1
|
Wang C, Zhao X, Zhao L, Wang Y, Jia Y, Zhang X, Ma W. PKCζ phosphorylates VASP to mediate chemotaxis in breast cancer cells. Exp Cell Res 2023; 433:113823. [PMID: 37890607 DOI: 10.1016/j.yexcr.2023.113823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/17/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023]
Abstract
Breast carcinoma (BC) is one of the most common malignant cancers in females, and metastasis remains the leading cause of death in these patients. Chemotaxis plays an important role in cancer cell metastasis and the mechanism of breast cancer chemotaxis has become a central issue in contemporary research. PKCζ, a member of the atypical PKC family, has been reported to be an essential component of the EGF-stimulated chemotactic signaling pathway. However, the molecular mechanism through which PKCζ regulates chemotaxis remains unclear. Here, we used a proteomic approach to identify PKCζ-interacting proteins in breast cancer cells and identified VASP as a potential binding partner. Intriguingly, stimulation with EGF enhanced this interaction and induced the translocalization of PKCζ and VASP to the cell membrane. Further experiments showed that PKCζ catalyzes the phosphorylation of VASP at Ser157, which is critical for the biological function of VASP in regulating chemotaxis and actin polymerization in breast cancer cells. Furthermore, in PKCζ knockdown BC cells, the enrichment of VASP at the leading edge was reduced, and its interaction with profilin1 was attenuated, thereby reducing the chemotaxis and overall motility of breast cancer cells after EGF treatment. In functional assays, PKCζ promoted chemotaxis and motility of BC cells through VASP. Our findings demonstrate that PKCζ, a new kinase of VASP, plays an important role in promoting breast cancer metastasis and provides a theoretical basis for expanding new approaches to tumor biotherapy.
Collapse
Affiliation(s)
- Chunqing Wang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine China
| | - Xiaoqing Zhao
- Department of Clinical Laboratory Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, 250012 Jinan, Shandong China
| | - Liqing Zhao
- Department of Pediatrics, Zaozhuang Municipal Hospital, Zaozhuang, Shandong 277000, China
| | - Yunqiu Wang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine China
| | - Yan Jia
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.
| | - Xiaofang Zhang
- Department of Clinical Laboratory Medicine, Tianjin Medical University General Hospital, Tianjin, China.
| | - Wanshan Ma
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine China.
| |
Collapse
|
2
|
Shah H, Khan K, Khan N, Badshah Y, Ashraf NM, Shabbir M. Impact of deleterious missense PRKCI variants on structural and functional dynamics of protein. Sci Rep 2022; 12:3781. [PMID: 35260606 PMCID: PMC8904829 DOI: 10.1038/s41598-022-07526-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/08/2022] [Indexed: 11/09/2022] Open
Abstract
Protein kinase C iota (PKCɩ) is a novel protein containing 596 amino acids and is also a member of atypical kinase family. The role of PKCɩ has been explored in neurodegenerative diseases, neuroblastoma, ovarian and pancreatic cancers. Single nucleotide polymorphisms (SNPs) have not been studied in PKCɩ till date. The purpose of the current study is to scrutinize the deleterious missense variants in PKCɩ and determine the effect of these variants on stability and dynamics of the protein. The structure of protein PKCɩ was predicted for the first time and post translational modifications were determined. Genetic variants of PKCɩ were retrieved from ENSEMBL and only missense variants were further analyzed because of its linkage with diseases. The pathogenicity of missense variants, effect on structure and function of protein, association with cancer and conservancy of the protein residues were determined through computational approaches. It is observed that C1 and the pseudo substrate region has the highest number of pathogenic SNPs. Variations in the kinase domain of the protein are predicted to alter overall phosphorylation of the protein. Molecular dynamic simulations predicted noteworthy change in structural and functional dynamics of the protein because of these variants. The study revealed that nine deleterious variants can possibly contribute to malfunctioning of the protein and can be associated with diseases. This can be useful in diagnostics and developing therapeutics for diseases related to these polymorphisms.
Collapse
Affiliation(s)
- Hania Shah
- Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Khushbukhat Khan
- Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Naila Khan
- Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Yasmin Badshah
- Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Naeem Mahmood Ashraf
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat, Pakistan
| | - Maria Shabbir
- Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan.
| |
Collapse
|
3
|
PKCζ facilitates lymphatic metastatic spread of prostate cancer cells in a mice xenograft model. Oncogene 2019; 38:4215-4231. [PMID: 30705401 PMCID: PMC6756056 DOI: 10.1038/s41388-019-0722-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 11/20/2018] [Accepted: 01/15/2019] [Indexed: 12/18/2022]
Abstract
Prostate cancer disseminates primarily into the adjacent lymph nodes, which is related to a poor outcome. Atypical protein kinase C ζ (PKCζ) is highly expressed in aggressive prostate cancer and correlates with Gleason score, clinical stage, and poor prognosis. Here, we report the molecular mechanisms of PKCζ in lymphatic metastasis during prostate cancer progression. Using zinc-finger nuclease technology or PKCζ shRNA lentiviral particles, and orthotopic mouse xenografts, we show that PKCζ-knockout or knockdown from aggressive prostate cancer (PC3 and PC3U) cells, decreasesd tumor growth and lymphatic metastasis in vivo. Intriguingly, PKCζ-knockout or knockdown impaired the activation of AKT, ERK, and NF-κB signaling in prostate cancer cells, thereby impairing the expression of lymphangiogenic factors and macrophage recruitment, resulting in aberrant lymphangiogenesis. Moreover, PKCζ regulated the expression of hyaluronan synthase enzymes, which is important for hyaluronan-mediated lymphatic drainage and tumor dissemination. Thus, PKCζ plays a crucial oncogenic role in the lymphatic metastasis of prostate cancer and is predicted to be a novel therapeutic target for prostate cancer.
Collapse
|
4
|
Pavan S, Meyer-Schaller N, Diepenbruck M, Kalathur RKR, Saxena M, Christofori G. A kinome-wide high-content siRNA screen identifies MEK5-ERK5 signaling as critical for breast cancer cell EMT and metastasis. Oncogene 2018; 37:4197-4213. [PMID: 29713055 DOI: 10.1038/s41388-018-0270-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 01/10/2018] [Accepted: 01/16/2018] [Indexed: 12/21/2022]
Abstract
An epithelial to mesenchymal transition (EMT) has been correlated to malignant tumor progression and metastasis by promoting cancer cell migration and invasion and chemoresistance. Hence, finding druggable EMT effectors is critical to efficiently interfere with metastasis formation and to overcome therapy resistance. We have employed a high-content microscopy screen in combination with a kinome and phosphatome-wide siRNA library to identify signaling pathways underlying an EMT of murine mammary epithelial cells and breast cancer cells. This screen identified the MEK5-ERK5 axis as a critical player in TGFβ-mediated EMT. Suppression of MEK5-ERK5 signaling completely prevented the morphological and molecular changes occurring during a TGFβ-induced EMT and, conversely, forced highly metastatic breast cancer cells into a differentiated epithelial state. Inhibition of MEK5-ERK5 signaling also repressed breast cancer cell migration and invasion and substantially reduced lung metastasis without affecting primary tumor growth. The results suggest that the MEK5-ERK5 signaling axis via activation of MEF2B and other transcription factors plays an important role in the induction and maintenance of breast cancer cell migration and invasion and thus represents an exploitable target for the pharmacological inhibition of cancer cell metastasis.
Collapse
Affiliation(s)
- Simona Pavan
- Department of Biomedicine, University of Basel, Basel, 4058, Switzerland.
| | | | - Maren Diepenbruck
- Department of Biomedicine, University of Basel, Basel, 4058, Switzerland
| | | | - Meera Saxena
- Department of Biomedicine, University of Basel, Basel, 4058, Switzerland
| | | |
Collapse
|
5
|
Sánchez-Fernández G, Cabezudo S, Caballero Á, García-Hoz C, Tall GG, Klett J, Michnick SW, Mayor F, Ribas C. Protein Kinase C ζ Interacts with a Novel Binding Region of Gαq to Act as a Functional Effector. J Biol Chem 2016; 291:9513-25. [PMID: 26887939 DOI: 10.1074/jbc.m115.684308] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Indexed: 12/13/2022] Open
Abstract
Heterotrimeric G proteins play an essential role in the initiation of G protein-coupled receptor (GPCR) signaling through specific interactions with a variety of cellular effectors. We have recently reported that GPCR activation promotes a direct interaction between Gαq and protein kinase C ζ (PKCζ), leading to the stimulation of the ERK5 pathway independent of the canonical effector PLCβ. We report herein that the activation-dependent Gαq/PKCζ complex involves the basic PB1-type II domain of PKCζ and a novel interaction module in Gαq different from the classical effector-binding site. Point mutations in this Gαq region completely abrogate ERK5 phosphorylation, indicating that Gαq/PKCζ association is required for the activation of the pathway. Indeed, PKCζ was demonstrated to directly bind ERK5 thus acting as a scaffold between Gαq and ERK5 upon GPCR activation. The inhibition of these protein complexes by G protein-coupled receptor kinase 2, a known Gαq modulator, led to a complete abrogation of ERK5 stimulation. Finally, we reveal that Gαq/PKCζ complexes link Gαq to apoptotic cell death pathways. Our data suggest that the interaction between this novel region in Gαq and the effector PKCζ is a key event in Gαq signaling.
Collapse
Affiliation(s)
- Guzmán Sánchez-Fernández
- From the Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa," CSIC-UAM, Universidad Autónoma de Madrid, 28049-Madrid, Spain, Instituto de Investigación Sanitaria La Princesa, 29006-Madrid, Spain, Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Sofía Cabezudo
- From the Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa," CSIC-UAM, Universidad Autónoma de Madrid, 28049-Madrid, Spain, Instituto de Investigación Sanitaria La Princesa, 29006-Madrid, Spain
| | - Álvaro Caballero
- From the Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa," CSIC-UAM, Universidad Autónoma de Madrid, 28049-Madrid, Spain, Instituto de Investigación Sanitaria La Princesa, 29006-Madrid, Spain
| | - Carlota García-Hoz
- From the Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa," CSIC-UAM, Universidad Autónoma de Madrid, 28049-Madrid, Spain, Instituto de Investigación Sanitaria La Princesa, 29006-Madrid, Spain
| | - Gregory G Tall
- Departments of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York 14642, and
| | - Javier Klett
- From the Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa," CSIC-UAM, Universidad Autónoma de Madrid, 28049-Madrid, Spain
| | - Stephen W Michnick
- Département de Biochimie, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, Québec, H3C 3J7 Canada
| | - Federico Mayor
- From the Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa," CSIC-UAM, Universidad Autónoma de Madrid, 28049-Madrid, Spain, Instituto de Investigación Sanitaria La Princesa, 29006-Madrid, Spain,
| | - Catalina Ribas
- From the Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa," CSIC-UAM, Universidad Autónoma de Madrid, 28049-Madrid, Spain, Instituto de Investigación Sanitaria La Princesa, 29006-Madrid, Spain,
| |
Collapse
|
6
|
Aghamirzaie D, Batra D, Heath LS, Schneider A, Grene R, Collakova E. Transcriptome-wide functional characterization reveals novel relationships among differentially expressed transcripts in developing soybean embryos. BMC Genomics 2015; 16:928. [PMID: 26572793 PMCID: PMC4647491 DOI: 10.1186/s12864-015-2108-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 10/16/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Transcriptomics reveals the existence of transcripts of different coding potential and strand orientation. Alternative splicing (AS) can yield proteins with altered number and types of functional domains, suggesting the global occurrence of transcriptional and post-transcriptional events. Many biological processes, including seed maturation and desiccation, are regulated post-transcriptionally (e.g., by AS), leading to the production of more than one coding or noncoding sense transcript from a single locus. RESULTS We present an integrated computational framework to predict isoform-specific functions of plant transcripts. This framework includes a novel plant-specific weighted support vector machine classifier called CodeWise, which predicts the coding potential of transcripts with over 96 % accuracy, and several other tools enabling global sequence similarity, functional domain, and co-expression network analyses. First, this framework was applied to all detected transcripts (103,106), out of which 13 % was predicted by CodeWise to be noncoding RNAs in developing soybean embryos. Second, to investigate the role of AS during soybean embryo development, a population of 2,938 alternatively spliced and differentially expressed splice variants was analyzed and mined with respect to timing of expression. Conserved domain analyses revealed that AS resulted in global changes in the number, types, and extent of truncation of functional domains in protein variants. Isoform-specific co-expression network analysis using ArrayMining and clustering analyses revealed specific sub-networks and potential interactions among the components of selected signaling pathways related to seed maturation and the acquisition of desiccation tolerance. These signaling pathways involved abscisic acid- and FUSCA3-related transcripts, several of which were classified as noncoding and/or antisense transcripts and were co-expressed with corresponding coding transcripts. Noncoding and antisense transcripts likely play important regulatory roles in seed maturation- and desiccation-related signaling in soybean. CONCLUSIONS This work demonstrates how our integrated framework can be implemented to make experimentally testable predictions regarding the coding potential, co-expression, co-regulation, and function of transcripts and proteins related to a biological process of interest.
Collapse
Affiliation(s)
- Delasa Aghamirzaie
- Genetics, Bioinformatics and Computational Biology Program, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Dhruv Batra
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Lenwood S Heath
- Department of Computer Science, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Andrew Schneider
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Ruth Grene
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Eva Collakova
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
7
|
A Kinome-Wide Small Interfering RNA Screen Identifies Proviral and Antiviral Host Factors in Severe Acute Respiratory Syndrome Coronavirus Replication, Including Double-Stranded RNA-Activated Protein Kinase and Early Secretory Pathway Proteins. J Virol 2015; 89:8318-33. [PMID: 26041291 DOI: 10.1128/jvi.01029-15] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 05/22/2015] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED To identify host factors relevant for severe acute respiratory syndrome-coronavirus (SARS-CoV) replication, we performed a small interfering RNA (siRNA) library screen targeting the human kinome. Protein kinases are key regulators of many cellular functions, and the systematic knockdown of their expression should provide a broad perspective on factors and pathways promoting or antagonizing coronavirus replication. In addition to 40 proteins that promote SARS-CoV replication, our study identified 90 factors exhibiting an antiviral effect. Pathway analysis grouped subsets of these factors in specific cellular processes, including the innate immune response and the metabolism of complex lipids, which appear to play a role in SARS-CoV infection. Several factors were selected for in-depth validation in follow-up experiments. In cells depleted for the β2 subunit of the coatomer protein complex (COPB2), the strongest proviral hit, we observed reduced SARS-CoV protein expression and a >2-log reduction in virus yield. Knockdown of the COPB2-related proteins COPB1 and Golgi-specific brefeldin A-resistant guanine nucleotide exchange factor 1 (GBF1) also suggested that COPI-coated vesicles and/or the early secretory pathway are important for SARS-CoV replication. Depletion of the antiviral double-stranded RNA-activated protein kinase (PKR) enhanced virus replication in the primary screen, and validation experiments confirmed increased SARS-CoV protein expression and virus production upon PKR depletion. In addition, cyclin-dependent kinase 6 (CDK6) was identified as a novel antiviral host factor in SARS-CoV replication. The inventory of pro- and antiviral host factors and pathways described here substantiates and expands our understanding of SARS-CoV replication and may contribute to the identification of novel targets for antiviral therapy. IMPORTANCE Replication of all viruses, including SARS-CoV, depends on and is influenced by cellular pathways. Although substantial progress has been made in dissecting the coronavirus replicative cycle, our understanding of the host factors that stimulate (proviral factors) or restrict (antiviral factors) infection remains far from complete. To study the role of host proteins in SARS-CoV infection, we set out to systematically identify kinase-regulated processes that influence virus replication. Protein kinases are key regulators in signal transduction, controlling a wide variety of cellular processes, and many of them are targets of approved drugs and other compounds. Our screen identified a variety of hits and will form the basis for more detailed follow-up studies that should contribute to a better understanding of SARS-CoV replication and coronavirus-host interactions in general. The identified factors could be interesting targets for the development of host-directed antiviral therapy to treat infections with SARS-CoV or other pathogenic coronaviruses.
Collapse
|
8
|
Wu Y, Chakrabarti S. ERK5 Mediated Signalling in Diabetic Retinopathy. MEDICAL HYPOTHESIS, DISCOVERY & INNOVATION OPHTHALMOLOGY JOURNAL 2015; 4:17-26. [PMID: 25861671 PMCID: PMC4389294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Diabetic retinopathy is the lead among causes of blindness in North America. Glucose-induced endothelial injury is the most important cause of diabetic retinopathy and other vascular complications. Extracellular signal-regulated kinase 5 (ERK5), also known as big mitogen-activated protein kinase 1 (BMK1), is a member of mitogen-activated protein kinases (MAPK) family. Physiologically, it is critical for cardiovascular development and maintenance of the endothelial cell integrity. Extracellular signal-regulated kinase 5 is protective for endothelial cells under stimulation and stress. Decreased activation of ERK5 results in increased endothelial cell death. Extracellular signal-regulated kinase 5 signaling may be subject to alteration by hyperglycemia, while signaling pathway including ERK5 may be subject to alteration during pathogenesis of diabetic complications. In this review, the role of ERK5 in diabetic macro- and microvascular complications with a focus on diabetic retinopathy are summarized and discussed.
Collapse
|
9
|
Avasarala S, Bikkavilli RK, Van Scoyk M, Zhang W, Lapite A, Hostetter L, Byers JT, Heasley LE, Sohn JW, Winn RA. Heterotrimeric G-protein, Gα16, is a critical downstream effector of non-canonical Wnt signaling and a potent inhibitor of transformed cell growth in non small cell lung cancer. PLoS One 2013; 8:e76895. [PMID: 24204697 PMCID: PMC3800035 DOI: 10.1371/journal.pone.0076895] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 08/28/2013] [Indexed: 11/19/2022] Open
Abstract
G-protein-coupled receptors (GPCR) are the largest family of cell surface molecules that play important role/s in a number of biological and pathological processes including cancers. Earlier studies have highlighted the importance of Wnt7a signaling via its cognate receptor Frizzled9, a GPCR, in inhibition of cell proliferation, anchorage-independent growth, and reversal of transformed phenotype in non small cell lung cancer primarily through activation of the tumor suppressor, PPARγ. However, the G-protein effectors that couple to this important tumor suppressor pathway have not been identified, and are of potential therapeutic interest. In this study, by using two independent Wnt7a/Frizzled9-specific read-outs, we identify Gα16 as a novel downstream effector of Wnt7a/Frizzled9 signaling. Interestingly, Gα16 expression is severely down-regulated, both at the messenger RNA levels and protein levels, in many non small cell lung cancer cell lines. Additionally, through gene-specific knock-downs and expression of GTPase-deficient forms (Q212L) of Gα16, we also establish Gα16 as a novel regulator of non small cell lung cancer cell proliferation and anchorage-independent cell growth. Taken together, our data not only establish the importance of Gα16 as a critical downstream effector of the non-canonical Wnt signaling pathway but also as a potential therapeutic target for the treatment of non small cell lung cancer.
Collapse
Affiliation(s)
- Sreedevi Avasarala
- Department of Pulmonary, Critical Care, Sleep and Allergy, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Rama Kamesh Bikkavilli
- Department of Pulmonary, Critical Care, Sleep and Allergy, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Michelle Van Scoyk
- Department of Pulmonary, Critical Care, Sleep and Allergy, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Wei Zhang
- Department of Pediatrics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Ajibike Lapite
- Department of Pulmonary, Critical Care, Sleep and Allergy, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Logan Hostetter
- Department of Pulmonary, Critical Care, Sleep and Allergy, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Joshua T. Byers
- Department of Pulmonary, Critical Care, Sleep and Allergy, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Lynn E. Heasley
- Department of Craniofacial Biology, Anschutz Medical Campus, University of Colorado, Denver, Colorado, United States of America
| | - Jang Won Sohn
- Department of Internal Medicine, School of Medicine, Hanyang University, Seoul, South Korea
| | - Robert A. Winn
- Department of Pulmonary, Critical Care, Sleep and Allergy, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
10
|
Sokolowska I, Woods AG, Gawinowicz MA, Roy U, Darie CC. Characterization of tumor differentiation factor (TDF) and its receptor (TDF-R). Cell Mol Life Sci 2013; 70:2835-48. [PMID: 23076253 PMCID: PMC11113447 DOI: 10.1007/s00018-012-1185-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 09/27/2012] [Accepted: 10/01/2012] [Indexed: 10/27/2022]
Abstract
Tumor differentiation factor (TDF) is an under-investigated protein produced by the pituitary with no definitive function. TDF is secreted into the bloodstream and targets the breast and prostate, suggesting that it has an endocrine function. Initially, TDF was indirectly discovered based on the differentiation effect of alkaline pituitary extracts of the mammosomatotropic tumor MtTWlO on MTW9/PI rat mammary tumor cells. Years later, the cDNA clone responsible for this differentiation activity was isolated from a human pituitary cDNA library using expression cloning. The cDNA encoded a 108-amino-acid polypeptide that had differentiation activity on MCF7 breast cancer cells and on DU145 prostate cancer cells in vitro and in vivo. Recently, our group focused on identification of the TDF receptor (TDF-R). As potential TDF-R candidates, we identified the members of the Heat Shock 70-kDa family of proteins (HSP70) in both MCF7 and BT-549 human breast cancer cells (HBCC) and PC3, DU145, and LNCaP human prostate cancer cells (HPCC), but not in HeLa cells, NG108 neuroblastoma, or HDF-a and BLK CL.4 cells fibroblasts or fibroblast-like cells. Here we review the current advances on TDF, with particular focus on the structural investigation of its receptor and on its functional effects on breast and prostate cells.
Collapse
Affiliation(s)
- Izabela Sokolowska
- Biochemistry and Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699-5810 USA
| | - Alisa G. Woods
- Biochemistry and Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699-5810 USA
| | - Mary Ann Gawinowicz
- Protein Core Facility, College of Physicians and Surgeons, Columbia University, 160 Fort Washington Avenue, Room 415, New York, NY 10032 USA
| | - Urmi Roy
- Biochemistry and Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699-5810 USA
| | - Costel C. Darie
- Biochemistry and Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699-5810 USA
| |
Collapse
|
11
|
Sokolowska I, Woods AG, Gawinowicz MA, Roy U, Darie CC. Identification of a potential tumor differentiation factor receptor candidate in prostate cancer cells. FEBS J 2012; 279:2579-94. [PMID: 22613557 DOI: 10.1111/j.1742-4658.2012.08641.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tumor differentiation factor (TDF) is a pituitary protein that is secreted into the bloodstream and has an endocrine function. TDF and TDF-P1, a 20-residue peptide selected from the ORF of TDF, induce differentiation in human breast and prostate cancer cells, but not in other cells. TDF has no known mechanism of action. In our recent study, we identified heat shock 70 kDa proteins (HSP70s) as TDF receptors (TDF-Rs) in breast cancer cells. Therefore, we sought to investigate whether TDF-R candidates from prostate cancer cells are the same as those identified in breast cancer cells. Here, we used TDF-P1 to purify the potential TDF-R candidates by affinity purification chromatography from DU145 and PC3 steroid-resistant prostate cancer cells, LNCaP steroid-responsive prostate cancer cells, and nonprostate NG108 neuroblastoma and BLK CL.4 fibroblast-like cells. We identified the purified proteins by MS, and validated them by western blotting, immunofluorescence microscopy, immunoaffinity purification chromatography, and structural biology. We identified seven candidate proteins, of which three were from the HSP70 family. These three proteins were validated as potential TDF-R candidates in LNCaP steroid-responsive and in DU145 and PC3 steroid-resistant prostate cancer cells, but not in NG108 neuroblastoma and BLK CL.4 fibroblast-like cells. Our previous study and the current study suggest that GRP78, and perhaps HSP70s, are strong TDF-R candidates, and further suggest that TDF interacts with its receptors exclusively in breast and prostate cells, inducing cell differentiation through a novel, steroid-independent pathway.
Collapse
Affiliation(s)
- Izabela Sokolowska
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| | | | | | | | | |
Collapse
|
12
|
Seidl S, Braun UB, Leitges M. Functional comparison of protein domains within aPKCs involved in nucleocytoplasmic shuttling. Biol Open 2012; 1:436-45. [PMID: 23213435 PMCID: PMC3507206 DOI: 10.1242/bio.2012505] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The atypical protein kinases C (PKC) isoforms ι and ζ play crucial roles in regulation of signaling pathways related to proliferation, differentiation and cell survival. Over the years several interaction partners and phosphorylation targets have been identified. However, little is known about the regulation of atypical aPKC isoforms. To address this question, we performed a comparative analysis of atypical aPKCι/λ and ζ in MDCK cells. By using green fluorescence protein (GFP) fusion proteins containing the full-length or truncated proteins, we were able to recognize differences in subcellular localization and nucleocytoplasmic shuttling of both isoforms. We show, that an earlier described nuclear localization sequence (NLS), plays a role in the regulation of atypical aPKCζ but not in aPKCι, despite the fact that it is present in both isoforms. Leptomycin B treatment induces accumulation of GFP-fusion protein of both isoforms in the nucleus. Regardless, the loss of the NLS only decreases shuttling of aPKCζ, while aPKCι remains unaffected. In addition, we identified the hinge region as a potential regulator of localization of atypical PKCs. With a set of chimeric proteins we show that the hinge region of aPKCι mediates nuclear localization. In contrast, the hinge region of aPKCζ causes exclusion from the nucleus, indicating two different mechanisms leading to isoform specific regulation. Taken together, we show for the first time, that the atypical isoforms aPKCι and ζ underly different mechanisms regarding their regulation of subcellular localization and translocation into the nucleus in MDCK cells.
Collapse
Affiliation(s)
- Sebastian Seidl
- Biotechnology Centre of Oslo, University of Oslo , NO-0349, Oslo , Norway
| | | | | |
Collapse
|
13
|
The role of atypical protein kinase C in CSF-1-dependent Erk activation and proliferation in myeloid progenitors and macrophages. PLoS One 2011; 6:e25580. [PMID: 22028782 PMCID: PMC3196503 DOI: 10.1371/journal.pone.0025580] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 09/05/2011] [Indexed: 12/05/2022] Open
Abstract
Colony stimulating factor-1 (CSF-1 or M-CSF) is the major physiological regulator of the proliferation, differentiation and survival of cells of the mononuclear phagocyte lineage. CSF-1 binds to a receptor tyrosine kinase, the CSF-1 receptor (CSF-1R). Multiple pathways are activated downstream of the CSF-1R; however, it is not clear which pathways regulate proliferation and survival. Here, we investigated the role of atypical protein kinase Cs (PKCζ) in a myeloid progenitor cell line that expressed CSF-1R (32D.R) and in primary murine bone marrow derived macrophages (BMMs). In 32D.R cells, CSF-1 induced the phosphorylation of PKCζ and increased its kinase activity. PKC inhibitors and transfections with mutant PKCs showed that optimal CSF-1-dependent Erk activation and proliferation depended on the activity of PKCζ. We previously reported that CSF-1 activated the Erk pathway through an A-Raf-dependent and an A-Raf independent pathway (Lee and States, Mol. Cell. Biol.18, 6779). PKC inhibitors did not affect CSF-1 induced Ras and A-Raf activity but markedly reduced MEK and Erk activity, implying that PKCζ regulated the CSF-1-Erk pathway at the level of MEK. PKCζ has been implicated in activating the NF-κB pathway. However, CSF-1 promoted proliferation in an NF-κB independent manner. We established stable 32D.R cell lines that overexpressed PKCζ. Overexpression of PKCζ increased the intensity and duration of CSF-1 induced Erk activity and rendered cells more responsive to CSF-1 mediated proliferation. In contrast to 32D.R cells, PKCζ inhibition in BMMs had only a modest effect on proliferation. Moreover, PKCζ -specific and pan-PKC inhibitors induced a paradoxical increase in MEK-Erk phosphorylation suggesting that PKCs targeted a common negative regulatory step upstream of MEK. Our results demonstrated that CSF-1 dependent Erk activation and proliferation are regulated differentially in progenitors and differentiated cells.
Collapse
|
14
|
Velazquez-Garcia S, Valle S, Rosa TC, Takane KK, Demirci C, Alvarez-Perez JC, Mellado-Gil JM, Ernst S, Scott DK, Vasavada RC, Alonso LC, Garcia-Ocaña A. Activation of protein kinase C-ζ in pancreatic β-cells in vivo improves glucose tolerance and induces β-cell expansion via mTOR activation. Diabetes 2011; 60:2546-59. [PMID: 21911744 PMCID: PMC3178296 DOI: 10.2337/db10-1783] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVE PKC-ζ activation is a key signaling event for growth factor-induced β-cell replication in vitro. However, the effect of direct PKC-ζ activation in the β-cell in vivo is unknown. In this study, we examined the effects of PKC-ζ activation in β-cell expansion and function in vivo in mice and the mechanisms associated with these effects. RESEARCH DESIGN AND METHODS We characterized glucose homeostasis and β-cell phenotype of transgenic (TG) mice with constitutive activation of PKC-ζ in the β-cell. We also analyzed the expression and regulation of signaling pathways, G1/S cell cycle molecules, and β-cell functional markers in TG and wild-type mouse islets. RESULTS TG mice displayed increased plasma insulin, improved glucose tolerance, and enhanced insulin secretion with concomitant upregulation of islet insulin and glucokinase expression. In addition, TG mice displayed increased β-cell proliferation, size, and mass compared with wild-type littermates. The increase in β-cell proliferation was associated with upregulation of cyclins D1, D2, D3, and A and downregulation of p21. Phosphorylation of D-cyclins, known to initiate their rapid degradation, was reduced in TG mouse islets. Phosphorylation/inactivation of GSK-3β and phosphorylation/activation of mTOR, critical regulators of D-cyclin expression and β-cell proliferation, were enhanced in TG mouse islets, without changes in Akt phosphorylation status. Rapamycin treatment in vivo eliminated the increases in β-cell proliferation, size, and mass; the upregulation of cyclins Ds and A in TG mice; and the improvement in glucose tolerance-identifying mTOR as a novel downstream mediator of PKC-ζ-induced β-cell replication and expansion in vivo. CONCLUSIONS PKC:-ζ, through mTOR activation, modifies the expression pattern of β-cell cycle molecules leading to increased β-cell replication and mass with a concomitant enhancement in β-cell function. Approaches to enhance PKC-ζ activity may be of value as a therapeutic strategy for the treatment of diabetes.
Collapse
Affiliation(s)
- Silvia Velazquez-Garcia
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shelley Valle
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Taylor C. Rosa
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Karen K. Takane
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Cem Demirci
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Juan C. Alvarez-Perez
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jose M. Mellado-Gil
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sara Ernst
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Donald K. Scott
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rupangi C. Vasavada
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Laura C. Alonso
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Adolfo Garcia-Ocaña
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, Pennsylvania
- Corresponding author: Adolfo Garcia-Ocaña,
| |
Collapse
|
15
|
Song C, Rahim RT, Davey PC, Bednar F, Bardi G, Zhang L, Zhang N, Oppenheim JJ, Rogers TJ. Protein kinase Czeta mediates micro-opioid receptor-induced cross-desensitization of chemokine receptor CCR5. J Biol Chem 2011; 286:20354-65. [PMID: 21454526 DOI: 10.1074/jbc.m110.177303] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously shown that the μ-opioid receptor (MOR) is capable of mediating cross-desensitization of several chemokine receptors including CCR5, but the biochemical mechanism of this process has not been fully elucidated. We have carried out a series of functional and biochemical studies and found that the mechanism of MOR-induced cross-desensitization of CCR5 involves the activation of PKCζ. Inhibition of PKCζ by its pseudosubstrate inhibitor, or its siRNA, or dominant negative mutants suppresses the cross-desensitization of CCR5. Our results further indicate that the activation of PKCζ is mediated through a pathway involving phosphoinositol-dependent kinase-1 (PDK1). In addition, activation of MOR elevates the phosphorylation level and kinase activity of PKCζ. The phosphorylation of PKCζ can be suppressed by a dominant negative mutant of PDK1. We observed that following MOR activation, the interaction between PKCζ and PDK1 is immediately increased based on the analysis of fluorescent resonance energy transfer in cells with the expression of PKCζ-YFP and PDK1-CFP. In addition, cells expressing PKCζ kinase motif mutants (Lys-281, Thr-410, Thr-560) fail to exhibit full MOR-induced desensitization of CCR5 activity. Taken together, we propose that upon DAMGO treatment, MOR activates PKCζ through a PDK1-dependent signaling pathway to induce CCR5 phosphorylation and desensitization. Because CCR5 is a highly proinflammatory receptor, and a critical coreceptor for HIV-1, these results may provide a novel approach for the development of specific therapeutic agents to treat patients with certain inflammatory diseases or AIDS.
Collapse
Affiliation(s)
- Changcheng Song
- Fels Institute for Cancer Research and Molecular Biology, Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Gautel M. Cytoskeletal protein kinases: titin and its relations in mechanosensing. Pflugers Arch 2011; 462:119-34. [PMID: 21416260 PMCID: PMC3114093 DOI: 10.1007/s00424-011-0946-1] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 02/15/2011] [Accepted: 02/18/2011] [Indexed: 12/22/2022]
Abstract
Titin, the giant elastic ruler protein of striated muscle sarcomeres, contains a catalytic kinase domain related to a family of intrasterically regulated protein kinases. The most extensively studied member of this branch of the human kinome is the Ca2+–calmodulin (CaM)-regulated myosin light-chain kinases (MLCK). However, not all kinases of the MLCK branch are functional MLCKs, and about half lack a CaM binding site in their C-terminal autoinhibitory tail (AI). A unifying feature is their association with the cytoskeleton, mostly via actin and myosin filaments. Titin kinase, similar to its invertebrate analogue twitchin kinase and likely other “MLCKs”, is not Ca2+–calmodulin-activated. Recently, local protein unfolding of the C-terminal AI has emerged as a common mechanism in the activation of CaM kinases. Single-molecule data suggested that opening of the TK active site could also be achieved by mechanical unfolding of the AI. Mechanical modulation of catalytic activity might thus allow cytoskeletal signalling proteins to act as mechanosensors, creating feedback mechanisms between cytoskeletal tension and tension generation or cellular remodelling. Similar to other MLCK-like kinases like DRAK2 and DAPK1, TK is linked to protein turnover regulation via the autophagy/lysosomal system, suggesting the MLCK-like kinases have common functions beyond contraction regulation.
Collapse
Affiliation(s)
- Mathias Gautel
- King's College London BHF Centre of Research Excellence, Cardiovascular Division, London, SE1 1UL, UK.
| |
Collapse
|
17
|
Andres C, Meyer S, Dina OA, Levine JD, Hucho T. Quantitative automated microscopy (QuAM) elucidates growth factor specific signalling in pain sensitization. Mol Pain 2010; 6:98. [PMID: 21187008 PMCID: PMC3023724 DOI: 10.1186/1744-8069-6-98] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 12/27/2010] [Indexed: 01/19/2023] Open
Abstract
Background Dorsal root ganglia (DRG)-neurons are commonly characterized immunocytochemically. Cells are mostly grouped by the experimenter's eye as "marker-positive" and "marker-negative" according to their immunofluorescence intensity. Classification criteria remain largely undefined. Overcoming this shortfall, we established a quantitative automated microscopy (QuAM) for a defined and multiparametric analysis of adherent heterogeneous primary neurons on a single cell base. The growth factors NGF, GDNF and EGF activate the MAP-kinase Erk1/2 via receptor tyrosine kinase signalling. NGF and GDNF are established factors in regeneration and sensitization of nociceptive neurons. If also the tissue regenerating growth factor, EGF, influences nociceptors is so far unknown. We asked, if EGF can act on nociceptors, and if QuAM can elucidate differences between NGF, GDNF and EGF induced Erk1/2 activation kinetics. Finally, we evaluated, if the investigation of one signalling component allows prediction of the behavioral response to a reagent not tested on nociceptors such as EGF. Results We established a software-based neuron identification, described quantitatively DRG-neuron heterogeneity and correlated measured sample sizes and corresponding assay sensitivity. Analysing more than 70,000 individual neurons we defined neuronal subgroups based on differential Erk1/2 activation status in sensory neurons. Baseline activity levels varied strongly already in untreated neurons. NGF and GDNF subgroup responsiveness correlated with their subgroup specificity on IB4(+)- and IB4(-)-neurons, respectively. We confirmed expression of EGF-receptors in all sensory neurons. EGF treatment induced STAT3 translocation into the nucleus. Nevertheless, we could not detect any EGF induced Erk1/2 phosphorylation. Accordingly, intradermal injection of EGF resulted in a fundamentally different outcome than NGF/GDNF. EGF did not induce mechanical hyperalgesia, but blocked PGE2-induced sensitization. Conclusions QuAM is a suitable if not necessary tool to analyze activation of endogenous signalling in heterogeneous cultures. NGF, GDNF and EGF stimulation of DRG-neurons shows differential Erk1/2 activation responses and a corresponding differential behavioral phenotype. Thus, in addition to expression-markers also signalling-activity can be taken for functional subgroup differentiation and as predictor of behavioral outcome. The anti-nociceptive function of EGF is an intriguing result in the context of tissue damage but also for understanding pain resulting from EGF-receptor block during cancer therapy.
Collapse
Affiliation(s)
- Christine Andres
- Department for Molecular Human Genetics, Max Planck Institute for Molecular Genetics, Ihnestrasse 73, Berlin, Germany
| | | | | | | | | |
Collapse
|
18
|
Litherland GJ, Elias MS, Hui W, Macdonald CD, Catterall JB, Barter MJ, Farren MJ, Jefferson M, Rowan AD. Protein kinase C isoforms zeta and iota mediate collagenase expression and cartilage destruction via STAT3- and ERK-dependent c-fos induction. J Biol Chem 2010; 285:22414-25. [PMID: 20463008 PMCID: PMC2903406 DOI: 10.1074/jbc.m110.120121] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 04/30/2010] [Indexed: 12/27/2022] Open
Abstract
The protein kinase C (PKC) signaling pathway is a major regulator of cellular functions and is implicated in pathologies involving extracellular matrix remodeling. Inflammatory joint disease is characterized by excessive extracellular matrix catabolism, and here we assess the role of PKC in the induction of the collagenases, matrix metalloproteinase (MMP)-1 and MMP-13, in human chondrocytes by the potent cytokine stimulus interleukin-1 (IL-1) in combination with oncostatin M (OSM). IL-1 + OSM-stimulated collagenolysis and gelatinase activity were ameliorated by pharmacological PKC inhibition in bovine cartilage, as was collagenase gene induction in human chondrocytes. Small interfering RNA-mediated silencing of PKC gene expression showed that both novel (nPKC delta, nPKC eta) and atypical (aPKC zeta, aPKC iota) isoforms were involved in collagenase induction by IL-1. However, MMP1 and MMP13 induction by IL-1 + OSM was inhibited only by aPKC silencing, suggesting that only atypical isoforms play a significant role in complex inflammatory milieus. Silencing of either aPKC led to diminished IL-1 + OSM-dependent extracellular signal-regulated kinase (ERK) and signal transducer and activator of transcription (STAT) 3 phosphorylation, and c-fos expression. STAT3 gene silencing or ERK pathway inhibition also resulted in loss of IL-1 + OSM-stimulated c-fos and collagenase expression. Silencing of c-fos and c-jun expression was sufficient to abrogate IL-1 + OSM-stimulated collagenase gene induction, and overexpression of both c-fos and c-jun was sufficient to drive transcription from the MMP1 promoter in the absence of a stimulus. Our data identify atypical PKC isozymes as STAT and ERK activators that mediate c-fos and collagenase expression during IL-1 + OSM synergy in human chondrocytes. aPKCs may constitute potential therapeutic targets for inflammatory joint diseases involving increased collagenase expression.
Collapse
Affiliation(s)
- Gary J. Litherland
- From the Cell Signalling, Injury and Repair Group, Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle-upon-Tyne NE2 4HH, United Kingdom
| | - Martina S. Elias
- From the Cell Signalling, Injury and Repair Group, Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle-upon-Tyne NE2 4HH, United Kingdom
| | - Wang Hui
- From the Cell Signalling, Injury and Repair Group, Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle-upon-Tyne NE2 4HH, United Kingdom
| | - Christopher D. Macdonald
- From the Cell Signalling, Injury and Repair Group, Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle-upon-Tyne NE2 4HH, United Kingdom
| | - Jonathon B. Catterall
- From the Cell Signalling, Injury and Repair Group, Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle-upon-Tyne NE2 4HH, United Kingdom
| | - Matt J. Barter
- From the Cell Signalling, Injury and Repair Group, Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle-upon-Tyne NE2 4HH, United Kingdom
| | - Matthew J. Farren
- From the Cell Signalling, Injury and Repair Group, Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle-upon-Tyne NE2 4HH, United Kingdom
| | - Matthew Jefferson
- From the Cell Signalling, Injury and Repair Group, Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle-upon-Tyne NE2 4HH, United Kingdom
| | - Andrew D. Rowan
- From the Cell Signalling, Injury and Repair Group, Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle-upon-Tyne NE2 4HH, United Kingdom
| |
Collapse
|
19
|
García-Hoz C, Sánchez-Fernández G, Díaz-Meco MT, Moscat J, Mayor F, Ribas C. G alpha(q) acts as an adaptor protein in protein kinase C zeta (PKCzeta)-mediated ERK5 activation by G protein-coupled receptors (GPCR). J Biol Chem 2010; 285:13480-9. [PMID: 20200162 DOI: 10.1074/jbc.m109.098699] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
G(q)-coupled G protein-coupled receptors (GPCR) mediate the actions of a variety of messengers that are key regulators of different cellular functions. These receptors can regulate a highly interconnected network of biochemical routes that control the activity of several members of the mitogen-activated protein kinase (MAPK) family. The ERK5 MAPK has been shown to be activated by G(q)-coupled GPCR via unknown mechanisms. We find that the atypical protein kinase C (PKCzeta), previously reported to interact with the ERK5 activator MEK5 and to be involved in epidermal growth factor-mediated ERK5 stimulation, plays a crucial role in the activation of the ERK5 pathway by G(q)-coupled GPCR. Stimulation of ERK5 by G(q)-coupled GPCR is abolished upon pharmacological inhibition of PKCzeta as well as in embryonic fibroblasts obtained from PKCzeta-deficient mice. Both PKCzeta and MEK5 associate to G alpha(q) upon activation of GPCR, thus forming a ternary complex that seems essential for the activation of ERK5. These data put forward a novel function of G alpha(q) as a scaffold protein involved in the modulation of the ERK5 cascade by GPCR that could be relevant in G(q)-mediated physiological functions.
Collapse
Affiliation(s)
- Carlota García-Hoz
- Departamento de Biología Molecular, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
20
|
Deshmukh K, Anamika K, Srinivasan N. Evolution of domain combinations in protein kinases and its implications for functional diversity. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2009; 102:1-15. [PMID: 20026163 DOI: 10.1016/j.pbiomolbio.2009.12.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 12/10/2009] [Indexed: 01/01/2023]
Abstract
Protein kinases phosphorylating Ser/Thr/Tyr residues in several cellular proteins exert tight control over their biological functions. They constitute the largest protein family in most eukaryotic species. Protein kinases classified based on sequence similarity in their catalytic domains, cluster into subfamilies, which share gross functional properties. Many protein kinases are associated or tethered covalently to domains that serve as adapter or regulatory modules, aiding substrate recruitment, specificity, and also serve as scaffolds. Hence the modular organisation of the protein kinases serves as guidelines to their functional and molecular properties. Analysis of genomic repertoires of protein kinases in eukaryotes have revealed wide spectrum of domain organisation across various subfamilies of kinases. Occurrence of organism-specific novel domain combinations suggests functional diversity achieved by protein kinases in order to regulate variety of biological processes. In addition, domain architecture of protein kinases revealed existence of hybrid protein kinase subfamilies and their emerging roles in the signaling of eukaryotic organisms. In this review we discuss the repertoire of non-kinase domains tethered to multi-domain kinases in the metazoans. Similarities and differences in the domain architectures of protein kinases in these organisms indicate conserved and unique features that are critical to functional specialization.
Collapse
Affiliation(s)
- Krupa Deshmukh
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | | | | |
Collapse
|
21
|
Rodriguez EM, Dunham EE, Martin GS. Atypical protein kinase C activity is required for extracellular matrix degradation and invasion by Src-transformed cells. J Cell Physiol 2009; 221:171-82. [PMID: 19492416 DOI: 10.1002/jcp.21841] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Atypical protein kinase C (aPKC) isoforms have been shown to mediate Src-dependent signaling in response to growth factor stimulation. To determine if aPKC activity contributes to the transformed phenotype of cells expressing oncogenic Src, we have examined the activity and function of aPKCs in 3T3 cells expressing viral Src (v-Src). aPKC activity and tyrosine phosphorylation were found to be elevated in some but not all clones of mouse fibroblasts expressing v-Src. aPKC activity was inhibited either by addition of a membrane-permeable pseudosubstrate, by expression of a dominant-negative aPKC, or by RNAi-mediated knockdown of specific aPKC isoforms. aPKC activity contributes to morphological transformation and stress fiber disruption, and is required for migration of Src-transformed cells and for their ability to polarize at the edge of a monolayer. The lambda isoform of aPKC is specifically required for invasion through extracellular matrix in Boyden chamber assays and for degradation of the extracellular matrix in in situ zymography assays. Tyrosine phosphorylation of aPKClambda is required for its ability to promote cell invasion. The defect in invasion upon aPKC inhibition appears to result from a defect in the assembly and/or function of podosomes, invasive adhesions on the ventral surface of the cell that are sites of protease secretion. aPKC was also found to localize to podosomes of v-Src transformed cells, suggesting a direct role for aPKC in podosome assembly and/or function. We conclude that basal or elevated aPKC activity is required for the ability of Src-transformed cells to degrade and invade the extracellular matrix.
Collapse
Affiliation(s)
- Elena M Rodriguez
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720-3204, USA
| | | | | |
Collapse
|
22
|
Guo W, Wu S, Wang L, Wang RY, Wei X, Liu J, Fang B. Interruption of RNA processing machinery by a small compound, 1-[(4-chlorophenyl)methyl]-1H-indole-3-carboxaldehyde (oncrasin-1). Mol Cancer Ther 2009; 8:441-8. [PMID: 19208825 DOI: 10.1158/1535-7163.mct-08-0839] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Protein kinase Ciota (PKCiota) is activated by oncogenic Ras proteins and is required for K-Ras-induced transformation and colonic carcinogenesis in vivo. However, the role of PKCiota in signal transduction and oncogenesis is not clear. We recently identified a small molecule, designated 1-[(4-chlorophenyl)methyl]-1H-indole-3-carboxaldehyde (oncrasin-1), that can selectively kill K-Ras mutant cancer cells and induce abnormal nuclear aggregation of PKCiota in sensitive cells but not in resistant cells. To determine the causes and biological consequences of PKCiota aggregates in the nucleus, we analyzed the effect of oncrasin-1 on proteins involved in DNA repair and RNA processing. Our results showed that oncrasin-1 treatment led to coaggregation of PKCiota and splicing factors into megaspliceosomes but had no obvious effects on the DNA repair molecule Rad51. Moreover, oncrasin-1 treatment suppressed the phosphorylation of the largest subunit of RNA polymerase II and the expression of intronless reporter genes in sensitive cells but not in resistant cells, suggesting that suppression of RNA transcription is a major effect of oncrasin-1 treatment. Studies with cultured cells or with recombinant proteins showed that oncrasin-1 can disrupt the interaction of PKCiota and cyclin-dependent protein kinase 9/cyclin T1 complex, which is known to phosphorylate the largest subunit of RNA polymerase II and is required for RNA transcription. Together, our results suggest that oncrasin-1 suppresses the function of RNA processing machinery and that PKCiota might be involved in the biological function of RNA processing complexes.
Collapse
Affiliation(s)
- Wei Guo
- Department of Thoracic and Cardiovascular Surgery, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Activation of ERK5 in angiotensin II-induced hypertrophy of human aortic smooth muscle cells. Mol Cell Biochem 2008; 322:171-8. [PMID: 19011954 DOI: 10.1007/s11010-008-9954-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2008] [Accepted: 10/28/2008] [Indexed: 12/17/2022]
Abstract
Extracellular signal-regulated kinase 5 (ERK5), a recently discovered mitogen-activated protein kinase (MAPK), plays a key role in the development and pathogenesis of cardiovascular disease. In order to clarify the pathophysiological significance of ERK5 in vascular remodeling, we investigated ERK5 phosphorylation in hypertrophy of human aortic smooth muscle cells (HASMCs) induced by angiotensin II (Ang II). The AT1 receptor was involved in Ang II-induced ERK5 activity. Hypertrophy was detected by the measurement of protein synthesis with [(3)H]-Leu incorporation in cultured HASMCs. Ang II rapidly induced phosphorylation of ERK5 at Thr218/Tyr220 residues in a time- and dose-dependent manner. Activation of myocyte enhancer factor-2C (MEF2C) by ERK5 was inhibited by PD98059. Transfecting HASMCs with small interfering RNA (siRNA) to silence ERK5 inhibited Ang II-induced cell hypertrophy. Thus, ERK5 phosphorylation contributes to MEF2C activation and subsequent HASMC hypertrophy induced by Ang II, for a novel molecular mechanism in cardiovascular diseases induced by Ang II.
Collapse
|
24
|
Targeting the oncogenic protein kinase Ciota signalling pathway for the treatment of cancer. Biochem Soc Trans 2008; 35:996-1000. [PMID: 17956262 DOI: 10.1042/bst0350996] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PKC (protein kinase C) isoenzymes are key signalling components involved in the regulation of normal cell proliferation, differentiation, polarity and survival. The aberrant regulation of PKC isoenzymes has been implicated in the development of many human diseases including cancer [Fields and Gustafson (2003) Methods Mol. Biol. 233, 519-537]. To date, however, only one PKC isoenzyme, the aPKC [atypical PKCiota (protein kinase Ciota)], has been identified as a human oncogene [Regala, Weems, Jamieson, Khoor, Edell, Lohse and Fields (2005) Cancer Res. 65, 8905-8911]. PKCiota has also proven to be a useful prognostic marker and legitimate target for the development of novel pharmacological agents for the treatment of cancer. The PKCiota gene resides at chromosome 3q26 and is a frequent target of tumour-specific gene amplification in multiple forms of human cancer. PKCiota gene amplification in turn drives PKCiota overexpression in these cancers. Genetic disruption of PKCiota expression blocks multiple aspects of the transformed phenotype of human cancer cells including transformed growth in soft agar, invasion through Matrigel and growth of subcutaneous tumours in nude mice. Genetic dissection of oncogenic PKCiota signalling mechanisms demonstrates that PKCiota drives transformed growth by activating a PKCiota --> Rac1 --> PAK (p21-activated kinase) --> MEK [MAPK (mitogen-activated protein kinase) 1,2/ERK (extracellular-signal-regulated kinase) kinase] 1,2 signalling pathway [Regala, Weems, Jamieson, Copland, Thompson and Fields (2005) J. Biol. Chem. 280, 31109-31115]. The transforming activity of PKCiota requires the N-terminal PB1 (Phox-Bem1) domain of PKCiota, which serves to couple PKCiota with downstream effector molecules. Hence, there exists a strong rationale for developing novel cancer therapeutics that target the PB1 domain of PKCiota and thereby disrupt its interactions with effector molecules. Using a novel high-throughput drug screen, we identified compounds that can disrupt PB1-PB1 domain interactions between PKCiota and the adaptor molecule Par6 [Stallings-Mann, Jamieson, Regala, Weems, Murray and Fields (2006) Cancer Res. 66, 1767-1774]. Our screen identified the gold compounds ATG (aurothioglucose) and ATM (aurothiomalate) as specific inhibitors of the PB1-PB1 domain interaction between PKCiota and Par6 that exhibit anti-tumour activity against NSCLC (non-small-cell lung cancer) both in vitro and in vivo. Structural analysis, site-directed mutagenesis and modelling indicate that ATM specifically targets the PB1 domain of PKCiota to mediate its anti-tumour activity [Erdogan, Lamark, Stallings-Mann, Lee, Pellechia, Thompson, Johansen and Fields (2006) J. Biol. Chem. 281, 28450-28459]. Taken together, our recent work demonstrates that PKCiota signalling is required for transformed growth of human tumours and is an attractive target for development of mechanism-based cancer therapies. ATM is currently in Phase I clinical trials for the treatment of NSCLC.
Collapse
|
25
|
The Sarcomere and the Nucleus: Functional Links to Hypertrophy, Atrophy and Sarcopenia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 642:176-91. [DOI: 10.1007/978-0-387-84847-1_13] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
26
|
Vasavada RC, Wang L, Fujinaka Y, Takane KK, Rosa TC, Mellado-Gil JMD, Friedman PA, Garcia-Ocaña A. Protein kinase C-zeta activation markedly enhances beta-cell proliferation: an essential role in growth factor mediated beta-cell mitogenesis. Diabetes 2007; 56:2732-43. [PMID: 17686945 DOI: 10.2337/db07-0461] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Diabetes results from a deficiency of functional beta-cells. Previous studies have identified hepatocyte growth factor (HGF) and parathyroid hormone-related protein (PTHrP) as two potent beta-cell mitogens. The objective of this study is to determine 1) whether HGF and PTHrP have additive/synergistic effects on beta-cell growth and proliferation; 2) the signaling pathways through which these growth factors mediate beta-cell mitogenesis; and 3) whether activation of this/these signaling pathway(s) enhances human beta-cell replication. RESEARCH DESIGN AND METHODS We generated and phenotypically analyzed doubly transgenic mice overexpressing PTHrP and HGF in the beta-cell. INS-1 and primary mouse and human islet cells were used to identify mitogenic signaling pathways activated by HGF and/or PTHrP. RESULTS Combined overexpression of HGF and PTHrP in the beta-cell of doubly transgenic mice did not result in additive/synergistic effects on beta-cell growth and proliferation, suggesting potential cross-talk between signaling pathways activated by both growth factors. Examination of these signaling pathways in INS-1 cells revealed atypical protein kinase C (PKC) as a novel intracellular target activated by both HGF and PTHrP in beta-cells. Knockdown of PKC zeta, but not PKC iota/lambda, expression using specific small-interfering RNAs blocked growth factor-induced INS-1 cell proliferation. Furthermore, adenovirus-mediated delivery of kinase-dead PKC zeta completely inhibited beta-cell proliferation in primary islet cells overexpressing PTHrP and/or HGF. Finally, adenovirus-mediated delivery of constitutively active PKC zeta in mouse and human primary islet cells significantly enhanced beta-cell proliferation. CONCLUSIONS PKC zeta is essential for PTHrP- and HGF-induced beta-cell proliferation. PKC zeta activation could be useful in therapeutic strategies for expanding beta-cell mass in vitro and in vivo.
Collapse
Affiliation(s)
- Rupangi C Vasavada
- Department of Medicine, Division of Endocrinology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Ranganathan S, Wang Y, Kern FG, Qu Z, Li R. Activation loop phosphorylation-independent kinase activity of human protein kinase C zeta. Proteins 2007; 67:709-19. [PMID: 17335005 DOI: 10.1002/prot.21348] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Atypical protein kinase C zeta (PKCzeta) plays an important role in cell proliferation and survival. PKCzeta and its truncated form containing only the kinase domain, CATzeta, have been reported to be activated by the phosphorylation of threonine 410 in the activation loop. We expressed both the full length PKCzeta and CATzeta in a baculovirus/insect cell over-expression system and purified the proteins for biochemical characterization. Ion exchange chromatography of CATzeta revealed three species with different levels of phosphorylation at Thr-410 and allowed the isolation of the CATzeta protein devoid of phosphorylation at Thr-410. All three species of CATzeta were active and their activity was not correlated with phosphorylation at Thr-410, indicating that the kinase activity of CATzeta did not depend solely on activation loop phosphorylation. Tyrosine phosphorylation was detected in all three species of CATzeta and the full length PKCzeta. Homology structural modeling of PKCzeta revealed a conserved, predicted-to-be phosphorylated tyrosine residue, Tyr-428, in the close proximity of the RD motif of the catalytic loop and of Thr-410 in the activation loop. The structural analysis indicated that phospho-Tyr-428 would interact with two key, positively-charged residues to form a triad conformation similar to that formed by phospho-Thr-410. Based on these observations, it is possible that the Thr-410 phosphorylation-independent kinase activity of CATzeta is regulated by the phosphorylation of Tyr-428. This alternative mode of PKCzeta activation is supported by the observed stimulation of PKCzeta kinase activity upon phosphorylation at the equivalent site by Abl, and may be involved in resistance to drug-induced apoptosis.
Collapse
Affiliation(s)
- Senthil Ranganathan
- Department of Organic Chemistry, Drug Discovery Division, Southern Research Institute, 2000, 9th Avenue South, Birmingham, AL 35205, USA
| | | | | | | | | |
Collapse
|
28
|
Fields AP, Regala RP. Protein kinase C iota: human oncogene, prognostic marker and therapeutic target. Pharmacol Res 2007; 55:487-97. [PMID: 17570678 PMCID: PMC2705893 DOI: 10.1016/j.phrs.2007.04.015] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 01/29/2007] [Accepted: 04/16/2007] [Indexed: 01/12/2023]
Abstract
The protein kinase C (PKC) family of serine/threonine kinases has been the subject of intensive study in the field of cancer since their initial discovery as major cellular receptors for the tumor promoting phorbol esters nearly 30 years ago. However, despite these efforts, the search for a direct genetic link between members of the PKC family and human cancer has yielded only circumstantial evidence that any PKC isozyme is a true cancer gene. This situation changed in the past year with the discovery that atypical protein kinase C iota (PKC iota) is a bonafide human oncogene. PKC iota is required for the transformed growth of human cancer cells and the PKC iota gene is the target of tumor-specific gene amplification in multiple forms of human cancer. PKC iota participates in multiple aspects of the transformed phenotype of human cancer cells including transformed growth, invasion and survival. Herein, we review pertinent aspects of atypical PKC structure, function and regulation that relate to the role of these enzymes in oncogenesis. We discuss the evidence that PKC iota is a human oncogene, review mechanisms controlling PKC iota expression in human cancers, and describe the molecular details of PKC iota-mediated oncogenic signaling. We conclude with a discussion of how oncogenic PKC iota signaling has been successfully targeted to identify a novel, mechanism-based therapeutic drug currently entering clinical trials for treatment of human lung cancer. Throughout, we identify key unanswered questions and exciting future avenues of investigation regarding this important oncogenic molecule.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/biosynthesis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/physiology
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/enzymology
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Female
- Gene Amplification
- Gold Sodium Thiomalate/pharmacology
- Gold Sodium Thiomalate/therapeutic use
- Humans
- Isoenzymes/biosynthesis
- Isoenzymes/genetics
- Isoenzymes/physiology
- Lung Neoplasms/drug therapy
- Lung Neoplasms/enzymology
- Lung Neoplasms/pathology
- Oncogenes
- Ovarian Neoplasms/enzymology
- Protein Kinase C/biosynthesis
- Protein Kinase C/genetics
- Protein Kinase C/physiology
- Protein Structure, Tertiary
Collapse
Affiliation(s)
- Alan P Fields
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, FL 32224, USA.
| | | |
Collapse
|
29
|
Natrajan R, Little SE, Reis-Filho JS, Hing L, Messahel B, Grundy PE, Dome JS, Schneider T, Vujanic GM, Pritchard-Jones K, Jones C. Amplification and overexpression of CACNA1E correlates with relapse in favorable histology Wilms' tumors. Clin Cancer Res 2007; 12:7284-93. [PMID: 17189400 DOI: 10.1158/1078-0432.ccr-06-1567] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The most well established molecular markers of poor outcome in Wilms' tumor are loss of heterozygosity at chromosomes 1p and/or 16q, although to date no specific genes at these loci have been identified. We have previously shown a link between genomic gain of chromosome 1q and tumor relapse and sought to further elucidate the role of genes on 1q in treatment failure. EXPERIMENTAL DESIGN Microarray-based comparative genomic hybridization identified a microamplification harboring a single gene (CACNA1E) at 1q25.3 in 6 of 76 (7.9%) Wilms' tumors, correlating with a shorter relapse-free survival (P = 0.0044, log-rank test). Further characterization of this gene was carried out by measuring mRNA and protein expression as well as stable transfection of HEK293 cells. RESULTS Overexpression of the CACNA1E transcript was associated with DNA copy number (P = 0.0204, ANOVA) and tumor relapse (P = 0.0851, log-rank test). Immunohistochemistry against the protein product Ca(V)2.3 revealed expression localized to the apical membrane in the distal tubules of normal kidney but not to the metanephric blastemal cells of fetal kidney from which Wilms' tumors arise. Nuclear localization in 99 of 160 (61.9%) Wilms' tumor cases correlated with a reduced relapse-free survival, particularly in cases treated with preoperative chemotherapy (P = 0.009, log-rank test). Expression profiling of stably transfected HEK293 cells revealed specific up-regulation of the immediate early response genes EGR1/EGR2/EGR3 and FOS/FOSB, mediated by activation of the MEK/ERK5/Nur77 pathway. CONCLUSIONS These data identify a unique genetic aberration with direct clinical relevance in Wilms' tumor relapse and provide evidence for a potential novel mechanism of treatment resistance in these tumors.
Collapse
Affiliation(s)
- Rachael Natrajan
- Paediatric Oncology, Institute of Cancer Research/Royal Marsden NHS Trust, Sutton, Surrey, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Moscat J, Rennert P, Diaz-Meco MT. PKCzeta at the crossroad of NF-kappaB and Jak1/Stat6 signaling pathways. Cell Death Differ 2006; 13:702-11. [PMID: 16322752 DOI: 10.1038/sj.cdd.4401823] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The atypical protein kinase C (PKC) isoforms (aPKC) have been implicated in the regulation of a number of essential signaling events. Early studies using dominant-negative mutants suggested that they are important intermediaries in the activation of the canonical nuclear factor (NF)-kappaB pathway. More recent data using knockout mice genetically demonstrate that in fact the PKCzeta isoform is essential for the adequate activation of this cascade both upstream and downstream the IkappaB kinase complex. In this review, we summarize the mechanistic details whereby the aPKC pathway regulates important cellular functions and how this is achieved by the ability of these kinases to interact with different protein regulators and adapters, as well as to impinge in NF-kappaB-independent signaling cascades such as the Janus kinase-1/signal transducer and activator of transcription 6 system, which plays a critical role in T-cell-mediated hepatitis and asthma.
Collapse
Affiliation(s)
- J Moscat
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| | | | | |
Collapse
|
31
|
Kovac J, Oster H, Leitges M. Expression of the atypical protein kinase C (aPKC) isoforms iota/lambda and zeta during mouse embryogenesis. Gene Expr Patterns 2006; 7:187-96. [PMID: 16931174 DOI: 10.1016/j.modgep.2006.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 05/26/2006] [Accepted: 07/12/2006] [Indexed: 11/24/2022]
Abstract
The atypical C-type protein kinases (aPKCs) comprise the third subclass of the PKC family functionally defined by insensitivity to phorbol esters, diacylgylcerol and calcium. aPKCs have been implicated in numerous biological processes including cell proliferation and survival, cell polarity, migration and inflammation. However, only insufficient data exist with regard to aPKC isoform specificity, since both mammalian aPKCs, PKC iota/lambda and PKC zeta, exhibit a high structural homology and very similar biochemical properties. In this study, we therefore used isoform-specific riboprobes and antibodies to define the characteristic expression profile of each aPKC isoform during mouse embryogenesis. Both, PKC iota/lambda and zeta show highly specific temporal and spatial patterns of expression which may help in distinguishing physiological functions of these isoforms.
Collapse
Affiliation(s)
- Judit Kovac
- Max-Planck-Institute of Experimental Endocrinology, Feodor-Lynen-Strasse 7, 30625 Hannover, Germany.
| | | | | |
Collapse
|
32
|
Baldwin RM, Garratt-Lalonde M, Parolin DAE, Krzyzanowski PM, Andrade MA, Lorimer IAJ. Protection of glioblastoma cells from cisplatin cytotoxicity via protein kinase Ciota-mediated attenuation of p38 MAP kinase signaling. Oncogene 2006; 25:2909-19. [PMID: 16331246 DOI: 10.1038/sj.onc.1209312] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Glioblastoma multiforme is an aggressive form of brain cancer that responds poorly to chemotherapy and is generally incurable. The basis for the poor response of this cancer to chemotherapy is not well understood. The atypical protein kinases C (PKCiota and PKCzeta) have previously been implicated in leukaemia cell chemoresistance. To assess the role of atypical PKC in glioblastoma cell chemoresistance, RNA interference was used to deplete human glioblastoma cells of PKCiota. Transfection of cells with either of two different RNA duplexes specific for PKCiota caused a partial sensitisation to cell death induced by the chemotherapy agent cisplatin. To screen for possible mechanisms for PKCiota-mediated chemoresistance, microarray analysis of gene expression was performed on RNA from glioblastoma cells that were either untreated or depleted of PKCiota. This identified sets of genes that were regulated either positively or negatively by PKCiota. Within the set of genes that were negatively regulated by PKCiota, the function of the gene coding for GMFbeta, an enhancer of p38 mitogen-activated protein kinase (MAP kinase) signaling, was investigated further, as the p38 MAP kinase pathway has been previously identified as a key mediator of cisplatin cytotoxicity. The expression of both GMFbeta mRNA and protein increased upon PKCiota depletion, and this was accompanied by an increase in cisplatin-activated p38 MAP kinase signaling. Transient overexpression of GMFbeta increased cisplatin-activated p38 MAP kinase signaling and also sensitised cells to cisplatin cytotoxicity. The increase in cisplatin cytotoxicity seen with PKCiota depletion was blocked by the p38 MAP kinase inhibitor SKF86002. These data show that PKCiota can confer partial resistance to cisplatin in glioblastoma cells by suppressing GMFbeta-mediated enhancement of p38 MAP kinase signaling.
Collapse
Affiliation(s)
- R M Baldwin
- Ottawa Health Research Institute, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
33
|
Corbalán-García S, Gómez-Fernández JC. Protein kinase C regulatory domains: the art of decoding many different signals in membranes. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:633-54. [PMID: 16809062 DOI: 10.1016/j.bbalip.2006.04.015] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Revised: 04/27/2006] [Accepted: 04/28/2006] [Indexed: 11/29/2022]
Abstract
Protein kinase C (PKC) is a member of a family of Ser/Thr phosphotransferases that are involved in many cellular signaling pathways. These enzymes possess two regulatory domains, C1 and C2, that are the targets of different second messengers. The purpose of this review is to describe in molecular terms the diverse mechanisms of activation of PKCs in the light of very significant advances made in this field over recent years. The role of some critical amino acid residues concerning activation of the enzymes and their location within known structures of isolated domains will be presented. For example, the recently deduced 3D structures of the C2 domains show that these domains can additionally act as PtdIns(4,5)P(2)-binding or phosphotyrosine-binding modules depending on the isoenzyme. All these capacities to play different roles in the cell wide web of signals underline the notion that we are dealing with a multifunctional family of enzymes which, after 30 years of investigation, we are just beginning to understand.
Collapse
Affiliation(s)
- Senena Corbalán-García
- Dpto. de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad de Murcia, Apdo. 4021, E-30100 Murcia, Spain.
| | | |
Collapse
|
34
|
Jenny M, Wrulich OA, Schwaiger W, Ueberall F. Relevance of atypical protein kinase C isotypes to the drug discovery process. Chembiochem 2005; 6:491-9. [PMID: 15712318 DOI: 10.1002/cbic.200400186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Marcel Jenny
- Innsbruck Biocentre, Division of Medical Biochemistry, Innsbruck Medical School, Fritz-Pregl-Strasse 3, 6020 Innsbruck, Austria
| | | | | | | |
Collapse
|
35
|
Leitner D, Wahl M, Labudde D, Krause G, Diehl A, Schmieder P, Pires JR, Fossi M, Wiedemann U, Leidert M, Oschkinat H. The solution structure of an N-terminally truncated version of the yeast CDC24p PB1 domain shows a different β-sheet topology. FEBS Lett 2005; 579:3534-8. [PMID: 15961083 DOI: 10.1016/j.febslet.2005.05.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Revised: 04/05/2005] [Accepted: 05/09/2005] [Indexed: 12/23/2022]
Abstract
Phox and Bem1 (PB1) domains mediate protein-protein interactions via the formation of homo- or hetero-dimers. The C-terminal PB1 domain of yeast cell division cycle 24 (CDC24p), a guanine-nucleotide exchange factor involved in cell polarity establishment, is known to interact with the PB1 domain occurring in bud emergence MSB1 interacting 1 (BEM1p) during the regulation of the yeast budding process via its OPR/PC/AID (OPCA) motif. Here, we present the structure of an N-terminally truncated version of the Sc CDC24p PB1 domain. It shows a different topology of the beta-sheet than the long form. However, the C-terminal part of the structure shows the conserved PB1 domain features including the OPCA motif with a slight rearrangement of helix alpha1. Residues which are important for the heterodimerization with BEM1p are structurally preserved.
Collapse
Affiliation(s)
- Dietmar Leitner
- Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kim JH, Kim JH, Ohba M, Suh PG, Ryu SH. Novel functions of the phospholipase D2-Phox homology domain in protein kinase Czeta activation. Mol Cell Biol 2005; 25:3194-208. [PMID: 15798205 PMCID: PMC1069590 DOI: 10.1128/mcb.25.8.3194-3208.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
It has been established that protein kinase Czeta (PKCzeta) participates in diverse signaling pathways and cellular functions in a wide variety of cells, exhibiting properties relevant to cellular survival and proliferation. Currently, however, the regulation mechanism of PKCzeta remains elusive. Here, for the first time, we determine that phospholipase D2 (PLD2) enhances PKCzeta activity through direct interaction in a lipase activity-independent manner. This interaction of the PLD2-Phox homology (PX) domain with the PKCzeta-kinase domain also induces the activation loop phosphorylation of PKCzeta and downstream signal stimulation, as measured by p70 S6 kinase phosphorylation. Furthermore, only the PLD2-PX domain directly stimulates PKCzeta activity in vitro, and it is necessary for the formation of the ternary complex with phosphoinositide-dependent kinase 1 and PKCzeta. The mutant that substitutes the triple lysine residues (Lys101, Lys102, and Lys103) within the PLD2-PX domain with alanine abolishes interaction with the PKCzeta-kinase domain and activation of PKCzeta. Moreover, breast cancer cell viability is significantly affected by PLD2 silencing. Taken together, these results suggest that the PLD2-mediated PKCzeta activation is induced by its PX domain performing both direct activation of PKCzeta and assistance of activation loop phosphorylation. Furthermore, we find it is an important factor in the survival of breast cancer cells.
Collapse
Affiliation(s)
- Jong Hyun Kim
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, San 31, Hyojadong, Pohang 790-784, Republic of Korea
| | | | | | | | | |
Collapse
|
37
|
|
38
|
Seibenhener ML, Babu JR, Geetha T, Wong HC, Krishna NR, Wooten MW. Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation. Mol Cell Biol 2004; 24:8055-68. [PMID: 15340068 PMCID: PMC515032 DOI: 10.1128/mcb.24.18.8055-8068.2004] [Citation(s) in RCA: 542] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Herein, we demonstrate that the ubiquitin-associated (UBA) domain of sequestosome 1/p62 displays a preference for binding K63-polyubiquitinated substrates. Furthermore, the UBA domain of p62 was necessary for aggregate sequestration and cell survival. However, the inhibition of proteasome function compromised survival in cells with aggregates. Mutational analysis of the UBA domain reveals that the conserved hydrophobic patch MGF as well as the conserved leucine in helix 2 are necessary for binding polyubiquitinated proteins and for sequestration-aggregate formation. We report that p62 interacts with the proteasome by pull-down assay, coimmunoprecipitation, and colocalization. Depletion of p62 levels results in an inhibition of ubiquitin proteasome-mediated degradation and an accumulation of ubiquitinated proteins. Altogether, our results support the hypothesis that p62 may act as a critical ubiquitin chain-targeting factor that shuttles substrates for proteasomal degradation.
Collapse
Affiliation(s)
- M Lamar Seibenhener
- Program in Cell and Molecular Biosciences, Department of Biological Sciences, Auburn University, AL 36849, USA
| | | | | | | | | | | |
Collapse
|
39
|
Sato S, Fujita N, Tsuruo T. Involvement of 3-Phosphoinositide-dependent Protein Kinase-1 in the MEK/MAPK Signal Transduction Pathway. J Biol Chem 2004; 279:33759-67. [PMID: 15175348 DOI: 10.1074/jbc.m402055200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The phosphatidylinositide-3-OH kinase/3-phospho-inositide-dependent protein kinase-1 (PDK1)/Akt and the Raf/mitogen-activated protein kinase (MAPK/ERK) kinase (MEK)/mitogen-activated protein kinase (MAPK) pathways have central roles in the regulation of cell survival and proliferation. Despite their importance, however, the cross-talk between these two pathways has not been fully understood. Here we report that PDK1 promotes MAPK activation in a MEK-dependent manner. In vitro kinase assay revealed that the direct targets of PDK1 in the MAPK pathway were the upstream MAPK kinases MEK1 and MEK2. The identified PDK1 phosphorylation sites in MEK1 and MEK2 are Ser222 and Ser226, respectively, and are known to be essential for full activation. To date, these sites are thought to be phosphorylated by Raf kinases. However, PDK1 gene silencing using small interference RNA demonstrates that PDK1 is associated with maintaining the steady-state phosphorylated MEK level and cell growth. The small interference RNA-mediated down-regulation of PDK1 attenuated maximum MEK and MAPK activities but could not prolong MAPK signaling duration. Stable and transient expression of constitutively active MEK1 overcame these effects. Our results suggest a novel cross-talk between the phosphatidylinositide-3-OH kinase/PDK1/Akt pathway and the Raf/MEK/MAPK pathway.
Collapse
Affiliation(s)
- Saori Sato
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan
| | | | | |
Collapse
|
40
|
Hirano Y, Yoshinaga S, Ogura K, Yokochi M, Noda Y, Sumimoto H, Inagaki F. Solution Structure of Atypical Protein Kinase C PB1 Domain and Its Mode of Interaction with ZIP/p62 and MEK5. J Biol Chem 2004; 279:31883-90. [PMID: 15143057 DOI: 10.1074/jbc.m403092200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Atypical protein kinase C (aPKC) has been implicated in several signaling pathways such as cell polarity, cell survival, and cell differentiation. In contrast to other PKCs, aPKC is unique in having the PB1 (Phox and Bem 1) domain in the N terminus. The aPKC PB1 domain binds with ZIP/p62, Par6, or MEK5 through a PB1-PB1 domain interaction that controls the localization of aPKC. Here, we determined the three-dimensional structure of the PB1 domain of PKCiota by NMR and found that the PB1 domain adopts a ubiquitin fold. The OPCA (OPR, PC, and AID) motif inserted into the ubiquitin fold was presented as a betabetaalpha fold in which the side chains of conserved Asp residues were oriented to the same direction to form an acidic surface. This structural feature suggested that the acidic surface of the PKCiota PB1 domain interacted with the basic surface of the target PB1 domains, and this was confirmed in the case of the PKCiota-ZIP/p62 complex by mutational analysis. Interestingly, in the PKCiota PB1 domain a conserved lysine residue was located on the side opposite to the OPCA motif-presenting surface, suggesting dual roles for the PKCiota PB1 domain in that it could interact with either the conserved lysine residue or the acidic residues on the OPCA motif of the target PB1 domains.
Collapse
Affiliation(s)
- Yoshinori Hirano
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, N-12 W-6, Kita-ku, Sapporo 060-0812, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Suzaki Y, Yoshizumi M, Kagami S, Nishiyama A, Ozawa Y, Kyaw M, Izawa Y, Kanematsu Y, Tsuchiya K, Tamaki T. BMK1 is activated in glomeruli of diabetic rats and in mesangial cells by high glucose conditions. Kidney Int 2004; 65:1749-60. [PMID: 15086914 DOI: 10.1111/j.1523-1755.2004.00576.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND High glucose causes renal cell injury through various signal transduction pathways, including mitogen-activated protein (MAP) kinases cascades. Big MAP kinase 1 (BMK1), also known as extracellular signal-regulated kinase 5 (ERK5), is a recently identified MAP kinase family member and was reported to be sensitive to osmotic and oxidative stress. However, the role of BMK1 in diabetic nephropathy has not been elucidated yet. METHODS We investigated whether BMK1 is activated in the glomeruli of Otsuka Long Evans Tokushima Fatty (OLETF) rats, a model of type 2 diabetes mellitus in comparison with the control Long Evans Tokushima Otsuka (LETO) rats. We also examined the effect of high glucose on BMK1 activity in cultured rat mesangial cells. RESULTS BMK1 and ERK1/2 but not p38 were activated in the glomeruli of OLETF rats, which showed diabetic nephropathy at 52 weeks of age. High glucose, in addition to a high concentration of raffinose, caused rapid and significant activation of BMK1 in rat mesangial cells. MAP kinase/ERK kinase (MEK) inhibitors, U0126 and PD98059, both inhibited BMK1 activation by high glucose in a concentration-dependent manner. Protein kinase C (PKC) inhibition by GF109203X and PKC down-regulation with long-time phorbol myristate acetate (PMA) treatment both inhibited BMK1 and Src kinase activation. Src kinase inhibitors, herbimycin A and PP2, also inhibited high glucose-induced BMK1 activation. PKC inhibitors, Src inhibitors and MEK inhibitors, all inhibited cell proliferation by high glucose. Finally, transfection of dominant-negative MEK5, which is an upstream regulator of BMK1, abolished the BMK1-mediated rat mesangial cell proliferation stimulated by high glucose. CONCLUSION In the present study, we demonstrated that high glucose activates BMK1 both in vivo and in vitro. It was suggested that high glucose induces PKC- and c-Src-dependent BMK1 activation. It could not be denied that BMK1 activation is induced through an osmotic stress-sensitive mechanism. BMK1-mediated mesangial cell growth may be involved in the pathogenesis of diabetic nephropathy.
Collapse
Affiliation(s)
- Yuki Suzaki
- Department of Pharmacology and Pediatrics, The University of Tokushima School of Medicine, Tokushima, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Parmentier JH, Gandhi GK, Wiggins MT, Saeed AE, Bourgoin SG, Malik KU. Protein kinase Czeta regulates phospholipase D activity in rat-1 fibroblasts expressing the alpha1A adrenergic receptor. BMC Cell Biol 2004; 5:4. [PMID: 14736339 PMCID: PMC324395 DOI: 10.1186/1471-2121-5-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2003] [Accepted: 01/21/2004] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Phenylephrine (PHE), an alpha1 adrenergic receptor agonist, increases phospholipase D (PLD) activity, independent of classical and novel protein kinase C (PKC) isoforms, in rat-1 fibroblasts expressing alpha1A adrenergic receptors. The aim of this study was to determine the contribution of atypical PKCzeta to PLD activation in response to PHE in these cells. RESULTS PHE stimulated a PLD activity as demonstrated by phosphatidylethanol production. PHE increased PKCzeta translocation to the particulate cell fraction in parallel with a time-dependent decrease in its activity. PKCzeta activity was reduced at 2 and 5 min and returned to a sub-basal level within 10-15 min. Ectopic expression of kinase-dead PKCzeta, but not constitutively active PKCzeta, potentiated PLD activation elicited by PHE. A cell-permeable pseudosubstrate inhibitor of PKCzeta reduced basal PKCzeta activity and abolished PHE-induced PLD activation. CONCLUSION alpha1A adrenergic receptor stimulation promotes the activation of a PLD activity by a mechanism dependent on PKCzeta; Our data also suggest that catalytic activation of PKCzeta is not required for PLD stimulation.
Collapse
Affiliation(s)
- Jean-Hugues Parmentier
- Department of Pharmacology and Center for Connective Tissue Diseases and Vascular Biology, College of Medicine, The University of Tennessee Health Science Center, 874 Union Avenue, Memphis, TN 38163, USA
| | - Gautam K Gandhi
- Department of Pharmacology and Center for Connective Tissue Diseases and Vascular Biology, College of Medicine, The University of Tennessee Health Science Center, 874 Union Avenue, Memphis, TN 38163, USA
| | - Monique T Wiggins
- Department of Pharmacology and Center for Connective Tissue Diseases and Vascular Biology, College of Medicine, The University of Tennessee Health Science Center, 874 Union Avenue, Memphis, TN 38163, USA
| | - Abdelwahab E Saeed
- Department of Pharmacology and Center for Connective Tissue Diseases and Vascular Biology, College of Medicine, The University of Tennessee Health Science Center, 874 Union Avenue, Memphis, TN 38163, USA
| | - Sylvain G Bourgoin
- Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHUQ, Universite Laval, Sainte-Foy, QC, Canada
| | - Kafait U Malik
- Department of Pharmacology and Center for Connective Tissue Diseases and Vascular Biology, College of Medicine, The University of Tennessee Health Science Center, 874 Union Avenue, Memphis, TN 38163, USA
| |
Collapse
|
43
|
Xu BE, Stippec S, Lenertz L, Lee BH, Zhang W, Lee YK, Cobb MH. WNK1 activates ERK5 by an MEKK2/3-dependent mechanism. J Biol Chem 2003; 279:7826-31. [PMID: 14681216 DOI: 10.1074/jbc.m313465200] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
WNK1 belongs to a unique protein kinase family that lacks the catalytic lysine in its normal position. Mutations in human WNK1 and WNK4 have been implicated in causing a familial form of hypertension. Here we report that overexpression of WNK1 led to increased activity of cotransfected ERK5 in HEK293 cells. ERK5 activation was blocked by the MEK5 inhibitor U0126 and expression of a dominant negative MEK5 mutant. Expression of dominant negative mutants of MEKK2 and MEKK3 also blocked activation of ERK5 by WNK1. Moreover, both MEKK2 and MEKK3 coimmunoprecipitated with endogenous WNK1 from cell lysates. WNK1 phosphorylated both MEKK2 and -3 in vitro, and MEKK3 was activated by WNK1 in 293 cells. Finally, ERK5 activation by epidermal growth factor was attenuated by suppression of WNK1 expression using small interfering RNA. Taken together, these results place WNK1 in the ERK5 MAP kinase pathway upstream of MEKK2/3.
Collapse
Affiliation(s)
- Bing-E Xu
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Noda Y, Kohjima M, Izaki T, Ota K, Yoshinaga S, Inagaki F, Ito T, Sumimoto H. Molecular recognition in dimerization between PB1 domains. J Biol Chem 2003; 278:43516-24. [PMID: 12920115 DOI: 10.1074/jbc.m306330200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The PB1 (Phox and Bem 1) domain is a recently identified module that mediates formation of a heterodimeric complex with other PB1 domain, e.g. the complexes between the phagocyte oxidase activators p67phox and p40phox and between the yeast polarity proteins Bem1p and Cdc24p. These PB1 domains harbor either a conserved lysine residue on one side or an acidic OPCA (OPR/PC/AID) motif around the other side; the lysine of p67phox or Bem1p likely binds to the OPCA of p40phox or Cdc24p, respectively, via electrostatic interactions. To further understand molecular recognition by PB1 domains, here we investigate the interactions mediated by proteins presenting both the lysine and OPCA on a single PB1 domain, namely Par6, atypical protein kinase C (aPKC), and ZIP. Par6 and aPKC form a complex via the interaction of the Par6 lysine with aPKC-OPCA but not via that between the aPKC lysine and Par6-OPCA, thereby localizing to the tight junction of epithelial cells. aPKC also uses its OPCA to interact with ZIP, another protein that has a PB1 domain presenting both the lysine and OPCA, whereas aPKC binds via the conserved lysine to MEK5 in the same manner as ZIP interacts with MEK5. In addition, ZIP can form a homotypic complex via the conserved electrostatic interactions. Thus the PB1 domain appears to be a protein module that fully exploits its two mutually interacting elements in molecular recognition to expand its repertoire of protein-protein interactions.
Collapse
Affiliation(s)
- Yukiko Noda
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Cameron SJ, Abe JI, Malik S, Che W, Yang J. Differential role of MEK5alpha and MEK5beta in BMK1/ERK5 activation. J Biol Chem 2003; 279:1506-12. [PMID: 14583600 DOI: 10.1074/jbc.m308755200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Big mitogen-activated protein kinase 1/extracellular-regulated kinase 5 (BMK1/ERK5) is regulated sequentially by a series of upstream MAP kinase kinases (MEKs) in a signaling cascade. MEKs activate their downstream MAPK by phosphorylation of threonine and tyrosine in the T- X-Y motif. MEK5 is the upstream BMK1 kinase and exists as naturally occurring splice variants, MEK5alpha and MEK5beta. The full-length MEK5 (MEK5alpha) is 89 amino acids longer than MEK5beta at the N terminus, but the precise functional difference between the two splice variants is not known. Dual phosphorylation site mutation of MEK5alpha (Ser-311 --> Asp and Thr- 315 --> Asp; MEK5alpha(S311D/T315D)) activated BMK1, but the corresponding dual phosphorylation sites mutant of MEK5beta could not induce BMK1 kinase activation or nuclear translocation. Furthermore, MEK5beta inhibited epidermal growth factor-induced BMK1 activation and MEK5alpha(S311D/T315D)-induced MEF2 transcriptional activity. Both MEK5alpha and MEK5beta individually co-immunoprecipitated with BMK1, but the presence of MEK5beta prevented association of MEK5alpha with BMK1 suggesting a mechanistic basis for the dominant-negative behavior of MEK5beta on BMK1 activation. The ratio of MEK5alpha to MEK5beta expression was higher in cancer cell lines, and overexpression of MEK5beta-inhibited serum-induced DNA synthesis. These data suggest that alternative splicing of MEK5alpha and MEK5beta may play a critical role in BMK1 activation and subsequent cell proliferation.
Collapse
Affiliation(s)
- Scott J Cameron
- Department of Pharmacology/Physiology, Center for Cardiovascular Research, Department of Anesthesiology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | |
Collapse
|
46
|
Shin HJ, Park KK, Lee BH, Moon CK, Lee MO. Identification of genes that are induced after cadmium exposure by suppression subtractive hybridization. Toxicology 2003; 191:121-31. [PMID: 12965115 DOI: 10.1016/s0300-483x(03)00210-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The heavy metal cadmium is a xenobiotic toxicant of environmental and occupational concern and it has been classified as a human carcinogen. Inhalation of cadmium has been implicated in the development of emphysema and pulmonary fibrosis, but, the detailed mechanism by which cadmium induces adverse biological effects is not yet known. Therefore, we undertook the investigation of genes that are induced after cadmium exposure to illustrate the mechanism of cadmium toxicity. For this purpose, we employed the polymerase chain reaction (PCR)-based suppression subtractive hybridization (SSH) technique. We identified 29 different cadmium-inducible genes in human peripheral blood mononuclear cells (PBMCs), such as macrophage migration inhibitory factor (MIF), lysophosphatidic acid acyltransferase-alpha, enolase-1alpha, VEGF, Bax, and neuron-derived orphan receptor-1 (Nor-1), which are known to be associated with inflammation, cell survival, and apoptosis. Induction of these genes by cadmium treatment was further confirmed by semi-quantitative reverse-transcription PCR. Further, we found that these genes were also induced after cadmium exposure in normal human lung fibroblast cell line, WI-38, suggesting potential use of this induction profile to monitor cadmium toxicity in the lung.
Collapse
Affiliation(s)
- Hye-Jin Shin
- Department of Bioscience and Biotechnology, Sejong University, 98 Kunja-dong, Kwangjin-gu, 140-747, Seoul, South Korea.
| | | | | | | | | |
Collapse
|
47
|
Nakamura K, Johnson GL. PB1 domains of MEKK2 and MEKK3 interact with the MEK5 PB1 domain for activation of the ERK5 pathway. J Biol Chem 2003; 278:36989-92. [PMID: 12912994 DOI: 10.1074/jbc.c300313200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MEKK2 and MEKK3 are MAPK kinase kinases that activate the ERK5 pathway by phosphorylating and activating the MAPK kinase, MEK5. Activated MEK5 then phosphorylates and activates ERK5. PB1 domains were first defined in the p67phox and Bem1p proteins and have been shown to mediate protein-protein heterodimerization. A PB1 domain is encoded within the N-terminal portion of MEKK2, MEKK3, and MEK5. Herein, we analyze the functional role of MEKK2, MEKK3, and MEK5 PB1 domains in the ERK5 activation pathway. The PB1 domains of MEKK2 and MEKK3 bind the PB1 domain of MEK5 but do not significantly homo- or heterodimerize with one another in vitro. Furthermore, co-immunoprecipitation of MEKK2 and MEK5 from cell lysates shows that they form a complex in vivo. Deletion or mutation of the MEKK2 PB1 domain abolishes MEKK2-MEK5 complexes, demonstrating that the PB1 domain interaction is required for MEKK2-MEK5 interactions. Expression in cells of the MEKK2 or MEKK3 PB1 domain inhibits ERK5 activation, whereas expression of a mutant MEKK2 unable to bind the MEK5 PB1 domain or expression of the p67phox PB1 domain has no effect on ERK5 activation. These findings demonstrate that the PB1 domain mediates the association of MEKK2 and MEKK3 with MEK5 and that the respective PB1 domains of these kinases are critical for regulation of the ERK5 pathway. The free PB1 domain of MEKK2 or MEKK3 functions effectively to inhibit the ERK5 pathway but not the p38 or JNK pathways, demonstrating the specific and unique requirement of the MEKK2 and MEKK3 PB1 domain in regulating ERK5 activation.
Collapse
Affiliation(s)
- Kazuhiro Nakamura
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7365, USA
| | | |
Collapse
|
48
|
Lamark T, Perander M, Outzen H, Kristiansen K, Øvervatn A, Michaelsen E, Bjørkøy G, Johansen T. Interaction codes within the family of mammalian Phox and Bem1p domain-containing proteins. J Biol Chem 2003; 278:34568-81. [PMID: 12813044 DOI: 10.1074/jbc.m303221200] [Citation(s) in RCA: 289] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The Phox and Bem1p (PB1) domain constitutes a recently recognized protein-protein interaction domain found in the atypical protein kinase C (aPKC) isoenzymes, lambda/iota- and zeta PKC; members of mitogen-activated protein kinase (MAPK) modules like MEK5, MEKK2, and MEKK3; and in several scaffold proteins involved in cellular signaling. Among the last group, p62 and Par6 (partitioning-defective 6) are involved in coupling the aPKCs to signaling pathways involved in cell survival, growth control, and cell polarity. By mutation analyses and molecular modeling, we have identified critical residues at the interaction surfaces of the PB1 domains of aPKCs and p62. A basic charge cluster interacts with an acidic loop and helix both in p62 oligomerization and in the aPKC-p62 interaction. Subsequently, we determined the abilities of mammalian PB1 domain proteins to form heteromeric and homomeric complexes mediated by this domain. We report several novel interactions within this family. An interaction between the cell polarity scaffold protein Par6 and MEK5 was found. Furthermore, p62 interacts both with MEK5 and NBR1 in addition to the aPKCs. Evidence for involvement of p62 in MEK5-ERK5 signaling is presented.
Collapse
Affiliation(s)
- Trond Lamark
- Biochemistry Department, Institute of Medical Biology, University of Tromsø, 9037 Tromsø, Norway
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Geetha T, Wooten MW. Association of the atypical protein kinase C-interacting protein p62/ZIP with nerve growth factor receptor TrkA regulates receptor trafficking and Erk5 signaling. J Biol Chem 2003; 278:4730-9. [PMID: 12471037 DOI: 10.1074/jbc.m208468200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous work demonstrated an essential role for the atypical protein kinase C interacting protein, p62, in neurotrophin survival and differentiation signaling. Here we show that p62 interacts not only with TrkA but also with TrkB and TrkC, which are the primary receptors for brain-derived neurotrophic factor and neurotrophin-3. The interaction of p62 with TrkA requires the kinase activity of TrkA. Mapping analysis indicates that p62 does not compete with Shc for binding to TrkA, and p62 association was confined to the juxtamembrane region of TrkA, amino acids 472-493. By immunofluorescence the colocalization of p62 and TrkA was observed 30 min post-nerve growth factor treatment within overlapping vesicular structures. Upon subcellular fractionation, activated TrkA colocalized to an endosomal compartment and p62 was coassociated with the receptor post-nerve growth factor stimulation. Moreover, an absence of p62 blocked internalization of TrkA without an effect on phosphorylation of either TrkA or MAPK; however, Erk5 signaling was selectively abrogated. We propose that p62 plays a novel role in connecting receptor signals with the endosomal signaling network required for mediating TrkA-induced differentiation.
Collapse
Affiliation(s)
- Thangiah Geetha
- Department of Biological Sciences, Program in Cellular and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | | |
Collapse
|
50
|
Moscat J, Diaz-Meco MT. The atypical PKC scaffold protein P62 is a novel target for anti-inflammatory and anti-cancer therapies. ADVANCES IN ENZYME REGULATION 2002; 42:173-9. [PMID: 12123714 DOI: 10.1016/s0065-2571(01)00029-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jorge Moscat
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| | | |
Collapse
|