclear area and damaged genomic and mitochondrial DNA. Secretion of proinflammatory proteins, also known as the senescence-associated secretory phenotype, is a characteristic of senescent cells that is thought to be the main contributor to their disease-inducing properties. In the past decade, the role of cellular senescence in the development of non-alcoholic fatty liver disease (NAFLD) and its progression towards non-alcoholic steatohepatitis (NASH) has garnered significant interest. Until recently, it was suggested that hepatocyte cellular senescence is a mere consequence of the metabolic dysregulation and inflammatory phenomena in fatty liver disease. However, recent work in rodents has suggested that senescence may be a causal factor in NAFLD development. Although causality is yet to be established in humans, current evidence suggests that targeting senescent cells has therapeutic potential for NAFLD. We aim to provide insights into the quality of the evidence supporting a causal role of cellular senescence in the development of NAFLD in rodents and humans. We will elaborate on key cellular and molecular features of senescence and discuss the efficacy and safety of novel senolytic drugs for the treatment or prevention of NAFLD.
Collapse
Key Words
- ATM, ataxia telangiectasia mutated
- C/EBPα, CCAAT- enhancer-binding protein
- CDK, cyclin dependent kinase
- DDR, DNA damage response
- FFAs, free fatty acids
- HCC, hepatocellular carcinoma
- IL-, interleukin
- KC, Kupffer cell
- LSEC, liver sinusoidal endothelial cell
- MCP1/CCL2, monocyte chemoattractant protein-1
- MiDAS, mitochondrial dysfunction-associated senescence
- NAFL, non-alcoholic fatty liver
- NAFLD, non-alcoholic fatty liver disease
- NASH, non-alcoholic steatohepatitis
- ROS, reactive oxygen species
- Rb, retinoblastoma factor
- SA-β gal, senescence-associated beta-galactosidase
- SASP, senescence-associated secretory phenotype
- SCAP, senescence-associated antiapoptotic pathways
- TGFβ, transforming growth factor-β
- TNFα, tumour necrosis factor-α
- cellular senescence
- non-alcoholic fatty liver disease
- non-alcoholic steatohepatitis
- obesity
- qPCR, quantitative PCR
- senolytics
Collapse
Affiliation(s)
- Abraham Stijn Meijnikman
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, location AMC, Amsterdam, the Netherlands
| | - Hilde Herrema
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, location AMC, Amsterdam, the Netherlands
| | | | - Jeffrey Kroon
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, location AMC, Amsterdam, the Netherlands
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, location AMC, Amsterdam, the Netherlands
| | - Albert Kornelis Groen
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, location AMC, Amsterdam, the Netherlands
- Corresponding author. Address: Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, location AMC, Meibergdreef 9 room G-146, 1105AZ Amsterdam, Netherlands
| |
Collapse
|
28
|
Di Micco R, Krizhanovsky V, Baker D, d'Adda di Fagagna F. Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nat Rev Mol Cell Biol 2021; 22:75-95. [PMID: 33328614 PMCID: PMC8344376 DOI: 10.1038/s41580-020-00314-w] [Citation(s) in RCA: 949] [Impact Index Per Article: 316.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2020] [Indexed: 12/11/2022]
Abstract
Cellular senescence, first described in vitro in 1961, has become a focus for biotech companies that target it to ameliorate a variety of human conditions. Eminently characterized by a permanent proliferation arrest, cellular senescence occurs in response to endogenous and exogenous stresses, including telomere dysfunction, oncogene activation and persistent DNA damage. Cellular senescence can also be a controlled programme occurring in diverse biological processes, including embryonic development. Senescent cell extrinsic activities, broadly related to the activation of a senescence-associated secretory phenotype, amplify the impact of cell-intrinsic proliferative arrest and contribute to impaired tissue regeneration, chronic age-associated diseases and organismal ageing. This Review discusses the mechanisms and modulators of cellular senescence establishment and induction of a senescence-associated secretory phenotype, and provides an overview of cellular senescence as an emerging opportunity to intervene through senolytic and senomorphic therapies in ageing and ageing-associated diseases.
Collapse
Affiliation(s)
- Raffaella Di Micco
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Valery Krizhanovsky
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | - Darren Baker
- Department of Pediatrics, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Fabrizio d'Adda di Fagagna
- IFOM - The FIRC Institute of Molecular Oncology, Milan, Italy.
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Pavia, Italy.
| |
Collapse
|
29
|
González-Gualda E, Baker AG, Fruk L, Muñoz-Espín D. A guide to assessing cellular senescence in vitro and in vivo. FEBS J 2021; 288:56-80. [PMID: 32961620 DOI: 10.1111/febs.15570] [Citation(s) in RCA: 269] [Impact Index Per Article: 89.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/09/2020] [Accepted: 09/15/2020] [Indexed: 12/15/2022]
Abstract
Cellular senescence is a physiological mechanism whereby a proliferating cell undergoes a stable cell cycle arrest upon damage or stress and elicits a secretory phenotype. This highly dynamic and regulated cellular state plays beneficial roles in physiology, such as during embryonic development and wound healing, but it can also result in antagonistic effects in age-related pathologies, degenerative disorders, ageing and cancer. In an effort to better identify this complex state, and given that a universal marker has yet to be identified, a general set of hallmarks describing senescence has been established. However, as the senescent programme becomes more defined, further complexities, including phenotype heterogeneity, have emerged. This significantly complicates the recognition and evaluation of cellular senescence, especially within complex tissues and living organisms. To address these challenges, substantial efforts are currently being made towards the discovery of novel and more specific biomarkers, optimized combinatorial strategies and the development of emerging detection techniques. Here, we compile such advances and present a multifactorial guide to identify and assess cellular senescence in cell cultures, tissues and living organisms. The reliable assessment and identification of senescence is not only crucial for better understanding its underlying biology, but also imperative for the development of diagnostic and therapeutic strategies aimed at targeting senescence in the clinic.
Collapse
Affiliation(s)
- Estela González-Gualda
- CRUK Cambridge Centre Early Detection Programme, Department of Oncology, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
| | - Andrew G Baker
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Ljiljana Fruk
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Daniel Muñoz-Espín
- CRUK Cambridge Centre Early Detection Programme, Department of Oncology, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
| |
Collapse
|
30
|
Silva AD, Piccinato CDA, Sardinha LR, Aloia TPA, Goldberg AC. Comparison of senescence progression in mesenchymal cells from human umbilical cord walls measured by immunofluorescence and flow cytometry of p16 and p21. EINSTEIN-SAO PAULO 2020; 18:eAO5236. [PMID: 33084793 PMCID: PMC7546682 DOI: 10.31744/einstein_journal/2020ao5236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 03/31/2020] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To follow the expansion of mesenchymal stem cells from umbilical cords by two classic senescence markers, p16 (INK4A) and p21 (CDKN1A), using practical, fast, and less expensive methods than the gold standard Western blotting technique, to evaluate its applicability in the laboratory. METHODS Mesenchymal stem cells from umbilical cords were isolated from Wharton's jelly and, after quality control, morphological and immunophenotypic characterization by flow cytometry, were expanded in culture until coming close to cell cycle arrest (replicative senescence). RESULTS A comparison was made between young cells, at passage 5, and pre-senescent cells, at passage 10, evaluating the protein expression of the classic cell senescence markers p16 and p21, comparing the results obtained by Western blotting with those obtained by flow cytometry and indirect immunofluorescence. CONCLUSION Follow-up of cell cultures, through indirect p16 immunofluorescence, allows the identification of mesenchymal stem cells from umbilical cord cultures at risk of reaching replicative senescence.
Collapse
Affiliation(s)
- Aline da Silva
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|
31
|
Shimoni C, Goldstein M, Ribarski-Chorev I, Schauten I, Nir D, Strauss C, Schlesinger S. Heat Shock Alters Mesenchymal Stem Cell Identity and Induces Premature Senescence. Front Cell Dev Biol 2020; 8:565970. [PMID: 33072750 PMCID: PMC7537765 DOI: 10.3389/fcell.2020.565970] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022] Open
Abstract
Heat stress can have a serious impact on the health of both humans and animals. A major question is how heat stress affects normal development and differentiation at both the cellular and the organism levels. Here we use an in vitro experimental system to address how heat shock treatment influences the properties of bovine mesenchymal stem cells (MSCs)—multipotent progenitor cells—which are found in most tissues. Because cattle are sensitive to harsh external temperatures, studying the effects of heat shock on MSCs provides a unique platform to address cellular stress in a physiologically relevant model organism. Following isolation and characterization of MSCs from the cow’s umbilical cord, heat shock was induced either as a pulse (1 h) or continuously (3 days), and consequent effects on MSCs were characterized. Heat shock induced extensive phenotypic changes in MSCs and dramatically curtailed their capacity to proliferate and differentiate. These changes were associated with a partial arrest in the G1/S or G2/M checkpoints. Furthermore, MSCs lost their ability to resolve the inflammatory response of RAW macrophages in coculture. A possible explanation for this loss of function is the accumulation of reactive oxygen species and malfunction of the mitochondria in the treated cells. Heat shock treatments resulted in stress-induced premature senescence, affecting the MSCs’ ability to proliferate properly for many cell passages to follow. Exposure to elevated external temperatures leads to mitochondrial damage and oxidative stress, which in turn conveys critical changes in the proliferation, differentiation, and immunomodulatory phenotype of heat-stressed MSCs. A better understanding of the effect of heat shock on humans and animals may result in important health and economic benefits.
Collapse
Affiliation(s)
- Chen Shimoni
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Myah Goldstein
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ivana Ribarski-Chorev
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Iftach Schauten
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Dana Nir
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Carmit Strauss
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Sharon Schlesinger
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
32
|
S-Phase Kinase-associated Protein-2 Rejuvenates Senescent Endothelial Progenitor Cells and Induces Angiogenesis in Vivo. Sci Rep 2020; 10:6646. [PMID: 32313103 PMCID: PMC7171137 DOI: 10.1038/s41598-020-63716-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 04/06/2020] [Indexed: 01/16/2023] Open
Abstract
Cell cycle slowdown or arrest is a prominent feature of cellular senescence. S-phase kinase-associated protein-2 (Skp2), an F-box subunit of SCFSkp2 ubiquitin ligase, is a key regulator of G1/S transition. We investigated whether Skp2 plays a role in the regulation of endothelial progenitor cell (EPC) senescence, which is closely associated with aging-related vasculopathy. Replication-induced senescent EPCs demonstrated more pronounced senescence markers and lower Skp2 levels in comparison with those of their younger counterparts. Depletion of Skp2 induced increases in senescence-associated β-galactosidase (SA-βGal) activity and a reduction of telomere length and generated a senescent bioenergetics profile, whereas adenoviral-mediated Skp2 expression reversed the relevant senescence. EPCs isolated from older rats displayed a reduced proliferation rate and increased SA-βGal activity, both of which were significantly reversed by Skp2 ectopic expression. In addition to reversing senescence, Skp2 also rescued the angiogenic activity of senescent EPCs in the ischemic hind limbs of nude mice. The results revealed that ectopic expression of Skp2 has the potential to rejuvenate senescent EPCs and rescue their angiogenic activity and thus may be pivotal in the development of novel strategies to manage aging-related vascular disease.
Collapse
|
33
|
Clement M, Luo L. Organismal Aging and Oxidants beyond Macromolecules Damage. Proteomics 2020; 20:e1800400. [DOI: 10.1002/pmic.201800400] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 10/20/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Marie‐Veronique Clement
- Department of BiochemistryYong Loo Lin School of MedicineNational University of Singapore Singapore 117596 Singapore
- National University of Singapore Graduate School for Integrative Sciences and Engineering Singapore 117456 Singapore
| | - Le Luo
- Department of BiochemistryYong Loo Lin School of MedicineNational University of Singapore Singapore 117596 Singapore
| |
Collapse
|
34
|
Mitochondria-targeted hydrogen sulfide attenuates endothelial senescence by selective induction of splicing factors HNRNPD and SRSF2. Aging (Albany NY) 2019; 10:1666-1681. [PMID: 30026406 PMCID: PMC6075431 DOI: 10.18632/aging.101500] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/15/2018] [Indexed: 12/13/2022]
Abstract
Cellular senescence is a key driver of ageing, influenced by age-related changes to the regulation of alternative splicing. Hydrogen sulfide (H2S) has similarly been described to influence senescence, but the pathways by which it accomplishes this are unclear.We assessed the effects of the slow release H2S donor Na-GYY4137 (100 µg/ml), and three novel mitochondria-targeted H2S donors AP39, AP123 and RT01 (10 ng/ml) on splicing factor expression, cell proliferation, apoptosis, DNA replication, DNA damage, telomere length and senescence-related secretory complex (SASP) expression in senescent primary human endothelial cells.All H2S donors produced up to a 50% drop in senescent cell load assessed at the biochemical and molecular level. Some changes were noted in the composition of senescence-related secretory complex (SASP); IL8 levels increased by 24% but proliferation was not re-established in the culture as a whole. Telomere length, apoptotic index and the extent of DNA damage were unaffected. Differential effects on splicing factor expression were observed depending on the intracellular targeting of the H2S donors. Na-GYY4137 produced a general 1.9 - 3.2-fold upregulation of splicing factor expression, whereas the mitochondria-targeted donors produced a specific 2.5 and 3.1-fold upregulation of SRSF2 and HNRNPD splicing factors only. Knockdown of SRSF2 or HNRNPD genes in treated cells rendered the cells non-responsive to H2S, and increased levels of senescence by up to 25% in untreated cells.Our data suggest that SRSF2 and HNRNPD may be implicated in endothelial cell senescence, and can be targeted by exogenous H2S. These molecules may have potential as moderators of splicing factor expression and senescence phenotypes.
Collapse
|
35
|
Niedernhofer LJ, Kirkland JL, Ladiges W. Molecular pathology endpoints useful for aging studies. Ageing Res Rev 2017; 35:241-249. [PMID: 27721062 DOI: 10.1016/j.arr.2016.09.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 09/15/2016] [Accepted: 09/30/2016] [Indexed: 12/12/2022]
Abstract
The first clinical trial aimed at targeting fundamental processes of aging will soon be launched (TAME: Targeting Aging with Metformin). In its wake is a robust pipeline of therapeutic interventions that have been demonstrated to extend lifespan or healthspan of preclinical models, including rapalogs, antioxidants, anti-inflammatory agents, and senolytics. This ensures that if the TAME trial is successful, numerous additional clinical trials are apt to follow. But a significant impediment to these trials remains the question of what endpoints should be measured? The design of the TAME trial very cleverly skirts around this based on the fact that there are decades of data on metformin in humans, providing unequaled clarity of what endpoints are most likely to yield a positive outcome. But for a new chemical entity, knowing what endpoints to measure remains a formidable challenge. For economy's sake, and to achieve results in a reasonable time frame, surrogate markers of lifespan and healthy aging are desperately needed. This review provides a comprehensive analysis of molecular endpoints that are currently being used as indices of age-related phenomena (e.g., morbidity, frailty, mortality) and proposes an approach for validating and prioritizing these endpoints.
Collapse
Affiliation(s)
- L J Niedernhofer
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL 33458, United States.
| | - J L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, United States
| | - W Ladiges
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA 98195, United States
| |
Collapse
|
36
|
Shafi O. Inverse relationship between Alzheimer's disease and cancer, and other factors contributing to Alzheimer's disease: a systematic review. BMC Neurol 2016; 16:236. [PMID: 27875990 PMCID: PMC5120447 DOI: 10.1186/s12883-016-0765-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 11/15/2016] [Indexed: 12/18/2022] Open
Abstract
Background The AD etiology is yet not properly known. Interactions among environmental factors, multiple susceptibility genes and aging, contribute to AD. This study investigates the factors that play role in causing AD and how changes in cellular pathways contribute to AD. Methods PUBMED database, MEDLINE database and Google Scholar were searched with no date restrictions for published articles involving cellular pathways with roles in cancers, cell survival, growth, proliferation, development, aging, and also contributing to Alzheimer’s disease. This research explores inverse relationship between AD and cancer, also investigates other factors behind AD using several already published research literature to find the etiology of AD. Results Cancer and Alzheimer’s disease have inverse relationship in many aspects such as P53, estrogen, neurotrophins and growth factors, growth and proliferation, cAMP, EGFR, Bcl-2, apoptosis pathways, IGF-1, HSV, TDP-43, APOE variants, notch signals and presenilins, NCAM, TNF alpha, PI3K/AKT/MTOR pathway, telomerase, ROS, ACE levels. AD occurs when brain neurons have weakened growth, cell survival responses, maintenance mechanisms, weakened anti-stress responses such as Vimentin, Carbonic anhydrases, HSPs, SAPK. In cancer, these responses are upregulated and maintained. Evolutionarily conserved responses and maintenance mechanisms such as FOXO are impaired in AD. Countermeasures or compensatory mechanisms by AD affected neurons such as Tau, Beta Amyloid, S100, are last attempts for survival which may be protective for certain time, or can speed up AD in Alzheimer’s microenvironment via C-ABL activation, GSK3, neuro-inflammation. Conclusions Alzheimer’s disease and Cancer have inverse relationship; many factors that are upregulated in any cancer to sustain growth and survival are downregulated in Alzheimer’s disease contributing to neuro-degeneration. When aged neurons or genetically susceptible neurons have weakened growth, cell survival and anti-stress responses, age related gene expression changes, altered regulation of cell death and maintenance mechanisms, they contribute to Alzheimer’s disease. Countermeasures by AD neurons such as Beta Amyloid Plaques, NFTs, S100, are last attempts for survival and this provides neuroprotection for certain time and ultimately may become pathological and speed up AD. This study may contribute in developing new potential diagnostic tests, interventions and treatments. Electronic supplementary material The online version of this article (doi:10.1186/s12883-016-0765-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ovais Shafi
- Sindh Medical College, Dow University of Health Sciences, Karachi, Pakistan.
| |
Collapse
|
37
|
Nagano T, Nakano M, Nakashima A, Onishi K, Yamao S, Enari M, Kikkawa U, Kamada S. Identification of cellular senescence-specific genes by comparative transcriptomics. Sci Rep 2016; 6:31758. [PMID: 27545311 PMCID: PMC4992837 DOI: 10.1038/srep31758] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/27/2016] [Indexed: 12/12/2022] Open
Abstract
Cellular senescence is defined as permanent cell cycle arrest induced by various stresses. Although the p53 transcriptional activity is essential for senescence induction, the downstream genes that are crucial for senescence remain unsolved. Here, by using a developed experimental system in which cellular senescence or apoptosis is induced preferentially by altering concentration of etoposide, a DNA-damaging drug, we compared gene expression profiles of senescent and apoptotic cells by microarray analysis. Subtraction of the expression profile of apoptotic cells identified 20 genes upregulated specifically in senescent cells. Furthermore, 6 out of 20 genes showed p53-dependent upregulation by comparing gene expression between p53-proficient and -deficient cells. These 6 genes were also upregulated during replicative senescence of normal human diploid fibroblasts, suggesting that upregulation of these genes is a general phenomenon in senescence. Among these genes, 2 genes (PRODH and DAO) were found to be directly regulated by p53, and ectopic expression of 4 genes (PRODH, DAO, EPN3, and GPR172B) affected senescence phenotypes induced by etoposide treatment. Collectively, our results identified several proteins as novel downstream effectors of p53-mediated senescence and provided new clues for further research on the complex signalling networks underlying the induction and maintenance of senescence.
Collapse
Affiliation(s)
- Taiki Nagano
- Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.,Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Masayuki Nakano
- Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.,Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Akio Nakashima
- Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.,Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Kengo Onishi
- Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.,Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Shunsuke Yamao
- Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.,Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Masato Enari
- Division of Refractory and Advanced Cancer, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Ushio Kikkawa
- Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.,Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Shinji Kamada
- Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.,Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
38
|
Leontieva OV, Blagosklonny MV. Tumor promoter-induced cellular senescence: cell cycle arrest followed by geroconversion. Oncotarget 2015; 5:12715-27. [PMID: 25587030 PMCID: PMC4350340 DOI: 10.18632/oncotarget.3011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 12/26/2014] [Indexed: 02/07/2023] Open
Abstract
Phorbol ester (PMA or TPA), a tumor promoter, can cause either proliferation or cell cycle arrest, depending on cellular context. For example, in SKBr3 breast cancer cells, PMA hyper-activates the MEK/MAPK pathway, thus inducing p21 and cell cycle arrest. Here we showed that PMA-induced arrest was followed by conversion to cellular senescence (geroconversion). Geroconversion was associated with active mTOR and S6 kinase (S6K). Rapamycin suppressed geroconversion, maintaining quiescence instead. In this model, PMA induced arrest (step one of a senescence program), whereas constitutively active mTOR drove geroconversion (step two). Without affecting Akt phosphorylation, PMA increased phosphorylation of S6K (T389) and S6 (S240/244), and that was completely prevented by rapamycin. Yet, T421/S424 and S235/236 (p-S6K and p-S6, respectively) phosphorylation became rapamycin-insensitive in the presence of PMA. Either MEK or mTOR was sufficient to phosphorylate these PMA-induced rapamycin-resistant sites because co-treatment with U0126 and rapamycin was required to abrogate them. We next tested whether activation of rapamycin-insensitive pathways would shift quiescence towards senescence. In HT-p21 cells, cell cycle arrest was caused by IPTG-inducible p21 and was spontaneously followed by mTOR-dependent geroconversion. Rapamycin suppressed geroconversion, whereas PMA partially counteracted the effect of rapamycin, revealing the involvement of rapamycin-insensitive gerogenic pathways. In normal RPE cells arrested by serum withdrawal, the mTOR/pS6 pathway was inhibited and cells remained quiescent. PMA transiently activated mTOR, enabling partial geroconversion. We conclude that PMA can initiate a senescent program by either inducing arrest or fostering geroconversion or both. Rapamycin can decrease gero-conversion by PMA, without preventing PMA-induced arrest. The tumor promoter PMA is a gero-promoter, which may be useful to study aging in mammals.
Collapse
Affiliation(s)
- Olga V Leontieva
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | |
Collapse
|
39
|
Abstract
Cellular senescence happens in 2 steps: cell cycle arrest followed, or sometimes preceded, by gerogenic conversion (geroconversion). Geroconvesrion is a form of growth, a futile growth during cell cycle arrest. It converts reversible arrest to irreversible senescence. Geroconversion is driven by growth-promoting, mitogen-/nutrient-sensing pathways such as mTOR. Geroconversion leads to hyper-secretory, hypertrophic and pro-inflammatory cellular phenotypes, hyperfunctions and malfunctions. On organismal level, geroconversion leads to age-related diseases and death. Rapamycin, a gerosuppressant, extends life span in diverse species from yeast to mammals. Stress-and oncogene-induced accelerated senescence, replicative senescence in vitro and life-long cellular aging in vivo all can be described by 2-step model.
Collapse
|
40
|
Zalzali H, Nasr B, Harajly M, Basma H, Ghamloush F, Ghayad S, Ghanem N, Evan GI, Saab R. CDK2 transcriptional repression is an essential effector in p53-dependent cellular senescence-implications for therapeutic intervention. Mol Cancer Res 2015; 13:29-40. [PMID: 25149358 DOI: 10.1158/1541-7786.mcr-14-0163] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Cellular senescence, a form of cell-cycle arrest, is a tumor-suppressor mechanism triggered by multiple tumor-promoting insults, including oncogenic stress and DNA damage. The role of cyclin-dependent kinase 2 (CDK2) regulation has been evaluated in models of replicative senescence, but little is known regarding its role in other senescence settings. Using in vitro and in vivo models of DNA damage-and oncogene-induced cellular senescence, it was determined that activation of the tumor-suppressor protein p53 (TP53) resulted in repression of the CDK2 transcript that was dependent on intact RB. Ectopic CDK2 expression was sufficient to bypass p53-dependent senescence, and CDK2-specific inhibition, either pharmacologically (CVT313) or by use of a dominant-negative CDK2, was sufficient to induce early senescence. Pharmacologic inhibition of CDK2 in an in vivo model of pineal tumor decreased proliferation and promoted early senescence, and it also decreased tumor penetrance and prolonged time to tumor formation in animals lacking p53. In conclusion, for both oncogene- and DNA damage-induced cellular senescence, CDK2 transcript and protein are decreased in a p53- and RB-dependent manner, and this repression is necessary for cell-cycle exit during senescence. IMPLICATIONS These data show that CDK2 inhibition may be useful for cancer prevention in premalignant hyperproliferative lesions, as well as established tumors.
Collapse
Affiliation(s)
- Hasan Zalzali
- Department of Pediatric and Adolescent Medicine, American University of Beirut, Beirut, Lebanon.
| | - Bilal Nasr
- Department of Pediatric and Adolescent Medicine, American University of Beirut, Beirut, Lebanon
| | - Mohamad Harajly
- Department of Pediatric and Adolescent Medicine, American University of Beirut, Beirut, Lebanon
| | - Hussein Basma
- Department of Pediatric and Adolescent Medicine, American University of Beirut, Beirut, Lebanon
| | - Farah Ghamloush
- Department of Pediatric and Adolescent Medicine, American University of Beirut, Beirut, Lebanon
| | - Sandra Ghayad
- Department of Pediatric and Adolescent Medicine, American University of Beirut, Beirut, Lebanon
| | - Noël Ghanem
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Gerard I Evan
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Raya Saab
- Department of Pediatric and Adolescent Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
41
|
Molognoni F, de Melo FHM, da Silva CT, Jasiulionis MG. Ras and Rac1, frequently mutated in melanomas, are activated by superoxide anion, modulate Dnmt1 level and are causally related to melanocyte malignant transformation. PLoS One 2013; 8:e81937. [PMID: 24358134 PMCID: PMC3864863 DOI: 10.1371/journal.pone.0081937] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 10/25/2013] [Indexed: 12/22/2022] Open
Abstract
A melanocyte malignant transformation model was developed in our laboratory, in which different melanoma cell lines were obtained after submitting the non-tumorigenic melanocyte lineage melan-a to sequential cycles of anchorage impediment. Our group has already showed that increased superoxide level leads to global DNA hypermemethylation as well increased Dnmt1 expression few hours after melanocyte anchorage blockade. Here, we showed that Ras/Rac1/ERK signaling pathway is activated in melanocytes submitted to anchorage impediment, regulating superoxide levels, global DNA methylation, and Dnmt1 expression. Interestingly, Ras and Rac1 activation is not related to codon mutations, but instead regulated by superoxide. Moreover, the malignant transformation was drastically compromised when melan-a melanocytes were submitted to sequential cycles of anchorage blockage in the presence of a superoxide scavenger. This aberrant signaling pathway associated with a sustained stressful condition, which might be similar to conditions such as UV radiation and inflammation, seems to be an early step in malignant transformation and to contribute to an epigenetic reprogramming and the melanoma development.
Collapse
Affiliation(s)
- Fernanda Molognoni
- Departamento de Farmacologia, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil
| | - Fabiana Henriques Machado de Melo
- Departamento de Farmacologia, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil
| | - Camila Tainah da Silva
- Departamento de Farmacologia, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil
| | | |
Collapse
|
42
|
Coufal J, Jagelská EB, Liao JCC, Brázda V. Preferential binding of p53 tumor suppressor to p21 promoter sites that contain inverted repeats capable of forming cruciform structure. Biochem Biophys Res Commun 2013; 441:83-8. [PMID: 24134839 DOI: 10.1016/j.bbrc.2013.10.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 10/05/2013] [Indexed: 02/01/2023]
Abstract
p53 Is one of the most critical proteins involved in protecting organisms from malignancies and its gene is frequently mutated in these diseases. p53 Functions as a transcription factor and its role in the cell is mediated by sequence-specific DNA binding. Although the genome contains many p53-binding sequences, the p53 protein binds only a subset of these sequences with high affinity. One likely mechanism of how p53 binds DNA effectively underlies its ability to recognize selective local DNA structure. We analyzed the possibility of cruciform structure formation within different regions of the p21 gene promoter. p53 protein remarkably activates the transcription of p21 gene after genotoxic treatment. In silico analysis showed that p21 gene promoter contains numerous p53 target sequences, some of which have inverted repeats capable of forming cruciform structures. Using chromatin immunoprecipitation, we demonstrated that p53 protein binds preferentially to sequences that not only contain inverted repeats but also have the ability to create local cruciform structures. Gel retardation assay also revealed strong preference of the p53 protein for response element in superhelical state, with cruciform structure in the DNA sequence. Taken together, our results suggest that p53 response element's potential for cruciform structure formation could be an additional determinant in p53 DNA-binding machinery.
Collapse
Affiliation(s)
- Jan Coufal
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, Brno 612 65, Czech Republic
| | | | | | | |
Collapse
|
43
|
Davis T, Tivey HSE, Brook AJC, Grimstead JW, Rokicki MJ, Kipling D. Activation of p38 MAP kinase and stress signalling in fibroblasts from the progeroid Rothmund-Thomson syndrome. AGE (DORDRECHT, NETHERLANDS) 2013; 35:1767-83. [PMID: 23001818 PMCID: PMC3776094 DOI: 10.1007/s11357-012-9476-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 09/09/2012] [Indexed: 05/12/2023]
Abstract
Rothmund-Thomson fibroblasts had replicative lifespans and growth rates within the range for normal fibroblasts; however, they show elevated levels of the stress-associated p38 MAP kinase, suggestive of stress during growth. Treatment with the p38 MAP kinase inhibitor SB203580 increased both lifespan and growth rate, as did reduction of oxidative stress using low oxygen in some strains. At replicative senescence p53, p21(WAF1) and p16(INK4A) levels were elevated, and abrogation of p53 using shRNA knockdown allowed the cells to bypass senescence. Ectopic expression of human telomerase allowed Rothmund-Thomson fibroblasts to bypass senescence. However, activated p38 was still present, and continuous growth for some telomerised clones required either a reduction in oxidative stress or SB203580 treatment. Overall, the evidence suggests that replicative senescence in Rothmund-Thomson cells resembles normal senescence in that it is telomere driven and p53 dependent. However, the lack of RECQL4 leads to enhanced levels of stress during cell growth that may lead to moderate levels of stress-induced premature senescence. As replicative senescence is believed to underlie human ageing, a moderate level of stress-induced premature senescence and p38 activity may play a role in the relatively mild ageing phenotype seen in Rothmund-Thomson.
Collapse
Affiliation(s)
- Terence Davis
- Institute of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK,
| | | | | | | | | | | |
Collapse
|
44
|
Kang S, Kim JB, Heo TH, Kim SJ. Cell cycle arrest in Batten disease lymphoblast cells. Gene 2013; 519:245-50. [PMID: 23458879 DOI: 10.1016/j.gene.2013.02.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 02/02/2013] [Accepted: 02/18/2013] [Indexed: 10/27/2022]
Abstract
Batten disease is an inherited neurodegenerative disorder caused by a CLN3 gene mutation. Batten disease is characterized by blindness, seizures, cognitive decline, and early death. Although apoptotic cell death is one of the pathological hallmarks of Batten disease, little is known about the regulatory mechanism of apoptosis in this disease. Since the CLN3 gene is suggested to be involved in the cell cycle in a yeast model, we investigated the cell cycle profile and its regulatory factors in lymphoblast cells from Batten disease patients. We found G1/G0 cell cycle arrest in Batten disease cells, with overexpression of p21, sphingosine, glucosylceramide, and sulfatide as possible cell cycle regulators.
Collapse
Affiliation(s)
- Sunyang Kang
- Department of Biotechnology, Hoseo University, 165 Baebang, Asan, Chungnam, Republic of Korea
| | | | | | | |
Collapse
|
45
|
Chauhan S, Goodwin JG, Chauhan S, Manyam G, Wang J, Kamat AM, Boyd DD. ZKSCAN3 is a master transcriptional repressor of autophagy. Mol Cell 2013; 50:16-28. [PMID: 23434374 DOI: 10.1016/j.molcel.2013.01.024] [Citation(s) in RCA: 211] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Revised: 12/05/2012] [Accepted: 01/18/2013] [Indexed: 12/31/2022]
Abstract
Autophagy constitutes a major cell-protective mechanism that eliminates damaged components and maintains energy homeostasis via recycling nutrients under normal/stressed conditions. Although the core components of autophagy have been well studied, regulation of autophagy at the transcriptional level is poorly understood. Herein, we establish ZKSCAN3, a zinc finger family DNA-binding protein, as a transcriptional repressor of autophagy. Silencing of ZKSCAN3 induced autophagy and increased lysosome biogenesis. Importantly, we show that ZKSCAN3 represses transcription of a large gene set (>60) integral to, or regulatory for, autophagy and lysosome biogenesis/function and that a subset of these genes, including Map1lC3b and Wipi2, represent direct targets. Interestingly, ZKSCAN3 and TFEB are oppositely regulated by starvation and in turn oppositely regulate lysosomal biogenesis and autophagy, suggesting that they act in conjunction. Altogether, our study uncovers an autophagy master switch regulating the expression of a transcriptional network of genes integral to autophagy and lysosome biogenesis/function.
Collapse
Affiliation(s)
- Santosh Chauhan
- Department of Cancer Biology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Low-dose etoposide-treatment induces endoreplication and cell death accompanied by cytoskeletal alterations in A549 cells: Does the response involve senescence? The possible role of vimentin. Cancer Cell Int 2013; 13:9. [PMID: 23383739 PMCID: PMC3599314 DOI: 10.1186/1475-2867-13-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 01/30/2013] [Indexed: 02/07/2023] Open
Abstract
Background Senescence in the population of cells is often described as a program of restricted proliferative capacity, which is manifested by broad morphological and biochemical changes including a metabolic shift towards an autophagic-like response and a genotoxic-stress related induction of polyploidy. Concomitantly, the cell cycle progression of a senescent cell is believed to be irreversibly arrested. Recent reports suggest that this phenomenon may have an influence on the therapeutic outcome of anticancer treatment. The aim of this study was to verify the possible involvement of this program in the response to the treatment of the A549 cell population with low doses of etoposide, as well as to describe accompanying cytoskeletal alterations. Methods After treatment with etoposide, selected biochemical and morphological parameters were examined, including: the activity of senescence-associated ß-galactosidase, SAHF formation, cell cycle progression, the induction of p21Cip1/Waf1/Sdi1 and cyclin D1, DNA strand breaks, the disruption of cell membrane asymmetry/integrity and ultrastructural alterations. Vimentin and G-actin cytoskeleton was evaluated both cytometrically and microscopically. Results and conclusions Etoposide induced a senescence-like phenotype in the population of A549 cells. Morphological alterations were nevertheless not directly coupled with other senescence markers including a stable cell cycle arrest, SAHF formation or p21Cip1/Waf1/Sdi1 induction. Instead, a polyploid, TUNEL-positive fraction of cells visibly grew in number. Also upregulation of cyclin D1 was observed. Here we present preliminary evidence, based on microscopic analyses, that suggest a possible role of vimentin in nuclear alterations accompanying polyploidization-depolyploidization events following genotoxic insults.
Collapse
|
47
|
Abstract
The senescence program is activated in response to diverse stress stimuli potentially compromising genetic stability and leads to an irreversible cell cycle arrest. The mTOR pathway plays a crucial role in the regulation of cell metabolism and cellular growth. The goal of this chapter is to present evidence linking these two processes, which have one common regulator-the tumor suppressor p53. While the role of mTOR in senescence is still controversial, recent papers have shed new light onto this issue. This review, far from being exhaustive given the complexity of the field, will hopefully stimulate further research in this domain, whose relevance for ageing is becoming increasingly documented.
Collapse
|
48
|
Nek4 regulates entry into replicative senescence and the response to DNA damage in human fibroblasts. Mol Cell Biol 2012; 32:3963-77. [PMID: 22851694 DOI: 10.1128/mcb.00436-12] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
When explanted into culture, normal human cells exhibit a finite number of cell divisions before entering a proliferative arrest termed replicative senescence. To identify genes essential for entry into replicative senescence, we performed an RNA interference (RNAi)-based loss-of-function screen and found that suppression of the Never in Mitosis Gene A (NIMA)-related protein kinase gene NEK4 disrupted timely entry into senescence. NEK4 suppression extended the number of population doublings required to reach replicative senescence in several human fibroblast strains and resulted in decreased transcription of the cyclin-dependent kinase inhibitor p21. NEK4-suppressed cells displayed impaired cell cycle arrest in response to double-stranded DNA damage, and mass spectrometric analysis of Nek4 immune complexes identified a complex containing DNA-dependent protein kinase catalytic subunit [DNA-PK(cs)], Ku70, and Ku80. NEK4 suppression causes defects in the recruitment of DNA-PK(cs) to DNA upon induction of double-stranded DNA damage, resulting in reduced p53 activation and H2AX phosphorylation. Together, these observations implicate Nek4 as a novel regulator of replicative senescence and the response to double-stranded DNA damage.
Collapse
|
49
|
Masgras I, Carrera S, de Verdier PJ, Brennan P, Majid A, Makhtar W, Tulchinsky E, Jones GDD, Roninson IB, Macip S. Reactive oxygen species and mitochondrial sensitivity to oxidative stress determine induction of cancer cell death by p21. J Biol Chem 2012; 287:9845-9854. [PMID: 22311974 DOI: 10.1074/jbc.m111.250357] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
p21(Waf1/Cip1/Sdi1) is a cyclin-dependent kinase inhibitor that mediates cell cycle arrest. Prolonged p21 up-regulation induces a senescent phenotype in normal and cancer cells, accompanied by an increase in intracellular reactive oxygen species (ROS). However, it has been shown recently that p21 expression can also lead to cell death in certain models. The mechanisms involved in this process are not fully understood. Here, we describe an induction of apoptosis by p21 in sarcoma cell lines that is p53-independent and can be ameliorated with antioxidants. Similar levels of p21 and ROS caused senescence in the absence of significant death in other cancer cell lines, suggesting a cell-specific response. We also found that cells undergoing p21-dependent cell death had higher sensitivity to oxidants and a specific pattern of mitochondrial polarization changes. Consistent with this, apoptosis could be blocked with targeted expression of catalase in the mitochondria of these cells. We propose that the balance between cancer cell death and arrest after p21 up-regulation depends on the specific effects of p21-induced ROS on the mitochondria. This suggests that selective up-regulation of p21 in cancer cells could be a successful therapeutic intervention for sarcomas and tumors with lower resistance to mitochondrial oxidative damage, regardless of p53 status.
Collapse
Affiliation(s)
- Ionica Masgras
- Department of Biochemistry, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Samantha Carrera
- Department of Biochemistry, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Petra J de Verdier
- Department of Molecular Medicine and Surgery, Urology Laboratory, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Paul Brennan
- Department of Infection, Immunity, and Biochemistry, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom, and
| | - Aneela Majid
- Medical Research Council (MRC) Toxicology Unit, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Wan Makhtar
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Eugene Tulchinsky
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - George D D Jones
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Igor B Roninson
- Translational Cancer Therapeutics Program Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208
| | - Salvador Macip
- Department of Biochemistry, University of Leicester, Leicester LE1 9HN, United Kingdom.
| |
Collapse
|
50
|
Bieging KT, Attardi LD. Deconstructing p53 transcriptional networks in tumor suppression. Trends Cell Biol 2011; 22:97-106. [PMID: 22154076 DOI: 10.1016/j.tcb.2011.10.006] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 10/26/2011] [Accepted: 10/27/2011] [Indexed: 12/16/2022]
Abstract
p53 is a pivotal tumor suppressor that induces apoptosis, cell-cycle arrest and senescence in response to stress signals. Although p53 transcriptional activation is important for these responses, the mechanisms underlying tumor suppression have been elusive. To date, no single or compound mouse knockout of specific p53 target genes has recapitulated the dramatic tumor predisposition that characterizes p53-null mice. Recently, however, analysis of knock-in mice expressing p53 transactivation domain mutants has revealed a group of primarily novel direct p53 target genes that may mediate tumor suppression in vivo. We present here an overview of well-known p53 target genes and the tumor phenotypes of the cognate knockout mice, and address the recent identification of new p53 transcriptional targets and how they enhance our understanding of p53 transcriptional networks central for tumor suppression.
Collapse
Affiliation(s)
- Kathryn T Bieging
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|